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On the Center of Mass of Asymptotically
Hyperbolic Initial Data Sets

Carla Cederbaum, Julien Cortier and Anna Sakovich

Abstract. We define the (total) center of mass for suitably asymptoti-
cally hyperbolic time-slices of asymptotically anti-de Sitter spacetimes in
general relativity. We do so in analogy to the picture that has been consol-
idated for the (total) center of mass of suitably asymptotically Euclidean
time-slices of asymptotically Minkowskian spacetimes (isolated systems).
In particular, we unite—an altered version of—the approach based on
Hamiltonian charges with an approach based on CMC-foliations near in-
finity. The newly defined center of mass transforms appropriately under
changes of the asymptotic coordinates and evolves in the direction of
an appropriately defined linear momentum under the Einstein evolution
equations.

1. Introduction

The notion of the ‘center of mass’ of a physical system is one of the oldest
and most fundamental concepts in mathematical physics and geometry. Un-
derstanding the position and motion of the center of mass of a system is often
the first step towards gaining an understanding of the overall dynamics of the
system. However, once one moves beyond classical mechanics, the concept of
center of mass becomes increasingly complicated and needs to be re-defined.
For example, in special relativity, the center of mass of a matter distribution
intricately depends on the chosen observer, see Møller [25]. This dependence
will necessarily become more involved in general relativity, where we need to
allude to an entire ‘family’ of observers.
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Moreover, in order to account for black holes and other purely gravita-
tional phenomena, it seems unreasonable to expect that the center of mass of,
for example, an isolated gravitating system, will arise as a quantity solely de-
fined by the matter components of the system. To the contrary, a reasonable
definition of the (total) relativistic center of mass of a gravitational system
will have to also apply to vacuum spacetimes such as the Schwarzschild or
the Schwarzschild–anti-de Sitter (or Kottler) black holes. From these black
hole examples, we also see that the center of mass cannot be described as an
‘event’ (point) in the spacetime manifold. Any notion of center of mass must
thus necessarily be more abstract.

A very satisfying definition has been achieved for isolated systems de-
scribed as suitably asymptotically Euclidean time-slices of asymptotically
Minkowskian spacetimes, see below. In this paper, we will study suitably as-
ymptotically hyperbolic time-slices of asymptotically anti-de Sitter spacetimes
and give a definition of their (total) center of mass. We prove that the center
of mass transforms appropriately under changes of the asymptotic coordinates
and evolves in the direction of an appropriately defined linear momentum un-
der the Einstein evolution equations. Our definition does not coincide with
the definition of (total) center of mass via Hamiltonian charges suggested by
Chruściel et al. [14], but rather with their definition of energy–momentum
vector or linear momentum. Our ideas rely on the picture that has been con-
solidated for the (total) center of mass for isolated systems.

Isolated systems Three main approaches have been pursued to define the (to-
tal) center of mass of an isolated system, that is, of a suitably asymptotically
Euclidean time-slice of an asymptotically Minkowskian spacetime. First, the
center of mass of an isolated system was defined via a Hamiltonian charges
approach going back to Arnowitt et al. [2], Regge and Teitelboim [30], Beig
and Ó Murchadha [5], and finally Szabados [32], see [33] and Sect. 2.1. Subse-
quently, Huisken and Yau gave a geometric definition of the center of mass of
a (time-symmetric1) isolated system [21], based on a foliation by stable con-
stant mean curvature (CMC-)spheres in a neighborhood of infinity. This was
motivated by an idea of Christodoulou and Yau [11]. Huisken and Yau then
‘assign coordinates’ to this ‘abstract definition’ of a center of mass by taking
the limit of the Euclidean centers of the leaves of the CMC-foliation in the
asymptotic end, see Sect. 2.2 for more details and various generalizations.

Recently, Chen, M.-T. Wang, and Yau [8,9] gave a third definition of
the (quasi-local and total) center of mass of an isolated system via optimal
embeddings into Minkowski space. Under suitable decay conditions—and af-
ter a 3 + 1-decomposition of the Chen–Wang–Yau center—all three (total)
centers of mass are known to coincide, see Sect. 2. The coordinatization of
the center of mass of an isolated system can be interpreted as a point in R

3,

1 Time-symmetric means that the second fundamental form of the embedding of the
asymptotically Euclidean/hyperbolic Riemannian time-slice into the asymptotically
Minkowskian/anti-de Sitter spacetime vanishes, respectively.
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the reference space which arises as the target space of the chosen asymptoti-
cally Euclidean chart near infinity. It transforms adequately under Euclidean
coordinate transformations and it is known to evolve in the direction of lin-
ear (ADM-)momentum under the Einstein equations, see Sect. 2.3 for more
details.

Hyperbolic systems In this paper, we study the (total) center of mass of suitably
asymptotically hyperbolic time-slices of asymptotically anti-de Sitter (AdS)
spacetimes. We will call such time-slices hyperbolic systems, see Sect. 3 for
the precise definition and the assumed asymptotic behavior. As in the case of
isolated systems, one can take (at least) three different approaches to defining
the (total) center of mass of a hyperbolic system. In analogy to the (abstract)
CMC-center of mass defined by Huisken and Yau for isolated systems, Rig-
ger [31], and Neves and Tian [28,29] showed that (time-symmetric) hyperbolic
systems possess a unique CMC-foliation near infinity which we will call the
abstract center of mass of the system. To do so, they assume that the asymp-
totic coordinate chart is ‘balanced’, see Sect. 3.1 for more details and refer-
ences. Mazzeo and Pacard [23] also studied CMC-foliations near infinity of
asymptotically hyperbolic Riemannian manifolds, however, with non-spherical
conformal infinity.

In Sect. 3.1, we show that it is possible to coordinatize this definition of
center of mass in a way that is similar to the approach taken by Huisken and
Yau. To do so, we extend the existence result for CMC-foliations of hyper-
bolic systems beyond balanced coordinates via hyperbolic boosts and define a
new notion of ‘coordinate center’ of a hypersurface of any Riemannian man-
ifold that can be ‘nicely’ isometrically embedded into Minkowski spacetime.
We show that hyperbolic systems with balanced coordinates necessarily have
their coordinate center of mass at the coordinate origin of hyperbolic space.
From our definition, it is immediate that the CMC-center of mass transforms
adequately under changes of the asymptotically hyperbolic chart near infinity,
namely just like the center of the canonical slice of the Schwarzschild–anti-de
Sitter (Kottler) spacetime.

On the other hand, it is also possible to define the (total) center of mass of
a hyperbolic system as a Hamiltonian charge arising from Killing vector fields
of the asymptotic background AdS spacetime, thus imitating the Hamiltonian
charges definition of the center of mass for isolated systems described above.
This has been studied by Chruściel and Nagy [15] and physically interpreted by
Chruściel et al. [14]. However, in Sec. 4, we find that our CMC-center of mass
coincides with what they called the (Hamiltonian charge) energy–momentum
vector (up to a normalizing factor) rather than with what they called the
(Hamiltonian charge) center of mass. As in the case of isolated systems, the
Hamiltonian charges approach thus provides an explicit asymptotic formula
for computing the (CMC-)center of mass of a hyperbolic system, too. Using
the Hamiltonian charges approach, we show that the center of mass evolves
in direction of the linear momentum under the Einstein evolution equations
with cosmological constant Λ = −n(n − 1)/2, where n is the dimension of
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the system, see Sect. 5. Here, the linear momentum of a hyperbolic system is
defined as the ‘(Hamiltonian charge) center of mass’ from [14].

The third approach, considered by Chen, M.-T. Wang, and Yau [10], is
quasi-local and uses optimal embeddings into the AdS spacetime. It is expected
to allow a limit towards the asymptotic ends of suitable initial data sets.

Remark. We do not expect our results to identically carry over to ‘hyper-
boloidal systems’, that is, to asymptotically hyperbolic time-slices of asymp-
totically Minkowskian rather than asymptotically anti-de Sitter spacetimes, as
the role played by the second fundamental form conceptually differs in the two
situations.

1.1. Notation and Conventions

We will denote the Euclidean and hyperbolic spaces by (Rn, δ) and (Hn, b), re-
spectively. Both are special cases of n-dimensional Riemannian ‘model spaces’
which we will generally denote by (Mn, h), see Sect. 3.1. A general
n-dimensional Riemannian manifold (Mn, g) will be called asymptotically
Euclidean or asymptotically hyperbolic if there exists a smooth coordinate chart
ϕ : Mn\K → R

n\B or ϕ : Mn\K → H
n\B such that ϕ∗g − δ or ϕ∗g − b de-

cays to 0 suitably fast. Here, K ⊂ M is a compact set and B is a geodesic
ball in the respective model space. As usual, if (Mn, g) arises as a time-slice
of a spacetime (Ln+1, g), we will call (Mn, g, k) an initial data set or a sys-
tem. Here, k denotes the second fundamental form. In contrast, whenever k
is insignificant or k = 0, we will call (Mn, g) Riemannian or time-symmetric,
respectively. All systems are assumed to have strictly positive mass, where the
mass of a hyperbolic system is as defined in Sect. 3.1.

All manifolds are assumed to be smooth. If not clear from context, we
will indicate the metric g with respect to which we are taking a divergence, a
trace, a curvature tensor, or a covariant derivative by a lower right index g,
for example divg, trg, Ricg, ∇g, etc.

Closed hypersurfaces of (Mn, g) will be denoted by Σ, and we usually
implicitly assume that Σ ⊂ Mn\K or in other words, Σ lies in the domain
of the asymptotic chart ϕ. The canonical metric on the unit sphere S

n−1 will
be denoted by σ, the corresponding area measure will be denoted by dμσ.
Submanifolds Σ ⊂ (Mn, g) automatically inherit the induced metric from the
ambient manifold; we will abuse notation and denote the induced area measure
on Σ by dμg. This should help to prevent confusion when we are discussing
several metrics on the ambient manifold.

Whenever needed, we will denote the Minkowski spacetime by (Rn,1, η).
Both (Rn, δ) and (Hn, b) can be isometrically embedded into (Rn,1, η), Euclid-
ean space as a hyperplane with vanishing second fundamental form k = 0 and
hyperbolic space as an umbilic hyperboloid with second fundamental form
k = b. We will denote these isometric embeddings by I : (Mn, h) ↪→ (Rn,1, η).
Moreover, O(n, 1) will denote the Lorentz group (the group of linear isome-
tries of Minkowski space (Rn,1, η)) and SO0(n, 1) the restricted Lorentz group,
defined as the connected component of O(n, 1) which contains the identity; it
is the group of direct isometries of (Hn, b).
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All results concerning CMC-foliations will only apply to the physically
relevant dimension n = 3. Our definition of center of mass, the Hamiltonian
charges approach, and the evolution result apply to all n ≥ 3.

We will use the Ok-notation for tensors as an abbreviation for Ck-fall
off. More specifically, let r = |�x| denote the radial coordinate on R

n and let
f : R+ → R be a smooth function. Then for any smooth tensor field T on
M

n, we will write T = Ok(f(r)) as r → ∞ if there exists a constant C > 0
independent of r and a geodesic ball B ⊂ M

n such that

|∇α
hT |h ≤ C |f |α|(r)|

holds for all x ∈ M
n\B and for all multi-indices α with |α| ≤ k. We will

abuse this notation and also write T = Ok(f(r)) as r → ∞ when T is a
smoothly r-dependent family of tensors on S

n−1. In that case, ∇ refers to both
tangential derivatives along (Sn−1, σ) and partial r-derivatives. For isolated
systems, f will be an inverse power of r, while for hyperbolic systems, f will
be an exponential function f(r) = e−lr with l ∈ R when we work in polar
coordinates such that b = dr2 + sh2 r σ. Here, sh denotes the hyperbolic sine
function. Similarly, the hyperbolic cosine and arccosine will be denoted by ch
and arcch, respectively.

Finally, constant points/vectors in R
n such as the coordinate center of

mass �z of an isolated system will be denoted by lower case letters with an
arrow. Similarly, constant points in H

n such as the coordinate center of mass
of a hyperbolic system z will be denoted by bold lower case letters. Constant
vectors in R

n,1 such as the ‘mass vector’ P will be denoted by bold upper case
letters.

1.2. Structure of the Paper

This paper is structured as follows: in Sect. 2, we give a concise overview of the
definition of the (total) center of mass for asymptotically Euclidean systems
and related results. In Sect. 3.1, we summarize and extend known results on
asymptotic CMC-foliations of asymptotically hyperbolic systems and give a
definition of an associated hyperbolic coordinate center of mass. More general
results on this CMC-center of mass are described and proven in Sect. 3.2.
In Sect. 4, we generalize our definition to asymptotically hyperbolic initial
data sets and link it to the Hamiltonian charges approach. Finally, in Sect. 5,
we prove that the center of mass evolves appropriately under the Einstein
evolution equations.

2. Summary of Results in the Asymptotically Minkowskian
Setting

Three main approaches have been pursued to define the (total) center of
mass of a suitably asymptotically Euclidean time-slice of an asymptotically
Minkowskian spacetime. First, the center of mass of an isolated system was de-
fined via a Hamiltonian charges approach, see Sect. 2.1. Subsequently, Huisken
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and Yau [21] gave a geometric definition of the center of mass in the Riemann-
ian context, based on a foliation by stable constant mean curvature (CMC-)
spheres in a neighborhood of infinity, see Sect. 2.2. Both definitions are known
to coincide, see Sect. 2.3.

Recently, Chen, M.-T. Wang and Yau [8,9] gave a third definition of
the (quasi-local and total) center of mass of an isolated system via optimal
embeddings into Minkowski space. Under suitable decay conditions, their total
center of mass definition coincides with the definition via Hamiltonian charges
and CMC-foliations, see [8]. We will not further discuss their center of mass
definition as we do not intend to generalize it to the asymptotically anti-
de Sitter setting. However, this generalization has been announced to work
consistently by Chen, M.-T. Wang, and Yau [10].

We will not attempt to cite the weakest possible decay conditions and the
strongest results, here. We rather focus on recalling the general ideas from the
asymptotically Euclidean context that we will rely on in the asymptotically
hyperbolic context in the following sections. Precise statements and a more
complete list of references can be found in [7].

First, let us recall the precise definition of asymptotically Euclidean and
asymptotically Schwarzschildean Riemannian manifolds and of asymptotically
Euclidean initial data sets (isolated systems):

Definition 2.1. A Riemannian n-manifold (M, g) is (l, τ)-asymptotically Euclid-
ean (with one end) if there exists a compact set K ⊂ M , a constant R > 0,
and a diffeomorphism ϕ : M\K → R

n\BR such that the metric gϕ := ϕ∗g
satisfies

gϕ = δ + Ol

(
1
rτ

)

as r → ∞ and (l, τ)-asymptotically Schwarzschildean (with one end) if

gϕ =
(
1 +

m

2r

)4

δ + Ol

(
1

r1+τ

)

as r → ∞. Here, m ∈ R and we assume τ > 0 and l ≥ 0. Similarly if (M, g, k)
is an (l, τ)-asymptotically Euclidean initial data set (with one end) if (M, g) is
(l, τ)-asymptotically Euclidean with respect to a diffeomorphism ϕ and

ϕ∗k = Ol−1

(
1

r2+τ

)

as r → ∞.

Remark 2.2. Alternatively, instead of using O-notation (or weighted Cl

spaces), one can formulate the asymptotic decay in terms of weighted Sobolev
spaces.

The ADM-mass m of a 3-dimensional asymptotically Euclidean Riemann-
ian manifold (M3, g) is defined as follows [2]:

Definition 2.3 (ADM-mass). The ADM-mass m of an (l, τ)-asymptotically
Euclidean Riemannian 3-manifold (M3, g) with diffeomorphism ϕ is defined
as
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m :=
1

16π
lim

r→∞

3∑
i,j=1

∫
S2r

(∂igij − ∂jgii)
xj

r
dμδ.

This expression is well-defined and independent of the chart ϕ if τ > 1/2,
l ≥ 2, and if the scalar curvature R is L1-integrable, see Bartnik [3] and
Chruściel [12].

2.1. The Center of Mass of an Isolated System via Hamiltonian Charges

Using methods from the theory of Hamiltonian systems, Regge and Teitelboim
[30] and Beig and Ò Murchadha [5] have constructed a Hamiltonian charge that
can be interpreted as the center of mass of suitably asymptotically Euclidean
manifolds with positive ADM-mass m. This has been generalized to suitably
asymptotically Euclidean initial data sets by Szabados [32,33]. Going beyond
the asymptotically Euclidean setting, the asymptotic invariants approach to
defining the center of mass (and the mass) of an n-dimensional Riemannian
manifold with positive mass has been carried out by Michel [24], from where
we take the following definition and theorem:

Theorem 2.4 (Michel). Let n ≥ 3 and let (M, g) be an n-dimensional (l, τ)-
asymptotically Euclidean manifold of order τ > n−1

2 and l ≥ 2 with respect to
a diffeomorphism ϕ. Assume that the (n-dimensional) ADM-mass m of g is
positive. Then the following limits exist and are finite:

zi :=
1

2m(n − 1)ωn−1
lim

r→∞

∫
S

n−1
r

U(xi, e)(νδ) dμδ, (1)

where e := g − δ, and νδ is the outward unit normal to the coordinate sphere
S

n−1
r . The 1-form U(xi, e) appearing in the integrand is given by the expression

U(xi, e) := xi (divδ e − d trδ e) − ι∇δxie + trδ e dxi.

The vector �z with components zi is called the (Hamiltonian) center of mass of
(M, g) in the coordinate system induced by ϕ.

Remark 2.5. It is well known that the expression (1) also converges if τ > n−2
2

and (M, g) is asymptotically even with respect to ϕ (or, in other words, satisfies
the Regge–Teitelboim conditions).

Remark 2.6. By construction, the Hamiltonian center of mass transforms ap-
propriately under Euclidean motions on R

n (in the image of ϕ). It has been
shown under suitable decay conditions on the full initial data set2

(M, g, k, μ, J) and the lapse and shift of the evolution that the Hamiltonian
center evolves under the Einstein equations so that d

dt (m�z) = �P , where �P is
the ADM-linear momentum, see [33] and the references cited therein.

2 See Sect. 4 for the definition of initial data sets.
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2.2. The Center of Mass of an Isolated System via CMC-Foliations

Several authors define the center of mass of a suitably asymptotically Euclid-
ean Riemannian manifold (M, g) with ADM-mass m > 0 as a foliation near
infinity. Following Cederbaum and Nerz [7], we will call such definitions ab-
stract to contrast what we will call coordinate definitions of center of mass,
see below. The first and most important such abstract definition was given
by Huisken and Yau [21], who defined the (abstract) CMC-center of mass to
be the unique foliation near infinity by closed, stable surfaces with constant
mean curvature. This was motivated by an idea of Christodoulou and Yau [11].
Huisken and Yau [21, Theorem 4.2] show that the CMC-foliation exists and
is unique whenever the Riemannian manifold (M3, g) is (4, 1)-asymptotically
Schwarzschildean and has positive mass. Their existence and uniqueness re-
sult has been generalized significantly; for an overview over other definitions
of abstract center of mass notions and for a discussion of generalizations and
optimal decay, please see [7].

In order to assign a center of mass vector �z to an abstract center of
mass given by a foliation near infinity, one can utilize the idea of a Euclidean
coordinate center: in Euclidean geometry, any closed surface Σ ↪→ R

n has a
Euclidean coordinate center �zΣ defined by

�zΣ :=
1

|Σ|
∫

Σ

�x dσ.

Now pick a fixed diffeomorphism ϕ near infinity with respect to which a given
Riemannian manifold (Mn, g) is asymptotically Euclidean. Then ϕ allows us
to define the Euclidean coordinate center �zΣ;ϕ of a closed surface Σ ↪→ M\K
via

�zΣ;ϕ :=
1

|ϕ(Σ)|δ

∫
ϕ(Σ)

�x dμδ.

Huisken and Yau [21, Theorem 4.2] subsequently define the Euclidean
center of the CMC-foliation near infinity as the limit of the Euclidean coor-
dinate centers �zΣ;ϕ outward along the foliation. More abstractly, this can be
described by making the following definition, cited from [7].

Definition 2.7 (Coordinate center of a foliation). Let {Σσ}σ≥σ0 be a folia-
tion near infinity of an (l, τ)-asymptotically Euclidean Riemannian n-manifold
(M, g) with asymptotic coordinate chart ϕ where σ ≥ σ0 is such that σ → ∞
corresponds to enumerating the surfaces Σσ outward to infinity. Let �zσ;ϕ de-
note the Euclidean coordinate center of the leaf Σσ. In case the limit exists,
the coordinate center �zϕ of the foliation {Σσ}σ≥σ0 is given by

�zϕ := lim
σ→∞ �zσ;ϕ

when {Σσ}σ≥σ0 is the CMC-foliation constructed by Huisken and Yau [21,
Theorem 4.2], we will call the induced coordinate center �zϕ the (coordinate)
CMC-center of mass of the slice and denote it by �zCMC. Cederbaum and Nerz
[7] gave explicit examples demonstrating that the coordinate CMC-center of
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mass �zCMC need not converge in a (4, 1)-asymptotically Schwarzschildean Rie-
mannian 3-manifold as studied by Huisken and Yau because the limit in Defi-
nition 2.7 does not necessarily converge. However, it can be demonstrated that
the limit and thus the coordinate CMC-center of mass �zCMC does converge if
the manifold is (4, 1+ε)-asymptotically Schwarzschildean Riemannian for any
ε > 0.

2.3. Properties of the (total) Center of Mass Definitions

It is well known that the coordinate CMC-center of mass of a given, suitably
asymptotically Euclidean Riemannian 3-manifold (M3, g) coincides with its
ADM-center of mass. This has been established by Huang [20], Eichmair and
Metzger [18], and Nerz [26, Corollary 3.8] under different assumptions on the
asymptotic decay. Moreover, it has been demonstrated by Cederbaum that the
coordinate CMC- and ADM-centers of mass converge to the Newtonian one in
the Newtonian limit c → ∞ [6, Chap. 4, 6] whenever the manifold is (vacuum)
static. This further justifies the ADM- and CMC-definitions of center of mass.

It is straightforward to demonstrate that both the coordinate CMC-
center of mass �zCMC and the ADM-center of mass �zADM transform appro-
priately under asymptotic Euclidean motions performed in the image of the
coordinate chart ϕ. The CMC-foliation itself however is independent of the
chart ϕ and thus does not get affected by changes of the coordinates. For more
details on its existence and uniqueness without reference to a given asymptotic
chart ϕ, see Nerz [27].

3. The CMC-Center of Mass of Asymptotically Hyperbolic
Manifolds

3.1. In Balanced Coordinates

Before giving a summary of the results on the existence and uniqueness of
CMC-foliations of asymptotically hyperbolic (Riemannian) manifolds, let us
first recall some definitions and specify the exact fall-off conditions we will
work with. In the sequel, we will choose a point in H

n as the origin. Then in
polar coordinates around this point, the hyperbolic metric is

b = dr2 + sh2 r σ,

where r is the Euclidean distance to the origin and r2 = (x1)2+ · · ·+(xn)2. We
also agree to denote the inner product and the norm induced by b on natural
tensor bundles over Hn by 〈·, ·〉 and |·|, respectively. The following definition of
an asymptotically hyperbolic (Riemannian) manifold is a slight generalization
of X. Wang [34, Definition 2.3].

Definition 3.1. A Riemannian n-manifold (M, g) is l-asymptotically hyperbolic
(with one end) if there exists a compact set K ⊂ M , a constant R > 0 and a
diffeomorphism ϕ : M\K → H

n\BR such that the metric gϕ := ϕ∗g can be
written in polar coordinates as

gϕ = dr2 + sh2 r hr, (2)
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where hr is a family of symmetric 2-tensor fields on S
n−1 admitting the ex-

pansion

hr = σ + m e−nr + Ol(e−(n+1)r)

as r → ∞. Here, m is a symmetric 2-tensor field on S
n−1, and we assume

l ≥ 2.

In particular, we recover the hyperbolic metric from (2) when hr = σ for
all r > 0. The symmetric 2-tensor m is called the mass-aspect tensor, its trace
trσ m is the so-called mass-aspect function. Now let x̊i, i = 1, . . . , n, denote
the restrictions of the Euclidean coordinate functions xi to S

n−1 ⊂ R
n. The

vector

P :=
(∫

Sn−1
trσ m dμσ,

∫
Sn−1

x̊1 trσ m dμσ, . . . ,

∫
Sn−1

x̊n trσ m dμσ

)
∈ R

n,1

(3)
will be referred to as the mass vector, although the term energy–momentum
vector—introduced in analogy to the asymptotically Euclidean setting—is
quite common in the literature, see for example X. Wang [34]. Our name
choice is based on [19] and will be justified in Sect. 4.

The mass-aspect tensor m and thus the components of the mass vector
P clearly depend on the choice of the coordinate chart ϕ. However, −|P|2η is
an asymptotic invariant, meaning that it does not depend on the choice of the
diffeomorphism ϕ in Definition 3.1. The proof of this fact is due to X. Wang [34]
and Chruściel and Herzlich [13]. Whenever it is non-negative, m :=

√
−|P|2η

is called the mass of (M, g).
In analogy to the asymptotically Euclidean case, the mass vector defined

here plays a central role in the Positive Mass Conjecture. This conjecture sug-
gests that the mass vector of a geodesically complete asymptotically hyperbolic
manifold (M, g) satisfying the (hyperbolic) dominant energy condition

Scalg + n(n − 1) ≥ 0

is timelike future directed, meaning that it satisfies the inequalities(∫
Sn−1

trσ m dμσ

)2

>
n∑

i=1

(∫
Sn−1

x̊i trσ m dμσ

)2

,

∫
Sn−1

trσ m dμσ > 0,

unless (M, g) is isometric to the hyperbolic space (Hn, b). The reader is referred
to [1,13,34] for proofs of this conjecture under additional assumptions.

In the asymptotically Euclidean setting described, one definition of the
(total) center of mass of an asymptotically Euclidean Riemannian manifold
relies on the existence and uniqueness of a constant mean curvature foliation
of its asymptotic end, see Sect. 2.2. For asymptotically hyperbolic manifolds
as discussed here, such CMC-foliations have been studied by Rigger [31], and
Neves and Tian [28,29]. In particular, the following result was proven in [29,
Theorem 2.2]:
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Theorem 3.2 (Neves–Tian). Let (M, g) be a 3-dimensional l-asymptotically
hyperbolic manifold with l ≥ 3. Assume that there is a diffeomorphism ϕ as in
Definition 3.1 such that the mass-aspect function trσ m is strictly positive and
that ∫

S2
x̊i trσ m dμσ = 0, i = 1, 2, 3. (4)

Then, outside a compact set, M admits a foliation by stable CMC-spheres.
The foliation is unique among all foliations for which there exists a con-

stant C such that

rΣ − rΣ ≤ C (5)

holds for all leaves Σ of the foliation, where rΣ := inf{r > 0 | ϕ(Σ) ⊂ Br(0)}
and rΣ := sup{r > 0 | ϕ(Σ) ⊂ H

3\Br(0)} are the outer and inner radius of
the ϕ-image of a leaf Σ, respectively, and Br(0) denotes the geodesic ball of
radius r around the origin of H3.

Definition 3.3. An asymptotically hyperbolic coordinate chart ϕ satisfying (4)
is called balanced.

In fact, similar again to the asymptotically Euclidean setting described
in Sect. 2, Neves and Tian [29, Theorem 2.2] provide further estimates for the
leaves Σ of the constructed foliation. More specifically, the ϕ-image of each leaf
Σ with sufficiently large inner radius and with surface area |Σ|g =: 4π sh2 r̂
can be written as a graph over the coordinate sphere centered at the origin
with radius r̂:

ϕ(Σ) = {(r̂ + f (̊x), x̊) | x̊ ∈ S
2}, (6)

where f : S2 → R satisfies

sup
S2

|f | ≤ Ce−r, ‖f‖C2(S2) ≤ C, (7)

for some constant C > 0 independent of Σ. Furthermore, the leaves of the
foliation become more and more ‘round’ as we approach infinity in the sense
that there exists a constant C > 0 independent of Σ such that∫

Σ

∣∣∣(ϕ∗∂r)
T
∣∣∣2 dμg ≤ Ce−2r,

∫
Σ

|Å|2 dμg ≤ Ce−4r,

where (ϕ∗∂r)
T is the tangential part of ϕ∗∂r with respect to g, Å is the trace

free part of the second fundamental form of Σ in (M, g), and dμg is the measure
induced on Σ by g. Note that in view of (5), the above estimates continue to
hold when r is replaced by r̂, with possibly an adapted constant.

As described in Sect. 2, the asymptotic CMC-foliation of an asymptoti-
cally Euclidean Riemannian manifold can be interpreted as an abstract center
of mass. Under suitable decay conditions, this abstract center can be coordina-
tized by taking the limit to infinity of the Euclidean coordinate centers of the
leaves of the CMC-foliation, see again Sect. 2, and one might wonder if this
is also true for the ‘centers’ of the foliation constructed by Neves and Tian.
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As we will see below, this is indeed the case for a suitable definition of the
‘coordinate centers’ of the leaves.

Of course, the Euclidean coordinate center �zS of a surface S ⊂ R
3 is given

by

�zS :=
1

|S|δ

∫
S

�x dμδ,

the affine barycenter of the points on S. However, unlike Euclidean space, hy-
perbolic space is not affine, so first of all we need to clarify how the hyperbolic
coordinate center of a surface S ⊂ H

3 is defined. For this purpose, it is natural
to exploit the isometric embedding I : (H3, b) ↪→ (R3,1, η) of the hyperbolic
space into the Minkowski spacetime (R3,1, η) given in canonical coordinates by

I : x �→ (ch r, x̊1 sh r, x̊2 sh r, x̊3 sh r),

where r = |x| and x̊i = xi/r denotes again the restriction to S
2 of the Cartesian

coordinate xi in R
3. We can therefore introduce ‘Minkowskian’ coordinates

(Xα) = (X0,X1,X2,X3) on R
3,1 so that, on I(H3), we have Xα = Iα(x) for

α = 0, 1, 2, 3 and attempt to view the hyperbolic center of a surface S ⊂ H
3

as the vector C = (C0, C1, C2, C3) ∈ R
3,1 with components

Cα :=
1

|S|b

∫
S

Iα dμb =
1

|I(S)|I∗b

∫
I(S)

Xαdμη, α = 0, 1, 2, 3. (8)

This Minkowskian ‘definition’, however, is too naive: for the centered CMC-
spheres of hyperbolic space, SR = {r = R} ⊂ H

3, formula (8) gives CR =
(ch R, 0, 0, 0). This neither converges to a ‘center of mass’ of the manifold as
R → ∞, nor does it correspond to a ‘point’ in the I-image of hyperbolic space.
It thus seems more natural to define the hyperbolic center z of a surface S ⊂ H

3

as

z := I−1(Z) := I−1

(
C√−|C|η

)
, (9)

where C is as above. Defined in this way, the hyperbolic center of S can be
thought of as a point z ∈ H

3, or, equivalently, as a future timelike unit vector
Z ∈ R

3,1.

Remark 3.4. In fact, our definition of the hyperbolic center of a surface S ⊂
H

3 is a special case of a more general idea which is closely related to affine
geometry and special relativity and also ties in with the definition of quasi-
local center of mass by Chen, M.-T. Wang, and Yau, see Sect. 2. To see this,
assume we are given a ‘model space’ Riemannian n-manifold (Mn, h) that
can be isometrically embedded into the Minkowski spacetime (Rn,1, η) via an
embedding I : (Mn, h) ↪→ (Rn,1, η) that is affinely bijective, meaning that
for each X = 0 in the convex cone cone(I(Mn)) spanned by I(Mn) with
apex at the origin, one finds a unique z ∈ M

n such that I(z) ‖X. Then, the
corresponding center of any closed hypersurface Sn−1 ⊂ M

n can be defined as
the unique z ∈ M

n such that I(z) ‖C, where the components of C are given by
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Cα :=
∫

S

Iα dμh =
∫

I(S)

Xα dμη, α = 0, 1, 2, . . . , n.

Indeed, C ∈ cone(I(Mn)) as I(S) ⊂ I(Mn) ⊂ cone(I(Mn)) and because inte-
gration is an affine operation.

In particular, if the model space is (H3, b) and the embedding I is as
above, then cone(I(Mn)) is the (open) light cone and I is thus clearly affinely
bijective. For any closed surface S ⊂ H

3, the unique z ∈ H
3 with I(z) ‖C is pre-

cisely found by (9), as the embedding I maps (H3, b) onto the unit hyperboloid
in Minkowski space. Similarly, if the model space is (R3, δ) and I : x �→ (τ, x)
for any fixed τ = 0, cone(I(Mn)) is one of the half-spaces {t ≶ 0}, depending
on the sign of τ , and I again is of course affinely bijective. We find

C =
(

τ |S|δ,
∫

S

x dμδ

)

so that C ‖ I(�z) precisely when �z is the Euclidean center of S.

Remark 3.5. This definition of the center of a surface transforms appropri-
ately under time-preserving Lorentz transformations of the ambient Minkowski
space because they are affine. Intuitively, one can understand this definition
as saying that the center of S is the I-preimage of the Minkowskian center
C of I(S) if C ∈ I(Mn), and the unique I-preimage corresponding to the
line through the origin in direction C in general. This generalizes the affine
concept of a Euclidean center of a surface to a not necessarily affine ambient
‘model space’ which can be isometrically embedded into Minkowski space3 by
exploiting the extrinsic affine structure induced by the isometric embedding.

Equipped with this definition of a hyperbolic center of a surface S ⊂ H
3,

we can now go back to defining the hyperbolic coordinate center corresponding
to the asymptotic CMC-foliation of an asymptotically hyperbolic Riemannian
manifold. As in the asymptotically Euclidean setting, we say that the hyper-
bolic coordinate center of an l-asymptotically hyperbolic Riemannian manifold
(M3, g) as in Theorem 3.2 and with respect to the chart ϕ is the limit of the
hyperbolic centers zϕ(Σr̂) = I−1(Zϕ(Σr̂)) of the (ϕ-images of the) leaves Σr̂

of the CMC-foliation as the area radius r̂ → ∞, whenever this limit exists.
Consistently, for the centered CMC-spheres SR = {r = R} ⊂ H

3, we have
ZSR

= N, where N = (1, 0, 0, 0), and thus zSR
= 0. Thus the centers of the

leaves of this foliation (trivially) converge to 0, the coordinate origin of hyper-
bolic space. Using the graphical representation (7) together with the estimates
(6), we will reach the same conclusion for the foliation of Neves and Tian: not
only does the hyperbolic coordinate center always converge under the assumed
fall-off conditions, it indeed always lies at the chosen origin of hyperbolic space:

Proposition 3.6. Under the conditions of Theorem 3.2, the hyperbolic centers of
the leaves of the constant mean curvature foliation constructed in Theorem 3.2
converge to 0. In other words, for l ≥ 3, the hyperbolic coordinate center of an

3 In fact, any flat Rl,n+1−l could also be chosen as a reference space.
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l-asymptotically hyperbolic Riemannian manifold with strictly positive mass-
aspect function and balanced coordinates lies at the center of the hyperbolic
coordinates.

Proof. Let Σ be a leaf of the CMC-foliation in Theorem 3.2 with surface area
|Σ|g =: 4π sh2 r̂ and r̂ sufficiently large. Then ϕ(Σ) can be written as a graph
over the coordinate sphere of radius r̂ as in (6). As a consequence, we may write
X0|ϕ(Σ) = ch(r̂ + f), and Xi|ϕ(Σ) = sh(r̂ + f) x̊i, i = 1, 2, 3, where f : S2 → R

satisfies (7). Using the estimates (7)—which are uniform in r̂—and a Taylor
expansion near f = 0 we see that on ϕ(Σ)

gϕ|ϕ(Σ) = sh2 r̂
[
σ + O(e−r̂)

]
,

dμgϕ = sh2 r̂
(
1 + O(e−r̂)

)
dμσ.

Note also that sh(r̂ + f) = sh r̂
(
1 + O(e−r̂)

)
. Using (8), we compute

C0 =
1
4π

∫
S2

ch r̂
(
1 + O(e−r̂)

)
dμσ = ch r̂ + O(1),

Ci =
1
4π

∫
S2

x̊i sh r̂
(
1 + O(e−r̂)

)
dμσ = O(1),

as r̂ → ∞, for i = 1, 2, 3. Then
√−|C|η = ch r̂+O(1), and thus the components

of Z satisfy Z0 = 1 + O(e−r̂), Zi = O(e−r̂), i = 1, 2, 3 so that the hyperbolic
centers z = O(e−r̂) of the leaves tend to the hyperbolic coordinate center
0. �

Remark 3.7. Proposition 3.6 shows that the condition that the asymptotic co-
ordinate chart ϕ be balanced forces the hyperbolic coordinate center of mass to
lie at the center of the coordinate system, which is possibly not too surprising.
However, both the existence and uniqueness of the asymptotic CMC-foliation
and the definition of its hyperbolic coordinate center naturally extend to as-
ymptotic charts ϕ̃ that satisfy all assumptions of Theorem 3.2 but that are
not necessarily balanced, see Theorem 3.9.

Remark 3.8. At this point it is also natural to ask whether the unique constant
mean curvature foliation still exists if we merely assume that the mass of (M, g)
is ‘positive’, meaning that the mass vector P ∈ R

3,1 is timelike future directed.
This seems to be a non-trivial question. Indeed, the assumption that the mass-
aspect function is strictly positive plays a crucial role in [29]. In particular, it
is used by Neves and Tian [29, Section 8] to ensure that the normalized Jacobi
operator is positive definite.

3.2. General Situation

As discussed in Sect. 3.1, Theorem 3.2 of Neves and Tian guarantees that the
abstract center of mass is well-defined for manifolds which are asymptotically
hyperbolic in the sense of Definition 3.1 with respect to a balanced chart at
infinity and which have strictly positive mass-aspect function. We showed in
Proposition 3.6 that in this case the hyperbolic centers of the leaves of the
constant mean curvature foliation do converge when the area of the leaves
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tends to infinity. In fact, both results hold true without assuming that the
chart at infinity is balanced. More precisely, we have:

Theorem 3.9. Let (M, g) be a 3-dimensional l-asymptotically hyperbolic man-
ifold in the sense of Definition 3.1 for l ≥ 3, with a chart at infinity denoted
by ϕ. Assume that the mass-aspect function trσ m is strictly positive. Then
outside of a compact set, M admits a foliation by stable CMC-spheres. This
foliation is unique among all foliations which have Property (5).

Furthermore, let P be the mass vector of (M, g) and let zr̂ ∈ H
3 be the

hyperbolic center of the leaf Σr̂ with surface area 4π sh2 r̂ as in (8). Then

zr̂ −→ p := I−1

⎛
⎝ P√

−|P|2η

⎞
⎠ as r̂ → ∞.

Proof. Let (M, g) and ϕ be as in the statement of the theorem. Since the mass-
aspect function is positive, it follows from the Cauchy–Schwarz inequality—
with respect to the measure trσ m dμσ—that the mass vector P is timelike
future directed in R

3,1, see also Cortier [16, Remark 2.10].
Since the group of isometries SO0(3, 1) acts transitively on (H3, b), there

exists AP ∈ SO0(3, 1) such that

AP : P �→
√

−|P|2η N.

Then AP is a (linear) isometry of R
3,1 whereas its restriction a := AP ◦ I

to the hyperbolic space I : H3 ↪→ R
3,1 is non-linear. The mass vector with

respect to the chart a ◦ ϕ at infinity is AP(P). In other words, the chart
a ◦ ϕ is balanced. Let us also note that the condition (5) is preserved under
the hyperbolic isometry a. Furthermore, the mass-aspect function of ga◦ϕ :=
(a◦ϕ)∗g is positive. This follows from an observation by X. Wang [34, p. 291]:
the round metric transforms conformally under the action of a|S2 seen as a
conformal diffeomorphism of S

2, and so does the mass-aspect tensor with a
different power of the (positive) conformal factor u : S2 → R:

a · σ = a∗σ = u−2 σ , a · m = u a∗m , a · trσ m = u3 trσ m ◦ a−1,

where the “·” denote the respective actions of conformal diffeomorphisms, see
Cortier et al. [17, Section 3] for details. Consequently, Theorem 3.2 applies with
respect to the chart a ◦ ϕ to produce a foliation by constant mean curvature
spheres. By Proposition 3.6, these spheres are asymptotically hyperbolically
centered at 0 ∈ H

3.
However, the CMC-foliation is coordinate independent and thus exists

without reference to the balanced coordinates a ◦ ϕ. From the discussions in
Remarks 3.4 and 3.5, the hyperbolic coordinate center with respect to the
chart ϕ of the CMC-foliation is at z = I−1(A−1

P (N)) with

A−1
P N = 1√

−|P|2η
A−1

P

(√
−|P|2η N

)
= P√

−|P|2η
= I(p)

so that z = p, regardless of the choice of the element AP made earlier. �
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This motivates us to adopt the following general definition of center of
mass.

Definition 3.10. Let (M, g) be an n-dimensional asymptotically hyperbolic
manifold in the sense of Definition 3.1 with respect to a chart ϕ. Assume that
it has positive mass, in the sense that the mass vector P of (M, g) is timelike
future directed. Then the hyperbolic coordinate center of mass z with respect
to the chart ϕ is the given by

z := I−1

⎛
⎝ P√

−|P|2η

⎞
⎠ ∈ H

n,

where I : (Hn, b) ↪→ (Rn,1, η) is the canonical isometric embedding.

Remark 3.11. This definition interprets the center of mass as a point in hy-
perbolic space. Note also that it transforms appropriately under the action of
the (I-induced) intrinsic isometry group SO0(n, 1), which is consistent with
the discussion in Remarks 3.4 and 3.5. In particular, these properties are rem-
iniscent of the properties of the asymptotically Euclidean center of mass, see
Sect. 2.3.

4. Hamiltonian Charges of Asymptotically Hyperbolic Initial
Data Sets

In Sect. 3, we have defined the hyperbolic coordinate center of an asymptoti-
cally hyperbolic Riemannian n-manifold of positive mass, see Definition 3.10.
We have argued that, for n = 3, the center we define coincides with the limit
of the hyperbolic centers of the leaves of the CMC-foliation in the asymptotic
end, just as in the asymptotically Euclidean setting. Also, for general n ≥ 3,
we noted that the hyperbolic coordinate center transforms equivariantly under
the symmetry group of the hyperbolic space, in analogy to the transformation
of the Euclidean coordinate center of mass under Euclidean motions. In this
section, we will investigate how the hyperbolic coordinate center relates to the
Hamiltonian charges derived for asymptotically hyperbolic initial data sets of
asymptotically anti-de Sitter spacetimes.

For this, recall that the hyperbolic space (Hn, b) ∼= (R×S
n−1, dr2+sh2 r σ)

naturally arises as the time-symmetric spacelike hypersurface {t = 0} in the
anti-de Sitter spacetime(

AdSn+1, gAdS

)
= (R × H

n,− ch2 r dt2 + b). (10)

It may therefore be viewed as the initial data set (Hn, b, 0) for
(
AdSn+1, gAdS

)
.

In general, we will define an asymptotically hyperbolic (asymptotically anti-de
Sitter) initial data set as follows.

Definition 4.1. Let (M, g) be a Riemannian n-manifold and let k be a sym-
metric 2-tensor field on M . We say that (M, g, k) is an asymptotically hyper-
bolic initial data set of order τ > 0 if there exist a compact set K ⊂ M ,
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a radius R > 0, and a diffeomorphism ϕ : M\K → H
n\BR such that

γ := ϕ∗g − b = O2(e−τr) and κ := ϕ∗k = O1(e−τr).

Remark 4.2. This generalizes Definition 3.1 in the sense that if (M, g) is an
asymptotically hyperbolic Riemannian n-manifold according to Definition 3.1
then the initial data set (M, g, 0) is an asymptotically hyperbolic initial data
set of order τ = n according to Definition 4.1.

Given a Killing vector field X of a background spacetime, there is a stan-
dard procedure in General Relativity which allows to define a Hamiltonian
charge associated with the flow along X, see also Sect. 2 for the case of the
Minkowski background spacetime. This approach was used by Chruściel and
Nagy [15] to define what they call the ‘global charges’ for asymptotically hy-
perbolic initial data sets as in Definition 4.1. We briefly recall this construction
following Michel [24]. Given a Killing vector field X of the anti-de Sitter space-
time (10), the associated Killing initial data (or KID) on the slice {t = 0} is
a pair (V, Y ), where the lapse function V and the shift vector Y are uniquely
determined by the formula

X|{t=0} =: V n + Y.

When the background spacetime is AdSn+1, n is the future directed timelike
unit normal to the slice {t = 0} ∼= (Hn, b, 0) in AdSn+1, V : Hn → R, and
Y is a tangent vector field along H

n. Now let (M, g, k), ϕ, γ, and κ be as in
Definition 4.1. Then to every KID (V, Y ), one may formally assign a global
charge

Q(V,Y )(γ, κ) := lim
R→∞

∫
{r=R}

U(V,Y )(γ, κ)(νb) dμb,

where the 1-form U(V,Y )(γ, κ) is given by the expression

U(V,Y )(γ, κ) := V (divb γ − d(trb γ)) − ι∇bV γ + trb γ dV + 2
(
ιY κ − (trb κ) Y �

)

and νb being the outward unit normal of {r = R} with respect to b. Under
suitable decay conditions on the lapse V and the shift Y , the formally defined
global charges converge; these conditions will be recalled in Proposition 4.5.

To make this construction more explicit, we need to describe KIDs of the
anti-de Sitter spacetime. For convenience, we will switch to the Poincaré ball
model of hyperbolic space for a while, where (Hn, b) is seen as the unit ball

{y ∈ (Rn, δ) : |y| < 1}
and the metric is given by

b =
(

2
1 − |y|2

)2

δ.

Note that the radial coordinate r corresponding to the polar coordinates used
to describe the hyperbolic space before is related to the ball coordinates (yi)
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Table 1. Killing initial data (KIDs) for the {t = 0}-slice of
the AdS spacetime corresponding to the Killing vector fields
(11) in the ball model of hyperbolic space

Killing V.F. Lapse Shift

X(0) V(0) = 1+|y|2
1−|y|2 0

X+
(i)

V(i) = 2yi

1−|y|2 0

X−
(i)

0 C(i) := − 1+|y|2
2

∂
∂yi + yiyj ∂

∂yj

X(i)(j) 0 Ω(i)(j) := yi ∂
∂yj − yj ∂

∂yi

via the formula

r = arcch
1 + |y|2
1 − |y|2 .

Hence, the hyperbolic metric in these coordinates reads

gAdS = −
(

1 + |y|2
1 − |y|2

)2

dt2 + b.

The algebra of Killing vector fields of (AdSn+1, gAdS) is given by

X(0) :=
∂

∂t
,

X+
(i)

:=
2yi cos t

1 + |y|2
∂

∂t
+

(
1 + |y|2

2
δj
i − yiyj

)
sin t

∂

∂yj
, i = 1, . . . , n,

X−
(i)

:=
2yi sin t

1 + |y|2
∂

∂t
−

(
1 + |y|2

2
δj
i − yiyj

)
cos t

∂

∂yj
, i = 1, . . . , n,

X(i)(j) := yi ∂

∂yj
− yj ∂

∂yi
, 1 ≤ i < j ≤ n. (11)

The future timelike unit normal vector field along the slice {t = 0} is

ν =
1 − |y|2
1 + |y|2

∂

∂t
.

From this, one obtains the following lapse functions and shift vectors:
In [14, Section 3], Chruściel, Maerten and Tod gave a physical interpre-

tation of the respective global (Hamiltonian) charges, namely
• The energy–momentum vector was defined as(

Q(V(0),0),Q(V(1),0), . . . ,Q(V(n),0)

)
. (12)

• The vector (
Q(0,C(1)), . . . ,Q(0,C(n))

)
(13)

was associated with the center of mass.
• The global charges

Q(0,Ω(i)(j)), 1 ≤ i < j ≤ n, (14)

were identified with components of the angular momentum.
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Changing back to the coordinates (r, x̊1, . . . , x̊n), we obtain

V(0) = ch r

V(i) = x̊i sh r

for i = 1, . . . , n. If (M, g) is an asymptotically hyperbolic manifold in the sense
of Definition 3.1, it is straightforward to check that the energy–momentum
vector (12) of the initial data set (M, g, 0) coincides with what we called the
mass vector (3) of (M, g), up to a dimensional multiple. By analogy, the vector
(12) will be referred to as the mass vector of the initial data set (M, g, k) in
what follows. Note that this vector transforms equivariantly under the action
of SO0(n, 1), see also Sect. 3.1.

At the same time, it is clear that the vector (13) is trivial in the case of the
initial data set (M, g, 0), whereas the coordinate center of the CMC-foliation4

does not need to be located at the coordinate origin 0. In other words, the
hyperbolic coordinate center and the Hamiltonian notion of the center of mass
do not coincide.

Generalizing Definition 3.10, we thus suggest the following definition of
the center of mass for asymptotically hyperbolic initial data sets of positive
mass. Further motivation will be given by Theorem 5.1 which asserts that the
hyperbolic center of mass evolves appropriately under the Einstein evolution
equations. In particular, we will see that the so-defined center of mass evolves
in the direction of the ‘linear momentum’ which we define via (13), see Sect. 5.

Definition 4.3. Let (M, g, k) be an asymptotically hyperbolic initial data of
order τ as in Definition 4.1 with respect to a chart ϕ near infinity. Assume
that the mass vector

P :=
(
Q(V(0),0),Q(V(1),0), . . . ,Q(V(n),0)

) ∈ R
n,1

is well-defined and timelike future directed in the Minkowski space (Rn,1, η).
Then the center of mass z with respect to the chart ϕ is given by

z := I−1

(
P√−|P|η

)
∈ H

n,

where I : (Hn, b) ↪→ (Rn,1, η) is the canonical isometric embedding.

Again, the center of mass is a point in the hyperbolic space and it trans-
forms equivariantly under the action of the group SO0(n, 1). Note that the
positive mass theorem states that the mass vector of a geodesically complete
asymptotically hyperbolic initial data set in an asymptotically AdS spacetime
satisfying the dominant energy condition μ ≥ |J | must be future timelike, un-
less the spacetime is precisely the AdS spacetime, compare p. 10. The reader
is referred to [22] for a proof of this conjecture under additional assumptions.
Here, μ and J are defined as below.

4 Provided that it exists.
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Remark 4.4. From a Hamiltonian perspective, canonical position (center of
mass) and momentum variables are not clearly distinct; this distinction can
only be made upon considerations involving time evolution, see Sect. 5. Fur-
thermore, it cannot a priori be expected that the Hamiltonian charges of a
spacetime with a non-Minkowski background combine as an energy–momentum
vector and an angular momentum–center of mass tensor in the same manner
(see [33]) as in special relativity. To the contrary, how they combine is de-
termined by their transformation behavior under the isometry group of the
background spacetime, in our case the AdS isometry group O(n, 2). In con-
trast to special relativity, we find that the length of the mass vector is an
invariant which is called the mass, while its direction gives (the hyperboloidal
embedding of) the center of mass of the slice. Whether/how energy, angu-
lar momentum, and linear momentum combine to a tensor will investigated
elsewhere.

We conclude the current section by recalling assumptions which guarantee
that the quantities (12)–(15) are well-defined. Let the energy density μ and
the momentum density J be defined through the constraint equations with
cosmological constant Λ = −n(n−1)

2 as

μ := Scalg + n(n − 1) − (trg k)2 + |k|2g , (15)

J := divg k − d(trg k). (16)

The reader is referred to Michel [24] for the proof of the following fact.

Proposition 4.5. Let (M, g, k) be an asymptotically hyperbolic initial data set
of order τ > n

2 as in Definition 4.1 with respect to a chart ϕ near infinity. If

〈(ϕ∗μ, ϕ∗J), (V, Y )〉 ∈ L1(dμb),

then the charge Q(V,Y )(γ, κ) is well-defined.

Note that for any KID (V, Y ) for anti-de Sitter spacetime we have V =
O(er), Y = O(er) as r → ∞. In particular, the charges (12)–(16) will be well-
defined provided that ϕ∗μ = O(e−(n+ε)r) and ϕ∗J = O(e−(n+ε)r) for some
ε > 0.

5. Evolution of the Hyperbolic Center of Mass

To further justify our definition of center of mass for asymptotically hyperbolic
initial data sets, we will now show that it evolves appropriately under the
Einstein evolution equations, see also Sect. 2. For simplicity, we will from now
on suppress the chart ϕ near infinity, and identify a tensor field T on M\K
with its pushforward ϕ∗T on H

n\BR. In particular, we will write g, k, μ, J
instead of ϕ∗g, ϕ∗k, ϕ∗μ, ϕ∗J .

Theorem 5.1. Let (Mn, g, k) be an asymptotically hyperbolic initial data set
of order τ > n

2 satisfying the constraint Eqs. (15)–(16) with negative cosmo-
logical constant Λ := −n(n−1)

2 , μ = O (
e−(n+ε)r

)
, and J = O (

e−(n+1+ε)r
)
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for some ε > 0. Assume additionally that k = O (
e−(τ+1)r

)
. Consider a fam-

ily (g(t), k(t)) that evolves starting from (g(0), k(0)) = (g, k) according to the
Einstein evolution equations with cosmological constant Λ, lapse N = V(0) and
shift X = 0. Then

d

dt

∣∣∣∣
t=0

Q(V(0),0) = 0,

d

dt

∣∣∣∣
t=0

Q(V(i),0) = Q(0,C(i)), i = 1, . . . , n.

Proof. Note that by Proposition 4.5, all global charges involved in the formu-
lation of this theorem are well-defined. By the Einstein evolution equations5

with cosmological constant Λ = −n(n−1)
2 , we have

ġ :=
d

dt

∣∣∣∣
t=0

g = 2V(0)k = O(e−τr).

Using the momentum constraint (16), we compute for β = 0, . . . , n

d

dt

∣∣∣∣
t=0

U(V(β),0)(g, k)

= V(β)(div ġ − d tr ġ) − ι∇V(β) ġ + tr ġ dV(β)

= 2V(β)

(
div(V(0)k) − d(V(0) tr k)

) − 2V(0)

(
ι∇V(β)k − tr k dV(β)

)
= 2V(β)

(
ι∇V(0)k + V(0) div k − tr k dV(0) − V(0)d(tr k)

)
− 2V(0)

(
ι∇V(β)k − tr k dV(β)

)
= 2ιV(β)∇V(0)−V(0)∇V(β) (k − (tr k)b) + 2V(0)V(β)(div k − d(tr k))

= 2ιV(β)∇V(0)−V(0)∇V(β) (k − (tr k)b)

+ 2V(0)V(β)

(
divg k − d(trg k) + O(e−(2τ+1)r)

)

= 2ιV(β)∇V(0)−V(0)∇V(β) (k − (tr k)b) + 2V(0)V(β)J + O(e−(2τ−1)r).

Here and in the rest of the proof all quantities are computed with respect to
hyperbolic metric b, unless otherwise indicated. Using the Poincaré ball model
for the hyperbolic metric as in Sect. 4, it is straightforward to check that

V(i)∇V(0) − V(0)∇V(i) = V 2
i ∇

(
V(0)

V(i)

)

=
4(yi)2

(1 − |y|2)2 ∇
(

1 + |y|2
2yi

)

= (yi)2
n∑

j=1

(
1 + |y|2

2yi

)′

yj

∂yj

= yiyj∂yj − 1 + |y|2
2

∂yi

= C(i)

5 See for example Bartnik and Isenberg [4].
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for all i = 1, . . . , n. Hence
d

dt
|t=0 U(V(i),0)(g, k) = U(0,C(i))(g, k) + 2V(0)V(i)J + O(e−(2τ−1)r),

d

dt
|t=0 U(V(0),0)(g, k) = 2V 2

(0)J + O(e−(2τ−1)r).

The claim follows from the asymptotics of J . �
Remark 5.2. In fact, Theorem 5.1 applies under more general assumptions
on lapse and shift, in particular when N = V(0)(1 + O1(e− n

2 r)) and X =
O2(e−(n+ε)r) for some ε > 0 as r → ∞. The details are left to the reader.

Remark 5.3. In view of Theorem 5.1 and the Newtonian/special relativity law
d
dt (m�z) = �P also alluded to in Sect. 2, we propose to call Q(0,C(i)) the linear
momentum of the initial data set (M, g, k), thereby again deviating from the
definition by Chruściel et al. [14], see (12) and (13).

6. Conclusion

We have defined a new notion of center of mass for asymptotically hyperbolic
initial data sets as in Definition 4.1, see Definition 4.3. This center of mass
is a point in the hyperbolic reference space, coinciding with the limit of the
hyperbolic coordinate centers of the leaves of the CMC-foliation constructed
by Neves and Tian and extended to non-balanced coordinates in Theorem 3.9,
see Sect. 3.2. The new center transforms adequately under hyperbolic isomet-
ric changes of the asymptotic coordinates by definition and evolves correctly
under the Einstein evolution equations with appropriate cosmological constant
(Theorem 5.1).
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[12] Chruściel, P.T.: On the invariant mass conjecture in general relativity. Commun.
Math. Phys. 120, 233–248 (1988)
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