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Applications of Fixed Point Theorems
to the Vacuum Einstein Constraint Equations
with Non-Constant Mean Curvature

The Cang Nguyen

Abstract. In this paper, we introduce new methods for solving the vac-
uum Einstein constraints equations: the first one is based on Schaefer’s
fixed point theorem (known methods use Schauder’s fixed point theorem),
while the second one uses the concept of half-continuity coupled with the
introduction of local supersolutions. These methods allow to: unify some
recent existence results, simplify many proofs (for instance, the one of
the main theorems in Dahl et al., Duke Math J 161(14):2669–2697, 2012)
and weaken the assumptions of many recent results.

1. Introduction

The Einstein equations for a (n + 1)-manifold M (n ≥ 3) and a Lorentzian
metric h describe the evolution of the gravitational field. In the vacuum case,
they read

Ricμυ − R

2
hμυ = 0. (1)

Here, Ric and R are, respectively, the Ricci and the scalar curvature of h. If
M is a two-sided spacelike hypersurface with unit normal ν of this geometric
space, one can define on M

• the induced metric g = h|TM ,
• the second fundamental form K: K(X,Y ) = h(h∇Xν, Y ).

It follows from the Gauss and Codazzi equations that g and K are related by
the so-called constraint equations

Rg − |K|2g + (trgK)2 = 0,

divgK − d trgK = 0.
(2)

Choquet-Bruhat and Geroch proved in [5,8] that if a n-manifold M , a Rie-
mannian metric g on M and a 2-tensor K form a solution to Eq. (2), we can
reconstruct the space–time (M , h) from the knowledge of (M, g,K).
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In an effort to solve (2), Lichnerowicz [13] and later Choquet-Bruhat and
York [6] introduced a very efficient approach called the conformal method.
For this procedure, let M be a n-manifold and g be a Riemannian metric on
M . One specifies a mean curvature τ and a transverse-traceless tensor σ (i.e.,
a symmetric, trace-free, divergence-free (0, 2)-tensor) on M . One looks for a
conformal factor ϕ : M −→ R and a 1-form W such that{

g̃ = ϕN−2g

K̃ = 1
nτ g̃ + ϕ−2(σ + LW )

(3)

forms a solution to the Einstein equations (2). Here, N = 2n/(n − 2) and L is
the conformal Killing operator defined by

LWij = ∇iWj + ∇jWi − 2
n

(divW )gij ,

where ∇ denotes the Levi–Civita connection associated to the metric g and
divW = ∇iWi is the divergence operator. Equation (2) are then reformulated
into the following coupled nonlinear elliptic system for a positive ϕ and a
vector field W :

4(n − 1)
n − 2

Δϕ + Rϕ = −n − 1
n

τ2ϕN−1 + |σ + LW |2ϕ−N−1

(Lichnerowicz equation) (4a)

−1
2
L∗LW =

n − 1
n

ϕNdτ (vector equation), (4b)

where Δ is the nonnegative Laplace operator, R is the scalar curvature of g and
L∗is the formal L2-adjoint of L, so − 1

2 (L∗LW )j = ∇i(LWij). These coupled
equations are called the conformal constraint equations. When τ is constant,
the system (4) becomes uncoupled (since dτ = 0 in the vector equation) and
a complete description of the situation was achieved by Isenberg (see [2]).
When τ is not constant, the problem is much harder and there are still many
situations where the solvability of the system (4) is not known. Recently, much
progress has been made by several authors. Let us cite for instance:

• Isenberg–Moncrief [12], Maxwell [14] for near-CMC results (i.e., τ close
to constant),

• Holst–Nagy–Tsogtgerel [11] and Maxwell [15] for far from CMC results
with a smallness assumption on σ, depending only on g and τ .

• Dahl–Gicquaud–Humbert [7] who proved that non-existence of solutions
to a certain limit equations ensures the solvability of (4).

In this paper, we develop two new methods for solving the coupled system (4).
The first one is based on Schaefer’s fixed points which turns out to be more
efficient in this situation than an application of Schauder’s fixed point theo-
rem as used in [7,11,15]. This method has several applications. In particular,
it greatly simplifies the proof of the main theorem in [7] (see Theorem 3.3)
and allows to recover an existence result provided σ is small enough in L∞

(depending only on g and τ) as noticed in [11,15] (see Proposition 3.9). Fur-
thermore, it gives an unifying point of view of these results. It is also worth
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noting that another effort to obtain the far from CMC result has been recently
presented in [9] using the implicit function theorem.

The second method uses half-continuity of appropriate maps. It allows
to show that the assumption of the existence of global supersolutions used in
[7,11,15] to solve (4) can be weakened: the existence of local supersolutions,
whose definition is given in Sect. 4, is sufficient here. As applications of this
method, we prove the solvability of a modification of the system (4) when τ has
some zeros and we show that the smallness of σ in L2 leads to the solvability
of (4). This improves the results by Holst–Nagy–Tsogtgerel [11] and Maxwell
[15].

In Sect. 2, we introduce the notations which will appear in the whole
paper and we establish some general results used in many proofs. In Sect. 3,
we show how Schaefer’s fixed point theorem can be used to solve (4). We
apply it to give a simpler proof of the main result in [7] (see Theorem 3.3)
and enlighten several consequences of this method. In Sect. 4, we introduce
the half-continuity method and give some applications.

2. Preliminaries

Let M be a compact manifold of dimension n ≥ 3, our goal is to find solutions
to the vacuum Einstein equations using the conformal method. The given data
on M consist in

• a Riemannian metric g ∈ W 2,p,

• a function τ ∈ W 1,p,

• a symmetric, trace- and divergence-free (0, 2)-tensor σ ∈ W 1,p,

(5)

with p > n. And one is required to find

• a positive function ϕ ∈ W 2,p,

• a 1-form W ∈ W 2,p,

which satisfy the conformal constraint equations (4). We also assume that

• Z(τ) has zero Lebesgue measure,

• (M, g) has no conformal Killing vector field,
• σ �≡ 0 if Yg ≥ 0,

(6)

where Z(τ) = τ−1(0) denotes the set of zero points of τ and Yg is the Yamabe
constant of the conformal class of g; that is

Yg = inf
f∈C∞(M)

f �≡0

4(n−1)
n−2

∫
M

|∇f |2dv +
∫

M
Rf2

‖f‖2
LN (M)

.

We use standard notations for function spaces, such as Lp, Ck, and Sobolev
spaces W k,p. It will be clear from the context if the notation refers to a space
of functions on M , or a space of sections of some bundle over M . For spaces of
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functions which embed into L∞, the subscript + is used to indicate the cone
of positive functions.

We will sometimes write, for instance, C(α1, α2) to indicate that a con-
stant C depends only on α1 and α2.

From now on, we define the map T : L∞ → L∞ as follows. Given data
on M as specified in (5) and assuming that (6) holds, for each ϕ ∈ L∞, there
exists a unique W ∈ W 2,p such that

−1
2
L∗LW =

n − 1
n

ϕNdτ,

and there is a unique ψ ∈ W 2,p
+ satisfying (see [12] or [14])

4(n − 1)
n − 2

Δψ + Rψ = −n − 1
n

τ2ψN−1 + |σ + LW |2ψ−N−1.

We define

T (ϕ) = ψ.

Proposition 2.1 (see [7, Lemma 2.3] or [15]). T is a continuous compact oper-
ator and T (ϕ) > 0 for all ϕ ∈ L∞.

We now review some standard facts on the Lichnerowicz equation on a
compact n-manifold M :

4(n − 1)
n − 2

Δu + Ru +
n − 1

n
τ2uN−1 =

w2

uN+1
. (7)

Given a function w and p > n, we say that u+ ∈ W 2,p
+ is a supersolution to

(7) if

4(n − 1)
n − 2

Δu+ + Ru+ +
n − 1

n
τ2uN−1

+ ≥ w2

uN+1
+

.

A subsolution is defined similarly with the reverse inequality.

Proposition 2.2 (see [14]). Assume that g ∈ W 2,p and w, τ ∈ L2p for some
p > n. If u−, u+ ∈ W 2,p

+ are a subsolution and a supersolution, respectively, to
(7) associated with a fixed w such that u− ≤ u+, then there exists a solution
u ∈ W 2,p

+ to (7) such that u− ≤ u ≤ u+.

Theorem 2.3 (see [14]). Assume w, τ ∈ L2p and g ∈ W 2,p for some p > n.
Then, there exists a positive solution u ∈ W 2,p

+ to (7) if and only if one of the
following assertions is true.

1. Yg > 0 and w �≡ 0,
2. Yg = 0 and w �≡ 0, τ �≡ 0,
3. Yg < 0 and there exists ĝ in the conformal class of g such that Rĝ =

−n−1
n τ2,

4. Yg = 0 and w ≡ 0, τ ≡ 0.

In Cases 1–3, the solution is unique. In Case 4, any two solutions are related
by a scaling by a positive constant multiple. Moreover, Case 3 holds if Yg < 0
and Z(τ) has zero Lebesgue measure (see [1, Theorem 6.12]).
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The main technique used to prove the above theorem is the conformal
covariance of (7).

Lemma 2.4 (see [15]). Assume that g ∈ W 2,p and that w, τ ∈ L2p for some
p > n. Assume also that ψ ∈ W 2,p

+ . Define

ĝ = ψ
4

n−2 g, ŵ = ψ−Nw, τ̂ = τ.

Then, u is a supersolution (resp. subsolution) to (7) if and only if û = ψ−1u
is a supersolution (resp. subsolution) to the conformally transformed equation

4(n − 1)
n − 2

Δĝû + Rĝû +
n − 1

n
τ̂2ûN−1 =

ŵ2

ûN+1
. (8)

In particular, u is a solution to (7) if and only if û is a solution to (8).

From the techniques in [9], we get the following remark.

Remark 2.5. Theorem 2.3 guarantees that for any given w ∈ L2p \ {0}, there
exists a unique solution u ∈ W 2,p

+ to (7). In addition, by direct calculation, we
compute for any k ≥ N∫

M

ûkdvĝ =
∫

M

ψN−kukdvg and
∫

M

ŵkdvĝ =
∫

M

ψN(1−k)wkdvg,

where (ĝ, û, ŵ) is as in Lemma 2.4. It follows that

(max ψ)
N−k

k ‖u‖Lk
g

≤ ‖û‖Lk
ĝ

≤ (min ψ)
N−k

k ‖u‖Lk
g

and

(max ψ)
N(1−k)

k ‖w‖Lk
g

≤ ‖ŵ‖Lk
ĝ

≤ (min ψ)
N(1−k)

k ‖w‖Lk
g
.

Without loss of generality, we can assume moreover that R > 0 or R ≡ 0 or
R = −n−1

n τ2 depending on the sign of Yg (in the case Yg < 0, we refer to Case
3 of Theorem 2.3). Under this assumption, it is also helpful to keep in mind
that the term Ruk+1 + n−1

n τ2uk+N−1 is uniformly bounded from below for all
positive functions u ∈ L∞ and all k ≥ 0. In fact, if R ≥ 0, it is obvious that
Ruk+1 + n−1

n τ2uk+N−1 ≥ 0. If R = −n−1
n τ2, then n−1

n τ2uk+1(uN−2 − 1) ≥
−n−1

n (max |τ |)2, which is our claim.

The following lemma will be used all along the paper.

Lemma 2.6 (Maximum principle). Assume that v, u are a supersolution (resp.
subsolution) and a positive solution, respectively, to (7) associated with a fixed
w, then

v ≥ u (resp. ≤).

In particular, assume u0 (resp. u1) is a positive solution to (7) associated to
w = w0 (resp. w1). Assume moreover w0 ≤ w1, then u0 ≤ u1.

We give a simple proof of this fact based on Theorem 2.3 (even if the proof
of Theorem 2.3 requires the maximum principle). Another proof, independent
of Theorem 2.3, can be found in [7].
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Proof. We will prove the supersolution case, the remaining cases being similar.
Assume that v, u are, respectively, a supersolution and a positive solution to
(7) associated to a fixed w. Since u is a solution, it is also a subsolution. Hence,
so is tu for all constant t ∈ (0, 1]. Since min v > 0, we now take t small enough
s.t. tu ≤ v. By Proposition 2.2, we then conclude that there exists a solution
u′ ∈ W 2,p to (7) satisfying tu ≤ u′ ≤ v. On the other hand, by uniqueness
of positive solutions to (7) given by Theorem 2.3, we obtain that u = u′, and
hence get the desired conclusion. �

3. A New Proof for the Limit Equation

In this section, we show how Schaefer’s fixed point theorem can be applied to
give a simpler proof of the main result in [7]. We first recall its statement (see
[4, Theorem 3.4.8] or [10, Theorem 11.6]).

Theorem 3.1 (Leray–Schauder’s fixed point). Let X be a Banach space and
assume that T : X × [0, 1] → X is a continuous compact mapping, satisfying
T (x, 0) = 0 for all x ∈ X. If the set K = {x ∈ X| ∃ t ∈ [0, 1] such that x =
T (x, t)} is bounded. Then, T = T (., 1) has a fixed point.

Corollary 3.2 (Schaefer’s fixed point). Assume that T : X → X is continuous
compact and that the set

K = {x ∈ X| ∃ t ∈ [0, 1] such that x = tT (x)}
is bounded. Then, T has a fixed point.

We now state the main theorem in [7] and give an alternative proof.

Theorem 3.3. Let data be given on M as specified in (5) and assume that
(6) holds. Furthermore, assume that τ > 0, then at least one of the following
assertions is true

• The constraint equations (4) admit a solution (ϕ,W ) with ϕ > 0. Fur-
thermore, the set of solutions (ϕ,W ) ∈ W 2,p

+ × W 2,p is compact.
• There exists a non-trivial solution W ∈ W 2,p to the limit equation

− 1
2
L∗LW = α0

√
n − 1

n
|LW |dτ

τ
(9)

for some α0 ∈ (0, 1].

Dahl–Gicquaud–Humbert’s proof of this theorem in [7] goes as follows:
first, they apply Schauder’s fixed point theorem to solve a subcritical system,
that is a small perturbation of the system (4) where some exponent N is
replaced by N − ε. This provides a sequence (uε) of solutions to the subcritical
system which is expected to converge to a solution of (4) when ε tends to 0.
A study of the sequence (uε) shows that this actually happens when the limit
Eq. (9) has no non-trivial solution.

In the proof we present here, we show that Shaefer’s fixed point theorem
can be applied as soon as (9) has no non-trivial solution, leading directly to
the existence of a solution to (4). This simplifies the proof.
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Proof of Theorem 3.3. Let T be given as Sect. 2. Recall that T is a continuous
compact map from L∞ into itself and T (ϕ) > 0 for all ϕ ∈ L∞ (see [7,
Lemma 2.2]). Set

S = {ϕ ∈ L∞/ ∃t ∈ [0, 1] : ϕ = tT (ϕ)} .

If S is bounded, we get a solution to (4) by Corollary 3.2. If S is not
bounded, there exists a sequence (ti, ϕi) in [0, 1]×L∞ with ‖ϕi‖L∞ → ∞ such
that

4(n − 1)
n − 2

Δψi + Rψi = −n − 1
n

τ2ψN−1
i + |σ + LWi|2ψ−N−1

i (10a)

−1
2
L∗LWi =

n − 1
n

ϕN
i dτ, (10b)

where ψi = T (ϕi) and ϕi = tiψi. We modify the main idea in [7] to obtain
the (non-trivial) solution to the limit equation. We set γi = ‖ψi‖∞ and rescale
ψi, Wi and σ as follows:

ψ̃i = γ−1
i ψi, W̃i = γ−N

i Wi, σ̃i = γ−N
i σ.

It may be worth noticing that γi = ‖ψi‖∞ = 1
ti

‖ϕi‖∞ → ∞ as i → ∞. The
system (10), with ϕi replaced by tiψi in the vector equation, can be rewritten
as

1
γN−2

i

(
4(n − 1)
n − 2

Δψ̃i + Rψ̃i

)
= −n − 1

n
τ2ψ̃N−1

i + |σ̃ + LW̃i|2ψ̃−N−1
i (11a)

−1
2
L∗LW̃i =

n − 1
n

tNi ψ̃N
i dτ. (11b)

Since ‖ψ̃i‖∞ = 1, we conclude from the vector equation that (W̃i)i is bounded
in W 2,p and then by the Sobolev embedding, (after passing to a subsequence)
W̃i converges in the C1-norm to some W̃∞. We now prove that

ψ̃i →
(√

n

n − 1
|LW̃∞|

τ

) 1
N

in L∞. (12)

Note that if such a statement is proven, passing to the limit in the vector
equation, we see that W̃∞ is a solution to the limit equation with (after passing
to a subsequence) α0 = lim tNi ∈ [0, 1]. On the other hand, since ‖ψ̃i‖∞ = 1
for all i, W̃∞ �≡ 0 from (12) and then by the assumption that (M, g) has no
conformal Killing vector field, we obtain that α0 �= 0 which completes the
proof.

For any ε > 0, since |LW̃∞|
τ ∈ C0, we can choose ω̃ ∈ C2

+ s.t.

∣∣∣∣ω̃ −
(√

n

n − 1
|LW̃∞|

τ

) 1
N ∣∣∣∣ <

ε

2
. (13)

To show (12), it suffices to show that

|ψ̃i − ω̃| ≤ ε

2
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for all i large enough. We argue by contradiction. Assume that the previous
inequality is not true. We first consider the case when (after passing to a
subsequence) there exists a sequence (mi) ∈ M s.t.

ψ̃i(mi) > ω̃(mi) +
ε

2
. (14)

By Lemma 2.6 and Inequality (14), ω̃+ ε
2 is not a supersolution to the rescaled

Lichnerowicz equation. As a consequence, since Δ is here assumed to be the
nonnegative Laplace operator, there exists a sequence (pi) ∈ M satisfying

1
γN−2

i

[
4(n − 1)
n − 2

Δ
(
ω̃ +

ε

2

)
(pi) + R

(
ω̃ +

ε

2

)
(pi)

]

+
n − 1

n
τ2(pi)

(
ω̃ +

ε

2

)N−1

(pi) < |σ̃i(pi) + LW̃i(pi)|2
(
ω̃ +

ε

2

)−N−1

(pi).

Without loss of generality, we can assume that there exists p∞ ∈ M such that
pi → p∞. Since

(
ω̃ + ε

2

)
and τ are positive, the previous inequality can be

rewritten as follows

n
(
ω̃ + ε

2

)N+1 (pi)

(n − 1)τ2(pi)γN−2
i

[
4(n − 1)
n − 2

Δ
(
ω̃ +

ε

2

)
(pi) + R

(
ω̃ +

ε

2

)
(pi)

]

+
(
ω̃ +

ε

2

)2N

(pi) <
n

n − 1
|σ̃i(pi) + LW̃i(pi)|2τ−2(pi).

Taking i → ∞, due to the facts that ω̃ ∈ C2
+, min τ > 0, γi → ∞ and

W̃i → W̃∞ in C1-norm, we obtain that

n
(
ω̃ + ε

2

)N+1 (pi)

(n − 1)τ2(pi)γN−2
i

[
4(n − 1)
n − 2

Δ
(
ω̃ +

ε

2

)
(pi) + R

(
ω̃ +

ε

2

)
(pi)

]
→ 0,

(
ω̃ +

ε

2

)2N

(pi) →
(
ω̃ +

ε

2

)2N

(p∞)

and

n

n − 1
|σ̃i(pi) + LW̃i(pi)|2τ−2(pi) → n

n − 1

(
|LW̃i|

τ

)2

(p∞),

This proves that

ω̃(p∞) +
ε

2
≤

(√
n

n − 1
|LW̃∞|

τ

) 1
N

(p∞),

which is a contradiction with (13).
For the remaining case, i.e., when there exists a sequence (mi) ∈ M s.t.

ω̃(mi) − ε
2 > ψ̃i(mi), ω̃ − ε

2 is not a subsolution to the rescaled Lichnerowicz
equation on Bε = {m ∈ M : ω̃(m) − ε

2 > 0} (here note that ψ̃i > 0, then
ω̃(mi) − ε

2 > 0 and ω̃ − ε
2 < ψ̃i on ∂Bε if Bε � M). By similar arguments to

the first case, we also obtain a contradiction. �
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The condition τ > 0 plays an important role in the proof of the main
theorem in [7] (or Theorem 3.3). Indeed, this condition implies that for any
(u,w) satisfying (7), we have

uN ≤ C(g, τ, σ)max{‖w‖∞, 1}
(it is a consequence of the maximum principle), which plays a crucial role in
the proof. When τ vanishes, this inequality does not remain true as shown by
the following proposition:

Proposition 3.4. Assume that g ∈ C2 and τ ∈ C0. For any k > 1, we denote by
uk > 0 the unique solution to (7) associated to w = k. If τ vanishes somewhere,
then

‖uk‖N
∞

k
→ ∞ as k → ∞.

Proof. Set ũk := uk/k
1
N , then ũk is a solution to the following equation:

1

k
N−2

N

(
4(n − 1)
n − 2

Δũk + Rũk

)
+

n − 1
n

τ2ũN−1
k =

1
ũN+1

k

. (15)

Given A > 0, we set

ϕ̃A = min

{(
n

(n − 2)τ2

) 1
2N

, A

}
. (16)

Fix ε > 0 small enough, we first prove that

ϕ̃A ≤ ũk + 2ε, ∀k ≥ kA, (17)

for some kA large enough depending on A. We proceed by contradiction. As-
sume that this is not true, so there exists a subsequence {mk} ∈ M s.t.

ϕ̃A(mk) − 2ε > ũk(mk). (18)

Next, since ϕ̃A ∈ C0
+, we can choose φ̃A ∈ C2

+ s.t.

|φ̃A − ϕ̃A| ≤ ε/2. (19)

Then, it follows from (18) that

φ̃A(mk) − ε > ũk(mk). (20)

Set BA = {m ∈ M : φ̃A − ε > 0}. Since ũk > 0, we deduce from (20) that
φ̃A−ε is not a subsolution to (15) and hence there exists a sequence {pk} ∈ BA

s.t.

1

k
N−2

N

[
4(n − 1)
n − 2

Δ(φ̃A − ε)(pk) + R(pk)(φ̃A − ε)(pk)
]

+
n − 1

n
τ2(pk)(φ̃A − ε)N−1(pk) >

1

(φ̃A − ε)N+1(pk)
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or equivalently,

(φ̃A − ε)N+1(pk)

k
N−2

N

[
4(n − 1)
n − 2

Δ(φ̃A − ε)(pk) + R(pk)(φ̃A − ε)(pk)
]

+
n − 1

n
τ2(pk)(φ̃A − ε)2N (pk) > 1.

Taking k → ∞ and assuming (after passing to a subsequence) pi → p∞, we
obtain that

(φ̃A − ε)N+1(pk)

k
N−2

N

[
4(n − 1)
n − 2

Δ(φ̃A − ε)(pk) + R(pk)(φ̃A − ε)(pk)
]

→ 0

and
n − 1

n
τ2(φ̃A − ε)2N (pk) → n − 1

n
τ2(p∞)(φ̃A − ε)2N (p∞),

This shows that
n − 1

n
τ2(p∞)(φ̃A − ε)2N (p∞) ≥ 1. (21)

On the other hand, we have
n − 1

n
τ2(p∞)(φ̃A − ε)2N (p∞)

≤ n − 1
n

τ2(p∞)
(
ϕ̃A − ε

2

)2N

(p∞) (by (19))

≤ n − 1
n

τ2(p∞)
(

ϕ̃2N
A (p∞) −

( ε

2

)2N
)

≤ 1 − n − 1
n

τ2(p∞)
( ε

2

)2N

< 1,

which is a contradiction with (21), and then (17) holds, as claimed. Now, if
ũk ≤ C, we deduce from (17) that max ϕ̃A ≤ C + 2ε, which is false when
A → +∞ since τ has some zeros. The proof is completed. �

We can be more precise. This is the content of the next proposition

Proposition 3.5. Assume that g ∈ C2 and τ ∈ C0. We set

L = {(u,w) ∈ W 2,p
+ × L∞ : (u,w) satisfies (7)}.

Given α ≥ 1
N , sup(u,w)∈L

‖u‖N
LNα

max{‖w‖∞,1} is bounded if and only if |τ |−α ∈ L1.

Proof. Applying Lemma 2.6 with w0 = w and w1 = ‖w‖∞, we have

sup
(u,w)∈L

‖u‖N
LNα

max{‖w‖∞, 1} = sup
(u,w)∈L

w constant

‖u‖N
LNα

max{|w|, 1}

= sup
k>1

‖uk‖N
LNα

k
,
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where uk is the unique positive solution to (7) associated to w = k. Therefore,

sup(u,w)∈L
‖u‖N

LNα

max{‖w‖∞,1} < ∞ if and only if ‖uk‖N
LNα

k is uniformly bounded for all
k > 1. Moreover, note that with C = C(g, τ) large enough and not depending
on k, k

1
N /C is a subsolution to (7) associated to w = k, and hence for all

k > 1,

uk ≥ k
1
N

C
>

1
C

(22)

We first prove that |τ |−α ∈ L1 is a necessary condition. Set ũk = uk/k
1
N and

we let ϕ̃A given by (16). As in the proof of Proposition 3.4, we obtain that for
all k large enough and depending on A,

ϕ̃A ≤ ũk + ε.

Assume that ũk is uniformly bounded in LNα, so is ϕ̃A by the previous in-
equality. On the other hand, it is clear that ϕ̃A converges pointwise a.e to
( n

n−1 )
1

2N |τ |− 1
N as A → ∞. Hence, the monotone convergence theorem implies

that |τ |− 1
N ∈ LNα, which is our claim.

We now prove that the condition is sufficient. Assume that |τ |−α ∈ L1.
Multiplying (7) by uNα+N+1

k and integrating over M , we have

4(n − 1)
n − 2

∫
M

uNα+N+1
k Δukdv +

∫
M

RuNα+N+2
k dv +

n − 1
n

∫
M

τ2u
N(α+2)
k dv

= k2

∫
M

uNα
k dv. (23)

As observed in Remark 2.5, RuNα+N+2
k + n−2

n τ2u
N(α+2)
k is uniformly bounded

from below by a constant ζ = ζ(g, τ) which does not depend on k since we
assume that R ≥ 0 or R = −n−1

n τ2. Moreover, we have∫
M

uNα+N+1
k Δukdv =

Nα + N + 1(
Nα+N

2 + 1
)2

∫
M

|∇u
Nα+N

2 +1

k |2dv.

These facts combined with (22) and (23) lead to∫
M

τ2u
N(α+2)dv
k ≤ C1(C, ζ)k2

∫
M

uNα
k dv, (24)

On the other hand, we get that∫
M

uNα
k dv

≤
(∫

M

|τ |−αdv

) 2
α+2

(∫
M

τ2u
N(α+2)
k dv

) α
α+2

(by Hölder inequality)

≤ C2(C1, τ, α)
(

k2

∫
M

uNα
k dv

) α
α+2

(by (24)).
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It follows easily that for all k > 1

‖uk‖N
LNα

k
≤ C

α+2
2α

2 ,

which completes our proof. �

The fixed point theorem above has some other consequences that we
describe now. First, we have the following proposition.

Proposition 3.6. Let data be given on M as specified in (5) and assume that
(M, g) has no conformal Killing vector field and σ �≡ 0. If Yg > 0, then there
exists a constant α = α(g, τ, σ) ∈ (0, 1] such that the constraint equations w.r.t.
the new data (g, ατ, σ) admit a solution.

Remark 3.7. In the proof, we apply Leray–Schauder’s Theorem 3.1 and not
Corollary 3.2 as in the proof of Theorem 3.3.

Proof. By Remark 2.5, we may assume R > 0. We construct a compact map
T̃ : L∞ × [0, 1] → L∞ as follows. For each (ϕ, t) ∈ L∞ × [0, 1], there exists a
unique Wϕ ∈ W 2,p s.t.

−1
2
L∗LWϕ =

n − 1
n

ϕNdτ

and there exists a unique positive ψ ∈ W 2,p satisfying

4(n − 1)
n − 2

Δψ + Rψ = −n − 1
n

t2Nτ2ψN−1 + |σ + LWϕ|2ψ−N−1

(see [7, Lemma 2.2] and notice that R > 0). Then, we define

T̃ (ϕ, t) = tψ.

The continuity and compactness of T̃ is clearly a direct consequence of the
continuity and compactness of T ′(ϕ, t) := T̃ (ϕ,t)

t = ψ.
Note that T ′(ϕ, t) = T̃1(G(ϕ), t). Here, G(ϕ) = |LWϕ + σ| �≡ 0 and

T̃1 : L∞ × [0, 1] → W 2,p
+ is defined by T̃1(w, t) = ψ, where

4(n − 1)
n − 2

Δψ + Rψ = −n − 1
n

t2Nτ2ψN−1 + w2ψ−N−1. (25)

As proven in [7], G is continuous compact, so the continuity and compact-
ness of T ′ and hence that of T̃ , will follow from the continuity of T̃1. Actually,
we prove more: T̃1 is a C1-map. Indeed, define F : L∞ × [0, 1] × W 2,p

+ → L2p

by

F (w, t, ψ) =
4(n − 1)
n − 2

Δψ + Rψ +
n − 1

n
t2Nτ2ψN−1 − w2ψ−N−1.

It is clear that F is continuous and F (w, t, T̃1(w, t)) = 0 for all (w, t) ∈ L∞ ×
[0, 1]. A standard computation shows that the Fréchet derivative of F w.r.t. ψ
is given by
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Fψ(w, t)(u) =
4(n − 1)
n − 2

Δu + Ru +
(N − 1)(n − 1)

n
t2Nτ2ψN−2u

+ (N + 1)w2ψ−N−2u.

We first note that Fψ ∈ C(L∞×[0, 1], L(W 2,p, Lp)), where L(W 2,p, Lp) denotes
the Banach space of all linear continuous maps from W 2,p into Lp. Now, given
(w0, t0) ∈ L∞ × [0, 1], setting ψ0 = T̃1(w0, t0), we have

Fψ0(w0, t0)(u) =
4(n − 1)
n − 2

Δu

+
(

R +
(N − 1)(n − 1)

n
t2N
0 τ2

0ψN−2
0 +(N + 1)w2

0ψ
−N−2
0

)
u.

Since

R +
(N − 1)(n − 1)

n
t2N
0 τ2

0ψN−2
0 + (N + 1)w2

0ψ
−N−2
0 ≥ min R > 0,

we conclude that Fψ0(w0, t0) : W 2,p → Lp is an isomorphism. The implicit
function theorem then implies that T̃1 is a C1 function in a neighborhood of
(w0, t0), which proves our claim.

Next, applying Leray–Schauder’s Theorem 3.1 to T̃ , we obtain as a direct
consequence that there exist ϕ0 ∈ L∞ and t0 ∈ (0, 1] s.t.

4(n − 1)
n − 2

Δψ0 + Rψ0 = −n − 1
n

t2N
0 τ2ψN−1

0 + |σ + LW0|2ψ−N−1
0

−1
2
L∗LW0 =

n − 1
n

ϕN
0 dτ,

with ϕ0 = t0ψ0 ∈ W 2,p. Indeed, set

K = {ϕ ∈ L∞| ∃t ∈ [0, 1] such that ϕ = T̃ (ϕ, t)}.

It is clear that T̃ (ϕ, 0) = 0 for all ϕ ∈ L∞. Assume that such (ϕ0, t0) does not
exist. Then, K = {0}. By Leray–Schauder’s Theorem 3.1, there exists ϕ s.t.
ϕ = T̃ (ϕ, 1) = T (ϕ) which belongs to K. So ϕ = 0 which is impossible since
T (ϕ) �≡ 0.

Now, replacing ϕ0 by t0ψ0 in the vector equation, we get that (ψ0,W0)
is a solution to (4) w.r.t. the new data (g, ατ, σ), with α = tN0 . �

Proposition 3.6 is a direct consequence of the small-TT case (i.e., a small-
ness assumption on the transverse-traceless tensor) in [11] and [15]. More pre-
cisely, we can easily check the following, which is developed further in [9].

Remark 3.8. (ϕ,W ) is a solution to the constraint equations w.r.t. a seed data
(g, τ, σ) if and only if (C−1ϕ,C− N+2

2 W ) is a solution to the constraint equation
w.r.t. the data (g, C

N−2
2 τ, C− N+2

2 σ) for all constant C > 0.

Proposition 3.9. (see [11] or [15]). Let data be given on M as specified in (5).
Assume that Yg > 0, (M, g) has no conformal Killing vector field and σ �≡ 0.
If ‖σ‖L∞ is small enough (only depending on g and τ), then the system (4)
has a solution (ϕ,W ).
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From Remark 3.8, with C = α− 2
N−2 , Proposition 3.6 is equivalent to the fact

that (4) w.r.t. the new data (g, τ, α
N+2
N−2 σ) admit a solution, and this holds for

α small enough by Proposition 3.9.
In particular, this approach has the advantage to give an unifying point

of view of the limit equation method in [7] and the far-from CMC results in
[9,11] and [15].

The main theorem in [7] (or Theorem 3.3) says that the non-existence
of non-trivial solution to the limit equation (9) implies the existence of a
solution to (4). The opposite question naturally arises whether the existence
of a solution to (4) implies the non-existence of (non-trivial) solution to the
limit equation. The following proposition shows that this is false.

Proposition 3.10. There exist an initial data (M, g, τ, σ) such that both the
corresponding (4) and (9) admit (non-trivial) solutions.

Proof. In [7], Dahl–Gicquaud–Humbert prove that there exist (M, g, τ, σ) and
α0 ∈ (0, 1] s.t. Yg > 0 and the corresponding limit equation

−1
2
L∗LW = α0

√
n − 1

n
|LW |dτ

τ

admits a non-trivial solution W ∈ W 2,p (see [7, Proposition 1.6]). Now, note
that for all α > 0,

dατ

ατ
=

dτ

τ
.

so the limit equation for the 4-tuple (M, g, ατ, σ) also admits a non-trivial
solution. Taking α given by Proposition 3.6 provides (M, g, ατ, σ) as desired.

�

4. Half-Continuous Maps and Applications

In this section, we introduce the theory of half-continuous maps and its ap-
plications to solve the constraint equations. We summarize results on half-
continuous maps in the next subsection. For the proofs, we refer the reader to
[3] or [17].

4.1. Half-Continuous Maps

Definition 4.1. Let C be a subset of a Banach space X. A map f : C → X is
said to be half-continuous if for each x ∈ C with x �= f(x) there exists p ∈ X∗

and a neighborhood W of x in C such that

〈p, f(y) − y〉 > 0

for all y ∈ W with y �= f(y).

The following proposition gives a relation between half-continuity and
continuity.

Proposition 4.2 (see [17, Proposition 3.2]). Let X be a Banach space and C be
a subset of X. Then, every continuous map f : C → X is half-continuous.
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Remark 4.3. (see [17]). There are some half-continuous maps which are not
continuous. For example, let f : R → R be defined by

f(x) =

{
3 if x ∈ [0, 1),
2 otherwise.

Then, f is half-continuous but not continuous.

Theorem 4.4 (see [17, Theorem 3.9] or [3, Theorem 3.1]). Let C be a nonempty
compact convex subset of a Banach space X. If f : C → C is half-continuous,
then f has a fixed point.

A direct consequence of Theorem 4.4 is the following corollary, which is
our main tool in the next subsection.

Corollary 4.5. Let C be a nonempty closed convex subset of a Banach space
X. If f : C → C is half-continuous and f(C) is precompact, then f has a
fixed point.

Proof. Since f(C) is nonempty compact and X is a Banach space, conv(f(C))
is a nonempty compact convex subset of X (see [16, Theorem 3.20]). Moreover,
since C is a closed convex subset of X and f(C) ⊂ C, we have conv(f(C)) ⊂
C, and hence f(conv(f(C))) ⊂ f(C) ⊂ conv(f(C)). Now, restricting f to
conv(f(C)) and applying the previous theorem, we obtain the desired conclu-
sion. �

4.2. Existence Results for Modified Constraint Equations

Here, we apply the concept of half-continuity to improve recent existence re-
sults for (4) (see [11] or [15]).

The first non-CMC result for (4) is the near-CMC case, which is pre-
sented by many authors: if max |dτ |

min |τ | is small enough, then (4) admits a solution
(see [2]). Recently, Dahl–Gicquaud–Humbert [7] improved this result. They
show that (4) has a solution, provided ‖dτ

τ ‖Ln is small enough (see [7, Corol-
lary 1.3 and 14]). However, for a smooth vanishing τ , these assumptions never
hold. Therefore, we treat a generalization of (4), with dτ replaced by a 1-form
ξ ∈ L∞ in the vector equation. Namely, let data be given on M as specified
in (5) and choose also a 1-form ξ ∈ L∞. We are interested in the following
system.

4(n − 1)
n − 2

Δϕ + Rϕ = −n − 1
n

τ2ϕN−1 + |σ + LW |2ϕ−N−1 (26a)

−1
2
L∗LW =

n − 1
n

ϕNξ. (26b)

Note that all the methods described above can be applied in this context
when τ > 0. A natural question is then whether this coupled nonlinear elliptic
system has a solution under a similar condition, i.e., ‖ ξ

τ ‖Ln is small enough. As
τ vanishes, it becomes more complicated to apply the method of global super-
solution introduced by Holst–Nagy–Tsogtgerel [11] because the construction of
a supersolution to the Lichnerowicz equation seems to fail with their method



2252 T. C. Nguyen Ann. Henri Poincaré

near Z(τ), which is the zero set of τ . Before going further, we establish a useful
estimate for (4).

Let I be the family of all solutions of (4) for fixed given data (g, τ, σ).
Provided τ > 0, it was obtained in [7] by induction that there exists a positive
constant C = C(M, g, τ, σ) s.t.

‖ϕ‖∞ ≤ C max{‖LW‖ 1
N

L2 , 1}, ∀(ϕ,W ) ∈ I.

For a vanishing τ , there is no reason to get the estimate above. However, by a
slight change in the proof, we have the following proposition.

Proposition 4.6. Let data be given on M as specified in (5) and assume that
(6) holds. Given l > 0, there exists a positive constant C = C(M, g, σ, τ, l) s.t.
for any (ϕ,W ) ∈ I satisfying ‖LW‖L2 ≤ l we have

‖ϕ‖∞ ≤ C.

Moreover, if Yg > 0, the assumption that Z(τ) has zero Lebesgue measure can
be omitted.

Proof. For simplicity, we assume that τ ∈ C1(M). We begin with the obser-
vation that, to prove the proposition, it suffices to show that there exists a
constant c = c(n, g, τ, σ, l) > 0 s.t. for any (ϕ,W ) ∈ I satisfying ‖LW‖L2 ≤ l
we have ‖LW‖∞ < c. In fact, assume that this is true. Then, from Lemma 2.6,
we have that ϕ ≤ ϕc, where ϕc is a unique positive solution to the Lichnerow-
icz equation (7) associated to w = c + ‖σ‖∞, and hence taking C = max ϕc,
the proposition follows.

Now, we will prove the boundedness of ‖LW‖∞ as mentioned above. Set
qi = 2(N+2

4 )i for all i ∈ N, we first show inductively that if |LW | is uniformly
bounded in Lqi -norm by ri > 0, then |LW | is also uniformly bounded in
Lqi+1 by ri+1 = ri+1(n, g, τ, σ, qi, ri) > 0. In fact, multiplying the Lichnerowicz
equation by ϕ

(N+2)qi
2 −1 and integrating over M , we have

4(n−1)
n−2

∫
M

ϕ
(N+2)qi

2 −1Δϕdv +
∫

M

Rϕ
(N+2)qi

2 dv +
n − 1

n

∫
M

τ2ϕN+
(N+2)qi

2 −2dv

=
∫

M

|σ + LW |2ϕ (N+2)(qi−2)
2 dv

≤ ‖σ + LW‖2Lqi

(∫
M

ϕ
(N+2)qi

2 dv

) qi−2
qi

(by qi ≥ 2 and Hölder inequality)

≤ 2
(‖σ‖2Lqi + ‖LW‖2Lqi

) (∫
M

ϕ
(N+2)qi

2 dv

) qi−2
qi

. (27)

Since ∫
M

ϕ
(N+2)qi

2 −1Δϕdv =
8 ((N + 2)qi − 2)

(N + 2)2q2i

∫
M

|∇ϕ
(N+2)qi

4 |2dv ≥ 0, (28)
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and since the term
∫

M
Rϕ

(N+2)qi
2 dv + n−1

n

∫
M

τ2ϕN+
(N+2)qi

2 −2dv is uniformly
bounded from below as observed in Remark 2.5, we obtain from (27) that∫

M

|∇ϕ
(N+2)qi

4 |2dv ≤ c1(g, τ, qi) + c2(g, τ, σ, qi, ri)
(∫

M

ϕ
(N+2)qi

2 dv

) qi−2
qi

,

and then

‖ϕ
(N+2)qi

4 ‖2LN

≤ c3(M, g)(‖∇ϕ
(N+2)qi

4 ‖2L2 + ‖ϕ
(N+2)qi

4 ‖2L2) (by the Sobolev inequality)

≤ c3(c1 + c2‖ϕ
(N+2)qi

4 ‖
2(qi−2)

qi

L2 + ‖ϕ
(N+2)qi

4 ‖2L2). (29)

To show that ‖ϕ
(N+2)qi

4 ‖LN is bounded, by (29) it suffices to assume that

‖ϕ
(N+2)qi

4 ‖LN ≤ 3c3‖ϕ
(N+2)qi

4 ‖L2 (30)

and to prove that ‖ϕ
(N+2)qi

4 ‖L2 is bounded. We study two cases.
• Case 1. Yg > 0: By Remark 2.5, we can assume that R > 0 and then it

is clear from (27) to (28) that∫
M

ϕ
(N+2)qi

2 dv ≤ 2
min R

(‖σ‖2Lqi + r2i
) (∫

M

ϕ
(N+2)qi

2 dv

) qi−2
qi

,

which implies the boundedness of ‖ϕ
(N+2)qi

4 ‖L2 .
• Case 2. Yg ≤ 0 : Given k > 0, we define

Bk =
{

m ∈ M : ϕ
(N+2)qi

4 (m) ≥ 1
k

‖ϕ
(N+2)qi

4 ‖L2

}
.

Let χBk
denote the characteristic function of Bk. We have

1 =
∫

M

ϕ
(N+2)qi

2

‖ϕ
(N+2)qi

4 ‖2L2

dv ≤
∫

M

χBk
ϕ

(N+2)qi
2

‖ϕ
(N+2)qi

4 ‖2L2

dv +
∫

M\Bk

ϕ
(N+2)qi

2

‖ϕ
(N+2)qi

4 ‖2L2

dv

≤ ‖ϕ
(N+2)qi

4 ‖2LN

‖ϕ
(N+2)qi

4 ‖2L2

Vol(Bk)
N−2

N +
1
k2

Vol(M\Bk)

(by Hölder inequality and the definition ofBk)

≤ 9c23Vol(Bk)
N−2

N +
1
k2

Vol(M) (by (30)).

Taking k0 ≥ 2Vol(M) + 1, it follows that Vol(Bk0) ≥ 2c4(n, c3) > 0.
On the other hand, since Z(τ) is a closed, zero-measurable subset of M ,
there exists a neighborhood Bi of Z(τ), depending on c4 s.t. Vol(Bi) ≤ c4.
Next, we get by (27) and (28) that∫

M

Rϕ
(N+2)qi

2 dv +
n − 1

n

∫
Bk0\Bi

τ2ϕN+
(N+2)qi

2 −2dv

≤ 2(‖σ‖2Lqi + r2i )
(∫

M

ϕ
(N+2)qi

2 dv

) qi−2
qi

. (31)
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Set τi = infM\Bi
|τ | > 0. Since ϕ

(N+2)qi
4 ≥ 1

k0
‖ϕ

(N+2)qi
4 ‖L2 on Bk0 and

since V ol (Bk0\Bi) ≥ c4, it follows from (31) that

−‖R‖L∞‖ϕ
(N+2)qi

4 ‖2L2 +
n − 1

n
c4τ

2
i

(
‖ϕ

(N+2)qi
4 ‖L2

k0

)2
(

(qi+2)(N+2)−8
qi(N+2)

)

≤ 2(‖σ‖2Lqi + r2i )
(∫

M

ϕ
(N+2)qi

2 dv

) qi−2
qi

.

Since qi−2
qi

< 1 < (qi+2)(N+2)−8
qi(N+2) for all i ∈ N, we get from the previous

inequality that ‖ϕ
(N+2)qi

4 ‖L2 is bounded by c5=c5(n, g, τ, σ, ri, c4, k0, qi).

In both cases, we have showed that ‖ϕ
(N+2)qi

4 ‖L2 ≤ c5 and hence by (30) that

‖ϕ
(N+2)qi

4 ‖LN ≤ c6(c5, c3). (32)

Now, by the Sobolev embedding theorem, from vector equation, there exists
c7 = c7(M, g) s.t.

‖LW‖
L

nqi(N+2)

(4n−(N+2)qi)
+

≤ c7‖ϕNdτ‖
L

(N+2)qi
4

≤ c7‖dτ‖∞‖ϕN‖
L

(N+2)qi
4

(since τ ∈ C1)

≤ c8(c7, τ)‖ϕ
(N+2)qi

4 ‖
4N

(N+2)qi

LN

≤ c9(c8, c6) (by (32)). (33)

Here, (4n − (N + 2)qi)
+ = max{4n − (N + 2)qi, 0} and L

nqi(N+2)

(4n−(N+2)qi)
+ is un-

derstood to be L∞ if 4n ≤ (N + 2)qi. Since qi+1 < nqi(N+2)

(4n−(N+2)qi)
+ , it follows

from (33) that ‖LW‖Lqi+1 ≤ ri+1(n, g, τ, σ, qi, ri) as claimed.
Finally, note that N+2

4 > 1, we can then take i0 large enough depending
only on n s.t. qi0 ≥ [ 4n

N+2 ] + 1. Thus, applying inductively (33) for i ≤ i0,
provided ‖LW‖Lq0 = ‖LW‖L2 ≤ l, we obtain that |LW | is uniformly bounded
in L∞ by c = c(n, g, τ, σ, l) > 0, which completes our proof. �

We are now ready to prove the second main result of this paper.

Theorem 4.7 (Near-CMC). Assume that τ ∈ L∞, ξ ∈ L∞, g ∈ W 2,p (p > n),
(M, g) has no conformal Killing vector field, and σ �≡ 0 if Yg ≥ 0. Assume
further that ‖ ξ

τ ‖Ln is small enough, then the system equations (26) admit a
solution (ϕ,W ).

Proof. Recall that T , defined in Sect. 2 (where dτ is replaced by ξ in the
vector equation), is a continuous compact map and T (ϕ) > 0 for all ϕ ∈ L∞.
As explained in Remark 2.5, there exists a constant κ1 = κ1(g, τ) s.t.

RT (ϕ)N+2 +
n − 2

n
τ2T (ϕ)2N ≥ κ1, ∀ϕ ∈ L∞. (34)
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Set κ = max
{|κ1|,

∫
M

|σ|2dv
}
. Let S be given by

S(ϕ) =

{
min{T (ϕ), a} if ‖LWϕ‖L2 ≤ √

κ,

0 otherwise,
(35)

and set C =
{
ϕ ∈ C0 : 0 ≤ ϕ ≤ a

}
, where a will be determined later.

Since T is a continuous compact map from C0 to C0
+ and since by definition

0 ≤ S(ϕ) ≤ a for all ϕ, S maps C into itself and S(C ) is precompact. Assume
for the moment that the half-continuity of S is proven. By Corollary 4.5, S
has a fixed point ϕ0. Note that ϕ0 is not zero otherwise 0 = ϕ0 = S(ϕ0),
hence ‖LWϕ0‖L2 = 0 ≤ √

κ. We get from the definition of S that S(ϕ0) =
min {T (ϕ0), a} > 0 which is a contradiction with S(ϕ0) = 0. Since ϕ0 �≡ 0, so
is S(ϕ0), the definition of S implies that ‖LWϕ0‖L2 ≤ √

κ and

ϕ0 = min{T (ϕ0), a} ≤ T (ϕ0). (36)

Set

K =
{
ϕ : ‖LWϕ‖L2 ≤ √

κ and ϕ ≤ T (ϕ)
}

.

Arguing as in the proof of Theorem 4.6, we obtain that if any ϕ ∈ K satisfies
‖LWϕ‖Lqi ≤ ri, then

‖T (ϕ)
(N+2)qi

4 ‖LN ≤ r̃i(n, g, τ, σ, ri, qi), (37)

where qi = 2(N+2
4 )i for all i ∈ N. Therefore, by the Sobolev embedding theo-

rem, we have from the vector equation that

‖LWϕ‖
L

nqi(N+2)

(4n−(N+2)qi)
+

≤ r(M, g)‖ϕNξ‖
L

(N+2)qi
4

≤ r‖ξ‖∞‖ϕN‖
L

(N+2)qi
4

(since ξ ∈ L∞)

≤ r‖ξ‖∞‖ϕ
(N+2)qi

4 ‖
4N

(N+2)qi

LN

≤ r‖ξ‖∞‖T (ϕ)
(N+2)qi

4 ‖
4N

(N+2)qi

LN (by ϕ ≤ T (ϕ))
≤ ri+1(ξ, r, r̃i) (by (37)), (38)

where (4n − (N + 2)qi)
+ = max{4n − (N + 2)qi, 0} and L

nqi(N+2)

(4n−(N+2)qi)
+ is un-

derstood to be L∞ if 4n ≤ (N + 2)qi. Similar to the proof of Theorem 4.6,
we obtain inductively from (38) that for all ϕ ∈ K, there exists a constant
C = C(n, g, τ, ξ, κ) > 0 s.t.

‖LWϕ‖L∞ ≤ C,

and hence by Lemma 2.6 the set T (K) is bounded by maxψC , where ψC is
the unique positive solution to the Lichnerowicz equation (7) associated to
w = ‖σ‖L∞ + C. Thus, taking a = max ψC + 1, since ϕ0 ∈ K, we also obtain
from (36) that ϕ0 = T (ϕ0), which proves the theorem.

We now prove the half-continuity of S. Since T is continuous, so is S
at ϕ satisfying ‖LWϕ‖L2 �= √

κ. For ϕ s.t. ‖LWϕ‖L2 =
√

κ, multiplying the
Lichnerowicz equation by T (ϕ)N+1 and integrating over M , we have
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4(n−1) (N+1)

(n − 2)
(

N
2 +1

)2
∫

M

|∇T (ϕ)
N+2

2 |2dv +
∫

M

RT (ϕ)N+2dv +
n−1

n

∫
M

τ2T (ϕ)2Ndv

=
∫

M

|σ + LWϕ|2dv

=
∫

M

|σ|2dv +
∫

M

|LWϕ|2dv

=
∫

M

|σ|2dv + κ.

Therefore,∫
M

τ2T (ϕ)2Ndv

≤ n

(∫
M

|σ|2dv + κ −
(∫

M

RT (ϕ)N+2dv +
n − 2

n

∫
M

τ2T (ϕ)2Ndv

))

≤ n

(∫
M

|σ|2dv + κ + |κ1|
)

(by (34))

≤ 3nκ. (39)

On the other hand, we get from the vector equation that

κ =
∫

M

|LWϕ|2dv ≤ C5(g) ‖Wϕ‖2
W

2, 2n
n+2

(by Sobolev imbedding)

≤ C6(g, C5)‖L∗LWϕ‖2
L

2n
n+2

≤ C7(C6)
(∫

M

|ξ| 2n
n+2 ϕ

2nN
n+2 dv

)n+2
n

≤ C7

∥∥∥∥ ξ

τ

∥∥∥∥
2

Ln

∫
M

τ2ϕ2Ndv (by Hölder inequality) (40)

By (39) and (40), we obtain that∫
M

τ2T (ϕ)2Ndv ≤ 3nC7

∥∥∥∥ ξ

τ

∥∥∥∥
2

Ln

∫
M

τ2ϕ2Ndv.

If ‖ ξ
τ ‖Ln is small enough s.t. 3nC7‖ ξ

τ ‖2Ln < 1, it follows from the previous
inequality that there exists m ∈ M s.t. 0 < T (ϕ)(m) < ϕ(m) (note that
T (ϕ) ∈ C0

+). Therefore, since T is continuous, there exists δ = δ(ϕ) > 0 small
enough s.t.

0 < T (ψ)(m) < ψ(m), ∀ψ ∈ B(ϕ, δ) ∩ C ,

and hence from the fact that

−(
S(ψ)(m) − ψ(m)

)
=

{
−(

min{T (ψ)(m), a} − ψ(m)
)

if ‖LWψ‖L2 ≤ √
κ,

ψ(m) otherwise,
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we conclude that

− (
S(ψ)(m) − ψ(m)

)
> 0 (41)

for all ψ ∈ B(ϕ, δ) ∩ C .
Now, let p : C0 −→ R be defined by p(f) = −f(m) for all f ∈ C0. It is

obvious that p ∈ (
C0

)∗. Moreover, inequality (41) tells us that p (S(ψ) − ψ) >
0 for all ψ ∈ B(ϕ, δ) ∩ C , and then by definition S is half-continuous at ϕ as
claimed. The proof is completed. �

Our next existence result deals with the far-from-CMC case. It makes
progress compared with the statements of Holst–Nagy–Tsogtgerel [11] and
Maxwell [15] (see Proposition 3.9), where the smallness assumption on σ is in
L∞. Here, our assumption is on the L2-norm of σ.

Theorem 4.8 (Far-from-CMC). Let data be given on M as specified in (5).
Assume that Y(g) > 0, (M, g) has no conformal Killing vector field and σ �≡ 0.
If ‖σ‖L2 is small enough (depending only on g and τ), then the system (4) has
a solution (ϕ,W ).

Proof. Regarding Remark 2.5, we may assume that R > 0. We define

S(ϕ) =

⎧⎨
⎩min{T (ϕ), a} if 4(N+1)

(N+2)2 Yg

(∫
M

ϕ
N(N+2)

2 dv
) 2

N ≤ 2
∫

M
|σ|2dv

0 otherwise,

(42)

where a is to be determined later. Let

C =
{
ϕ ∈ C0(M) : ‖ϕ‖∞ ≤ a

}
.

Similar to the previous proof, S maps C into itself and S(C ) is pre-
compact since T is a compact map from C0 into C0

+. Assume that the half-
continuity of S is proven. Then, Corollary 4.5 implies that S admits a fixed
point ϕ0. Note that ϕ0 is not zero. Indeed, if 0 = ϕ0 = S(ϕ0), it follows that
4(N+1)
(N+2)2 Yg(

∫
M

ϕ
N(N+2)

2
0 dv)

2
N = 0 ≤ 2

∫
M

|σ|2dv, and hence from the definition
of S we get that S(ϕ0) = min {T (ϕ0), a} > 0 which is a contradiction with
S(ϕ0) = 0. Since ϕ0 �≡ 0, so is S(ϕ0), and the definition of S implies that

4(N + 1)
(N + 2)2

Yg

(∫
M

ϕ
N(N+2)

2
0 dv

) 2
N

≤ 2
∫

M

|σ|2dv

and ϕ0 = S(ϕ0) = min{T (ϕ0), a} ≤ T (ϕ0).

On the other hand, the first condition on ϕ0 and the smallness assumption on
‖σ‖L2 implies ∫

M

|LWϕ0 |2dv ≤
∫

M

|σ|2dv.
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Indeed,∫
M

|LWϕ0 |2dv

≤ C(g)‖ϕN
0 dτ‖2

L
2n

n+2
(by Sobolev imbedding theorem)

≤ C‖dτ‖2Lp

(∫
M

ϕ
2nNp

(n+2)p−2n

0 dv

) (n+2)p−2n
np

(by Hölder inequality)

≤ C‖dτ‖2Lp

(∫
M

ϕ
N(N+2)

2
0 dv

) 4
N+2

(by Hölder inequality and p > n)

≤ C‖dτ‖2Lp

(
(N + 2)2

2(N + 1)Yg

) 2N
N+2

‖σ‖
2(N−2)

N+2

L2

∫
M

|σ|2dv

(by the first condition on ϕ0)

≤
∫

M

|σ|2dv, (43)

where the last inequality holds provided ‖σ‖L2 is small enough so that C‖dτ‖2Lp(
(N+2)2

2(N+1)Yg

) 2N
N+2 ‖σ‖

2(N−2)
N+2

L2 ≤ 1. Setting

K = {ϕ : ‖LWϕ‖L2 ≤ ‖σ‖L2 and ϕ ≤ T (ϕ)} ,

similar to the proof of Theorem 4.7, we then obtain that T (K) is uniformly
bounded in L∞ by C = C(g, τ, σ). Thus, taking a ≥ C, since ϕ0 ∈ K, we
obtain from the second condition on ϕ0 that ϕ0 = T (ϕ0), which completes our
proof.

Now, we prove the half-continuity of S on C . Since T is continuous, so is
S at ϕ satisfying

4(N + 1)
(N + 2)2

Yg

(∫
M

ϕ
N(N+2)

2 dv

) 2
N

�= 2
∫

M

|σ|2dv.

For the remaining ϕ, i.e., when 4(N+1)
(N+2)2 Yg(

∫
M

ϕ
N(N+2)

2 dv)
2
N =2

∫
M

|σ|2dv,
first note that, arguing as to get (43), we have∫

M

|LWϕ|2dv ≤
∫

M

|σ|2dv. (44)

Next, we prove that there exists m ∈ M s.t. ϕ(m) > T (ϕ)(m). We argue
by contradiction. Assume that it is not true, then

4(N + 1)
(N + 2)2

Yg

(∫
M

T (ϕ)
N(N+2)

2 dv

) 2
N

≥ 4(N + 1)
(N + 2)2

Yg

(∫
M

ϕ
N(N+2)

2 dv

) 2
N

= 2
∫

M

|σ|2dv

≥
∫

M

|σ|2dv +
∫

M

|LW |2dv (by (44)) . (45)
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On the other hand, multiplying the Lichnerowicz equation by T (ϕ)N+1 and
integrating over M , we obtain

16(n−1)(N+1)

(n−2)(N + 2)2

∫
M

|∇T (ϕ)
N+2

2 |2dv +

∫
M

RT (ϕ)N+2dv +
n−1

n

∫
M

τ2T (ϕ)2Ndv

=

∫
M

|σ|2dv +

∫
M

|LWϕ|2dv. (46)

Since

16(n − 1)(N + 1)
(n − 2)(N + 2)2

∫
M

|∇T (ϕ)
N+2

2 |2dv +
∫

M

RT (ϕ)N+2dv

≥ 4(N + 1)
(N + 2)2

(
4(n − 1)
n − 2

∫
M

|∇T (ϕ)
N+2

2 |2dv +
∫

M

RT (ϕ)N+2dv

)
(since R > 0)

≥ 4(N + 1)
(N + 2)2

Yg

(∫
M

T (ϕ)
N(N+2)

2 dv

) 2
N

(by the definition ofYg)

≥
∫

M

|σ|2dv +
∫

M

|LW |2dv, (by (45))

it follows from (46) that
∫

M
τ2T (ϕ)2Ndv ≤ 0, which is a contradiction.

Now let m ∈ M s.t. 0 < T (ϕ)(m) < ϕ(m) (note that T (ϕ) ∈ C0
+). By the

continuity of T , we obtain that there exists δ = δ(ϕ) s.t. for all ψ ∈ B(ϕ, δ)∩C ,

0 < T (ψ)(m) < ψ(m),

and hence from the fact that

−(
S(ψ)(m) − ψ(m)

)
=

{
−(

min{T (ψ)(m), a} − ψ(m)
)

if 4(N+1)
(N+2)2

Yg

(∫
M ψ

N(N+2)
2 dv

) 2
N ≤2

∫
M |σ|2dv

ψ(m) otherwise,

we conclude that −(
S(ψ)(m) − ψ(m)

)
> 0, ∀ψ ∈ B(ϕ, δ) ∩ C .

Hence, by the definition of half-continuity applied with p(f) = −f(m) for
all f ∈ C0, we obtain that S is half-continuous at ϕ. The proof is completed.

�

Remark 4.9. From the proof above, a more precise assumption for Theorem 4.8

is that ‖dτ‖2Lp‖σ‖
2(N−2)

N+2

L2 is small enough, only depending on (M, g).

4.3. A Sufficient Condition to the Existence of Solutions

We note that the main ingredient to prove the half-continuity of S in the two
proofs above is the existence of m ∈ M s.t. T (ϕ)(m) < ϕ(m). This leads us
to propose a sufficient condition for the existence of a solution to (4), which is
much weaker than the concept of a global supersolution (see [11] or [15]). We
will begin with the notion of a local supersolution.
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Definition 4.10. Let data be given on M as specified in (5) and assume that
(6) holds. We call ψ ∈ L∞

+ a local supersolution to (4) if for every positive
function ϕ satisfying ϕ ≤ ψ and ϕ = ψ somewhere, then there exists m ∈ M
such that T (ϕ)(m) ≤ ϕ(m).

Recall that ψ ∈ L∞
+ is called a global supersolution to (4) if for all m ∈ M ,

sup
ϕ≤ψ,
ϕ∈L∞

+

T (ϕ)(m) ≤ ψ(m).

It follows immediately that

Proposition 4.11. A global supersolution is a local supersolution.

Proof. Assume that ψ is a global supersolution to (4). Let ϕ be an arbitrary
positive function satisfying ϕ ≤ ψ and ϕ = ψ somewhere. Taking m ∈ M s.t.
ϕ(m) = ψ(m), by definition of a global supersolution, it is clear that

T (ϕ)(m) ≤ ψ(m) = ϕ(m),

and hence ψ is a local supersolution. �

Theorem 4.12. Let data be given on M as specified in (5) and assume that (6)
holds. Assume that ψ ∈ L∞

+ is a local supersolution to (4), then (4) admits a
solution.

Proof. Let C be given by

C =
{
ϕ ∈ C0 : 0 ≤ ϕ ≤ b

}
,

with b large enough s.t.

sup
ϕ≤ψ

‖T (ϕ)‖∞ < b.

Here, recall that from the vector equation, the set {LWϕ : ϕ ≤ ψ} is uniformly
bounded in L∞ by b1 = b1(M, g, ψ, τ). Then, by Lemma 2.6, {T (ϕ) : ϕ ≤ ψ}
is uniformly bounded (in L∞) by max ψ0, where ψ0 is the unique solution to
(7) associated to w = b1 + ‖σ‖∞, and hence b is well defined.

We define

S(ϕ) =

{
T (ϕ) if ϕ ≤ ψ

0 otherwise.
(47)

By Proposition 2.1, T is a compact map from C0 into C0
+. Then, S maps C

into itself and S(C ) is precompact. Assume for the moment that the half-
continuity of S is proven. By Corollary 4.5, S has a fixed point ϕ0. We claim
that ϕ0 �≡ 0. Indeed, if is not true, then 0 = ϕ0 = S(ϕ0), hence ϕ0 = 0 ≤ ψ. We
get from the definition of S that S(ϕ0) = T (ϕ0) > 0 which is a contradiction
with S(ϕ0) = 0. Since ϕ0 �≡ 0, so is S(ϕ0), and the definition of S implies that
ϕ0 = S(ϕ0) = T (ϕ0).

Now, we prove the half-continuity of S on C . Since T is continuous, so is
S at ϕ satisfying ϕ < ψ everywhere or ϕ > ψ somewhere. The only remaining
work is to show that S is half-continuous at ϕ s.t. ϕ ≤ ψ and ϕ = ψ somewhere.
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For such a ϕ, assume that there exists m0 ∈ M s.t.

T (ϕ)(m0) < ϕ(m0)

By the continuity of T , we can choose δ = δ(ϕ) > 0 s.t. for all η ∈ B(ϕ, δ)∩C ,

T (η)(m0) < η(m0),

and hence from the fact that

−(
S(η)(m0) − η(m0)

)
=

{
−(

T (η)(m0) − η(m0)
)

if η ≤ ψ

η(m0) otherwise,

we obtain that −(
S(η)(m0) − η(m0)

)
> 0, ∀η ∈ B(ϕ, δ) ∩ C . Now, by the

definition of half-continuity applied with p(f) = −f(m0) for all f ∈ C0, we
conclude that S is half-continuous at ϕ.

It remains to study the case when ϕ ≤ T (ϕ). Since ψ is a local super-
solution, there exists m s.t. T (ϕ)(m) ≤ ϕ(m) and since ϕ ≤ T (ϕ), we have
T (ϕ)(m) = ϕ(m). Because the case T (ϕ) ≡ ϕ is trivial [(ϕ,Wϕ) is then a
solution to (4)], we can assume that there exists q ∈ M s.t. T (ϕ)(q) > ϕ(q).
Let A,B > 0 satisfying

Aϕ(m) − Bϕ(q) > 0. (48)

Note that since ϕ(m) = T (ϕ)(m) > 0 (T (ϕ) ∈ C0
+), such A,B exist. On the

other hand, by the assumptions on q and m,

−A
(
T (ϕ)(m) − ϕ(m)

)
+ B

(
T (ϕ)(q) − ϕ(q)

)
= −A.0 + B

(
T (ϕ)(q) − ϕ(q)

)
> 0. (49)

By (48), (49) and the continuity of T , there exists δ1 = δ1(ϕ) > 0 small enough
s.t. for all η ∈ B(ϕ, δ1) ∩ C

Aη(m) − Bη(q) > 0

and

−A (T (η)(m) − η(m)) + B (T (η)(q) − η(q)) > 0.

Therefore, by the fact that

−A
(
S(η)(m) − η(m)

)
+ B

(
S(η)(q) − η(q)

)
=

{
−A (T (η)(m) − η(m)) + B (T (η)(q) − η(q)) if η ≤ ψ

Aη(m) − Bη(q) otherwise,

we obtain that −A
(
S(η)(m) − η(m)

)
+ B

(
S(η)(q) − η(q)

)
> 0 for all η ∈

B(ϕ, δ1) ∩ C . Now, by the definition of half-continuity applied with p(f) =
−Af(m) + Bf(q) for all f ∈ C0, we can conclude that S is half-continuous at
ϕ. The proof is completed. �

A direct consequence of Theorem 4.12 is the following:

Corollary 4.13. For every ϕ ∈ L∞ large enough, if T (ϕ) ≤ ϕ somewhere, then
(4) admits a solution.
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