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Quantum Ergodicity for Quantum Graphs
without Back-Scattering

Matthew Brammall and B. Winn

Abstract. We give an estimate of the quantum variance for d-regular
graphs quantised with boundary scattering matrices that prohibit back-
scattering. For families of graphs that are expanders, with few short
cycles, our estimate leads to quantum ergodicity for these families of
graphs. Our proof is based on a uniform control of an associated random
walk on the bonds of the graph. We show that recent constructions of
Ramanujan graphs, and asymptotically almost surely, random d-regular
graphs, satisfy the necessary conditions to conclude that quantum ergod-
icity holds.

1. Introduction

Quantum graphs have been suggested as an ideal model for problems in quan-
tum chaos [33]. It is therefore surprising that there is no general theorem anal-
ogous to the Quantum Ergodicity theorem of Colin de Verdière, Šnirel’man
and Zelditch [17,46,50] in the quantum graph setting. Quantum ergodicity
has been proved for a special class of graphs derived from one-dimensional
maps [5], and a general argument has been presented based on physical meth-
ods of supersymmetric field theory [24,25]. On the other hand, it has been
proved that quantum ergodicity does not hold for quantum graphs with a
star-like configuration [6], and entropy bounds—which control the extent to
which eigenfunctions can localise—have been derived for a few different fami-
lies of quantum graphs in [32]. A recent article proves quantum ergodicity for
the somewhat related problem of eigenfunctions of the discrete Laplacian on
combinatorial graphs [2].

Quantum ergodicity is one of the few universal results in quantum chaos.
It implies a weakened form of the semi-classical eigenfunction hypothesis [9,48],
and can be stated in the following form: let φn be an orthonormal basis of
quantum wave functions with energy levels En, A an observable, with classical
average Ā. Then,
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lim
E→∞

1
#{En � E}

∑

En�E

∣∣〈φn, Aφn〉 − Ā
∣∣2 = 0, (1.1)

provided that the classical dynamics are ergodic. (For the reader who prefers
to keep a concrete example in mind, one can take φn to be a sequence of
normalised eigenfunctions of the Laplace–Beltrami operator on a compact
Riemannian manifold of negative curvature, A can be a zeroth-order pseudo-
differential operator with Ā the mean value of its principal symbol, and the
classical dynamics are the geodesic flow on the manifold. Quantum ergodic-
ity in this setting was proved in [17,46,50]). One implication of (1.1) is that
one can extract a density-one subsequence1 of wave functions that becomes
equidistributed in the large energy limit. This is equivalent to the semi-classical
eigenfunction hypothesis for that subsequence [3].

Following the original proofs of quantum ergodicity, in the manifold set-
ting, the result has been proved for a variety of situations, including Euclidian
billiards [31,51], quantised torus maps [15,19,38], and quantised Hamiltonian
flows in R

n [29].
In the present article we prove, deferring a precise statement of results

to the following section, a quantum ergodicity theorem for quantum graphs
quantised with the non-back-scattering boundary conditions introduced in [28],
provided that the underlying graphs are expanders [30] and have not too many
short cycles. These conditions are similar to those demanded for the proof of
quantum ergodicity for eigenfunctions of the discrete Laplacian on combina-
torial graphs in [2], although the method of proof there is quite different.

2. Notation and Statement of Results

To fix notations, we briefly describe the main definitions that we will use in
this work. For further background information on quantum graphs, we refer
the reader to the recent book [7].

2.1. Quantum Graphs

A quantum graph is a metric graph equipped with a differential operator acting
in a space of functions defined on the bonds of the graph. We will denote by V
and B, respectively, the set of vertices and bonds of the graph, with |V| = n
and |B| = B. The vector of bond lengths will be denoted L = (Lb)b∈B where
each Lb > 0. For us, all graphs will be undirected and simple, which means that
no multiple edges are allowed, nor are loops connecting vertices to themselves.
Furthermore, we will avoid considering bipartite graphs. This means that the
vertex set cannot be partitioned into two sets with no connections within those
sets.

Our focus will be on d-regular graphs, d � 4, which are graphs where each
vertex is connected to d other vertices. This imposes the (trivial) constraint

2B = nd. (2.1)

1 Meaning that the number of terms of the subsequence in a sufficiently large interval is
asymptotic to the number of terms in the interval.
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Identifying each bond b of a graph G with an interval [0, Lb], we can define
spaces L2(G) as the direct product of interval L2-spaces. We will consider
metric graphs acted on by the one-dimensional (positive) Laplace operator on
intervals. The associated eigenvalue problem reads

− d2

dx2
ψb = k2ψb, b ∈ B, (2.2)

and solutions are bond-wise waves, with vertices as scattering points.
A vertex scattering matrix for a vertex v of degree d is a d × d unitary

matrix σv, where the vector of amplitudes of incoming waves ain ∈ C
d is

related to the vector aout of outgoing amplitudes by

aout = σvain. (2.3)

By considering the 2B directed bonds, the bond-scattering matrix S is a
2B×2B matrix with bcth entry equal to 0 if bond b does not feed into a vertex
v that bond c leaves, and otherwise is the corresponding element of the matrix
σv. The matrix S so-constructed is unitary, as a consequence of the unitarity
of the σv. The quantum evolution operator U = U(k) is the 2B × 2B matrix
whose bcth entry is

U(k)bc = eikLbSbc, (2.4)
where Lb is the length2 associated to the bond b. A common convention is to
order the directed bonds so that bonds b = B + 1, . . . , 2B are the reversals, in
order, of the bonds b = 1, . . . , B. In that case, we can write U(k) as the matrix
product

U(k) = D(k)S, where D(k) =
(

eik diagL 0
0 eik diagL

)
, (2.5)

however, we will sometimes adopt a different ordering for the directed bonds.
We define the spectrum of the quantum graph to be the set of non-

negative values k for which the condition

det(U(k) − I2B) = 0 (2.6)

is satisfied. We label the points in the spectrum as km, m = 0, 1, 2, . . ., with
multiplicity, ordered so that

0 � k0 � k1 � k2 � · · · (2.7)

Condition (2.6) is equivalent to U(km) having an eigenvalue 1, and we define
Φm ∈ C

2B to be the corresponding eigenvector normalised so that ‖Φm‖C2B =
1, or if km = km+1 = · · · is a multiple root of (2.6), take the corresponding
Φm, Φm+1, . . . to be an arbitrary orthonormal basis of the eigenspace at 1.

If σv is a unitary matrix satisfying σ2
v = Id, then the procedure above

is equivalent to choosing a certain self-adjoint extension of the Laplace oper-
ator, in the sense that the spectrum defined above is the eigenvalue set of the
self-adjoint Laplace operator, with correct multiplicity (except possibly for the
eigenvalue 0, see [22, section 5]), and the components of the vectors Φm are

2 Directed bonds have the same length as their undirected counterparts.
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the amplitudes for the wave solutions to (2.2), satisfying the boundary condi-
tions implicitly specified by the choice of extension. To give an example, the
boundary conditions:
• ψ′

bi
(0) = ψ′

bj
(0) for every pair of bonds bi, bj originating at the same vertex,

and,
•

∑
ψb(0) = 0, where the sum is taken over all bonds originating at a vertex,

leads, for a vertex of degree d, to the vertex scattering matrix σv, where

(σv)ij =
2
d

− δij .

An alternative point of view treats vertices as scattering centres, where
unitarity is a necessary condition on the matrix of transition amplitudes to
ensure probability conservation. This point of view legitimises the assignment
of arbitrary unitary matrices to vertices [43,47], which allows for greater flex-
ibility by choosing matrices with advantageous properties. In [28], a class
of scattering matrices were introduced with the properties that all diagonal
entries are 0, and all off-diagonal entries have equal complex amplitude. These
were referred to as equi-transmitting matrices.

The diagonal elements of a scattering matrix give the reflection ampli-
tude for a wave to be back-scattered into the reversal of the original bond. By
setting these elements to zero, back-scattering is prohibited in the correspond-
ing quantum graphs. In [28], it was speculated that these equi-transmitting
quantum graphs would lead to new advances in the study of quantum chaos
on graphs. Our proof in the present article of a quantum ergodicity theorem
for quantum graphs with equi-transmitting boundary conditions can be con-
sidered as such an example.

Equi-transmitting matrices of size d× d have been proved to exist in [28]
for d = 2n, d = P +1 where P is an odd prime number, and any d for which a
skew-Hadamard matrix3 exists. Equi-transmitting matrices are further known
to exist for d = Pn + 1 for any n > 1 and P any prime [23].

2.2. Notions of Graph Theory

We will appeal to a few notions of graph theory, collected here for reference.
Classical graph theory is concerned with combinatorial graphs, i.e. without
reference to any bond lengths. The connections are encoded by a n×n matrix
C called the connectivity matrix, whose ijth entry is 1 if vertices i and j are
connected, and 0 otherwise. If the graph is without multiple edges or loops,
and d-regular, then C is symmetric, and each row contains precisely d 1’s.

The (combinatorial) spectrum of a graph can be defined in a few ways,
which are coincident if the graph is regular. We shall define it as the set of
eigenvalues μ1, . . . , μn of C. As C is symmetric, the eigenvalues are real, and
we order them in decreasing order so that

− d � μn � · · · � μ1 = d. (2.8)

3 A skew-Hadamard matrix H is a matrix whose entries are ±1, with orthogonal columns,
and satisfying H + HT = 2Id.



Vol. 17 (2016) Quantum Ergodicity for Graphs without Back-Scattering 1357

b0

Figure 1. An illustrative example for the definition of TB,t.
The bond b0 belongs to TB,t for each t � 4

The multiplicity of the eigenvalue d is the number of connected components
of the graph (so that μ1 = d—every graph has at least one component), and
μn = −d if and only if the graph is bipartite. The eigenvalues of C excluding
±d will be called the non-trivial spectrum.

We will consider sequences of graphs indexed by an increasing number
of vertices n → ∞. Such a sequence of d-regular graphs is called a family
of expanders [30] if there exists a constant β > 0 such that the non-trivial
spectrum of each graph in the sequence is contained in the interval [−d +
β, d − β]. If we can take β = d − 2

√
d − 1, the graphs are called Ramanujan.

Ramanujan graphs are extremal in this sense, since for an increasing sequence
of graphs the Alon–Boppana bound [1,30, Theorem 5.3] implies

lim inf
n→∞ μ2 � 2

√
d − 1. (2.9)

We shall refer to cycles on a graph, which are closed paths without back-
tracking. We define the set CB,t to be the set of bonds b ∈ B of a graph that
lie on a cycle of length at most t. The girth of a graph is the length of the
shortest cycle. In particular, this means that CB,t = ∅ whenever t is less than
the girth.

We also define the set TB,t to be the set of directed bonds b0 such that
there exists t1, t2 with t1 + t2 = t and bond b0 is a distance at most t1 from a
cycle of length at most 2t2 (see Fig. 1).

The sets TB,t and CB,t both give a measure of the number of short cycles.
The set TB,t is more useful for our purposes, but CB,t is easier to understand.
Fortunately, their sizes are related, as the following lemma (which does not
give the sharpest possible statement) makes clear.

Lemma 2.1. Consider the sets CB,t and TB,t defined above, for a d-regular
graph. Then,

|TB,t| � (d − 1)t−1

d − 2
|CB,2t|, (2.10)

where | · | denotes the number of elements of a set.

Proof. Clearly,
|TB,t| �

∑

t1+t2=t

(d − 1)t1 |CB,2t2 |. (2.11)
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Furthermore, t2 � 2 for graphs without loops or multiple edges, so we have

|TB,t| �
t∑

t2=2

(d − 1)t−t2 |CB,2t2 |

� |CB,2t|
t∑

t2=2

(d − 1)t−t2 , (2.12)

since |CB,2t2 | � |CB,2t|. We sum the geometric series to get

|TB,t| � |CB,2t|
d − 2

(
(d − 1)t−1 − 1

)

� (d − 1)t−1

d − 2
|CB,2t|. (2.13)

�

2.3. Quantum Ergodicity for Quantum Graphs

Observables on a quantum graph will be functions that are constant on directed
bonds, which can be represented by members of C2B . For such an observable
f ∈ C

2B , the quantisation of f , denoted Op(f) is simply the diagonal 2B ×2B
matrix containing the entries of f :

Op(f) := diag{f}. (2.14)

Let {φj(k)}2B
j=1 be an orthonormal basis of eigenvectors of the matrix

U = U(k). We define the quantum variance as,

V (f,B) :=
1

2B
lim

K→∞
1
K

∫ K

0

2B∑

j=1

∣∣〈φj(k),Op(f)φj(k)〉C2B − 1
2B Tr Op(f)

∣∣2 dk.

(2.15)

While V (f,B) defined by (2.15) does not seem immediately analogous to (1.1),
it was proved in [8] that averaging the second moment appearing in (2.15),
involving the eigenvectors of the matrix U(k), over a large window of k values is
equivalent to averaging an expression similar to (1.1) involving the eigenstates
Φ0, Φ1, Φ2, . . ., at least for graphs with incommensurate bond lengths. We take
(2.15) as the starting point of our investigation.

It turns out (see [5] for example) that one cannot expect that V (f,B) = 0
for any individual fixed graph. For a fixed graph with Kirchhoff boundary
conditions, a complete classification of limiting measures induced by subse-
quences of eigenfunctions has recently been obtained in [18]. Consequently, we
consider a family of graphs, indexed by a sequence of increasing number of
bonds B → ∞. Quantum ergodicity (sometimes called asymptotic quantum
ergodicity) for quantum graphs means that V (f,B) → 0 as B → ∞ along this
sequence, [5,25].

Our main result, stated below, estimates the size of the quantum vari-
ance for graphs quantised with equi-transmitting matrices, in terms of certain
graph-theoretic properties.
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Theorem 2.2. For d > 3, consider a d-regular connected, non-bipartite, simple
graph, on B bonds, quantised with equi-transmitting scattering matrices. Let
f ∈ C

2B be an observable, satisfying |fb| < κ for all b, for some κ > 0.
Let T > 0, and suppose that all non-trivial eigenvalues μi of the connectivity
matrix of the graph satisfy |μi| � d − β for some β > 0. Then, the quantum
variance (2.15) satisfies the main estimate,

V (f,B) = O
(

κ2

Tβ2

)
+ O

(
κ2(d − 1)T |CB,2T |

BT 2

)
, (2.16)

where CB,2T denotes the number of cycles as was described in Sect. 2.2 above.

It is natural to impose a uniform boundedness condition on observables
for which we wish to prove that quantum ergodicity to hold. This means that
the parameter κ in the statement of Theorem 2.2 is an absolute constant,
independent of B. However, the estimate (2.16) makes it clear how to consider
observables that grow mildly as B → ∞.

Theorem 2.2 proves quantum ergodicity for families of graphs for which a
parameter T → ∞ can be found as B → ∞, in such a way that the quantities
on the right-hand side of (2.16) become negligible. We give two examples for
which this is the case: the families of Ramanujan graphs constructed in [40],
and random d-regular graphs [14,49]. We discuss these examples further in
Sect. 6 below.

We also mention that Theorem 2.2 does not require that the bond lengths
of the graph are linearly independent over Q, in contrast to many other results
in this field, although if the bond lengths are incommensurate, some values of
constants can be improved—see the comment at the end of Sect. 6.2.

We remark that we excluded bipartite graphs from our consideration in
the introduction. Our methods could be extended to include bipartite graphs,
but there the notions of ergodicity would need to be generalised, since bipartite
graphs can support non-uniform invariant states.

All results in the present paper would hold in the case d = 3, were it
not for the fact that no equi-transmitting matrices of size 3 × 3 can exist (as
a short calculation shows). Therefore, Theorem 2.2 is stated with condition
d > 3, although in later parts of this work, d can be set equal to 3.

In most quantum ergodicity results, such as [17,46,50], the proof natu-
rally separates into a semi-classical part, and a dynamical part. In the semi-
classical part, a correspondence is established between quantum and classical
time evolution, and in the dynamical part, ergodic properties of the classical
dynamics are invoked to prove quantum ergodicity. We shall present our proof
of Theorem 2.2 in this manner. In Sect. 3 below, we relate (see Proposition 3.3)
the quantum variance to a classical random walk on the bonds of the graph.
In Sect. 4 below, we analyse the equidistribution of the random walk, proving
a uniform decay estimate that allows us to obtain (2.16). The final steps of
the proof are carried out in Sect. 5.
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3. Semi-Classical Argument

Our aim is to prove, for a suitable class of f , that V (f,B) → 0 as B → ∞.
Without loss of generality, we can and will assume that f is chosen so that
Tr Op(f) = 0, which will simplify the notation somewhat.

Our main estimate for the quantum variance goes back to an idea from
[45] (see also [19] for a similar application of this idea). Let T > 0 and

ŵT (t) :=

{
1
T

(
1 − |t|

T

)
, |t| < T,

0, otherwise.
(3.1)

Then, for any 2B × 2B unitary matrix U , and any orthonormal basis {φj}2B
j=1

of eigenvectors of U ,

1
2B

2B∑

j=1

|〈φj ,Op(f)φj〉C2B |2� 1
2B

T∑

t=−T

ŵT (t)Tr(Op(f)∗U tOp(f)U−t).

(3.2)

(To make this paper as self-contained as possible, we include a proof of (3.2)
in an Appendix. See Lemma A.1). Therefore, we can estimate the quantum
variance by

V (f,B) � 1
2B

T∑

t=−T

ŵT (t)
(

lim
K→∞

1
K

∫ K

0

Tr(Op(f)∗U(k)tOp(f)U(k)−t) dk
)
.

(3.3)
The limit in (3.3) exists as the integrand is an almost-periodic function of k.

Let us define the matrix M̃ (t) for t ∈ N0 as the 2B × 2B matrix whose
bcth entry is

(
M̃ (t)

)

bc
= lim

K→∞
1
K

∫ K

0

|U(k)t
bc|2 dk, (3.4)

i.e. the average of the square of the bcth element of the matrix U(k)t. Then,
we can rewrite the quantity inside the brackets in (3.3):

Lemma 3.1. Let Op(f) = diag{f} where f ∈ C
2B and let M̃ (t) be defined as

above. Then,

lim
K→∞

1
K

∫ K

0

Tr(Op(f)∗U(k)tOp(f)U(k)−t) dk = 〈f, M̃ (t)f〉C2B ,

fort � 0. (3.5)

Proof. We denote F = Op(f). Expanding the trace, we have

Tr(F ∗U tFU−t)

=
∑

b0,...,bt−1
c0,...,ct−1

F̄b0b0Ub0b1Ub1b2 · · · Ubt−1c0Fc0c0U
−1
c0c1U

−1
c1c2 · · · U−1

ct−1b0
,

(3.6)
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where the multi-sum runs over all possible choices of 2B bonds for each of
b0, . . . , bt−1 and c0, . . . , ct−1. We have also the expansions

U t
b0c0 =

∑

b1,...,bt−1

Ub0b1Ub1b2 · · · Ubt−1c0 , (3.7)

and

U
t

b0c0 =
∑

c1,...,ct−1

Ub0ct−1Uct−1ct−2 · · · Uc1c0

=
∑

c1,...,ct−1

U−1
c0c1U

−1
c1c2 · · · U−1

ct−1b0
, (3.8)

so that

lim
K→∞

1
K

∫ K

0

Tr(F ∗U(k)tFU(k)−t) dk

=
∑

b0,c0

F̄b0b0

(
lim

K→∞
1
K

∫ K

0

|U(k)t
b0c0 |

2 dk
)
Fc0c0

= 〈f, M̃ (t)f〉C2B , (3.9)

�

The matrix M̃ (t) is not easy to work with, so we introduce a second
matrix M where

Mbc := |Ubc|2. (3.10)
Because U is a unitary matrix, the matrices M and M̃ (t) are both doubly
stochastic. If the graph does not contain too many cycles, then the matrix
M̃ (t) is close to M t, in the following sense:

Proposition 3.2. Let T ∈ N and suppose that f ∈ C
2B satisfies the bound

|fb| � κ, b = 1, . . . , 2B for some κ > 0. Provided that the graph is quantised
with scattering matrices that prohibit back-scattering, then

|〈f, M̃ (t)f〉C2B − 〈f,M tf〉C2B | � 2κ2

(d − 2)(d − 1)
(d − 1)t|CB,2T |, (3.11)

for all t = 1, 2, . . . , T .

Proof. By (2.4), we can expand |U(k)t
b0c0

|2 as

|U(k)t
b0c0 |

2 =
∑

b1,...,bt−1
c1,...,ct−1

Sb0b1Sb1b2 · · · Sbt−1c0e
ik(Lb1+Lb2+···+Lbt−1+Lc0 )

× Sc1c0Sc2c1 · · · Sb0ct−1e
−ik(Lc0+Lc1+···+Lct−1 ). (3.12)

Because Sbc = 0 if directed bonds b and c are not connected, we can think of
the right-hand side of equation (3.12) as a weighted sum over paths connecting
b0 to c0 and a return path (see Fig. 2).

The crucial step in our argument is to demonstrate that, with few excep-
tions, the return path goes back over the same bonds in the reverse order as
the outward path. This might not happen if, along the path, there are places
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b0

b1

b2

b3 c0

c1

c2

c3

Figure 2. An example of a path and its return with t = 4.
In this example, the return path is different to the outward
path. If the graph does not contain too many cycles of length
at most 6 then this happens only rarely

b0 c0

(a)

b0 c0

(b)

Figure 3. Two different possibilities for excursions along a
path from b0 to c0. In a, there is back-scattering; in b, no
back-scattering occurs but we note that the bond b0 belongs
to the set TB,5

where at least two distinct excursions from the same vertex are made, in the
sense that removing the excursions gives a shorter path from b0 to c0 (see
Fig. 3). Since the graphs are quantised without back-scattering, the excur-
sions may not consist of self-retracing sections, so the only possibility is if the
excursions contain short cycles.

A second mechanism whereby the return path may differ from the out-
ward path is if the path contains a short cycle of an even number of steps
where the outward path takes one route, and the return path takes a different
route, as could happen in the situation depicted in Fig. 2.

If the bond b0 does not belong to the set TB,t, then there are no cycles
close enough to b0 to allow either possibility. In this case, the return path
has to be the reversal of the outward path. This means that c1 = bt−1, c2 =
bt−2, . . . , ct−1 = b1 and so
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|U(k)t
b0c0 |

2 =
∑

b1,...,bt−1

|Sb0b1 |2|Sb1b2 |2 · · · |Sbt−1c0 |2

= (M t)b0c0 , (3.13)

since |Sbc| = |Ubc|. Since (3.13) is independent of k, the average in k in (3.4)
has no effect, and we have

(M̃ (t))b0c0 = (M t)b0c0 , (3.14)

for b0 /∈ TB,t. Therefore, let us define a matrix R(t) by

R(t) = M̃ (t) − M t, (3.15)

and let us consider (R(t)f)b, the bth component of R(t)f . We have proved that

(R(t)f)b = 0, (3.16)

if b /∈ TB,t. If b ∈ TB,t then we can be sure that

|(R(t)f)b| � 2κ, (3.17)

since the matrices M̃ (t) and M (and hence M t) are doubly stochastic. Hence,

|〈f, M̃ (t)f〉C2B − 〈f,M tf〉C2B | = |〈f,R(t)f〉C2B |
� 2κ2|TB,t|

� 2κ2

d − 2
(d − 1)t−1|CB,2t|, (3.18)

using Lemma 2.1,

� 2κ2

d − 2
(d − 1)t−1|CB,2T |, (3.19)

using the fact that |CB,2t| � |CB,2T | for t � T .
As we shall see below, quantum ergodicity essentially follows if we can

prove that 〈f, M̃ (t)f〉C2B = o(1) as t → ∞. However, we are able to prove this
decay for the matrix M t only, and Proposition 3.2 provides the requisite link.
We remark that this procedure is reminiscent of the recent proof of quantum
ergodicity for ray-splitting billiards [31]. In that work, the authors consider
a probabilistic random walk on families of trajectories with the same end-
points, with transition weights given to individual trajectories, and summed
over families of trajectories; the same distinction as between our matrices M t

and M̃ (t), with quantum ergodicity likewise following from ergodicity of the
latter class of random walk. In [31], the multiple trajectories arise as a result
of splitting trajectories at the interface between one-or-more different billiard
media; in our work, the multiple “trajectories” arise due to the connectivity
of the graphs.

�

The main result of this section is as follows.
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Proposition 3.3. Consider a d-regular graph on B bonds, quantised without
back-scattering. For any T > 0, and any f ∈ C

2B satisfying |fb| � κ for each
b and Op(f) = diag{f} satisfying Tr Op(f) = 0,

V (f,B) � 1
2BT

Tr Op(f)2

+
1
B

T∑

t=1

ŵT (t)(〈f,M tf〉C2B + O
(
κ2(d − 1)t|CB,2T |

)
). (3.20)

Proof. Because of cyclic invariance of trace, and the symmetry of ŵT , we can
write (3.3) (extracting the t = 0 term) as,

V (f,B) � Tr Op(f)2

2BT

+
1
B

T∑

t=1

ŵT (t)
(

lim
K→∞

1
K

∫ K

0

Tr(Op(f)∗U(k)tOp(f)U(k)−t) dk
)
.

(3.21)

We then use Lemma 3.1 and Proposition 3.2 to get (3.20).
�

To prove our quantum ergodicity result, we will need to understand the
behaviour of M tf , which represents a random walk on the bonds of the graph.
This we do in the next section.

4. Dynamical Argument

4.1. Classical Dynamics on a Quantum Graph

The classical analogue of the quantum evolution is the Markov process on
the directed bonds of the graph with the transfer matrix M , which is doubly
stochastic [34].

Since M is not necessarily normal, it will be convenient to work, rather
than with eigenvectors of M , with its singular vectors, defined to be the eigen-
vectors of the symmetric matrix MT M . If we order the directed bonds in
groups of d bonds departing from each vertex, the matrix MT M decomposes
into block-diagonal form

MT M =

⎛

⎜⎜⎜⎝

J 0 · · · 0
0 J · · · 0
...

...
. . .

...
0 0 · · · J

⎞

⎟⎟⎟⎠ ,

where each of the n blocks is a d × d matrix

J =
1

(d − 1)2

⎛

⎜⎜⎜⎝

d − 1 d − 2 · · · d − 2
d − 2 d − 1 · · · d − 2

...
...

. . .
...

d − 2 d − 2 · · · d − 1

⎞

⎟⎟⎟⎠ .
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ev ẽv

Figure 4. Support of the singular vectors ej and ẽj associ-
ated to a vertex v. See main text for the definitions

The eigenvalues of J are 1 with multiplicity one, and (d−1)−2 with multiplicity
d−1, and the simple eigenspace is spanned by the vector (1, . . . , 1)T . Therefore,
the singular values of the matrix M are: 1 with multiplicity n, and (d − 1)−1

with multiplicity n(d−1). A basis for the eigenspace of MT M with eigenvalue
1 is given by the set {e1, . . . , en} ⊆ C

2B , where the jth component of ev

is defined to be 1 if directed bond j points outwards from vertex v, and 0
otherwise (see Fig. 4).

We could equally well consider MMT , which has identical spectrum to
MT M , and a basis of eigenvectors corresponding to the singular value 1 can
be chosen to have zero components except for the incoming bonds of vertex
v where the component is 1. We will denote these vectors by ẽv ∈ C

2B for
v = 1, . . . , n (see Fig. 4).

Observables that are linear combinations of e1, . . . , en will be called evenly
distributed around vertices in the following subsection.

Proposition 4.1. If the scattering matrices on the quantum graph are equi-
transmitting, the action of M on the vectors ev and ẽv is as follows:

Mev = ẽv, (4.1)

Mẽv =
1

d − 1

(
∑

w∼v

ẽw − ev

)
, (4.2)

where
∑

w∼v is a sum over vertices w connected to v.

Proof. The action of M on a vector supported on a single directed bond b
is to allocate an equal fraction to the d − 1 directed bonds feeding into the
origin of b (not including the reversal of b). For the vector Mev, each bond
directed towards v gets d − 1 times the fraction 1/(d − 1) of the weight 1 on
each outward pointing bond in ev. The result is a vector of weight 1 on each
inward pointing vertex to v. Hence, Mev = ẽv.

In a similar way, it is clear that Mẽv has weight 1/(d − 1) on each bond
directed towards a neighbour of v, except the outward pointing bonds from v
(see Fig. 5). Such a vector can be written
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v
ẽv

M

Figure 5. The support of Mẽv. The vertex v is at the centre
of the illustration

1
d − 1

(
∑

w∼v

ẽw − ev

)
.

�

4.2. Observables Evenly Distributed Around Vertices

Let
G1 := span{e1, . . . , en} ⊆ C

2B , (4.3)
and let ϕ : G1 → C

n be the natural isomorphism. Let us also define ϕ̃ : G1 →
C

2n by,

ϕ̃ : a1e1 + · · · + anen �→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

...
an

0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)

We shall also work with the larger space G̃1, where

G̃1 := span{e1, . . . , en, ẽ1, . . . , ẽn} ⊆ C
2B , (4.5)

and define ψ : C2n → G̃1 by

ψ :
(
a
b

)
�→ a1e1 + · · · + anen + b1ẽ1 + · · · + bnb̃n, (4.6)

where

a =

⎛

⎜⎝
a1

...
an

⎞

⎟⎠ . (4.7)

We note that ψ fails to be invertible since

ψ

(
e

−e

)
= 0, where e =

⎛

⎜⎝
1
...
1

⎞

⎟⎠ . (4.8)
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Lemma 4.2. If x̂ =
(
x
y

)
∈ C

2n then

‖ψ(x̂)‖C2B �
√

d (‖x‖Cn + ‖y‖Cn) . (4.9)

Proof. Let us define

η =
n∑

j=1

xjej

η̃ =
n∑

j=1

yj ẽj ,

so that

‖ψ(x̂)‖2
C2B = ‖η + η̃‖2

C2B = ‖η‖2
C2B + ‖η̃‖2

C2B + 2Re〈η, η̃〉C2B . (4.10)

Due to orthogonality of {e1, . . . , en},

‖η‖2
C2B =

n∑

j=1

|xj |2‖ej‖2C2B = d
n∑

j=1

|xj |2 = d‖x‖2Cn , (4.11)

and similarly
‖η̃‖2

C2B = d‖y‖2Cn . (4.12)

We also have

〈η, η̃〉C2B =
n∑

i,j=1

xiȳj〈ei, ẽj〉C2B . (4.13)

Now, since ej is supported on outward pointing bonds from vertex j and ẽi is
supported on inward pointing bonds to vertex i, the only way that 〈ei, ẽj〉C2B

can be non-zero is if i connects to j. We have, in fact,

〈ei, ẽj〉C2B =
{

1, if i ∼ j,
0, otherwise,

}
= Cij , (4.14)

so

〈η, η̃〉C2B =
n∑

i,j=1

xiȳjCij

= 〈x, C y〉Cn . (4.15)

We get,

‖ψ(x̂)‖2
C2B = d‖x‖2Cn + d‖y‖2Cn + 2Re〈x, C y〉Cn

� d‖x‖2Cn + d‖y‖2Cn + 2‖x‖Cn‖C y‖Cn

� d‖x‖2Cn + d‖y‖2Cn + 2d‖x‖Cn‖y‖Cn

= d(‖x‖Cn + ‖y‖Cn)2, (4.16)

proving (4.9).
�
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Let Ĉ be the 2n × 2n matrix,

Ĉ :=
(

0 −1
d−1In

In
1

d−1C

)
. (4.17)

Proposition 4.3. Let f ∈ G1 and t = 0, 1, 2, . . . Then,

ψ(Ĉtϕ̃(f)) = M tf. (4.18)

Proof. Let x̂ ∈ C
2n with g = ψ(x̂). We first prove that

ψ(Ĉx̂) = Mg. (4.19)

Indeed, suppose that

g = x1e1 + · · · + xnen + x̃1ẽ1 + · · · + x̃nẽn, (4.20)

so that

Mg = x1ẽ1+ · · · xnẽn +
x̃1

d − 1

( ∑

j∼1

ẽj −e1

)
+ · · ·+ x̃n

d − 1

( ∑

j∼n

ẽj −en

)
, (4.21)

by Proposition 4.1. However, with x = (x1, . . . , xn)T , x̃ = (x̃1, . . . , x̃n)T and
x̂ = (x, x̃)T , we have

Ĉx̂ =

(
− x̃

d−1

x + Cx̃
d−1

)
, (4.22)

from which we see that ψ(Ĉx̂) = Mg.
To prove (4.18) in the case t = 0, it is immediate to observe that

ψ(ϕ̃(f)) = f , from the definitions of ψ and ϕ̃. If we assume that ψ(Ĉtϕ̃(f)) =
M tf , then applying (4.19) with x̂ = Ĉtϕ̃(f) proves (4.18) for the t + 1 case.

�

Therefore, to understand the action of M on f , we need to understand
the iterates of Ĉ.

Let x be an eigenvector of C with eigenvalue μ. Then,

Ĉ

(
x
0

)
=

(
0
x

)
. (4.23)

Denoting

Ĉt

(
x
0

)
=:

(
ytx
ztx

)
, (4.24)

=
(

− zt−1
d−1 x

(yt−1 + μzt−1
d−1 )x

)
. (4.25)

So
yt = − zt−1

d − 1
, (4.26)

and zt = zt(μ) is the solution to the recurrence

zt =
μzt−1

d − 1
− zt−2

d − 1
, (4.27)

with initial conditions z0 = 0 and z1 = 1.
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Proposition 4.4. If |μ| � d − β < d, then the solutions to (4.27) satisfy

|zt(μ)| � t

(
d − 1 − β

d − 1

)t−1

, (4.28)

for t = 1, 2, . . .

Proof. We first consider the case |μ| = 2
√

d − 1. Standard methods yield the
solution to (4.27) in this case to be given by

zt =
√

d − 1
2
√

ω2 − 1

⎛

⎝
(

ω +
√

ω2 − 1√
d − 1

)t

−
(

ω −
√

ω2 − 1√
d − 1

)t
⎞

⎠ , (4.29)

where ω = 1
2μ(d − 1)−1/2 = ±1. Since

(
ω +

√
ω2 − 1√

d − 1

)
−

(
ω −

√
ω2 − 1√

d − 1

)
= 2

√
ω2 − 1√
d − 1

, (4.30)

we may apply the inequality
∣∣∣∣
at − bt

a − b

∣∣∣∣ � t max{|a|, |b|}t−1, (4.31)

to (4.29), to get

|zt| � t max

{∣∣∣∣∣
ω +

√
ω2 − 1√

d − 1

∣∣∣∣∣ ,

∣∣∣∣∣
ω −

√
ω2 − 1√

d − 1

∣∣∣∣∣

}t−1

. (4.32)

For 1 < ω � 1
2 (d − β)(d − 1)1/2, we have

∣∣∣∣∣
ω ±

√
ω2 − 1√

d − 1

∣∣∣∣∣ � ω +
√

ω2 − 1
(d − 1)1/2

. (4.33)

For such values of ω,

0 � ω2 − 1 � (d − β − 2)2 − 4β

4(d − 1)
<

(d − β − 2)2

4(d − 1)
, (4.34)

so that

∣∣∣∣∣
ω ±

√
ω2 − 1√

d − 1

∣∣∣∣∣ <
1
2

d − β

d − 1
+

d − 2 − β

2(d − 1)

=
d − 1 − β

d − 1
. (4.35)

A similar argument holds if − 1
2 (d − β)(d − 1)1/2 � ω < −1.

If |ω| < 1 then
∣∣∣∣∣
ω ±

√
ω2 − 1√

d − 1

∣∣∣∣∣ =
1√

d − 1
� d − 1 − β

d − 1
. (4.36)
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Finally, in the case |μ| = 2
√

d − 1, directly solving (4.27), we find

|zt(μ)| =
t

(d − 1)(t−1)/2
. (4.37)

�

Our main result of this subsection is the following:

Proposition 4.5. Let f ∈ G1 with Tr Op(f) = 0. If all non-trivial eigenvalues
μ of C satisfy the bound |μ| < d − β then we have

‖M tf‖C2B � 2‖f‖C2B t

(
d − 1 − β

d − 1

)t−1

, (4.38)

for t = 1, 2, 3, . . .

Proof. Let x1, . . . , xn be an orthonormal basis of eigenvectors of C, where x1 =
n−1/2e. Since Tr Op(f) = 0 we have 〈ϕ(f), e〉Cn = 0 and we can write

ϕ(f) = α2x2 + · · · + αnxn, (4.39)

where
‖ϕ(f)‖2Cn = |α2|2 + · · · + |αn|2. (4.40)

It is also easy to see that

‖f‖2
C2B = d‖ϕ(f)‖2Cn . (4.41)

We have

ϕ̃(f) = α2

(
x2
0

)
+ · · · + αn

(
xn

0

)
∈ C

2n. (4.42)

So, if t = 1, 2, 3, . . .,

Ĉtϕ̃(f) =
α2

d − 1

(
−zt−1(μ2)x2

(d − 1)zt(μ2)x2

)
+ · · ·+ αn

d − 1

(
−zt−1(μn)xn

(d − 1)zt(μn)xn

)
, (4.43)

using (4.24).
We now use Lemma 4.2 to get

‖M tf‖C2B =
∥∥∥ψ

(
Ĉtϕ̃(f)

)∥∥∥
C2B

�
√

d

⎛

⎝
(

n∑

j=2

|αj |2
|zt−1(μj)|2
(d − 1)2

)1/2

+

(
n∑

j=2

|αj |2|zt(μj)|2
)1/2

⎞

⎠

�
√

d

(
n∑

j=2

|αj |2
)1/2

(t − 1)(d − 1 − β)t−2 + t(d − 1 − β)t−1

(d − 1)t−1
,

using Proposition 4.4,

� 2‖f‖C2B t

(
d − 1 − β

d − 1

)t−1

. (4.44)

�
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4.3. General Mean-Zero Observables

We would like to consider a more general class of observables than those belong-
ing to the spaces G1. Let G2 = G⊥

1 . Thus, G2 is the space of singular vectors of
M with singular value 1

d−1 , and it follows that M acts on G2 by contraction:

Lemma 4.6. Let g ∈ G2. Then,

||Mg||C2B =
||g||C2B

d − 1

Proof. Take g ∈ G2. Then, we have

||Mg||2
C2B = 〈Mg,Mg〉C2B = 〈g,MT Mg〉C2B (4.45)

=
||g||2

C2B

(d − 1)2
. (4.46)

�

Finally, let us put the results of Proposition 4.5 and Lemma 4.6 together.

Theorem 4.7. Let f ∈ C
2B with Tr Op(f) = 0. Assume that all non-trivial

eigenvalues μ of the connectivity matrix satisfy |μ| � d − β for some β > 0.
Then, there exists a constant K > 0 (that does not depend on t or B) such
that for t � 1,

‖M tf‖C2B < K‖f‖C2B t

(
d − 1 − β

d − 1

)t

. (4.47)

Proof. The conditions of the theorem guarantee that

‖M jg‖C2B � 2‖g‖C2B j

(
d − 1 − β

d − 1

)j−1

(4.48)

for any g ∈ G1 for j ∈ N, due to Proposition 4.5.
We decompose f according to C

2B = G1 ⊕ G2 as f = f0,1 + f0,2, where
f0,1 ∈ G1 and f0,2 ∈ G2, and inductively defining the sequences {fj,1}∞

j=0 and
{fj,2}∞

j=0 by
Mfj,2 = fj+1,1 + fj+1,2, (4.49)

where fj,i ∈ Gi for j � 0, i ∈ {1, 2}. So upon each iteration, the component of
fj,2 that does not remain in G2 becomes fj+1,1 ∈ G1.

We have, by Lemma 4.6

‖fj,2‖2C2B

(d − 1)2
= ||Mfj,2||2C2B = ||fj+1,1||2C2B + ||fj+1,2||2C2B � ||fj+1,i||2C2B , (4.50)

for i ∈ {1, 2}, so, inductively,

‖fj,2‖C2B � ||f0,2||C2B

(d − 1)j
� ||f ||C2B

(d − 1)j
, (4.51)

and

‖fj,1‖C2B � ‖fj−1,2‖C2B

d − 1
� ||f ||C2B

(d − 1)j
. (4.52)
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Acting on f iteratively, we have

M tf = M tf0,1 + M tf0,2

= M tf0,1 + M t−1f1,1 + M t−1f1,2

...

=
t−1∑

j=0

M t−jfj,1 + ft,1 + ft,2. (4.53)

Thus, we have, using (4.51) and (4.52), and (4.48),

‖M tf‖C2B �
t−1∑

j=0

‖M t−jfj,1‖C2B + ‖ft,1‖C2B + ‖ft,2‖C2B

� 2
t−1∑

j=0

(t − j)
(

d − 1 − β

d − 1

)t−j−1

||fj,1||C2B +
2||f ||C2B

(d − 1)t

� 2
t−1∑

j=0

(t − j)
(

d − 1 − β

d − 1

)t−j−1 ||f ||C2B

(d − 1)j
+

2||f ||C2B

(d − 1)t

=
2||f ||C2B

(d − 1)t−1

t∑

r=1

r(d − 1 − β)r−1 +
2||f ||C2B

(d − 1)t via r = t − j,

� 2t‖f‖C2B (d − 1)
(d − 1 − β)t − 1

(d − 1)t (d − 2 − β)
+

2‖f‖C2B

(d − 1)t

� 2t‖f‖C2B (d − 1)
(d − 2 − β)

(
d − 1 − β

d − 1

)t

+
2‖f‖C2B

(d − 1)t . (4.54)

Finally (to combine the two terms into a single), noting that

t(d − 1)(d − 1 − β)t

d − 2 − β
� 4, (4.55)

for t � 1, we get

‖M tf‖C2B � 5(d − 1)
2(d − 2 − β)

‖f‖C2B t

(
d − 1 − β

d − 1

)t

, (4.56)

for t � 1.
�

5. Quantum Ergodicity for Equi-transmitting Expander Graphs

We are now able to prove Theorem 2.2. To begin with, we need a few results
on certain summations.
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Lemma 5.1. Let θ = 1 and T > 0. Then,
T∑

t=1

tθt =
TθT+2 + θ − (T + 1)θT+1

(θ − 1)2
, (5.1)

and consequently, if |θ| < 1,
∞∑

t=1

tθt =
θ

(θ − 1)2
. (5.2)

Proof. The sum appearing in (5.1) is of a standard type (see formula 0.113 of
[26], or [27, p. 33] for a derivation). Equation (5.2) follows by letting T → ∞.

�
Lemma 5.2. Let T > 0 and

ŵT (t) :=

{
1
T

(
1 − |t|

T

)
, |t| < T,

0, otherwise,
(5.3)

and θ = 1. Then,

T∑

t=1

θtŵT (t) =
θ

T 2

(
T − 1 + θT − Tθ

(1 − θ)2

)
. (5.4)

Proof. We reverse the order of summation, to get
T∑

t=1

θtŵT (t) =
T−1∑

k=0

θT−kŵT (T − k), via k = T − t,

=
θT

T

T−1∑

k=0

θ−k

(
1 − T − k

T

)

=
θT

T 2

T−1∑

k=0

kθ−k. (5.5)

To evaluate the sum in (5.5), we use Lemma 5.1. The result is
T∑

t=1

θtŵT (t) =
θT

T 2

(
(T − 1)θ−T−1 + θ−1 − Tθ−T

(θ−1 − 1)2

)

=
θ

T 2

(
T − 1 + θT − Tθ

(1 − θ)2

)
. (5.6)

�
Proof Theorem 2.2. We recall equation (3.20) which provides the main esti-
mate for V (f,B):

V (f,B) � 1
2BT

Tr Op(f)2

+
1
B

T∑

t=1

ŵT (t)
(
〈f,M tf〉C2B + O

(
κ2(d − 1)t|CB,2T |

) )
. (5.7)
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To estimate the error term, we have the sum

T∑

t=1

ŵT (t)(d − 1)t =
d − 1
T 2

(
T − 1 + (d − 1)T − T (d − 1)

(d − 2)2

)
, (5.8)

by Lemma 5.2. Since d � 3, we can be sure that

T − 1 − T (d − 1) < 0, (5.9)

so
T∑

t=1

ŵT (t)(d − 1)t <
d − 1

(d − 2)2
(d − 1)T

T 2
. (5.10)

The first term of (5.7) is easy to bound: since Tr Op(f)2 � 2Bκ2 if
|fb| � κ, we have

Tr Op(f)2

2BT
� κ2

T
. (5.11)

The final step needed is to bound

T∑

t=1

ŵT (t)〈f,M tf〉C2B , (5.12)

where, by Theorem 4.7,

|〈f,M tf〉C2B | � ‖f‖C2B‖M tf‖C2B � K‖f‖2
C2B t

(
d − 1 − β

d − 1

)t

, (5.13)

for some constant K. Since ŵT (t) � T−1 for all t, we can estimate

T∑

t=1

ŵT (t)t
(

d − 1 − β

d − 1

)t

� 1
T

∞∑

t=1

t

(
d − 1 − β

d − 1

)t

=
1
T

(d−1−β
d−1 )

(1 − d−1−β
d−1 )2

=
1
T

(d − 1)(d − 1 − β)
β2

, (5.14)

making use of Lemma 5.1. As ‖f‖2
C2B � 2Bκ2, we end up with

T∑

t=1

ŵT (t)〈f,M tf〉C2B = O
(

Bκ2

Tβ2

)
, (5.15)

and combining with the other two bounds:

V (f,B) = O
(

κ2

Tβ2

)
+ O

(
κ2(d − 1)T |CB,2T |

BT 2

)
. (5.16)

�
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Remark 5.3. By applying the Hölder inequality, we may derive the alternative
bound to (5.15):

T∑

t=1

ŵT (t)〈f,M tf〉C2B = O
(

Bκ2

T 1−1/qβ1+1/p

)
, p, q > 1,

1
p

+
1
q

= 1, (5.17)

which may be useful to prove quantum ergodicity in cases of families of graphs
for which β → 0 in a slow way as B → ∞.

6. Examples

In this section, we provide two examples of families of graphs for which our
results prove quantum ergodicity when quantised with equi-transmitting scat-
tering matrices.

6.1. Random Regular Graphs

There exist several models for choosing a regular graph on n vertices at random
[49]. We shall consider the set Gn,d of simple, d-regular graphs on n labelled
vertices. It follows from [4,12] that the size of Gn,d obeys

|Gn,d| ∼
√

2e(1−d2)/4

(
ddnd

ed(d!)2

)n/2

, as n → ∞. (6.1)

We make Gn,d into an ensemble of random graphs by assigning uniform proba-
bility to each element [14,49]. These graphs are bipartite with probability o(1)
as n → ∞, and connected (a fortiori d-connected) with probability 1 − o(1)
[13].

To use Theorem 2.2 to prove that quantum ergodicity holds with proba-
bility 1−o(1), we collect together some prior results showing that such random
graphs are expanders, and that they do not have too many short cycles.

Random regular graphs are known to be almost Ramanujan, due to a
result of Friedmann [21], which had been conjectured by Alon [1]: for any
ε > 0, with probability 1 − o(1) a random d-regular graph has all non-trivial
eigenvalues μi of its connectivity matrix bounded by |μi| � 2

√
d − 1 + ε. This

means that we can take any β < d−2
√

d − 1 in Theorem 2.2. A weaker bound
valid for d even, with a simpler proof, has been given in [41], that would also
serve our purpose for those values of d.

For the number of short cycles in a random d-regular graph, such ques-
tions have been considered in [39]. For d fixed, theorem 4 of [39] reads:

Theorem 6.1. Let k = k(n) � 3 satisfy k(d − 1)k−1 = o(n). Let S = S(n) =
20Ak(d − 1)k with A = A(n) > c for some constant c > 1. The probability
that the random d-regular graph on n vertices has exactly S edges which lie on
cycles of length at most k is less than

e−5(d−1)k
( e

A

)S/4k

. (6.2)
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To apply Theorem 6.1 to our situation, let k = 3
5 logd−1 n, and S0 =

�42n3/5 logd−1 n� and define A(n) by

S0 = 12A(n)n3/5 logd−1 n. (6.3)

Then, for n sufficiently large

3 < A(n) � 3.5, (6.4)

and

k(d − 1)k−1 =
3 logd−1 n

5(d − 1)
n3/5 = o(n), (6.5)

so that the conditions of Theorem 6.1 are satisfied.
The probability that a random d-regular graph has at least S0 edges

which lie on cycles of length at most k is, according to Theorem 6.1, not more
than

∞∑

S=S0

e−5(d−1)k
( e

A

)S/4k

� e−5(d−1)k

= e−5n3/5
, (6.6)

for n sufficiently large, since e/A < 1.
Let

T =
3
10

logd−1 n =
3
10

logd−1 B − 3
10

logd−1

(
d

2

)
. (6.7)

Then, (6.6) implies that

P

(
|CB,2T | � 42

(
2B

d

)3/5

logd−1

(
2B

d

))
� 1 − e−5(2B/d)3/5 , (6.8)

that is, with extremely high probability. We can then say that

P

(
(d − 1)T

BT 2
|CB,2T | → 0

)

� P

(
(d − 1)T

BT 2
|CB,2T | � 1400

3

(
2
d

)9/10 1
logd−1(2B/d)

B−1/10

)

= P

(
|CB,2T | � 42

(
2B

d

)3/5

logd−1

(
2B

d

))

� 1 − e−5(2B/d)3/5 (6.9)

by (6.8).
So with T given by (6.7), and with probability 1 − o(1), the right-hand

side of (2.16) converges to 0 as B → ∞, leading to quantum ergodicity for a
sequence of random d-regular graphs quantised with equi-transmitting scat-
tering matrices.
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6.2. Ramanujan Graphs with Large Girth

As we have stated in Sect. 2.2, the largest theoretical value for which the
parameter β can be taken in Theorem 2.2 is β = d−2

√
d − 1, and such graphs

are called Ramanujan.
Infinite families of Ramanujan graphs with B → ∞ have been constructed

for certain values of d only: for d = 3 in [16], for d = p + 1 where p is an
odd prime in [35,37] and, more generally, for d any prime power in [40]. An
existence proof for bipartite Ramanujan graphs for all values of d has recently
been given in [36].

We will take d = q + 1, where q is a prime power. It is known that
equi-transmitting scattering matrices of size d × d do exist. In [40], a method
of constructing non-bipartite, connected, d-regular, Ramanujan graphs on n
vertices for a growing sequence of ns is given. Furthermore, it is proved that
the girth g(B) of such graphs satisfies

g(B) � 2
3

logd−1 n =
2
3

logd−1

(
B

2d

)
. (6.10)

This girth estimate shows that these graphs are close to extremal, since the
Moore bound [11, Ch. 23] gives a theoretical upper bound of

2 logd−1 n(1 + o(1)), (6.11)

for the girth of a d-regular graph on n vertices. In the case that q is a prime,
the upper bound (6.10) has been shown to be an asymptotic equality [10].

Since the girth g(B) → ∞ as B → ∞, we can take any T < 1
2g(B) in

Theorem 2.2, and the Ramanujan property shows that the first term on the
right-hand side of (2.16) can be made arbitrarily small as B → ∞. With this
choice of T , however, it is also clear that |CB,2T | = 0, so the second term
on the right-hand side of (2.16) is absent, proving quantum ergodicity for
these d-regular Ramanujan graphs quantised with equi-transmitting scattering
matrices.

We end with two remarks concerning quantum ergodicity for equi-
transmitting Ramanujan graphs: if the bond lengths of the quantum graph
are linearly independent over Q, then we can push T up to g(B) − ε. Second,
the effective logarithmic estimate for the decay of quantum variance

V (f,B) = O
(

1
log B

)
(6.12)

is of the same order as can be rigorously proved in other systems [19,44,45,52],
but the calculations performed in [25] suggest that the true rate of decay
should be algebraic (which is also consistent with what is conjectured for more
general chaotic quantum systems [20,42]). A decay rate of 1/B has been proved
for the quantum variance for the graphs studied in [5], but this result aside,
going rigorously beyond the logarithmic barrier (6.12) seems to be for quantum
graphs, as with other systems, a difficult problem.
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Appendix A. Matrix Inequality

Let T ∈ N. We recall that we defined

ŵT (t) :=

{
1
T

(
1 − |t|

T

)
, |t| < T,

0, otherwise.
(A.1)

It is elementary to calculate the inverse Fourier transform of ŵT (t), show-
ing that

∫ T

−T

ŵT (t)e2πitx dt = wT (x) :=
{

2
(
1−cosTx

T 2x2

)
, x = 0,

1, x = 0.
(A.2)

For our purposes, it suffices to note that wT is everywhere non-negative and
wT (0) = 1, for all T .

The following lemma is taken from [45], p. 1463:

Lemma A.1. Let U be an N × N unitary matrix, {uj}N
j=1 be an arbitrary

orthonormal basis of U , and A be an N × N matrix. Then ,if T ∈ N, we have

1
N

N∑

j=1

|〈uj , Auj〉CN |2 � 1
N

T∑

t=−T

ŵT (t)Tr(A∗U tAU−t). (A.3)

Proof. Let us denote by θj the eigenphases of U , so that

Uuj = e2πiθjuj . (A.4)

By expanding the trace, we can write

Tr(A∗U tAU−t) =
N∑

j=1

〈uj , A
∗U tAU−tuj〉CN

=
N∑

j=1

e−2πiθjt〈Auj , U
tAuj〉CN . (A.5)

By inserting the representation,

Auj =
N∑

k=1

〈uk, Auj〉CN uk, (A.6)
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we get

Tr(A∗U tAU−t) =
N∑

j,k=1

e2πi(θk−θj)t|〈uk, Auj〉CN |2. (A.7)

We multiply (A.7) by ŵT (t) and sum over all t, invoking the Poisson summa-
tion formula to get

T∑

t=−T

ŵT (t)Tr(A∗U tAU−t) =
∞∑

n=−∞

N∑

j,k=1

wT (n + θj − θk)|〈uk, Auj〉CN |2

(A.8)

� wT (0)
N∑

j=1

|〈uj , Auj〉CN |2, (A.9)

retaining the j = k and n = 0 terms of the sums only. �
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