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Nonequilibrium Markov Processes
Conditioned on Large Deviations

Raphaël Chetrite and Hugo Touchette

Abstract. We consider the problem of conditioning a Markov process on a
rare event and of representing this conditioned process by a conditioning-
free process, called the effective or driven process. The basic assumption
is that the rare event used in the conditioning is a large deviation-type
event, characterized by a convex rate function. Under this assumption, we
construct the driven process via a generalization of Doob’s h-transform,
used in the context of bridge processes, and show that this process is
equivalent to the conditioned process in the long-time limit. The notion
of equivalence that we consider is based on the logarithmic equivalence of
path measures and implies that the two processes have the same typical
states. In constructing the driven process, we also prove equivalence with
the so-called exponential tilting of the Markov process, often used with
importance sampling to simulate rare events and giving rise, from the
point of view of statistical mechanics, to a nonequilibrium version of the
canonical ensemble. Other links between our results and the topics of
bridge processes, quasi-stationary distributions, stochastic control, and
conditional limit theorems are mentioned.

1. Introduction

We treat in this paper the problem of conditioning a Markov process Xt on
a rare event AT defined on the time interval [0, T ], and of representing this
conditioned Markov process in terms of a conditioning-free Markov process
Yt, called the effective or driven process, having the same typical states as
the conditioned process in the stationary limit T → ∞. More abstractly, this
means that we are looking for a Markov process Yt such that

Xt|AT
∼= Yt, (1)

where Xt|AT stands for the conditioned process and ∼= is an asymptotic notion
of process equivalence, related to the equivalence of ensembles in statistical
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physics, which we will come to define in a precise way below. Under some
conditions on Xt, and for a certain class of large deviation-type events AT ,
we will show that Yt exists and is unique, and will construct its generator
explicitly.

This problem can be considered as a generalization of Doob’s work on
Markov conditioning [1,2] and also finds its source, from a more applied per-
spective, in many fundamental and seemingly unrelated problems of probabil-
ity theory, stochastic simulations, optimal control theory, and nonequilibrium
statistical mechanics. These are briefly discussed next to set the context of our
work.

Conditioned Markov Processes: Doob was the first to historically consider con-
ditioning of Markov processes, starting with the Wiener process conditioned
on leaving the interval [0, �] at the boundary {�} [1,2]. In solving this prob-
lem, he introduced a transformation of the Wiener process, now referred to as
Doob’s h-transform, which was later adapted under the same name to deal with
other conditionings of stochastic processes, including the Brownian bridge [3],
Gaussian bridges [4–6], and the Schrödinger bridge [7–11], obtained by condi-
tioning a process on reaching a certain target distribution in time as opposed
to a target point. Doob’s transform also appears prominently in the theory of
quasi-stationary distributions [12–16], which describes in the simplest case the
conditioning of a process never to reach an absorbing state.

We discuss some of these historical examples in Sect. 4 to explain how
Doob’s original transform relates to the large deviation conditioning consid-
ered here. Following this section, we will see that the construction of the driven
process Yt also gives rise to a process transformation, which is however dif-
ferent from Doob’s transform because of the time-integrated character of the
conditioning AT considered.

Gibbs Conditioning and Conditional Limit Theorems: Let X1, . . . , Xn be a
sequence of independent and identically distributed random variables with
common distribution P (x) and let Sn denote their sample mean:

Sn =
1
n

n∑

i=1

Xi. (2)

A conditional limit theorem for this sequence refers to the distribution of
X1 obtained in the limit n → ∞ when the whole sequence X1, . . . , Xn is
conditioned on Sn being in a certain interval or on Sn assuming a certain
value. In the latter case, it is known that, under some conditions on P (x),

lim
n→∞ P{X1 = x|Sn = s} =

P (x) ekx

W (k)
≡ Pk(x), (3)

where k is a real parameter related to the conditioning value s and W (k) is
the generating function of P (x) normalizing the so-called exponentially tilted
distribution Pk(x); see [17–20] for details. This asymptotic conditioning of
a sequence of random variables is sometimes referred to as Gibbs condition-
ing [21], because of its similarity with the construction of the microcanonical
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ensemble of statistical mechanics, further discussed below. Other limit theo-
rems can be obtained by considering sub-sequences of X1, . . . , Xn instead of
X1, as above (see [22–24]), or by assuming that the Xi’s form a Markov chain
instead of being independent [25,26].

This paper came partly as an attempt to generalize these results to gen-
eral Markov processes and, in particular, to continuous-time processes. The
essential step needed to arrive at these results is the derivation of the driven
process; the conditional limit theorems that follow from this process will be
discussed in a future publication.

Rare Event Simulations: Many numerical methods used for determining rare
event probabilities are based on the idea of importance sampling, whereby the
underlying distribution P of a random variable or process is modified to a
target distribution Q putting more weight on the rare events to be sampled
[27]. A particularly useful and general distribution commonly used in this con-
text is the exponentially tilted distribution Pk mentioned earlier, which is also
known as the exponential family or Esscher transform of P [28]. Such a distri-
bution can be generalized to sequences of random variables, as well as paths of
stochastic processes (as a path measure), and corresponds, from the point of
view of statistical mechanics, to the canonical ensemble distribution describ-
ing a thermodynamic system coupled to a heat bath with inverse temperature
β = −k.

This link with statistical mechanical ensembles is discussed in more detail
below. For the conditioning problem treated here, we make contact with Pk by
using this distribution as an intermediate step to construct the driven process
Yt, as explained in Sects. 3 and 5. An interesting by-product of this construc-
tion is that we can interpret Yt as a modified Markov process that asymp-
totically realizes (in a sense to be made precise below) the exponential tilting
of Xt.

A further link with rare event sampling is established in that the semi-
group or propagator of Yt is deeply related to Feynman–Kac functionals, which
underlie cloning [29–31] and genealogical [32] methods also used for sampling
rare events. In fact, we will see in Sect. 2 that the driven process Yt is essentially
a normalized version of a non-conservative process, whose generator is the
so-called tilted generator of large deviations, and whose dominant eigenvalue
(when it exists) is the so-called scaled cumulant generating function—the main
quantity obtained by cloning methods [29–31].

Stochastic Control and Large Deviations: The generalization of Doob’s trans-
form that we will discuss in Sect. 4 has been considered by Fleming and Sheu in
their work on control representations of Feynman–Kac-type partial differential
equations (PDEs) [33–36]. The problem here is to consider a linear operator
of the form L + V (x), where L is the generator of a Markov process, and to
provide a stochastic representation of the solution φ(x, t) of the backward PDE

∂φ

∂t
+ (L + V )φ = 0, t ≤ T (4)
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with final condition φ(x, T ) = Φ(x). The Feynman–Kac formula [37–39] pro-
vides, as is well known, a stochastic representation of φ(x, t) in terms of the
expectation

φ(x, t) = E

[
Φ(XT )e

∫ T
t

V (Xs)ds|Xt = x
]
. (5)

The idea of Fleming and Sheu is to consider, instead of φ, the logarithm or
Hopf–Cole transform I = − ln φ, which solves the Hamilton–Jacobi-like PDE,

∂I

∂t
+ (HI) − V (x) = 0, (6)

where (HI) = −eI(Le−I), and to find a controlled process Xu
t with generator

Lu, so as to rewrite (6) as a dynamic programming equation:
∂I

∂t
+ min

u
{(LuI)(x) + kV (x, u)} = 0, (7)

where kV (x, u) is some cost function that depends on V , the system’s state,
and the controller’s state. In this form, they show that I represents the value
function of the control problem, involving a Lagrangian dual to the Hamilton-
ian H; see [40] for a more detailed description.

These results have been applied by Fleming and his collaborators to give
control representations of various distributions related to exit problems [33–
36], dominant eigenvalues of linear operators [41–43], and optimal solutions of
sensitive risk problems [44–46], which aim at minimizing functionals having the
exponential form of (5). What is interesting in all these problems is that the
generator Lu of the optimally controlled process is given by a Doob transform
similar to the one we use to construct the conditioned process. In their work,
Fleming et al. do not interpret this transformation as a conditioning, but as
an optimal change of measure between the controlled and reference processes.
Such a change of measure has also been studied in physics more recently by
Nemoto and Sasa [47–49]. We will discuss these links in more detail in a future
publication.

Fluctuation Paths and Fluctuation Dynamics: It is well known that rare tran-
sitions in dynamical systems perturbed by a small noise are effected by special
trajectories known as reaction paths, fluctuation paths, most probable paths,
or instantons; see [50] for a review. These paths are described mathematically
by the Freidlin–Wentzell theory of large deviations [51] and are fundamen-
tal for characterizing many noise-activated (escape-type) processes arising in
chemical reactions, biological processes, magnetic systems, and glassy systems
[52–54].

The concept of fluctuation path is specific to the low-noise limit: for
processes with arbitrary random perturbations, there is generally not a single
fluctuation path giving rise to a rare event, but many different fluctuation paths
leading to the same event, giving rise to what we call a fluctuation dynamics.
The driven process that we construct in this paper is a specific example of
such a fluctuation dynamics: it describes the effective dynamics of Xt as this
process is seen to fluctuate away from its typical behavior to ‘reach’ the event
AT . Consequently, it can be used to simulate or sample this fluctuation in
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an efficient way, bringing yet another connection with rare event simulations.
This will be made clearer as we come to define this process in Sect. 5.

Statistical Ensembles for Nonequilibrium Systems: The problem of defining
or extending statistical ensembles, such as the microcanonical and canonical
ensembles, to nonequilibrium systems has a long history in physics. It was
revived recently by Evans [55–57], who proposed deriving the transition rates
of a system driven by external forces in a stationary nonequilibrium state by
conditioning the transition rates of the same system when it is not driven, that
is, when it is in an equilibrium state with transition rates satisfying detailed
balance. Underlying this proposal is the interesting idea that nonequilibrium
systems driven in steady states could be seen as equilibrium systems in which
the driving is effected by a conditioning. This means, for example, that a driven
nonequilibrium system having a given stationary particle current could be
thought of, physically, as being equivalent to a non-driven equilibrium system
in which this current appears as a fluctuation.

The validity of this idea needs to be tested using examples of driven phys-
ical systems for which nonequilibrium stationary solutions can be obtained
explicitly and be compared with conditionings of their equilibrium solutions.
Our goal here is not to provide such a test, but to formalize the problem in
a clear, mathematical way as a Markov conditioning problem based on large
deviations. This leads us to define in a natural way a nonequilibrium gener-
alization of the microcanonical ensemble for trajectories or paths of Markov
processes, as well as a nonequilibrium version of the canonical ensemble, which
is a path version of the exponentially tilted measure Pk.

The latter ensemble has been used recently with transition path sampling
[58–61] to simulate rare trajectories of nonequilibrium systems associated with
glassy phases and dynamical phase transitions; see [62] for a recent review. In
this context, the exponentially tilted distribution Pk is referred to as the biased,
tilted, or s-ensemble, the last name stemming from the fact that the symbol
s is used instead of k [62–66]. These simulations follow exactly the idea of
importance sampling mentioned earlier: they re-weight the statistics of the
trajectories or paths of a system in an exponential way so as to reveal, in a
typical way, trajectories responsible for certain states or phases that are atyp-
ical in the original system. In Sect. 5, we will give conditions that ensure that
this exponential re-weighting is equivalent to a large deviation conditioning—in
other words, we will give conditions ensuring that the path canonical ensemble
is equivalent to the path microcanonical ensemble.

The connection with the driven process is established from this equiv-
alence by showing that the canonical ensemble can be realized by a Markov
process in the long-time limit. Some results on this canonical–Markov connec-
tion were obtained by Jack and Sollich [64] for a class of jump processes and
by Garrahan and Lesanovsky [67] for dissipative quantum systems (see also
[68–71]). Here, we extend these results to general Markov processes, including
diffusions, and relate them explicitly to the conditioning problem.
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These connections and applications will not be discussed further in the
paper, but should hopefully become clearer as we define the driven process and
study its properties in the next sections. The main steps leading to this process
are summarized in [72]; here, we provide the full derivation of this process and
discuss, as mentioned, its link with Doob’s results. We also discuss new results
related to constraints satisfied by the driven process, as well as special cases
of these results for Markov chains, jump processes, and pure diffusions.

The plan of the paper is as follows. In Sect. 2, we define the class of general
Markov processes and conditioning events (or observables) that we consider
and introduce various mathematical concepts (Markov semi-groups, Markov
generators, path measures) used throughout the paper. We also define in that
section the path versions of the microcanonical and canonical ensembles, cor-
responding respectively to the conditioning and exponential tilting of Xt, and
introduce all the elements of large deviation theory needed to define and study
our class of rare event conditioning. We then proceed to construct the driven
process Yt and prove its equivalence with the conditioned process Xt|AT in
three steps. Firstly, we construct in Sect. 3 a non-conservative process from
which various spectral elements, related to the large deviation conditioning, are
obtained. Secondly, we study in Sect. 4 the generalization of Doob’s transform
needed to construct Yt and show how it relates to the original transform con-
sidered by Doob. Thirdly, we use the generalized transform to define in Sect. 5
the driven process proper and show that it is equivalent to the conditioned
process by appealing to general results about ensemble equivalence.

Our main results are contained in Sect. 5. Their novelty, compared to pre-
vious works, resides in the fact that we treat the equivalence of the driven and
conditioned processes explicitly via path versions of the canonical and micro-
canonical ensembles, derive precise conditions for this equivalence to hold,
and express all of our results in the general language of Markov generators,
which can be used to describe jump processes, diffusions, or mixed processes,
depending on the physical application considered. New properties of the driven
process, including constraint rules satisfied by its transition rates or generator,
are also discussed in that section. Section 6 finally presents some applications
of our results for diffusions, to show how the driven process is obtained in
practice, and for absorbing Markov chains, to make a connection with quasi-
stationary distributions. The specialization of our results to Markov chains
is summarized in the Appendices, which also collect various technical steps
needed for proving our results.

2. Notations and Definitions

We define in this section the class of Markov processes and observables of these
processes that we use to define the rare event conditioning problem. Markov
processes are widely used as models of stochastic systems, for example, in
the context of financial time series [73], biological processes [74], and chemical
reactions [52–54]. In physics, they are also used as a general framework for
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modeling systems driven in nonequilibrium steady states by noise and external
forces [52–54], such as interacting particle systems coupled to different particle
and energy reservoirs, which have been studied actively in the mathematics
and physics literature recently [75–79]. For general introductions to Markov
processes and their applications in physics, see [52–54,80–82]; for references
on the mathematics of these processes, see [3,38,39,83,84].

2.1. Homogeneous Markov Processes

We consider a homogeneous continuous-time Markov process Xt, with t ∈ R+,
taking values in some space E , which, for concreteness, is assumed to be R

d

or a counting space.1 The dynamics of Xt is described by a transition kernel
Pt(x,dy) giving the conditional probability that Xt+t′ ∈ dy, given that Xt′ = x
with t ≥ 0. This kernel satisfies the Chapmann–Kolmogorov equation

∫

E
Pt′(x,dy)Pt(y,dz) = Pt′+t(x,dz) (8)

for all (x, z) ∈ E2 and is homogeneous in the sense that it depends only on the
time difference t between Xt+t′ and Xt′ . Here, and in the following, dy stands
for the Lebesgue measure or the counting measure, depending on E .

To ensure that Xt is well behaved, we assume that it admits càdlàg2

paths as a function of time for every initial condition X0 = x ∈ E . We further
assume that

∫

E
Pt(x,dy) = 1, (9)

so that the probability is conserved at all times. This property is also expressed
in the literature by saying that Xt is conservative, honest, stochastically com-
plete or strictly Markovian, and only means physically that there is no killing
or creation of probability. Although Xt is assumed to be conservative, we will
introduce later a non-conservative process as an intermediate mathematical
step to construct the driven process. In what follows, it will be clear when
we are dealing with a conservative or a non-conservative process. Moreover, it
should be clear that the word ‘conservative’ is not intended here to mean that
energy is conserved.

Mathematically, the transition kernel can be thought of as a positive
linear operator3 acting on the space of bounded measurable functions f on E
according to

1 In probability theory, E is most often taken to be a so-called Polish (metric, separable,
and complete) topological space.
2 From the French ‘continue à droite, limite à gauche’: right continuous with left limit.
3 This operator is positive in the Perron–Frobenius sense, that is, (Ptf) ≥ 0 for all f ≥ 0.
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(Ptf)(x) ≡
∫

E
Pt(x,dy)f(y) ≡ Ex[f(Xt)] (10)

for all x ∈ E , where Ex[·] denotes the expectation with initial condition X0 = x.
In many cases, it is more convenient to give a local specification of the action
of Pt via its generator L according to

∂tEx[f(Xt)] = Ex[(Lf)(Xt)], (11)

where (Lf) denotes the application of L on f . Formally, this is equivalent to
the representation

Pt = etL, (12)

and the forward and backward Kolmogorov equation, given by

∂tPt = PtL = LPt, P0 = I, (13)

where I is the identity operator. For Pt(x,dy) to be conservative, the generator
must obey the relation (L1) = 0, where 1 is the constant function equal to 1
on E .

In the following, we will appeal to a different characterization of Xt based
on the path probability measure dPL,μ0,T (ω) representing, roughly speaking,
the probability of a trajectory or sample path {Xt(ω)}T

t=0 over the time interval
[0, T ], with X0(ω) chosen according to the initial measure μ0. Technically, the
space of such paths is defined as the so-called Skorohod space D([0, T ], E) of
càdlàg functions on E , while dPL,μ0,T (ω) is defined in terms of expectations
having the form

Eμ0 [C] =
∫

C(ω) dPL,μ0,T (ω), (14)

where C is any bounded measurable functional of the path {Xt(ω)}T
t=0, and

Eμ0 now denotes the expectation with initial measure μ0. As usual, this expec-
tation can be simplified to completely characterize PL,μ0,T by considering so-
called cylinder functions,

C(ω) = C
(
X0(ω),Xt1(ω), . . . , Xtn−1(ω),XT (ω)

)
, (15)

involving Xt over a finite sequence of times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ T
instead of the whole interval [0, T ]. At this level, the path probability measure
becomes a joint probability distribution over these times, given in terms of L
by

PL,μ0,T (dx0, . . . ,dxn)

= μ0(dx0) et1L(x0,dx1) e(t2−t1)L(x1,dx2) · · · e(T−tn−1)L(xn−1,dxn), (16)

where the exponentials refer to the operator of (12).
One important probability measure obtained from the path measure is

the marginal μt of Xt, associated with the single-time cylinder expectation,

Eμ0 [C(Xt)] =
∫

E
C(y)μt(dy). (17)
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This measure is also obtained by ‘propagating’ the initial measure μ0 according
to (16):

μt(dy) =
∫

E
μ0(dx0) etL(x0,dy). (18)

It then follows from the Kolmogorov equation (13) that

∂tμt(x) = (L†μt)(x), (19)

where L† is the formal adjoint of L with respect to the Lebesgue or counting
measure. In physics, this equation is referred to as the Master equation in the
context of jump processes or the Fokker–Planck equation in the context of
diffusions.

The time-independent probability measure μinv satisfying

(L†μinv) = 0 (20)

is called the invariant measure when it exists. Furthermore, one says that the
process Xt is an equilibrium process (with respect to μinv) if its transition
kernel satisfies the detailed balance condition,

μinv(dx)Pt(x,dy) = μinv(dy)Pt(y,dx) (21)

for all (x, y) ∈ E2. In the case where μinv has the density ρinv(x) ≡ μinv(dx)/dx
with respect to the Lebesgue or counting measure, this condition can be
expressed as the following operator identity for the generator:

ρinvLρ−1
inv = L†, (22)

which is equivalent to saying that L is self-adjoint with respect to μinv. If the
process Xt does not satisfy this condition, then it is referred to in physics as a
nonequilibrium Markov process. Here, we follow this terminology and consider
both equilibrium and nonequilibrium processes.

2.2. Pure Jump Processes and Diffusions

Two important types of Markov processes will be used in this paper to illustrate
our results, namely, pure jump processes and diffusions. In continuous time and
continuous space, all Markov processes consist of a superposition of these two
processes, combined possibly with deterministic motion [3,85,86]. The case of
discrete-time Markov chains is discussed in Appendix E.

A homogeneous Markov process Xt is a pure jump process if the prob-
ability that Xt undergoes one jump during the time interval [t, t + dt] is pro-
portional to dt.4 To describe these jumps, it is usual to introduce the bounded
intensity or escape rate function λ(x), such that λ(x)dt+o(dt) is the probabil-
ity that Xt undergoes a jump during [t, t + dt] starting from the state Xt = x.
When a jump occurs, X(t + dt) is then distributed with the kernel T (x,dy),
so that the overall transition rate is

4 In a countable space, one can show that all Markov processes with right continuous paths
are of this type, a property which is not true in a general space [85,86].
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W (x,dy) ≡ λ(x)T (x,dy) (23)

for (x, y) ∈ E2. Over a time interval [0, T ], the path of such a process can thus
be represented by the sequence of visited states in E , together with the sequence
of waiting times in those states, so that the space of paths is [E × (0,∞)]N.

Under some regularity conditions (see [39,83]), one can show that this
process possesses a generator, given by

(Lf)(x) =
∫

E
W (x,dy)[f(y) − f(x)] (24)

for all bounded, measurable function f defined on E and all x ∈ E . In terms
of transition rates, the condition of detailed balance with respect to some
invariant measure μinv is expressed as

μinv(dx)W (x,dy) = μinv(dy)W (y,dx) (25)

for all (x, y) ∈ E2.
Pure diffusions driven by Gaussian white noise have, contrary to jump

processes, continuous sample paths and are best described not in terms of
transition rates, but in terms of stochastic differential equations (SDEs). For
E = R

d, these have the general form:

dXt = F (Xt)dt +
∑

α

σα(Xt) ◦ dWα(t), (26)

where F and σα are smooth vector fields on R
d, called respectively the drift and

diffusion coefficient, and Wα are independent Wiener processes (in arbitrary
number, so that the range of α is left unspecified). The symbol ◦ denotes
the Stratonovich (midpoint) convention used for interpreting the SDE; the Itō
convention can also be used with the appropriate changes.

In the Stratonovich convention, the explicit form of the generator is

L = F · ∇ +
1
2

∑

α

(σα · ∇)2 = F̂ · ∇ +
1
2
∇D∇, (27)

where

F̂ (x) = F (x) − 1
2

∑

α

(∇ · σα)(x)σα(x) (28)

is the so-called modified drift and

Dij(x) =
∑

α

σi
α(x)σj

α(x) (29)

is the covariance matrix involving the components of σα. The notation ∇D∇
in (27) is a shorthand for the operator

∇D∇ =
∑

i,j

∂

∂xi
Dij(x)

∂

∂xj
, (30)

which is also sometimes expressed as ∇· (D∇) or in terms of a matrix trace as
tr D∇2. With these notations, the condition of detailed balance for an invariant
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measure μinv(dx), with density ρinv(x) with respect to the Lebesgue measure,5

is equivalent to

F̂ =
D

2
∇ ln ρinv. (31)

Similar results can be obtained for the Itō interpretation. Obviously, the need
to distinguish the two interpretations arises only if the diffusion fields σα

depend on x ∈ E . If these fields are constant, then the Stratonovich and Itō
interpretations yield the same results with F̂ = F and ∇D∇ = D∇2.

2.3. Conditioning Observables

Having defined the class of stochastic processes of interest, we now define the
class of events AT used to condition these processes. The idea is to consider a
random variable or observable AT , taken to be a real function of the paths of
Xt over the time interval [0, T ], and to condition Xt on a general measurable
event of the form AT = {AT ∈ B} with B ⊂ R. This means, more precisely,
that we condition Xt on the subset

AT = {ω ∈ D([0, T ], E) : AT (ω) ∈ B} (32)

of sample paths, satisfying the constraint that AT ∈ B. In the following, we
will consider the smallest event possible, {AT = a}, representing the set of
paths for which AT is contained in the infinitesimal interval [a, a + da] or,
more formally, the set of paths such that AT (ω) = a. General conditionings
of the form {AT ∈ B} can be treated by integration over a. We then write
Xt|AT = a to mean that the process Xt is conditioned on the basic event
{AT = a}. Formally, we can also study this conditioning by considering path
probability densities instead of path measures, as done in [72].

Mathematically, the observable AT is assumed to be non-anticipating,
in the sense that it is adapted to the natural (σ-algebra) filtration FT =
σ{Xt(ω) : 0 ≤ t ≤ T} of the process up to time T . Physically, we also demand
that AT depend only on Xt and its transitions or displacements. For a pure
jump process, this means that we consider a general observable of the form

AT =
1
T

∫ T

0

f(Xt)dt +
1
T

∑

0≤t≤T :ΔXt �=0

g(Xt− ,Xt+), (33)

where f : E → R, g : E2 → R, and Xt− and Xt+ denote, respectively, the state
of Xt before and after a jump at time t. The discrete sum over the jumps of
the process is well defined, since we suppose that Xt has a finite number of
jumps in [0, T ] with probability one.

The class of observables AT defined by f and g includes many random
variables of mathematical interest, such as the number of jumps over [0, T ],
obtained with f = 0 and g = 1, or the occupation time in some set Δ, obtained
with f(x) = 1Δ(x) and g = 0, with 1Δ the characteristic function of the set
Δ. From a physical point of view, it also includes many interesting quantities,
including the fluctuating entropy production [89], particle and energy currents

5 This density exists, for example, when the conditions of Hormander’s Theorem are satisfied
[87,88].
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[78], the so-called activity [65,66,90,91], which is essentially the number of
jumps, in addition to work- and heat-related quantities defined for systems in
contact with heat reservoirs and driven by external forces [92,93].

For a pure diffusion process Xt ∈ R
d, the appropriate generalization of

the observable above is

AT =
1
T

∫ T

0

f(Xt)dt +
1
T

∫ T

0

d∑

i=1

gi(Xt) ◦ dXi
t , (34)

where f : E → R, g : E → R
d, ◦ denotes as before the Stratonovich prod-

uct, and gi and Xi
t are the components of g and Xt, respectively. This class

of ‘diffusive’ observables defined by the function f and the vector field g also
includes many random variables of mathematical and physical interest, includ-
ing occupation times, empirical distributions, empirical currents or flows, the
fluctuating entropy production [89], and work and heat quantities [94]. For
example, the empirical density of Xt, which represents the fraction of time
spent at x, is obtained formally by choosing f(y) = δ(y − x) and g = 0, while
the empirical current, recently considered in the physics literature [95,96], is
defined, also formally, with f = 0 and g(y) = δ(y − x).

The consideration of diffusions and current-type observables of the form
(34) involving a stochastic integral is one of the main contributions of this
paper, generalizing previous results obtained by Jack and Sollich [64] for jump
processes, Garrahan and Lesanovsky [67] for dissipative quantum systems, and
by Borkar et al. [26,97] for Markov chains.

2.4. Large Deviation Principle

As mentioned in the introduction, the conditioning event AT must have the
property of being atypical with respect to the measure of Xt; otherwise the
conditioning should have no effect on this process in the asymptotic limit
T → ∞. Here, we assume that {AT = a} is exponentially rare with T with
respect to the measure PL,μ0,T of Xt, which means that we define this rare
event as a large deviation event. This exponential decay of probabilities applies
to many systems and observables of physical and mathematical interest and is
defined in a precise way as follows. The random variable AT is said to satisfy a
large deviation principle (LDP) with respect to PL,μ0,T if there exists a lower
semi-continuous function I such that

lim inf
T→∞

− 1
T

lnPL,μ0,T {AT ∈ C} ≥ inf
a∈C

I(a) (35)

for any closed sets C and

lim sup
T→∞

− 1
T

lnPL,μ0,T {AT ∈ O} ≤ inf
a∈O

I(a) (36)

for any open sets O [21,98,99]. The function I is called the rate function.
The basic assumption of our work is that the function I exists and is

different from 0 or ∞. If the process Xt is ergodic, then an LDP for the class
of observables AT defined above holds, at least formally, as these observables
can be obtained by contraction from the so-called level 2.5 of large deviations
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concerned with the empirical density and empirical current. This level has been
studied formally in [90,95,96], and rigorously for jump processes with finite
space in [100] and countable space in [101]. The observable AT can also satisfy
an LDP if the process Xt is not ergodic; in this case, however, the existence
of the LDP must be proved on a process by process basis and may depend on
the initial condition of the process considered.

Formally, the existence of the LDP is equivalent to assuming that

lim
T→∞

− 1
T

lnPL,μ0,T {AT ∈ [a, a + da]} = I(a), (37)

so that the measure PL,μ0,T {AT ∈ [a, a + da]} decays exponentially with T ,
as mentioned. The fact that this decay is in general not exactly, but only
approximately exponential is often expressed by writing

PL,μ0,T {AT ∈ [a, a + da]} � e−TI(a) da, (38)

where the approximation � is defined according to the large deviation limit
(37) [50,99]. We will see in the next subsection that this exponential approxi-
mation, referred to in information theory as the logarithmic equivalence [19],
sets a natural scale for defining two processes as being equivalent in the sta-
tionary limit T → ∞.

2.5. Nonequilibrium Path Ensembles

We now have all the notations needed to define our problem of large deviation
conditioning. At the level of path measures, the conditioned process Xt|AT = a
is defined by the path measure

dPmicro
a,μ0,T (ω) ≡ dPL,μ0,T {ω|AT = a}, (39)

which is a pathwise conditioning of the reference measure PL,μ0,T of Xt on the
value AT = a after the time T . By Bayes’s Theorem, this is equal to

dPmicro
a,μ0,T (ω) =

dPL,μ0,T (dω)
PL,μ0,T {AT = a} 1[a,a+da] (AT (ω)) , (40)

where 1Δ(x) is, as before, the indicator (or characteristic) function of the set
Δ. We refer to this measure as the path microcanonical ensemble (superscript
micro) [55–57], because it is effectively a path generalization of the microcanon-
ical ensemble of equilibrium statistical mechanics, in which the microscopic
configurations of a system are conditioned or constrained to have a certain
energy value. This energy is here replaced by the general observable AT .

Our goal for the rest of the paper is to show that the microcanonical
measure can be expressed or realized in the limit T → ∞ by a conservative
Markov process, called the driven process. This process will be constructed, as
mentioned in the introduction, indirectly via another path measure, known as
the exponential tilting of dPL,μ0,T (ω):

dPcano
k,μ0,T (ω) ≡ eTkAT (ω) dPL,μ0,T (ω)

Eμ0 [ekTAT ]
, (41)
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where k ∈ R. In mathematics, this measure is also referred to as a penaliza-
tion or a Feynman–Kac transform of PL,μ0,T [102], in addition to the names
‘exponential family’ and ‘Essher transform’ mentioned in the introduction.
In physics, it is referred, as also mentioned, to as the biased, twisted, or s-
ensemble, the last name arising again because the letter s is often used in place
of k [62–66]. We use the name ‘canonical ensemble’ (superscript cano) because
this measure is a path generalization of the well-known canonical ensemble of
equilibrium statistical. From this analogy, we can interpret k as the analog of
a (negative) inverse temperature and the normalization factor Eμ0 [e

kTAT ] as
the analog of the partition function.

The plan for deriving the driven process is to define a process Yt via
a generalization of Doob’s transform and to show that its path measure is
equivalent in the asymptotic limit to the path canonical ensemble. Following
this result, we will then use established results of ensemble equivalence to
show that the canonical path ensemble is equivalent to the microcanonical
path ensemble, so as to finally obtain the result announced in (1). The notion
of measure or process equivalence underlying these results, denoted by ∼= in
(1), is defined next.

2.6. Process Equivalence

Let PT and QT be two path measures associated with a Markov process over
the time interval [0, T ]. Assume that PT is absolutely continuous with respect
to QT , so that the Radon–Nikodym derivative dPT /dQT exists. We say that
PT and QT are asymptotically equivalent if

lim
T→∞

1
T

ln
dPT

dQT
(ω) = 0 (42)

almost everywhere with respect to both PT and QT . In this case, we also say
that the Markov process Xt defined by PT and the different Markov process
Yt defined by QT are asymptotically equivalent, and denote this property by
Xt

∼= Yt as in (1).
This notion of process equivalence is borrowed from equilibrium statistical

mechanics [103–105] and can be interpreted in two ways. Mathematically, it
implies that PT and QT are logarithmically equivalent for most paths, that is,

dPT (ω) � dQT (ω) (43)

for almost all ω with respect to PT or QT . This is a generalization of the
so-called asymptotic equipartition property of information theory [19], which
states that the probability of sequences generated by an ergodic discrete source
is approximately (i.e., logarithmically) constant for almost all sequences [19].
Here we have that, although PT and QT may be different measures, they are
approximately equal in the limit T → ∞ for almost all paths with respect to
these measures.

In a more concrete way, the asymptotic equivalence of PT and QT also
implies that an observable satisfying LDPs with respect to these measures
concentrate on the same values for both measures in the limit T → ∞. In other
words, the two measures lead to the same typical or ergodic states of (dynamic)
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observables in the long-time limit. A more precise statement of this result based
on the LDP will be given when we come to proving explicitly the equivalence
of the driven and conditioned processes. For now, the only important point to
keep in mind is that the typical properties of the two processes Xt and Yt, such
that Xt

∼= Yt are essentially the same. This is a useful notion of equivalence
when considering nonequilibrium systems, which is a direct generalization of
the notion of equivalence used for equilibrium systems. For the latter systems,
typical values of (static) observables are simply called equilibrium states.

3. Non-conservative Tilted Process

We discuss in this section the properties of a non-conservative process asso-
ciated with the canonical path measure (41). This process is important as it
allows us to obtain a number of important quantities related to the large devi-
ations of AT , in addition to giving some clues as to how the driven process
will be constructed.

3.1. Definition

We consider as before a Markov process Xt with path measure PL,μ0,T and an
observable AT defined as in (33) or (34) according to the type (jump process
or diffusion, respectively) of Xt. From the path measure of Xt, we define a
new path measure by

dPLk,μ0,T (ω) ≡ dPL,μ0,T (ω) ekTAT (ω), (44)

which corresponds to the numerator of the canonical path ensemble dPcano
k,μ0,T ,

defined in (41). As suggested by the notation, the new measure dPLk,μ0,T

defines a Markov process of generator Lk, which we call the non-conservative
tilted process. This process is Markovian in the sense that

Eμ0 [e
kTAT C]

=
∫

En+1
C(x0, . . . , xn)μ0(dx0) et1Lk(x0,dx1) · · · e(T−tn−1)Lk(xn−1,dxn),

(45)

for any cylinder functional C (15), and is non-conservative because (Lk1) 
= 0
in general.

The class of observables defined by (33) and (34) can be characterized in
the context of this result as the largest class of random variables for which the
above Markov property holds. The proof of this property cannot be given for
arbitrary Markov processes, but is relatively straightforward when considering
jump processes and diffusions. In each case, the proof of (45) and the form of
the so-called tilted generator Lk follow by applying Girsanov’s Theorem and
the Feynman–Kac formula, as shown in Appendix A.1 for jump processes and
Appendix A.2 for diffusions. The result in the first case is

(Lkh)(x) =
(∫

E
W (x,dy)[ekg(x,y)h(y) − h(x)]

)
+ kf(x)h(x) (46)
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for all function h on E and all x ∈ E , where f and g are defined as in (33).
This can be written more compactly as

Lk = Wekg − (W1) + kf, (47)

where the first term is understood as the Hadamard (component-wise) product
W (x,dy)ekg(x,y) and kf is a diagonal operator k(x)f(x)δ(x − y). In the case
of diffusions, we obtain instead

Lk = F̂ · (∇ + kg) +
1
2
(∇ + kg)D(∇ + kg) + kf, (48)

where f and g are the functions appearing in (34), while F̂ and D are defined
as in (28) and (29), respectively. The double product involving D is defined as
in (30).

3.2. Spectral Elements

The operator Lk defined in (46) or (48) is a Perron–Frobenius operator or,
more precisely, a Metzler operator with negative ‘diagonal’ part [106]. The
extension of the Perron–Frobenius Theorem to infinite-dimensional, compact
operators is ruled by the Krein–Rutman Theorem [107]. For differential elliptic
operators having the form (48), this theorem can be applied on compact and
smooth domains with Dirichlet boundary conditions.

We denote by Λk the real dominant (or principal) eigenvalue of Lk and
by rk its associated ‘right’ eigenfunction, defined by

Lkrk = Λkrk. (49)

We also denote by lk its ‘left’ eigenfunction, defined by

L†
klk = Λklk, (50)

where L†
k is the dual of Lk with respect to the Lebesgue or counting measure.

These eigenfunctions are defined, as usual, up to multiplicative constants, set
here by imposing the following normalization conditions:

∫

E
lk(x)dx = 1 and

∫

E
lk(x)rk(x)dx = 1. (51)

For the remaining, we also assume that the initial measure μ0 of Xt is such
that ∫

E
μ0(dx) rk(x) < ∞, (52)

and that there is a gap Δk between the first two largest eigenvalues resulting
from the Perron–Frobenius Theorem. Under these assumptions, the semi-group
generated by Lk admits the asymptotic expansion

etLk(x, y) = etΛk
[
rk(x)lk(y) + O(e−tΔk)

]
(53)

as t → ∞. Applying this result to the Feynman–Kac formula,

Eμ0 [e
kTAT δ(XT − y)] =

∫

E
μ0(dx0) eTLk(x0, y), (54)
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obtained by integrating (45) with C = δ(XT − y), yields

Eμ0 [e
kTAT δ(XT − y)] = eTΛk

∫

E
μ0(dx0)

[
rk(x0)lk(y) + O(e−tΔk)

]
. (55)

From this relation, we then deduce the following representations of the spectral
elements Λk, rk, and lk; a further representation for the product rklk will be
discussed in the next subsection.
• Dominant eigenvalue Λk:

Λk = lim
T→∞

1
T

lnEμ0 [e
kTAT ] (56)

for all μ0 such that (52) is satisfied.
• Right eigenfunction rk:

rk(x0) = lim
T→∞

e−TΛkEx0 [e
kTAT ] (57)

for all initial condition x0.
• Left eigenfunction lk:

lk(y) = lim
T→∞

Eμ0 [e
kTAT δ(XT − y)]
Eμ0 [ekTAT ]

(58)

for all μ0 such that (52) is satisfied.
With these results, we can already build a path measure from dPLk,μ0,T ,

which is asymptotically equivalent to the canonical path measure. Indeed, it
is clear from (56) that

lim
T→∞

1
T

ln

(
e−TΛk

dPLk,μ0,T

dPcano
k,μ0,T

)
= 0 (59)

almost everywhere, so that

dPcano
k,μ0,T � e−TΛkdPLk,μ0,T . (60)

We will see in the next section how to integrate the constant term e−TΛk into
a Markovian measure, so as to obtain a Markov process which is conservative
and equivalent to the canonical ensemble. For now, we close this subsection
with two remarks:
• The right-hand side of (56) is known in large deviation theory as the scaled

cumulant generating function (SCGF) of AT . The rate function I can be
obtained from this function by using the Gärtner-Ellis Theorem [21,98,99],
which states (in its simplest form) that, if Λk is differentiable, then AT sat-
isfies the LDP with rate function I given by the Legendre-Fenchel transform
of Λk:

I(a) = sup
k

{ka − Λk}. (61)

For pure jump processes on a finite space, the differentiability of Λk follows
from the implicit function theorem and the fact that Λk is a simple zero of
the characteristic polynomial. In general, AT can also satisfy an LDP when
Λk is nondifferentiable; in this case, the rate function I is either convex with
affine parts or nonconvex; see Sec. 4.4 of [50] for more details.
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• The cloning simulation methods [29–31] mentioned in the introduction can
be interpreted as algorithms that generate the non-conservative process Lk

and obtain the SCGF Λk by estimating the rate of growth or decay of its
(non-normalized) measure, identified as Eμ0 [e

kTAT ]. An alternative method
for simulating large deviations is transition path sampling, which attempts
to directly sample paths according to P

cano
k,μ0,T [58–61].

3.3. Marginal Canonical Density

Equation (58) can be reformulated in terms of the canonical path measure as

lk(y) = lim
T→∞

∫
dPcano

k,μ0,T (ω) δ(XT (ω) − y). (62)

This gives a physical interpretation of the left eigenfunction as the limit, when
T is large, of the marginal probability density of the canonical ensemble at the
final time t = T . If we calculate this marginal for t ∈ [0, T [ and let t → ∞
after taking T → ∞, we obtain instead

lk(y)rk(y) = lim
t→∞ lim

T→∞

∫
dPcano

k,μ0,T (ω) δ(Xt(ω) − y). (63)

The product rklk is thus the large-time marginal probability density of the
canonical process taken over the infinite time interval. We will see in Sec. 5 that
the same product corresponds to the invariant density of the driven process.

To prove (63), take C = δ(Xt − y) with t < T in (45) and integrate to
obtain

Eμ0 [e
kTAT δ(Xt − y)] =

∫

E
μ0(dx0) etLk(x0, y) (e(T−t)Lk1)(y). (64)

Now, take the limit T → ∞ to obtain

lim
T→∞

e−TΛkEμ0 [e
kTAT δ(Xt − y)] =

∫

E
μ0(dx0) etLk(x0, y) e−tΛk rk(y), (65)

which can be rewritten with (55) as

lim
T→∞

Eμ0 [e
kTAT δ(Xt − y)]
Eμ0 [ekTAT ]

=

∫
E μ0(dx0) etLk(x0, y) e−tΛk rk(y)∫

E μ0(dx0) rk(x0)
(66)

assuming (52). Finally, take the limit t → ∞ to obtain

lim
t→∞ lim

T→∞
Eμ0 [e

kTAT δ(Xt − y)]
Eμ0 [ekTAT ]

= lk(y)rk(y), (67)

which can be rewritten with the canonical measure as (63). A similar proof
applies to (62); see Appendix B of [108] for a related discussion of these results.

The result of (63) can actually be generalized in the following way: instead
of taking t ∈ [0, T [ and letting t → ∞ after T → ∞, we can scale t with T by
choosing t = c(T ) such that

lim
T→∞

c(T ) = ∞ and lim
T→∞

T − c(T ) = ∞. (68)
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In this case, it is easy to see from (65)–(67) that we obtain the same result,
namely,

lk(y)rk(y) = lim
T→∞

∫
dPcano

k,μ0,T (ω) δ(Xc(T )(ω) − y). (69)

In particular, we can take c(T ) = (1 − ε)T with 0 < ε < 1 to get t as close
as possible to T , without reaching T . This will be used later when considering
the equivalence of the driven process with the canonical path measure.

Note that there is no contradiction between (62) and (63), since for t ≤ T
∫

dPcano
k,μ0,T (ω) δ(Xt(ω) − y)

=

∫
E μ0(dx0) etLk(x0, y) (e(T−t)Lk1)(y)∫

E μ0(dx0) (eTLk1)(x0)


=
∫

E μ0(dx0) etLk(x0, y)∫
E μ0(dx0) (etLk1)(x0)

=
∫

dPcano
k,μ0,t(ω) δ(Xt(ω) − y). (70)

The fact that the left-most and right-most terms are not equal arises because
the canonical measure is defined globally (via AT ) for the whole time interval
[0, T ], so that the marginal of the canonical measure at time t depends on times
after t, as well as the end-time T . We will study in more detail the source of
this property in Sect. 5 when proving that the canonical path measure is a
non-homogeneous Markov process that explicitly depends on t and T .

4. Generalized Doob Transform

We define in this section the generalized Doob transform that will be used in
the next section to define the driven process. We also review the conditioning
problem considered by Doob to understand whether the case of large deviation
conditioning can be analyzed within Doob’s approach. Two examples will be
considered: first, the original problem of Doob involving the conditioning on
leaving a domain via its boundary and, second, a ‘punctual’ conditioning at a
deterministic time. In each case, we will see that the generator of the process
realizing the conditioning is a particular case of Doob’s transform, but that
the random variable underlying the conditioning is, in general, different from
the random variables AT defined before.

4.1. Definition

Let h be a strictly positive function on E and f an arbitrary function on the
same space. We call the generalized Doob transform of the process Xt with
generator L the new process with generator

Lh,f ≡ h−1Lh − f. (71)

In this expression, h−1Lh must be understood as the composition of three
operators: the multiplication operator by h−1, the operator L itself, and the
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multiplication operator by h. Moreover, the term f represents the multiplica-
tion operator by f , so that the application of Lh,f on some function r yields

(Lh,fr)(x) = h−1(x) (Lhr)(x) − f(x)r(x). (72)

We prove in Appendix B that the generalized Doob transform of L is
indeed the generator of a Markov process, whose path measure PLh,f ,μ0,T is
absolutely continuous with respect to the path measure PL,μ0,T of Xt and
whose Radon–Nikodym derivative is explicitly given by

dPLh,f ,μ0,T

dPL,μ0,T
(ω) = h−1(X0) exp

(
−

∫ T

0

f(Xt) dt

)
h(XT ). (73)

In the following, we will also use time-dependent functions ht and ft to
transform L [109]. In this case, the generalized Doob transform is a non-
homogeneous process with path measure given by

dPLh,f ,μ0,T

dPL,μ0,T
(ω) = h−1

0 (X0) exp

(
−

∫ T

0

(ft + h−1
t ∂tht)(Xt) dt

)
hT (XT ). (74)

It is important to note that the transformed process with generator Lh,f

is Markovian, but not necessarily conservative, which means that its dominant
eigenvalue is not necessarily zero. If we require conservation (zero dominant
eigenvalue), it is sufficient that we choose f = h−1(Lh), in which case (71)
becomes

Lh = h−1Lh − h−1(Lh), (75)

while (73) reduces to

dPLh,μ0,T

dPL,μ0,T
(ω) = h−1(X0) exp

(
−

∫ T

0

h−1(Xt) (Lh)(Xt) dt

)
h(XT ). (76)

Moreover, in the time-dependent case, (74) becomes

dPLh,μ0,T

dPL,μ0,T
(ω)

= h−1
0 (X0) exp

(
−

∫ T

0

dt
(
h−1

t (Lht) + h−1
t ∂tht

)
(Xt)

)
hT (XT ). (77)

Specializing to specific processes, it is easy to see that the generalized
Doob transform of a pure jump process with transition rates W (x,dy) is also
a pure jump process with modified transition rates

Wh(x,dy) = h−1(x)W (x,dy)h(y) (78)

for all (x, y) ∈ E2. Similarly, it can be shown that the generator of the gener-
alized Doob transform of a diffusion with generator L is

Lh = L + (∇ ln h)D∇, (79)
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where the product involving D is interpreted, as before, according to (30). The
generalized Doob transformed process is thus a diffusion with the same noise
as the original diffusion, but with a modified drift

Fh = F + D ∇ ln h. (80)

The proof of this result is given in Appendix C and follows by re-expressing
the generalized Doob transform of (75) as

Lh = L + h−1Γ(h, ·), (81)

where Γ is the so-called ‘squared field’ operator,6 which is a symmetric bilinear
operator defined for all f and g on E as

Γ(f, g) ≡ (Lfg) − f(Lg) − (Lf)g. (82)

Mathematical properties and applications of the generalized Doob trans-
form have been studied by Kunita [110], Itô and Watanabe [111], and Fleming
and collaborators (see [40] and references cited therein), and have been revis-
ited recently by Palmowski and Rolski [112] and Diaconis and Miclo [113].
From the point of view of probability theory, the Radon–Nikodym deriva-
tive associated with this transform is an example of exponential martingale.
The generalized Doob transform also has interesting applications in physics:
it appears in the stochastic mechanics of Nelson [114] and underlies, as shown
in [109], the classical fluctuation–dissipation relations of near-equilibrium sys-
tems [54,115–117] and recent generalizations of these relations obtained for
nonequilibrium systems [91,118–124]. The work of [109] shows moreover that
the exponential martingale (76) verifies a non-perturbative general version of
these relations, which also include the fluctuation relations of Jarzynski [125]
and Gallavotti-Cohen [126–128].

4.2. Historical Conditioning of Doob

The transform considered by Doob is a particular case of the generalized trans-
form (71), obtained for the constant function f(x) ≡ λ and for a so-called
λ-excessive function h verifying Lh ≤ λh. For these functions, the Doob trans-
formed process is a non-conservative process of generator

Lh,λ = h−1Lh − λ, (83)

and path measure

dPLh,λ,μ0,T

dPL,μ0,T
(ω) = h−1(X0)e−Tλh(XT ). (84)

When (Lh) = λ, h is said to be λ-invariant. If we also have λ = 0, then h is
called a harmonic function [1–3] and the process described by Lh = h−1Lh is
conservative with path measure

dPLh,μ0,T

dPL,μ0,T
(ω) = h−1(X0)h(XT ). (85)

6 From the French ‘opérateur carré du champs’.
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In the time-dependent case, the harmonic condition Lh = 0 is replaced by

(∂t + Lt)ht = 0, (86)

which yields, following (74) and (77),

dPLh,μ0,T

dPL,μ0,T
(ω) = h−1

0 (X0)hT (XT ). (87)

In this case, ht is said to be space–time harmonic [1–3]. Applications of these
transforms have appeared since Doob’s work in the context of various condi-
tionings of Brownian motion, including the Gaussian and Schrödinger bridges
mentioned in the introduction, in addition to non-colliding random walks
related to Dyson’s Brownian motion and random matrices [129–131].

The original problem considered by Doob, leading to Lh, is to condition a
Markov process Xt started at X0 = x0 to exit a certain domain D via a subset
of its boundary ∂D. To be more precise, assume that the boundary of D can
be decomposed as ∂D = B ∪ C with B ∩ C = ∅, and condition the process to
exit D via B. In this case, the path measure of the conditioned process can be
written as

dPx0,T {ω|B} = dPL,x0,T (ω)
PL,x0{B|FT }
PL,x0{B} , (88)

where PL,x0,T is the path measure of the process started at x0, B = {τB ≤ τC}
is the conditioning event expressed in terms of the exit times,

τB ≡ inf{t : Xt ∈ B}, τC ≡ inf{t : Xt ∈ C}, (89)

and FT = σ{Xt(ω) : 0 ≤ t ≤ T} is the natural filtration of the process up to
the time T .

The conditional path measure (88) is similar to the microcanonical path
measure (39) and can be expressed in the form

dPx0,T {ω|B} = dPL,x0,T (ω)M[0,T ], (90)

where

M[0,T ] =
PL,x0{B|FT }
PL,x0{B} (91)

to emphasize that it is a ‘reweighing’ or ‘penalization’ [102] of the original
measure of the process with the weighting function M[0,T ]. To show that this
reweighing gives rise to a Doob transform for the exit problem, let

h(x) = Px{τB ≤ τC}. (92)

This function is harmonic, since (Lh) = 0 by Dynkin’s formula [3]. Moreover,
using the strong Markov property, we can use this function to express the
weighting function (91) as

M[0,T ] =
h(Xmin(T,τB ,τC))

h(X0)
. (93)

For T ≤ min(τB , τC), we therefore obtain

dPx0{ω|B} = h−1(x0)dPL,x0,T (ω)h(XT ). (94)
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which has the form of (85). The next example provides a simple application
of this result.

Example 1. Consider the Brownian or Wiener motion Wt conditioned on exit-
ing the set A = {0, �} via B = {�}. The solution of (Lh) = 0 with the
boundary conditions h(0) = 0 and h(�) = 1 gives the harmonic function
h(x) = x/�, which implies from (80) that the drift of the conditioned process
is Fh(x) = 1/x. The conditioned process is thus the Bessel process:

dXt =
1

Xt
dt + dWt. (95)

Note that the drift of the conditioned process is independent of �, which means
by taking � → ∞ that the Bessel process is also the Wiener process conditioned
never to return at the origin. This is expected physically, as Fh is a repulsive
force at the origin which prevents the process from approaching this point.

As a variation of Doob’s problem, consider the conditioning event

BT = {XT ∈ BT }, (96)

where BT is a subset of E that can depend on T . This event is a particular
case of AT obtained with f = 0 and g = 1, so that AT = XT /T assuming
X0 = 0. Its associated weighting function takes the form:

M[0,T ′] =
PL,x0{BT |FT ′}
PL,x0{BT } =

PL,x0{BT |XT ′}
PL,x0{BT } , (97)

for T ′ ≤ T . Defining the function

hT ′(XT ′) ≡ PL,x0{BT |XT ′} =
∫

BT

PT−T ′(XT ′ ,dy), (98)

we then have

M[0,T ′] =
hT ′(XT ′)
h0(X0)

. (99)

Moreover, from the backward Kolmogorov equation, we find that h is space–
time harmonic, as in (86). Therefore, the path measure of Xt conditioned on
BT also takes the form of a Doob transform,

dPx0{ω|BT } = dPL,x0,T ′(ω)h−1
0 (x0)hT ′(XT ′), (100)

but now involves a time-dependent space–time harmonic function.7

The next two examples apply this type of punctual conditioning to define
bridge versions of the Wiener motion and the Ornstein–Uhlenbeck process.

Example 2 (Brownian bridge). Let Wt|WT = 0 be the Wiener motion Wt

conditioned on reaching 0 at time T . The Kolmogorov equation, which is the

7 Note that the probability of BT can vanish as T ′ → ∞, for example, if Xt is transient. In
this case, (98) vanishes as T ′ → ∞, so that (100) becomes singular in this limit.
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classical diffusion equation with L = Δ/2, yields the Gaussian transition den-
sity of Wt as the space–time harmonic function:

ht(x) = e(T−t)L(x, 0) =
1√

2π(T − t)
exp

(
− x2

2(T − t)

)
, 0 ≤ t < T.

(101)
From (80) and (98), we then obtain, as expected, that Wt|WT = 0 is the
Brownian bridge evolving according to

dXt = − Xt

T − t
dt + dWt (102)

for 0 ≤ t < T. The limit T → ∞ recovers the Wiener process itself as the
conditioned process.

Example 3 (Ornstein–Uhlenbeck bridge). Consider now the Ornstein–Uhlenbeck
process,

dXt = −γXtdt + σdWt (103)
with γ > 0 and σ > 0, conditioned on the event XT = Ta. Using the propa-
gator of this process, given explicitly by

Pt(x, y) =
√

γ

πσ2(1 − e−2γt)
exp

(
− γ

σ2

(y − e−γtx)2

1 − e−2γt

)
, (104)

we obtain from (98),

ht(x) = e(T−t)L(x, 0)

=
√

γ

πσ2(1 − e−2γ(T−t))
exp

(
− γ

σ2

(x − Ta eγ(T−t))2

e2γ(T−t) − 1

)
. (105)

With (80), we then conclude that Xt|XT = aT is the non-homogeneous diffu-
sion

dXt = −γXtdt + FT (Xt, t)dt + σdWt, 0 ≤ t < T, (106)
with added time-dependent drift

FT (x, t) = −2γ
x − Taeγ(T−t)

e2γ(T−t) − 1
. (107)

The relation between this drift and the conditioning is interesting. Since

lim
t→T

FT (x, t) =

⎧
⎨

⎩

∞ x < aT
γaT x = aT
−∞ x > aT,

(108)

points away from the target x = aT are infinitely attracted toward this point
as t → T , which leads Xt to reach XT = aT . This attraction, however, is all
concentrated near the final time T , as shown in Fig. 1, so that the conditioning
XT = aT affects the Ornstein–Uhlenbeck process mostly at the boundary of
the time interval [0, T ] and marginally in the interior of this interval. Taking
the limit T → ∞ pushes the whole effect of the conditioning to infinity, so that
care must be taken when interpreting this limit. It is clear here that we cannot
conclude that, because F∞(x, t) = 0 for t < ∞, the conditioned process is the
Ornstein–Uhlenbeck process itself.
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Figure 1. Sample paths {xt}T
t=0 of the Ornstein–Uhlenbeck

process conditioned on the final point XT = aT for T ∈
{10, 20, 30, 40, 50}. Parameters: γ = 1, σ = 1, a = 1. Black
curves highlight one of five sample paths generated for each T .
The conditioning mostly affects, as clearly seen, the dynamics
only near the final time T , over a constant timescale, inferred
from (107), to be roughly given by 1/γ

This boundary behavior of the conditioning will be discussed later. Inter-
estingly, this behavior does not arise for the Wiener motion, obtained with
γ = 0 and σ = 1. In this case, the conditioned process is

dXt = −Xt − Ta

T − t
dt + dWt (109)

and converges to
dXt = adt + dWt (110)

in the limit T → ∞. Thus, the conditioning XT = aT is effected by an added
drift a, which affects the dynamics of the process over the complete interval
[0, T ].

We return at this point to our original problem of representing in terms
of a conservative Markov process the microcanonical path measure P

micro
a,μ0,T

associated with the large deviation conditioning Xt|AT = a. Following the
preceding examples, the obvious question arises as to whether this measure
can be obtained from a ‘normal’ Doob transform involving a suitably chosen
function h. The answer is, no, for essentially two reasons:

• Since AT depends on the whole time interval [0, T ] and not, as in the exam-
ples above, on a ‘punctual’ random time τ ≤ T or a deterministic time T ,
the weighting function associated with the large deviation conditioning (40)
cannot be expressed exactly as in (93) or (99). What must be considered for
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this type of conditioning is an approximate and asymptotic form of equiva-
lence, which essentially neglects the boundary terms h(X0) and h(XT ), as
well as sub-exponential terms in T .

• There does not seem to be a way to prove the equivalence of the micro-
canonical path measure with a Markov measure starting directly from the
definitions of the former measure, the associated weighing function, and the
conditioning observable AT . Here, we prove this equivalence indirectly via
the use of the canonical path measure.

These points are discussed in more detail in the next section.

5. Driven Markov Process

We now come to the main point of this paper, which is to define a Markov
process via the generalized Doob transform and prove its asymptotic equiva-
lence with the conditioned process Xt|AT = a. This equivalence is obtained, as
just mentioned, by first proving the asymptotic equivalence of the path mea-
sure of the driven process with the canonical path measure, and by then prov-
ing the equivalence of the latter measure with the microcanonical path measure
using known results about ensemble equivalence. Following these results, we
discuss interesting properties of the driven process related to its reversibility
and constraints satisfied by its transition rates (in the case of jump processes)
or drift (in the case of diffusions). Some of these properties were announced
in [72]; here, we provide their full proofs in addition to deriving new results
concerning the reversibility of the driven process. Our main contribution is
to treat the equivalence of the canonical and microcanonical path ensembles
explicitly and derive conditions for this equivalence to hold. In previous works,
the conditioned process is often assumed to be equivalent to the driven process
and, in some cases, wrongly interpreted as the canonical path ensemble.

5.1. Definition

We define the driven process Yt by applying the generalized Doob transform to
the generator Lk of the non-conservative process considered in Sect. 3, using
for h the right eigenfunction rk, which is strictly positive on E by Perron–
Frobenius. We denote the resulting generator of Yt by Lk, so that in the nota-
tion of the generalized Doob transform (75), we have

Lk ≡ Lrk

k = r−1
k Lkrk − r−1

k (Lkrk). (111)

Although the tilted generator Lk is not conservative, Lk is since (Lk1) = 0.
Moreover, we infer from (73) that the path measure of this new process is
related to the path measure of the non-conservative process by

dPLk,μ0,T

dPLk,μ0,T
= r−1

k (X0) e−TΛk rk(XT ), (112)
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which means, using (44), that it is related to the path measure of the original
(conservative) process by

dPLk,μ0,T

dPL,μ0,T
=

dPLk,μ0,T

dPLk,μ0,T

dPLk,μ0,T

dPL,μ0,T
= r−1

k (X0) e−TΛk ekTAT rk(XT ). (113)

The existence and form of Lk is the main result of this paper. Follow-
ing the expressions of the tilted generator (46) and (48), Lk can also be re-
expressed as

Lk = r−1
k Lk|f=0 rk + kf − Λk (114)

to make the dependence on f more explicit. We deduce from (46) and this
result that the driven process associated with a pure jump process remains a
pure jump process described by the modified rates

Wk(x,dy) = r−1
k (x)W (x,dy) ekg(x,y) rk(y) (115)

for all (x, y) ∈ E2. For a pure diffusion Xt described by the SDE (26), the driven
process Yt is a diffusion with the same noise as Xt, but with the following
modified drift:

Fk = F + D(kg + ∇ ln rk). (116)
The proof of this result follows by explicitly calculating

h−1Lkh = F̂ · (∇ + kg + ∇ ln h) +
1
2
(∇ + kg + ∇ ln h)

×D(∇ + kg + ∇ ln h) + kf (117)

for h > 0 on E , so as to obtain

Lh
k = F̂ · ∇ +

1
2
∇D∇ + (kg + ∇ ln h)D∇ = L + (kg + ∇ ln h)D∇. (118)

Applying this formula to h = rk > 0, we obtain from (27) that Lk is the
generator of a diffusion with the same diffusion fields σα as Xt, but with
the modified drift given in (116). Note that this result carries an implicit
dependence (via rk) on the two functions f and g defining the observable AT ,
in addition to the explicit dependence on g.

5.2. Equivalence with the Canonical Path Ensemble

The relations (41), (44) and (113) lead together to

dPLk,μ0,T

dPcano
k,μ0,T

=
dPLk,μ0,T

dPL,μ0,T

dPL,μ0,T

dPcano
k,μ0,T

= r−1
k (X0)rk(XT ) e−TΛk Eμ0 [e

kTAT ]. (119)

From the limit (56) associating the SCGF with Λk, we therefore obtain

lim
T→∞

1
T

ln
dPLk,μ0,T

dPcano
k,μ0,T

(ω) = 0 (120)

for all paths, which shows that the path measure of the driven process is asymp-
totically equivalent to the canonical path measure. This means, as explained
before, that the two path measures are logarithmically equivalent,

dPLrk
k ,μ0,T � dPcano

k,μ0,T , (121)



2032 R. Chetrite and H. Touchette Ann. Henri Poincaré

so that, although they are not equal, their differences are sub-exponential in
T for almost all paths.

From this result, it is possible to show, with additional conditions, that
the typical values of observables satisfying LDPs with respect to these measures
are the same.8 However, because of the specific form of the canonical path
ensemble, we can actually prove a stronger form of equivalence between this
path measure and that of the driven process, which implies not only that
observables have the same typical values, but also the same large deviations.

This strong form of equivalence follows by noting that the canonical path
ensemble represents a time-dependent Markov process. This is an important
result, which does not seem to have been noticed before. The meaning of
this is that, despite the global normalization factor Eμ0 [e

kTAT ], the canonical
measure defined in (41) is the path measure of a non-homogeneous Markov
process characterized by a time-dependent generator, denoted by Lcano

k,t,T .9 The
derivation of this generator is presented in Appendix D; the result is

Lcano
k,t,T ≡ Lht,T

k = h−1
t,T Lk ht,T − h−1

t,T (Lkht,T ) (122)

for all t ∈ [0, T ], where

ht,T (x) = (e(T−t)Lk1)(x) (123)

is space–time harmonic with respect to Lk (see Appendix D). Thus, we see
that the canonical measure is the generalized Doob transform of Lk obtained
with a time-dependent function ht,T involving Lk itself. At the level of path
measures, we then have

dPcano
k,μ0,T = dPLcano

k,·,T ,μ0,T , (124)

a result which should be understood in the sense of (16), with L replaced by
the time-dependent generator Lcano

k,t,T and the normal exponential replaced by
a time-ordered exponential [109].

To relate this result to the driven process, note that (e(T−t)Lk1) becomes
proportional to rk as T → ∞, so that

lim
T→∞

Lcano
k,t,T = (Lk)rk ≡ Lk. (125)

Thus, although the process described by dPcano
k,μ0,T over the time interval [0, T ]

is non-homogeneous for T < ∞, it becomes homogeneous inside this time
interval as the final time T diverges. Moreover, it converges in this limit to
the driven process itself, which is by definition a homogeneous process. This
holds for all t ∈ [0, T [ in the limit T → ∞; for the final time t = T , we obtain
instead

lim
T→∞

Lcano
k,T,T = Lk − (Lk1). (126)

8 H. Touchette, in preparation, 2014.
9 Time-dependent generators arise when considering probability kernels P t

s that depend on
the times s and t between two transitions, and not just the time difference t−s, as considered
in (8).
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Consequently, the convergence of the canonical process toward the driven
process applies only in [0, T [; at the boundary of this time interval, the canoni-
cal process converges to a different homogeneous process with generator (126).
This explains from the point of view of generators why we obtain two different
limits for the marginal canonical density at t < T and t = T , as seen in Sect. 3.

This difference between the ‘interior’ (or ‘bulk’) and ‘boundary’ regimes of
a process is an important feature of our theory. In a sense, this theory can only
characterize the ‘interior’ of a process (exponentially tilted or conditioned),
since we push the boundary to infinity, so to speak, and consider large deviation
events that arise entirely from the ‘interior’ regime. Given that the canonical
and driven processes are the same in this ‘interior’ regime, the large deviations
of AT or any other observable satisfying an LDP must therefore also be the
same for both processes.

To be more precise, consider an observable BT and assume that this
observable satisfies an LDP with respect to the canonical path measure with
rate function

Ik(b) ≡ lim
T→∞

− 1
T

lnP
cano
k,μ0,T {BT ∈ [b, b + db]}. (127)

Let us write this LDP as

Ik(b) = lim
T→∞

lim
ε→0+

− 1
T

lnP
cano
k,μ0,T {B(1−ε)T ∈ [b, b + db]}. (128)

If we assume that the fluctuations of BT arise from the combined effect of
canonical fluctuations of Xt over the whole interval [0, T ] and not just the end
interval [(1 − ε)T, T ], we can invert the limits on T and ε to obtain

Ik(b) = lim
ε→0+

lim
T→∞

− 1
T

lnP
cano
k,μ0,T {B(1−ε)T ∈ db}

= lim
ε→0+

lim
T→∞

− 1
T

ln P
cano
k,μ0,T

∣∣
[0,(1−ε)T ]

{B(1−ε)T ∈ db}, (129)

where P
cano
k,μ0,T |[0,(1−ε)T ] represents the projection of P

cano
k,μ0,T on [0, (1 − ε)T ],

which is different in general from P
cano
k,μ0,(1−ε)T . We know from our discussion

above that this projection converges in the limit T → ∞ to the path measure
of the driven process. If we further assume that this convergence carries over
to B(1−ε)T , we can then write

Ik(b) = lim
ε→0+

lim
T→∞

− 1
T

lnPLk,μ0{B(1−ε)T ∈ db}

= lim
ε→0+

(1 − ε) lim
T→∞

− 1
(1 − ε)T

lnPLk,μ0{B(1−ε)T ∈ db}

= lim
T→∞

− 1
T

lnPLk,μ0{BT ∈ db}. (130)

Consequently, the LDP for BT in the canonical path ensemble implies an LDP
for this random variable with respect the driven process with the same rate
function.

This reasoning is valid, as stressed above, if the large deviations of BT

and B(1−ε)T are the same in the canonical path ensemble, that is, if these
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large deviations arise from the ‘interior’ part of the measure and not from
the boundary interval [(1 − ε)T, T ]. In most cases of interest, this is verified,
although there are pathological cases for which the large deviations actually
arise at the boundary. The asymptotic limit of the Ornstein–Uhlenbeck process
with XT = aT , discussed in Sect. 4, is such a case, which we will come back
to in Sect. 6.

5.3. Equivalence with the Microcanonical Path Ensemble

We now come back to the problem of characterizing Xt|AT = a as a Markov
process by showing that the canonical and microcanonical path measures are
asymptotically equivalent. This second level of equivalence is weaker than the
equivalence between the canonical path measure and the driven process, for
the simple reason that the microcanonical and canonical path measures have
different supports. Moreover, the fact that AT does not fluctuate in the micro-
canonical path ensemble (by definition of the conditioning) but does, generally,
in the canonical path ensemble shows that the large deviation properties of
observables cannot be the same in general in both ensembles. However—and
this is the crucial observation for the problem of conditioning—they can have
the same typical values of observables, under conditions related to the convex-
ity of the rate function I(a) [105,132]. Moreover, the same conditions imply
that the microcanonical and canonical path measures are asymptotically equiv-
alent in the logarithmic sense. We discuss each of these levels of equivalence
next, beginning with the level based on typical values.

As before, we assume that the conditioning observable AT satisfies the
LDP with respect to the path measure PL,μ0,T of the reference process Xt

with rate function I(a). We then consider an observable BT and assume that
it satisfies an LDP with respect to the microcanonical path measure P

micro
a,μ0,T

with rate function Ja, as well as an LDP with respect to the canonical path
measure P

cano
k,μ0,T with rate function Jk. We denote the set of global minima of

Ja by Ba and the global minima of Jk by Bk. Since rate functions vanish at
their global minimizers [50,99], we can also write

Ba = {b : Ja(b) = 0}, Bk = {b : Jk(b) = 0}. (131)

These zeros are called concentration points in large deviation theory [50], since
they correspond to the values of BT at which the microcanonical or canonical
measure does not decay exponentially with T . If these sets are singleton sets,
then their unique element correspond to the typical value of BT in the sense
of the ergodic theorem [50,99]. For example, if Ba = {b∗} for a given value
a of AT , then BT → b∗ as T → ∞ with probability 1 with respect to the
microcanonical path measure P

micro
a,μ0,T . A similar result can obviously be stated

for the canonical ensemble.
The equivalence problem in this context is to determine pairs (a, k) for

which Ba = Bk. Such pairs turn out to be determined by the convexity prop-
erties of I(a). Denote by ∂I(a) the subdifferential of I at a. Except possibly
at boundary points, I is convex at a if ∂I(a) 
= ∅, and is conversely nonconvex
at a if ∂I(a) = ∅ [133]. With these notations, we have [105,132]:
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• If I convex at a, then Ba = Bk for all k ∈ ∂I(a).
• If I is nonconvex at a, then Ba ∩ Bk = ∅ for all k ∈ R. Thus, in this case,

there is no k ∈ R such that Ba = Bk.

The proof of these results, found in [105], relies on the following general rela-
tionship between the rate functions Jk and Ja, which comes directly from the
definitions of the microcanonical and canonical ensembles:

Jk(b) = inf
a

{Ja(b) + I(a) + Λk − ka}. (132)

The idea of the proof is to relate the zeros of the two sides of (132), which
define Bk and Ba, by noting that I(a) ≥ ka − Λk with equality if and only if
I(a) is convex; see [105,132] for details.

A remarkable property of the microcanonical and canonical measures is
that the convexity of I(a) not only determines the equality of Ba and Bk for
general observables, but also the logarithmic equivalence of these measures.
This brings us to the second level of equivalence, expressed by the following
results:

• If I is convex at a, then for all k ∈ ∂I(a),

lim
T→∞

1
T

ln
dPmicro

a,μ0,T

dPcano
k,μ0,T

(ω) = 0, (133)

almost everywhere with respect to P
micro
a,μ0,T and P

cano
k,μ0,T .

• If I is nonconvex at a, then there is no k ∈ R for which the limit above
vanishes.

The proof of these results also follows from the definitions of the microcanonical
and canonical measures; see [105].

Our problem of large deviation conditioning can now be solved by linking
all the results that we have obtained. To recapitulate:

1. Driven–Canonical Measure Equivalence: Assuming the existence of Λk, lk,
and rk, that the conditions (51) and (52) are satisfied, and that the spec-
trum of Lk has a gap, we have that the driven process obtained from the
generalized Doob transform (111) is such that

dPLk,μ,T � dPcano
k,μ0,T . (134)

2. Driven–Canonical Observable Equivalence: Any observable BT satisfying
an LDP with respect to the canonical path measure also satisfies an LDP
with respect to the law of the driven process with the same rate function,
provided that these LDPs are not related to boundary effects. In this case,
the large deviations—and by consequence the concentration points—of BT

are the same for both the canonical and driven processes.
3. Canonical–Microcanonical Measure Equivalence: If I(a) is convex, then

dPcano
k,μ0,T (ω) � dPmicro

a,μ0,T (ω) (135)

for all k ∈ ∂I(a), almost everywhere with respect to both measures.



2036 R. Chetrite and H. Touchette Ann. Henri Poincaré

4. Canonical–Microcanonical Observable Equivalence: BT has in general dif-
ferent rate functions in the canonical and microcanonical path ensembles;
however, its concentration points are the same in both ensembles when I(a)
is convex.10

We reach two conclusions from these results. The first, obtained by com-
bining (134) and (135), is that if I is convex at the conditioning value a, then

dPmicro
a,μ0,T (ω) � dPLk,μ,T (ω) (136)

almost everywhere with respect to both measures for all k ∈ ∂I(a). At the
level of processes, we therefore write

Xt|AT = a ∼= Yt, (137)

where Yt is the driven process with generator Lk such that k ∈ ∂I(a). The
second conclusion, obtained from the points 2 and 4 above, is that Xt|AT =
a and Yt have the same typical values of observables, provided that these
observables concentrate in a large deviation sense in the long-time limit and
that k ∈ ∂I(a). It is in this sense that we say that the conditioned process
Xt|AT = a is realized or represented by the driven process Yt: the two processes
may (and will in general) have different fluctuation properties, but they have
the same typical or concentration properties in the stationary limit when I(a) is
convex. In a more physical but looser sense, we can picture them as describing
the same long-time stochastic dynamics.

The next subsections discuss further properties of the driven process play-
ing an important role for describing nonequilibrium systems. We list next
several remarks that relate more specifically to its equivalence with the condi-
tioned process:

• If AT has a unique concentration point a∗, then it should be expected that

Xt|AT = a∗ ∼= Xt, (138)

since AT → a∗ in the limit T → ∞, so that this value is ‘naturally’ realized
by Xt. This follows from our results by noting that 0 ∈ ∂I(a∗), Λ0 = 0 and
r0 = 1 up to a constant, so that Lk=0 = L in general, and Fk=0 = F for
diffusions. Hence, conditioning on a typical value of the process does not
modify it in the asymptotic limit.

• The conditioning AT = a is realized by the driven process as a typical value
of AT in the stationary limit. That is, AT → a as T → ∞ with probability
1 with respect to the law of Yt. This follows simply by taking BT = AT .

• The equivalence of Ba and Bk also implies, in the case where these sets are
singleton sets, that bounded functions C(BT ) have the same expectation in
the driven and conditioned processes as T → ∞. In other words, equivalence
of concentration points also implies, in the case of unique concentration
points, equality of expectations.

10 Equilibrium systems also have, in general, different fluctuations in the microcanonical
and canonical ensembles, but have the same equilibrium states when the two ensembles are
equivalent.



Vol. 16 (2015) Nonequilibrium Markov Processes 2037

• If I(a) is convex and differentiable, then ∂I(a) = {I ′(a)}, so that the value k
achieving equivalence is given by k = I ′(a). In the case where I(a) is strictly
convex, we also have by Legendre duality that k is such that Λ′

k = a [50].
These results are large deviation analogs of the thermodynamic relations
connecting, respectively, the temperature with the derivative of the entropy
and the energy with the derivative of the free energy [50].

• Since equivalence is for all k ∈ ∂I(a), there is possibly more than one driven
process realizing the typical states of a conditioned process. This interesting
result should arise whenever I(a) has exposed (convex) corners at which
∂I(a) is not a singleton; see [134] for an example.

• Conversely to the above remark, there can be conditionings Xt|AT = a
that admit no driven process if I is nonconvex at a. We conjecture that
such a case of nonequivalent processes arises whenever Xt is not ergodic and
switch between ‘phases’ that cannot be represented by a single, homogeneous
Markov process.

• The driven process is a priori not unique: since boundary terms in path
measures are negligible at the level of the logarithmic equivalence, one could
apply an extra generalized Doob transform to Lk by choosing a function
h > 0 such that (Lkh) = 0. From the definition (111) of Lk, this is equivalent
to (Lkrkh) = Λkrkh. Since Λk is non-degenerate, h must therefore be a
multiplicative constant having no effect on the driven process.

• In the case of diffusions with constant noise power σ(x) = σ, the low-noise
limit σ → 0 yields for the driven process a deterministic differential equation
for the (unique) fluctuation path characterizing the conditioning AT = a.
This can be used to recover known results from the Freidlin–Wentzell theory
of fluctuation paths and instantons for noise-perturbed SDEs [51].

• The conditions leading to the equivalence of Xt|AT = a and Yt prevent
many processes from being treated within our theory. Examples include Lévy
processes for which there are in general no LDPs (I(a) = 0 everywhere
or Λk = ∞), processes for which the LDP for AT may have a scaling or
‘speed’ in T different from T , as illustrated in the next section, in addition
to processes with ‘condensation’ transitions for which either Λk → ∞, Lk is
gapless or the condition (52) is not satisfied; see [64,135–137] for examples.

5.4. Invariant Density

The driven process has an invariant density on E corresponding to

ρk(x) = lk(x)rk(x), (139)

which is normalized following (51). This is proved directly from the definition
(111) of the generator of the driven process, whose dual is

L†
k = rkL†

kr−1
k − r−1

k (Lkrk), (140)

so that

(L†
klkrk) = rk(L†

klk) − lk(Lkrk) = Λklkrk − Λklkrk = 0. (141)
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If the driven process is ergodic, this invariant density is also the (unique)
stationary density, in the sense that

ρk(y) = lim
t→∞ lim

T→∞

∫

E
dPLk,μ0,T (ω) δ(Yt(ω) − y) (142)

and

ρk(y) = lim
T→∞

∫

E
dPLk,μ0,T (ω) δ(YT (ω) − y). (143)

In this case, the stationary density is therefore the same independently of the
time interval [0, T ] considered, contrary to the canonical ensemble measure
which gives two different results for the two limit above; see again (62) and
(63).

Note that if the original process Xt is ergodic with invariant density ρinv,
then ρk=0 = ρinv because l0 = ρinv and rk = 1. Moreover, if Lk is self-dual
(hermitian), then lk = rk ≡ ψk so that ρk = ψ2

k, in a clear analogy with
quantum mechanics.

5.5. Reversibility Properties

It is interesting physically to describe the class of conditioning observables AT

for which the driven process is either reversible (equilibrium) or non-reversible
(nonequilibrium). We study this problem here by deriving a functional equa-
tion involving f and g, whose solution provides a necessary and sufficient
condition for ρk to be a reversible stationary density. This equation is hard
to solve in general; a simpler form is obtained by assuming that the reference
Markov process Xt is reversible, which leads us to study the following ques-
tion: Under what conditioning is the driven process Yt reversible given that
Xt is reversible?

To answer this question, we first consider pure jump processes. For all
(x, y) ∈ E2, the relation (115) for the driven transition rates implies

Wk(x, y)
Wk(y, x)

=
(

rk(y)
rk(x)

)2
W (x, y)
W (y, x)

ek[g(x,y)−g(y,x)]. (144)

Therefore, the driven process is reversible with respect to its invariant density
ρk if and only if the ratio above can be written as ρk(y)/ρk(x), which yields,
with the expression of ρk shown in (139), a non-trivial functional equation for
f and g.

We can simplify this equation by assuming that the reference process is
reversible, as in (25). The ratio (144) then becomes

Wk(x, y)
Wk(y, x)

=
(

rk(y)
rk(x)

)2
ρinv(y)
ρinv(x)

ek[g(x,y)−g(y,x)]. (145)

For the driven process to remain reversible, it is thus sufficient that there exists
a ‘potential’ function h on E such that

g(x, y) − g(y, x) = h(y) − h(x) (146)

for all (x, y) ∈ E2. In this case, we also have, if the invariant density ρk of the
driven process is unique, that ρk is proportional to r2

kρinve
kh. This condition on
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g is verified, in particular, if g is symmetric, g(x, y) = g(y, x).11 Accordingly,
conditioning observables AT , such as the activity, which depend on the jumps
of Xt, but not on the ‘direction’ of these jumps, do not modify the reversibility
of Xt. The same is true if AT does not depend on the jumps of the process,
that is, if g = 0 and the conditioning only involves an integral of f(Xt) in
time.

These results translate for diffusions as follows. The driven process is
reversible with respect to the invariant density ρk if and only if its modified
drift

F̂k = F̂ + D(kg + ∇ ln rk), (147)
obtained from (80) satisfies

F̂k =
D

2
∇ ln ρk, (148)

which is equivalent to

F̂ + D

(
kg +

1
2
∇

(
ln

rk

lk

))
= 0. (149)

This is a functional equation involving f and g, via rk and lk, which is also
difficult to solve in general. We can simplify it, as before, by assuming that
the reference process Xt is reversible with respect to ρinv, as in (31), in which
case

F̂k =
D

2
∇ ln(ρinvr

2
k) + Dkg. (150)

A particular solution of this equation is obtained if g is gradient, g = ∇h/2.
Then the driven diffusion is a reversible diffusion with respect to the invariant
density ρk, which is moreover proportional to r2

kρinve
kh. In particular, if g = 0

and D is constant, then the driven process is a reversible diffusion with drift
given by

Fk = F + D∇ ln rk. (151)
We thus see for diffusions that conditioning observables AT that do not depend
on the transitions of Xt (g = 0) or depend on these transitions but via a
gradient perturbation g do not modify the reversibility of Xt.

5.6. Identities and Constraints

It was found in [138–140] that the driven process admits in many cases certain
invariant quantities that constrain its transition rates. These constraints arise
very generally and very simply from our results. From (115), we can write

Wk(x,dy)W (y,dx) = rk(x)−2 Wk(y,dx)W (x,dy) rk(y)2 ek[g(x,y)−g(y,x)]

Wk(x,dy)Wk(y,dx) = W (x,dy)W (y,dx) ek[g(x,y)+g(y,x)], (152)

which are the most general identities that can be obtained for the transition
rates of the driven process. If g is a symmetric function, they reduce to

Wk(x,dy)W (y,dx) = rk(x)−2 Wk(y,dx)W (x,dy) rk(y)2, , (153)

11 This sightly corrects the claim made in [64] that the driven process is reversible ‘only if
the bias is also time-reversal symmetric: g(x, y) = g(y, x)’.
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whereas if g is antisymmetric or g = 0, we find

Wk(x,dy)Wk(y,dx) = W (x,dy)W (y,dx) (154)

for all (x, y) ∈ E2. The latter result is referred to in [138,140] as the ‘product
constraint’. An example of symmetric observable is the so-called activity, which
is proportional to the number of jumps occurring in a jump process, whereas
an example of antisymmetric observable is the current, which assigns opposite
signs to a jump and its reversal.

These constraints on the transition rates also imply constraints on the
escape rate λ = (W1) of a jump process. Integrating (115) with respect to y,
keeping in mind that rk is the right eigenfunction of Lk associated with Λk, we
obtain the following relation between the escape rates of the reference process
and those of the driven process:

λk(x) = λ(x) − kf(x) + Λk. (155)

In the case f = 0, this yields

λk(x) = λ(x) + Λk (156)

for all x ∈ E , which implies

λk(x) − λk(y) = λ(x) − λ(y) (157)

for all x ∈ E , a result referred to as the ‘exit rate constraint’ in [138,140].
Diffusive analogs of these constraints can be derived from our results. In

the case where the covariance matrix D is invertible, (116) implies by taking
its exterior derivative that

d
(
D−1Fk − D−1F − kg

)
= 0, (158)

where all vectors are interpreted as 1-forms. We conclude from this result that
the 1-form associated with D−1Fk − D−1F − kg is closed. In two and three
dimensions, this implies that

∇ × (D−1Fk) = ∇ × (D−1F ) + k∇ × g (159)

and thus
∇ × (D−1Fk) = ∇ × (D−1F ) (160)

if g is gradient. For diffusions on the circle, (158) only implies that Fk −F −kg
is the derivative of a periodic function.12

These results can be interpreted physically as circulation constraints,
showing that the non-reversibility of the driven process, measured by the cir-
culation of its drift, is directly related to the non-reversibility of the refer-
ence process and the non-gradient character of g. This connection with non-
reversible dynamics can be emphasized slightly by rewriting (159) in terms of
the stationary probability current, defined by

Jρinv = F̂ ρinv − D

2
∇ρinv, (161)

12 Periodic functions on the circle are not necessarily the derivative of periodic functions:
consider, for example, the constant function.
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or the so-called probability velocity

Vρinv ≡ Jρinv

ρinv
= F̂ − D

2
∇ ln ρinv. (162)

Both vector fields are zero for reversible (equilibrium) diffusions. In terms of
V , we then obtain

∇ × (D−1Vρk
) = ∇ × (D−1Vρinv) + k∇ × g, (163)

where Vρk
is the probability velocity of the driven process with invariant den-

sity ρk. A similar result applies in higher dimensions by replacing the rotational
with the exterior derivative.

6. Applications

We study in this section three applications of our results for Brownian motion,
the Ornstein–Uhlenbeck process, and the problem of quasi-stationary distribu-
tions. The applications are simple: they are there only to illustrate the different
steps needed to obtain the driven process and the effect of boundary dynam-
ics. In the case of quasi-stationary distributions, we also want to show how our
results recover known results obtained by a different approach.

For more complex applications involving many-particle dynamics, such
as the totally asymmetric exclusion process and the zero-range process, see
[64,136,141–143]. Applications for diffusions can be found in [139,144], whereas
applications for quantum systems can be found in [67–71]. One interesting
aspect of many-particle dynamics is that current-type conditionings have the
generic effect of producing long-range interactions between particles at the
level of the stationary distribution of the driven process [55,64,141–143].

In future publications, we will discuss in more detail some of the connec-
tions mentioned in the introduction, in particular those relating to conditional
limit theorems and optimal control theory, in addition to tackling other appli-
cations of our results, including the case of diffusions conditioned on occupa-
tion measures,13 which is relevant for studying metastable states and quasi-
stationary distributions. We will also study the low-noise (Freidlin–Wentzell)
large deviation limit [51], and develop numerical techniques for obtaining the
spectral elements used to construct the driven process.

6.1. Extensive Brownian Bridge

We revisit Example 3 about the Wiener process conditioned on reaching the
point XT = aT . This observable is a particular case of AT obtained with f = 0,
g = 1, and X0 = 0.

From the Gaussian propagator of the Wiener process, we find

Px{XT /T ∈ [a, a + da]} � e−TI(a)da, (164)

13 F. Angeletti, H. Touchette, in preparation, 2014.
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with I(a) = a2/2, as well as

lim
T→∞

1
T

lnEx[ekXT ] =
k2

2
. (165)

The latter result is equal to the dominant eigenvalue Λk, as can be verified
from the expression of the tilted generator

Lk =
1
2

(
d
dx

+ k

)2

=
1
2

d2

dx2
+ k

d
dx

+
k2

2
, (166)

obtained from (48). In fact, in this case, we have rk(x) = lk(x) = 1. From (116),
we thus find that the drift of the driven process, equivalent to the conditioned
process, is Fk = k. To re-express this drift as a function of the conditioning
XT /T = a, we use I ′(a) = a = k to obtain Fk(a) = a. This shows that the
process equivalent to the Brownian motion conditioned with XT = aT is the
drifted Brownian motion WT +at, as found previously in (110). Equivalence is
for all a ∈ R, since I(a) is convex. Moreover, since the typical value of XT /T
is 0, we have Xt|XT = 0 ∼= Xt; that is, the Brownian bridge for T → ∞ is
asymptotically equivalent to the Wiener process.

There is a subtlety involved in this calculation, in that rk = lk = 1 are
not normalizable. To circumvent this problem, it seems possible to consider
the problem on a compact domain of E = R, such as the interval [−�, �], to
obtain a gapped spectrum with normalizable eigenfunctions, and then take the
limit � → ∞. This is a common procedure used in physics—for example, in
quantum mechanics to deal with the free particle.

6.2. Ornstein–Uhlenbeck Process

Consider the Ornstein–Uhlenbeck process, defined in (103), with the condi-
tioning observable

AT =
1
T

∫ T

0

Xt dt, (167)

which corresponds to the choice f(x) = x and g = 0. The spectral elements
of this observable are easily found to be rk(x) = ekx/γ and Λk = σ2k2/(2γ2).
From the expression of rk and (116), we then find that the effective drift of
the driven process is

Fk(x) = −γx +
σ2k

γ
. (168)

With the rate function

I(a) = sup
k

{ka − Λk} =
γ2a2

2σ2
, (169)

we then find
Fk(a)(x) = −γx +

a

γ
. (170)

Hence, the conditioning only adds a constant drift to the process, which ensures
that XT /T → a as T → ∞. Naturally, since the typical value of AT is 0 in
the original Ornstein–Uhlenbeck process, conditioning on XT /T = 0 yields the
same process with Fk=0(x) = −γx.



Vol. 16 (2015) Nonequilibrium Markov Processes 2043

If instead of choosing the linear observable (167), we choose

AT =
1
T

∫ T

0

X2
t dt, (171)

the same steps can be followed to obtain

Fk(a)(x) = −σ2

2a
x. (172)

In this case, the conditioning keeps the linear force of the Ornstein–Uhlenbeck
process, but changes its friction coefficient to match the variance of the process
with the value of AT .

To close this example, let us revisit the conditioning AT = XT /T =
a, studied in Example 3, which corresponds to the choice f = 0 and g =
1. We know from our previous discussion of this example that the driven
process cannot describe this conditioning, because the latter does not affect
the ‘interior’ dynamics of the process in the asymptotic limit T → ∞. Let us
see how this arises in our theory. From the exact form of the propagator (104),
we find that

P{XT /T ∈ [a, a + da]} � e−T 2γa2/σ2
, (173)

so that I(a) = ∞ if we take the large deviation limit with the scale T , as in
(37). In this case, we can formally take Λk = 0 and rk(x) = e−kx for the spec-
tral elements, which is consistent with I(a) = ∞, to obtain Fk(a)(x) = −γx.
This, as we know from Example 3, is the correct interior dynamics produced by
the conditioning, but it is not the complete dynamics that actually realizes the
conditioning. The problem here is that the large deviation is a boundary effect
in time—it can be seen, physically, as a temporal analog of a ‘condensation’—
which prevents us from exchanging the two limits in (129). Consequently,
though we can formally define the driven process, it is not equivalent to the
conditioned process.

6.3. Quasi-stationary Distributions

A classical problem in the theory of absorbing processes and quasi-stationary
distributions is to condition a Markov chain never to escape from some subset
of its state space. We want to briefly show in this subsection that the solution
of this problem, obtained classically by defining a new Markov chain restricted
on the subset of interest [15], can be recovered from our results (summarized
for Markov chains in Appendix E) by taking the limit k → ∞.

To define the problem, let {Xi}∞
i=0 be a Markov chain with homogeneous

transition matrix M . For a subset E1 of E , we consider the conditioning event

B = {τ1 > N}, (174)

where τ1 is the exit time from E1 defined by

τ1 = inf{n : Xn /∈ E1}, (175)

assuming X0 ∈ E1. This means that we are conditioning the Markov chain on
leaving E1 (or on being ‘killed’ outside E1) only after the time N .
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Within our theory, this conditioning is effected by considering the observ-
able

AN =
1
N

N−1∑

i=0

1E1(Xi), (176)

or its symmetrized version

A′
N =

1
N

N−1∑

i=0

1E1(Xi) + 1E1(Xi+1)
2

(177)

for which we have 1B = 1AN+1=1 = 1A′
N=1. The second observable leads to

the tilted matrix

Mk(x, y) ≡ M(x, y) exp
[
k

2
(1E1(x) + 1E1(y))

]
. (178)

Given the conditioning A′
N = 1, we must then choose k ∈ ∂I(1), where I is

the rate function of A′
N . The form of ∂I(1) depends in general on the Markov

chain considered. However, we always have ∞ ∈ ∂I(1), since I is defined on
[0, 1], so that the conditioning can be achieved in general by taking the limit
k → ∞.

To see that this limit recovers the correct result, define the matrix

M ′(x, y) ≡ lim
k→∞

e−kMk(x, y). (179)

Then,

M ′(x, y) = M(x, y)1E1(x)1E1(y) =
{

M(x, y) x, y ∈ E1

0 otherwise (180)

represents the restriction of the Markov chain on E1. Denoting by λ′ the dom-
inant eigenvalue of M ′ and by r′ its associated right eigenvector, we infer

λ′ = lim
k→∞

e−kΛk, r′ = lim
k→∞

rk, (181)

where Λk and rk are the corresponding elements of Mk.
According to our theory, the effective Markov chain resulting from the

asymptotic conditioning A′
N = a is given by the generalized Doob transform

Mk(x, y) =
1

Λkrk(x)
Mk(x, y)rk(y). (182)

Taking the limit, we then obtain

lim
k→∞

Mk =
1

λ′r′ M
′r′, (183)

which is the known result characterizing a Markov chain conditioned on eter-
nally staying in E1 [15]. In this context, it can be proved that

ln λ′ = lim
N→∞

1
N

lnPx,M,N{τ1 > N}, (184)

where X0 = x ∈ E1, so that λ′ represents the survival rate at which the chain
stays in E1, while the left eigenvector

l′(y) = lim
N→∞

Px,M,N{XN = y|τ1 > N} (185)
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represents the quasi-stationary density of the chain as it stays in E1. This last
result corresponds to our result (62), and is known as the Yaglom limit of the
process [15]. Taking the distribution at a time n < N before the conditioning,
we obtain instead

l′(y)r′(y) = lim
n→∞ lim

N→∞
Px,M,N{Xn = y|τ1 > N}, (186)

in agreement with (63).
For recent surveys on quasi-stationary distributions, see [14–16]; for appli-

cations in the context of large deviations, see [145,146]; finally, see Bauer and
Cornu [147] for a study of the effect of quasi-stationary conditioning on cycle
affinities of finite-state jump processes.
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Appendix A. Derivation of the Tilted Generator

A.1. Pure Jump Processes

To derive the form of the tilted generator Lk in the case of jump processes, we
consider the conservative Markov generator Gk defined by

(Gkh)(x) =
∫

E
W (x,dy) ekg(x,y) [h(y) − h(x)] (187)

for all x ∈ E . This generator is only a normalization factor away from Lk, since

Gk = Lk − (Lk1), (188)

which means that Gk and Lk differ only in their diagonal elements.
The process described by Gk is a jump process with transition rates

W (x,dy)ekg(x,y). The fact that ekg(x,y) is strictly positive implies that the
measure W (x,dy)ekg(x,y) and the original measure W (x,dy) are absolutely
continuous, which only means in this context that the Gk and L processes
have the same set of allowed jumps x → y. In this case, we can use Girsanov’s
Theorem, as applied to jump processes [76], to obtain the Radon–Nikodym of
the paths measure of the Gk process with respect to the path measure of the
L process:
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dPGk,μ0,T

dPL,μ0,T
(ω)

= exp

⎛

⎝k
∑

0≤t≤T :ΔXt �=0

g(Xt− ,Xt+) −
∫ T

0

dt [(Wekg1) − (W1)](Xt)

⎞

⎠ .

(189)

Combining this result with the Feynman–Kac formula, we then arrive at

dPLk,μ0,T

dPL,μ0T
=

dPLk,μ0,T

dPGk,μ0,T

dPGk,μ0,T

dPL,μ0,T

= exp

⎛

⎝k
∑

ΔXt �=0

g(Xt− ,Xt+) −
∫ T

0

dt [(Wekg1) − (W1)](Xt)

+
∫ T

0

(Lk1)(Xt) dt

)
,

which yields (44) given the expression (46) of Lk.

A.2. Diffusion Processes

Given the generator L of (27), we introduce a new Markov generator

L = L + a · ∇ + b, (190)

involving the arbitrary vector field a and scalar field b on E . Combining the
Cameron–Martin–Girsanov Theorem and the Feynman–Kac formula [37–39],
it can be shown that L induces with the initial measure μ0 a path mea-
sure PL,μ0,T , which is absolutely continuous with respect to the path mea-
sure PL,μ0,T , and whose Radon–Nikodym derivative with respect to the latter
measure is

dPL,μ0,T

dPL,μ0,T
(ω) = eRT (ω), (191)

where

RT =
∫ T

0

D−1(Xt)a(Xt) ◦ dXt

+
∫ T

0

(
b(Xt) − D−1(Xt) a(Xt)

(
F̂ +

a

2

)
(Xt) − 1

2
(∇ · a) (Xt)

)
dt.

(192)

This is a generalization of the Cameron–Martin–Girsanov Theorem for
non-conservative processes with b 
= 0. In the particular case where L is the
generator of the Wiener process Wt, and there is no b perturbation, we recover
the classical result

RT =
∫ T

0

(
a(Wt)dWt − a(Wt)2

2
dt

)
, (193)
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written here in the Itō convention [3]. In our case, we obtain the expression of
Lk from this general result by equating (191) with (44) to obtain RT = kTAT ,
which is solved given (192) for a = kDg and

b = kg ·
(

F̂ + k
Dg

2

)
+

k

2
∇ · (Dg) + kf. (194)

The expression of Lk is therefore

Lk = L + kDg∇ + kg ·
(

F̂ + k
Dg

2

)
+

k

2
∇ · (Dg) + kf

= F̂ · (∇ + kg) + (∇ + kg)
D

2
(∇ + kg) + kf. (195)

Appendix B. Change of Measure for the Generalized Doob
Transform

To prove (73), it is sufficient to show that

ELh,f ,μ0 [C] = EL,μ0

[
C h−1(X0) e− ∫ T

0 f(Xt)dt h(XT )
]

(196)

for any cylinder function C. In this expression, the generators indicate with
respect to which measure the expectation is taken. To arrive at this result,
note first that

etLh,f

(x,dy) = h−1(x) et(L−f)(x,dy)h(y) (197)

for all (x, y) ∈ E2. Next, replace t by t − s and use the Feynman–Kac formula
to express the exponential semi-group as an expectation, so that

e(t−s)Lh,f

(x,dy) = h−1(x)Ex

[
e− ∫ t

s
f(Xu)du δ(Xt − y)dy

]
h(y) (198)

for all (x, y) ∈ E2. Finally, expand (196) and use (198) iteratively to obtain

ELh,f ,μ0 [C] =
∫

En+1
C(x0, . . . , xn)μ0(dx0)h−1(x0)Ex0 [e

− ∫ t1
0 f(Xt)dt

δ(Xt1 − x1)dx1] · · ·Exn−1 [e
− ∫ T

tn
f(Xt)dtδ(XT − xn)dxn]h(xn),

(199)

which, by multiple integration, is equal to (196).

Appendix C. Squared Field for Diffusion Processes

Let L be the generator of the general diffusion defined in (27). The application
of this generator on the product of two arbitrary functions f and g on E yields

(Lfg) = fF̂ · ∇g + gF̂ · ∇f +
1
2
∇ (gD∇f + fD∇g)

= fF̂ · ∇g + gF̂ · ∇f +
g

2
∇D(∇f) + ∇fD∇g +

f

2
∇D(∇g)

= f(Lg) + (Lf)g + ∇fD∇g. (200)
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On comparing with the definition (82) of the squared field Γ(f, g), we find

Γ(f, g) = ∇fD∇g. (201)

Putting this result into (81) with f = lnh, we then find (79), which represents
the generator of a diffusion process with the same noise fields σα as the diffusion
described by L, but with the modified drift given in (80).

Appendix D. Generator of the Canonical Path Measure

We derive here the time-dependent generator associated with the canonical
path measure. To this end, we consider this measure on the cylinder events
{X0 = x0,Xt1 = x1, . . . , Xtn

= xn} with 0 ≤ t1 ≤ · · · ≤ tn ≤ T to obtain,
following (45),

dPcano
k,μ0,T (x0, . . . , xn)

=
μ0(dx0) et1Lk(x0,dx1) · · · e(tn−tn−1)Lk(xn−1,dxn) (e(T−tn)Lk1)(xn)

Eμ0 [eTkAT ]
,

(202)

with the normalization added according to (41). Therefore,

dPcano
k,μ0,T (xn|x0, . . . , xn−1) ≡ dPcano

k,μ0,T (x0, . . . , xn)
dPcano

k,μ0,T (x0, . . . , xn−1)

=
e(tn−tn−1)Lk(xn−1,dxn) (e(T−tn)Lk1)(xn)

(e(T−tn−1)Lk1)(xn−1)
(203)

which shows that the conditional measure dPcano
k,μ0,T (xn|x0, . . . , xn−1) is Mar-

kovian, since it does not depend on all the previous points x0, . . . , xn−1 but
only on xn−1. However, it is non-homogeneous, since it explicitly depends on
tn−1, tn, and T .

To derive the generator Lcano
k,t,T of this Markovian measure, we introduce

the positive function
ht,T (x) = (e(T−t)Lk1)(x) (204)

to write the transition probability associated with (203) as

P cano,t
k,s,T (x,dy) =

1
hs,T (x)

e(t−s)Lk(x,dy)ht,T (y). (205)

Noting that ht,T solves the backward differential equation

(∂t + Lk)ht,T = 0, hT,T = 1, (206)

we then have that ht,T is space–time harmonic with respect to Lk, which
implies from (86)–(87) that the canonical measure is the Doob transform of
Lk with the function ht,T involving Lk itself. This means explicitly that

Lcano
k,t,T = (Lk)(exp((T−t)Lk)1). (207)

This result is valid for t < T , but also for t = T which yields

Lcano
k,T,T = Lk − (Lk1). (208)
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In the limit T → ∞, Lcano
k,t,T becomes homogeneous; however, the limit is dif-

ferent for t < T and t = T , as shown in (125) and (126).

Appendix E. Markov Chains

We briefly re-express in this last section our main results for the simpler case of
homogeneous Markov chains. In this context, the generalized Doob transform
seems to have appeared for the first time in the work of Miller [148].

The sequence X0,X1, . . . , XN of random variables is a homogeneous
Markov chain if its joint measure is given by

dPM,μ0,N (x1, . . . , xN ) = μ0(dx0)M(x0,dx1) . . . M(xN−1,dxN ), (209)

where M(x,dy) is the transition matrix and μ0 is the initial measure for X0.
The generalized Doob transform of the Markov chain is defined as

Mh(x,dy) =
1

(Mh)(x)
M(x,dy)h(y), (210)

where h is a strictly positive function on E . This transformed matrix remains
a stochastic matrix, as shown in [148], which can be used to define a discrete-
time path measure dPMh,μ0,N , whose Radon–Nikodym derivative with respect
to the original Markov chain is

dPMh,μ0,N

dPM,μ0,N
(x0, . . . , xN ) =

1
(Mh)(x0)

exp

(
N−1∑

i=0

ln
h(xi)

(Mh)(xi)

)
h(xN ). (211)

This follows by re-expressing in discrete time the proof presented in Appen-
dix B.

Consider now the observable

AN =
1
N

N−1∑

i=0

g(Xi,Xi+1), (212)

where g : E2 → R. The tilted generator Lk is replaced for this observable by
the tilted matrix

Mk(x,dy) = M(x,dy)ekg(x,y). (213)
The particular observable

AN =
1
N

N−1∑

i=0

f(Xi) (214)

is covered by this result simply by taking g(x, y) = f(x), so that we do not
have to consider additive and two-point observables separately.

The dominant (Perron–Frobenius) eigenvalue of Mk is denoted by ζk and
leads to the following result for the SCGF:

lim
N→∞

1
N

lnEμ0 [e
kNAN ] = ln ζk ≡ Λk. (215)

Denoting by rk the right Perron–Frobenius eigenvector of Mk, we can show,
similarly to our previous results, that the Markov chain {Xi} conditioned on
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AN = a is asymptotically equivalent to a Markov chain described by the
following transition matrix:

Mk(x,dy) = Mrk

k (x,dy) =
1

ζkrk(x)
Mk(x,dy)rk(y). (216)

The stationary density of this driven process is the same as in the continuous-
time case, namely, ρk(x) = lk(x)rk(x), where lk(x) is the left eigenvector of
Mk associated with ζk. Moreover, all our results about the reversibility of this
density apply with minor changes.
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[7] Schrödinger, E.: Über die Umkehrung der Naturgesetze. Sitzungsber. Preuss.
Akad. Wiss. Phys. Math. Kl., 144–153 (1931)
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[111] Itô, K., Watanabe, S.: Transformation of Markov processes by multiplicative
functionals. Ann. Inst. Fourier 15, 13 (1965)

[112] Palmowski, Z., Rolski, T.: A technique for exponential change of measure for
Markov processes. Bernoulli 8, 767 (2002)

[113] Diaconis, P., Miclo, L.: On characterizations of Metropolis type algorithms in
continuous time. ALEA Lat. Am. J. Probab. Math. Stat. 6, 199 (2009)

[114] Meyer, P.A., Zheng, W.A. : Construction de processus de Nelson reversibles. In:
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XXXVI, Lecture Notes in Mathematics, vol. 1801, pp. 165–182. Springer,
Berlin (2003)

[132] Touchette, H.: Ensemble equivalence for general many-body systems. Europhys.
Lett. 96, 50010 (2011)

[133] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton
(1970)

[134] Gingrich, T.R., Vaikuntanathan, S., Geissler, P.L.: Heterogeneity-induced
large deviations in activity and (in some cases) entropy production (2014).
arXiv:1406.3311

[135] Merhav, N., Kafri, Y.: Bose–Einstein condensation in large deviations with
applications to information systems. J. Stat. Mech. 2010, P02011 (2010)
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