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Abstract. We study general quantum waveguides and establish explicit
effective Hamiltonians for the Laplacian on these spaces. A conventional
quantum waveguide is an ε-tubular neighbourhood of a curve in R

3 and
the object of interest is the Dirichlet Laplacian on this tube in the asymp-
totic limit ε � 1. We generalise this by considering fibre bundles M over
a complete d-dimensional submanifold B ⊂ R

d+k with fibres diffeomor-
phic to F ⊂ R

k, whose total space is embedded into an ε-neighbourhood
of B. From this point of view, B takes the role of the curve and F that of
the disc-shaped cross section of a conventional quantum waveguide. Our
approach allows, among other things, for waveguides whose cross sections
F are deformed along B and also the study of the Laplacian on the bound-
aries of such waveguides. By applying recent results on the adiabatic limit
of Schrödinger operators on fibre bundles we show, in particular, that for
small energies the dynamics and the spectrum of the Laplacian on M are
reflected by the adiabatic approximation associated with the ground state
band of the normal Laplacian. We give explicit formulas for the accord-
ingly effective operator on L2(B) in various scenarios, thereby improving
and extending many of the known results on quantum waveguides and
quantum layers in R

3.

1. Introduction

Quantum waveguides have been studied by physicists, chemists and mathe-
maticians for many years now and the rate at which new contributions appear
is still high (see e.g. [1,5,6,10,12,14,17,22,25] and references therein). Math-
ematically speaking, a conventional quantum waveguide corresponds to the
study of the Dirichlet Laplacian on a thin tube around a smooth curve in R

3.
Of particular interest, are effects of the geometry of the tube on the spectrum
of and the unitary group generated by the Laplacian. Similarly so-called quan-
tum layers, i.e. the Laplacian on a thin layer around a smooth surface, have
been studied [3,11,13]. The related problem of the constraining of a quantum
particle to a neighbourhood of such a curve (or surface) by a steep potential
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rather than through the boundary condition was studied in [4,7,8,19–21,28].
Recently, progress has also been made on quantum waveguides and layers in
magnetic fields [12,13,21].

There are obvious geometric generalisations of these concepts. One can
consider the Dirichlet Laplacian on small neighbourhoods of d-dimensional
submanifolds of R

d+k (see e.g. [18]), or of any (d + k)-dimensional Riemann-
ian manifold. Another possibility is to look at the Laplacian on the boundary
of such a submanifold, which, in the case of a conventional waveguide, is a
cylindrical surface around a curve in R

3. Beyond generalising to higher dimen-
sion and codimension, one could also ask for waveguides with cross sections
that change their shape and size along the curve, or more generally along the
submanifold around which the waveguide is modelled.

In the majority of mathematical works on quantum waveguides, with the
exception of [22], such variations of the cross section along the curve must be
excluded. The reason is that, physically speaking, localizing a quantum particle
to a thin domain leads to large kinetic energies in the constrained directions,
i.e. in the directions normal to the curve for a conventional waveguide, and that
variations of the cross section lead to exchange of this kinetic energy between
normal and tangent directions. However, the common approaches require that
the Laplacian acts only on functions that have much smaller derivatives in the
tangent directions than in the normal directions.

In this paper, we show how to cope with several of the possible generali-
sations mentioned above: (1) We consider general dimension and codimension
of the submanifold along which the waveguide is modelled. (2) We allow for
general variations of the cross sections along the submanifold and thus nec-
essarily for kinetic energies of the same order in all directions, with possible
exchange of energy between the tangent and normal directions. (3) We also
include the case of “hollow” waveguides, i.e. the Laplacian on the boundary of
a general “massive” quantum waveguide.

All of this is achieved by developing a suitable geometric framework
for general quantum waveguides and by the subsequent application of recent
results on the adiabatic limit of Schrödinger operators on fibre bundles [16]. As
concrete applications, we will mostly emphasise geometric effects and explain,
in particular, how the known effects of “bending” and “twisting” of waveguides
in R

3 (see [10] for a review) manifest themselves in higher dimensional gener-
alised waveguides.

Before going into a more detailed discussion of our results and of the
vast literature, let us review the main concepts in the context of conventional
quantum waveguides in a geometric language that is already adapted to our
subsequent generalisation. Moreover, it will allow us to explain the adiabatic
structure of the problem within a simple example.

Consider a smooth curve c : R → R
3 parametrised by arclength with

bounded second derivative c′′. For some ε > 0, we refer to the curve’s ε-
neighbourhood

T ε :=
{
y ∈ R

3 : dist(y,B) ≤ ε
}

⊂ R
3
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as the tube of a conventional waveguide. We assume, for ε small enough, that
T ε is non-self-intersecting, i.e. that one can map T ε diffeomorphically onto
the ε-tube in the normal bundle of B. The aim is to understand the Laplace
operator Δδ3 on L2(T ε,dδ3) with Dirichlet boundary conditions on T ε in the
asymptotic limit ε � 1. As different metrics will appear in the course of the
discussion, we make the Euclidean metric δ3 explicit in the Laplacian.

To make the following computations explicit, we pick an orthonormal
frame along the curve. A natural choice is to start with an orthonormal basis
(τ, e1, e2) at one point in B such that τ = c′ is tangent and (e1, e2) are nor-
mal to the curve. Then, one obtains a (in this special case global) unique
frame by parallel transport of (τ, e1, e2) along the curve B. This construc-
tion is sometimes called the relatively parallel-adapted frame [2]. The frame
(τ(x), e1(x), e2(x)) satisfies the differential equation

⎛

⎝
τ ′

e′
1

e′
2

⎞

⎠ =

⎛

⎝
0 κ1 κ2

−κ1 0 0
−κ2 0 0

⎞

⎠

⎛

⎝
τ
e1

e2

⎞

⎠ (1.1)

with the components of the mean curvature vector κα : B → R (α = 1, 2)
given by

κα(x) := 〈τ ′(x), eα(x)〉
R3 = 〈c′′(x), eα(x)〉

R3 .

The two normal vector fields e1,2 : B → R
3 form an orthonormal frame of

B’s normal bundle NB. Hence, for ε > 0 small enough, there is a canonical
identification of the ε-tube in the normal bundle denoted by

Mε :=
{(

x, n1e1(x) + n2e2(x)
)

∈ NB : (n1)2 + (n2)2 ≤ ε2
}

⊂ NB

with the original ε-tube T ε ⊂ R
3 via the map

Φ : Mε → T ε, Φ :
(
x, n1e1(x) + n2e2(x)

)
	→ x + n1e1(x) + n2e2(x). (1.2)

We will refer to F ε
x := Mε ∩ NxB as the cross section of Mε and to Φ(F ε

x) as
the cross section of T ε at x ∈ B.

To give somewhat more substance to the simple example, let us generalise
the concept of a conventional waveguide already at this point. For a smooth
function f : B → [f−, f+] with 0 < f− < f+ < ∞ let

Mε
f :=

{(
x, n1e1(x) + n2e2(x)

)
∈ NB : (n1)2 + (n2)2 ≤ ε2 f(x)2

}

be the tube with varying cross section F ε
x , a disc of radius εf(x). This gives

rise to a corresponding tube T ε
f := Φ(Mε

f ) in R
3. To not overburden notation,

we will drop the subscript f in the following, i.e. put Mε := Mε
f and T ε := T ε

f .
By equipping Mε with the pullback metric g := Φ∗δ3, Φ becomes an

isometry that can be lifted to a unitary operator Φ̂ : L2(T ε,dδ3) → L2(Mε,dg)
given by Φ̂Ψ = Ψ ◦ Φ. Then, the Dirichlet Laplacian −Δδ3 on (its dense
domain in) L2(T ε,dδ3) is unitarily equivalent to the Laplacian Φ̂(−Δδ3)Φ̂

−1

on L2(Mε,dg) with Dirichlet boundary conditions, which coincides with the
Laplace–Beltrami operator −Δg associated with the pullback metric g. If
(x, n1, n2) denote bundle coordinates associated with the orthonormal frame
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(e1(x), e2(x)), the Laplacian Δg as differential operator on C∞
0 (Mε) is given

by

Δg =
3∑

i,j=1

1
√

|g|
∂qi

√
|g|gij∂qj , (q1, q2, q3) = (x, n1, n2),

where |g| := |det(g)| and gij := g(dqi,dqj) are the coefficients of the inverse
metric tensor.

To obtain an explicit expression for Δg, we need to compute the pullback
metric g on the tube Mε. For the coordinate vector fields ∂x and ∂nα , α ∈
{1, 2}, one finds

Φ∗∂x|(x,n) = d
dxΦ

((
c(x), nαeα

(
c(x)

))
= d

dx

(
c(x) + nαeα

(
c(x)

))

= τ(x) − nακα(x)τ(x) =
(
1 − n · κ(x)

)
τ(x),

Φ∗∂nα |(x,n) = d
dnα Φ

((
c(x), nαeα

(
c(x)

))
= d

dnα

(
c(x) + nαeα

(
c(x)

))

= eα(x).

Here, we used c′(x) = τ(x) and the differential equations (1.1). Knowing that
(τ, e1, e2) is an orthonormal frame of TR

3|B with respect to δ3, this yields

g(x, n) =

⎛

⎝
(1 − n · κ(x))2 0 0

0 1 0
0 0 1

⎞

⎠ .

The Laplace–Beltrami operator on Mε associated with g is thus

Δg =
1

(1 − n · κ)2

(
∂2

x +
n · κ′

1 − n · κ
∂x

)
+ Δn − κ · ∇n

1 − n · κ

with the vertical Laplacian Δn = ∇2
n = ∂2

n1 + ∂2
n2 .

As a next step we go over to a description where we blow up the tube in
the normal directions and rescale the metric instead. More precisely, we dilate
the fibres of NB using the diffeomorphism Dε : M → Mε, (x, n) 	→ (x, εn),
where M := Mε=1. Equipping M with the pullback

D∗
εg(x, n) =

⎛

⎝
(1 − εn · κ(x))2 0 0

0 ε2 0
0 0 ε2

⎞

⎠ (1.3)

turns Dε into an isometry with associated unitary lift

D̂ε : L2(M,dD∗
εg) → L2(Mε,dg), Ψ 	→ (D̂εΨ)(x, n) = Ψ

(
x, n

ε

)
.

The unitarily equivalent Laplace–Beltrami operator on M associated with D∗
εg

is

ΔD∗
ε g = D̂−1

ε ΔgD̂ε

=
1

(1 − εn · κ)2

(
∂2

x +
εn · κ′

1 − εn · κ
∂x

)
+ ε−2Δn − κ · ε−1∇n

1 − εn · κ
.

In view of the factor ε−2 in front of the vertical Laplacian Δn, it is apparent
that the limit ε � 1 leads to divergent kinetic energies in the transversal
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direction. For this reason, we rescale units of energy in such a way that the
transverse energies are of order one by multiplying the full Laplacian with ε2.
On the geometric side, this corresponds to multiplying the metric with ε−2,
i.e. for gε := ε−2D∗

εg we have that

Δgε = ε2ΔD∗
ε g =

ε2

(1 − εn · κ)2

(
∂2

x +
εn · κ′

1 − εn · κ
∂x

)
+ Δn − ε

κ · ∇n

1 − εn · κ
.

Note that −Δgε on (its dense domain in) L2(M,dD∗
εg) is unitarily equivalent

to −Δgε on L2(M,dgε), i.e. that changing the volume measure in the L2-norm
by a constant factor does not change the properties of the respective operators.

In a last step, we replace the volume measure dgε by the simpler density
dδε

3 of the appropriately scaled Euclidian metric δε
3 := ε−2D∗

εδ3. With

dgε = (1 − εn · κ(x))
︸ ︷︷ ︸

=:ρε(x,n)

dδε
3,

the unitary map between the associated L2-spaces is

Mρε
: L2(M,dgε) → L2(M,dδε

3), Ψ 	→ √
ρεΨ.

With this final unitary transformation, we arrive at the desired form of the
Hamiltonian that serves as the starting point for the further analysis

Hε := Mρε

(
−Δgε

)
M−1

ρε
= −ε2ΔH − ΔV + ε2Vbend − ε3Sε.

Here, the leading order part is given by the sum of the horizontal Laplacian
ε2ΔH := ε2∂2

x and the vertical Laplacian ΔV := Δn, which is just the Laplace–
Beltrami operator associated with the metric δε

3. The effects of the bending of
the curve in the ambient space, i.e. its extrinsic geometry, are reflected in the
so-called bending potential

Vbend := − κ2

4ρ2
ε

− εn · κ′′

2ρ3
ε

− 5(εn · κ′)2

4ρ4
ε

= −κ2

4
+ O(ε) (1.4)

and the second-order differential operator

Sε := ε−1∂x (ρ−2
ε − 1)

︸ ︷︷ ︸
=2εn·κ+O(ε2)

∂x.

For sake of simplicity, we change our volume measure one last time from
dδε

3 to the Lebesgue measure dδ3 = ε dδε
3. Again, the change of the volume

measure by a constant factor does not change the properties of the linear
operators on the space.

In summary, the Hamiltonian Hε is a self-adjoint operator with domain
D(Hε) = W 2(M) ∩ W 1

0 (M) ⊂ L2(M,dδ3), that is unitarily equivalent to
the initial Dirichlet Laplacian −ε2Δδ3 on the tube T ε ⊂ R

3 (cf. Fig. 1).
It splits into the horizontal Laplacian ε2ΔH = ε2∂2

x, a symmetric operator
on D(Hε), the vertical Laplacian ΔV = Δn, which is fibrewise the Dirichlet
Laplacian on Fx, and an additional differential operator εH1 := ε2Vbend−ε3Sε,
again a symmetric operator on D(Hε), that will be treated as a perturbation.
This structure is reminiscent of the starting point for the Born–Oppenheimer
approximation in molecular physics. There the x-coordinate(s) describe heavy
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Figure 1. The successive unitary transformations that lead
to the “adiabatic form” Hε = −Δδε

3
+ εH1 of the waveguide

Hamiltonian: Φ̂ implements the diffeomorphism into the nor-
mal bundle, D̂−1

ε the blow up of the fibres, and Mρε
a change

of the volume measure

nuclei and ε2 equals the inverse mass of the nuclei. The n-coordinates describe
the electrons with mass of order one. In both cases, the vertical resp. electron
operator depends on x: the vertical Laplacian ΔV in the quantum waveguide
Hamiltonian Hε depends on x ∈ B through the domain Fx := F ε=1

x and
the electron operator in the molecular Hamiltonian depends on x through an
interaction potential. This suggests to study the asymptotics ε � 1 for quan-
tum waveguide Hamiltonians by the same methods that have been successfully
developed for molecular Hamiltonians, namely by adiabatic perturbation the-
ory (see e.g. [23,26]). The latter allows to separate slow and fast degrees of
freedom in a systematic way. In the context of quantum waveguides, the tan-
gent dynamics are slow compared to the frequencies of the normal modes.

To illustrate the adiabatic structure of the problem, let λ0(x) ∼ f(x)−2

be the smallest eigenvalue of −ΔV on Fx and denote by φ0(x) ∈ L2(Fx) the cor-
responding normalised non-negative eigenfunction, the so-called ground state
wave function. Let

P0L
2(M) :=

{
Ψ(x, n) = ψ(x)φ0(x, n) : ψ ∈ L2(B)

}
⊂ L2(M)

be the subspace of local product states and P0 the orthogonal projection onto
this space. Now the restriction of Hε to the subspace P0L

2(M) is called the
adiabatic approximation of Hε on the ground state band and the associated
adiabatic operator is defined by

Ha := P0H
εP0. (1.5)

A simple computation using

(P0Ψ)(x, n) = 〈φ0(x, ·),Ψ(x, ·)〉L2(Fx)φ0(x, n)

and the unitary identification W : P0L
2(M) → L2(B), ψ(x)φ0(x, n1, n2) 	→

ψ(x), shows that the adiabatic operator Ha can be seen as an operator acting
only on functions on the curve B, given by
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(WHaW
∗ψ)(x) =

(
−ε2∂2

x + λ0(x) + ε2Va(x) + ε2V 0
bend(x)

)
ψ(x)

+ ε3

∫

Fx

φ0(x, n)
(
Sε(φ0ψ)

)
(x, n) dn + O(ε3),

where Va(x) := ‖∂xφ0(x)‖2
L2(Fx) and V 0

bend(x) = −κ2(x)
4 . As such it is a one-

dimensional Schrödinger-type operator with potential function λ0(x) + O(ε2)
and the asymptotic limit ε � 1 corresponds to the semi-classical limit. This
analogy shows that, in general, −ε2∂2

x cannot be considered small compared
to λ0(x), despite the factor of ε2. To see this, observe that all eigenfunctions
ψε (and also all solutions of the corresponding time-dependent Schrödinger
equation) are necessarily ε-dependent with ‖ε∂xψε‖2 � ε2, unless λ0(x) ≡ C
for some constant C ≥ 0. To be more explicit, assume that λ0(x) ≈ ω2(x−x0)2

near a global minimum at x0. Then, the lowest eigenvalues of Ha are e� =
λ0(x0)+ εω(1+2�)+O(ε2) for � = 0, 1, 2, . . .. While the level spacing of order
ε is small compared to λ0, it is large compared to the energy scale of order ε2

of the geometric potentials. And for states ψε with � ∼ ε−1, the kinetic energy
‖ε∂xψε‖2 in the tangential direction is of order one.

However, the majority of mathematical works on the subject considers
the situation where ‖ε∂xψε‖2 is of order ε2. Clearly this only yields mean-
ingful results if one assumes λ0 to be constant. But this, in turn, puts strong
constraints on the possible geometries of the waveguide, which we avoid in the
present paper.

Now the obvious mathematical question is: To what extent and in which
sense do the properties of the adiabatic operator Ha reflect the corresponding
properties of Hε? This question was answered in great generality in [15,16] and
we will translate these results to our setting of generalised quantum waveguides
in Sect. 3. Roughly speaking, Theorem 3.3 states that the low-lying eigenvalues
of Ha approximate those of Hε up to errors of order ε3 in general, and up to
order ε4 in the special case where λ0 is a non-negative constant. In the latter
case, the order ε3 terms in Ha turn out to be significant as well.

Our main new contribution in this work is to introduce the concept of
generalised quantum waveguides in Sect. 2 and to compute explicitly the adi-
abatic operator for such generalised waveguides to all significant orders. For
massive quantum waveguides, which are basically “tubes” with varying cross
sections modelled over submanifolds of arbitrary dimension and codimension,
this is done in Sect. 4. There we follow basically the same strategy as in the
simple example given in the present section. We obtain general expressions for
the adiabatic operator, from which we determine the relevant terms for differ-
ent energy scales. Though the underlying calculations of geometric quantities
have been long known [27], the contribution of Sε has usually been neglected,
because at the energy scale of ε2 it is of lower order than Vbend. This changes,
however, on the natural energy scale of the example Mf with non-constant
f , where they may be of the same order, as we see in Sect. 4.4.3. The con-
tribution of the bending potential is known to be non-positive in dimensions
d = 1 or d = 2 [3,6], while it has no definite sign in higher dimensions [27].
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It was stressed in [6] that this leads to competing effects of bending and the
non-negative “twisting potential” in quantum waveguides whose cross sections
Fx are all isometric but not rotationally invariant and twist along the curve
relative to the parallel frame. The generalisation of this twisting potential is
the adiabatic potential Va, which is always non-negative and of the same order
as Vbend. Using this general framework we generalise the concept of “twisted”
waveguides to arbitrary dimension and codimension in Sect. 4.4.2.

In Sect. 5, we finally consider hollow waveguides, which are the bound-
aries of massive waveguides. So far there seems to be no results on these
waveguides in the literature and the adiabatic operator derived in Sect. 5.2
is completely new. For hollow waveguides, the vertical operator is essentially
the Laplacian on a compact manifold without boundary and thus its lowest
eigenvalue vanishes identically, λ0(x) ≡ 0. The adiabatic operator on L2(B) is
quite different from the massive case. Up to errors of order ε3, it is the sum of
the Laplacian on B and an effective potential given in (5.10). For the special
case of the boundary of Mε

f discussed above, this potential is given by

ε2
[

1
2∂2

x log
(
2πf(x)

)
+ 1

4

∣
∣∂x log

(
2πf(x)

)∣∣2
]

= ε2
[

1
2

f ′′

f − 1
4

(
f ′

f

)2]
,

which, in contrast to massive waveguides, is independent of the curvature κ
and depends only on the rate of change of Vol(∂Fx) = 2πf(x). One can check
for explicit examples that a local constriction in the tube, e.g. for f(x) =
2 − 1

1+x2 , leads to an effective potential with wells. Thus, constrictions can
support bound states on the surface of a tube.

2. Generalised Quantum Waveguides

In this part, we give a precise definition of what we call generalised quantum
waveguides. In view of the example discussed in Sect. 1, the ambient space
R

3 is replaced by the (d + k)-dimensional Euclidean space and the role of the
curve is played by a smooth, complete, embedded d-dimensional submanifold
B ⊂ R

d+k. There will be a slight change of perspective, as a generalised
waveguide is not initially defined as a subset of R

d+k but constructed from a
set M contained in a neighbourhood of the zero section in the normal bundle
NB, which then can be diffeomorphically mapped to a tubular neighbourhood
of B ⊂ R

d+k. We will again call Fx = M ∩ NxB the cross section of the
quantum waveguide at the point x ∈ B and essentially assume that Fx and
Fy are diffeomorphic for x, y ∈ B. This allows for more general deformations
of the cross sections as one moves along the base, where in Sect. 1 we only
considered scaling by the function f .

For the following considerations, we assume that there exists a tubular
neighbourhood B ⊂ T r ⊂ R

d+k with globally fixed radius, i.e. there is r > 0
such that normals to B of length less than r do not intersect. More precisely,
we assume that the map

Φ : NB → R
d+k, (x, ν) 	→ x + ν,
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restricted to

NBr :=
{
(x, ν) ∈ NB : ‖ν‖

Rd+k < r
}

⊂ NB

is a diffeomorphism to its image T r. By equipping NBr with the pullback
metric G := Φ∗δd+k, the tubular neighbourhood T r of B ⊂ R

d+k is isometric
to NBr and all the analysis can be done in the normal bundle. In particular,
the scaled waveguide is defined in a straightforward way by Mε := {(x, ν) ∈
NB : (x, ν

ε ) ∈ M} for 0 < ε ≤ 1 starting from the unscaled waveguide
M = Mε=1 ⊂ NBr. As we saw in Sect. 1, it is more convenient to stay on
the unscaled waveguide M and to scale the metric as Gε := ε−2D∗

εG instead,
where Dε : (x, ν) 	→ (x, εν) is the dilatation of the fibres in NB. Note that Gε

coincides with gε for “massive” waveguides (cf. Definition 2.2) as considered in
Sect. 1. By construction, the Laplace–Beltrami operator −ΔGε on the tubular
neighbourhood NBr in the normal bundle is again equivalent to the Euclidian
Laplacian −ε2Δδd+k

on the scaled tubular neighbourhood T εr ⊂ R
d+k, in the

sense that for functions Ψ ∈ C∞
0 (NBr) it holds that

−ΔGεΨ = D̂−1
ε Φ̂

(
ε2Δδd+k

)
Φ̂−1D̂εΨ.

The same holds for the restrictions of the operators to M ⊂ NBr and to
Φ(Mε) ⊂ R

d+k, respectively.

Definition 2.1. Let B ⊂ R
d+k be a smooth, complete, embedded d-dimensional

submanifold with tubular neighbourhood T r ⊂ R
d+k possessing a globally

fixed radius r > 0, and F be a compact manifold of dimension dim(F ) ≤ k
with smooth boundary.

Let M ⊂ NBr be a connected subset that is a fibre bundle with projection
πM : M → B and typical fibre F such that the diagram

M ⊂ � NBr

B

πM
�

idB

� B

πNB
�

commutes. We then call the pair (M, gε), with the scaled pullback metric

gε := Gε|TM ∈ T 0
2 (M),

a generalised quantum waveguide.

It immediately follows from the commutative diagram that the cross sec-
tions Fx coincide with the fibres π−1

M (x) given by the fibre bundle structure.
From now on, we will usually refer to this object simply as the fibre of M over
x. Although other geometries are conceivable, the most interesting examples
of generalised waveguides are given by subsets M ⊂ NBr of codimension zero
and their boundaries. In the following, we will only treat these two cases and
distinguish them by the following terminology:

Definition 2.2. Let F → M
πM−−→ B be a generalised quantum waveguide as in

Definition 2.1.
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1. We call M massive if F is the closure of an open, bounded and connected
subset of R

k with smooth boundary.
2. We call M hollow if dim(F ) > 0 and there exists a massive quantum

waveguide F̊ → M̊
πM̊−−→ B such that M = ∂M̊ .

This definition implies πM = πM̊ |M , i.e. each fibre Fx = π−1
M (x) of a

hollow quantum waveguide is the boundary of F̊x, the fibre of the related
massive waveguide M̊ .

We denote by VM := ker(πM∗) ⊂ TM the vertical subbundle of TM . Its
elements are vectors that are tangent to the fibres of M . We refer to the
orthogonal complement of VM (with respect to g := gε=1) as the horizontal
subbundle HM ∼= π∗

M (TB). Clearly

TM = HM ⊕ VM, (2.1)

and this decomposition will turn out to be independent of ε. That is, the
decomposition TM = HM ⊕ VM is orthogonal for every ε > 0. Furthermore,
we will see [Lemma 4.1 and Eq. (4.6) for the massive case, Eq. (5.5) for hollow
waveguides] that the scaled pullback metric is always of the form

gε = ε−2(π∗
MgB + εhε) + gF , (2.2)

where

• gB := δd+k|TB ∈ T 0
2 (B) is the induced Riemannian metric on the sub-

manifold B,
• hε ∈ T 0

2 (M) is a symmetric (but not non-degenerate) tensor with
hε(V, ·) = 0 for any vertical vector field V ,

• gF := gε|VM is the ε-independent restriction of the scaled pullback metric
to the vertical subbundle.

Thus, if we define for any vector field X ∈ Γ(TB) its unique horizontal lift
XHM ∈ Γ(HM) by the relation πM∗XHM = X, we have

gε(XHM , Y HM ) = ε−2
(
gB(X,Y ) + εhε(XHM ,XHM )

)
,

gε(XHM , V ) = 0,

gε(V,W ) = gF (V,W )

for all X,Y ∈ Γ(TB) and V,W ∈ Γ(VM).
By dropping the term hε, we arrive at the metric

gε
s := ε−2π∗

MgB + gF

that turns πM into a Riemannian submersion, i.e. πM∗ into an isometry from
HM to TB (up to a factor ε−1). For this reason, we call gε

s the scaled submer-
sion metric.

Example. (a) In Sect. 1, we considered a massive waveguide M = Mf with
d = 1 and k = 2. The typical fibre was given by F = D

2 ⊂ R
2. Using

the bundle coordinates (x, n1, n2) induced by (1.2), the scaled pullback
metric was [cf. (1.3)]
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gε :=

⎛

⎝
ε−2(1 − εn · κ)2 0 0

0 1 0
0 0 1

⎞

⎠

= ε−2
[
dx2
︸︷︷︸
=gB

+ε
(
−2(n · κ) + ε(n · κ)2

)
dx2

︸ ︷︷ ︸
=hε

]
+ d(n1)2 + d(n2)2
︸ ︷︷ ︸

=:dn2=gF

Moreover, the scaled submersion metric gε
s is just the scaled Euclidian

metric δε
3 = ε−2 dx2 + dn2.

(b) The typical fibre of the associated hollow waveguide is S
1 = ∂D

2 ⊂
R

2 and we compute the form of the restricted metric gε in Sect. 5 (cf.
Example 5.1).

After having introduced the geometry of a generalised quantum
waveguide (M, gε), we now analyse the Laplace–Beltrami operator −Δgε with
Dirichlet boundary conditions. The boundary condition is of course vacuous if
M is hollow since ∂M = ∅ in that case. As in Sect. 1, the key step for splitting
the operator −Δgε into a horizontal and a vertical part at leading order is an
appropriate change of the volume measure. Therefore, let

ρε :=
dgε

dgε
s

(2.3)

be the relative volume density of gε and gε
s , respectively, and

Mρε
: L2(M,dgε) → L2(M,dgε

s ), Ψ 	→ Mρε
Ψ =

√
ρεΨ,

the according unitary multiplication operator. The transformed Laplacian then
reads

Hε = Mρε

(
−Δgε

)
M−1

ρε
= −ε2ΔH − ΔV + ε2Vbend − ε3Sε.

Again we consider Hε as a self-adjoint operator on the ε-independent space
L2(M,dgs) with domain D(Hε) = W 2(M, gs)∩W 1

0 (M, gs), where gs := gε=1
s =

π∗
MgB + gF is the unscaled version of the submersion metric.

Remark 2.3. (a) The Sobolev space W k(M, gs), k ∈ N, may be defined glob-
ally as those Ψ ∈ L2(M,dgs) such that for 1 ≤ l ≤ k the covariant deriva-
tives ∇lΨ with respect to gs are L2-sections of (T∗M)⊗l. W k

0 (M, gs) is the
closure of C∞

0 (M \∂M) in W k(M, gs). In the following we will use Sobolev
spaces associated with the Riemannian manifolds (M, gs), (B, gB), and
(Fx, gFx

) without making the dependence on the metric explicit in the
notation.

(b) Since we will consider waveguides of bounded geometry (see Defini-
tion 3.1), the total space M , the base B, and the fibres Fx are mani-
folds of bounded geometry in the sense of Schick [24] (see [15, Proposi-
tion A.4]). For manifolds of bounded geometry, the previous definition of
Sobolev spaces is equivalent to using the sum of locally defined norms
obtained from an atlas {(Uν , θν , χν)}ν∈Z of “normal” coordinate charts
θν : Uν → R

n with subordinate partition of unity χν (see [24, Chapter 3]):

‖Ψ‖2
W k :=

∑

ν∈Z

‖θν∗(χνΨ)‖2
W k(θν(Uν)) .
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Different choices of normal coordinates yield equivalent norms.

The horizontal Laplacian is defined by its quadratic form

〈Ψ,−ΔHΨ〉 =
∫

M

π∗
MgB

(
gradgs

Ψ, gradgs
Ψ
)

dgs

=
∫

M

gs

(
gradgs

Ψ,PHM gradgs
Ψ
)

dgs,

where PHM denotes the orthogonal projection to HM , so integration by parts
yields (see also Sect. 4.2)

ΔH = divgs PHM gradgs
. (2.4)

It is a symmetric operator on D(Hε). The vertical operator is given on each
fibre Fx by the Laplace–Beltrami operator

ΔV|Fx
:= ΔgFx

with Dirichlet boundary conditions. It is self-adjoint on the domain W 2(Fx)∩
W 1

0 (Fx). The bending potential

ε2Vbend = 1
2 divgs gradgε(log ρε) + 1

4gε(d log ρε,d log ρε)

= 1
2 (ε2ΔH + ΔV)(log ρε) + 1

4gF (d log ρε,d log ρε) + O(ε4) (2.5)

is a by-product of the unitary transformation Mρε
and the second-order dif-

ferential operator

Sε : Ψ 	→ SεΨ := ε−3 divgs(g
ε − gε

s )(dΨ, ·)
accounts for the corrections to gε

s .

3. Adiabatic Perturbation Theory

In this section, we show that the adiabatic operator Ha approximates essential
features of generalised quantum waveguide Hamiltonians Hε, such as its uni-
tary group and its spectrum. This motivates the derivation of explicit expan-
sions of Ha in the subsequent sections. In this work, we will only consider the
ground state band λ0(x) and pay special attention to the behaviour of Hε for
small energies. This, as we will show, allows to view Ha as an operator on
L2(B). The results of this section were derived in [15,16] in more generality.

For a massive quantum waveguide set

HF := −ΔV (massive)

and for a hollow waveguide

HF := Mρε
(−ΔV)M−1

ρε

= −ΔV + 1
2ΔV(log ρε) + 1

4gF (d log ρε,d log ρε). (hollow)

Let λ0(x) := min σ(HFx
) be the smallest eigenvalue of the fibre operator HF

acting on the fibre over x. For hollow waveguides, we have no boundary and
λ0 ≡ 0 with the eigenfunction
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φ0 =
Mρε

π∗
M Vol(Fx)−1/2

∥
∥Mρε

π∗
M Vol(Fx)−1/2

∥
∥

L2(Fx,dgF )

=
√

ρε

(∫

Fx

ρε dgF

)−1/2

= π∗
M Vol(Fx)−1/2 + O(ε).

In the massive case, we have λ0 > 0 and denote by φ0(x, ·) the uniquely
determined positive normalised eigenfunction of HFx

with eigenvalue λ0(x).
Let P0 be the orthogonal projection in L2(M) defined by

(P0Ψ)(x, ν) = φ0

(
x, ν

) ∫

Fx

φ0

(
x, ·
)
Ψ(x, ·

)
dgF .

The image of this projection is the subspace L2(B) ⊗ span(φ0) ∼= L2(B) of
L2(M). The function φ0 and its derivatives, both horizontal and vertical, are
uniformly bounded in ε. Thus, the action of the horizontal Laplacian −ε2ΔH

on φ0 gives a term of order ε and

[Hε, P0]P0 = [Hε − HF , P0]P0 = O(ε) (3.1)

as an operator from D(Hε) to L2(M). Since this expression equals (Hε −
Ha)P0, this justifies the adiabatic approximation (1.5) for states in the image
of P0. However, the error is of order ε, while interesting effects of the geometry,
such as the potentials Va and Vbend discussed in Sect. 1, are of order ε2. Because
of this, it is desirable to construct also a super-adiabatic approximation, con-
sisting of a modified projection Pε = P0 + O(ε) ∈ L(L2(M)) ∩ L(D(Hε)) and
an intertwining unitary Uε with PεUε = UεP0, such that the effective operator

Heff := P0U
−1
ε HεUεP0

provides a better approximation of Hε than Ha does. It then turns out that
the approximation provided by Ha can be shown to be more accurate than
expected from (3.1) using the unitary Uε.

Such approximations can be constructed and justified if the geometry
of (M, gε) satisfies some uniformity conditions. Here, we only spell out the
conditions relevant to our case, for a comprehensive discussion see [15].

Definition 3.1. The generalised quantum waveguide (M, gε) is a waveguide of
bounded geometry if the following conditions are satisfied:
1. The manifold (B, gB) is of bounded geometry. This means it has positive

injectivity radius and for every k ∈ N there exists a constant Ck > 0 such
that

gB(∇kR,∇kR) ≤ Ck,

where R denotes the curvature tensor of B and ∇, gB are the connections
and metrics induced on the tensor bundles over B.

2. The fibre bundle (M, g) πM−−→ (B, gB) is uniformly locally trivial. That is,
there exists a Riemannian metric g0 on F such that for every x ∈ B and
metric ball B(r, x) of radius r < rinj(B) there is a trivialisation Ωx,r :
(π−1

M (B(x, r)), g) → (B(x, r) × F, gB × g0), and the tensors Ω∗
x,r and Ωx,r∗

and all their covariant derivatives are bounded uniformly in x.
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3. The embeddings (M, g) ↪→ (NB,G) and (B, gB) ↪→ R
d+k are bounded with

all their derivatives.

These conditions are trivially satisfied for compact manifolds M and
many examples, such as “asymptotically straight” or periodic waveguides. The
existence result for the super-adiabatic approximation can be formulated as
follows.

Theorem 3.2 [16]. Let M be a waveguide of bounded geometry and set Λ :=
infx∈B min(σ(HFx

) \ λ0). For every N ∈ N, there exist a projection Pε and a
unitary Uε in L(L2(M)) ∩ L(D(Hε)), intertwining P0 and Pε, such that for
every χ ∈ C∞

0

(
(−∞,Λ), [0, 1]), satisfying χp ∈ C∞

0

(
(−∞,Λ), [0, 1]) for every

p ∈ (0,∞), we have
∥
∥Hεχ(Hε) − UεHeffχ(Heff)U−1

ε

∥
∥ = O(εN ).

In particular, the Hausdorff distance between the spectra of Hε and Heff is
small, i.e. for every δ > 0:

dist
(
σ(Hε) ∩ (−∞,Λ − δ], σ(Heff) ∩ (−∞,Λ − δ]

)
= O(εN ).

For N = 1, we can choose Pε = P0, so at first sight the approximation
of Hε by Ha yields errors of order ε. More careful inspection shows that for
N > 1 we have Ha − Heff = O(ε2) as an operator from W 2(B) to L2(M), so
the statement on the spectrum holds for Ha with an error of order ε2. This
improvement over (3.1) relies on the existence of Uε for a better choice of trial
states. Close to the ground state, the approximation is even more accurate.

Theorem 3.3 [16]. Let M be a waveguide of bounded geometry, Λ0 :=
infx∈B λ0(x) and 0 < α ≤ 2. Then for every C > 0

dist
(
σ(Hε) ∩ (−∞,Λ0 + Cεα], σ(Ha) ∩ (−∞,Λ0 + Cεα]

)
= O(ε2+α/2).

Assume, in addition, that Λ0 + Cεα is strictly below the essential spectrum of
Ha in the sense that for some δ > 0 and ε small enough the spectral projection
1(−∞,Λ0+(C+δ)εα](Ha) has finite rank. Then, if μ0 < μ1 ≤ · · · ≤ μK are all
the eigenvalues of Ha below Λ0 + Cεα, Hε has at least K + 1 eigenvalues
ν0 < ν1 ≤ · · · ≤ νK below its essential spectrum and

|μj − νj | = O(ε2+α)

for j ∈ {0, . . . , K}.

The natural energy scale α to consider this theorem would be the spacing
of eigenvalues of Ha. This of course depends on the specific situation. If λ0 is
constant, we will see that α = 2 is a natural choice. In the somewhat more
generic case in which the eigenband λ0(x) has a global and non-degenerate
minimum, as in the example of the waveguide Mf in Sect. 1, the lowest eigen-
values of Ha will behave like those of an harmonic oscillator and α = 1 is the
correct choice of scale. In this case, the set (−∞,Λ0 + Cε2] ∩ σ(Ha) will just
be empty for ε small enough and thus by the theorem there is no spectrum of
Hε in this interval.
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We remark that results can be obtained also for energies higher than Λ
and projections to other eigenbands than λ0. The relevant condition is that
they are separated from the rest of the spectrum of HF by a local gap. For λ0,
this is a consequence of the bounded geometry of M (see [16, Proposition 4.1]).
The approximation of spectra is not mutual as for low energies, but there is
always spectrum of Hε near that of Heff (see [16, Corollary 2.4]).

From now on, we will focus on analysing the adiabatic operator. In par-
ticular, we will see how the geometry of the waveguide enters into this operator
and its expansion up to order ε4, which is relevant for small energies irrespec-
tive of the super-adiabatic corrections by Theorem 3.3. We now give a general
expression for Ha from which we will derive the explicit form for various spe-
cific situations. First group the terms of Hε in such a way that

Hε = −ε2ΔH + HF + εH1,

by taking

H1 = −ε2Sε + εVbend, (massive)

H1 = −ε2Sε + εVbend − ε−1
(

1
2ΔV(log ρε) + 1

4gF

(
d log ρε,d log ρε)

)

= −ε2Sε + ε
2ΔH(log ρε) + O(ε3)
︸ ︷︷ ︸

=:εṼbend

. (hollow)

Projecting this expression with P0 as in Eq. (1.5) gives HF P0 = λ0P0 and

P0ΔHP0 = ΔgB
+ 1

2 trgB
(∇B η̄) −

∫

Fx

π∗
MgB(gradgs

φ0, gradgs
φ0) dgF

︸ ︷︷ ︸
=:−Va

, (3.2)

where ∇B is the Levi-Cività connection of gB , η̄ is the one-form

η̄(X) :=
∫

Fx

|φ0|2 gB(πM∗ηF ,X)dgF

and ηF is the mean curvature vector of the fibres [see Eq. (4.8)]. The derivation
for the projection of ΔH can be found in [15, Chapter 3].

Altogether we have the expression

Ha = −ε2ΔgB
+ λ0 + ε2Va + εP0H1P0 (3.3)

for the adiabatic operator as an operator on L2(B). By analogy with Sect. 1,
we view

(P0S
εP0)ψ =

∫

Fx

φ0S
ε(φ0ψ) dgF

as an operator on B via the identification L2(B) ∼= L2(B) ⊗ span(φ0). By the
same procedure, projecting the potentials in H1 amounts to averaging them
over the fibres with the weight |φ0|2.
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4. Massive Quantum Waveguides

The vast literature on quantum waveguides is, in our terminology, concerned
with the case of massive waveguides. In this section, we give a detailed deriva-
tion of the effects due to the extrinsic geometry of B ⊂ R

d+k. The necessary
calculations of the metric gε and the bending potential Vbend have been per-
formed in all of the works on quantum waveguides for the respective special
cases, and by Tolar [27] for the leading order V 0

bend in the general case. A
generalisation to tubes in Riemannian manifolds is due to Wittich [29].

We then discuss the explicit form of the adiabatic Hamiltonian (1.5),
calculating the adiabatic potential and the projection of H1. In particular, we
generalise the concept of a “twisted” waveguide (cf. [6]) to arbitrary dimension
and codimension in Sect. 4.4.2. We also examine the role of the differential
operator Sε in Ha, which is rarely discussed in the literature, and its relevance
for the different energy scales εα.

4.1. The Pullback Metric

Let (x1, . . . , xd) be local coordinates on B and {eα}k
α=1 a local orthonormal

frame of M with respect to g⊥
B := δd+k|NB such that every normal vector

ν(x) ∈ NxB may be written as

ν(x) = nαeα(x). (4.1)

These bundle coordinates yield local coordinate vector fields

∂i|(x,n) := ∂
∂xi , ∂d+α|(x,n) := ∂

∂nα (4.2)

on M for i ∈ {1, . . . , d} and α ∈ {1, . . . , k}. The aim is to obtain formulas for
the coefficients of the unscaled pullback metric g = Φ∗δd+k|TM with respect
to these coordinate vector fields.

Let I ⊂ R be an open neighbourhood of zero, b : I → M, s 	→ b(s) =
(c(s), v(s)) be a curve with b(0) = (x, n) and b′(0) = ξ ∈ T(x,n)M . It then
holds that

Φ∗ξ = d
ds

∣
∣
s=0

Φ
(
b(s)

)
= c′(0) + v′(0).

For the case ξ = ∂i|(x,n), we choose the curve b : I → M given by

b(s) =
(
c(s), nαeα

(
c(s)

))
⇒ Φ

(
b(s)

)
= c(s) + nαeα

(
c(s)

)

where c : I → B is a smooth curve with c(0) = x and c′(0) = ∂xi ∈ TxB. We
then have

Φ∗∂i|(x,n) = c′(0) + nα d
ds

∣
∣
s=0

eα

(
c(s)

)
= ∂xi + nα∇R

d+k

∂xi
eα(x)

To relate the appearing derivative ∇R
d+k

∂xi
eα(x) to the extrinsic curvature of

B, we project the latter onto its tangent and normal component, respectively.
Therefore, we introduce the Weingarten map

W : Γ(NB) → T 1
1 (B), eα 	→ W(eα)∂xi := −PTB ∇R

d+k

∂xi
eα,
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and the so(k)-valued local connection one-form associated with the normal
connection ∇N with respect to {eα}α

k=1, i.e.

ωN(∂xi)eα = ∇N
∂xi

eα := PNB ∇R
d+k

∂xi
eα.

With these objects, we have

Φ∗∂i|(x,n) = ∂xi + nα
(
−W

(
eα(x)

)
∂xi + ωN(∂xi)eα(x)

)
. (4.3)

For the case ξ = ∂d+α|(x,n), one takes the curve b : I → M with

b(s) =
(
x, ν(x) + seα(x)

)
⇒ Φ

(
b(s)

)
= x + (nβ + sδ β

α )eβ(x).

Hence,

Φ∗∂d+α|(x,n) = 0 + d
ds

∣
∣
s=0

(nβ + sδ β
α )eβ(x) = δ β

α eβ(x) = eα(x). (4.4)

Combining the expressions for the tangent maps, we finally obtain the following
expressions for the pullback metric g:

Lemma 4.1. Let (x, n) be the local bundle coordinates on M introduced in (4.1)
and (4.2) the associated coordinate vector fields. Then, the coefficients of the
pullback metric are given by

gij(x, n) = gB(∂xi , ∂xj ) − 2 II(ν)(∂xi , ∂xj ) + gB

(
W(ν)∂xi ,W(ν)∂xj

)

+ g⊥
B

(
ωN(∂xi)ν, ωN(∂xj )ν

)
,

gi,d+α(x, n) = g⊥
B

(
ωN(∂xi)ν, eα

)
,

gd+α,d+β(x, n) = g⊥
B

(
eα, eβ

)
= δαβ

for i, j ∈ {1, . . . , d} and α, β ∈ {1, . . . , k}. Here, II : Γ(NB) → T 0
2 (B) denotes

the second fundamental form defined by II(ν)(∂xi , ∂xj ) := gB(W(ν)∂xi , ∂xj ).

Let us now consider the scaled pullback metric gε = ε−2D∗
εΦ∗δd+k|TM .

Observe that for any ξ ∈ T(x,n)M

Φ∗(Dε)∗ξ = (Φ ◦ Dε)∗ξ

= d
ds

∣
∣
s=0

(Φ ◦ Dε)
(
b(s)

)
= d

ds

∣
∣
s=0

(Φ ◦ Dε)
(
c(s), v(s)

)

= d
ds

∣
∣
s=0

Φ
(
c(s), εv(s)

)
= c′(0) + εv′(0)

and one immediately concludes from (4.3) and (4.4) that

Φ∗(Dε)∗∂i|(x,n) = ∂xi + εnα

(
−W

(
eα(x)

)
∂xi + ωN (∂xi)eα(x)

)
,

Φ∗(Dε)∗∂α|(x,n) = εeα(x).

Consequently, the coefficients of the scaled pullback metric are given by

gε
ij(x, n) = ε−2

[
gB(∂xi , ∂xj ) − ε2 II(ν)(∂xi , ∂xj )

+ε2gB

(
W(ν)∂xi ,W(ν)∂xj

)

+ε2g⊥
B

(
ωN(∂xi)ν, ωN(∂xj )ν

)]
,

gε
i,d+α(x, n) = g⊥

B

(
ωN(∂xi)ν, eα

)
,

gε
d+α,d+β(x, n) = δαβ

for i, j ∈ {1, . . . , d} and α, β ∈ {1, . . . , k}.
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Clearly span{∂i|(x,n)}d
i=1 is not orthogonal to span{∂d+α|(x,n)}k

α=1 =
V(x,n)M with respect to gε. However, any vector ∂i|(x,n) can be orthogonalised
by subtracting its vertical component. The resulting vector

∂HM
xi |(x,n) := ∂i|(x,n) − gε

i,d+β(x, n) ∂d+β |(x,n)

= ∂i|(x,n) − g⊥
B

(
ωN(∂xi)ν, eβ

)
∂d+β |(x,n)

= ∂i|(x,n) − gi,d+β(x, n) ∂d+β |(x,n) (4.5)

is the horizontal lift of ∂xi . Consequently, the orthogonal complement of
V(x,n)M with respect to gε is given by H(x,n)M = span{∂HM

xi |(x,n)}d
i=1 for

all ε > 0. Finally, a short computation shows that

gε(∂HM
xi |(x,n), ∂

HM
xj |(x,n))

= ε−2gB

((
1 − εW(ν)

)
∂xi ,

(
1 − εW(ν)

)
∂xj

)

= ε−2
[
gB(∂xi , ∂xj ) + ε

(
−2 II(ν)(∂xi , ∂xj ) + εgB

(
W(ν)∂xi ,W(ν)∂xj

))]
.

(4.6)

Hence, the scaled pullback metric gε actually has the form (2.2) with “hori-
zontal correction”

hε(∂HM
xi |(x,n), ∂

HM
xj |(x,n)) = −2 II(ν)(∂xi , ∂xj ) + εgB

(
W(ν)∂xi ,W(ν)∂xj

)
.

(4.7)

Remark 4.2. The fibres Fx of M are completely geodesic for the pullback
metric gε. To see this, we show that the second fundamental form of the fibres
IIF |x : HxM → T 0

2 (Fx) vanishes identically. Since the latter is a symmetric
tensor, it is sufficient to show that the diagonal elements

IIF (∂HM
xi )(∂α, ∂α) = gε(∇M

∂α
∂α, ∂HM

xi )

are zero. Using Koszul’s formula, four out of the six appearing terms obviously
vanish and we are left with

IIF (∂HM
xi )(∂α, ∂α) = gF

(
[∂HM

xi , ∂α], ∂α

)

(4.5)
= gF

(
[∂i, ∂α]
︸ ︷︷ ︸

=0

−
[
gi,d+β(x, n)∂β , ∂α

]
, ∂α

)

=
gi,d+β(x, n)

∂nα
gF (∂β , ∂α)
︸ ︷︷ ︸

δβα

= g⊥
B(ωN(∂xi)eα, eα).

But now, the last expression equals zero since ωN(∂xi) is so(k)-valued. Conse-
quently, the mean curvature vector ηF defined by

trTF II(∂HM
xi ) = π∗

MgB(∂HM
xi , ηF ) (4.8)

vanishes identically. Finally note that the same considerations also hold for
the submersion metric gε

s due to gε|VM = gF = gε
s |VM .
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4.2. The Horizontal Laplacian

Now that we have a detailed description of the metric, we can explicitly
express the horizontal Laplacian by the vector fields ({∂HM

xi }d
i=1, {∂d+α}k

α=1).
Let ({π∗

Mdxi}d
i=1, {δnα}k

α=1) be the dual basis (note that in general δnα �= dnα

since dnα(∂HM
xi ) �= 0). Then by definition

δnα(PHM gradgs
ψ) = 0,

π∗
Mdxi(PHM gradgs

ψ) = gjk
s (∂HM

xj ψ)dxi(∂xk) = gij
B∂HM

xj ψ

and thus

gradgs
ψ = gij

B (∂HM
xi ψ)∂HM

xj .

When acting on a horizontal vector field Y , the divergence takes the coordinate
form

divgs Y =
1

√
|gs|

∂HM
xi

√
|gs|(π∗

Mdxi(Y ))

=
1

√
|gB |

∂HM
xi

√
|gB |

(
π∗

Mdxi(Y )
)

− π∗
MgB(ηF , Y ), (4.9)

since
√

|gF |−1(
∂HM

xi

√
|gF |

)
= −gs(ηF , ∂HM

xi ). For a horizontal lift XHM , we
have the simple formula

divgs XHM = π∗
M

(
divgB

X − gB(πM∗ηF ,X)
)
.

Now for a massive waveguide ηF = 0 and the horizontal Laplacian takes the
familiar form

ΔH =
1

√
|gB |

∂HM
xi

√
|gB |gij

B∂HM
xj ,

which is just ΔgB
with ∂xi replaced by ∂HM

xi .

4.3. The Bending Potential

In Sect. 1 [see Eq. (1.4)], we saw that the leading order of Vbend is attractive
(negative) and proportional to the square of the curve’s curvature κ = |c′′|.
Here, we give a detailed derivation of Vbend for generalised massive waveguides
and then discuss the sign of its leading part. Therefore, let {τi}d

i=1 be a local
orthonormal frame of TB with respect to gB and let {nα}k

α=1 be coordinates
on NB as in Eq. (4.1). Then

Ti := τHM
i , Nα := ∂

∂nα

for i ∈ {1, . . . , d} and α ∈ {1, . . . , k} form a local frame of TM . In this frame,
the scaled metrics have the form [see also (4.6)]

gε =
(

ε−2(idd×d −εW(ν))2 0
0 idk×k

)
, gε

s =
(

ε−2 idd×d 0
0 idk×k

)
.

From that and Eq. (2.3), we easily conclude that

ρε =

√
det(gε)
det(gε

s )
= det

(
idd×d −εW(ν)

)
= exp

(
tr log

(
idd×d −εW(ν)

))
.
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Using Taylor’s expansion for ε small enough

− log
(
idd×d −εW(ν)

)
= εW(ν) + ε2

2 W(ν)2 + ε3

3 W(ν)3
︸ ︷︷ ︸

=:Z(ε)

+O(ε4),

we have log(ρε) = − tr Z(ε) + O(ε4). Next, we calculate the terms appearing
in Vbend (2.5) separately:

ΔH log ρε = −εΔH trW(ν) + O(ε2),

ε−2ΔV log ρε = −ε−2
k∑

α=1

∂2
nα trZ(ε) + O(ε2)

= −
k∑

α=1

[
tr
(
W(eα)2

)
+ 2ε tr

(
W(eα)2W(ν)

)]
+ O(ε2),

d log ρε = PHM d log ρε − tr
(
∂nα

Z(ε)
)
dnα + O(ε4)

= PHM d log ρε − tr
(
εW(eα)

(
idd×d +εW(ν) + ε2W(ν)2

))
dnα

+O(ε4),

denoting by PHM the adjoint of the original PHM with respect to the pairing
of T∗M and TM , and hence

ε−2gF (d log ρε,d log ρε)

=
k∑

α=1

[(
tr W(eα)

)2 + 2ε tr
(
W(eα)

)
tr
(
W(eα)W(ν)

)]
+ O(ε2).

Putting all this together, we obtain the following expression for the bending
potential in the case of massive quantum waveguides:

Vbend =
1
4

k∑

α=1

[(
tr W(eα)

)2 − 2 tr
(
W(eα)2

)]
(4.10)

= +
ε

2

k∑

α=1

[
trW(eα) tr

(
W(eα)W(ν)

)
− 2 tr

(
W(eα)2W(ν)

)

−ΔH trW(ν)
]

(4.11)

= +O(ε2).

The leading term of this expression (V 0
bend := (4.10)) has been widely stressed

in the literature concerning one-dimensional quantum waveguides (see e.g. [5,
6,10]), where it has a purely attractive effect. Its higher dimensional versions
were discussed by Tolar [27] but are generally less known, so we will discuss
their possible effects for the rest of this section.

Since W(eα) is self-adjoint, we may choose for each α ∈ {1, . . . , k}
the orthonormal frame {τi}d

i=1 such that it consists of the eigenvectors of
W(eα) with eigenvalues (principal curvatures) {κα

i }d
i=1. To get an impression
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of V 0
bend’s sign, we divide W(eα) into a traceless part W0(eα) and a multiple

of the identity:

W(eα) = W0(eα) +
Hα

d
idd×d .

Note that the prefactors Hα equal the components of the mean curvature
vector of B in direction eα. With the notation

‖M‖2 := tr
(
M tM

)
≥ 0

for any M ∈ R
d×d, we get the relation

‖W(eα)‖2 = ‖W0(eα)‖2 +
H2

α

d

for all α ∈ {1, . . . , k} since W0(·) is traceless. This yields for the poten-
tial (4.10):

V 0
bend =

1
4

k∑

α=1

[
H2

α − 2 ‖W(eα)‖2]

=
1
4

k∑

α=1

[
H2

α − 2
(

‖W0(eα)‖2 +
H2

α

d

)]

=
1
4

k∑

α=1

[(
1 − 2

d

)
H2

α − 2 ‖W0(eα)‖2

]
.

The latter relation shows that for d ∈ {1, 2} the leading order of the bending
potential is non-positive. Thus, the effect of bending has an attractive character
(V 0

bend < 0) for ε small enough, or is of lower order (V 0
bend = 0), independently

of the codimension k. For d ≥ 3, the first term is non-negative and may
overcompensate the second term leading to a positive contribution to Vbend.
Consequently, a repulsive bending effect is possible.

Example. We may rewrite expression (4.10) in terms of principal curvatures
as:

V 0
bend =

1
4

k∑

α=1

⎡

⎣

(
d∑

i=1

κα
i

)2

− 2
d∑

i=1

(κα
i )2

⎤

⎦ . (4.12)

(a) For a waveguide modelled around a curve c, d = 1, one immediately sees
that V 0

bend = − 1
4κ2 = − 1

4 |c′′|2.
(b) We consider the case where B ⊂ R

d+1 is the d-dimensional standard sphere
of radius R. The principal curvatures in the direction of the outer-pointing
normal are given by κi = 1/R for all i ∈ {1, . . . , d}, hence the bending
potential (4.12) reads

V 0
bend =

1
4

⎡

⎣

(
d∑

i=1

1
R

)2

− 2
d∑

i=1

(
1
R

)2
⎤

⎦ =
(

1 − 2
d

)
d2

4R2
.
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It follows that V 0
bend < 0 for d = 1, V 0

bend = 0 for d = 2 and V 0
bend > 0 for

d ≥ 3, respectively. Thus, depending on the dimension d of the sphere, the
effect of bending can be either attractive or repulsive.

4.4. The Adiabatic Hamiltonian

We are now ready to calculate the geometric terms in the adiabatic operator.
In this, we concentrate on the adiabatic operator (3.3) and explicitly calculate
all the relevant terms on the energy scale given by Theorem 3.3. First, we take
care of the contribution of H1, then we turn to the potential Va and explain
its connection to “twisting” of the quantum waveguide.

4.4.1. The Operator P0H1P0. The contribution of the bending potential, that
was calculated in the previous section, is given by its adiabatic approximation

V a
bend := P0VbendP0 =

∫

Fx

Vbend(ν) |φ0(ν)|2 dν.

Since the leading part V 0
bend is independent of the fibre coordinate ν, it is

unchanged by this projection. The next term in the expansion of Vbend is
given by (4.11). The Weingarten map is linear in ν and since

∂HM
xi nα (4.5)

= −g⊥
B

(
ωN(∂xi)ν, eβ

)
∂nβ nα = −g⊥

B

(
ωN(∂xi)ν, eα

)

is again linear in ν, ΔH trW(ν) is also linear in ν. Consequently, the contribu-
tion of (4.11) to V a

bend is proportional to

〈φ0, νφ0〉L2(Fx) =
∫

Fx

ν |φ0(ν)|2 dν.

Hence, this contribution vanishes if the centre of mass of the ground state
φ0 lies exactly on the submanifold B. This is a reasonable assumption to make
and represents a “correct” choice of parametrisation of the waveguide. Under
this assumption, we have

V a
bend = V 0

bend + O(ε2).

From the expression (4.6) for the horizontal block of the metric gε, one obtains
its expansion on horizontal one-forms by locally inverting the matrix (gε)ij

(see [29]). The result is

gε(π∗
Mdxi, π∗

Mdxj) = ε2
(
gij

B + 2ε II(ν)ij + O(ε2)
)
, (4.13)

where II denotes the second fundamental form of B, defined on T∗B by IIij :=
IIkl gik

B gjl
B . Moreover, we extend the latter to T∗M , understanding II(ν) as its

lift to the horizontal part H∗M and extending to T∗M by zero. The vertical
components of gε and gε

s coincide, hence as an operator on L2(B) we have the
expression

(P0S
εP0)ψ = 2

∫

Fx

φ0 divgs

(
II(ν)

(
d(φ0ψ), ·

))
dν + O(ε) (4.14)
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with an error of order ε on W 2(B). Using the Leibniz rule, we can rewrite this
as:

2
∫

Fx

2φ0 II(ν)
(
dφ0,dψ

)
+ |φ0|2 divgs

(
II(ν)(dψ, ·)

)

+φ0ψ divgs

(
II(ν)(dφ0, ·)

)
dν

= 2
∫

Fx

divgs

(
|φ0|2 II(ν)(dψ, ·)

)
+ φ0ψ divgs

(
II(ν)(dφ0, ·)

)
dν. (4.15)

Now φ0 vanishes on the boundary and II(dψ, ·) is a horizontal vector field, so
by (4.9) we have

∫

Fx

divgs

(
|φ0|2 II(ν)(dψ, ·)

)
dν = divgB

∫

Fx

|φ0|2 II(ν)(dψ, ·)dν. (4.16)

If we assume again that φ0 is centred on B, this term vanishes and we are left
with the potential

εP0H1P0 = ε2V 0
bend − 2ε3

∫

Fx

φ0 divgs

(
II(ν)(dφ0, ·)

)
dν + O(ε4) (4.17)

with an error bound in L
(
W 2(B), L2(B)

)
.

4.4.2. The Adiabatic Potential Va and “Twisted”Waveguides. Since the fibres
Fx are completely geodesic with respect to gF for massive quantum waveguides
(cf. Remark 4.2), we have ηF = 0 and the adiabatic potential defined in (3.2)
reduces to

Va =
∫

Fx

π∗
MgB(gradgs

φ0, gradgs
φ0)dν. (4.18)

This is called the Born–Huang potential in the context of the Born–
Oppenheimer approximation. This potential is always non-negative. It basi-
cally accounts for the alteration rate of φ0 in horizontal directions.

In the literature, the adiabatic potential has been studied mainly for
“twisted” quantum waveguides. These have two-dimensional fibres Fx which
are isometric but not invariant under rotations and twist as one moves along
the one-dimensional base curve B [6]. The operators ΔFx

, x ∈ B, are isospec-
tral and their non-trivial dependence on x is captured by Va.

We now generalise this concept to massive waveguides of arbitrary dimen-
sion and codimension and calculate the adiabatic potential for this class of
examples. In this context, a massive quantum waveguide F → M

πM−−→ B is
said to be only twisted at x0 ∈ B, if there exist a geodesic ball U ⊂ B around
x0 and a local orthonormal frame {fα}k

α=1 of NB|U such that

π−1
M (U) =

{
nαfα(x) : (n1, . . . , nk) ∈ F, x ∈ U

}
.

This exactly describes the situation that the cross sections (Fx, gFx
) are isomet-

ric to F ⊂ R
k, but may vary from fibre to fibre by an SO(k)-transformation.

Moreover, it follows that λ0 is constant on U and the associated eigenfunc-
tion φ0 is of the form φ0(ν(x) = nαfα(x)) = Φ0(n1, . . . , nk), where Φ0 is the
solution of

−ΔnΦ0(n) = λ0Φ0(n), Φ0(n) = 0 on ∂F .
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As for the calculation of Va at x0, we firstly compute for ∂HM
xi ∈ Γ(HM):

π∗
MgB(gradgs

φ0, ∂
HM
xi )|ν(x0) = gs(gradgs

φ0, ∂
HM
xi )|ν(x0)

= ∂HM
xi φ0

∣
∣
ν(x0)

(4.5)
=

[
∂i − g⊥

B

(
ωN(∂xi)ν, fβ

)∣∣
x0

∂nβ

]
Φ0(n)

= −nαg⊥
B

(
∇N

∂xi
fα, fβ

)∣∣
x0

∂Φ0(n)
∂nβ

. (4.19)

To get a better understanding of g⊥
B(∇N

∂xi
fα, fβ)|x0 , we introduce on U a locally

untwisted orthonormal frame {eα}k
α=1 of NB|U . It is obtained by taking the

vectors fα(x0) ∈ Nx0B and parallel transporting them along radial geodes-
ics with respect to the normal connection ∇N. Thus, twisting is always to be
understood relative to the locally parallel frame {eα}k

α=1. The induced map
that transfers the reference frame {eα}k

α=1 into the twisting frame {fα}k
α=1 is

denoted by R : U → SO(k). It is defined by the relation fα(x) = eγ(x)Rγ
α(x)

for x ∈ U and obeys R(x0) = idk×k due to the initial data of {eα}k
α=1. Conse-

quently, using the differential equation of the parallel transport, we have

∇N
∂xi

fα(x0) = ∇N
∂xi

(eγRγ
α)(x0) =

(
∇N

∂xi
eγ

)
(x0)

︸ ︷︷ ︸
=0

δγ
α + eγ(x) ∂xiRγ

α(x0)

and hence

g⊥
B

(
∇N

∂xi
fα, fβ

)∣∣
x0

= g⊥
B(eγ ∂xiRγ

α, eβ)|x0 = ∂xiRβα(x0). (4.20)

For 1 ≤ α < β ≤ k, let Tαβ ∈ R
k×k defined by

(Tαβ)γζ := δαζδβγ − δαγδβζ

be a set of generators of the Lie Algebra so(k). This induces generalised angle
functions {ωαβ ∈ C∞(U)}α<β by the relation

R(x) = exp
(∑

α<β

ωαβ(x)Tαβ

)

for x ∈ U . Then, a short calculation shows that

∂xiR(x0) =
(
(∂xiωαβTαβ)R

)
(x0) = dωαβ(∂xi)|x0Tαβ , α < β. (4.21)

Combining (4.19), (4.20) and (4.21), we obtain

π∗
MgB(gradgs

φ0, ∂
HM
xi )|ν(x0)=nαfα(x0) = −dωαβ(∂xi)|x0(LαβΦ0)(n)

for α < β, where

(LαβΦ0)(n) := 〈(∇nΦ0)(n), Tαβn〉
Rk = (nα∂nβ − nβ∂nα)Φ0(n)

defines the action of the (α, β)-component of the angular momentum operator
in k dimensions. From here, it is easy to see that the adiabatic potential at x0

is given by
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Va(x0) =
∫

Fx0

π∗
MgB(gradgs

φ0, gradgs
φ0) dν

=
∫

F

gB

(
−dωαβ(LαβΦ0)(n),−dωγζ(LγζΦ0)(n)

)∣∣
x0

dn

= gB(dωαβ ,dωγζ)|x0︸ ︷︷ ︸
=:R(αβ),(γζ)(x0)

〈LαβΦ0, LγζΦ0〉L2(F )︸ ︷︷ ︸
=:L(αβ),(γζ)

, α < β and γ < ζ

= trRk(k−1)/2

(
R(x0)tL

)
. (4.22)

The first matrix R(x0) encodes the rate, at which the frame {fα}k
α=1 twists

relatively to the parallel frame {eα}k
α=1 at x0. The second matrix L measures

the deviation of the eigenfunction Φ0 from being rotationally invariant. It
determines to which extent the twisting of the waveguide effects the states
in the range of P0 and it depends only on the set F ⊂ R

k (and not on the
point x0 of the submanifold B). Finally for the case of a twisted quantum
waveguides with (B, gB) ∼= (R, δ1) and k = 2, there exists only one angle
function ω ∈ C∞(R) and one angular momentum operator L = n1∂n2 −n2∂n1 .
Then, formula (4.22) yields the well-known result [14]

Va = (ω′)2 ‖LΦ0‖2
L2(F ) ,

which clearly vanishes if F is invariant under rotations.

4.4.3. Conclusion. Now that we have calculated all the relevant quantities,
we can give an explicit expansion of Ha. The correct norm for error bounds
of course depends on the energy scale under consideration. For a constant
eigenvalue λ0 and α = 2 the graph-norm of ε−2Ha is clearly equivalent (with
constants independent of ε) to the usual norm of W 2(B, gB). In this situation,
the best approximation by Ha given by Theorem 3.3 has errors of order ε4, so
the estimates just derived give

Ha = −ε2ΔgB
+ λ0 + ε2Va + ε2V 0

bend

− 2ε3

∫

Fx

φ0 divgs

(
II(ν)(dφ0, ·)

)
dν + O(ε4)

(α = 2)

if φ0 is centred. If this is not the case, the expansion can be read off from
Eqs. (4.11), (4.14) and (4.18).

If λ0 has a non-degenerate minimum and α = 1, the errors of our best
approximation are of order ε3. Thus, the potentials of order ε3 can be dis-
regarded in this case. Note, however, that on the domain of ε−1Ha we have
ε∂HM

xi = O(
√

ε), so the differential operator (4.16) will be relevant. The error
terms of Eq. (4.17), containing second order differential operators, are of order
ε3 with respect to ε−1Ha, so they are still negligible. Thus, for ψ ∈ W 2(B)
with ‖ψ‖2 +

∥
∥(−εΔgB

+ ε−1λ0)ψ
∥
∥2 = O(1) we have

Haψ =
(
−ε2ΔgB

+ λ0 + ε2Va + ε2V 0
bend

)
ψ

− 2ε3 divgB

∫

Fx

|φ0(ν)|2 II(ν)(dψ, ·) dν + O(ε3),
(α = 1)

where the last term is of order ε2 in general and vanishes for centred φ0.
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5. Hollow Quantum Waveguides

In this section, we consider hollow quantum waveguides F → (M, gε) πM−−→
(B, gB), which by Definition 2.2 are the boundaries of massive waveguides.
This underlying massive waveguide is denoted by F̊ → (M̊, g̊ε)

πM̊−−→ (B, gB) in
the following. The bundle structure is inherited from the massive waveguide
as well, i.e. F = ∂F̊ and the diagram

M ⊂ � M̊

B

πM
�

idB

� B

πM̊
�

commutes.
Hollow quantum waveguides have, to our knowledge, not been studied

before. In fact, already the derivations of gε and Vbend constitute novel results.
A slight generalisation of these calculations to objects that are not necessarily
boundaries can be found in [15, Chapter 3].

To determine the adiabatic operator Ha for hollow quantum waveguides,
we follow the same procedure as layed out in Sect. 1 and in the previous section.

5.1. The Pullback Metric

Note that gε = g̊ε|TM and that we computed the unscaled pullback metric
g̊ε=1 for the massive waveguide M̊ already in Lemma 4.1. The latter reads

g̊ := g̊ε=1 = π∗
M̊

gB + h̊ε=1

︸ ︷︷ ︸
=:̊ghor

+gF̊ ,

where the “horizontal correction” h̊ε=1 (4.7) vanishes on vertical vector fields
and essentially depends on the extrinsic geometry of the embedding B ↪→
R

d+k.
If we restrict M̊ ’s tangent bundle to M , one has the orthogonal decom-

position

TM̊ |M = TM ⊕ NM
(2.1)
= HM ⊕ VM ⊕ NM (5.1)

with respect to g̊. Due to the commutativity of the above diagram, it follows
that VM ⊂ VM̊ |M . This suggests to introduce the notation VM⊥ for the
orthogonal complement of VM in VM̊ |M with respect to gF̊ , i.e.

VM̊ |M = VM ⊕ VM⊥. (5.2)

For any X ∈ Γ(TB), let XHM̊ ∈ Γ(HM̊) and XHM ∈ Γ(HM) be the respective
unique horizontal lifts. It then holds that

πM̊∗
(
XHM − XHM̊ |M

)
= πM∗XHM − πM̊∗X

HM̊ |M = X − X = 0.
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M

M

X

XHM

XHM̊ |M

VX

ν

x

NxB ∼= VνM̊

NB

M̊

0 ∼= B

HνM̊

HνM VνM⊥ ⊂ VνM̊

VνM⊥VνM

ν

0

Mx

M̊x

NxB ∼= VνM̊

Figure 2. Left sketch of the fibre NxB for any x ∈ B. Note
that for any ν ∈ M̊x ⊂ NxB we have the canonical identi-
fication of NxB and VνM̊ via the isomorphism (4.4). Right
relationship between the horizontal lifts XHM and XHM̊ |M .
They are connected by the vertical field VX

Thus, the difference between XHM and XHM̊ |M is a vertical field:

XHM = XHM̊ |M + VX (5.3)

with VX ∈ Γ(VM̊ |M ). Moreover, VX ∈ Γ(VM⊥) since for arbitrary W ∈
Γ(VM) ⊂ Γ(VM̊ |M )

0 = g(XHM ,W ) = g̊
(
XHM̊ |M ,W

)

︸ ︷︷ ︸
=0

+gF̊

(
VX ,W )

implies gF̊ (VX ,W ) = 0. The geometric situation is sketched in Fig. 2.
Obviously, the relation πM∗XHM = X does not shed light on the vertical

part VX . The latter will be determined by the requirement XHM to be a
tangent vector field on M , or equivalently by the condition g̊(XHM , n) = 0,
where n ∈ Γ(NM) denotes a unit normal field of M in M̊ . To determine VX

from this condition, we first need to show that the vertical component of n is
non-zero everywhere.

Lemma 5.1. Let n ∈ Γ(NM) be a unit normal field of the hollow quantum
waveguide M . Then, vn := PVM̊ n ∈ Γ(VM⊥) is a non-vanishing vector field.

Proof. Decompose n = vn + hn with hn := PHM̊ n ∈ Γ(HM̊ |M ). It then holds
for any vector field W ∈ Γ(VM):

gF̊ (W, vn) = g̊(W, vn) = g̊(W, vn + hn) = g̊(W,n) = 0,

where we used (5.1) for the second and fourth equality. This clearly implies
vn ∈ Γ(VM⊥) by (5.2). Now suppose there exists ν ∈ M with vn(ν) = 0.
Consider the space

Uν := HνM ⊕ span{(n(ν)} ⊂ TνM̊.



2562 S. Haag et al. Ann. Henri Poincaré

Since n(ν) ∈ NνM is orthogonal to HνM ⊂ TνM , one has dim(Uν) = d + 1.
We will show that the kernel of πM̊∗|Uν

: Uν → im(πM̊∗|Uν
) ⊂ TπM̊ (ν)B is

trivial. Hence,

d + 1 = dim(Uν) = rank(πM̊∗|Uν
) ≤ dim

(
TπM̊ (ν)B

)

clearly contradicts the fact that dim(B) = d and finally the assumption that
n(ν) = 0. Therefore, let w ∈ ker(πM̊∗|Uν

) ∈ VνM̊ ∩Uν . On the one hand, since

n(ν) = vn(ν)
︸ ︷︷ ︸

=0

+hn(ν) ∈ HνM̊ = ker(πM̊∗|ν
)⊥

,

w is an element of HνM . But on the other hand, πM̊∗|HνM : HνM → TπM̊ (ν)B

possesses a trivial kernel. Together, this yields w = 0, i.e. ker(πM̊∗|Uν
) =

{0}. �

In view of Eq. (5.3), Lemma 5.1 suggests to define a function (X)ג ∈
C∞(M) such that VX = .vn(X)ג Thus, the requirement XHM ∈ Γ(TM) yields

0 = g̊(XHM , n) = g̊
(
XHM̊ |M , n

)
+ g̊(vn, n)ג(X)

= g̊hor
(
XHM̊ |M , hn

)
+ gF̊ (vn, vn)ג(X),

consequently

(X)ג = − g̊hor(XHM̊ |M , hn)
gF̊ (vn, vn)

. (5.4)

Note that (X)ג is well defined since gF̊ (vn, vn) > 0 by Lemma 5.1. Moreover,
the latter equation shows that ג ∈ T 0

1 (B) ⊗ C∞(M) is actually a tensor.
In summary, we just showed that the unscaled pullback metric on M may

be written as:

g = ghor + gF , gF := gF̊ |
VM

with “horizontal block”

ghor(XHM , Y HM ) := g̊hor
(
XHM̊ |M , Y HM̊ |M

)
+ gF̊ (vn, vn)ג(X)ג(Y )

for X,Y ∈ Γ(TB). Going over to the scaled pullback metric gε, we first show
that the horizontal lift remains unchanged.

Lemma 5.2. Let (M, gε) → (B, gB) be a hollow quantum waveguide for ε > 0.
Then, the horizontal subbundle HM is independent of ε.

Proof. It is sufficient to show that for any vector field X ∈ Γ(TB) its unique
horizontal lift XHM is given by the ε-independent expression

XHM = XHM̊ |M + vn(X)ג

with (X)ג ∈ C∞(M) and vn ∈ Γ(VM⊥) as before. We already know that XHM

is tangent to M and satisfies πM∗XHM = X. Thus, the requirement that XHM
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is orthogonal to any W ∈ Γ(VM) with respect gε is the only possible way for
any ε-dependence to come into play. Therefore, we calculate

gε(XHM ,W )

= g̊ε
(
XHM̊ |M + vn,W(X)ג

)

= ε−2
[
π∗

M̊
gB

(
XHM̊ |M ,W

)
+ ε̊hε

(
XHM̊ |M ,W

)]

︸ ︷︷ ︸
= 0, since W ∈ Γ(VM) ⊂ Γ(VM̊ |M )

(X)ג+ gF̊ (vn,W )
︸ ︷︷ ︸
= 0 by (5.2)

= 0.

�

In summary, if the scaled pullback metric of the massive waveguide M̊

has the form g̊ε = ε−2(π∗
M̊

gB + ε̊hε) + gF̊ , the scaled pullback metric gε of the
associated hollow waveguide M reads

gε = ε−2(π∗
MgB + εhε) + gF (5.5)

with

hε(XHM , Y HM ) := h̊ε
(
XHM̊ |M , Y HM̊ |M

)
+ εgF̊ (vn, vn)ג(X)ג(Y )

for X,Y ∈ Γ(TB). This shows that the scaled pullback metric gε is again of
the form (2.2).

Example. Let us consider a simple example of a hollow quantum waveguide
with d = 1, k = 2. Take B = {(x, 0, 0) ∈ R

3 : x ∈ R} ⊂ R
3 as submanifold

and parametrise the according massive quantum waveguide via

M̊ :=
{

(x, 0, 0) + � r(x, ϕ)er : (x, ϕ, �) ∈ R × [0, 2π) × [0, 1]
}

,

where r : R × [0, 2π) → [r−, r+] with 0 < r− < r+ < ∞ is a smooth
function obeying the periodicity condition r(·, ϕ + 2π) = r(·, ϕ) and er =
(0, cos ϕ, sin ϕ) ∈ V(x,ϕ,�)M̊ stands for the “radial unit vector”. In view of
Example 2 with κ ≡ 0, the unscaled pullback metric on M̊ is given by

g̊ = g̊hor + gF̊ = dx2 + (�2 dϕ2 + d�2).

Furthermore, we immediately observe that TxB = span{∂x} with trivial hori-
zontal lift ∂HM̊

x = (1, 0, 0) =: ex ∈ H(x,ϕ,�)M̊ . The hollow quantum waveguide
associated with M is obviously given by

M :=
{

(x, 0, 0) + r(x, ϕ)er : (x, ϕ) ∈ R × [0, 2π)
}

= M̊ |�=1.

Consequently, T(x,ϕ)M is given by span{τx, τϕ}, where

τx(x, ϕ) = ∂M
∂x (x, ϕ) = ex + ∂r

∂xer,

τϕ(x, ϕ) = ∂M
∂ϕ (x, ϕ) = ∂r

∂ϕer + reϕ

with eϕ = (0,− sin ϕ, cos ϕ) ∈ V(x,ϕ,�)M̊ . One easily agrees that τx and τϕ are
orthogonal to

ñ = − ∂r
∂ϕeϕ + rer − r ∂r

∂xex
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with respect to g̊. Hence

n(x, ϕ) :=
ñ

‖ñ‖g̊

=
− ∂r

∂ϕeϕ + rer
√

( ∂r
∂ϕ )2 + r2

[
1 + ( ∂r

∂x )2
]

︸ ︷︷ ︸
=:vn∈V(x,ϕ)M⊥

+
−r ∂r

∂xex√
( ∂r

∂ϕ )2 + r2
[
1 + ( ∂r

∂x )2
]

︸ ︷︷ ︸
=:hn∈H(x,ϕ)M̊

is a unit normal vector of M at (x, ϕ) for ε = 1. Noting that

gF̊ (vn, vn) =
( ∂r

∂ϕ )2 + r2

( ∂r
∂ϕ )2 + r2

[
1 + ( ∂r

∂x )2
] ,

Equation (5.4) gives

(x∂)ג = − g̊hor(∂HM̊
x |M , hn)

gF̊ (vn, vn)

= −
−r ∂r

∂ϕ√
( ∂r

∂ϕ )2 + r2
[
1 + ( ∂r

∂x )2
]

(
( ∂r

∂ϕ )2 + r2

( ∂r
∂ϕ )2 + r2

[
1 + ( ∂r

∂x )2
]

)−1

=
r ∂r

∂ϕ

√
( ∂r

∂ϕ )2 + r2
[
1 + ( ∂r

∂x )2
]

( ∂r
∂ϕ )2 + r2

.

This yields the following expression for the “horizontal block” of the scaled
pullback metric gε:

gε,hor(∂HM
x , ∂HM

x ) = ε−2 dx2
(
∂HM̊

x |M , ∂HM̊
x |M

)
+ gF̊ (vn, vn)ג(∂x)ג(∂x)

= ε−2 +
r2( ∂r

∂x )2

( ∂r
∂ϕ )2 + r2

= ε−2
(
1 + εhε(∂HM

x , ∂HM
x )

)

with

hε(∂HM
x , ∂HM

x ) = ε
r2( ∂r

∂x )2

( ∂r
∂ϕ )2 + r2

.

5.2. The Adiabatic Hamiltonian

We now calculate the adiabatic operator for hollow waveguides. Since in this
case the fibre is a manifold without boundary, the ground state of HF is
explicitly known:

φ0 =
√

ρε

‖ρε‖1

= π∗
M Vol(Fx)−1/2 + O(ε),

where ‖ρε‖1 (x) is the L1-norm of ρε on the fibre Fx. Because of this, we can
express many of the terms appearing in Ha, given in Eq. (3.3), through ρε.

Let us begin with the sum of the modified bending potential Ṽbend appear-
ing in H1 and the adiabatic potential Va. First, we obtain an expression for
the one-form η̄ by observing that for any vector field X on B



Vol. 16 (2015) Generalised Quantum Waveguides 2565

0 = X

∫

Fx

|φ0|2 dgF =
∫

Fx

XHM |φ0|2 dgF −
∫

Fx

|φ0|2 gB(X,πM∗ηF ) dgF

︸ ︷︷ ︸
=η̄(X)

.

So we see that

η̄ =
∫

Fx

PHM
(
d|φ0|2

)
dgF . (5.6)

Now to start with the first term of the adiabatic potential can be calculated
as in (4.16)

trgB
(∇B η̄) = divgB

gB(η̄, ·)
(4.9)
=

∫

Fx

divgs

(
PHM gradgs

|φ0|2
)

dgF

(2.4)
=

∫

Fx

ΔH |φ0|2 dgF .

For the modified bending potential one has, using the shorthand |Fx| =
Vol(Fx),

ε2Ṽ a
bend := P0

(
Vbend − 1

2ΔV(log ρε) − 1
4gF (d log ρε,d log ρε)

)
P0

=
ε2

2

∫

Fx

|φ0|2 ΔH(log ρε) dgF + O(ε4)

=
ε2

2

∫

Fx

|Fx|−1 (ΔHρε) dgF + O(ε4).

Note that this expression is of order ε3 since ρε = 1 + O(ε). Hence, bending
does not contribute to the leading order of Ha. Now inserting the explicit form
of φ0 an elementary calculation yields

Va + Ṽ a
bend =

∫

Fx

− 1
2ρεΔH ‖ρε‖−1

1 − 1
2gB

(
grad |Fx|−1

, πM∗ grad ρε

)

+ 1
4ρε ‖ρε‖1 gB

(
πM∗ grad ‖ρε‖−1

1 , πM∗ grad ‖ρε‖−1
1

)
dgF

+O(ε2). (5.7)

With ρε = 1+O(ε) and ‖ρε‖1 = |Fx|+O(ε) one easily checks that up to order
ε this expression equals

1
4gB

(
d log |Fx| ,d log |Fx|

)
+ 1

2ΔgB
log |Fx| .

As far as the remaining terms of H1 are concerned, note that the scaled pull-
back metric gε of the hollow waveguide has the same expansion on horizontal
one-forms up to errors of order ε4 as in the case of the massive waveguide (4.13),
i.e.

gε(π∗
Mdxi, π∗

Mdxj) = ε2
(
gij

B + 2ε II(ν)ij + O(ε2)
)
.

Hence, we can calculate these terms starting from expression (4.15). Since the
latter all carry a prefactor ε3, we may replace any φ0 by |Fx|−1/2, obtaining
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for ψ ∈ L2(B)
∫

Fx

divgs

(
|φ0|2 II(ν)(dψ, ·)

)
dgF =

∫

Fx

divgs

(
|Fx|−1 II(ν)(dψ, ·)

)
dgF + O(ε)

(5.8)
and

∫

Fx

φ0 divgs

(
II(ν)(πM∗ gradgs

φ0, ·)
)

dgF

=
∫

Fx

|Fx|−1/2 divgs

(
II(ν)

(
d |Fx|−1/2

, ·
))

dgF + O(ε). (5.9)

As in Eq. (4.16), we have
∫

Fx

divgs

(
|Fx|−1 II(ν)(dψ, ·)

)
dgF = divgB

∫

Fx

|Fx|−1 II(ν)(dψ, ·) dgF .

Again, this term vanishes if the barycentre of the fibres Fx = ∂F̊x ⊂ NxB is
zero, that is

∫

Fx

ν dgF = 0.

Since λ0 ≡ 0, the adiabatic operator is of the form

Ha = −ε2ΔgB
+ ε2Va + εP0H1P0

= −ε2ΔgB
+ ε2

(
1
4gB

(
d log |Fx| ,d log |Fx|

)
+ 1

2ΔgB
log |Fx|

)
+ O(ε3),

(5.10)

with an error in L(W 2(B), L2(B)). Thus, the adiabatic operator at leading
order is just the Laplacian on the base B plus an effective potential depending
solely on the relative change of the volume of the fibres. Going one order
further in the approximation, we have

ε2Va + εP0H1P0 = ε2(5.7) + 2ε3(5.9) + 2ε3(5.8) + O(ε4)

in the same norm. Hence, Ha also contains the second order differential opera-
tor (5.8) if the barycentre of Fx is different from zero. Let us also remark that
the leading order of the adiabatic potential can also be calculated by applying
a unitary transformation L2(F,dgF ) → L2(F, |Fx|−1 dgF ) that rescales fibre
volume to one, in the spirit of Mρε

[cf. Eq. (2.5)]. In this way a similar poten-
tial was derived by Kleine [9], in a slightly different context, for a special case
with one-dimensional base and without bending.
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Auf der Morgenstelle 10
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