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The Multiscale Loop Vertex Expansion

Razvan Gurau and Vincent Rivasseau

Abstract. The loop vertex expansion (LVE) is a constructive technique
which uses only canonical combinatorial tools and no space–time depen-
dent lattices. It works for quantum field theories without renormaliza-
tion. Renormalization requires scale analysis. In this paper, we provide
an enlarged formalism which we call the multiscale loop vertex expan-
sion (MLVE). We test it on what is probably the simplest quantum field
theory which requires some kind of renormalization, namely a combina-
torial model of the vector type with quartic interaction and a propagator
which mimicks the power counting of φ4

2. An ordinary LVE would fail
to treat even this simplest superrenormalizable model, but we show how
to perform the ultraviolet limit and prove its analyticity in the Borel
summability domain of the model with the MLVE.

1. Introduction

Constructive field theory [1] is a set of techniques to resum perturbative quan-
tum field theory and obtain a rigorous definition of quantities such as the
Schwinger functions of interacting renormalized models. Although superrenor-
malizable and even just renormalizable models have been treated in the past
[2], it has the reputation of being a difficult technical subject. This reputation
is mostly due to the complicated formalism of iterated cluster and Mayer ex-
pansions, also known as the phase space expansion. In spite of many great and
commendable efforts to improve the presentation of this undoubtedly powerful
formalism, it has remained quite confidential. Part of the problem lies within
the use of non-canonical spatial tools, namely the space–time lattices. They
break the natural rotation invariance of the theory and have certainly hindered
the development of constructive gauge theories, of constructive field theory in
curved space time and of constructive models of random space–times.

The (single scale) loop vertex expansion (LVE) is a formalism designed to
improve on traditional constructive tools. For ultraviolet convergent theories
or in a single renormalization group slice, it can be viewed as a reorganization
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of the perturbative series [3]. It combines an intermediate field functional inte-
gral representation with a forest formula [4,5] and a replica trick. Remark that
such canonical combinatorial tools are independent of the space–time geome-
try. It allows the computation of connected Schwinger functions as convergent
sums indexed by spanning trees of arbitrary size n rather than divergent sums
indexed by Feynman graphs. Indeed trees proliferate not as fast as general
Feynman graphs when their number n of vertices increases. Initially intro-
duced to analyze matrix models with quartic interactions [6], the LVE can
been extended to other stable polynomial interactions [7], and has been shown
compatible with direct space decay estimates [8].

Recently interest has risen in quantum gravity for the study of combina-
torial quantum field theories which do not refer to any particular space–time
structure but are formulated on random tensors of rank D [9,10]. Such models
are characterized by a U(N)⊗D invariance. Their large N regime relies on a
different 1/N expansion for D = 1 (vector models), D = 2 (matrix models)
and D ≥ 3 (proper tensor models). When D = 2, matrix models are well
identified with a discretized version of two-dimensional quantum gravity [11].
The LVE has been shown particularly well adapted to the analysis of random
tensor models of rank D ≥ 3, in which it computes in a natural way the 1/N
expansion [12,13]. Breaking this U(N)⊗D invariance at the propagator level
creates combinatorial quantum field theories with a full-fledged renormaliza-
tion group flow [14–17]. For just renormalizable models with quartic interac-
tions, it is interesting to notice that this flow is non-asymptotically free in the
vector case, asymptotically safe in the matrix case [18] and asymptotically free
in the proper tensor case [19,20].

Probably the simplest example of a combinatorial field theory which re-
quires some renormalization is a model of the vector type (D = 1) with quar-
tic interaction and a covariance δpq/p between components p and q. Its power
counting is similar to the one of the φ4

2 model [21] but it lacks the technicalities
due to space–time decomposition. Its renormalized interaction is still positive
at λ > 0, hence it does not even have the problem called Nelson’s bound [22].
However to treat constructively even this extremely simple theory requires a
multiscale analysis in the sense of the renormalization group.

In this short pedagogical paper, we provide a multiscale version of the
LVE by combining the intermediate field representation of the ordinary LVE
with a multiscale analysis and two successive forests formulas. The first formula
acts as in the ordinary LVE on the intermediate Bosonic fields. The second
acts on Fermionic fields, implementing a kind of Mayer expansion between the
blocks created by the first expansion.1 Our toy model example hopefully will
help disentangle the combinatorial core of this multiscale loop vertex expansion
(MLVE), which we treat in great detail, from other unessential aspects.

1 Remark that although Fermionic forest formulas are rather standard in constructive field
theory [23,24], we do not know if they were used before this paper to implement Mayer
expansions.
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The plan of this paper is as follows: Sect. 2 contains the model, the MLVE
and the statement of the main convergence and analyticity theorem which is
then proved in Sect. 3. Appendices A and B comprise standard facts about
the forest formula and the Mayer expansion.

2. The Model

Consider a pair of conjugate vector fields {φp}, {φ̄p}, p = 1, . . . , N , with λ2

2 (φ̄ ·
φ)2 bare interaction, where (φ̄ · φ) ≡

∑N
p=1 φ̄pφp. The Gaussian measure

dη(φ̄, φ) is chosen to break the U(N) invariance of the theory. It has diag-
onal covariance (or propagator) which decreases as the inverse power of the
field index:

dη(φ̄, φ) =

(
N∏

p=1

p
dφ̄pdφp

2πı

)

e−
∑N

p=1 p φ̄pφp ,

∫

dη(φ̄, φ) φ̄pφq =
δpq

p
.

This propagator renders the perturbative amplitudes of the model finite in
the N → ∞ limit, except for a mild divergence of self-loops which yield a
logarithmically divergent sum LN =

∑N
p=1

1
p � log N . These divergences are

easily renormalized using a vector-Wick-ordered φ4 interaction, namely 1
2 [λ(φ̄ ·

φ − LN )]2. Remark that this interaction (contrary to the φ4
2 case) remains

positive for λ real at all values of (φ̄, φ). The renormalized partition function
of the model is

Z(λ,N) =
∫

dη(φ̄, φ) e− λ2
2 (φ̄·φ−LN )2 . (2.1)

The intermediate field representation decomposes the quartic interaction using
an intermediate scalar field σ:

e− λ2
2 (φ̄·φ−LN )2 =

∫

dν(σ) eıλσ(φ̄·φ−LN ),

where dν(σ) = 1√
2π

e− σ2
2 is the standard Gaussian measure with covariance 1.

Integrating over the initial fields (φ̄p, φp) leads to:

Z(λ,N) =
∫

dν(σ)
N∏

p=1

1
1 − ıλσ

p

e−ı λσ
p =

∫

dν(σ) e−
∑N

p=1 log2(1−ı λσ
p ),

where log2(1 − x) ≡ x + log(1 − x) = O(x2).
Performing a single-scale standard LVE expansion on this functional in-

tegral, even for this most simple of all renormalizable models, already runs
into trouble. The LVE expresses log Z(λ,N) a sum over trees, but there is
no simple way to remove the logarithmic divergence of all leaves of the tree
without generating many intermediate fields in numerators which, when inte-
grated through the Gaussian measure, would create an apparent divergence
of the series. This will be explained in more detail below. Here, we proceed
differently.

We fix an integer M > 1 and define the jth slice, as made of the indices
p ∈ Ij ≡ [M j−1,M j −1]. The ultraviolet cutoff N is chosen as N = M jmax −1,
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with jmax an integer. We can also fix an infrared cutoff jmin. Hence there are
jmax − jmin slices in the theory, and the ultraviolet limit corresponds to the
limit jmax → ∞. The intermediate field representation writes:

Z(λ,N) =
∫

dν(σ)
jmax∏

j=jmin

e−Vj , Vj =
∑

p∈Ij

log2

(

1 − ı
λσ

p

)

, (2.2)

and we note that the interaction is now factorized over the set of slices S =
[jmin, . . . jmax]. This factorization of the interaction can be encoded into an
integral over Grassmann numbers. Indeed

a =
∫

dχ̄dχ e−χ̄aχ =
∫

dμ(χ̄, χ) e−χ̄(a−1)χ

where dμ(χ̄, χ) = dχ̄dχ e−χ̄χ is the standard normalized Grassmann Gaussian
measure with covariance 1. Hence, denoting Wj(σ) = e−Vj −1, we can rewrite:

Z(λ,N) =
∫

dν(σ)

⎛

⎝
jmax∏

j=jmin

dμ(χ̄j , χj)

⎞

⎠ e−
∑jmax

j=jmin
χ̄jWj(σ)χj .

Below we will use the fact that Gaussian integrals can be represented as de-
rivative operators. The advantage of using this representation is that the co-
variances of the Gaussian measures are explicit. For instance, the partition
function can be written as:

Z(λ,N) =

⎡

⎣e
1
2

∂
∂σ

∂
∂σ +

∑jmax
j=jmin

∂
∂χ̄j

∂
∂χj

jmax∏

j=jmin

e−χ̄jWj(σ)χj

⎤

⎦

σ,χ̄j ,χj=0

.

For any finite set S, let us denote 1S the |S| by |S| matrix with coefficients
1 everywhere and IS the |S| by |S| identity matrix. We rewrite the partition
function as:

Z(λ,N) =
∫

dνS e−W ,

dνS = dν(σ) dμIS ({χ̄j , χj}),

W =
jmax∑

j=jmin

χ̄jWj(σ)χj ,

or equivalently:

Z(λ,N) =
[

e
1
2

∂
∂σ

∂
∂σ +

∑jmax
j=jmin

∂
∂χ̄j

∂
∂χj e−

∑jmax
j=jmin

χ̄jWj(σ)χj

]

σ,χ̄j ,χj=0

.

This is the starting point for the MLVE. The first step is to expand to infinity
the exponential of the interaction:

Z(λ,N) =
∫

dνS

∞∑

n=0

1
n!

(−W )n.



Vol. 16 (2015) The Multiscale Loop Vertex Expansion 1873

Thanks to the Fermions the series is in fact finite (zero for n > jmax) and
can be safely commuted with the integral. The second step introduces replica
Bosonic fields for all the vertices in V = {1, . . . , n}:

Z(λ,N) =
∞∑

n=0

1
n!

∫

dνS,V

n∏

a=1

(−Wa),

where the ath vertex Wa has now its own (replicated) Bosonic fields σa and
the replica measure is completely degenerated

dνS,V = dν1V
({σa}) dμIS ({χ̄j , χj}), Wa =

jmax∑

j=jmin

χ̄jWj(σa)χj .

Note that, very importantly, we have not introduced any vertex replicas for
the Fermionic fields. Expressing the Gaussian integral as a derivative operator,
we write equivalently:

Z(λ,N) =
∞∑

n=0

1
n!

×

⎡

⎣e
1
2

∑n
a,b=1

∂
∂σa

∂
∂σb

+
∑jmax

j=jmin
∂

∂χ̄j

∂
∂χj

n∏

a=1

⎛

⎝−
jmax∑

j=jmin

χ̄jWj(σa)χj

⎞

⎠

⎤

⎦

σa,χj χ̄j=0

.

The obstacle to factorize this integral over vertices lies now in the Bosonic
degenerate blocks 1V and in the Fermionic fields (which couple the vertices
Wa). To deal with this, we will apply two successive forest formulas. First,
to disentangle the block 1V in the measure dν, we introduce the coupling
parameters xab = xba, xaa = 1 between the vertex Bosonic replicas:

Z(λ,N) =
∞∑

n=0

1
n!

×

⎡

⎣e
1
2

∑n
a,b=1 xab

∂
∂σa

∂
∂σb

+
∑jmax

j=jmin
∂

∂χ̄j

∂
∂χj

n∏

a=1

⎛

⎝−
jmax∑

j=jmin

χ̄jWj(σa)χj

⎞

⎠

⎤

⎦

σ,χ,χ̄=0
xab=1

,

and apply the forest formula (see Appendix A). We denote FB a Bosonic
forest with n vertices labeled {1, . . . n}, 
B a generic edge of the forest and
a(
B), b(
B) the end vertices of 
B . The result of the first forest formula is

Z(λ,N) =
∞∑

n=0

1
n!

∑

FB

∫ 1

0

(
∏

�B∈FB

dw�B

)

×
[

e
1
2

∑n
a,b=1 Xab(w�B

) ∂
∂σa

∂
∂σb

+
∑jmax

j=jmin
∂

∂χ̄j

∂
∂χj

×
∏

�B∈FB

⎛

⎝
jmax∑

j,k=jmin

∂

∂σa(�B)

∂

∂σb(�B)

⎞

⎠
n∏

a=1

⎛

⎝−
jmax∑

j=jmin

χ̄jWj(σa)χj

⎞

⎠

]

σ,χ,χ̄=0

,
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where Xab(w�B
) is the infimum over the parameters w�B

in the unique path
in the forest FB connecting a and b, and the infimum is set to 1 if a = b and
to zero if a and b are not connected by the forest.

The forest FB partitions the set of vertices into blocks B corresponding to
its trees. Remark that the blocks can be singletons (corresponding to the trees
with no edges in FB). We denote a ∈ B if the vertex a belongs to a Bosonic
block B. A vertex belongs to a unique Bosonic block. Contracting every Bosonic
block to an “effective vertex”, we obtain a graph which we denote {n}/FB . We
introduce replica Fermionic fields χB

j for the blocks of FB (i.e., for the effective
vertices of {n}/FB) and replica coupling parameters yBB′ = yB′B. Applying (a
second time) the forest formula, this time for the ys, leads to a set of Fermionic
edges LF forming a forest in {n}/FB (hence connecting Bosonic blocks). We
denote LF a generic Fermionic edge connecting blocks and B(LF ),B′(LF ) the
end blocks of the Fermionic edge LF . We obtain:

Z(λ,N) =
∞∑

n=0

1
n!

∑

FB

∑

LF

∫ 1

0

∏

�B∈FB

dw�B

∏

LF ∈LF

dwLF

×
[

e
1
2

∑n
a,b=1 Xab(w�B

) ∂
∂σa

∂
∂σb

+
∑

B,B′ YBB′ (w�F
)
∑jmax

j=jmin
∂

∂χ̄B
j

∂

∂χB′
j

×
∏

�B∈FB

(
∂

∂σa(�B)

∂

∂σb(�B)

)

×
∏

LF ∈LF

(
jmax∑

j=jmin

(
∂

∂χ̄
B(LF )
j

∂

∂χ
B′(LF )
j

+
∂

∂χ̄
B′(LF )
j

∂

∂χ
B(LF )
j

))

×
∏

B

∏

a∈B

⎛

⎝−
jmax∑

j=jmin

χ̄B
j Wj(σa)χB

j

⎞

⎠

]

σ,χ,χ̄=0

, (2.3)

where YBB′(w�F
) is the infimum over w�F

in the unique path in LF connecting
B and B′ and the infimum is set to 1 if B = B′ and to zero if B and B′ are not
connected by LF . Note that the Fermionic edges are oriented. Expanding the
sums over j in the last line of Eq. (2.3), we obtain a sum over slice assignments
ja to the vertices a, and we obtain:

Z(λ,N) =
∞∑

n=0

1
n!

∑

FB

∑

LF

jmax∑

j1=jmin

· · ·
jmax∑

jn=jmin

∫ 1

0

∏

�B∈FB

dw�B

∏

�F ∈LF

dwLF

×
[

e
1
2

∑n
a,b=1 Xab(w�B

) ∂
∂σa

∂
∂σb

+
∑

B,B′ YBB′ (w�F
)
∑jmax

j=jmin
∂

∂χ̄B
j

∂

∂χB′
j

×
∏

�B∈FB

(
∂

∂σa(�B)

∂

∂σb(�B)

)

×
∏

LF ∈LF

(
jmax∑

j=jmin

(
∂

∂χ̄
B(LF )
j

∂

∂χ
B′(LF )
j

+
∂

∂χ̄
B′(LF )
j

∂

∂χ
B(LF )
j

))
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×
∏

B

∏

a∈B

(
−χ̄B

ja
Wja

(σa)χB
ja

)
]

σ,χ,χ̄=0

.

To compute the derivatives with respect to the block Fermionic fields χB
j and

χ̄B
j , we note that such a derivative acts only on

∏
a∈B(χB

ja
χ̄B

ja
) and, further-

more,

∂

∂χ̄B
j

∏

a∈B

(
χB

ja
χ̄B

ja

)
=

(
∑

a′∈B
δjja′

∂

∂χ̄B
ja′

)
∏

a∈B

(
χB

ja
χ̄B

ja

)
,

∂

∂χB
j

∏

a∈B

(
χB

ja
χ̄B

ja

)
=

(
∑

a′∈B
δjja′

∂

∂χB
ja′

)
∏

a∈B

(
χB

ja
χ̄B

ja

)
.

It follows that the Grassmann Gaussian integral is
[

e
∑

B,B′ YBB′ (w�F
)
∑

a∈B,b∈B′ δjajb
∂

∂χ̄B
ja

∂

∂χB′
jb

∏

LF ∈LF

(
∑

a∈B(LF ),b∈B′(LF )

δjajb

( ∂

∂χ̄
B(LF )
ja

∂

∂χ
B′(LF )
jb

+
∂

∂χ̄
B′(LF )
jb

∂

∂χ
B(LF )
ja

)
)

∏

B

∏

a∈B

(
χB

ja
χ̄B

ja

)
]

χB
j ,χ̄B

j =0

.

The sums over a ∈ B(
F ) and b ∈ B′(
F ) yield a sum over all the possible
ways to hook the edge LF ∈ LF to vertices in its end blocks. Each term
represents a detailed Fermionic edge 
F in the original graph (having the same
w�F

= wLF
parameter). The sum over LF becomes, therefore, a sum over

detailed Fermionic forests FF in the original graph (in which the Bosonic
blocks are not contracted) and we obtain a two-level jungle formula [5] for the
partition function:

Z(λ,N) =
∞∑

n=0

1
n!

∑

J

×
jmax∑

j1=jmin

· · ·
jmax∑

jn=jmin

∫

dwJ

∫

dνJ ∂J

[
∏

B

∏

a∈B

(
Wja

(σa)χB
ja

χ̄B
ja

)
]

,

where
• the sum over J runs over all two level jungles, hence over all ordered pairs

J = (FB ,FF ) of two (each possibly empty) disjoint forests on V , such
that J̄ = FB ∪ FF is still a forest on V . The forests FB and FF are the
Bosonic and Fermionic components of J . The edges of J are partitioned
into Bosonic edges 
B and Fermionic edges 
F .

•
∫

dwJ means integration from 0 to 1 over parameters w�, one for each edge

 ∈ J̄ .

∫
dwJ =

∏
�∈J̄

∫ 1

0
dw�. There is no integration for the empty forest

since by convention an empty product is 1. A generic integration point wJ
is, therefore, made of |J̄ | parameters w� ∈ [0, 1], one for each 
 ∈ J̄ .
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• ∂J =
∏

�B∈FB
�B=(c,d)

(
∂

∂σc

∂

∂σd

) ∏

�F ∈FF
�F =(a,b)

δjajb

(
∂

∂χ̄
B(a)
ja

∂

∂χ
B(b)
jb

+
∂

∂χ̄
B(b)
jb

∂

∂χ
B(a)
ja

)

,

where B(a) denotes the Bosonic blocks to which a belongs.

• The measure dνJ has covariance X(w�B
) on Bosonic variables and Y (w�F

)
⊗ IS on Fermionic variables

e
1
2

∑n
a,b=1 Xab(w�B

) ∂
∂σa

∂
∂σb

+
∑

B,B′ YBB′ (w�F
)
∑

a∈B,b∈B′ δjajb
∂

∂χ̄B
ja

∂

∂χB′
jb .

• Xab(w�B
) is the infimum of the w�B

parameters for all the Bosonic edges

B in the unique path PFB

a→b from a to b in FB . The infimum is set to zero
if such a path does not exists and to 1 if a = b.

• YBB′(w�F
) is the infimum of the w�F

parameters for all the Fermionic edges

F in any of the paths PFB∪FF

a→b from some vertex a ∈ B to some vertex
b ∈ B′. The infimum is set to 0 if there are no such paths, and to 1 if such
paths exist but do not contain any Fermionic edges.

Remember that a main property of the forest formula is that the symmet-
ric n by n matrix Xab(w�B

) is positive for any value of wJ , hence the Gaussian
measure dνJ is well defined. The matrix YBB′(w�F

) is also positive, with all
elements between 0 and 1. Since the slice assignments, the fields, the measure
and the integrand are now factorized over the connected components of J̄ , the
logarithm of Z is easily computed as exactly the same sum but restricted to
the two-level spanning trees:

log Z(λ,N) =
∞∑

n=1

1
n!

×
∑

J tree

jmax∑

j1=1

· · ·
jmax∑

jn=1

∫

dwJ

∫

dνJ ∂J

[
∏

B

∏

a∈B

(
Wja

(σa)χB
ja

χ̄B
ja

)
]

, (2.4)

where the sum is the same but conditioned on J̄ = FB ∪FF being a spanning
tree on V = [1, . . . , n]. Our main results are

Theorem 2.1. Fix jmin ≥ 3 and M ≥ 108. The series (2.4) is absolutely con-
vergent for λ ∈ [−1, 1] uniformly in jmax.

Theorem 2.2. Fix jmin ≥ 3 and M ≥ 108. The series (2.4) is absolutely con-
vergent for λ ∈ C, λ = |λ|eıγ in the domain |λ|2 < (cos 2γ) uniformly in
jmax.

The restriction jmin ≥ 3 can be lifted easily: both conditions jmin ≥ 3 and
M ≥ 108 are not optimal and were chosen for the simplicity of the resulting
domain in λ.
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3. Proof of Theorem 2.1

In this section, we prove our main theorems. We start with Theorem 2.1 and
subsequently proceed to Theorem 2.2. In Eq. (2.4), the Bosonic and the Fermi-
onic integrals decouple. Furthermore, the Bosonic integral factors over the
Bosonic blocks B

log Z(λ,N) =
∞∑

n=1

1
n!

FB∪FF
connected∑

FB ,FF

jmax∑

j1=jmin

· · ·
jmax∑

jn=jmin

∫ 1

0

∏

�B∈FB

dw�B

∏

�F ∈FF

dw�F

×
[

e
∑

B,B′ YBB′ (w�F
)
∑

a∈B,b∈B′ δjajb
∂

∂χ̄B
ja

∂

∂χB′
jb

×
∏

�F ∈FF
�F =(a,b)

δjajb

(
∂

∂χ̄
B(a)
ja

∂

∂χ
B(b)
jb

+
∂

∂χ̄
B(b)
jb

∂

∂χ
B(a)
ja

)
∏

B

∏

a∈B

(
χB

ja
χ̄B

ja

)

⎤

⎥
⎦

χχ̄=0

×
∏

B

⎡

⎢
⎣e

1
2

∑
a,b∈B Xab(w�B

) ∂
∂σa

∂
∂σb

∏

�B∈FB∩B
�B=(c,d)

(
∂

∂σc

∂

∂σd

)∏

a∈B
Wja

(σa)

⎤

⎥
⎦

σ=0

.

(3.1)

In this formula, we have vertex replicas for the Bosonic variables and block
Fermionic variables.

The proof of the theorem is divided into four parts. In Sect. 3.1, we explain
how the sum over two level trees is performed. In Sect. 3.2, we evaluate the
Grassmann Gaussian integral. In Sect. 3.3, we deal with the Bosonic Gaussian
integral and finally in Sect. 3.4 we establish the convergence of the series in
Eq. (2.4).

3.1. Counting Two Level Trees

Recall that the number of partitions of the set {1, . . . , n} into m1 blocks of
size 1, m2 blocks of size 2, and so on is

n!
∏

q≥1 mq!(q!)mq
,

and the number of trees over q vertices labelled 1, . . . q, with assigned coordi-
nation di of the vertex i is

(q − 2)!
(d1 − 1)! . . . (dq − 1)!

,

q∑

i=1

di = 2q − 2.

The sum over two level trees can be reorganized as follows:
• we chose a partition P of the set of vertices {1, . . . n} into subsets B:

P =
{

B
∣
∣
∣B ⊂ {1, . . . n}

}
such that

{
∀B,B′ ∈ P, B �= B′ ⇒ B ∩ B′ = ∅
∪B∈PB = {1, . . . n}

.
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A subset B is a Bosonic block, and its cardinal is denoted |B|. We denote
|P| the number of blocks in the partition.

• we chose a set of Fermionic edges LF forming a tree between the Bosonic
blocks, with assigned coordination D1, . . . D|P| at each block.

• we chose a way of hooking each Fermionic edge to a particular vertex in a
block. Each edge has |B| choices to hook at the block B. Each such choice
leads to a detailed Fermionic forest FF .

• we chose a Bosonic tree T ∈ B in each Bosonic block.

As the contribution of a forest factors over the Bosonic blocks, the sum over
two level trees becomes:

FB∪FF connected∑

FB ,FF

A(FF )
∏

B
A(B) =

∑

P

∑

FF

A(FF )

(
∏

B

∑

T ∈B
A(B)

)

.

We can for instance compute the number of two level trees over n vertices.
The contribution of each two level tree in the sum above is 1 (which factors
over the Bosonic blocks) hence the number of two level trees is:

∑

P

∑
B∈P DB−|P|=|P|−2∑

DB≥1,∀B∈P

(|P| − 2)!
∏

B∈P(DB − 1)!

(
∏

B∈P
|B|DB

) (
∏

B∈P
|B||B|−2

)

,

where the first factor counts the number of Fermionic trees with assigned
coordinations, the second one takes into account that each Fermionic edge has
|B| choices to hook at the block B, and the last one counts the number of
Bosonic trees inside each Bosonic block. The sums over DB can be computed
and we get:

∑

P

(
∑

B∈P
|B|
)|P|−2(

∏

B∈P
|B||B|−1

)

=

∑
q≥1 qBq=n
∑

B1,...Bq···≥0

n!
∏

q≥1 Bq!(q!)Bq
n
∑

q≥1 Bq−2
∏

q≥1

(
qq−1

)Bq

, (3.2)

where we grouped together the contributions of all the partitions having B1

blocks of size 1, B2 blocks of size 2, Bq blocks of size q and so on.

Proposition 3.1. The number of two level trees over n ≥ 1 vertices is bounded
by 22nnn−2.

Proof. The proposition is trivial, as the number of such trees is exactly
2n−1nn−2. It is however instructive to derive a bound directly starting from
Eq. (3.2). We first use qq−1

(q−1)! ≤ eq to obtain a bound:

n!
n2

en

∑
q≥1 qBq=n
∑

B1,...Bq···≥0

1
∏

q≥1 Bq! qBq
n
∑

q≥1 Bq .
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The sum over B1, . . . Bq, . . . is nothing but the coefficient of xn in the Taylor
expansion

∏

q≥1

∑

Bq≥0

1
Bq!

(

n
xq

q

)Bq

=
∏

q≥1

en xq

q = en[− ln(1−x)]

=
1

(1 − x)n
=
∑

p≥0

(
p + n − 1

p

)

xp.

The Stirling formula provides a tight bound on the factorial
√

2πn
(

n
e

)n e
1

12n+1

≤ n! ≤
√

2πn
(

n
e

)n e
1

12n , hence the number of two level trees over n vertices is
bounded by

1
n2

en (2n − 1)!
(n − 1)!

=
1
n

en (2n − 1)!
n!

≤ 1
n

√
2 e

1
12

(2n − 1)2n−1

nn

≤
√

2 e
1
12

(2n)2n−1

nn+1
< 22nnn−2.

�

Going back to our problem, the expression Eq. (3.1) is reorganized in
terms of partitions P of the set of vertices as:

log Z(λ,N) =
∞∑

n=1

1
n!

∑

P

∑

FF

∑

{ja}

∫ 1

0

∏

�F ∈FF

dw�F

×
[

e
∑

B,B′ YBB′ (w�F
)
∑

a∈B,b∈B′ δjajb
∂

∂χ̄B
ja

∂

∂χB′
jb

×
∏

�F ∈FF
�F =(a,b)

δjajb

(
∂

∂χ̄
B(a)
ja

∂

∂χ
B(b)
jb

+
∂

∂χ̄
B(b)
jb

∂

∂χ
B(a)
ja

)
∏

B

∏

a∈B

(
χB

ja
χ̄B

ja

)
]

χχ̄=0

×
∏

B

[
∑

T ∈B

∫ 1

0

∏

�B∈T
dw�B

e
1
2

∑
a,b∈B Xab(w�B

) ∂
∂σa

∂
∂σb

×
∏

�B∈T
�B=(c,d)

(
∂

∂σc

∂

∂σd

)∏

a∈B
Wja

(σa)

]

σ=0

, (3.3)

where
∑

{ja} signifies a sum over the slice indices of all the vertices, ja, from
jmin to jmax.

3.2. The Grassmann Gaussian Integral

In order to evaluate further the Grassmann Gaussian integral, consider that
any polynomial depending on n pairs of Grassmann numbers χj , χ̄j can be
written (in fact in a unique way) as P (χ, χ̄) =

∑
t,t′ P (t, t′) χt1

1 . . . χtn
n

χ̄
t′
n

n . . . χ̄
t′
1

1 , where t and t′ are two finite sequences of length n of numbers
tj , t′j which are either 0 or 1. Therefore
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P (∂χ̄, ∂χ)Q(χ, χ̄)|χ=χ̄=0

=
∑

t,t′,s,s′

P (t, t′)Q(s, s′)∂t1
χ̄1

. . . ∂tn
χ̄n

∂
t′
n

χn . . . ∂
t′
1

χ1χ
s1
1 . . . χsn

n χ̄
s′

n
n . . . χ̄

s′
1

1 |χ=χ̄=0

=
∑

t,t′,s,s′

P (t, t′)Q(s, s′)δts′δt′s =
∑

t,t′,s,s′

Q(t, t′)P (s, s′)δts′δt′s

= Q(∂χ̄, ∂χ)P (χ, χ̄)|χ=χ̄=0.

Hence the Gaussian Grassmann integral in (3.3) can thus be rewritten as:
[
∏

B

∏

a∈B

(
∂

∂χ̄B
ja

∂

∂χB
ja

)

e
∑

BB′ YBB′ (w�F
)
∑

a∈B,b∈B′ δjajb
χB

ja
χ̄B′

jb

×
∏

�F ∈FF
�F =(a,b)

δjajb

(
χ

B(a)
ja

χ̄
B(b)
jb

+ χ
B(b)
jb

χ̄
B(a)
ja

)
]

χ,χ̄=0

.

There are exactly 2n distinct Fermionic fields χB
ja

, χ̄B
ja

, hence the restriction to
χB

ja
= χ̄B

ja
= 0 is automatically fulfilled and can be taken away. Denoting Yab =

YB(a)B(b)(w�F
)δjajb

, and taking into account that YBB′(w�F
) is symmetric, the

above Gaussian integral takes the more familiar form:
∫ ∏

B

∏

a∈B
(dχ̄B

ja
dχB

ja
) e−

∑n
a,b=1 χ̄

B(a)
ja

Yabχ
B(b)
jb

×
∏

�F ∈FF
�F =(a,b)

δjajb

(
χ

B(a)
ja

χ̄
B(b)
jb

+ χ
B(b)
jb

χ̄
B(a)
ja

)
.

The important observation is that this integral obeys a hard core con-
straint inside each block: if two vertices a and b belong to the same Bosonic
block B and have the same scale ja = jb, then the integral is zero (as we
integrate twice with respect to the same Grassmann variable χB

ja
= χB

jb
). To

emphasize this constraint, we multiply the integral by
∏

a,b∈B
a �=b

(1−δjajb
), which

is zero unless the slices indices ja of the vertices of the block B are all different.
We furthermore denote k the number of edges in the Fermionic forest FF and
for any matrix M we denote:

M b̂1...b̂k

â1...âk
=
∫ (

∏

i

dψ̄idψi

)

e−
∑

i,j ψ̄iMijψj

k∏

i=1

ψai
ψ̄bi

,

which is (up to a sign) the minor of M with the lines b1 . . . bk and the columns
a1 . . . ak deleted. The Grassmann Gaussian integral evaluates to:

⎛

⎜
⎝
∏

B

∏

a,b∈B
a �=b

(1 − δjajb
)

⎞

⎟
⎠

⎛

⎜
⎝

∏

�F ∈FF
�F =(a,b)

δjajb

⎞

⎟
⎠

×
(
Yb̂1...b̂k

â1...âk
+ Yâ1...b̂k

b̂1...âk
+ · · · + Yâ1...âk

b̂1...b̂k

)
, (3.4)
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where a1, . . . , ak and b1, . . . , bk are the end points of the Fermionic lines and
the sum runs over the 2k ways to exchange an ai and a bi.

Lemma 3.2. For any a1, . . . ak and b1, . . . bk,
∣
∣
∣Yb̂1...b̂k

â1...âk

∣
∣
∣ ≤ 1.

The proof of this statement is the combined result of the following two
propositions.

Proposition 3.3. The matrix Y has real (positive) entries and unit diagonal
entries Yaa = 1. Furthermore, Y is a positive matrix.

Proof. The first statement is trivial. For the second statement, consider a fixed
set of w�F

parameters, ordered in decreasing order w1 ≥ w2 ≥ . . . wk ≥ 0. By
convention we define w0 := 1 and wk+1 := 0. The first i edges w1, . . . wi yield
a set of Fermionic trees at level i, F (i), whose vertices are the Bosonic blocks.
Two Bosonic blocks B and B′ belong to the same Fermionic tree B,B′ ∈ f ∈
F (i) iff any two vertices a ∈ B and b ∈ B′ are connected by a path in FB ∪ FF

whose Fermionic edges are a subset of w1, . . . wi.
Let (xB(1)

j1
, . . . , x

B(n)
jn

) be some vector in R
n. The quadratic form

∑
a,b x

B(a)
ja

Yabx
B(b)
jb

writes in the manifestly positive manner [5]
∑

a,b

x
B(a)
ja

Yabx
B(b)
jb

=
∑

B,B′

∑

a∈B,b∈B′

xB
ja

(YBB′(w�F
)δjajb

) xB′

jb

=
k∑

i=0

(wi − wi+1)
∑

f∈F (i)

⎡

⎣
∑

B,B′∈f

⎛

⎝
∑

a∈B,b∈B′

xB
ja

δjajb
xB′

jb

⎞

⎠

⎤

⎦

=
k∑

i=0

(wi − wi+1)
∑

f∈F (i)

jmax∑

j=jmin

⎛

⎝
∑

B∈f

∑

a∈B
xB

ja
δjaj

⎞

⎠

⎛

⎝
∑

B′∈f

∑

b∈B′

δjjb
xB′

jb

⎞

⎠ .

(3.5)

Indeed, consider two blocks B and B′. For all i = 1, . . . n, B ∈ fB,i ∈ F (i)

and B′ ∈ fB′,i ∈ F (i). As B and B′ are connected by FF , there exists a q
such that fB,i �= fB′,i, ∀i < q and fB,i = fB′,i, ∀i ≥ q. The coefficient of∑

a∈B,b∈B′ xB
ja

δjajb
xB′

jb
in the second line of Eq. (3.5) is wq, which is also the

smallest w of a Fermionic edge in any path in FB ∪ FF connecting a vertex in
B with a vertex in B′ and, therefore, it equals YBB′(w�F

). �
Proposition 3.4. Let M be a real, symmetric, positive matrix. Then

(
M b̂1...b̂k

â1...âk

)2

≤ M â1...âk

â1...âk
M b̂1...b̂k

b̂1...b̂k
. (3.6)

If, furthermore, M has unit diagonal entries, then

M â1...âk

â1...âk
≤ 1. (3.7)

Proof. The diagonal minors M â1...âk

â1...âk
are real and positive (each minor is the

determinant of the restriction of M to some subspace, which is still a positive
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matrix). As M is symmetric, M b̂1...b̂k

â1...âk
= M â1...âk

b̂1...b̂k
. We consider the Grassmann

integral:

I :=
∫ ∏

i

(dψ̄idψi) e−
∑

i,j ψ̄iMijψj (ψa1 . . . ψak
+ λψb1 . . . ψbk

)

×
(
ψ̄ak

. . . ψ̄a1 + λψ̄bk
. . . ψ̄b1

)
,

for any real λ. On the one hand, this integral evaluates explicitly to:

M â1...âk

â1...âk
+ 2λ M b̂1...b̂k

â1...âk
+ λ2 M b̂1...b̂k

b̂1...b̂k
. (3.8)

On the other hand, it is positive for all real λ. To see this, we first rewrite it as:
∫ ∏

i

(dψ̄idψi) e−
∑

i,j ψ̄iMijψj

× 1
k!

(
∑

σ∈Sk

ε(σ)

(
k∏

l=1

ψaσ(l) + λ

k∏

l=1

ψbσ(l)

))

× 1
k!

(
∑

τ∈Sk

ε(τ)

(
1∏

l=k

ψ̄aτ(l) + λ
1∏

l=k

ψ̄bτ(l)

))

.

Being symmetric, the matrix M can be diagonalized by an orthogonal trans-
formation M = ODOT , and all its eigenvalues mi are positive. By the change
of variables of unit Jacobian χi =

∑
j Ojiψj , χ̄j =

∑
i ψ̄iOij , we get:

I =
1

k!k!

∑

σ,τ∈Sk

ε(σ)ε(τ)
∑

i1,...ik
p1,...pk

(
k∏

l=1

Oaσ(l)il
+ λ

k∏

l=1

Obσ(l)il

)

×
(

1∏

l=k

Oaτ(l)pl
+ λ

1∏

l=k

Obτ(l)pl

)∫ ∏

i

(dχ̄idχi)e−χ̄imiχiχi1 . . . χik
χ̄pk

. . . χ̄p1 .

The integrals over χ̄, χ yield:
∫ ∏

i

(dχ̄idχi)e−χ̄imiχi χi1 . . . χik
χ̄pk

. . . χ̄p1

=
∑

π∈Sk

ε(π)
k∏

l=1

δilpπ(l)

n∏

i=1
i�=i1...ik

mi,

and finally:

I =
∑

i1,...ik

⎛

⎜
⎝

n∏

i=1
i�=i1...ik

mi

⎞

⎟
⎠

1
k!k!

×
∑

σ,τ,π∈Sk

ε(σ)ε(τ)ε(π)

(
k∏

l=1

Oaσ(l)il
+ λ

k∏

l=1

Obσ(l)il

)
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×
(

1∏

l=k

Oaτπ(l)il
+ λ

1∏

l=k

Obτπ(l)il

)

=
∑

i1,...ik

⎛

⎜
⎝

n∏

i=1
i�=i1...ik

mi

⎞

⎟
⎠

1
k!

[
∑

σ

ε(σ)

(
k∏

l=1

Oaσ(l)il
+ λObσ(l)il

)]2

≥ 0.

It follows that the discriminant of Eq. (3.8), seen as a polynomial in λ,
must be negative hence the first part of the lemma, Eq. (3.6) holds. To estab-
lish Eq. (3.7), we note that any positive real matrix R admits a square root
R = Z2, and by the Hadamard inequality,

det R = (detZ)2 ≤
[

n∏

i=1

(
∑

k

zikzki)

]

=

[
n∏

i=1

Rii

]2

.

In the case at hand in Eq. (3.7), the diagonal Rii terms are all equal to 1. �

Substituting Eq. (3.4) in Eq. (3.3), the logarithm of the partition function
becomes:

log Z(λ,N) =
∞∑

n=1

1
n!

∑

P

∑

FF

∑

{ja}

⎛

⎜
⎝

∏

�F ∈FF
�F =(a,b)

δjajb

⎞

⎟
⎠

×
∫ 1

0

∏

�F ∈FF

dw�F

∏

�F ∈FF
�F =(a,b)

(
Yb̂1...b̂k

â1...âk
+ Yâ1...b̂k

b̂1...âk
+ · · · + Yâ1...âk

b̂1...b̂k

)

×
∏

B

[
∑

T ∈B

∏

a,b∈B
a �=b

(1 − δjajb
)
∫ 1

0

∏

�B∈T
dw�B

× e
1
2

∑
a,b∈B Xab(w�B

) ∂
∂σa

∂
∂σb

∏

�B∈T
�B=(c,d)

(
∂

∂σc

∂

∂σd

)∏

a∈B
Wja

(σa)

]

σ=0

.

(3.9)

3.3. The Bosonic Gaussian Integral

The Gaussian integral in a Bosonic block B corresponding to a Bosonic tree
T can be written as:

[

e
1
2

∑
a,b∈B Xab(w�B

) ∂
∂σa

∂
∂σb

∏

a∈T

(
∂

∂σa

)da

Wja
(σa)

]

σ=0

,

where da is the coordination of the vertex a in the Bosonic tree T .
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We will treat the case when the Bosonic block has exactly one vertex
(hence the tree inside the block has no edges) separately. The Bosonic integral
in this case is

∫
dσ√
2π

e− 1
2σ2

⎛

⎝
∏

p∈Ija

1
1 − ıλσ

p

e−ı λσ
p − 1

⎞

⎠

= −1 +
∫

dσ√
2π

e− 1
2σ2 ∏

p∈Ija

1
1 − ıλσ

p

e−ı λσ
p .

Reinstating the fields φ̄p, φp, we can rewrite this integral as:

∫
⎛

⎝
∏

p∈Ija

p
φ̄pφp

2πı

⎞

⎠ e−
∑

p∈Ija
pφ̄pφp

[

e− λ2
2

[∑
p∈Ija

(φ̄pφp− 1
p )
]2

− 1
]

=
∫
⎛

⎝
∏

p∈Ija

p
φ̄pφp

2πı

⎞

⎠ e−
∑

p∈Ija
pφ̄pφp

×
∫ 1

0

dt

⎛

⎝−λ2

2

[ ∑

p∈Ija

(

φ̄pφp − 1
p

)]2
⎞

⎠ e−t λ2
2

[∑
p∈Ija

(φ̄pφp− 1
p )
]2

.

It is bounded by:

λ2

2

∫
⎛

⎝
∏

p∈Ija

p
φ̄pφp

2πı

⎞

⎠ e−
∑

p∈Ija
pφ̄pφp

⎡

⎣
∑

p∈Ija

(

φ̄pφp − 1
p

)
⎤

⎦

2

=
λ2

2

∑

p∈Ija

1
p2

≤ λ2M2−ja . (3.10)

When the Bosonic block has more than one vertex (hence the tree inside
the block has edges), to evaluate the derivatives of the vertex kernels Wj we
will make use of the Faà di Bruno formula (which is easily established by
induction):

∂(q)
x f

(
g(x)

)
=
∑

π

f |π|(g(x)
) ∏

B∈π

g|B|(x),

where π runs over the partitions of the set {1, . . . q} and B runs through the
blocks of the partition π. Recalling that:

Wj = e−Vj − 1, Vj(σ) =
∑

p∈Ij

(

log(1 − ıλ
σ

p
) + ıλ

σ

p

)

,
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we obtain:

∂σ(−Vj) =
∑

p∈Ij

(
ıλ 1

p

1 − ıλσ
p

− ıλ
1
p

)

=
∑

p∈Ij

(−λ2σ)
p(p − ıλσ)

,

∂(k)
σ (−Vj) =

∑

p∈Ij

(k − 1)!
(
ıλ 1

p

)k

(
1 − ıλσ

p

)k
= (k − 1)!

∑

p∈Ij

ıkλk

(p − ıλσ)k
, for k ≥ 2

∂(q)
σ Wj = e−Vj

∑
k≥1 kmk=q
∑

m1,m2,···≥0

q!
∏

k≥1 mk!(k!)mk

∏

k≥1

[
(−Vj)(k)

]mk ,

and the Bosonic Gaussian integral becomes:
[

e
1
2

∑
a,b∈B Xab(w�B

) ∂
∂σa

∂
∂σb

∏

a∈B
e−Vja (σa)

×
∏

a∈B

∑
k≥1 km

(a)
k =da∑

m
(a)
1 ,m

(a)
2 ,···≥0

da!
∏

k≥1 m
(a)
k !(k!)m

(a)
k

⎡

⎣
∑

p∈Ija

(−λ2σa)
p(p − ıλσa)

⎤

⎦

m
(a)
1

×
∏

k≥2

⎡

⎣
∑

p∈Ija

(k − 1)!ıkλk

(p − ıλσa)k

⎤

⎦

m
(a)
k

⎤

⎥
⎦

σ=0

. (3.11)

Lemma 3.5. For λ real, |λ| < 1 the Bosonic Gaussian integral in Eq. (3.11) is
bounded by

√
(4|B| − 4)!!

(
∏

a∈B
da! |λ|daM2−ja

)

,

where |B| denotes the number of vertices of the block B.

Proof. We rewrite Eq. (3.11) as:

∑
k≥1 km

(a)
k =da∑

∀a∈B
m

(a)
1 ,m

(a)
2 ,···≥0

(
∏

a∈B

da!
∏

k≥1 m
(a)
k ! km

(a)
k

(ıλ)m
(a)
1 +da

)
⎡

⎢
⎣e

1
2

∑
a,b∈B Xab(w�B

) ∂
∂σa

∂
∂σb

×
∏

a∈B
e−Vja (σa)(σa)m

(a)
1

⎡

⎣
∑

p∈Ija

1
p(p − ıλσa)

⎤

⎦

m
(a)
1

×
∏

k≥2

⎡

⎣
∑

p∈Ija

1
(p − ıλσa)k

⎤

⎦

m
(a)
k

⎤

⎥
⎦

σ=0

.
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Recalling that the Gaussian measure is positive, we use twice the Cauchy–
Schwarz inequality to bound∣
∣
∣
∣
∣

∫

dν

(
∏

a

e−Vja (σa)

)(
∏

a

(σa)m
(a)
1

)(
∏

a

Fa(σa)

)∣
∣
∣
∣
∣
≤
(∫

dν

∣
∣
∣
∣
∣

∏

a

(σa)m
(a)
1

∣
∣
∣
∣
∣

2)1/2

×
(∫

dν

∣
∣
∣
∣
∣

∏

a

e−Vja (σa)

∣
∣
∣
∣
∣

4)1/4 (∫

dν

∣
∣
∣
∣
∣

∏

a

Fa(σa)

∣
∣
∣
∣
∣

4)1/4

.

Each term is bounded as follows. For the first term, we evaluate the Gaussian
integral and, as the normalized Gaussian measure has covariance smaller than
1, each contraction is bounded by 1 hence:

∫

dν
∏

a

(σa)2m
(a)
1 ≤

(

2
∑

a

m
(a)
1

)
!! ≤

(
2
∑

a

da

)

!! ≤ (4|B| − 4)!!,

where we have used m
(a)
1 ≤ da and

∑
a da = 2|B| − 2. The second term is the

simplest as |e−Vja (σa)| ≤ 1 for λ ∈ R. For the last term, we use

∑

p∈Ij

1
pt

=
Mj−1∑

p=Mj−1

1
pt

≤ M j

M t(j−1)
=

M

M (t−1)(j−1)
,

hence a very rough bound is

|Fa(σa)| =

∣
∣
∣
∣
∣
∣
∣

⎡

⎣
∑

p∈Ija

1
p(p − ıλσa)

⎤

⎦

m
(a)
1
∏

k≥2

⎡

⎣
∑

p∈Ija

1
(p − ıλσa)k

⎤

⎦

m
(a)
k

∣
∣
∣
∣
∣
∣
∣

≤

⎡

⎣
∑

p∈Ija

1
p2

⎤

⎦

m
(a)
1
∏

k≥2

⎡

⎣
∑

p∈Ija

1
pk

⎤

⎦

m
(a)
k

≤ M2−ja ,

as in the worst case m
(a)
1 = 1 and all the others are zero. Collecting all these

bounds, we obtain
∑

k≥1 km
(a)
k =da∑

∀a∈B
m

(a)
1 ,m

(a)
2 ,···≥0

√
(4|B| − 4)!!

∏

a∈B

[

da! |λ|da
|λ|m

(a)
1

∏
k≥1 m

(a)
k ! km

(a)
k

M2−ja

]

.

Considering |λ| ≤ 1, hence |λ|m
(a)
1 ≤ 1, the lemma follows taking into account

that ∑
kmk=d∑

m1,...mk···≥0

1
∏

k(mk)!kmk
,

is the coefficient of xd in the Taylor expansion
∏

k≥1

e
xk

k = e−[ln(1−x)] =
1

1 − x
=
∑

p≥0

xp.

�
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3.4. The Final Bound

Collecting Eq. (3.9), Lemma 3.2 and Lemma 3.5, we get the bound:

∣
∣
∣ log Z(λ,N)

∣
∣
∣ ≤

∞∑

n=1

1
n!

∑

P

∑

FF

∑

{ja}

⎛

⎜
⎝2E(FF )

∏

�F ∈FF
�F =(a,b)

δjajb

⎞

⎟
⎠

×
∏

B

[
∑

T ∈B

∏

a,b∈B
a �=b

(1 − δjajb
)
√

(4|B| − 4)!!
∏

a∈B

(
da! |λ|daM2−ja

)
]

,

where E(FF ) = |P| − 1 denotes the number of edges in the Fermionic forest.

Lemma 3.6. The logarithm of the partition function is bounded by
∣
∣
∣ log Z(λ,N)

∣
∣
∣ ≤

∑

B1,...Bq,···≥0

(∑
Bq

)
!

∏
q Bq!

∏

q≥1

[

|λ|2q−2 33q qq 1

M
q2
4

]Bq

, (3.12)

for jmin ≥ 3 and M > 4.

Proof. We first drop the constraint that the slice indices are conserved along
the Fermionic edges. We can associate the sum over the slice index ja to the
Bosonic block B(a). The contributions of the trees T in the Bosonic block can
be summed together to yield the block contribution:

∑

{ja},a∈B
|λ|2|B|−2

√
(4|B| − 4)!!

⎛

⎜
⎝
∏

a,b∈B
a �=b

(1 − δjajb
)

⎞

⎟
⎠

(
∏

a∈B
M2−ja

)

×

∑
a∈B da=2|B|−2∑

da≥1,a∈B

(|B| − 2)!
∏

a∈B(da − 1)!

∏

a∈B
da!.

The sum over da is easily computed:
∑

da=2|B|−2∑

da≥1,a∈B

∏

a∈B
da =

(
3|B| − 3
|B| − 2

)

,

as this sum is the coefficient of x2|B|−2 in the Taylor expansion of:
⎛

⎝x

⎛

⎝
∑

d≥0

xd

⎞

⎠

′⎞

⎠

|B|

=

(

x

(
1

1 − x

)′)|B|

=
x|B|

(1 − x)2|B|

= x|B|
∑

p≥0

(
p + 2|B| − 1

p

)

xp.

We thus reexpress the contribution of a block B as:

∑

{ja},a∈B
|λ|2|B|−2

√
(4|B| − 4)!!

(3|B| − 3)!
(2|B| − 1)!

⎛

⎜
⎝
∏

a,b∈B
a �=b

(1 − δjajb
)

⎞

⎟
⎠

(
∏

a∈B
M2−ja

)

.
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Note that the contribution of a Bosonic block only depends on the slice
indices of its vertices and of the total number of its vertices. It is, in particular,
completely insensitive to the Fermionic forest connecting the vertices. The hard
core constraint inside each block imposes that the slice indices of its vertices
are all different. It follows that:

∑

a∈B
ja ≥ jmin + (jmin + 1) + · · · + (jmin + |B| − 1) = jmin|B| +

|B|(|B| − 1)
2

,

because in the worst case one vertex of B has slice index ja = jmin, another
one has slice index ja′ = jmin + 1 and so on up to the last vertex which has
slice index ja′′ = jmin + |B| − 1. Therefore

∑

a∈B
(ja−2) =

∑

a∈B

1
2
ja+

∑

a∈B

(
1
2
ja−2

)

≥
∑

a∈B

1
2
ja+

jmin − 4
2

|B| +
|B|(|B| − 1)

4
,

and

∑

{ja},a∈B

⎛

⎜
⎝
∏

a,b∈B
a �=b

(1 − δjajb
)

⎞

⎟
⎠

(
∏

a∈B
M2−ja

)

≤

⎛

⎝
jmax∑

ja=jmin

M− ja
2

⎞

⎠

|B|
1

M
jmin−4

2 |B|+ |B|(|B|−1)
4

≤ M− |B|2
4

[
1

M jmin−2− 1
4− 1

2

1
M

1
2 − 1

]|B|
,

which is bounded by M− |B|2
4 for jmin ≥ 3 and for all M > 4. The essen-

tial point here is that this bound holds for any jmax, as the geometric series
∑jmax

ja=jmin
M− ja

2 can be summed up to infinity. This is the reason why the
MLVE allows to define the ultraviolet limit of the model.

The sum over Fermionic forests can be computed as in Sect. 3.1. A forest
over the blocks B of the partition P is a tree with |P| − 1 edges and assigned
coordination DB at the vertices plus a choice |B|DB of the vertex inside each
block to which the Fermionic edges hook. Summing over DB and the tree, we
get (see (3.2))

∑

FF

=

(
∑

B∈P
|B|
)|P|−2

∏

B∈P
|B|.

Grouping again together the partitions having B1 blocks of size 1, B2 blocks
of size 2 and so on we get:
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∣
∣
∣ log Z(λ,N)

∣
∣
∣ ≤

∞∑

n=1

1
n!

∑
qBq=n∑

B1,...Bq,···≥0

n!
∏

q≥1 Bq!(q!)Bq
2
∑

Bq−1n
∑

Bq−2

×
∏

q≥1

qBq

∏

q≥1

[

|λ|2q−2
√

(4q − 4)!!
(3q − 3)!
(2q − 1)!

M− q2
4

]Bq

.

We use the fact that n
∑

Bq−2 ≤ (
∑

Bq)! en to obtain:

∑

B1,...Bq,···≥0

(∑
Bq

)
!

∏
q Bq!

∏

q≥1

[
2 eq

(q − 1)!
|λ|2q−2

√
(4q − 4)!!

(3q − 3)!
(2q − 1)!

M− q2
4

]Bq

.

To establish the lemma, it is enough to prove that the combinatorial factor is
bounded by:

2
(q − 1)!

√
(4q − 4)!!

(3q − 3)!
(2q − 1)!

≤ 33qe−qqq.

This bound obviously holds for q = 1. For q ≥ 2, we have

2
(q − 1)!

√
(4q − 4)!!

(3q − 3)!
(2q − 1)!

=
4q2

(3q)(3q − 1)(3q − 2)
√

(4q − 1)(4q − 3)

√
(4q)!!

(3q)!
q!(2q)!

≤
√

(4q)!!
(3q)!

q!(2q)!
,

which, using the upper and lower bounds on the factorial provided by the
Stirling formula, is bounded by
√

4q!
22q(2q)!

(3q)!
q!(2q)!

≤
√

1
22q

(4q)4q+ 1
2

(2q)2q+ 1
2

e
1
12

e2q

1√
2π

(3q)3q+ 1
2

qq+ 1
2 (2q)2q+ 1

2
e

1
12 ≤ 33qe−qqq.

�

Theorem 2.1 now follows trivially from Lemma 3.6. Indeed, the sum over
B1, . . . Bq, . . . in Eq. (3.12) can be performed to yield (using (3.10) in the case
q = 1):

∣
∣
∣ log Z(λ,N)

∣
∣
∣ ≤

∞∑

B=0

[

λ2M2−ja +
∞∑

q=2

|λ|2q−2 33q qq M− q2
4

]B

. (3.13)

The sum over q can always be rendered convergent by choosing M large
enough. Choosing for instance M ≥ 108 ensures that

33qqqM− q2
8 ≤ 1, ∀q ≥ 1,

hence ensures that the sum over q is bounded by
∞∑

q=1

|λ|2q−2M− q2
8 ≤

∞∑

q=1

|λ|2q−2M− q
8 =

1
M1/8 − |λ|2 ≤ 1,

and this ensures in turn that the sum over B in Eq. (3.13) converges.
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3.5. Venturing in the Complex Plane

In this last subsection, we will extend our proof of convergence to a domain in
the complex plane, and establish Theorem 2.2. The case of complex λ follows
the same lines as the one for real λ. The major difference arises at the level of
Lemma 3.5. For a complex coupling constant, one needs to review the bound
on the Bosonic Gaussian integral in a block.

We can easily extend the bound (3.10) to the complex domain �λ2 ≥ 0,
hence bound the case where the Bosonic block has exactly one vertex by

|λ|2
2

∫
⎛

⎝
∏

p∈Ija

p
φ̄pφp

2πı

⎞

⎠ e−
∑

p∈Ija
pφ̄pφp

⎡

⎣
∑

p∈Ija

(

φ̄pφp − 1
p

)
⎤

⎦

2

=
|λ|2
2

∑

p∈Ija

1
p2

≤ |λ|2M2−ja .

For blocks having at least two vertices (hence when the Bosonic tree has
at least one edge), the case of complex λ is more subtle. Consider λ = |λ|eıγ .
If one follows the proof of Lemma 3.5, one needs to establish a bound on
∫

dν
∣
∣
∣e−Vja (σa)

∣
∣
∣
4

, which can be done using:

∣
∣
∣e−Vja (σa)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∏

p∈Ija

1

1 − ı
λσa

ja

p

e−ı λσa
p

∣
∣
∣
∣
∣
∣

≤
∏

p∈Ija

1
cos γ

e|λ| sin γ σa
p ∼ 1

(cos γ)Mja
e|λ| sin γ

∑
p∈Ija

σa
p .

This bound is not optimal: the prefactors pile up and the block Bosonic Gauss-
ian integral acquires a global prefactor 1

(cos γ)
∑

a∈B Mja which will always beat

the suppression 1
Mja , and will spoil the summability over ja. Therefore, one

needs to be careful and find a tighter bound on the Gaussian Bosonic integral.
The solution comes from the remark that, while one needs to sum the

slice attributions ja in a block (and each slice ja has M ja indices), the number
of vertices of the block is fixed. It is then much better to pay a large factor per
vertex of the Bosonic block than to pay one large factor per index in a slice.
This can be done by turning the σs by a phase.

Indeed, going back to the Bosonic Gaussian integral
∫

dν

(
∏

a∈B
e−Vja (σa)

)(
∏

a∈B
(σa)m

(a)
1

)(
∏

a∈B
Fa(σa)

)

,

the Cauchy–Schwarz inequality should be applied after making the change of
variables τa = eıγσa, as this will give the same bounds as before on |e−Vja (σa)|
and |Fa(σa)| (getting rid of the bad prefactor). However, when taking absolute
values, the Gaussian integral over the |B| distinct fields τa is not normalized
anymore, and one needs to reestablish this normalization by a rescaling τ̃a =
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√
cos 2γτa. Taking into account that

∏
a∈B(σa)m

(a)
1 becomes

∏
a∈B

1√
cos 2γ

τ̃a,
and the bound:

∑
k≥1 km

(a)
k =da∑

∀a∈B
m

(a)
1 ,m

(a)
2 ,···≥0

√
(4|B| − 4)!!

∏

a∈B

[

da! |λ|da
|λ|m

(a)
1

∏
k≥1 m

(a)
k ! km

(a)
k

M2−ja

]

,

is replaced by:

1

(cos 2γ)
|B|
2

∑
k≥1 km

(a)
k =da∑

∀a∈B
m

(a)
1 ,m

(a)
2 ,···≥0

√
(4|B| − 4)!!

∏

a∈B

×
[

da! |λ|da
|λ|m

(a)
1

(cos 2γ)
m

(a)
1
2

1
∏

k≥1 m
(a)
k ! km

(a)
k

M2−ja

]

.

In the domain |λ|2 < cos 2γ in the complex plane, we have:

|λ|m(a)
1

(cos 2γ)
m

(a)
1
2

≤ 1,

and Lemma 3.5 is replaced by

Lemma 3.7. For λ = |λ|eıγ , |λ|2 < cos 2γ the bosonic Gaussian integral in Eq.
(3.11) is bounded by

|λ|2M2−ja ,

for |B| = 1 and for |B| ≥ 2 it is bounded by

1

(cos 2γ)
|B|
2

√
(4|B| − 4)!!

(
∏

a∈B
da! |λ|daM2−ja

)

.

Everything else follows as in the real case, except that Eq. (3.13) is re-
placed by

∣
∣
∣ log Z(λ,N)

∣
∣
∣ ≤

∞∑

B=0

[
|λ|2

M − 1
+

∞∑

q=2

1
(cos 2γ)

q
2
|λ|2q−2 33q qq M− q2

4

]B

,

which converges, for the same reasons as in the real case, in the domain |λ|2 <
(cos 2γ). This establishes Theorem 2.2.

The domain |λ|2 < (cos 2γ) is relevant because, in terms of the original
coupling constant of the model g = λ2 it writes as:

�1
g

≥ 1,

that is our domain of convergence is exactly the Borel disk of center 1
2 and

radius 1
2 .

The Theorem 2.2 is the starting point to show that log Z(g = λ2, N)
is Borel summable in the Nevanlinna–Sokal sense [32] in g uniformly in N ,
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hence it is the Borel sum of its perturbative series in (renormalized) Feynman
graphs. To establish the full Borel summability, one still needs to prove that
after expanding in g up to order p, the Taylor–Lagrange remainder term is
bounded by (gK)pp!. This follows straightforwardly as usual from bounding
the integral formula for this remainder term with the techniques of this paper;
the details are left to the reader.

4. Conclusion

In this exploratory paper, we introduce a method to accommodate the sub-
tleties of renormalization in the LVE expansion. The convergence of the log-
arithm of the partition function defined in Eq. (2.1) is not surprising. The
purpose of this paper is to introduce the method to obtain this result starting
from the LVE expansion, that is starting from Eq. (2.2).

The main feature of the MLVE we introduce in this paper is the hard core
constraint on the slices of the vertices in each block. Such a hard core constraint
is not surprising, as it is the fundamental feature of the usual Mayer expansion
(which we recall in Appendix B). The MLVE is the right formalism to put this
together with the LVE.

This hard core constraint is crucial. Indeed, the M− q2
4 suppression in

the sum over q in Eq. (3.13) comes from this hard core constraint and is
responsible for rendering it convergent. As is apparent from Lemma 3.6, the
combinatorial factor alone behaves like qq, hence in the absence of a strong
suppression at large q, the sum over q would always diverge. This is exactly
what goes wrong with the usual LVE expansion: the bad combinatorial factor
qq coming from the proliferation of counterterms on trees with many leaves
cannot be compensated. Curing this problem is the motivation of this work.

The MLVE should now be applied to more interesting combinatorial
quantum field theories, first superrenormalizable (e.g., such as the one defined
in [15]), then renormalizable, such as the Grosse–Wukenhaar model [25–27],
or the just renormalizable tensor models defined in [14,19] and [16].
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Appendices

Appendix A. The Forest Formula

A forest formula is a kind of Taylor expansion with integral remainder which
expands a quantity depending on a symmetric positive n by n matrix. Posi-
tive forest formulas, i.e., formulas in which the Taylor remainder integration
paths always remain on the convex set of positive matrices are particularly
interesting for constructive theory. A beautiful such positive forest formula
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which is symmetric under action of the permutation group on the n points
was discovered in [4] and developed with alternative proofs in [5].2.

Consider the vector space Sn of symmetric n by n matrices
X = {Xij}, i, j = 1, . . . , n. It has dimension n(n + 1)/2. The set PSn of
positive symmetric matrices whose diagonal coefficients are all equal to 1 and
off-diagonal elements are between 0 and 1 is compact and convex. Symmet-
ric matrices with diagonal elements equal to one and off-diagonal elements in

[0, 1]n(n−1)/2 do not always belong to PSn, as for instance the matrix

⎛

⎝
1 1 0
1 1 1
0 1 1

⎞

⎠

is not positive. But PSn has an n(n − 1)/2 dimensional interior, hence any
matrix X ∈ PSn can be parametrized by n(n − 1)/2 matrix elements X�,
where 
 runs over the edges of the complete graph Kn.

PSn contains as particularly interesting elements the block matrices XΠ

for any partition Π of V . Any such partition divides the entries of any symmet-
ric n by n matrix into same-block and trans-block entries. The block matrix
XΠ has entries XΠ

ij = 1 if i and j belong to the same block of the partition,
and 0 otherwise. Two extremal cases are the identity matrix I, corresponding
to Xsing, that is to the maximal partition made of all singletons, and the ma-
trix 1 with all entries equal to one, corresponding to X [1,...,n], that is to the
minimal partition made of a single block. The forest formula can be considered
as interpolating between these two extremal points.

Let us consider a function f defined and smooth in the interior of PSn

with continuous extensions (together with all their derivatives) to PSn itself.
The precise statement is

Theorem A.1 (The Forest Formula).

f(1) =
∑

F

∫

dwF ∂Ff [XF (wF )] (A.1)

where
• The sum over F is over forests over n labeled vertices i = 1, . . . , n, including

the empty forest with no edge. Such forests are exactly the acyclic edge-
subgraphs of the complete graph Kn.

•
∫

dwF means integration from 0 to 1 over one parameter for each forest
edge:

∫
dwF =

∏
�∈F

∫ 1

0
dw�. There is no integration for the empty forest

since by convention an empty product is 1. A generic integration point wF
is, therefore, made of |F| parameters w� ∈ [0, 1], one for each 
 ∈ F .

• ∂F =
∏

�∈F ∂� means a product of first order partial derivatives with respect
to the variables X� corresponding to the edges of F . Again there is no such
derivatives for the empty forest since by convention an empty product is 1.

• XF (wF ) is defined by XF
ii (wF ) = 1 ∀i, and for i �= j by XF

ij (wF ) being the
infimum of the w� parameters for 
 in the unique path PF

i→j from i to j in
F , when such a path exists. If no such path exists, which means that i and j

2 Non-symmetric versions appeared earlier in the constructive literature (see [28] for a recent
reference).
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belong to different connected components with respect to the forest F , then
by definition XF

ij (wF ) = 0.
• The symmetric n by n matrix XF (wF ) defined in this way is positive, hence

belongs to PSn, for any value of wF .

Since X∅ = I, the empty forest term in (A.1) is f(I), hence (A.1) indeed
interpolates f between 1 and I, staying on PSn as announced.

We shall not repeat the proof, as it has been detailed in [4,5]. We prefer
to recall a useful corollary of this theorem which expands Gaussian integrals
over replicas. Consider indeed a Gaussian measure dμC of covariance Cpq on a
vector variable �τ with N components τp. To study approximate factorization
properties of the integral of a product of n functions of the variable �τ , it is
useful to first rewrite this integral using a replica trick. It means writing the
integral over n identical replicas �τi for i = 1, . . . , n with components τp,i, with
the perfectly well-defined measure with covariance [C ⊗ 1]p,i;q,j = Cpq :

∫

dμC(�τ)
n∏

i=1

fi(�τ) =
∫

dμC⊗1(�τi)
n∏

i=1

fi(�τi). (A.2)

Applying the forest formula, we obtain the following corollary:

Corollary A.2.

I =
∫

dμC(�τ)
n∏

i=1

fi(�τ)=
∑

F

∫

dwF

∫

dμC⊗XF (wF )(�τi) ∂C
F

n∏

i=1

fi(�τi) (A.3)

where ∂C
F means

∏
�=(i,j)∈F

∂
∂τp,i

Cpq
∂

∂τq,j
and we use Einstein’s convention for

the sums over p and q.

Proof. Using the general Wick theorem in n variables xi
∫

dμCf(x) = e
∂

∂τi
Cij

∂
∂τj f |τ=0 (A.4)

leads to the corollary in a rather straightforward way. �

Appendix B. The Mayer Expansion

The Mayer expansion [29] is a statistical mechanics method to compute the
free energy of gases of polymers which are subsets of a “monomer” set M
with interactions. In constructive theory context, it is applied to factorize the
abstract hardcore interactions resulting from a cluster expansion [30]. It is
then equivalent to the Fermionic part of the MLVE defined above, but is not
usually formulated in terms of Grassmann variables.

Suppose we consider a partition function which is a sum of polymer ac-
tivities with hardcore constraints

Z(λ,N) =
∑

P1,...,Pn
Pi⊂M,Pi∩Pj=∅

n∏

i=1

A(Pi). (B.1)
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Using replicas.3

Z(λ,N) =
∞∑

n=0

1
n!

∑

P1,...,Pn

n∏

i=1

A(Pi)
∏

1≤i<j≤n

εij , (B.2)

where εij = 0 if Pi ∩ Pj = ∅. Defining εij = 1 + ηij = 1 + xijηij |xij=1, and
applying the forest formula allows to compute the free energy as:

log Z(λ,N) =
∞∑

n=0

1
n!

∑

T

∑

P1,...,Pn

n∏

i=1

A(Pi)εT , (B.3)

where the sum is over spanning trees T over [1, . . . , n] and

εT =
{∏

�∈T

[∫ 1

0

dw�

]

η�

}∏

� 
∈T

[
1 + η�X

F
� ({w})

]
, (B.4)

with XF
� ({w}) defined as in the previous section.

Since εT ≤ 1, summation over the polymer shapes can proceed from the
leaves towards the root of the Mayer tree in a standard way. Under the typical
condition

∑

P⊃p0

|A(P )|e|P | < 1, (B.5)

where p0 is a root monomer in M , the Mayer expansion is absolutely convergent
[31].
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