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Abstract. We propose a new family of matrix models whose 1/N expan-
sion captures the all-genus topological string on toric Calabi–Yau three-
folds. These matrix models are constructed from the trace class opera-
tors appearing in the quantization of the corresponding mirror curves.
The fact that they provide a non-perturbative realization of the (stan-
dard) topological string follows from a recent conjecture connecting the
spectral properties of these operators, to the enumerative invariants of the
underlying Calabi–Yau threefolds. We study in detail the resulting matrix
models for some simple geometries, like local P

2 and local F2, and we ver-
ify that their weak ’t Hooft coupling expansion reproduces the topologi-
cal string free energies near the conifold singularity. These matrix models
are formally similar to those appearing in the Fermi-gas formulation of
Chern–Simons matter theories, and their 1/N expansion receives non-
perturbative corrections determined by the Nekrasov–Shatashvili limit of
the refined topological string.

1. Introduction

One of the most surprising aspects of string theory is that, in some circum-
stances, it can be described by very simple quantum systems. For example,
non-critical (super)strings can be formulated in terms of double-scaled matrix
models or matrix quantum mechanics. In some cases, these equivalent descrip-
tions provide as well a non-perturbative definition of the corresponding string
theory models. More recently, some simple quantities in fully fledged super-
string theory, like partition functions, have been also expressed in terms of
matrix integrals, by combining the AdS/CFT correspondence with supersym-
metric localization.

It has been suspected for a long time that topological strings on Calabi–
Yau (CY) manifolds should be also described by simple quantum models. It
was found in [1] that the type B topological string on a special class of non-
compact B-model geometries has such a description, in terms of conventional
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matrix models. The CY backgrounds considered in [1] are useful from the
point of view of engineering supersymmetric gauge theories, but they have no
mirror geometries and no enumerative content. It was later found that bona
fide topological strings on An fibrations over P

1 can be described by Chern–
Simons matrix models [2], as a consequence of the Gopakumar–Vafa large N
duality [3] and its generalizations [4].

Recently, a correspondence has been proposed between topological
strings on toric CY threefolds, and the spectral theory of operators arising
in the quantization of their mirror curves [5]. The idea that the topological
string free energies could emerge from the quantization of mirror curves was
first proposed in [6]. In [7,8], building upon the work of [9], it was shown that
a perturbative treatment of the quantum mirror curve leads to the Nekrasov–
Shatashvili (NS) limit of the refined topological string. However, building on
the study of matrix models for Chern–Simons matter theories [10] and their
AdS/CFT duals [11] (see [12] for a review), it was pointed out in [13] that
the standard topological string also emerges from the quantum curve, once
non-perturbative corrections are taken into account.

The proposal of [5] incorporates all these ingredients in an exact treat-
ment of the quantum curve. According to [5], to each mirror curve of a toric
Calabi–Yau threefold, one can associate a positive, trace class operator on
L2(R). This was rigorously proved for a large number of geometries in [14].
Therefore, these operators have a positive, discrete spectrum, and their Fred-
holm or spectral determinants are well defined. In [5], an explicit formula
for these spectral determinants was conjectured, involving both the NS limit
of the refined topological string and the conventional topological string. The
conjectural, exact formula of [5] leads in addition to an exact quantization
condition determining the spectrum, which generalizes previous studies of the
spectral problem [13,15–17] and is conceptually similar to other exact quan-
tization conditions appearing in Quantum Mechanics (see for example [18]).
This establishes a novel and precise connection between spectral theory and
mirror symmetry.

One of the consequences of the correspondence of [5] is that the conven-
tional topological string free energy (at all genera) appears as a ’t Hooft limit
of the spectral determinant. A very useful way to encode the information in
the spectral determinant is in terms of the so-called fermionic spectral traces
Z(N, �) (see Sect. 2.1 for precise definitions). As we will show in detail, these
traces have a natural matrix model representation. It then follows from the
conjecture of [5] that the ’t Hooft limit of this matrix model,

N → ∞, � → ∞,
N

�
= λ fixed, (1.1)

is given by the asymptotic expansion

log Z(N, �) =
∑

g≥0

Fg(λ)�2−2g, (1.2)
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Figure 1. Given a toric Calabi–Yau threefold, the quanti-
zation of its mirror curve leads to a trace class operator ρ.
The standard topological string free energy is obtained as the
’t Hooft limit of its fermionic traces Z(N, �)

where Fg(λ) are the standard topological string free energies, and the ’t Hooft
parameter λ is a flat coordinate for the CY moduli space.1 Therefore, the
conjecture of [5], together with the representation of Z(N, �) in terms of a
matrix integral, gives a matrix model for topological strings on toric Calabi–
Yau threefolds. The construction is summarized in Fig. 1. We should add that
the resulting matrix model is a convergent one, i.e., the matrix integral is well
defined, as a consequence of the operator being of trace class.

As explained in [5], the correspondence between spectral theory and mir-
ror symmetry provides a rigorous, non-perturbative completion of the topo-
logical string, in the sense that the genus expansion of its free energy, which
is known to be a divergent series, is realized as the asymptotic expansion of a
well-defined function. The implementation of the correspondence of [5] that we
are presenting here, in terms of matrix models, makes this point particularly
clear: the quantity Z(N, �) is manifestly well defined for any positive integer
N and any real �, since it is defined by the spectral theory of a trace class
operator (it can be also analytically continued to complex N , as first explained
in [19], and it is likely that it has an analytic continuation to complex values
of �). The ’t Hooft expansion of Z(N, �) is given exactly by the genus expan-
sion of the topological string free energy. However, there are non-perturbative
corrections to the ’t Hooft expansion, due to large N instantons, which are
also predicted by the conjecture in [5], and they are encoded in the NS limit
of the refined topological string.

The fact that the matrix model representing Z(N, �) leads to the topo-
logical string free energies is not at all obvious. On the contrary, it is a highly
non-trivial prediction of the conjecture of [5]. The ’t Hooft limit of Z(N, �)
probes the strong coupling limit of the spectral problem (since � is large), and
in particular the non-perturbative instanton corrections to the perturbative

1 In this paper, as in [5], we will focus on local del Pezzo Calabi–Yau’s, where there is a
single “true” modulus, and correspondingly a single ’t Hooft parameter.
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WKB expansion. For this reason, in this paper we will perform detailed calcu-
lations in some examples to verify that, indeed, the’t Hooft expansion of the
matrix model defined by the trace class operator gives the topological string
free energies. This constitutes an analytic test of the instanton corrections
postulated in [5].

As we mentioned above, the large N duality of Gopakumar–Vafa [3] and
its generalizations [4] provide a matrix model representation of the free ener-
gies of topological strings in certain geometries, as it was tested in [4,20,21].
Although in this paper we focus on local del Pezzo geometries, our matrix
models are potentially valid for any toric geometry, in contrast to the dual-
ity of [3,4]. For example, we will study in detail a matrix model for local P

2,
which has no counterpart in the framework of [3,4]. It would be interesting to
understand the relationship between the matrix models for topological strings
obtained in [4] and the ones described here.

Matrix models describing topological strings on more general back-
grounds were also proposed in for example [22–26]. We should note that these
models are very different from the ones we construct here: first of all, they
are engineered ab initio to reproduce formally the topological string free ener-
gies; in contrast, our matrix models are defined by the trace class operators
obtained in the quantization of the mirror curve, and the fact that they lead
to the correct topological string free energies is a consequence of the non-
trivial conjecture of [5]. Second, in the models of [22–26], the rank of the
matrix N plays an auxiliary role, while in our case it is a flat coordinate for
the Calabi–Yau, as in other large N dualities. Third, the matrix models in
[22–26] are often formal (i.e., not convergent) and therefore cannot define a
non-perturbative completion of the theory; our matrix models are convergent
and lead to a non-perturbative completion.

This paper is organized as follows. In Sect. 2, we review elementary
aspects of trace class operators on L2(R) and we note that their fermionic
traces have matrix model-like representations. We then focus on the operators
coming from quantized mirror curves, and write down explicit matrix models
for some of them, including the ones relevant for local P

2 and local F2. These
models can be studied in the ’t Hooft expansion, and we compute their weakly
coupled expansion to the very first orders. In Sect. 3, we review the conjecture
of [5] and we spell out in detail its prediction for the ’t Hooft expansion of the
fermionic traces. Then, we test the conjecture in detail for the matrix models
describing local P

2 and local F2. We conclude in Sect. 4 and we list some open
problems for the future. In the “Appendix”, we list some results for the weakly
coupled expansion of the matrix model free energies.

2. From Operators to Matrix Models

2.1. General Aspects

Let us then begin with some general aspects of operator theory. Let ρ be a
positive-definite, trace class operator on the Hilbert space H = L2(R), depend-
ing on a real parameter �. Since its eigenvalues are discrete and positive, we
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will denote them by e−En , where n = 0, 1, . . .. Due to the trace class property,
all the spectral traces of ρ

Z� = TrHρ� =
∑

n≥0

e−�En , � = 1, 2, . . . , (2.1)

exist. One can also define the fermionic spectral traces as

Z(N, �) = TrΛN (H)(Λ
N (ρ)), N = 1, 2, . . . , (2.2)

where the operator ΛN (ρ) is defined by ρ⊗N acting on ΛN (H) (see for example
[27] for a review of these constructions).2 The fermionic spectral traces are
related to the standard spectral traces (2.1) by the equation

Z(N, �) =
∑

{m�}

′ ∏

�

(−1)(�−1)m�Zm�

�

m�!�m�
, (2.3)

where the
′
means that the sum is over the integers m� satisfying the constraint

∑

�

�m� = N. (2.4)

The Fredholm or spectral determinant of ρ can be defined as

Ξ(κ, �) = det(1 + κρ) =
∞∏

n=0

(1 + κe−En), (2.5)

or, equivalently, by the expansion around κ = 0,

Ξ(κ, �) = 1 +
∞∑

N=1

Z(N, �)κN , (2.6)

and is an entire function of κ [27]. Note that, if ρ is interpreted as a one-
particle thermal density operator, the fermionic trace Z(N, �) is the canonical
partition function for an ideal Fermi gas of N particles. It then follows that
Z(N, �) has the matrix-model-like representation

Z(N, �) =
1

N !

∑

σ∈SN

(−1)ε(σ)

∫
dNx

∏

i

ρ(xi, xσ(i))

=
1

N !

∫
dNxdet(ρ(xi, xj)). (2.7)

In this equation, ρ(x1, x2) is the kernel of the operator ρ,

ρ(x1, x2) = 〈x1|ρ|x2〉, (2.8)

SN is the permutation group of N elements, and ε(σ) is the signature of a
permutation σ ∈ SN . The above formula encapsulates the fermionic nature of
Z(N, �).

At this stage, calling (2.7) a matrix model might seem excessive. However,
the integrand of (2.7) has an essential property, typical of the integrand of a

2 The terms “spectral trace” and “fermionic spectral trace” do not seem to be standard,
but since these objects are of paramount importance in our construction, we had to find a
name for them.
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matrix model in the eigenvalue representation: it vanishes whenever xi = xj . In
standard matrix models, this is an indication of eigenvalue repulsion. To further
understand this parallelism, note that, when solved in terms of orthogonal
polynomials, the partition function of a Hermitian matrix model is given by
the expression

ZN =
1

N !

∫
dNxdet(KN (xi, xj)), (2.9)

where the kernel KN (x, y) can be written in terms of the first N orthogonal
polynomials. This is very similar to (2.7). A crucial difference though between
(2.7) and the more familiar expression (2.9) is that, in (2.7), the kernel does
not depend on N , and the resulting matrix models are quite special. Matrix
models of the form (2.7), coming from integral kernels of operators, have been
considered before in for example [28,29], and they have been recently studied
from a more general point of view in [30], where the notion of “M-theoretic
matrix model” was introduced.

As we will see in the next sections, in the case of trace class operators
obtained by quantization of mirror curves, the matrix model (2.7) is closely
related to Chern–Simons matrix models [2] and to the matrix models appearing
in the localization of Chern–Simons matter theories [10,31,32] (see [12] for a
review). In particular, the resulting matrix models are M-theoretic, in the sense
of [30]: they have a well-defined ’t Hooft expansion in the limit (1.1), but they
also have a well-defined M-theory limit, in which N is large but � is fixed.

2.2. Operators from Mirror Curves and Matrix Models

In [5], building on previous work on the quantization of mirror curves, it was
postulated that, given a mirror curve to a toric CY threefold, one can quantize
it to obtain a trace class operator ρ. As in [5,14], we will focus on toric (almost)
del Pezzo CY threefolds, which are defined as the total space of the anti-
canonical bundle on a toric (almost) del Pezzo surface S,

X = O(−KS) → S. (2.10)

The mirror curve depends on k complex moduli zα, α = 1, . . . , k and is of
genus one. This means that the complex moduli involve a “true” geometric
modulus ũ and a set of “mass” parameters ξi, i = 1, . . . , r, where r depends
on the geometry under consideration [33,34]. The mirror curves can be put in
the form

W (ex, ey) = OS(x, y) + ũ = 0, (2.11)

where OS(x, y) has the form

OS(x, y) =
k+2∑

i=1

exp(ν(i)
1 x + ν

(i)
2 y + fi(ξj)), (2.12)

and fi(ξj) are suitable functions of the parameters ξj . The vectors ν
(i)
1,2 can be

obtained from the fan defining the toric CY threefold.
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In this paper we will be particularly interested in local P
2, where the

function OS(x, y) is given by,

OP2(x, y) = ex + ey + e−x−y, (2.13)

and local F2, where it is given by,

OF2(x, y) = ex + ey + e−2x−y + ξe−x. (2.14)

To quantize the mirror curve (2.11), we promote x, y to self-adjoint Heisenberg
operators x, y satisfying the commutation relation

[x, y] = i�. (2.15)

This promotes OS(x, y) to an operator, which will be denoted by OS (possible
ordering ambiguities are resolved by requiring the resulting operator to be
self-adjoint). As conjectured in [5] and proved in [14] for many geometries, the
inverse operator

ρS = O−1
S (2.16)

is positive-definite and of trace class. By the construction explained in the
previous section, the fermionic traces of this operator, which we will denote by
ZS(N, �), have an integral representation in terms of the kernel of the operator
ρS . Therefore, in order to write down the matrix model (2.7), we need an
explicit expression for this kernel. In general, obtaining such an expression is
not easy. However, in [14], this problem was solved for three-term operators of
the form

Om,n = ex + ey + e−mx−ny. (2.17)

Geometrically, this operator corresponds to the anti-canonical bundle of the
weighted projective space P(1, n,m). When n = 1, these geometries can be
constructed as partial blow-ups of the orbifold C

3/Zm+2, where the orbifold
action has the weights (1, 1,m) [35]. In principle, more general geometries can
be obtained by perturbing the operator Om,n appropriately. Note that the case
m = n = 1 gives local P

2, while m = 2, n = 1 gives the ξ = 0 limit of local F2,
i.e., a partial blowdown of the local F2 geometry. Let us define

ρm,n = O−1
m,n. (2.18)

As shown in [14], the kernel of ρm,n involves in a crucial way Faddeev’s quan-
tum dilogarithm Φb(x) [36,37] (in this paper, we use the notations of [14] for
this function). We will also need the function

Ψa,c(x) =
e2πax

Φb(x − i(a + c))
, (2.19)

which behaves at large |x| as

Ψa,c(x) ≈
{

e−2πcx, x → ∞,

e2πax, x → −∞.
(2.20)
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In [14] it was shown that, in terms of an appropriate variable p, related to x, y
by a linear canonical transformation, one has

ρm,n(p1, p2) = 〈p1|ρm,n|p2〉 =
Ψa,c(p1) Ψa,c(p2)

2b cosh
(

π
b (p1 − p2) + iπ

b (a + c − nc)
) . (2.21)

In this equation, the parameter b is related to � as

b2 =
(m + n + 1)�

2π
, (2.22)

while a, c are given by

a =
mb

2(m + n + 1)
, c =

b

2(m + n + 1)
. (2.23)

Since we have an explicit formula for the kernel of ρm,n, we can write down
an explicit expression for the integral calculating the fermionic trace of this
operator, which we will denote as Zm,n(N, �). This expression can be put in a
very convenient form if we use Cauchy’s identity, as in [38,39],
∏

i<j

[
2 sinh

(
μi−μj

2

)] [
2 sinh

(
νi−νj

2

)]

∏
i,j 2 cosh

(
μi−νj

2

) = detij
1

2 cosh
(

μi−νj

2

)

=
∑

σ∈SN

(−1)ε(σ)
∏

i

1

2 cosh
(

μi−νσ(i)

2

) .

(2.24)
In this way one obtains,

Zm,n(N, �) =
1

N !

∫

RN

dNp

bN

N∏

i=1

|Ψa,c(pi)|2
∏

i<j 4 sinh
(

π
b (pi − pj)

)2

∏
i,j 2 cosh

(
π
b (pi − pj) + iπCm,n

) ,

(2.25)
where

Cm,n =
m − n + 1

2(m + n + 1)
. (2.26)

The above integral is real, since the kernel (2.21) is Hermitian. Although it is
not manifest, it can be also checked that it is symmetric under the exchange
m ↔ n.

We are now interested in studying the matrix integral (2.25) in the ’t
Hooft limit (1.1). Therefore, we should understand what happens to the inte-
grand in (2.25) when � (or equivalently b) is large. To do this, we first change
variables to

ui =
2π

b
pi, (2.27)

and introduce the parameter

g =
1
�

=
m + n + 1

2π

1
b2

. (2.28)
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Note that the strong coupling regime of � is the weak coupling regime of g.
The crucial property to understand this regime is the self-duality of Faddeev’s
quantum dilogarithm,

Φb(x) = Φ1/b(x). (2.29)
Then, we can write

|Ψa,c(p)|2 = e4πap Φb(p + i(a + c))
Φb(p − i(a + c))

= exp
(

mu

2πg

)
Φ1/b((u + 2πi(a + c)/b)/2πb−1)
Φ1/b((u − 2πi(a + c)/b)/2πb−1)

, (2.30)

where u and p are related through (2.27). When b is large, 1/b is small and
we can use the asymptotic expansion (see [40] for this and other properties of
the quantum dilogarithm),

log Φb

( x

2πb

)
=

∞∑

k=0

(2πib2)2k−1 B2k(1/2)
(2k)!

Li2−2k(−ex), (2.31)

where B2k(z) is the Bernoulli polynomial. We define the potential of the matrix
model as,

Vm,n(u, g) = −g log |Ψa,c(p)|2, (2.32)
where u and p are related as in (2.27). By using (2.31), we deduce that this
potential has an asymptotic expansion at small g, of the form

Vm,n(u, g) =
∑

�≥0

g2�V (�)
m,n(u). (2.33)

The leading contribution as g → 0 is given by the “classical” potential,

V (0)
m,n(u) = − m

2π
u − m + n + 1

2π2
Im(Li2(−eu+πi m+1

m+n+1 )). (2.34)

By using the asymptotics of the dilogarithm,

Li2(−ex) ≈
{

−x2/2, x → ∞,

−ex, x → −∞,
(2.35)

we find that

V (0)
m,n(u) ≈

{
u
2π , u → ∞,

− m
2π u, u → −∞.

(2.36)

Therefore, this is a linearly confining potential at infinity, similar to the poten-
tials appearing in matrix models for Chern–Simons matter theories [30,39].
The classical potentials for the cases m = n = 1 (relevant for local P

2) and for
m = 2, n = 1 (relevant for local F2) are shown in Fig. 2. We can now write
the matrix integral as

Zm,n(N, �) =
1

N !

∫

RN

dNu

(2π)N

N∏

i=1

e− 1
g Vm,n(ui,g)

∏
i<j 4 sinh

(
ui−uj

2

)2

∏
i,j 2 cosh

(
ui−uj

2 + iπCm,n

) .

(2.37)
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Figure 2. On the left, we plot the potential (2.34) for m =
n = 1 (relevant for local P

2), while on the right we plot it for
m = 2, n = 1 (relevant for local F2)

In the regime in which � is large (in particular, in the ’t Hooft limit), we can use
the asymptotic expansion (2.33) of the potential to study this matrix integral.
The expression (2.37), computing the fermionic traces of the operators ρm,n, is
very similar to matrix models that have been studied before in the literature.
The interaction between eigenvalues is identical to the one appearing in the
generalized O(2) models appearing in [41], and in some matrix models for
Chern–Simons matter theories studied in for example [38]. The parameter g
corresponds to the string coupling constant, and the potential depends itself
on g. Note however that, in the planar limit, only the classical part of the
potential (2.34) contributes.3

2.3. Perturbative Expansion

The matrix model (2.37) admits a standard ’t Hooft expansion, of the form

Fm,n(N, �) = log Zm,n(N, �) =
∑

g≥0

�
2−2gF (m,n)

g (λ), λ =
N

�
. (2.38)

This can be easily seen by noting that, if we just keep the classical part of the
potential, we have a generalized O(2) matrix model, of the type considered in
[41]. The corrections to the potential involve even powers of g, therefore they
lead to corrections which preserve the form of (2.38).

We would like to compute the genus g free energies F (m,n)
g (λ). Ideally,

one would like to obtain them in closed form, as functions of the ’t Hooft
parameter λ, and this might feasible via a suitable generalization of the tech-
niques of [41]. In this paper we are interested in testing whether the above
free energies reproduce the genus expansion of the topological string, and we
will perform a more pedestrian calculation, by doing perturbation theory in
g to the very first orders. This means that we regard (2.37) as a Gaussian
Hermitian matrix model, perturbed by single and double trace operators. The

3 The potentials appearing in some of the matrix models considered in [22–26] also involve
(quantum) dilogarithms, but this does not necessarily indicate a deep connection between
these matrix models and ours, due to the reasons listed in the Sect. 1.
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resulting perturbative expansion can then be converted, by standard means,
into a weak coupling expansion around λ = 0 of the very first F (m,n)

g (λ). This
is very similar to the calculations done in [4] for the lens space matrix model.

In order to work out the expansion of the matrix model, we first have to
expand the “classical” potential V

(0)
m,n(u) around its minimum. Let us introduce

the parameter

q = exp
(

πi
m + n + 1

)
. (2.39)

Then, the minimum of the classical potential occurs at

u� = log χm(q), (2.40)

where

χm(q) =
qm − q−m

q − q−1
. (2.41)

The value of the potential at the minimum is given by

V (0)
m,n(u�) = − m

2π
log χm − m + n + 1

2π2
Im Li2(−qm+1χm). (2.42)

This can be written in a more compact form by using the Bloch–Wigner func-
tion

D(z) = ImLi2(z) + arg(1 − z) log |z|, (2.43)
where arg denotes the branch of the argument between −π and π. One finds,

V (0)
m,n(u�) = −m + n + 1

2π2
D(−qm+1χm). (2.44)

One can use the properties of the Bloch–Wigner function

D(z) = −D(z), D(1 − z) = −D(z), (2.45)

to verify that (2.42) is symmetric under the exchange of m and n. For example,
we have

V
(0)
1,1 (u� = 0) =

3V

4π2
, (2.46)

where
V = 2Im(Li2(e

πi
3 )) (2.47)

is related to the volume of the figure-eight knot. Similarly, we find

V
(0)
2,1

(
u� =

1
2

log(2)
)

=
2C

π2
, (2.48)

where C = 0.915966 . . . is the Catalan number. As we will see, in order for
the conjecture of [5] to be true, (2.42) has to be related in a precise way to a
natural constant appearing in special geometry, namely the value of the large
radius Kähler parameter at the conifold point.

We can now expand the full potential appearing in (2.37) around u = u�,
and write the interaction term as a “deformed” Vandermonde term,

∏
i<j 4 sinh

(
ui−uj

2

)2

∏
i,j 2 cosh

(
ui−uj

2 + iπCm,n

) =
1

4I2
m,n

Δ2(ui)(1 + O(Δ2(ui))), (2.49)
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where

Δ2(ui) =
∏

i<j

(ui − uj)2 (2.50)

is the usual squared Vandermonde, and

Im,n = cos(πCm,n) = sin
(

πn

m + 1 + n

)
. (2.51)

At leading order, we find a Hermitian Gaussian matrix model, and by including
the corrections coming from the deformed Vandermonde and the potential
(2.33), we can compute systematically the ’t Hooft expansion of Zm,n around
λ = 0. By using the standard formula for the partition function of the Gaussian
matrix model,

ZG(N, gs) =
1

N !

∫
dNy

(2π)N
e− 1

2gs

∑
i y2

i

∏

i<j

(yi − yj)2 =
g

N2/2
s

(2π)N/2
G(N + 1),

(2.52)
where G(z) is Barnes’ function, as well as its asymptotic expansion at large N ,
we obtain the following results for the expansion of the genus g free energies
F (m,n)

g (λ) appearing in (2.38). For the planar free energy, we find

F (m,n)
0 (λ) =

λ2

2

(
log

λπ3

(m + n + 1)I2
m,nA2

− 3
2

)
− V (0)

m,n(u�)λ +
∞∑

k=3

f0,kλk.

(2.53)
In this equation, Im,n is given in (2.51), A2 is given by

A2 = 2π
sin

(
πm

m+n+1

)
sin

(
π

m+n+1

)

sin
(

πn
m+n+1

) , (2.54)

and the values of the coefficients f0,k can be calculated explicitly as functions of
m,n. The results for the very first k can be found in “Appendix A”. Similarly,
one finds

F (m,n)
1 (λ) = − 1

12
log(λ�) + ζ ′(−1) +

∞∑

k=1

f1,kλk,

F (m,n)
g (λ) =

B2g

2g(2g − 2)
λ2−2g +

∞∑

k=1

fg,kλk, g ≥ 2.

(2.55)

The values of fg,k for the very first g, k, for general m,n, can be also found in
“Appendix A”. We now list some results in the case of m = n = 1, relevant as
we will see for local P

2. We find,
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F (1,1)
0 (λ) =

λ2

2

(
log

(
4π2λ

9
√

3

)
− 3

2

)
− 3V

4π2
λ− π2

9
√

3
λ3+

π4

486
λ4 +

56π6

10935
√

3
λ5

− 1058π8

492075
λ6 + O(λ7),

F (1,1)
1 (λ) = − 1

12
log(λ�) + ζ ′(−1) +

5π2

18
√

3
λ − π4

486
λ2 − 40π6

2187
√

3
λ3

+
283π8

32805
λ4 + O(λ5),

F (1,1)
2 (λ) = − 1

240
λ−2 +

4π6

405
√

3
λ − 3187π8

492075
λ2 + O(λ3). (2.56)

For m = 2, n = 1, which is relevant for local F2, we obtain,

F (2,1)
0 (λ) =

λ2

2

(
log

(
π2λ

4

)
− 3

2

)
− 2C

π2
λ − π2

12
λ3 +

5π4

288
λ4 − 7π6

960
λ5

+
733π8

172800
λ6 + O(λ7),

F (2,1)
1 (λ) = − 1

12
log(λ�) + ζ ′(−1) +

π2

6
λ − 5π4

288
λ2 +

π6

576
λ3

+
53π8

17280
λ4 + O(λ5),

F (2,1)
2 (λ) = − 1

240
λ−2 +

π6

240
λ − 421π8

57600
λ2 + O(λ3). (2.57)

3. Testing the Matrix Model

3.1. What Should We Expect?

The conjecture of [5] gives a very precise prediction for the ’t Hooft expansion
(1.2) of the matrix models arising from the trace class operators. To understand
this prediction, we have to summarize some of the results of [5]. According to
the conjecture of [5], the basic quantity determining the spectral properties of
the operator ρS is the modified grand potential JS(μ, ξi, �). This grand poten-
tial depends on the “fugacity” μ, which is related to the variable κ entering in
(2.5) as

κ = eμ, (3.1)

as well as on the parameters ξi appearing in the operator OS , which we will
collect in a vector ξ. The modified grand potential is determined by the enu-
merative geometry of the Calabi–Yau X. We first need a dictionary between
the parameters μ, ξ, and the parameters appearing in the enumerative geom-
etry of X. First of all, we remember that the mirror curve (2.11) involves a
modulus ũ. Typically, in mirror symmetry one uses the related modulus

z =
1
ũr

, (3.2)
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where the value of r is determined by the geometry of X. There is a corre-
sponding flat coordinate T , determined by

− T = log z + O(z). (3.3)

Let us now consider the Kähler parameters of a general local del Pezzo, Ti, in
an arbitrary basis. They can be always be written as a linear combination of
the Kähler parameter T corresponding to z, and the Kähler parameters Tξi

,
which are algebraic functions of the parameters ξi appearing in the mirror
curve. We have then,

Ti =
ci

r
T + αijTξj

. (3.4)

The dictionary is now given as follows. On top of the standard mirror map
(3.3), there is a quantum mirror map [7] of the form

− T (�) = log(z) +
∑

�≥1

â�(�)z�. (3.5)

The “effective” μ parameter is defined by an expansion similar to this one,

μeff = μ − 1
r

∑

�≥1

(−1)r�â�(�)e−r�μ. (3.6)

The Kähler parameters Ti are then related to the parameters μ, ξj by the
following equation,

Ti = ciμeff + αijTξj
. (3.7)

We can now write down the general expression for the modified grand potential.
It is of the form,

JS(μ, ξ, �) = J (p)(μeff , ξi, �) + JM2(μeff , ξ, �) + JWS(μeff , ξ, �). (3.8)

Here, J (p)(μ, ξ, �) is the perturbative part, which is a cubic polynomial in μ:

J (p)(μ, ξ, �) =
C

6π�
μ3 +

D(ξ)
�

μ2 +
(

B0(ξ)
�

+ B1(ξ)�
)

μ + A(ξ, �). (3.9)

The constants appearing in this expression can be obtained from a semiclassical
analysis of the operator ρS (see [5] for details). The function A(ξ, �) is not
known in closed form, but in some examples there are educated guesses for it.
The “membrane” part of the potential has the form,

JM2(μeff , ξ, �) = μeff J̃b(μeff , ξ, �) + J̃c(μeff , ξ, �), (3.10)
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where

J̃b(μeff , ξ, �)

= − 1
2π

∑

jL,jR

∑

w,d

(c · d) Nd
jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)
2w sin3 �w

2

e−wd·T,

J̃c(μeff , ξ, �)

= − 1
2π

∑

i,j

∑

jL,jR

∑

w,d

diαijTξj
Nd

jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)
2w sin3 �w

2

e−wd·T

+
1
2π

∑

jL,jR

∑

w,d

�
2 ∂

∂�

[
sin �w

2 (2jL + 1) sin �w
2 (2jR + 1)

2�w2 sin3 �w
2

]
Nd

jL,jR
e−wd·T.

(3.11)
In this equation, Nd

jL,jR
are the refined BPS invariants of the CY X, T =

(T1, T2, . . .) is the vector of Kähler parameters, c is the vector of constants ci

appearing in (3.4), and d is the vector of degrees. Finally, the worldsheet part
of the modified grand potential is

JWS(μeff , ξ, �) =
∑

g≥0

∑

d,v

nd
g

1
v

(
2 sin

2π2v

�

)2g−2

(−1)d·Be− 2π
�

vd·T. (3.12)

In this equation, nd
g are the Gopakumar–Vafa invariants of X, while B is a

B-field, which is related to the anti-canonical class of S, and necessary for the
cancellation of poles in JS(μ, ξ, �) [42].

According to the conjecture of [5], the spectral determinant of the oper-
ator ρS is given by

ΞS(μ, �) =
∑

n∈Z

eJS(μ+2πin,ξ,�). (3.13)

As first shown in [43], in the context of ABJM theory, this representation leads
to a very convenient formula for the fermionic trace ZS(N, �) as an integral
transform of the modified grand potential,

ZS(N, �) =
1

2πi

∫

C
eJS(μ,ξ,�)−Nμdμ. (3.14)

The contour C appearing in this integral is shown in Fig. 3, and in view of
the cubic behavior of JS(μ, ξ, �), it leads to a convergent integral (this is the
contour used to define the Airy function).

As already pointed out in [5], the above conjectural results lead to a
very precise formula for the ’t Hooft expansion of ZS(N, �). To obtain this
expansion, we follow a procedure similar to what was done in [44]. We first
note that the function JS(μ, ξ, �) has itself a ’t Hooft limit in which

μ → ∞, � → ∞,
μ

�
= ζ fixed. (3.15)

It is clear that this double scaling is needed if we want the integral in the
r.h.s. of (3.14) to be non-trivial as � → ∞. What is the effect of this limit on
JS(μ, ξ, �)? First of all, we have that
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π

3

−π

3

C

Figure 3. The contour C in the complex μ plane, which can
be used to calculate the fermionic trace Z(N, �) from the mod-
ified grand potential

μeff

�
→ ζ, (3.16)

and all the exponential corrections to (3.6) vanish. Similarly, the membrane
corrections in (3.10) vanish as well, since they are exponentially small as μ →
∞. The only surviving terms come from the perturbative and the worldsheet
parts of the modified grand potential. As we will see in examples, the function
A(ξ, �) has an expansion as � → ∞ of the form

A(ξ, �) =
∑

g≥0

Ag(ξ)�2−2g, (3.17)

where A1(ξ) includes as well a logarithmic dependence on �. We conclude that,
in the ’t Hooft limit (3.15), the modified grand potential has the expansion,

J ’t Hooft
S (ζ, ξ, �) =

∞∑

g=0

JS
g (ζ, ξ)�2−2g, (3.18)

where

JS
0 (ζ, ξ) =

C

6π
ζ3 + B1ζ + A0(ξ) +

D(ξ)
�

+
1

16π4
F inst

0

(
t,

2πTξi

�

)
,

JS
1 (ζ, ξ) = B0ζ + A1(ξ) + F inst

1

(
t,

2πTξi

�

)
,

JS
g (ζ, ξ) = Ag(ξ) + (4π2)2g−2F inst

g

(
t,

2πTξi

�

)
.

(3.19)

Here, we have introduced the variable

t = 2πrζ, (3.20)

and F inst
g (t, tξi

) is the standard genus g topological string free energy, expressed
in terms of the conventional Kähler parameters t, tξi

(these correspond to the
parameters T, Tξi

, up to a rescaling by 2π/�). We now note that, in order to
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perform the ’t Hooft limit, we must also make a choice for the scaling of the
parameters Tξi

. If these scale with � when � → ∞, the ’t Hooft limit of JS
g (ζ, ξ)

reproduces the standard topological string free energy at genus g. However,
we might also want to keep the Tξi

fixed. In that case, in order to obtain the
large � expansion, we have to re-expand the functions JS

g (ζ, ξ), and one finds

J ’t Hooft
S (ζ, ξ, �) =

∞∑

g=0

J̃S
g (ζ, ξ)�2−2g, (3.21)

where for the very first orders,

J̃S
0 (ζ, ξ) =

C

6π
ζ3 + B1ζ + A0(ξ) +

D(ξ)
�

+
1

16π4
F inst

0 (t, 0),

J̃S
1 (ζ, ξ) = B0ζ + A1(ξ) + F inst

1 (t, 0) +
1

8π2
Tξi

Tξj

∂2F inst
0 (t, 0)

∂tξi
∂tξj

.
(3.22)

Similar expressions can be of course obtained for the higher order functions
J̃S

g (ζ, ξ), involving derivatives of the F inst
g′ with g′ < g. Here we have assumed

that derivatives of the free energies w.r.t. an odd number of parameters tξi
,

and evaluated at tξi
= 0, vanish, in order to have an expansion involving only

even powers of �. This is the case in the example of local F2, which will be
analyzed in detail later on, but might not be a universal fact. The formulae
above can be easily modified if this is not the case, and the conjecture of [5]
would then imply that the ’t Hooft expansion of the fermionic traces has odd
powers of �. This does not happen for the operators ρm,n that we are analyzing
in this paper, but might happen in other situations.

In any case, the formulae of [5] lead to precise expressions for the ’t Hooft
limit of the modified grand potential. One interesting aspect of this limit is
that it only keeps the worldsheet instanton corrections, which are precisely the
most difficult ingredients from the point of view of spectral theory. In order to
obtain the ’t Hooft expansion of the fermionic trace,

log ZS(N, �) =
∑

g≥0

FS
g (λ, ξ)�2−2g, (3.23)

we still have to calculate the integral in (3.14). It can be evaluated in a system-
atic asymptotic expansion at large � by using the saddle-point approximation.
At leading order, we find that the ’t Hooft parameter is given by

λ =
∂JS

0 (ζ, ξ)
∂ζ

. (3.24)

This determines λ as a function of ζ, and conversely, ζ as a function of λ.
The genus zero free energy FS

0 (λ, ξ) is then given, as usual, by a Legendre
transform,

FS
0 (λ, ξ) = JS

0 (ζ(λ), ξ) − λζ(λ). (3.25)

We obtain in particular
∂FS

0

∂λ
= −ζ. (3.26)
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The next-to-leading order correction FS
1 (λ, ξ) is given by the one-loop approx-

imation to the integral (3.14),

FS
1 (λ, ξ) = JS

1 (ζ(λ), ξ) − 1
2

log
(

2π
∂2JS

0

∂ζ2

)
. (3.27)

Higher corrections can be computed in a straightforward way, and we note
that, when the parameters Tξi

are fixed in the ’t Hooft limit, we have to use
the modified formulae (3.22).

The calculation of higher corrections is better understood if we realize
that the integral (3.14) has precisely the form appropriate to implement a
symplectic transformation of the topological string free energies, as explained
in [45].4 The Eqs. (3.24) and (3.26) indicate that the integral (3.14) is imple-
menting an S transformation, in which the variable ζ in JS

g (ζ, ξ) becomes the
dual variable −∂λFS

g (λ, ξ). From the point of view of the topological string,
the JS

g (ζ, ξ) are free energies in the so-called large radius frame (where we have
an interpretation in terms of a worldsheet instanton expansion). The S trans-
formation, in these local del Pezzo geometries, takes the large radius frame to
the conifold frame. We conclude that, according to the conjecture of [5], the
functions FS

g (λ, ξ) appearing in the ’t Hooft expansion of the fermionic traces
[i.e., in the ’t Hooft expansion of the matrix model (2.7)] are the genus g free
energies of the topological string in the conifold frame (up to normalizations
and integration constants, as we will see).

The appearance of the conifold frame is completely natural in view of the
matrix model representation. Topological string theory in the conifold frame
is known to have a universal structure: when the free energies are expanded
around the conifold point, the leading singularities are of the form t2−2g

c , where
tc is the flat coordinate around the conifold, and the coefficients of these singu-
larities are determined by the c = 1 string free energy [46]. There is in addition
a “gap” condition, [47], which says that the corrections to this leading singu-
larity involve only non-negative powers of tc. It has been known for some time
that this structure is precisely what is found in the weak ’t Hooft coupling
expansion of a perturbed Gaussian Hermitian matrix model. Therefore, the
appearance of the conifold frame in the above derivation is already what one
should expect from the existence of an explicit matrix model description.

In summary, if the conjecture of [5] is true, the matrix model (2.7) has
a ’t Hooft expansion, given by the genus g topological string free energies in
the conifold frame. We will now test this prediction in detail in the case of
the matrix integral (2.37). For n = m = 1, this is just local P

2, while for
n = 1, m = 2 this is local F2 for a specific value of the “mass” parameter,
namely ξ = 0. In other words, according to the conjecture of [5], we should
have

F (1,1)
g (λ) = FP

2

g (λ), F (2,1)
g (λ) = FF2

g (λ, ξ = 0), (3.28)

4 Note however that the integral transform appearing in [45] is purely formal, and relates two
asymptotic power series, while the integral (3.14) has a precise non-perturbative meaning.
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for all g ≥ 0. The l.h.s. of these conjectured equalities has been computed, in
an expansion around λ = 0, in (2.56) and (2.57). In the next two sections, we
will use topological string theory to compute the r.h.s. of (3.28) and check to
the available order that these two functions are indeed equal.

3.2. Local P
2

The modified grand potential of local P
2 has been determined in [5] in great

detail. In this case, there are no mass parameters ξi. In order to write down
the results, let us recall some elementary facts about the special geometry of
local P

2, relevant for our calculation. The Picard–Fuchs equation determining
the periods is

(θ3 − 3z(3θ + 2)(3θ + 1)θ)Π = 0, (3.29)

where

θ = z
d
dz

, (3.30)

and z parametrizes the moduli space, which has three special points: z = 0
is the large radius point, z = 1/27 is the conifold point, and z = ∞ is the
orbifold point (see Fig. 4). A basis of solutions around the large radius point
z = 0 is given by

ω1(z) = log(z) + 6z + 45z2 + 560z3 + O(z4),

ω2(z) =
log2(z)

6
+

log(z)
3

(6z + 45z2 + 560z3 + O(z4))

+ 3z +
141
4

z2 +
1486

3
z3 + O(z4). (3.31)

z = 0

z =
1
27

z = ∞

large radius

orbifold

conifold

Figure 4. The moduli space of local P
2 can be parametrized

by a single complex variable z, and it has three special points:
the large radius point at z = 0, the conifold point at z = 1/27,
and the orbifold point at z = ∞
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These periods determine the large radius, genus zero free energy F0(t) as

−t = ω1(z),
∂F0

∂t
= ω2(z),

(3.32)

which gives

F0(t) =
t3

18
− 3e−t − 45

8
e−2t − 244

9
e−3t + O(e−4t). (3.33)

Note that the signs are not the standard ones. This is due to a non-trivial
B-field which has to be turned on in (3.12) in order to obtain a consistent
modified grand potential, as first noted in [42].

We can now write down the ’t Hooft limit of the modified grand potential.
The constants appearing in the perturbative piece (3.9) are [5]

C =
9
2
, D = 0, B0 =

π

2
, B1 = − 1

16π
. (3.34)

On the other hand, the function A(�) is given by

A(�) =
3Ac(�/π) − Ac(3�/π)

4
, (3.35)

where [48] (see also [49])

Ac(k) =
2ζ(3)
π2k

(
1 − k3

16

)
+

k2

π2

∫ ∞

0

x

ekx − 1
log(1 − e−2x)dx. (3.36)

This function has a large k expansion of the form,

Ac(k) = − k2

8π2
ζ(3) +

1
2

log(2) + 2ζ ′(−1) +
1
6

log
( π

2k

)

+
∑

g≥2

(
2π

k

)2g−2

4g(−1)g−1cg, (3.37)

where
cg =

B2gB2g−2

(4g)(2g − 2)(2g − 2)!
. (3.38)

We conclude that

A0 =
3ζ(3)
16π4

,

A1 = − 1
12

log(�) + ζ ′(−1) +
1
6

log(2π) +
1
24

log(3),

Ag = (4π2)2g−2(3 − 32−2g)(−1)g−1cg, g ≥ 2, (3.39)

The function JP
2

0 (ζ) is expressed more conveniently in terms of the vari-
able t appearing in (3.20), which is now given by,

t = 6πζ, (3.40)

since r = 3 in this geometry. We find,

JP
2

0 (ζ) =
1

16π4

(
F0(t) + 3ζ(3) − π2t

6

)
. (3.41)
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Figure 5. The ’t Hooft parameter λ = N/� as a function
of the modulus 0 ≤ z ≤ 1/27. The large radius point z = 0
corresponds to strong ’t Hooft coupling, while z = 1/27, the
conifold point, is the weakly coupled theory

The ’t Hooft parameter is now given by (3.24), which reads in this case,

8π3

3
λ =

∂F0

∂t
− π2

6
. (3.42)

The r.h.s. of this equation is nothing but the vanishing period at the conifold
point. Therefore, the ’t Hooft parameter varies between 0 and ∞ as z varies
between 1/27 and 0, as shown in Fig. 5. The region around the large radius
point z = 0 in CY moduli space corresponds to strong ’t Hooft coupling, while
the region around z = 1/27, the conifold point, corresponds to the weakly
coupled theory. Since we are interested in expanding the free energies around
λ = 0, we have to analyze the theory around the conifold point. To do this,
we define the variable

y = 1 − 27z. (3.43)

We now solve the Picard–Fuchs equation near the conifold point, i.e., near
y = 0. There are again two independent periods. One of them, which we will
denote by tc(y), is a flat coordinate near the conifold point. It is given by the
power series expansion

tc(y) = y +
11y2

18
+

109y3

243
+

9389y4

26244
+

88351y5

295245
+

823187y6

3188646
+O(y7), (3.44)

and is related to the ’t Hooft parameter as

λ =
√

3
12π2

tc(y). (3.45)

Therefore, as announced above, the ’t Hooft parameter defined by the
fermionic traces is a flat coordinate at the conifold point, proportional to tc(y).
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The period ω1(z) defines the genus zero free energy FP
2

0 (λ). Indeed, from
(3.26), (3.32) and (3.40), we find

∂FP
2

0 (λ)
∂λ

=
ω1(z)
6π

. (3.46)

This function is, up to normalizations and integration constants, the genus
zero free energy of local P

2 in the conifold frame, and it has been computed in
for example [50]. In order to expand it around λ = 0, we need the expansion
of the period ω1(z) around the conifold point. This is a standard exercise in
special geometry and one finds,

ω1(z) = −c +
√

3
2π

(
tc(y) log

(
y

3 log(3) + 1

)
+ s(y)

)
, (3.47)

where

s(y) =
7y2

12
+

877y3

1458
+

176015y4

314928
+

9065753y5

17714700
+

17960917y6

38263752
+ O(y7), (3.48)

and the constant c is given by

c = −2
9 4F3

(
1, 1,

4
3
,
5
3
; 2, 2, 2; 1

)
+3 log(3) = Re

{√
3

2π
G2,2

3,3

(
−1

∣∣∣∣
1
3 , 2

3 , 1
0, 0, 0

)}

≈ 2.90759. (3.49)

The relationship (3.46) can be integrated to obtain the genus zero free energy,
up to an integration constant. This constant can be determined as follows. The
value of F0(λ) at λ = 0 is given by

FP
2

0 (0) = JP
2

0 (ζ(0)) =
1

16π4

(
F0(c) − π2c

6
+ 3ζ(3)

)
, (3.50)

where we used that

t

(
z =

1
27

)
= c. (3.51)

The value of JP
2

0 (ζ(0)) can be obtained numerically with high precision and
we find that FP

2

0 (0) vanishes, i.e., we find that

F0(c) − π2c

6
= −3ζ(3). (3.52)

When all this is taken into account, we find the expansion,

FP
2

0 (λ) = − c

6π
λ + λ2

(
log(λ)

2
− 3

4
+ log

(
2π

3 4
√

3

))
− π2λ3

9
√

3
+

π4λ4

486

+
56π6λ5

10935
√

3
− 1058π8λ6

492075
+

3392π10λ7

2066715
√

3
− 208744π12λ8

1171827405
+ O (

λ9
)
.

(3.53)

This expansion should exactly agree with the expansion of F (1,1)
0 (λ) calculated

in (2.56), and it does, provided the number c given in (3.49) satisfies

c =
9V

2π
. (3.54)
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Amazingly, this is a true identity [51,52]! (see also [53]). This encapsulates
the power of the conjecture of [5]: the constant c comes from the world of
topological string theory, and it gives the value of the Kähler parameter t
at the conifold point. The constant V comes from the world of trace class
operators arising from mirror curves, which lead to quantum dilogarithms by
the results of [14]. For the conjecture of [5] to work, the two numbers coming
from these two different worlds have to agree. And they do.

The agreement between FP
2

0 (λ) and F (1,1)
0 (λ) (at the order we have been

able to check) is a non-trivial analytic test of the conjecture put forward in
[5]. Specifically, this calculation tests one of the most surprising claims of [5],
namely that the non-perturbative corrections appearing in the spectral theory
of the operator ρP2 are encoded in the standard topological string.

Let us now consider the genus one free energy. By using well-known results
for the B-model of local P

2, one finds

JP
2

1 (ζ) =
1
2

log
(

−dz

dt

)
− 1

12
log(z7(1 − 27z)) + A1. (3.55)

Using (3.27), as well as

2π
∂2JP

2

0

∂ζ2
=

√
3
dtc
dt

, (3.56)

one obtains the following expansion for FP
2

1 (λ),

FP
2

1 (λ) = − 1
12

log (λ�) + ζ ′(−1) +
5π2λ

18
√

3
− π4λ2

486
− 40π6λ3

2187
√

3
+

283π8λ4

32805

−1376π10λ5

177147
√

3
+

72272π12λ6

55801305
+

7936π14λ7

14348907
√

3
+ O(λ8), (3.57)

which again is in precise agreement with what was found in (2.56).
There is a further test of the first conjectural equality in (3.28) which can

be made at higher genus, by using the results of [50]. Let us denote by Fg(t)
the higher genus free energy of local P

2, as computed in [50], with an extra
sign (−1)g−1. Then, one has

JP
2

g (ζ) = (4π2)2g−2{Fg(t) − 32−2g(−1)g−1cg}, g ≥ 2. (3.58)

The genus g free energy appearing here, Fg(t), includes the so-called constant
map contribution,

Fg(t) = 3(−1)g−1cg + O(e−t). (3.59)

In our formalism, this contribution comes from the first term in the r.h.s. of
(3.39), while the second term leads to an additional constant in (3.58). As
mentioned above, the higher genus functions FP

2

g (λ) should be given by the
symplectic transformation of the (3.58) to the conifold frame. This was done
for Fg(t) in [50]. The resulting quantities, when expanded around the conifold
point, display the singular term in λ2−2g appearing in (2.55), plus a constant,
and a series starting in λ, i.e.,
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F con
g (tc) =

B2g

2g(2g − 2)
t2−2g
c + 32−2g(−1)g−1cg + O(tc). (3.60)

Here, tc is a local flat coordinate around the conifold, proportional to λ. The
constant term appearing here cancels exactly the second term in the r.h.s. of
(3.58). This is precisely what is required by (2.55). In other words, the func-
tion A(�), which was conjectured in (3.35) in order to reproduce the spectral
properties of ρP2 , is precisely what is needed to guarantee the matrix model
behavior of FP

2

g (λ) near λ = 0. It is also easy to verify that, after taking into

account the appropriate normalizations, the expansion of F (1,1)
2 (λ) agrees with

the genus two topological string free energy at the conifold point.
As a final remark, note that the planar free energy FP

2

0 (λ) can be also
computed at strong ’t Hooft coupling, and an elementary calculation gives

FP
2

0 (λ) ≈ −4
√

π

9
λ3/2, λ � 1. (3.61)

This is the typical behavior for a theory of M2 branes [54], and it agrees with
the M-theory limit of the free energy computed in [5]. The behavior of the
matrix model for local P

2 is therefore very similar to what is found in the
ABJM matrix model and its generalizations [39,55,56].

3.3. Local F2

The case of local F2 is an interesting one, since we have an extra parameter ξ
in the operator (2.14). Correspondingly, there is an extra Kähler parameter in
the geometry, which is usually denoted by TB , and related to ξ by

ξ = 2 cosh
(

TB

2

)
. (3.62)

The perturbative part of the modified grand potential has been determined in
[57]

J (p)(μ, ξ, �)

=
2

3π�
μ3 +

{
1
�

(
π

3
− 1

2π
log2

[
ξ +

√
ξ2 − 4
2

])
− �

12π

}
μ + A(�, ξ),

(3.63)

although the function A(�, ξ) is not known in full generality. The genus g free
energy of this geometry, F inst

g (t, tB), which appears in the expressions (3.19),
is now a function of two variables. The variable t, defined in (3.20), is related
to ζ by

t = 4πζ, (3.64)

since r = 2 in this geometry. The variable tB is related to TB by a rescaling
of 2π/�, and it defines a parameter m by the analogue of (3.62),

m = 2 cosh
(

tB
2

)
. (3.65)
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The genus zero free energy F0(t, tB) can be determined, up to integration
constants, by the two equations [58]

∂t

∂z
= − 2

πz
√

1 − 4(2 + m)z
K

(
16z

4(2 + m)z − 1

)
,

∂2F0

∂z∂t
= − 2

z
√

1 − 4(m − 2)z
K

(
4(m + 2)z − 1
4(m − 2)z − 1

)
, (3.66)

where z is the global coordinate corresponding to t.
In order to test the second conjectural equality in (3.28), we have to

consider the theory for ξ = 0. The corresponding value of TB is

TB = ±πi. (3.67)

Therefore, the ’t Hooft limit of the modified grand potential involves the func-
tions written down in (3.22). Since we have to expand F inst

g (t, tB) around
tB = 0, we have to consider the topological string theory on local F2 for the
value of the parameter m = 2. For this value, the theory is identical to the
diagonal, local P

1 × P
1 geometry, and (3.66) simplifies to

∂t

∂z
= − 2

πz
K(16z),

∂2F0

∂z∂t
= −2

z
K(1 − 16z).

(3.68)

This can be integrated explicitly, and one finds the two periods,

ω1(z) = log(z) + 4z 4F3

(
1, 1,

3
2
,
3
2
; 2, 2, 2; 16z

)
,

ω2(z) =
1
π

G3,2
3,3

(
16z

∣∣∣∣
1
2 , 1

2 , 1
0, 0, 0

)
− 2π2

3
,

(3.69)

which solve the Picard–Fuchs equation

(θ3 − 4zθ(2θ + 1)2)Π = 0. (3.70)

The genus zero free energy depends now only on a single parameter t, and we
will denote it F0(t) = F0(t, 0). It is determined again by (3.32), and one finds
the expansion,

F0(t) =
t3

6
− 4e−t − 9

2
e−2t − . . . (3.71)

Collecting the above results, one finds that the function J̃F2
0 (ζ, ξ = 0) is given

by

J̃F2
0 (ζ, ξ = 0) =

1
16π4

(
F0(t) − π2t

3
+ 16π4A0(ξ = 0)

)
. (3.72)

The Eq. (3.24) determining the ’t Hooft parameter reads in this case,

4π3λ =
∂F0(t)

∂t
− π2

3
. (3.73)
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Figure 6. The ’t Hooft parameter λ = N/� as a function
of the modulus 0 ≤ z ≤ 1/16. The large radius point z = 0
corresponds to strong ’t Hooft coupling, while z = 1/16, the
conifold point, is the weakly coupled theory

As in the case of local P
2, the r.h.s. of this equation is a vanishing period at

the conifold point, located at

z =
1
16

. (3.74)

The ’t Hooft parameter varies between 0 and ∞ as z varies between 1/16 and
0, as shown in Fig. 6. As in the case of local P

2, we are interested in expanding
the quantities at weak ’t Hooft coupling, near the conifold point. We introduce
the local variable

y = 1 − 16z. (3.75)

There is a flat coordinate near the conifold point y = 0, with the expansion,

tc(y) = y +
5y2

8
+

89y3

192
+

381y4

1024
+

25609y5

81920
+ O(y6). (3.76)

It is related to the ’t Hooft parameter by

λ =
tc(y)
4π2

. (3.77)

The period ω1(z) has the following expression near the conifold point,

ω1(z) = −8C

π
+

tc(y)
π

log
( y

16

)
+

1
π

s(y), (3.78)

where

s(y) = −y − y2

16
+

35y3

288
+

2141y4

12288
+

465061y5

2457600
+ O(y6). (3.79)

The genus zero free energy FF2
0 (λ) is determined by the equation

∂FF2
0 (λ)
∂λ

=
ω1(z)
4π

. (3.80)
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This can be integrated to give, up to an integration constant,

FF2
0 (λ, ξ = 0) = −2C

π2
λ + λ2

(
log(λ)

2
− 3

4
+ log

(π

2

))
− π2λ3

12
+

5π4λ4

288

−7π6λ5

960
+

733π8λ6

172800
− 47π10λ7

16128
+ O(λ8). (3.81)

This expansion agrees with the result for F (2,1)
0 (λ), as obtained from the matrix

model in (2.57). The coefficient in the linear term in λ involves the Catalan
number, due to (3.78), and this is precisely what is required to agree with the
value of the potential V

(0)
1,2 (u�) at its minimum. Full agreement between both

expressions requires the integration constant for FF2
0 (λ) to vanish. We have

verified numerically that this will be the case if

A0(ξ = 0) =
5ζ(3)
16π4

. (3.82)

It would be interesting to determine the function A(�, ξ) and check whether
or not it satisfies (3.82).5

Note that FF2
0 (λ, ξ = 0) is not the genus zero free energy of local F2 in

the conifold frame and with m = 0. Rather, it corresponds to the value m = 2.
The reason for this “mismatch” is that, in the conjecture of [5], the Kähler
parameters corresponding to the mass parameters appear divided by � in the
worldsheet instanton expansion. Therefore, when � → ∞, they are frozen to
the values which correspond to txi

= 0.
Let us now work out the next-to-leading order in 1/�

2, which is given by
the second line of (3.22). We first note that

∂F0

∂tB

∣∣∣∣
tB=0

= 0,
∂2F0

∂t2B

∣∣∣∣
tB=0

=
1
2

∂F0

∂m

∣∣∣∣
m=2

. (3.83)

This last derivative can be obtained, as a function on moduli space, by taking
a further derivative w.r.t. t and using (3.66):

∂2F0

∂m∂y

∣∣∣∣
m=2

=
1

4
√

y
K(y) 2F1

(
1
2
,
1
2
; 2;

y − 1
y

)
+

1
π(y − 1)

K(1 − y)(E(y) − 1),(3.84)

where K(y), E(y) are the elliptic integrals of the first and the second kind,
respectively, and we have expressed it already in terms of the conifold variable.
From the general formula in (3.22), one finds

J̃F2
1 (ζ) =

πζ

8
+ A1 + F1(t, 0) − 1

16
∂F0

∂m

∣∣∣∣
m=2

, (3.85)

where

F1(t, 0) = −1
2

log
(

K(16z)
π

)
− 1

12
log(64z(1 − 16z)). (3.86)

5 While this paper was being typed, Hatsuda found an ansatz for the function A(�, ξ = 0)
[59] which indeed leads to (3.82).
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Using again (3.27), but this time for the functions J̃F2
0,1(ζ), we find,

FF2
1 (λ, ξ = 0)

= − 1
12

log(λ) +
π2λ

6
− 5π4λ2

288
+

π6λ3

576
+

53π8λ4

17280
− 7π10λ5

1152
+ O(λ6),

(3.87)

up to an additive constant independent of λ (but depending on � through A1).
This again agrees with the expansion in (2.57). Note however that the function
FF2

1 (λ, ξ = 0) is not the genus one free energy of local F2 at the conifold point
and for m = 0 (or even m = 2), since it involves additional terms. This reflects
the fact that the relation between the parameters appearing in the operator
and the “mass” parameters appearing in the geometry depends on �. In any
case, the result we have obtained is in perfect agreement with the conjecture
of [5], and gives a non-trivial test of the way in which mass parameters are
incorporated in that framework.

Although (3.87) is not the standard genus one topological string free
energy of local F2, this does not contradict our claim that one can obtain
these free energies from the mirror curve operators and their fermionic traces.
If we want to recover the standard dependence on the mass parameters, we
have to take a sort of Veneziano limit, and scale the parameters appearing
in the operators in an appropriate way, as � grows large. For example, if we
consider the fermionic traces Z(N, ξ, �) of the operator ρF2 , in the ’t Hooft limit
(1.1), and we choose the following scaling with � for the parameter appearing
in the operator,

ξ ≈ exp
(

�tB
4π

)
, (3.88)

the conjecture of [5] says that the resulting 1/N expansion would be governed
by the standard topological string free energy on local F2, with a generic Kähler
parameter tB .6

4. Conclusions and Open Problems

In this paper, we have proposed a new type of matrix models whose 1/N
expansion gives the all-genus free energy of topological strings on toric CY
threefolds. Our proposal is based on the conjecture of [5], and it is conceptu-
ally clear and elegant, as it can be seen in Fig. 1: given a mirror curve, its
quantization leads to a trace class operator, as shown in [14]. The fermionic
traces of these operators admit an integral representation, and this leads to
the matrix models of this paper. This construction provides a non-perturbative
completion of the standard topological string, as it was made clear already in
[5]. However, the representation in terms of matrix models spelled out in detail
in this paper is particularly appealing, since it involves the standard ’t Hooft
limit which underlies the string/gauge theory correspondence.

6 This expectation has been checked in detail in [60], after the first version of this paper was
posted.
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In practice, in order to study these matrix models, one needs an explicit
expression for the kernel of the corresponding trace class operator. This was
achieved in [14] in some cases, and the resulting matrix models are labeled
by two numbers m, n. They describe topological string theory on the anti-
canonical bundle of the weighted projective space P(1,m, n), which can be
obtained as limits of well-known toric geometries. In particular, the case m =
n = 1 gives an explicit matrix model for local P

2.
The fact that the ’t Hooft expansion of these matrix models agrees with

the topological string free energy is an analytic, non-trivial test of the conjec-
ture of [5], which in addition probes the non-perturbative sector of the spectral
problem. In this paper we have performed two detailed comparisons, involving
local P

2 and local F2, and found a complete agreement between the matrix
model free energies and the topological string free energies. Interestingly, our
matrix models give the free energies in the conifold frame. It has been suspected
for a long time that this is the natural frame for a matrix model representation
of the topological string, due to the conifold behavior of the free energies and
the gap condition [47,50]. Our proposal realizes this idea in a very concrete
way. Indeed, it implies the gap condition for the CY threefolds that we have
studied. The BKMP conjecture [61,62] should be also a consequence of our
proposal, since we give an explicit matrix model realization of the topological
string free energies, and very likely our matrix models satisfy the topological
recursion of [63] (or a variant thereof).

The matrix models obtained in this paper are very similar to the ones
appearing in the localization of Chern–Simons matter theories. We have now
a complete parallelism between the theory of Chern–Simons matter matrix
models and the theory of topological strings on toric CY threefolds: in both
of them, the perturbative sector is computed by the ’t Hooft expansion of
a matrix integral, but there are non-perturbative corrections to the ’t Hooft
expansion. In the case of the matrix models for topological strings considered
here, these non-perturbative corrections are explicitly known, since they can
be obtained from the modified grand potential of the theory. They correspond
to the “membrane” part of the modified grand potential (3.10), which is deter-
mined by the NS limit of refined topological string, and they are exponentially
small, of the form,

exp(�∂λFS
0 (λ)), (4.1)

just like the non-perturbative corrections to the ABJM matrix model obtained
in [39,64]. Note that, since � ∼ 1/gst, this is indeed non-perturbative in the
topological string coupling constant.

Clearly, there are many avenues for future research. Our analysis of the
matrix models (2.37) has been very elementary, and based on a perturbative
expansion. It would be very interesting to solve these models exactly in the
planar limit and beyond, by using for example the techniques of [41]. We
should also obtain explicit representations for the kernels of other operators
appearing in the quantization of mirror curves, in order to write down explicit
matrix integrals in more general cases. Another interesting problem would be
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to use the topological string free energies and their trans-series extensions,
as constructed in for example [65,66] to reconstruct the fermionic traces and
their matrix model representation via resurgent analysis. In this paper, as in
[5], we have focused on mirror curves of genus one. It would be important to
understand in more detail how to generalize this construction to higher genus
mirror curves. Finally, it would be interesting to know if the matrix integrals
we are writing have some gauge theory interpretation, or some underlying M2
brane interpretation, as speculated in [5].
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Appendix A. Results for the Perturbative Expansion

In this appendix we list some results for the coefficients fg,k appearing in the
weak coupling expansion of the free energies in (2.53) and (2.55), for general
m, n. One finds, for genus zero,

f0,3 = − π2

12(m + n + 1)

∑
α∈{1,m,n} cos 2πα

m+n+1 + 3
∏

α∈{1,m,n} sin πα
m+n+1

, (A.1)

f0,4 =
π4

576(m + n + 1)2

×
∑

α∈{1,m,n}
(
110 cos 2πα

m+n+1 + cos 4πα
m+n+1

)
+ 5

∑
α,β∈{1,m,n} cos 2π(α−β)

m+n+1 + 126
∏

α∈{1,m,n} sin2 πα
m+n+1

,

(A.2)

f0,5 = − π6

480(m + n + 1)3
1∏

α∈{1,m,n} sin3 πα
m+n+1(

∑

α∈{1,m,n}

(
283 cos

2πα

m + n + 1
+ 23 cos

4πα

m + n + 1

)

+
∑

α,β∈{1,m,n}

(
30 cos

2π(α − β)
m + n + 1

+ cos
2π(2α − β)
m + n + 1

)
+ 183

)
. (A.3)

For genus one, one has

f1,1 = −1
2
f0,3 +

π2

4(m + n + 1)
1∏

α∈{1,m,n} sin πα
m+n+1

, (A.4)
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f1,2 = −f0,4, (A.5)

f1,3 =
π6

288(m + n + 1)3
1∏

α∈{1,m,n} sin3 πα
m+n+1(

∑

α∈{1,m,n}

(
175 cos

2πα

m + n + 1
+ 11 cos

4πα

m + n + 1

)

+
∑

α,β∈{1,m,n}

(
18 cos

2π(α − β)
m + n + 1

+ cos
2π(2α − β)
m + n + 1

)
+ 99

)
.

(A.6)

Finally, for genus two, we obtain:

f2,1 = − π6

960(m + n + 1)3
1∏

α∈{1,m,n} sin3 πα
m+n+1(

∑

α∈{1,m,n}

(
13 cos

2πα

m + n + 1
− 7 cos

4πα

m + n + 1

)

+
∑

α,β∈{1,m,n}
cos

2π(2α − β)
m + n + 1

− 27

)
. (A.7)
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