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A Limit Equation Criterion for Solving the
Einstein Constraint Equations on Manifolds
with Ends of Cylindrical Type

James Dilts and Jeremy Leach

Abstract. We prove that in a certain class of conformal data on a manifold
with ends of cylindrical type, if the conformally decomposed Einstein
constraint equations do not admit a solution, then one can always find
a nontrivial solution to the limit equation first explored by Dahl et al.
(Duke Math J 161(14):2669–2798, 2012). We also give an example of a
Ricci curvature condition on the manifold which precludes the existence
of a solution to this limit equation. This shows that the limit equation
criterion can be a useful tool for proving the existence of solutions to the
Einstein constraint equations on manifolds with ends of cylindrical type.

1. Introduction

It has been known for over 60 years that Einstein’s equations in vacuo can be
decomposed into a well-posed initial value problem in which a Riemannian
n-manifold (M, g) along with a symmetric 2-tensor K can be isometrically
embedded as a spacelike slice of a spacetime with extrinsic curvature tensor
K if and only if the Einstein constraint equations

Rg − |K|2g + (trgK)2 = 2Λ (1.1)

divgK − ∇trgK = 0 (1.2)

are satisfied. Here, Λ is the cosmological constant.
The study of these equations has been an active field of research in recent

years, and several approaches have been taken to solve (1.1–1.2). The most
common is the conformal method, in which one specifies a background metric
g and looks for a solution of the constraints in the conformal class of g. In
particular, we seek a scalar function φ and a vector field W such that (g,K)
solves (1.1–1.2) where this pair is of the form:

gij = φN−2gij (1.3)
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Kij =
τ

n
gij + φ−2(σij + (LW )ij). (1.4)

Here, τ = trgK, σ is a specified transverse (i.e., divergence free) traceless
tensor, L is the conformal Killing operator which we define below, and N is a
dimensional constant we will frequently use throughout this paper, given by

N =
2n

n − 2
.

It is well known (see, for example, [8]) that the constraint equations are
thus reduced to solving a particular semilinear elliptic system in φ and W ,
which is often called the LCBY equations in honor of Lichnerowicz, Choquet-
Bruhat, and York who first studied them:

Δgφ − cnRgφ = βΛφN−1 − cn|σ + LW |2gφ−N−1 (1.5)

divLW =
n − 1

n
φNdτ. (1.6)

Equation (1.5) is known as the Lichnerowicz equation and in it we have intro-
duced the dimensional constant

cn =
n − 2

4(n − 1)

and defined the function βΛ as

βΛ = βΛ(τ) =
n − 2
4n

τ2 − n − 2
2(n − 1)

Λ.

We will refer to Eq. (1.6) as the vector equation.
Many of the efforts aimed at finding solutions to the constraint equations

have been focused on determining the solvability of the system (1.5–1.6). One
of the earliest systematic studies of these equations was the 1995 paper of J.
Isenberg [13] which considered the case of constant mean curvature (CMC)
τ on closed manifolds, in which case the LCBY system decouples since the
vector equation becomes trivial. In the years since, many authors have sought
to generalize Isenberg’s results on closed manifolds with near-CMC conditions
[1,12], and more recently these near-CMC conditions have been relaxed by
Holst, Nagy, and Tsogtgerel in [11] in the non-vacuum case, and by Maxwell in
[16]. Their results required a Schauder fixed point argument to find a solution
to the LCBY equations under the condition that the tensor σ have sufficiently
small norm.

These methods for finding solutions have been extended to other geome-
tries including asymptotically Euclidean [7], asymptotically hyperbolic [9], and
compact with boundary [6,10]. General results for the solvability of the LCBY
equations on manifolds with asymptotically cylindrical or periodic geometries
(which we collectively call geometries of cylindrical type) appeared in 2012
with the pair of papers [2] and [3] which analyzed the Lichnerowicz equation
and vector equation separately. It was noted in the first of these that several
known examples of black hole spacetimes admit CMC hypersurfaces with ends
of cylindrical type, including the extreme Kerr metrics. Solutions to the fully



Vol. 16 (2015) A Limit Equation Criterion 1585

coupled LCBY equations were recently constructed on such manifolds in [15]
using an adaptation of the Schauder fixed point technique.

Another approach to finding solutions of the LCBY equations on closed
manifolds is the relatively recent result of Dahl, Gicquaud, and Humbert [4].
In that paper, the authors showed that in the absence of conformal Killing
fields, so long as the mean curvature τ is non-vanishing and σ �≡ 0 for the non-
negative Yamabe classes, then the system (1.5–1.6) fails to have a solution
only if there is a nontrivial solution W to

divLW = α0

√
cn

βΛ
|LW |dτ (1.7)

for some α0 ∈ (0, n−1
n ] [only the case Λ = 0 was addressed in [4], but their

method extends trivially to prove this result for non-zero Λ]. This is known
as the limit equation for reasons that will become clear in the proof of the
theorem. We will give a summary of their proof in the next section.

This result has thus far proven to be quite adaptable to other (i.e., non-
compact) geometries. Indeed, a limit equation result has very recently been
shown to hold in the asymptotically Euclidean near-CMC setting in [5] and
in the asymptotically hyperbolic setting in [9], but difficulties arose in proving
it in the compact with boundary case, c.f. [6]. It is thus natural to wonder in
which geometries such a result holds. In this paper, we prove that an analogous
limit equation result holds on a manifold with asymptotically cylindrical ends,
thus shedding more light on solvability of the constraint equations in such a
geometry. We will also give an example of (conformal) initial data which does
not admit any solutions to (1.7), and thus necessarily admits a solution to the
LCBY system (1.5–1.6). We will do this by imposing a particular reasonable
bound on the Ricci curvature.

We mention here a recent work of David Maxwell in [17]. In that paper he
discusses the conformal method along with two formulations of the related con-
formal thin sandwich method. He shows that these methods are all equivalent
and lead to the same solutions of the constraints. In the standard conformal
method which we use in this paper, the solutions are not conformally covari-
ant in the sense that conformally related data (including proper scaling of the
non-metric data) do not lead to the same solution. However, Maxwell shows
that there exists a conformally covariant interpretation of this method which
is equivalent to our own.

In the context of this paper, Maxwell’s results imply that if we replaced
the conformal Killing operator L in (1.5–1.6) with 1

2f L for some positive func-
tion f , we could treat our method as conformally covariant. Thus, we can work
with any metric in the same conformal class as g. In particular, assumptions
on scalar curvature, such as cnRg + βΛ > c > 0, can be replaced by the as-
sumption that there is some metric g′ in the conformal class of g that satisfies
(all of) the postulated inequalities. However, since this paper was prepared
before Maxwell’s work was released, we did not make these adjustments.
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1.1. Notation and Definitions

We will assume that our manifold (M, g) is asymptotically cylindrical. This
means that there is some compact set K ⊂ M whose complement in M de-
composes as

M \ K =
m⊔

�=1

E�.

Here, for each �, there is some closed (n − 1)-manifold N� such that E� is
diffeomorphic to the half-cylinder R+ × N�. Moreover, on each end the metric
g decays exponentially to the exactly cylindrical metric dt2 + g̊�, where g̊� is
some metric on N� and t is some C3 coordinate function on the ends which is
“radial” in the sense that there are positive constants C1 ≤ C2 ≤ C3 such that

C1 + t ≤ C2 + distg(·, ∂E�) ≤ C3 + t.

We impose a similar decay condition on its derivatives, which can be made
precise by requiring that on each end

|∇̊k[g − (dt2 + g̊�)]| = O(e−ωt)

for some positive ω for all applicable k. Here, ∇̊ is the covariant derivative as-
sociated with the exactly cylindrical metric. We will call a metric ǧ conformally
asymptotically cylindrical if we may write it in the form ǧ = wN−2g where g
is an asymptotically cylindrical metric and w is a positive function such that,
on each end E�, w → ẘ� at the rate O(e−ωt) along with its derivatives, where
ẘ� is a smooth positive function on N�. (“Smooth” in this paper will mean
“as smooth as the metric.”) Note that this condition implies that the metric
ǧ does not decay on the ends, and so metrics with conic or cusp singularities
do not belong to the class of conformally asymptotically cylindrical metrics
according to our definition.

We would like the class of conformal initial data (g, σ, τ) we consider to
have certain nice asymptotic properties like the metric. We will thus restrict
to tame initial data, defined as follows.

Definition 1.1. Conformal initial data (g, σ, τ) is said to be tame if g is (con-
formally) asymptotically cylindrical and both of the following are satisfied:
• βΛ(τ) ≥ βΛ(τ0) > 0 and τ2 → τ̊2

� > 0 on the end N� at the rate O(e−ωt),
where τ̊2

� and βΛ(τ0) are constants. Let τ̊ be a smooth function with τ̊ = τ̊�

on each end E�.
• |σ|2g → σ̊2 at the rate O(e−ωt) where σ̊2 �≡ 0 is some smooth nonnegative

function on N�, or any smooth function on N� if R < 0 on the ends.

Now that we have defined our admissible initial data, we need to define
the function spaces in which we will perform our analysis. These will be defined
as in [15]. For any 1 ≤ p < ∞, define the weighted Lp-Sobolev space W k,p

δ to
be the space of all functions which are finite with respect to the norm:

‖X‖W k,p
δ

=
(∑

j≤k

∫
M

|∇jX|pe−pδtdVg

)1/p

. (1.8)
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As in [3], we will denote the function space W k,2
δ by Hk

δ . Next, assume without
loss of generality that the radius of injectivity for (M, g) is >1. Then if B1(q) is
the ball of radius 1 about the point q ∈ M , we define local and global weighted
Hölder norms by

‖X‖k,μ;B1(q) =
k∑

i=0

sup
B1(q)

|∇iX| + sup
x,y∈B1(q)

|∇kX(x) − ∇kX(y)|
dg(x, y)μ

‖X‖k,μ = sup
q∈M

‖X‖k,μ;B1(q),

and also the weighted Hölder norms by

‖X‖k,μ,δ = ‖e−δtX‖k,μ.

The space of all functions (or tensor fields) for which the global Hölder norm
is finite will be denoted by Ck,μ, and the space of functions (or tensor fields)
which are finite with respect to the weighted Hölder norm will be denoted
by Ck,μ

δ . We similarly denote the standard sup-norm by ‖ · ‖∞ (or by ‖ · ‖0

if restricted to C0) and the corresponding weighted sup-norm by ‖ · ‖∞,δ (or
‖ · ‖0,δ).

1.2. Preliminary Results

The conformal Killing operator L which appears in the LCBY equations is
given by

(LX)ij = ∇iXj + ∇jXi − 2
n

divXgij .

This is merely the trace-free part of the deformation tensor associated with X.
Any vector field in the nullspace of L is called a conformal Killing field, and the
operator divL is known as the conformal vector Laplacian. The mapping prop-
erties of this operator acting between weighted Sobolev spaces were studied
extensively in [3]. The most important mapping property for us will be [3, Thm
6.1]. Before we state the theorem, we first define Y� to be the set of all globally
bounded conformal Killing fields with respect to the exactly cylindrical metric
on E�. If we then define a smooth cutoff function χ� which vanishes outside of
E� and is identically 1 where t ≥ 1 on E�, we set Y = ⊕�{χ�Y : Y ∈ Y�}. The
theorem then gives us the mapping properties of divL acting as an operator
between weighted Sobolev spaces:

Theorem 1.2. Let (M, g) be a Riemannian n-manifold with a finite number of
ends which are asymptotically cylindrical. Suppose further that there are no
global L2 conformal Killing fields. Then there exists a number δ∗ > 0 such that
if 0 < δ < δ∗, then

divL : Hk+2
δ (TM) → Hk

δ (TM)

is surjective and the map

divL : Hk+2
−δ (TM) → Hk

−δ(TM)
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is injective for every k ≥ 0. Moreover, if 0 < δ < δ∗, then for all k ≥ 0 the
map

divL : Hk+2
−δ (TM) ⊕ Y → Hk

−δ(TM)

is surjective with finite dimensional nullspace.

This theorem is proven using a parametrix construction found in [18] to build a
generalized inverse G : Hk

−δ → Hk+2
−δ ⊕Y (the latter space being a subspace of

Hk+2
δ ) which satisfies divL ◦ G = Id. As shown in that paper, this parametrix

is also a bounded map between weighted Lp-Sobolev spaces and weighted
Hölder spaces, and so Theorem 1.2 also holds when one considers divL as a
map between such spaces. The observation that divL : W k+2,p

−δ ⊕ Y → W k,p
−δ

is surjective will be crucial in the analysis below.
The final analytical tools we will need are the Sobolev embedding theo-

rems for function spaces on asymptotically cylindrical manifolds. In general,
we will assume p > n and that δ < δ∗, where δ∗ is as in Theorem 1.2. We
also need that the coefficients in the Lichnerowicz equation are regular enough
to imply that the solution φ ∈ C2. This could be achieved by assuming the
coefficients are in W 1,p or in C0,β for some 1 > β > 0, and thus we make the
metric W 3,p or C2,β to guarantee this regularity of the scalar curvature. The
standard Sobolev embedding theorems hold with a subscript δ. In particular,
we have the following theorem.

Theorem 1.3. Assume the radial variable t lies in Ck with bounded derivatives
up to k-th order.
• If l − n

q = k − n
p and k ≥ l, then W k,p

δ (M) ⊆ W l,q
δ (M), with a continuous

embedding.
• If k − n

p = r + α, then W k,p
δ (M) ⊆ Cr,α

δ (M), with a continuous embedding.

• If k − n
p > r, then the embedding W k,p

δ (M) ↪→ Cr
δ′(M) is compact for any

δ′ > δ.

One proves this theorem using an exhaustion of M by compact sets and stan-
dard embedding arguments. The details are left to the reader.

2. Summary of the Main Results

In what follows, we will first use a strategy very similar to that in [15] to prove
that there is a solution to the subcritical LCBY equations:

Theorem 2.1. Let (g, σ, τ) be tame conformal data on a complete Riemann-
ian n-manifold (M, g) with a finite number of asymptotically cylindrical ends.
Assume that there are no global L2 conformal Killing fields. If σ ∈ W 1,p,
τ − τ̊ ∈ W 1,p

−δ , and the scalar curvature R satisfies cnR + βΛ > c > 0, then for
any 0 < ε < 1 the subcritical LCBY equations

Δgφ − cnRgφ = βΛφN−1 − cn|σ + LW |2gφ−N−1 (2.1)

divLW =
n − 1

n
φN−εdτ (2.2)
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have a solution (φ,W ) with φ − φ̊ ∈ W 3,p
−ν for some ν > 0 and φ > 0 and

W ∈ W 2,p
−δ ⊕ Y . The function φ̊ is defined below in (3.2).

Once we know that the system (2.1–2.2) can always be solved, we next establish
that the scalar part of such a solution φ can be uniformly (i.e., independent of
ε) bounded above by the energy ‖LW‖L2 . Thus to any sequence of sufficiently
small positive numbers εi → 0, we can associate a sequence of energies

γi =
∫

M

|LWi|2 (2.3)

where (φi,Wi) is some solution to (2.1–2.2) with ε = εi. It is natural to ask
what happens to the sequence {γi} as i → ∞. As was shown by [4] in the closed
manifold case, this limit gives us valuable information about the solvability of
the LCBY Eqs. (1.5–1.6). In particular, if this sequence stays bounded, then
there exists a solution to the LCBY equations with the same hypotheses on
conformal data as in Theorem 2.1. On the other hand, if γi → ∞, we show
that the limit Eq. (1.7) admits a nontrivial solution. The precise statement of
this result is our main theorem:

Theorem 2.2. Let (g, σ, τ) be conformal data on an asymptotically cylindrical
manifold satisfying the conditions of Theorem 2.1. Then at least one of the
following is true:

• The system (1.5–1.6) admits a solution (φ,W ) with regularity as in Theorem
2.1. Also, the set of these solutions is compact.

• There exists a non-zero solution W ∈ W 2,p
−δ ⊕ Y of the limit equation

divLW = α0

√
cn

βΛ
|LW |dτ

for some α0 ∈ (0, n−1
n ] such that |LW | ≤ Ce−δt for some C independent of

φi, Wi and W .

Note that we have no reason to suspect that this result is a dichotomy.
That is, it may hold that the LCBY equations and the limit equation both
admit nontrivial solutions. The utility of the main theorem is that we may show
the existence of solutions to the LCBY equations whenever we can show that
the limit Eq. (1.7) admits no solutions. The idea behind the proof is that given
any sequence {γi} as above, if the limit equation admits no solutions then the
sequence stays bounded, which in turn implies that the LCBY equations admit
a solution (these facts are proven in Sect. 4 below). From the perspective of
one trying to understand the constraint equations on asymptotically cylindrical
manifolds, this result is only useful if we can find examples of conformal data
which admit no solutions to the limit equation. In Sect. 5, we show that this
set is nonempty by proving the following corollary.

Corollary 2.3. Let (g, σ, τ) be conformal data on an asymptotically cylindrical
manifold satisfying the conditions of Theorem 2.1, and suppose Ric ≤ (c1χ

2 −
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c2e
−2μt)g for some constants ci, μ > 0 and a smooth compactly supported

function χ. Then there is some C > 0 such that if∥∥∥∥ dτ√
βΛ

∥∥∥∥
C0

−μ

< C,

there is a solution to the LCBY Eq. (1.5–1.6).

Finally, in section 6 we discuss how these results can be extended to the
case where the metric g is only assumed to be conformally asymptotically
cylindrical.

3. Global Barriers

In this section we prove Theorem 2.1 by constructing a global supersolution
and a global subsolution (defined below) with desirable asymptotics. Through-
out this section, we assume for notational simplicity that our manifold has a
single asymptotically cylindrical end. It is easy to see that this assumption
results in no loss of generality; the extension of our analysis to multiple ends
is completely trivial. We shall make use of the following lemma, whose proof
is nearly identical to one found in [15]:

Lemma 3.1. Let φ be a bounded continuous function on a manifold M which
does not admit any L2 conformal Killing fields and dτ ∈ C0

−δ′(TM) for some
positive δ′ < δ∗. If Wφ is the solution of the subcritical vector Eq. (2.2) associ-
ated with a conformally asymptotically cylindrical metric, then for any δ < δ′,
there exists some constant K which does not depend on φ or τ such that the
following pointwise estimate holds:

|LWφ| ≤ K‖dτ‖0,−δ′‖φ‖N−ε
0 e−δt. (3.1)

We define the constant Kτ = K‖dτ‖0,−δ′ for brevity in our analysis
below. Note in particular that the lemma implies that |σ + LW |2g → σ̊2 on
the end. Hence, we expect a solution which has an asymptotic limit on the
cylindrical end to approach a solution to the reduced Lichnerowicz equation,
which is

Δg̊φ̊ − cnR̊φ̊ = βΛ(̊τ)φ̊N−1 − cnσ̊2φ̊−N−1. (3.2)
Given tame data (g, σ, τ), this equation admits a constant supersolution. More-
over, one easily checks that if φ̊1 is a positive solution to the equation

Δg̊u − (cnR̊ + βΛ(̊τ))u = −σ̊2,

then ρφ̊1 is a subsolution of the reduced equation for any sufficiently small
ρ > 0. Hence, (3.2) admits a solution by [2, Proposition A.4]. We note that
this is the only place where we use the requirement that σ �≡ 0 unless R < 0
on the ends. We extend this solution to a smooth function on all of M which
is t-independent on the end, and we will also label this function φ̊.

Next, we define the nonlinear operator Lichφ on C2 by

Lichφ(u) := Δgu − cnRu − βΛuN−1 + cn|σ + LWφ|2gu−N−1 (3.3)
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where Wφ is the solution of the subcritical vector Eq. (2.2) (such a solution
exists by Theorem 1.2). We call φ+ a global supersolution if for any 0 < φ ≤ φ+,
Lichφ(φ+) ≤ 0. If φ+ is of lower regularity so that this inequality only holds
in the weak sense, we call it a weak global supersolution. Given a (weak) global
supersolution φ+, we define an associated (weak) global subsolution φ− > 0
which, for any φ− ≤ φ ≤ φ+, satisfies Lichφ(φ−) ≥ 0. Having constructed
a pair of weak global sub/supersolutions φ− ≤ φ+ for the system (2.1–2.2)
which both approach φ̊ asymptotically on the end, one argues as in [15] and
applies the Schauder fixed point theorem to produce a solution to the system.

In what follows, we construct a pair of weak global sub/supersolutions
for the subcritical LCBY equations. The construction below is independent
of the Yamabe invariant of the background metric, though we assume as in
[2] that cnR + βΛ > c > 0 everywhere. If one drops this assumption in the
case where the Yamabe invariant is positive, the construction of a pair of weak
global sub/supersolutions proceeds almost exactly as in [15].

3.1. Global Supersolution

We first show that a sufficiently large constant B is a global supersolution for
the subcritical LCBY system. Suppose 0 < φ ≤ B. Using Lemma 3.1, dropping
all subscripts “g,”

Lichφ(B) = −cnRB − βΛBN−1 + cn|σ + LWφ|2B−N−1

≤ −cnRB − βΛBN−1 + cnB−N−1(|σ|2 + 2|σ||LWφ| + |LWφ|2)
≤ −cnRB − βΛBN−1 + C1B

−N−1 + C2B
−1−ε + C3B

N−1−2ε

where we have used Lemma 3.1 and defined C1 = cn supM |σ|2,
C2 = 2cn supM |σ|Kτ , and C3 = cnK2

τ . Since βΛ ≥ βΛ(τ0) > 0, this final
expression is negative for sufficiently large B and hence such a constant is a
global supersolution. Notice that subcriticality was crucial in establishing this
fact.

We would like to construct a supersolution which approaches the function
φ̊ on the ends asymptotically. This way, the solution obtained from the fixed
point theorem will also approach φ̊. For this, we prove the following proposition
whose proof is similar to Proposition 3.5 in [15] and Theorem 4.3 in [2]:

Proposition 3.2. Choose some positive ν < δ/(2N + 2) so small that

Lich0(φ̊) = O(e−2νt).

With the initial data above, there exists some T > 0 such that the function
φ̊(1 + be−νt) is a global supersolution for any sufficiently large b on the set
where t ≥ T .

Once we establish this proposition, one easily sees that we can choose b so large
that φ̊(1 + be−νt) > B whenever t ≤ T and therefore inf[B, φ̊(1 + be−νt)] is
continuous and thus a weak global supersolution with the desired asymptotics.
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Proof. Define a new metric g̃ = φ̊N−2g, and denote with a tilde all operators
and quantities associated with this metric. The Lichnerowicz equation is well
known to be conformally covariant, which means that φ̊u is a solution to

Δg(φ̊u) − cnRgφ̊u = βΛ(φ̊u)N−1 − cn|σ|2g(φ̊u)−N−1

if and only if u is a solution to

Δg̃u − cnRg̃u = βΛuN−1 − cn|φ̊−2σ|2g̃u−N−1.

It follows from this pointwise property that for any φ ≤ φ̊(1 + be−νt),

Lichφ(φ̊(1 + be−νt)) = (Δ − cnR)(φ̊(1 + be−νt)) − βΛ(φ̊(1 + be−νt))N−1

+ cn|σ + LWφ|2(φ̊(1 + be−νt))−N−1

= (Δ̃ − cnR̃)(1 + be−νt) − βΛ(1 + be−νt)N−1

+ cn|φ̊−2(σ + LWφ)|2g̃(1 + be−νt)−N−1

= (Δ̃ − cnR̃)(1 + be−νt) − βΛ(1 + be−νt)N−1

+ cn|σ̃ + φ̊−2LWφ|2g̃(1 + be−νt)−N−1.

Next, observe by the covariance of the conformal Laplacian that

(Δ̃ − cnR̃)u = φ̊−(N−1)(Δ − cnR)(φ̊u) (3.4)

for any function u ∈ C2, and so taking u ≡ 1 gives

−cnR̃ = φ̊−(N−1)(βΛφ̊N−1 − cn|σ|2φ̊−N−1 + O(e−2νt))

= βΛ − cn|σ̃|2g̃ + s

where s is some function satisfying |s| ≤ Ce−2νt. Thus, Lichφ(φ̊(1 + be−νt)) is
given by the expression(

Δ̃ + βΛ − cn|σ̃|2g̃ + s
)

(1 + be−νt) − βΛ(1 + be−νt)N−1

+cn|σ̃ + φ̊−2LWφ|2g̃(1 + be−νt)−N−1

which, after adding and subtracting (N − 1)βΛbe−νt, we may rewrite as
(
Δ̃ − (

cn|σ̃|2g̃ + (N − 2)βΛ − s
))

(be−νt) + βΛ

(
(N − 1)be−νt

+1 − (1 + be−νt)N−1
)
+cn|σ̃+φ̊−2LWφ|2g̃(1+be−νt)−N−1−cn|σ̃|2g̃+s.

We now make a few observations about this expression. First, since βΛ(τ0) > 0,
for some large T0,

h := cn|σ̃|2g̃ + (N − 2)βΛ − s ≥ c > 0 (3.5)

for all t ≥ T0. Note too that the expression (N − 1)be−νt + 1 − (1 + be−νt)N−1

is negative, as may be seen by differentiating the function r(x) = (N − 1)x +
1 − (1 + x)N−1 and observing that r(0) = 0.
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Having chosen T0 as above, note that for any ρ > 0 satisfying 4ρ2 < c, if
ν < ρ then Δ̃e−νt ≤ 2ρ2e−νt and hence (Δ̃ − h)e−νt ≤ −2ρ2e−νt. From this,
we conclude that for t ≥ T0, Lichφ(φ̊(1 + be−νt)) is bounded above by

−2bρ2e−νt + s + βΛbN−1f(b, t) + 2cn|σ̃|g̃|φ̊−2LWφ|g̃b−N−1e(N+1)νt

+cn|φ̊−2LWφ|2g̃b−N−1e(N+1)νt

where we have simultaneously used the basic inequalities

|σ̃ + φ̊−2LW |2g̃ ≤ |σ̃|2g̃ + 2|σ̃|g̃|φ̊−2LW |g̃ + |φ̊−2LW |2g̃ (3.6)

(1 + be−νt)−N−1 ≤ min(1, b−N−1e(N+1)νt) (3.7)

and set

f(b, t) =
1

bN−1
+

N − 1
bN−2

e−νt −
(

1
b

+ e−νt

)N−1

.

Noting that L̃W = φ̊−(N−2)LW , one applies Lemma 3.1 and the fact that
φ ≤ φ̊(1 + be−νt) to find that the bound for Lichφ(φ̊(1 + be−νt) we obtained
can itself be bounded above by

−2bρ2e−νt + s + βΛbN−1f(b, t)

+k1||φ̊(1 + be−νt)||N−ε
∞ b−N−1e((N+1)ν−δ)t

+k2||φ̊(1 + be−νt)||2N−2εb−N−1e((N+1)ν−2δ)t. (3.8)

where k1 = 2cnKτ‖σ̃‖∞‖φ̊‖N−4
∞ and k2 = cnK2

τ ‖φ̊‖2N−8
∞ are constants. Fi-

nally, when b � 1 we may factor out the b from the expression ||φ̊(1+be−νt)||∞
to find that (3.8) is bounded above by

−2bρ2e−νt + s + βΛbN−1f(b, t) + k′
1b

−1−εe((N+1)ν−δ)t

+k′
2b

N−1−2εe((N+1)ν−2δ)t (3.9)

where k′
1 = (2‖φ̊‖∞)N−εk1 and k′

2 = (2‖φ̊‖∞)2N−2εk2. We may thus choose
some b0 so large that, for all b ≥ b0,

− βΛ(τ0)bN−1 + k′
1b

−1−ε + k′
2b

N−1−2ε < 0. (3.10)

Now to prove the proposition, we show that there is some choice of T > 0
such that (3.9) is negative for any t ≥ T and b ≥ b0. Clearly, there is some
T1 ≥ T0 such that −2ρ2e−νt + s < 0 for all t ≥ T1, so our task is reduced
to proving that the sum of the final three terms in (3.9) is negative for such
a choice of t and b. The analysis of these terms differs slightly depending
on whether N ≥ 3 (i.e., n ≤ 6) or N < 3, so we consider these cases
separately.

First, suppose N ≥ 3. For any fixed t, we see that f(b, t) → −e−(N−1)νt

as b → ∞. On the other hand, we find by differentiating that f is increasing
in b, so we thus conclude that f(b, t) < −e(N−1)νt for all b and t. The final
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three terms in (3.9) are thus bounded above by

− βΛ(τ0)bN−1e−(N−1)νt + k′
1b

−1−εe((N+1)ν−δ)t + k′
2b

N−1−2εe((N+1)ν−2δ)t

≤ e−(N−1)νt(−βΛ(τ0)bN−1 + k′
1b

−1−ε + k′
2b

N−1−2ε)
< 0

where we have used our smallness condition on ν in the first inequality and
the fact that b ≥ b0 in the second. This completes the proposition in the case
where N ≥ 3.

The case in which N < 3 is not much more difficult. The key difference
is that we now have ∂f/∂b < 0. Note first that for any fixed b, one computes
the limit (using a Taylor expansion, for example)

lim
t→∞

f(b, t)
e−2νt

= −b3−N (N − 1)(N − 2)
2

, (3.11)

so we may thus choose some b1 ≥ b0 such that this limit is less than −2 for all
b ≥ b1. Hence, there exists some T2 ≥ T1 such that f(b1, t) < −e−2νt for all
t ≥ T2. But since ∂f/∂b < 0, we see that f(b, t) < −e−2νt for any b ≥ b1 and
hence for any such b the final three terms in (3.9) are bounded above by

−βΛ(τ0)bN−1e−2νt + k′
1b

−1−εe((N+1)ν−δ)t + k′
2b

N−1−2εe((N+1)ν−2δ)t

≤ e−2νt(−βΛ(τ0)bN−1 + k′
1b

−1−ε + k′
2b

N−1−2ε)
< 0

for any t ≥ T2. This proves the case and the proposition. �

3.2. Global Subsolution

Based on our construction of a global supersolution, we may suspect that the
function φ̊(1 − ae−νt) will provide a global subsolution far out on the end. We
will show this to be the case. First observe, again by the conformal covariance
of the Lichnerowicz equation, that for any φ ≥ φ̊(1−ae−νt), Lichφ(φ̊(1−ae−νt))
is given by

(Δ̃ − cnR̃)(1 − ae−νt) − βΛ(1 − ae−νt)2

+ cn|σ̃ + φ̊−2LWφ|2g̃(1 − ae−νt)−N−1

= (Δ̃ + βΛ − cn|σ̃|2g̃ + s)(1 − ae−νt) − βΛ(1 − ae−νt)N−1

+ cn|σ̃ + φ̊−2LWφ|2g̃(1 − ae−νt)−N−1

= −aΔ̃e−νt + s(1 − ae−νt) + (βΛ − cn|σ̃|2g̃)(1 − ae−νt) − βΛ(1 − ae−νt)N−1

+ cn|σ̃ + φ̊−2LWφ|2g̃(1 − ae−νt)−N−1.

As noted in [2], given any positive number μ < 1, there is some μ′ > 0 such
that for all y ∈ [μ, 1),

y − yN−1

1 − y
≥ μ′. (3.12)

Hence, fixing a and choosing t so large that μ < 1 − ae−νt < 1, we find that

βΛ(1 − ae−νt) − βΛ(1 − ae−νt)N−1 ≥ βΛaμ′e−νt. (3.13)
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We thus conclude that, for such a choice of t, Lichφ(φ̊(1 − ae−νt)) is bounded
below by

−aΔ̃e−νt + s(1 − ae−νt) + βΛ(τ0)aμ′e−νt − cn|σ̃|2g̃(1 − ae−νt)

+cn|σ̃ + φ̊−2LWφ|2g̃(1 − ae−νt)−N−1.

Now using that (1 − ae−νt)−N−1 > 1 > 1 − ae−νt and that |σ̃ + φ̊−2LWφ|2g̃ ≥
(|σ̃|g̃ − φ̊−2|LWφ|g̃)2, we see that the previous expression is bounded below by

−aΔ̃e−νt + s(1 − ae−νt) + βΛ(τ0)aμ′e−νt + cn|φ̊−2LWφ|g̃(|φ̊−2LWφ|g̃ − 2|σ̃|g̃)
+cn|σ̃|2g̃[(1 − ae−νt)−N−1 − (1 − ae−νt)]

≥ −aΔ̃e−νt + s(1 − ae−νt) + βΛ(τ0)aμ′e−νt − 2cn|φ̊−2LWφ|g̃|σ̃|g̃.

At this point we use the fact that φ ≤ φ+ := φ̊(1 + ae−νt) and Lemma 3.1 to
conclude

Lichφ(φ̊(1 − ae−νt)) ≥ −aΔ̃e−νt + s(1 − ae−νt)

+βΛ(τ0)aμ′e−νt − k1‖φ+‖N−ε
∞ e−δt,

where the constant k1 is defined in the previous section. Now, there exists a
constant C > 0 such that Δ̃e−νt ≤ Cν2e−νt, so the previous expression is
bounded below by

− aCν2e−νt + s(1 − ae−νt) + βΛ(τ0)aμ′e−νt − C ′e−δt. (3.14)

We thus see that if we choose ν ≤ √
βΛ(τ0)μ′/C, the total contribution of the

first and third term is positive. Since the second term decays like O(e−2νt),
we conclude that, with this choice of ν, for some T ′ > 0 the expression (3.14)
is positive for all t ≥ T ′.

Our next objective is then to find a global subsolution on the compact
piece K = {t ≤ T ′} which is positive, yet sufficiently small on the boundary
of K. Calling such a function η, the function sup(η, φ̊(1 + ae−νt)) is then
continuous and thus a weak global subsolution. To accomplish this, we merely
define a slightly larger compact set K′ = {t ≤ T ′′}, where T ′′ > T ′ is so large
that ae−νt < 1/2 for all t ≥ T ′′, and solve the Dirichlet problem

{
(Δ − cnR − βΛ)η = 0
η|∂K′ = 1

2 inf(1, infM φ̊).
(3.15)

The function η is positive and less than 1 on the boundary of K′ and
hence on all of K′ by the maximum principle. One easily checks that η is a
global subsolution on K′, and it is less than φ̊(1−ae−νt) near the boundary of
K′ by our choice of T ′′. Therefore, if we extend η to be zero identically outside
of K′, we conclude that sup(η, φ̊(1 + ae−νt)) is a weak global subsolution. We
note that this is the only place where we used the condition that cnR+βΛ > 0.
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3.3. Continuity of the Solution Maps

Having constructed global sub and supersolutions of the subcritical system
(2.1–2.2), one finds a solution to this system with an application of the
Schauder fixed point theorem as in [11], [16], or [15]. The fixed point theo-
rem we need, a proof of which can be found in [14], is the following:

Theorem 3.3. Let X be a Banach space, and let U ⊂ X be a non-empty,
convex, closed, bounded subset. If T : U → U is a compact operator, then there
exists a fixed point u ∈ U such that T (u) = u.

To apply this theorem in the present context, we look for a solution (φ,W )
where φ = φ̊+ψ and ψ ∈ W 3,p

−ν . In this way, we think of the subcritical system
as having a solution (ψ,W ) ∈ W 3,p

−ν (M) × (W 2,p
−δ (TM) ⊕ Y ), and ψ shall be

found as a fixed point of a particular function on the set

U = {ψ ∈ L∞
−ν′ : φ− − φ̊ ≤ ψ ≤ φ+ − φ̊} (3.16)

where we choose some positive ν′ < ν. The set U clearly meets all the criteria
of Theorem 3.3 as a subset of the space L∞

−ν′ .
Let Wε : U → W 2,p

−δ (TM) ⊕ Y be the map which sends ψ ∈ U to the
vector field G(n−1(n − 1)(φ̊ + ψ)N−εdτ), where G is the bounded generalized
inverse defined above for the operator divL. One can easily see that the map
Wε is continuous. For any traceless 2-tensor Σ ∈ C0 satisfying |Σ|2 → σ̊2

on the ends at the rate e−δt, we define Q(Σ) to be the unique solution of
the Lichnerowicz equation (1.5), with σ + LW replaced by Σ, which satisfies
φ− ≤ Q(Σ) ≤ φ+. This map is shown to be well defined in [15]. We thus define
a map Sσ : C0

−δ(S
2
0(M)) → W 2,p

−ν (M) by

π �→ Q(σ + π) − φ̊. (3.17)

If we could show this map to be continuous, then the map Nσ,ε = Sσ ◦ L ◦ Wε

would itself be continuous. The range of this function lies in U by definition,
and the composition of Nσ,ε with the compact embedding W 2,p

−ν ↪→ C0
−ν′ gives

us a map T which satisfies the hypothesis of Theorem 3.3. If ψ̃ is this fixed
point, then (φ̊ + ψ̃,Wφ̊+ψ̃) is a solution of the subcritical system by construc-
tion. We thus need only show that Sσ is continuous, and to do this we require
the following lemma.

Lemma 3.4. The map Sσ : C0
−δ(S

2
0(M)) → W 2,p

−ν (M) is continuous.

The proof of this lemma is an implicit function theorem argument which goes
through exactly as the proof of [15, Lem 4.2] with the obvious modifications.

4. Convergence of Solutions

In this section we show that any solution of the subcritical equations has an
L∞ bound depending only on the L2-norm of LW . We essentially follow the
proof of this for closed manifolds found in [4], though the geometry of the ends
clearly necessitates several modifications to their argument. Let ε ∈ [0, 1) be
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arbitrary, and let (φ,W ) be a solution to the subcritical Eqs. (2.1–2.2). We
define the energy of the solution by

γ(φ,W ) =
∫

M

|LW |2 dv,

and let γ̃ = max{γ, 1}. Note that γ̃ is finite by Lemma 3.1. We rescale φ, W,
and σ as

φ̃ = γ̃− 1
2N φ, W̃ = γ̃− 1

2 W, σ̃ = γ̃− 1
2 σ.

The deformed equations can then be renormalized as
1

γ̃1/n
(Δφ̃ − cnRφ̃) = βΛφ̃N−1 − cn|σ̃ + LW̃ |2φ̃−N−1, (4.1)

divLW̃ =
n − 1

n
γ̃− ε

2N φ̃N−εdτ. (4.2)

Notice that because of our rescaling,∫
M

|LW̃ |2 dv ≤ 1.

Throughout this section, “bounded” will mean “bounded independent of
ε, φ and W”, and all constants C or Ci will be similarly independent of ε, φ,
and W . We first prove an important lemma.

Lemma 4.1. Suppose that k ≥ 0. Then, for any solution φ̃ of the renormalized
subcritical equations (4.1–4.2), and any δ > 0,

−C1

(∫
M

e−δtφ̃2N+Nk

)N+2+Nk
2N+Nk

+ βΛ(τ0)
∫

M

e−δtφ̃2N+Nk

≤ 2cn

∫
M

e−δt|σ|2φ̃Nk + C2

∫
M

|LW̃ |2φ̃Nk. (4.3)

Proof. We multiply Eq. (4.1) by e−δtφ̃N+1+Nk and integrate over M to get

1
γ̃1/n

∫
M

(
−e−δtφ̃N+1+NkΔφ̃ + cne−δtRφ̃N+2+Nk

)
dv

+
∫

M

βΛe−δtφ̃2N+Nkdv = cn

∫
M

e−δt|σ̃ + LW̃ |2φ̃Nkdv. (4.4)

Consider the first integral on the left:∫
M

−e−δtφ̃N+1+NkΔφ̃ =
∫

M

c1d(e−δt)d(φ̃N+2+Nk) +
∫

c2e
−δtφ̃N+Nk|dφ̃|2

≥ −C

∫
M

Δ(e−δt)φ̃N+2+Nk

≥ −C

∫
M

e−δtφ̃N+2+Nk

where c1 = 1
N+2+Nk and c2 = N +1+Nk. The first and second lines are by in-

tegration by parts. These integration by parts are valid because of the exponen-
tial falloff term e−δt. The third line follows from the inequality Δe−δt ≤ Ce−δt,
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since ‖t‖C2 < ∞. Using this, and combining with the R term, the first integral
in Eq. (4.4) is greater than or equal to

∫
M

(cnR − C)e−δtφ̃N+2+Nk.

Let v = 2N+Nk
N+2+Nk , u = 2N+Nk

N−2 . Note that 1
u + 1

v = 1. Let μ = 1/u. We then
use Hölder’s inequality to see that
∫

M

(cnR − C)e−δtφ̃N+2+Nk =
∫

M

(cnR − C)e−δtμφ̃N+2+Nke−δt(1−μ)

≥ −‖|cnR − C|e−δtμ‖Lu‖φ̃N+2+Nke−δt(1−μ)‖Lv

≥ −‖cnR − C‖u,δ/u

(∫
M

e−δtφ̃2N+Nk

)N+2+Nk
2N+Nk

.

Note that ‖cnR − C‖u,δ/u < ∞, since R ∈ L∞ and δ/u > 0. After using
γ̃−1 ≤ 1, this gives us the first term of the desired inequality.

The second term is easily found by pulling out the infimum of βΛ. The
right hand term is found by the inequalities |σ̃ + LW̃ |2 ≤ 2|σ̃|2 + 2|LW̃ |2,
e−δt ≤ C, and |σ̃|2 ≤ |σ|2. This completes the lemma. �

Proposition 4.2. Suppose φ is a positive solution of the subcritical Eqs. (2.1–
2.2) for tame initial data which satisfies φ → φ̊ on the ends. If ε ∈ [0, 1),
then

φ < Cγ̃
1

2N .

Proof. As in [4], we will prove this proposition in four steps.

Step 1. L1
δ bound on φ̃2N

Suppose dτ ∈ Lp
−δ. Then using Lemma 4.1 with k = 0, φ̃2N is clearly bounded

in L1
δ as long as the right hand side of (4.3) is bounded. However, since k = 0

and σ → σ̊, it is easy to see that both integrals are bounded. Thus, φ̃2N is
bounded in L1

δ .

Step 2.Bounds for LW .

Suppose by induction φ̃piN is bounded in L1
δ for some 2 ≤ pi. Let 1

qi
= 1

pi
+ 1

p .
If qi > n, we continue on to step 4. Otherwise, define 1

ri
= 1

qi
− 1

n . We will
show at the end of step 3 that we can ensure qi is never n.

Let α = max{δ
(

1
pi

− 1
)

,−δ∗/2}. Note that

φ̃N−ε ≤ N − ε

N
φ̃N +

ε

N
≤ φ̃N +

1
N

.
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Using this and Eq. (4.2),

‖divLW̃‖L
qi
α

= Cγ̃− ε
2N ‖φ̃N−ε|dτ |‖L

qi
α

≤ C

∥∥∥∥
(

φ̃N +
1
N

)
|dτ |

∥∥∥∥
L

qi

δ( 1
pi

−1)

≤ C

∥∥∥∥
(

φ̃N +
1
N

)
|dτ |e− δ

pi
t
eδt

∥∥∥∥
Lqi

≤ C

∥∥∥∥
(

φ̃N +
1
N

)
e

− δ
pi

t

∥∥∥∥
Lpi

‖|dτ |eδt‖Lp

≤ C
(
‖φ̃Npi‖1/pi

L1
δ

+ ‖1/N‖L
pi
δ/pi

)
‖dτ‖Lp

−δ
. (4.5)

The second line holds because γ̃ ≥ 1. The fourth line is Hölder’s inequality
with pi and p. The last line follows from the definitions of the norms and the
triangle inequality.

This last inequality shows that ‖divLW̃‖L
qi
α

is bounded since the first
norm on the right is bounded by hypothesis and the second is bounded since
dτ ∈ Lp

−δ. We also calculate, since qi < n,

‖LW̃‖L
ri
δ/ri

≤ C‖LW̃‖
W

1,qi
α

≤ C‖W̃‖
W

2,qi
α ⊕Y

≤ C‖divLW̃‖L
qi
α

.

The first line follows from Theorem 1.3 and the fact that δ/ri > α. The second
line is because L maps Y to an exponentially decaying piece. The last line is
by the existence of generalized inverse of divL implied by Theorem 1.2.

Thus, ‖LW̃‖L
ri
δ/ri

is bounded.

Step 3. Induction on pi

Define ki by 2
ri

+ ki

pi
= 1. Lemma 4.1 implies that we can show that φ̃2N+Nki

is bounded in L1
δ as long as

2cn

∫
M

e−δt|σ|2φ̃Nki + C2

∫
M

|LW̃ |2φ̃Nki

is bounded. For both integrals, we use Hölder’s inequality with ri

2 and pi

ki
to

bound this above by

C‖φ̃piN‖ki/pi

L1
δ

(
‖σ‖2

L
ri
δ/ri

+ ‖LW̃‖2
L

ri
δ/ri

)
.

The norm on φ̃ is bounded by assumption. The norm on σ is bounded since
δ/ri > 0 and by our conditions on σ. The norm on LW̃ is bounded by the
previous step.
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All of this shows that φ̃2N+Nki is bounded in L1
δ . Let pi+1 = 2+ki. With

this,

pi+1

pi
=

2 + ki

pi
=

2
pi

+ 1 − 2
ri

=
2
pi

+ 1 − 2
(

1
qi

− 1
n

)

=
2
pi

+ 1 − 2
(

1
pi

+
1
p

− 1
n

)
= 1 +

2
n

− 2
p

> 1

since p > n. Hence pi → ∞, and so qi → p. We continue steps 2 and 3 a finite
number of times until some k, such that qk > n. We can avoid the case that
qi = n by slightly decreasing p and δ at the beginning of the proposition, since
Lp

−δ ⊂ Lp−ε
−δ+ε for small ε > 0.

Step 4. L∞ bound on φ̃.

Since qk > n, similar to (4.5) in step 2,

‖LW̃‖L∞
α

≤ C‖W̃‖
W

2,qk
α

≤ C‖divLW̃‖L
qk
α

≤ C
(
‖φ̃Npi‖1/pi

L1
δ

+ ‖1/N‖L
pi
δ/pi

)
‖dτ‖Lp

−δ

where the right hand side is again bounded. Since α < 0, this implies that
|LW̃ | is bounded as well.

From the fact that the Laplacian acting on functions only involves first-
order derivatives of the metric, and since the coefficients of the Lichnerowicz
equation (4.1) are at least in C0,β for some β > 0 (since p > n), it can be
easily seen that the function φ̃ is in C2,β . We can thus apply the maximum
principle. Let x ∈ M be where φ̃ reaches its maximum value, if it has one. At
such a point,

cn

γ̃1/n
Rφ̃ + βΛφ̃N−1 ≤ cn|σ̃ + LW̃ |2φ̃−N−1

which simplifies to
cn

γ̃1/n
Rφ̃N+2 + βΛφ̃2N ≤ cn|σ̃ + LW̃ |2.

Since R ∈ L∞ and γ̃ ≥ 1, φ̃ is bounded.
If φ > supM φ̊ at some point, it (and thus φ̃) has a maximum. Thus, if

φ does not have a maximum, φ ≤ supM φ̊, which is an even stronger upper
bound than the proposition requires.

By recalling that φ̃ = γ̃− 1
2N φ, we have proven the proposition. �

Now that we have the bound, let us consider what happens as ε → 0.

Lemma 4.3. Assume that there exist sequences εi and (φi,Wi) such that εi ↘ 0
and (φi,Wi) is a solution of the deformed Eqs. (2.1–2.2) with ε = εi. Also,
assume that γ(φi,Wi) is bounded. Then there exists a constant ν > 0 and a
sequence of the (φi,Wi) which converges in the W 2,p

−δ ⊕ Y norm to a solution
(φ∞,W∞) of the original conformal constraint equations.
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Proof. From the previous proposition, we know that the φi are uniformly
bounded in the L∞ norm. As in (4.5),

‖Wi‖W 2,p
−δ ⊕Y ≤ C

(‖φi‖N
0 + ‖1/N‖0

) ‖dτ‖Lp
−δ

, (4.6)

the sequence Wi is uniformly bounded in W 2,p
−δ ⊕Y . The operator L : W 2,p

−δ ⊕
Y → C0

−δ′ is compact by Theorem 1.3 and the fact that Y is finite dimen-
sional. Thus, up to selecting a subsequence, we can assume that the sequence
LWi converges in C0

−δ′ to some LW∞.
Thus by Lemma 3.4, the functions ψi := φi−φ̊ converge in W 2,p

−ν (and thus
in L∞

−ν) for some ν > 0 to a function ψ∞. We must assume we picked δ′ close
enough to δ in the previous paragraph, such that ν < δ′

2N . Since φi → φ̊ on the
ends, this implies that φ∞ := ψ∞ + φ̊ approaches φ̊ on the ends exponentially
fast. Since the right hand side of the vector Eq. (1.6) converges in Lp

−δ, the
sequence Wi converges in the W 2,p

−δ ⊕Y norm as well. The regularity of φ∞ and
W∞ guarantee that they are solutions of the conformal constraint equations
(with ε = 0). �

Lemma 4.4. Assume there exists sequences εi and (φi,Wi) such that εi ↘ 0 and
(φi,Wi) is a solution of the subcritical Eqs. (2.1–2.2) with ε = εi. Also, assume
that γ(φi,Wi) → ∞. Then there exists a non-zero solution W ∈ W 2,p

−δ ⊕ Y of
the limit equation

divLW = α0

√
cn

βΛ
|LW |dτ

for some α0 ∈ (0, n−1
n ] such that |LW | ≤ Ce−δt for some C independent of

φi, Wi, and W .

Proof. Arguing as in the previous lemma, the W̃i are uniformly bounded in
W 2,p

−δ ⊕ Y . Without loss of generality, we can assume that γ > 1, and so
∫

M

|LW̃i|2 = 1.

Up to selecting a subsequence, we can then assume that LW̃i converges in
C0

−δ′ for some 0 < δ′ < δ to some LW̃∞.
We can show the falloff of LW̃∞ by considering

‖LWi‖L∞
−δ

≤ C‖φN−εi
i |dτ |‖Lp

−δ

≤ C
∥∥(φN

i + 1/N)|dτ |∥∥
Lp

−δ

≤ Cγ̃
1/2
i ‖dτ‖Lp

−δ

as in (4.5), but using Proposition 4.2 and γ̃ ≥ 1. Thus,

‖LW̃i‖L∞
−δ

≤ C
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for some C independent of ε, Wi and φi. Since LW̃i converges weakly in W 1,p
−δ ,

and thus also weakly in L∞
−δ,

|LW̃∞| ≤ Ce−δt

for the same C as for LW̃i.
Let φ̃∞ be defined by

φ̃N
∞ =

√
cn

βΛ
|LW̃∞|

i.e., φ̃∞ satisfies

βΛφ̃N−1
∞ = cn|LW̃∞|2φ̃−N−1

∞ .

If we can show that φ̃i → φ̃∞ in L∞, then the continuity of the vector equation
implies that W̃∞ is a W 2,p

−δ ⊕ Y solution to the limit equation with α0 =
n−1

n lim γ(φi,Wi)− εi
2N . Since γ(φi,Wi) → ∞, α0 ∈ [0, n−1

n ]. Note that∫
M

|LW̃∞|2 = 1

since LW̃i converges in C0
−δ′ , and so W̃∞ �≡ 0, and so the solution is nontrivial.

Since we assumed there are no global conformal Killing fields in L2, we cannot
have the case α0 = 0.

To show this convergence, we will show that for any ε > 0 that |φ̃∞−φ̃i| <

ε for large enough i. Take a C2 function with bounded derivatives φ̃+ such that

φ̃∞ +
ε

2
≤ φ̃+ ≤ φ̃∞ + ε.

We show that φ̃+ is a supersolution of the rescaled Lichnerowicz equation (4.1)
if i is large enough. Multiplying the rescaled Lichnerowicz equation (4.1) by
φ̃N+1

+ , we need to show that

φ̃N+1
+

γ̃1/n

(
−Δφ̃+ + cnRφ̃+

)
+ βΛφ̃2N

+ ≥ cn|σ̃ + LW̃i|2.
Since

φ̃2N
+ ≥

(
φ̃∞ +

ε

2

)2N

≥ φ̃2N
∞ +

( ε

2

)2N

,

the previous inequality will be satisfied provided that

φ̃N+1
+

γ̃1/n

(
−Δφ̃+ + cnRφ̃+

)
+ βΛ

( ε

2

)2N

≥ cn|σ̃ + LW̃i|2 − cn|LW̃∞|2.
Note that everything goes to zero as i → ∞ except for the ε term. Since
βΛ ≥ βΛ(τ0), there exists an i0 such that for all i ≥ i0, φ̃+ is a supersolution.

Note that φ̃+ ≥ ε
2 . Also, φ̃i → ˜̊

φ = γ̃
−1/2N
i φ̊ on the ends for every i.

Thus, for i large enough, φ̃i < ε
2 outside some compact set Ki. Inside Ki, since

φ̃∞ is a supersolution and φ̃i is regular enough, we can apply the maximum
principle to show that φ̃+ remains larger than φ̃i. Thus, φ̃i ≤ φ̃+ ≤ φ̃∞ + ε for
large enough i.
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We proceed similarly with a φ̃− ∈ C2 with

φ̃∞ − ε ≤ φ̃− ≤ φ̃∞ − ε

2
.

Since LW∞ → 0 on the ends, φ̃− is negative on the ends. On the set where it
is positive, however, we can show that it is also a subsolution to the rescaled
Lichnerowicz equation (4.1). By the same argument as before, φ̃i ≥ φ̃− ≥
φ̃∞ − ε. This completes the theorem. �

We are now able to prove Theorem 2.2:

Proof of Theorem 2.2. Assume that the limit equation admits no such solution
for any α0 ∈ (0, n−1

n ]. From Theorem 2.1, we know there exists a sequence
of solutions (φi,Wi) with appropriate regularity of the deformed constraints
(2.1–2.2) with εi = 1/i. If the sequence γ(φi,Wi) was unbounded, there would
be a non-zero solution to the limit equation by Lemma 4.4, a contradiction.
Thus the sequence is bounded, and so by Lemma 4.3 there exists a solution
(φ∞,W∞) with appropriate regularity of the conformal constraint equations
(1.5–1.6).

For compactness, let (φi,Wi) be an arbitrary sequence of solutions to the
conformal constraint equations. Using Lemma 4.4 with εi = 0, γ(φi,Wi) is
bounded. Lemma 4.3 then says that a subsequence of (φi,Wi) converges. This
completes the proof. �

5. Existence Results

Theorem 2.2 says that if we can show that the limit Eq. (1.7) has no solutions
with particular properties, then there is a solution to the full constraint Eqs.
(1.5–1.6). In this section, we will prove Corollary 2.3 which uses this result to
show that for certain tame near-CMC seed data, there is no solution to the
limit equation.

Proof of Corollary 2.3. Assume W ∈ W 2,p
−δ ⊕Y is a solution of the limit equa-

tion. We claim that for any such W ,∫
|LW |2 ≥ C

∫
|W |2e−2μt

for some positive μ ≤ δ, C > 0. If so, we can then take the limit equation,
multiply by W and integrate by parts to get∫

|LW |2 ≤ −
(

n − 1
n

√
cn

)∫
|LW |W dτ√

βΛ

≤
∥∥∥∥ dτ√

βΛ

∥∥∥∥
C0

−μ

‖LW‖L2

(∫
|W |2e−2μt

)1/2

.

We then immediately see that there is a constant C (the one used in the
hypotheses) such that
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∥∥∥∥ dτ√
βΛ

∥∥∥∥
C0

−μ

≥ C.

This contradicts our hypotheses, and so there is a solution to the constraint
equations.

We prove the claimed inequality first for compactly supported vector
fields V ∈ W 2,p

−δ . First, recall the pointwise Bochner-type formula

1
2
divLV = ΔV +

(
1 − 2

n

)
∇(divV ) + Ric(V, ·),

which is shown, for example, in [9, App B]. Multiplying both sides by V and
integrating by parts, we get

1
2

∫
|LV |2 =

∫
|∇V |2 +

(
1 − 2

n

)
(divV )2 − Ric(V, V ).

Dropping the divV term and using the Ricci curvature bound, we get

1
2

∫
|LV |2 + c1

∫
χ2|V |2 ≥

∫
|∇V |2 + c2

∫
|V |2e−2μt

≥ C‖V ‖2
W 1,2(suppχ) (5.1)

where the C depends on χ and μ.
Next, we want to show that

∫ |LV |2 ≥ C
∫

χ2|V |2. Assume this were not
true. Then there exists a sequence Vi such that∫

|LVi|2 ≤ 1
i

∫
χ2|Vi|2.

We normalize the Vi such that
∫

χ2|Vi|2 = 1. Because of inequality (5.1),
‖Vi‖W 1,2(suppχ) is bounded. Thus, Vi converge strongly to some V in
L2(suppχ) by the Rellich–Kondrachov theorem. In particular,

∫
χ2|V |2 = 1

and so it is non-zero. Also, since
∫ |∇Vi|2 is bounded, we get weak conver-

gence of |LVi|, and so
∫ |LV |2 = 0. This implies V is a nontrivial global L2

conformal Killing field, contradicting our assumptions. Therefore,∫
|LV |2 ≥ C

∫
χ2|V |2,

and this immediately gives that∫
|LV |2 ≥ C

∫
|V |2e−2μt

for compactly supported V . We claim the same inequality holds for
W ∈ W 2,p

δ ⊕ Y . Indeed, there are smooth cutoff functions ηi such that for
Wi = ηiW ,∣∣∣∣

∫
|LW |2 −

∫
|LWi|2

∣∣∣∣ <
1
i

and
∣∣∣∣
∫

|W |2e−2μt −
∫

|Wi|2e−2μt

∣∣∣∣ <
1
i
.
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This is because LW decays exponentially fast outside a compact set and be-
cause |W | is bounded. Thus,

C

∫
|W |2e−2μt ≤ C

∫
|Wi|2e−2μt +

C

i

≤ (1 + ε)
∫

|LWi|2 − Cε

∫
|Wi|2e−2μt +

C

i

≤ (1 + ε)
∫

|LW |2 − Cε

∫
|Wi|2e−2μt +

C + 1 + ε

i

for some small fixed ε > 0. Thus, for large enough i, the last two terms add
together to be negative, and so

C

∫
|W |2e−2μt ≤ (1 + ε)

∫
|LW |2

for any small enough ε > 0. Thus, the desired inequality holds. This completes
the proof. �

6. Extension of Main Results to Conformally Asymptotically
Cylindrical and Asymptotically Periodic Metrics

While the results in this paper have been proven only for asymptotically cylin-
drical manifolds, analogous results hold for conformally asymptotically cylin-
drical manifolds (see Subsect. 1.1) as well with only a few changes in the proof.
First, as explained in [15], the Lp-Sobolev version of Theorem 1.2 holds even
for conformally AC metrics, and this observation is the basis for the proof
of Lemma 3.1. Now, let w be any conformal factor (as in Subsection 1.1)
such that ǧ = wN−2g, where g is an asymptotically cylindrical manifold. It
follows from the covariance of the Lichnerowicz equation that φ is a global
sub/supersolution of the LCBY Eqs. (1.5–1.6) for ǧ if and only if wφ is a
global sub/supersolution of the equation

Δgθ − cnRgθ = βΛθN−1 − cn|w2(σ + LǧW )|2gθ−N−1 (6.1)

coupled with the vector Eq. (1.6) for ǧ. Notice that only the L operator is
defined with respect to ǧ, while the rest are with respect to g.

Because of this fact, we can find global sub/supersolutions φ−, φ+ to
Eq. (6.1) as in Sect. 3, since that metric is asymptotically cylindrical. Then,
φ−/w, φ+/w are global sub and supersolutions to the original conformal con-
straint equations for ǧ. Note that these will produce a solution φ to the Lich-
nerowicz equation that asymptotes to φ̊/ẘ�, which is still a valid asymptote
since ẘ� is also a function on N�. The rest of the proof proceeds in the same
way.

In the discussion of the conformal method on manifolds with ends of
cylindrical type, it is often of interest to consider metrics which are asymp-
totically periodic as well. This is to say that the metric and its derivatives
decay exponentially on each end E� to a metric g̊� which is periodic in t. If
the period is given by some T� > 0, we may think of this metric as a lift to
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R × N� of a metric on the closed manifold (R/T�) × N�. These metrics are of
particular interest because they arise when one wants to conformally change a
cylindrical end to a metric with constant scalar curvature. In particular, one
may quotient an exactly cylindrical end by any period and apply the complete
theory of the Yamabe problem on closed manifolds to find a conformal factor
which gives rise to a constant scalar curvature metric on the quotient. One
then lifts this conformal factor to the cylinder to produce a periodic end with
constant scalar curvature.

To prove that Theorem 2.2 holds for a manifold with an asymptotically
periodic end, we first define the asymptote φ̊ to be a solution of the reduced
Lichnerowicz equation (3.2) on (R/T�) × N�. Note that since this manifold is
also of dimension n, the reduced Lichnerowicz equation is, in fact, precisely the
Lichnerowicz equation. The existence of solutions to the subcritical LCBY Eqs.
(2.1)-(2.2) which have φ̊ as an asymptote for the conformal factor is proved
in precisely the same way as Theorem 2.1, for one can show that the central
theorems used in Sect. 3 all apply in the asymptotically periodic case except
for a minor change in the definition of Y (see [3], [15]). As in the conformally
asymptotically cylindrical case, the arguments in Sect. 4 carry over essentially
unchanged to the asymptotically periodic case.
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