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Abstract. Karl Löwner (later known as Charles Loewner) introduced his
famous differential equation in 1923 to solve the Bieberbach conjecture
for series expansion coefficients of univalent analytic functions at level
n = 3. His method was revived in 1999 by Oded Schramm when he intro-
duced the Stochastic Loewner Evolution (SLE), a conformally invariant
process which made it possible to prove many predictions from confor-
mal field theory for critical planar models in statistical mechanics. The
aim of this paper is to revisit the Bieberbach conjecture in the frame-
work of SLE processes and, more generally, Lévy processes. The study of
their unbounded whole-plane versions leads to a discrete series of exact
results for the expectations of coefficients and their variances, and, more
generally, for the derivative moments of some prescribed order p. These
results are generalized to the “oddified” or m-fold conformal maps of
whole-plane SLEs or Lévy–Loewner Evolutions. We also study the (aver-
age) integral means multifractal spectra of these unbounded whole-plane
SLE curves. We prove the existence of a phase transition at a moment
order p = p∗(κ) > 0, at which one goes from the bulk SLEκ average inte-
gral means spectrum, as predicted by the first author (Duplantier Phys.
Rev. Lett. 84:1363–1367, 2000) and established by Beliaev and Smirnov
(Commun Math Phys 290:577–595, 2009) and valid for p ≤ p∗(κ), to a
new integral means spectrum for p ≥ p∗(κ), as conjectured in part by
Loutsenko (J Phys A Math Gen 45(26):265001, 2012). The latter spec-
trum is, furthermore, shown to be intimately related, via the associated
packing spectrum, to the radial SLE derivative exponents obtained by
Lawler, Schramm and Werner (Acta Math 187(2):237–273, 2001), and to
the local SLE tip multifractal exponents obtained from quantum gravity
by the first author (Duplantier Proc. Sympos. Pure Math. 72(2):365–482,
2004). This is generalized to the integral means spectrum of the m-fold
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(Transport, Réseaux, Croissance, Urbanisme).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-014-0351-3&domain=pdf


1312 B. Duplantier et al. Ann. Henri Poincaré

transform of the unbounded whole-plane SLE map. A succinct, pre-
liminary, version of this study first appeared in Duplantier et al.
(Coefficient estimates for whole-plane SLE processes, Hal-00609774,
2011).

1. Introduction

1.1. The Coefficient Problem and Schramm–Loewner Evolution

Let f(z) =
∑

n≥0 anzn be a holomorphic function in the unit disk D. We
further assume that the function f is injective: what then can be said about
the coefficients an? A trivial observation is that a1 �= 0 and Bieberbach [10]
proved in 1916 that

|a2| ≤ 2|a1|.
In the same paper, he famously conjectured that

∀n ≥ 2, |an| ≤ n|a1|,
guided by the intuition that the function (afterwards called the Koebe function)

K(z) := −
∑

n≥1

n(−z)n =
z

(1 + z)2
, (1)

which is a holomorphic bijection between D and C\[1/4,+∞), should be ex-
tremal. This conjecture was finally proven in 1984 by de Branges [15]: its proof
was made possible by the addition of a new idea (an inequality of Askey and
Gasper) to a series of methods and results developed in almost a century of
effort. It is largely accepted that the earliest important contribution to the
proof of Bieberbach’s conjecture is the proof [63] by Loewner in 1923 that
|a3| ≤ 3|a1|. De Branges’ proof in 1985 [15] indeed used Loewner’s idea in a
crucial way, as did many contributors to the proof around that time. In an
Appendix to this article, we recall the proof by Bieberbach for the case n = 2,
and that by Loewner for n = 3. It ends with a brief account of post-Loewner
steps towards the proof of Bieberbach’s conjecture.

Loewner’s ideas go far beyond Bieberbach’s conjecture: Oded Schramm
[76] revived Loewner’s method in 1999, introducing randomness into it, as
driven by standard Brownian motion. This field, now called the theory of SLE
processes (initially for Stochastic Loewner, now for Schramm–Loewner, Evolu-
tion), provides a unified and rigorous approach to the geometry of conformally
invariant processes and critical curves in two-dimensional statistical mechan-
ics. It led to the two Fields medals of W. Werner (for the application of SLE to
planar Brownian paths) and of S. Smirnov (for application of SLE to critical
percolation and Ising models).

The aim of the present paper is to revisit Bieberbach’s conjecture in the
framework of SLE theory, that is to study the coefficients of univalent func-
tions coming from the conformal maps associated with this process. We also
extend our study to the so-called Lévy–Loewner Evolution (LLE), where the
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Figure 1. Loewner map z �→ ft(z) from D to the slit domain
Ωt = C\γ([t,∞)) (here slit by a single curve γ([t,∞)) for
κ ≤ 4). One has ft(0) = 0,∀t ≥ 0. At t = 0, the driving
function λ(0) = 1, so that the image of z = 1 is at the tip
γ(0) = f0(1) of the curve

Brownian source term in Loewner’s equation is generalized to a Lévy process.
(See, e.g., [68,75].)

There exist several variants of SLEκ, known, in a terminology due to
Schramm, as chordal, radial, or whole-plane. The one we adopt in this work
is a variant of the whole-plane one, corresponding to the original setting in-
troduced by Loewner. As in the radial case, the whole-plane Loewner process
is determined by a function λ : [0,+∞) → ∂D := {z : |z| = 1}, called the
driving function, obtained as follows. Define γ : [0,∞) → C to be a Jordan
arc joining γ(0) to ∞, and not containing the origin 0 (see Fig. 1). Define
then for each t > 0, the slit domain Ωt = C\γ([t,∞)). It is a simply con-
nected domain containing 0 and we can thus consider the Riemann mapping
ft : D → Ωt, ft(0) = 0, f ′

t(0) > 0. By the Caratheodory convergence theorem,
ft converges as t → 0 to f := f0, the Riemann mapping of Ω0. We may as-
sume without loss of generality that f ′(0) = 1 and, by changing the time t if
necessary, choose the normalization f ′

t(0) = et.
The key idea of Loewner is to use the fact that the sequence of domains

Ωt is increasing, which translates into the fact that 	
(

∂ft

∂t /z ∂ft

∂z

)
> 0 or,

equivalently, that this quantity is the Poisson integral of a positive measure on
the unit circle, actually a probability measure because of the above normaliza-
tion. Now the fact that the domains Ωt are slit domains implies that for every
t this probability measure must be a Dirac mass at point λ(t) = f−1

t (γ(t)).
It is worthwhile to notice that λ is a continuous function. One says that the
Loewner chain (ft) associated with (Ωt) is driven by the function λ(t), in the
sense that ft satisfies the Loewner differential equation
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∂ft

∂t
= z

∂ft

∂z

λ(t) + z

λ(t) − z
, z ∈ D. (2)

It is remarkable that that the Loewner method can be reversed: given a func-
tion λ which is càdlàg, i.e., right continuous with left limits at every point of
R+ with values in the unit circle, then the Loewner Eq. (2), supplemented by
the boundary (initial) condition limt→+∞ ft(e−tz) = z, has a solution ft(z)
which is the Riemann mapping of a domain Ωt and the corresponding family
is increasing in t.

As is well-known, Schramm’s fundamental insight was to consider as a
particular driving function

λ(t) = ei
√

κBt , (3)

where κ ∈ [0,∞), and Bt is standard, one dimensional, Brownian motion,
characterized by the three fundamental properties:

(a) Stationarity: if 0 ≤ s ≤ t, then Bt − Bs has the same law as Bt−s;
(b) Markov property: if 0 ≤ s ≤ t, then Bt − Bs is independent of Bs;
(c) Gaussianity: Bt has a normal distribution with mean 0 and variance t.

A Lévy process Lt provides the generalization that is assumed to satisfy
only the first two of these properties, the essential difference with Brown-
ian motion being that jumps are then allowed. The corresponding stochastic
Lévy–Loewner evolution (LLE) obeys (2) with a source term that generalizes
(3)

λ(t) = eiLt . (4)

The characteristic function of a Lévy process Lt has the form

E(eiξLt) = e−tη(ξ), (5)

where η (called the Lévy symbol) is a continuous complex function of ξ ∈ R,
satisfying (in addition to necessary Bochner-type conditions [3]) η(0) = 0, and
η(−ξ) = η(ξ). SLEκ corresponds to a Gaussian characteristic function, and its
driving function is a Lévy process with symbol

η(ξ) = κξ2/2. (6)

More generally, the function

η(ξ) = κ|ξ|α/2, α ∈ (0, 2] (7)

is the Lévy symbol of the so-called α−stable process. The normalization here
is chosen so that this process gives SLEκ for α = 2. Another Lévy symbol
of interest is given (up to constant factor) by η(ξ) = 1 − (sin πξ)/πξ, and
corresponds to a certain compound Poisson process which serves as a model
for a dendritic growth process; this aspect will be developed in a forthcoming
paper (see also [39]).

The most general form of a Lévy symbol is given by the well-known
Lévy–Khintchine formula (which makes precise the Bochner-type conditions
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mentioned above). It states that a Lévy symbol (in dimension one) has the
necessary form

η(ξ) = ibξ + a2ξ2 −
∫

R\{0}

[
eiξy − 1 − iξy1[−1,1]

]
ν(dy), (8)

where a, b ∈ R, and ν is a measure on R\{0} such that
∫

R\{0}
(1 ∧ y2)ν(dy) < ∞.

In the examples above η is a real, therefore, even function, a property corre-
sponding to symmetric Lévy processes, and which we will assume throughout,
except in the beginning of Sect. 2. As we shall see, all the quantities that
we will consider depend only on the values of the Lévy symbol at integer ar-
guments; for this reason, we shall use the “sequence” notation: ηk := η(k),
k ∈ Z.

The associated conformal maps, obeying (2), are denoted by ft, and in
this work, we study their coefficients an(t), which are random variables, defined
by the normalized series expansion:

ft(z) = et

(

z +
∑

n≥2

an(t)zn

)

. (9)

Section 2 starts with the computation, in terms of the Lévy symbols ηk, k ∈ Z,
of E(an) for all n, and of E(|an|2) for small n, for a general Lévy–Loewner
evolution process ft. Note that a similar idea already appeared in Ref. [42],
where A. Kemppainen studied in detail the coefficients associated with the
Schramm–Loewner evolution, using a stationarity property of SLE [44]. How-
ever, the focus there was on expectations of the moments of those coefficients,
rather than on the moments of their moduli.

We also consider the associated odd (“oddified”) process, defined as:

ht(z) := z
√

ft(z2)/z2, (10)

represented by the normalized series expansion:

e−t/2ht(z) = z +
∑

n≥1

b2n+1(t)z2n+1. (11)

The transform (10) was the key to the proof of the Bieberbach conjecture.
The so-called Littlewood–Paley conjecture that the odd coefficients satisfy
|b2n+1| ≤ 1 (an inequality which implies Bieberbach’s) was actually disproved
by Fekete and Szegő, but its modification by Robertson claiming that∑n

k=1 |b2k+1|2 ≤ n (which also implies Bieberbach’s conjecture) was finally
proven in de Branges’s work; see the historical sketch 5.1 at the end of this
paper.
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This transform has been generalized to the m-fold transform

h
(m)
t (z) := z(ft(zm)/zm)1/m, (12)

defined for m ∈ N, m ≥ 1 (see below).
We find the following results:

Theorem 1.1. Let (ft)t≥0 be the Loewner whole-plane process driven by the
Lévy process Lt with Lévy symbol η. We write

ft(z) = et

(

z +
∑

n≥2

an(t)zn

)

.

We also consider the oddification of ft,

ht(z) = z
√

ft(z2)/z2 = et/2

(

z +
∑

n≥1

b2n+1(t)z2n+1

)

.

Then, the conjugate whole-plane Lévy–Loewner evolution e−iLtft

(
eiLtz

)
has

the same law as f0(z), i.e., ei(n−1)Ltan(t)
(law)
= an(0). Similarly, the conju-

gate oddified whole-plane Lévy–Loewner evolution e−(i/2)Ltht

(
e(i/2)Ltz

)
has

the same law as h0(z), i.e., einLtb2n+1(t)
(law)
= b2n+1(0).

Setting an := an(0) and b2n+1 := b2n+1(0), we have

E(an) =
n−2∏

k=0

ηk − k − 2
ηk+1 + k + 1

, n ≥ 2,

E(b2n+1) =
n−1∏

k=0

ηk − k − 1
ηk+1 + k + 1

, n ≥ 1.

Corollary 1.1. In the setting of Theorem 1.1,
(i) if η1 = 3, E(f ′

0(z)) = 1 − z;
(ii) if η1 = 1 and η2 = 4, E(f ′

0(z)) = (1 − z)2;
(iii) if η1 = 2, E(h′

0(z)) = 1 − z2.

Theorem 1.1 will be proven in Sect. 3 as the combination of Theorem 3.1
and Theorem 3.2.

Direct computations of expectations E(|an|2) are already quite involved
at level n = 4, and we have used computer assistance in symbolic calculus with
matlab for higher coefficients. These computer experiments, briefly explained
in Sect. 2.2, lead to the following statements, explicitly checked up to n = 8,
and proven in Sect. 3:

Theorem 1.2. In the same setting as in Theorem 1.1:
(i) if η1 = 3, we have

E(|an|2) = 1, ∀n ≥ 1,

which includes the case of SLE6;
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(ii) if η1 = 1, η2 = 4, we have

E(|an|2) = n, ∀n ≥ 1,

which includes the case of SLE2;
(iii) if η1 = 2, we have

E(|b2n+1|2) =
1

2n + 1
, ∀n ≥ 1,

which includes the case of oddified SLE4.

Remark 1.1. For SLEκ, recall that Eq. (6) gives η1 = κ/2, thus case (i) in-
cludes SLEκ=6. Since Eq. (6) also gives η2 = 2κ, SLE2 is included in case (ii).
Actually, as we shall see in Proposition 3.3, this case coincides with SLE2.
Case (iii) includes the oddified SLE4.

Remark 1.2. In the second case (ii), we have noticed for all explicitly computed
coefficients (n ≤ 8), and for all numerically computed ones (n ≤ 19), that the
condition η1 = 1 in fact suffices for the conclusion E(|an|2) = n to hold. This
property was first conjectured to be valid for any coefficient degree n in Ref.
[26]. It has been revisited in Ref. [62].

Section 3 is devoted to proofs and begins with the computation of E(ft(z))
and E(ht(z)). We show in particular that these expectations take a simple,
polynomial form for the two cases above, η1 = 3 and η1 = 1, η2 = 4, and more
generally, when there exists a k ∈ N, such that ηk = 2 + k. In the odd case,
these special values are ηk = 1+k. This also yields the derivative expectations
E[f ′

t(z)]. These results are used in the remainder of the section, devoted to
proving Theorem 1.2 and obtaining other identities.

After our earlier draft [26] was posted, cases (i) and (ii) of Theorem 1.2
were obtained for SLE in Ref. [59]. It used a differential equation obeyed by
the moments of |f ′

t(z)|, and obtained by Hastings’s (heuristic) method [37].
A resulting double recursion then becomes solvable for κ = 6, 2, with some
computer assistance.

This differential equation appeared in a paper by Beliaev and Smirnov
(BS) [6] (see also Beliaev’s dissertation [4]), for another variant of whole-plane
SLE, along with its extension to the LLE case. The latter allows us to prove
cases (i) and (ii) for Lévy–Loewner evolutions.

Starting from the BS equation, we provide an analytic method to obtain
a series of explicit solutions to that equation. In the case of SLEκ, closed-
form expressions are obtained for the moments E

[
(f ′

t(z))p/2
]

and E
[|f ′

t(z)|p] =
E
[
(f ′

t(z))p/2(f ′
t(z))p/2

]
, for a special set of values of the parameter p depending

on κ, that includes p = 2 for κ = 2, 6 (see also [26,59]). We next show how
to extend SLE results directly to the LLE case. We further derive modified
BS equations for the oddified version (10) of SLE or LLE processes, or for
their m-fold transforms (12). For each value of m ≥ 1, we construct a set of
exact solutions; in the oddified m = 2 case, this yields a proof of case (iii) of
Theorem 1.2 for SLE and LLE.
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We would like to stress that it is only for the “inner” variant of whole-
plane SLE or LLE that we have introduced in Ref. [26] and study here, that
such explicit, closed-form properties may exist.

This phenomenon may have a deeper explanation. This suggests future
investigations of more general driving functions. A possible class of examples
is λ(t) = ei(Lt+μ(t)), where Lt is a Lévy process and μ is a function of bounded
variation, or perhaps, more restrictively, in the Sobolev class H1. This de-
scribes a deterministic Loewner growth process perturbed by random noise.
One may imagine this approach yielding insights towards a probabilistic proof
of Bieberbach’s conjecture.

1.2. Integral Means Spectra of Whole-Plane SLE

These results are used in Sect. 4 to study the multifractal integral means spec-
trum of our whole-plane processes. Plancherel’s theorem yields the easy corol-
lary of Theorem 1.2:

Corollary 1.2. For a Lévy–Loewner evolution with η1 = 0, η1 = 1 and η2 = 4,
η1 = 3 (thus including SLE for κ = 0, 2, 6), and for an oddified LLE with
η1 = 2 (thus oddified SLE for κ = 4), one has, respectively:

E

(
1
2π

∫ 2π

0

|f ′(reiθ)|2dθ

)

=
1 + 11r2 + 11r4 + r6

(1 − r2)5
;
1 + 4r2 + r4

(1 − r2)4
;

1 + r2

(1 − r2)3
;

1 + r4

(1 − r4)2
.

The first case is obtained directly from the Koebe function (1), which coincides
with the whole-plane SLE map for κ = 0. We can rephrase these results in
terms of the following:

Definition 1.1. The integral means spectrum of a conformal mapping f is the
function defined on R by

β(p) := limr→1

log(
∫

∂D
|f ′(rz)|p|dz|)

log( 1
1−r )

. (13)

In the stochastic setting, we define the average integral means spectrum:

Definition 1.2.

β(p) := limr→1

log(
∫

∂D
E |f ′(rz)|p |dz|)
log( 1

1−r )
. (14)

The preceding results show that, in the expectation sense of definition
(14), these exponents can be read off as β(2) = 5, 4, 3 for whole-plane LLE
with η1 = 0, η1 = 1 and η2 = 4, η1 = 3 (thus whole-plane SLE with κ = 0, 2, 6),
respectively. For the oddified LLE with η1 = 2 (thus the oddified whole-plane
SLE4), β2(2) = 2.



Vol. 16 (2015) Coefficients and Multifractality of Whole-Plane SLE 1319

Remark 1.3. Define the functions

γ0(p, κ) :=
1
2κ

(
4 + κ −

√
(4 + κ)2 − 8κp

)
, (15)

β0(p, κ) :=
κ

2
γ2
0 = −p +

4 + κ

2
γ0

= −p +
4 + κ

4κ

(
4 + κ −

√
(4 + κ)2 − 8κp

)
, (16)

β̂0(p, κ) := p − (4 + κ)2

16κ
. (17)

They yield the average integral means spectrum β̄0(p, κ) of the bulk of the
outer whole-plane version of SLEκ, as given by Eqs. (11) (12) and (14) in
Beliaev and Smirnov (BS) [6]:

β̄0(p, κ) =

{
β0(p, κ), 0 ≤ p ≤ p∗

0(κ)
β̂0(p, κ), p ≥ p∗

0(κ),
(18)

p∗
0(κ) :=

3(4 + κ)2

32κ
. (19)

Remark 1.4. The above values β(2, κ) = 5, 4, 3 for whole-plane SLEκ=0,2,6, or
β2(2, κ = 4) = 2 for oddified SLE4, do not agree with the BS spectrum: they
are greater than 1 while β(2) < 1 for bounded maps (see the discussion after
Remark 1.7). This illustrates the fact that the inner version of the whole-plane
SLE is unbounded with positive probability.

Motivated by this observation, we determine the multifractal integral
means spectrum of our inner version of whole-plane SLEκ. To this aim, we
perform the singularity analysis near the unit circle of the corresponding BS
equation. The same question for oddified or m-fold symmetrized whole-plane
SLE is also natural, since it illustrates how the previously unnoticed part of
the multifractal spectrum depends on the role of the point at infinity. The con-
sideration of the m-fold version is further motivated by the work by Makarov
[65] on the universal spectra, showing very similar phenomena.

The unbounded whole-plane SLE spectra are given in the following (non-
rigorous) statement:

Statement 1.1. In the unbounded case of the inner whole-plane SLEκ process,
ft=0(z), z ∈ D, as defined by the Schramm–Loewner equation (2), and of its
m-fold transforms, h

(m)
0 (z) := z

[
f0(zm)/zm

]1/m
,m ≥ 1, the respective average

integral means spectra β(p, κ) and βm(p, κ) all exhibit a phase transition and
are given, for p ≥ 0, and for 1 ≤ m ≤ 3, by

β(p, κ) := β1(p, κ) = max
{

β0(p, κ), 3p − 1
2

− 1
2

√
1 + 2κp

}

, (20)

βm(p, κ) = max {β0(p, κ), Bm(p, κ)} , (21)

where

Bm(p, κ) :=
(

1 +
2
m

)

p − 1
2

− 1
2

√

1 +
2κp

m
(22)
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is the multifractal spectrum corresponding to the unbounded part of the m-fold
whole-plane SLE path.

The first spectrum β1 has its transition point, where the second term
supersedes the first one, at

p∗(κ) = p∗
1(κ) :=

1
16κ

(
(4 + κ)2 − 4 − 2

√
2(4 + κ)2 + 4

)

=
1

32κ

(√
2(4 + κ)2 + 4 − 6

)(√
2(4 + κ)2 + 4 + 2

)
, (23)

while in general:

p∗
m(κ) :=

m

8κ(m + 1)2
(
(m + 1)(4 + κ)2 − 8m − 4

√
(m + 1)(4 + κ)2 + 4m2

)

=
m

8κ(m + 1)2
(√

(m + 1)(4 + κ)2 + 4m2 − 2m − 4
)

×
(√

(m + 1)(4 + κ)2 + 4m2 + 2m
)

. (24)

For 1 ≤ m ≤ 3, one has ∀κ ≥ 0, p∗
m(κ) ≤ p∗

0(κ) so that β0 = β̄0 in (21).
For m ≥ 4, the average integral means spectrum of the unbounded inner

whole-plane SLEκ is given by

βm(p, κ) = max
{
β̄0(p, κ), Bm(p, κ)

}
, (25)

with β̄0 defined as in (18)–(17). For m ≥ 4, the order of the two critical points
p∗
0(κ) and p∗

m(κ) depends on κ, and is given by

p∗
m(κ) � p∗

0(κ), κ � κm, κm := 4
m + 3
m − 3

, m ≥ 4, (26)

such that for κ ≤ κm,

βm(p, κ) =

{
β0(p, κ), 0 ≤ p ≤ p∗

m(κ),
Bm(p, κ), p∗

m(κ) ≤ p,
(27)

whereas for κ ≥ κm,

βm(p, κ) =

⎧
⎪⎨

⎪⎩

β0(p, κ), 0 ≤ p ≤ p∗
0(κ),

β̂0(p, κ), p∗
0(κ) ≤ p ≤ p∗∗

m (κ),
Bm(p, κ), p∗∗

m (κ) ≤ p,

(28)

where p∗∗
m (κ) is the second critical point

p∗∗
m (κ) := m

κ2 − 16
32κ

, (29)

where the last spectrum in (28) supersedes the linear spectrum (17).
For p ≤ 0, the average integral means spectrum, common to all m-fold

versions of the inner or outer whole-plane SLE, is given, as in Eq. (14) of [6],
for −1−3κ/8 < p ≤ 0 by the bulk spectrum β0(p, κ) (16), and for p ≤ −1−3κ/8
by the so-called tip spectrum [6,37,40]:
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βtip(p, κ) := β0(p, κ) − 2γ0(p, κ) − 1 = −p − 1 +
κ

2
γ0(p, κ) (30)

= −p − 1 +
1
4

(
4 + κ −

√
(4 + κ)2 − 8κp

)
, p ≤ −1 − 3κ

8
. (31)

For the second-order moment case p = 2, and for the special cases m =
1, κ = 0, 2, 6 or m = 2, κ = 4, the expressions (20) and (21) above agree
with the results stated in Corollary 1.2. The rightmost expression in (20), i.e.,
Bm=1(p, κ) in (22), was conjectured in Ref. [59] (see also [60,61]); as we shall
show in Sects. 1.3 and 4.4, it is directly related to the radial SLE derivative
exponents introduced in Ref. [49], and to the (non-standard) multifractal tip
exponents obtained in Ref. [22].

As mentioned above, there exists a special point [6]

p = p(κ) = p1(κ) :=
(6 + κ)(2 + κ)

8κ
, (32)

where an exact expression can be found for E
[|f0(z)|p] (Theorem 3.3); more

generally there exists a series of special points

p = pm(κ) :=
m(2m + 4 + κ)(2 + κ)

2(m + 1)2κ
, m ≥ 1, (33)

where the p-th moment of the m-fold transform, E
[|h(m)

0 (z)|p], is found in an
exact form (Theorems 3.5 and 3.7). Note that p∗

m(κ) ≤ pm(κ),∀κ ≥ 0 and
p∗∗

m (κ) ≤ pm(κ),∀κ ≥ κm.
In this setting, we rigorously prove the following

Theorem 1.3. The average integral means spectrum β(p, κ) := β1(p, κ) of the
unbounded inner whole-plane SLEκ (2) (3) has a phase transition at p∗(κ) (23)
and a special point at p(κ) (32)

β(p, κ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

= β0(p, κ), 0 ≤ p ≤ p∗(κ);
≥ 3p − 1

2 − 1
2

√
1 + 2κp > β0(p, κ), p∗(κ) < p < p(κ);

= 3p − 1
2 − 1

2

√
1 + 2κp = (6+κ)2

8κ , p = p(κ);
≤ 3p − 1

2 − 1
2

√
1 + 2κp, p(κ) < p.

Actually, using a duality method explained in Sect. 4.2.7, we prove a
stronger result in the domain [p∗(κ), p(κ)]:

Theorem 1.4. The average integral means spectrum β(p, κ) := β1(p, κ) of the
unbounded inner whole-plane SLEκ (2) (3) has a phase transition at p∗(κ) (23)
and a special point at p(κ) (32), such that (with p̂(κ) := 1 + κ/2)

β(p, κ)

⎧
⎨

⎩

= 3p − 1
2 − 1

2

√
1 + 2κp, p∗(κ) ≤ p ≤ min{p̂(κ), p(κ)};

≥ 3p − 1
2 − 1

2

√
1 + 2κp, min{p̂(κ), p(κ)} ≤ p ≤ p(κ).

Remark 1.5. The presence of the further quantity min{p̂(κ), p(κ)} is linked to
the possible occurrence of a tip spectrum at p̂(κ) = 1 + κ/2 in this duality
method. Note that p(κ) = 6+κ

4κ × 2+κ
2 so that min{p̂(κ), p(κ)} = p̂(κ) for κ ≤ 2,

whereas min{p̂(κ), p(κ)} = p(κ) for κ ≥ 2.
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Theorem 1.5. The average integral means spectrum of the m-fold transform
of the unbounded whole-plane SLE map has a phase transition at p∗

m(κ) (24)
and a special point at pm(κ) (33), such that for 1 ≤ m ≤ 3,∀κ, or m ≥ 4, κ ≤
κm = 4(m + 3)/(m − 3),

βm(p, κ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

= β0(p, κ), 0 ≤ p ≤ p∗
m(κ);

≥ Bm(p, κ) =
(
1 + 2

m

)
p − 1

2 − 1
2

√
1 + 2κp

m > β0(p, κ),

p∗
m(κ) < p < pm(κ);

= Bm(p, κ) = (2m+4+κ)2

2(m+1)2κ , p = pm(κ);

≤ Bm(p, κ), pm(κ) < p.

For m ≥ 4 and κ ≥ κm, the average integral means spectrum of the m-fold
transform of the unbounded whole-plane SLEκ map has a phase transition at
p∗∗

m (κ) (29)

βm(p, κ)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= β̄0(p, κ), 0 ≤ p ≤ p∗∗
m (κ);

≥ Bm(p, κ) > β̄0(p, κ), p∗∗
m (κ) < p < pm(κ);

= Bm(p, κ) = (2m+4+κ)2

2(m+1)2κ , p = pm(κ);

≤ Bm(p, κ), pm(κ) < p.

Remark 1.6. The phase transition point p∗
m(κ) (23) is lower, for 1 ≤ m ≤ 3,∀κ,

or for 4 ≤ m,κ ≤ κm, than the special value p∗
0(κ) = 3(4 + κ)2/32κ after

which the BS spectrum becomes linear in p [6]. The phase transition specific
to the unbounded whole-plane SLEκ then supersedes the usual phase transition
towards a linear behavior. For m ≥ 4, κ ≥ κm, the situation is reversed, and the
linear transition at p∗

0(κ) happens before the one specific to the unboundedness
of the inner whole-plane SLEκ, which thus takes place at the higher value
p∗∗

m (κ) (29).

Remark 1.7. As mentioned above, for p ≤ 0, all the average spectra β(p, κ) :=
β1(p, κ), βm(p, κ), m ≥ 2, coincide with the one derived by Beliaev and Smirnov
[6], which equals β0(p, κ) down to the phase transition for p ≤ −1 − 3κ/8 to
the tip spectrum (30)–(31), as predicted in the multifractal formalism in [37]
and proven in an almost sure sense in [40].

In the κ → 0 limit, one has limκ→0 β0(p, κ) = 0, and the spectra (for
p ≥ 0),

β(p, κ = 0) = max{0, 3p − 1},

βm(p, κ = 0) = max{0, (1 + 2/m)p − 1},
(34)

coincide with those directly derived for the Koebe function (1) and its m-fold
transforms.

The above results are reminiscent of the difference between universal inte-
gral means spectra for bounded or unbounded conformal maps [70]. Makarov
[65] has indeed shown that (34) gives the universal spectra for general con-
formal maps (for p large enough). Theorems 1.3, 1.4 and 1.5 show that very
similar expressions appear in the whole-plane SLE case.
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Note also that these integral means spectra at p = 2 give the asymptotic
behaviors of the coefficient second moments: E|an|2  nβ(2)−3 and E|b2n+1|2 
nβ2(2)−3 for n → ∞, with β(2) = (11 − √

1 + 4κ)/2 [for κ ≤ 30] and β2(2) =
(7 − √

1 + 2κ)/2 [for κ ≤ 24].
Another interesting random variable is the area of the image of the unit

disk
∫ ∫

D

|f ′(z)|2dxdy = π

∞∑

n=1

n|an|2.

The expectation of this quantity thus converges for β(2) < 1, i.e., only for
κ > 20, even though the SLE trace is no longer a simple curve as soon as
κ > 4. Similarly, for the odd case, convergence of the expected area is obtained
for β2(2) < 1, hence for κ > 12.

1.3. Derivative Exponents

In the so-called multifractal formalism [33,35,36,38,66], the integral means
spectrum (13), or its in expectation version β(p) (14), are related by various
(Legendre) transforms to other multifractal spectra, such as the so-called pack-
ing spectrum, the moment spectrum, often written τ(q) or τ(n), the general-
ized dimension spectrum D(n) := τ(n)/(n−1), and the celebrated multifractal
spectrum f(α) (see, e.g., Refs. [6,22,35,65]). Of particular interest here is the
packing spectrum [65], defined as

s(p) := β(p) − p + 1. (35)

For our unbounded whole-plane SLEκ, we have for p ≥ p∗(κ) (20), (23):

β(p, κ) = 3p − 1
2

− 1
2

√
1 + 2κp, (36)

s(p, κ) = β(p, κ) − p + 1 (37)

= 2p +
1
2

− 1
2

√
1 + 2κp. (38)

It is then particularly interesting to consider, for each fixed κ, the inverse
function of s(p, κ): p(s, κ) = s−1(s, κ). It has two branches,

p±(s, κ) :=
s

2
+

1
16

(
κ − 4 ±

√
(4 − κ)2 + 16κs

)
,

which are both defined for s ≥ smin(κ) := −(4 − κ)2/16κ, where they share
the common value pmin(κ) := p±(smin(κ), κ) = (κ − 4)(κ + 4)/32κ. One has
p−(s) ≤ pmin, whereas p+(s) ≥ pmin. Since p∗(κ) > pmin(κ), the determination
that contains the “physical” branch p ∈ [p∗(κ),+∞) is p+(s, κ), hence we
retain for s ≥ s(p∗(κ), κ),

p(s, κ) = s−1(s, κ) =
s

2
+

1
16

(
κ − 4 +

√
(4 − κ)2 + 16κs

)
(39)

=
s

2
+

κ

8
U−1

κ (s),

U−1
κ (s) :=

1
2κ

(
κ − 4 +

√
(4 − κ)2 + 16κs

)
. (40)



1324 B. Duplantier et al. Ann. Henri Poincaré

These expressions then lead to the following striking observation:

Remark 1.8. The same expression (39) appeared earlier in the set of tip multi-
fractal exponents x(1∧n) in Ref. [22] [Eq. (12.19)], and is identical (for n = s)
to λκ(1 ∧ n) := x(1 ∧ n) − x1, x1 := (6 − κ)(κ − 2)/8κ [[22], Eq. (12.37)]. The
bulk critical exponent x(1 ∧ n) corresponds geometrically to the extremity of
an SLEκ path avoiding a packet of n independent Brownian motions diffusing
away from its tip, while x1 is the bulk exponent of the SLEκ single extrem-
ity. These local tip exponents differ from the ones associated to the SLE tip
multifractal spectrum (30)–(31) of Refs. [6,37,40]. Eq. (39) for p(s, κ) is also
identical to the so-called derivative exponent ν(b, κ) (for b = s), obtained for
radial SLEκ in Ref. [49], Eq. (3.1).

The exponents x(1∧n) were calculated using the so-called quantum grav-
ity method in [20–22]. The function U−1

κ (40) appears there as the inverse of
the so-called Kniznik–Polyakov–Zamolodchikov (KPZ) relation [43] (see also
Refs. [14,17]), which was recently proven rigorously in a probabilistic frame-
work [27–29]. (See also Refs. [8,71].) Here, it maps a critical exponent in the
complex (half-)plane H, n(= s), corresponding to the boundary scaling behav-
ior of a packet of n independent Brownian motions, to its quantum gravity
counterpart on a random surface coupled to SLEκ, U−1

κ (s).
The derivative exponents ν(b, κ) = x(1 ∧ b) − x1 also describe the scaling

behavior of the moments of order b(= s) of the modulus of the derivative of the
forward radial SLEκ map gt in D at large time t [49]. (See also Refs. [46–48,50,
73].) In Sect. 4.4, we give a heuristic explanation of why the inverse function
p(s, κ) = s−1(s, κ) of the packing spectrum s(p, κ) (38) of the unbounded whole-
plane SLE coincides with the derivative exponents ν(s, κ) of radial SLE.

Recall that p(s, κ) is analytically defined only for s ≥ smin(κ) := −(4 −
κ)2/16κ. For κ ≤ 4, one has p(s, κ) ≥ 0 for s ≥ 0. For κ ≥ 4, p ∈ [pmin(κ),+∞],
with pmin(κ) = p(smin(κ), κ) = (κ2 − 16)/32κ. For s = 0, p(0, κ) = (κ − 4 +
|κ − 4|)/16, hence p(0, κ) = 0 for κ ≤ 4, and p(0, κ) = (κ − 4)/8 for κ ≥ 4.

Consider now the m-fold version (12) of the unbounded inner whole-plane
SLE. For 1 ≤ m ≤ 3,∀κ, or for m ≥ 4 and κ ≤ κm (26), we have for p ≥ p∗

m(κ)
(24) the average integral means and packing spectra

βm(p, κ) = Bm(p, κ) =
(

2 +
1
m

)

p − 1
2

− 1
2

√

1 + 2κ
p

m
, (41)

sm(p, κ) := βm(p, κ) − p + 1

= 2
p

m
+

1
2

− 1
2

√

1 + 2κ
p

m
(42)

= s
( p

m
, κ
)

. (43)

The inverse function, pm(s, κ) := s−1
m (s, κ), is therefore simply

pm(s, κ) = s−1
m (s, κ) = mp(s, κ), s ∈ [s(p∗

m(κ)),∞), (44)

where p(s, κ) is the inverse function (39) of s(p, κ) for m = 1.
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For m ≥ 4 and κ ≥ κm, we have the successive integral means and
packing spectra

βm(p, κ)=p − (4 + κ)2

16κ
, p∗

0(κ)=
3(4 + κ)2

32κ
≤ p ≤ m

κ2 − 4
32κ

= p∗∗
m (κ), (45)

sm(p, κ) = βm(p, κ) − p + 1 = − (4 − κ)2

16κ
= smin(κ); (46)

βm(p, κ) = Bm(p, κ), p ≥ m
κ2 − 4
32κ

, (47)

sm(p, κ) = βm(p, κ) − p + 1

= 2
p

m
+

1
2

− 1
2

√

1 + 2κ
p

m
= s

( p

m
, κ
)

. (48)

Observe that p∗∗
m (κ) = mpmin(κ) = mp(smin(κ), κ), so that the inverse func-

tion of sm(p, κ), s−1
m (s, κ), is now defined in the whole range s ≥ smin(κ), and

is given by

pm(s, κ) = s−1
m (s, κ) = mp(s, κ) ∈ [mpmin(κ),∞), s ∈ [smin(κ),∞). (49)

1.4. Organization

This article is organized as follows:
• Section 2 deals with the computation at low orders of the coefficients an

(9) of the whole-plane SLE or LLE maps, or of the coefficients b2n+1 (11)
of their oddified versions (10). This is followed by the evaluation of the
single or square expectations of these coefficients. Computer experiments,
symbolic up to order n = 8, and numerical up to order n = 19, complete
this study.

• Section 3 deals with the proofs of Theorems 1.1 and 1.2. Section 3.1
establishes Theorems 3.1 and 3.2, which together constitute Theorem 1.1.
Sect. 3.2 deals with the moments of the derivative of the whole-plane SLE
map, and establishes the corresponding Beliaev–Smirnov equation. Spe-
cial solutions are given by Theorem 3.3 and its Corollary 3.6, thereby
establishing in the SLEκ=6,2 case results (i) and (ii) of Theorem‘1.2,
while the same results are proved for the LLE case through Theorem 3.4
followed by Remarks 3.1, 3.2 and Proposition 3.3. In Sect. 3.3, similar
results are proved for the oddified whole-plane Loewner map (10). The
proof of result (iii) of Theorem 1.2 is obtained in Corollary 3.7 of Theo-
rem 3.5 in the SLEκ=4 case, and in Proposition 3.4 in the LLE case. All
these results, namely the existence of a Beliaev–Smirnov-like equation
and of special solutions thereof, which yield specific moments in a closed
form, are generalized to the m-fold Loewner maps (12) in Sect. 3.4.

• Section 4 deals with the multifractal integral means spectrum of SLE.
Section 4.1 describes the general properties of the SLE’s harmonic mea-
sure spectra, as well as the corresponding universal spectra. The integral
means spectrum of whole-plane SLE is studied in great detail in Sect. 4.2,
leading to the proof of Theorem 1.3. The general Theorem 1.5 for m-fold
whole-plane SLE maps is established in Sect. 4.3. The relationship of the
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novel spectrum for unbounded whole-plane SLE to the so-called deriva-
tive exponents of radial SLE is explained in Sect. 4.4.

• Finally, Sect. 5 is comprised of several appendices. The history of the
Bieberbach conjecture is briefly recalled in Sect. 5.1; some coefficient
computations are given in Sect. 5.2; a proof of Makarov’s Theorem 4.2
for the universal spectrum of oddified maps, that parallels that of the
Feng-MacGregor Theorem 4.1, is given in Sect. 5.3.

2. Coefficient Estimates

2.1. Computation of an and E(|an|2) for Small n

2.1.1. Loewner’s Method. In this paragraph, we perform computations for
general Loewner-Lévy processes. Let us recall that

ft(z) = et

(

z +
∑

n≥2

an(t)zn

)

. (50)

By expanding both sides of Loewner’s equation (2) as power series, and iden-
tifying coefficients, leads one to the set of equations

ȧn(t) − (n − 1)an(t) = 2
n−1∑

p=1

(n − p)an−p(t)λ̄p(t)

= 2
n−1∑

k=1

kak(t)λ̄n−k(t), n ≥ 2; (51)

where a1 = 1; the dot means a t-derivative, and λ̄(t) = 1/λ(t). Specifying for
n = 2, 3 gives

ȧ2 − a2 = 2λ̄, (52)
ȧ3 − 2a3 = 4a2λ̄ + 2λ̄2. (53)

The first differential equation (52) (together with the uniform bound, ∀t ≥ 0,
|a2(t)| ≤ C2 < +∞; see Remark 5.2) yields

a2(t) = −2et

∫ +∞

t

e−sλ̄(s)ds. (54)

In a similar way, the second one (53) leads to

a3(t) = −4e2t

∫ +∞

t

e−2sa2(s)λ̄(s)ds − 2e2t

∫ +∞

t

e−2sλ̄2(s)ds.

The first integral involves
∫ ∞

t
u2(s)u̇2(s)ds = −u2

2(t)/2, where u2(s) :=
e−sa2(s). The formula for a3 then reduces to

a3(t) = 4e2t

(∫ +∞

t

e−sλ̄(s)ds

)2

− 2e2t

∫ +∞

t

e−2sλ̄2(s)ds. (55)
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2.1.2. Quadratic Coefficients.

Proposition 2.1. For Lévy–Loewner processes, we have, setting here a2 :=
a2(0),

E(|a2|2) = 	
(

4
1 + η1

)

.

Proof. Using (54), we write

|a2(0)|2 = 4
∫ ∞

0

∫ ∞

0

dsdu e−(s+u)ei(Lu−Ls).

Taking care of the relative order of s and u, the characteristic function (5) of
Lu − Ls is

E

[
ei(Lu−Ls)

]
= ϑ(u − s)e−η1(u−s) + ϑ(s − u)e−η̄1(s−u),

where ϑ is the Heaviside step distribution; the result follows by integration. �

For calculations involving the third-order term a3 as given by (55), and
to avoid repetitions, we have computed at once E(|a3 − μa2

2|2), where μ is a
real constant. The detail of the calculation is given in Appendix in Sect. 5.2.1.
Let us simply state the result here.

Proposition 2.2. If μ is a real coefficient, then

E(|a3 − μa2
2|2) = 	

(
16(1 − μ)2(4 + η2)

(1 + η1)(2 + η2)(3 + η1)
− 16(1 − μ)(2 + η1)

(1 + η1)(2 + η2)(3 + η1)

+
2

2 + η2
+

8(1 − μ)(1 − 2μ)
(η1 + 1)(η1 + 3)

)

.

In the real η case:

E(|a3 − μa2
2|2)

=
32(1 − μ)2(3 + η2) − 8(1 − μ)(6 + 2η1 + η2) + 2(1 + η1)(3 + η1)

(1 + η1)(2 + η2)(3 + η1)
.

In the SLE case (i.e., for η
 = κ
2 �2):

E(|a3 − μa2
2|2) =

(108 − 288μ + 192μ2) + (88 − 208μ + 128μ2)κ + κ2

(1 + κ)(2 + κ)(6 + κ)
.

2.1.3. Some Corollaries. The first one gives, for μ = 0, the analog of
Loewner’s estimate.

Corollary 2.1. For Lévy–Loewner processes with η real, we have

E(|a3|2) =
1

(1 + η1)(3 + η1)

[

24 + 2
(η1 − 1)(η1 − 3)

2 + η2

]

. (56)

In the SLE case:

E(|a3|2) =
108 + 88κ + κ2

(1 + κ)(2 + κ)(6 + κ)
.
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Notice the special role played by η1 = 1, 3, corresponding to κ = 2, 6: the
result no longer depends on η2, and equals 3 and 1, respectively.

The second corollary shows that there is no Fekete–Szegő counter-
example in the SLE family in the expectation sense. To f := f0, an SLEκ

whole-plane map, we associate its oddified function as above, that is
h0(z) = z

√
f(z2)/z2 = z + b3z

3 + b5z
5 + · · · . An easy computation gives

b5 = 1
2

(
a3 − 1

4a2
2

)
. Setting μ = 1

4 in the above proposition gives

E(|b5|2) = 	
(

18 + 9η2 − 4η1 + 2η2
1

4(1 + η1)(2 + η2)(3 + η1)
+

3
4

1
(1 + η1)(3 + η1)

)

.

In the case of a real η,

E(|b5|2) =
6 + 3η2 − η1 + η2

1/2
(1 + η1)(3 + η1)(2 + η2)

[

=
12 + 44κ + κ2

(1 + κ)(2 + κ)(6 + κ)

]

,

where the last expression has been specified for the SLE case, and is always
less than or equal to 1 (equality holding only for κ = 0).

Consider the Schwarzian derivative, S(z) := f [3](z)/f ′(z) − (3/2)
(f ′[2](z)/f ′(z))2. One obtains S(0) = 6(a3 − a2

2), corresponding to μ = 1, and
giving the expected values E[|S(0)|2] = 72/(2 + η2), and for SLE, E[|S(0)|2] =
36/(1 + κ).

A few comments are in order here:
– We noticed that E(|a2|2) = E(|a3|2) = 1 for κ = 6. We return to this in

the next sections after performing some computer experiments.
– For all values of κ, E(|b5|2) ≤ 1: therefore, in this expectation sense,

there is no Fekete–Szegő counterexample in the SLE family. Using the
Schoenberg property of the Lévy symbol η [3], it can also be seen that
there is no counterexample in expectation for a general Lévy–Loewner
process with real η. The question remains open for higher order terms or
higher moments; this will be studied elsewhere.

– It is known that |S(0)| ≤ 6 whenever f is injective. Conversely, if
(1 − |z|2)2|S(z)| ≤ 2, then f is injective; here, the corresponding in-
equality |S(0)| ≤ 2 holds in the sense that E(|S(0)|2) ≤ 4 for κ ≥ 8.

2.1.4. Next Order. The quadratic expectation of the next order coefficient,
E(

∣
∣a2

4

∣
∣), can still be computed by hand, which yields

E

(
|a4|2

)
=

4!23

(η1 + 1)(η1 + 3)(η1 + 5)

+
4(η1 − 1)(η1 − 3)η2(η2 − 4)(η1 + 3)

3(η1 + 1)(η1 + 3)(η1 + 5)(η2 + 2)(η2 + 4)(η3 + 3)
, (57)

and for SLE,

E

(
|a4|2

)
=

8
9

κ5 + 104κ4 + 4576κ3 + 18288κ2 + 22896κ + 8640
(κ + 10)(3κ + 2)(κ + 6)(κ + 1)(κ + 2)2

.

The results (56) and (57) obtained so far for E(|an|2), n = 3, 4, call for the
following observations.
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Figure 2. Top: Graphs of the SLEκ map κ �→ E(|an|2) for
n = 1, . . . , 8. Bottom: Same graphs for n = 1, . . . , 19, with a
zoom near κ = 6

Remarks 2.1. – After the first term in the expression for E(|an|2), one notes
the presence in numerators of the common factors (η1 − 1)(η1 − 3), thus
vanishing for η1 = 1 or 3. For η1 = 3 (or κ = 6), the first term, thus E(|an|2)
itself, equals 1; for η1 = 1 (or κ = 2) it equals n. We checked explicitly that
this holds in symbolic computations up to n = 8, and in numerical ones
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Figure 3. Top: Graphs of the SLEκ map κ �→ E(|an|2)/n,
for n = 1, . . . , 8. Bottom: Same graphs for n = 1, . . . , 19, with
a zoom near κ = 2

up to n = 19. (see Appendix 5.2.2 and Eq. (293)); the validity of these
observations for all n was first conjectured in [26].

– Somehow surprisingly, all the coefficients of the polynomial expansions in
κ are positive.

– For κ → ∞ (or η → ∞), these expectations vanish as κ−1.

All these patterns will be confirmed at higher orders, to which we now turn.
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2.2. Computational Experiments

As one may see, these computations become more and more involved. More-
over, its seems difficult to find a closed formula for all terms. This section is
devoted to the description of an algorithm that we have implemented on mat-
lab to compute E(|an|2). This algorithm is divided into two parts: the first
encodes the computation of an, while the second uses it to compute E(|an|2).
Since the important cases of SLE and α-stable processes both have real Lévy
symbols η, we restrict the study to the latter case.

For the encoding of an, we observe that they are linear combinations of
successive integrals of the form
∫ ∞

t

ds1 e−iα1Ls1−β1s1

∫ ∞

s1

ds2 e−iα2Ls2−β2s2 . . .

∫ ∞

sk−1

dsk e−iαkLsk
−βksk . (58)

Their expectations are encoded as

(α1, β1) . . . (αk, βk) (1 ≤ k ≤ n), (59)

and are explicitly computed using as above the strong Markov property and
the Lévy characteristic function (5):

(α1, β1) . . . (αk, βk)=

k−1∏

j=0

[βk + βk−1 + · · · + βk−j +η(αk + αk−1 + · · · + αk−j)]
−1 .

Next, to compute |an|2, we need to evaluate the expectation of products of
integrals such as (58) with complex conjugate of others, that we symbolically
denote by

[(α1, β1) . . . (αk, βk); (−α′
1, β

′
1) . . . (−α′


, β
′

)] (1 ≤ k, � ≤ n). (60)

The product integrals may be written as a sum of ( k+

k

) ordered integrals with
k + � variables: the k first ones and the � last ones are ordered and the number
of ordered integrals corresponds to the number of ways of shuffling k cards in
the left hand with � cards in the right hand. This sum is quite large and, to
systematically compute it, we write its expectation as the sum of expectations
of integrals of the form (59) that begin with a term of type (α1, β1) or with
a term of type (−α′

1, β
′
1), thus reducing the work to a computation at lower

order.
Using dynamic programming, we performed computations (formal up to

n = 8 and numerical up to n = 19) on a usual computer. The results are re-
ported in Appendix B, Sect. 5.2.2. They fully confirm the validity of Remarks
2.1.

The graphs given in Fig. 2 for the SLEκ map κ �→ E(|an|2), for n =
1, . . . , 8, illustrate the phenomena described above; in particular a zoom for
values of n = 1, . . . , 19 shows the striking constant value E(|a2

n|) = 1 for κ = 6.
Similarly, Fig. 3 illustrates the SLEκ map κ �→ E(|an|2)/n, for n = 1, . . . , 8,
with a zoom near κ = 2 where E(|a2

n|) = n, here for n = 1, . . . , 19.



1332 B. Duplantier et al. Ann. Henri Poincaré

3. Theorems and Proofs

3.1. Expected Conformal Maps for Lévy–Loewner Evolutions

3.1.1. Expectation of f0(z). In this first section, we give an explicit expression
for the expectations of the coefficients an(t) of the expansion (50) in the Lévy–
Loewner setting, thereby obtaining the expectation of the map, E[f0(z)], and
of its derivative.

The differential recursion (51) in Sect. 2 then becomes, for λ(t) := eiLt ,
and in terms of the auxiliary function un(t),

un(t) := an(t)e−(n−1)t, (61)

u̇n(t) = 2
n−1∑

k=1

kXn−k
t uk(t), (62)

where Xt is defined as

Xt := e−t−iLt . (63)

The recursion (62) can be rewritten under the simpler form:

u̇n = Xt[u̇n−1 + 2(n − 1)un−1]. (64)

Recall that u1 = a1 = 1, while the next term of this recursion, as already seen
in Eq. (54), is

u2(t) = −2
∫ +∞

t

dsXs. (65)

Similarly, we can write the general solution un, for n ≥ 2, under the form

un(t) = −2
∫ +∞

t

dsXsvn(s), (66)

with v2(s) = 1, and rewrite the differential equation (64) as an integral equa-
tion:

vn(t) = Xtvn−1(t) − 2(n − 1)
∫ +∞

t

dsXsvn−1(s). (67)

Define then the multiplicative and integral operators X and J such that

X v(t) := Xtv(t), (68)

J v(t) := −2
∫ +∞

t

dsXsv(s). (69)

The solution to (65), (66) and (67) can then be written as the operator product

un = J ◦ [X + (n − 1)J ] ◦ · · · ◦ (X + 2J )1

= J
n−2∏

k=1

◦(X + (k + 1)J )1, (70)

where 1(= v2) is the constant function equal to 1 on R
+.

Next, recall the strong Markov property of the Lévy process, which im-

plies the identity in law: ∀s ≥ t, Ls
(law)
= Lt+L̃s−t, where L̃s′ is an independent
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copy of the Lévy process, also started at L̃0 = 0. Therefore, the process Xt

(63) is, in law,

Xs
(law)
= XtX̃s−t, ∀s ≥ t, (71)

where X̃s′ := e−s′−L̃s′ , s′ ≥ 0, is an independent copy of that process, with
X̃0 = 1. The operator J (69) can then be written as

J v(t)
(law)
= −2Xt

∫ +∞

0

dsX̃sv(s + t) (72)

= X ◦ J̃ v(t), (73)

with J̃ v(t) := −2
∫ +∞
0

dsX̃sv(s + t). By iteration of the use of the Markov
property, Eq. (70) can be rewritten as

un
(law)
= J ◦ [X (

1 + (n − 2)J̃ [n−1]
)] ◦ · · · ◦ [X (

1 + 2J̃ [1]
)]
1

(law)
= J

n−2∏

k=1

◦[X (
1 + (k + 1)J̃ [k]

)]
1, (74)

where the integral operators J̃ [k], k = 1, · · · , n−2, involve successive indepen-
dent copies, X̃

[k]
sk , k = 1, · · · , n − 2, of the original exponential Lévy process

Xs. We therefore arrive at the following explicit representation of the solution
(70):

un(t)
(law)
= −2

∫ +∞

t

dsXn−1
s

n−2∏

k=1

(

1 − 2(k + 1)
∫ +∞

0

dsk

(
X̃ [k]

sk

)k
)

. (75)

As mentioned in the introduction, the conjugate whole-plane Lévy–
Loewner evolution e−iLtft

(
eiLtz

)
should have the same law as f0(z). At order

n, we are thus interested in the stochastically rotated coefficients:

ei(n−1)Ltan(t) = (Xt)−(n−1)un(t).

Using again the identity in law (71) in (75), we arrive at

ei(n−1)Ltan(t)
(law)
= −2

∫ +∞

0

dsX̃n−1
s

n−2∏

k=1

(

1 − 2(k + 1)
∫ +∞

0

dsk

(
X̃ [k]

sk

)k
)

(law)
= an(0), (76)

which, as it must, no longer depends of t.
All factors in (76) involve successive independent copies of the Lévy

process, and their expectations can now be taken independently. Recalling the
form (5) of the Lévy characteristic function, we have E[(X̃s)k] = e−(ηk+k)s.
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Thus,

E[an(0)] = −2
∫ +∞

0

ds E[X̃n−1
s ]

n−2∏

k=1

(

1 − 2(k + 1)
∫ +∞

0

dsk

(
E
[(

X̃ [k]
sk

)k]
)

= −2
1

ηn−1 + n − 1

n−2∏

k=1

(

1 − 2(k + 1)
ηk + k

)

. (77)

We finally obtain:

Theorem 3.1. For n ≥ 2, setting an := an(0),

an(0)
(law)
= ei(n−1)Ltan(t), (78)

E(an) = −2
∏n−2

k=1(ηk − k − 2)
∏n−1

k=1(ηk + k)
=

n−2∏

k=0

ηk − k − 2
ηk+1 + k + 1

. (79)

Corollary 3.1. The expected conformal map E[f0(z)] of the whole-plane Lévy–
Loewner evolution, in the setting of Theorem 1.1, is polynomial of degree k +1
if there exists a positive k such that ηk = k + 2, has radius of convergence 1
for an α-stable Lévy process of symbol ηn = κnα/2, α ∈ (0, 2], except for the
Cauchy process α = 1, κ = 2, where E[f0(z)] = ze−z.

Proof. From Theorem 3.1, E[f0(z)] is polynomial if there exists k ∈ N such
that ηk = k + 2, as all E(an) then vanish for n ≥ k + 2. Otherwise, use
D’Alembert’s criterion, applied here to

lim
n→∞

|E(an+1)|
|E(an)| = lim

n→∞
|ηn−1 − n − 1|

|ηn + n| = 1,

for an α-stable symbol, ηn = κ|n|α/2,∀α ∈ (0, 2], except if α = 1 and κ = 2, for
which the limit vanishes. In that case, Eq. (79) gives E(an) = (−1)n−1/(n − 1)!
for n ≥ 2, thus E[f0(z)] = ze−z and E[f ′

0(z)] = (1 − z)e−z. �

3.1.2. Expectations for the Odd Map h0(z). The oddified map ht(z) :=
z
√

ft(z2)/z2 obeys the Loewner equation

ḣt(z) =
z

2
h′

t(z)
λ(t) + z2

λ(t) − z2
. (80)

Its series expansion,

e−t/2ht(z) = z +
∑

n≥1

b2n+1(t)z2n+1, (81)

gives the recursion: ḃ2n+1 = nb2n+1 +
∑n−1

k=0 λ̄n−k(2k + 1)b2k+1, with b1 = 1.
This is transformed into the set of equations

wn(t) := b2n+1(t)e−nt, w0 = 1, (82)

ẇn(t) =
n−1∑

k=0

(2k + 1)Xn−k
t wk(t)

= (2n − 1)Xtwn−1(t) + Xtẇn−1(t). (83)
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The last equation is similar to Eq. (64), except for 2n−1 here replacing 2n−2
there, and an index shifted boundary condition w0 = 1 replacing u1 = 1. Its
solution can thus be written, as in (70), as the operator product

wn =
1
2
J ◦

[

X +
(

n − 1
2

)

J ] ◦ · · · ◦
(

X +
3
2
J
)

1

=
1
2
J

n−1∏

k=1

◦
[

X +
(

k +
1
2

)

J
]

1, (84)

where 1(= w0) is the constant function equal to 1 on R
+.

As mentioned in the introduction, the conjugate odd whole-plane Lévy–
Loewner evolution e−(i/2)Ltht

(
e(i/2)Ltz

)
should have the same law as h0(z).

At order n, we are thus interested in the stochastically rotated coefficients:

einLtb2n+1(t) = (Xt)−nwn(t).

Comparing (84) here to (70) above, and adapting from the general formula
(76), we arrive directly at the final identity in law for the odd coefficients

einLtb2n+1(t)
(law)
= −

∫ +∞

0

dsX̃n
s

n−1∏

k=1

(

1−(2k+1)
∫ +∞

0

dsk

(
X̃ [k]

sk

)k
)

(law)
= b2n+1(0), (85)

which, as it must, no longer depends of t. Again, all factors in (85) involve
successive independent copies of the Lévy process, whose expectations can be
taken independently. Thus,

E[b2n+1(0)] = −
∫ +∞

0

ds E[X̃n
s ]

n−1∏

k=1

(

1 − 2(k + 1)
∫ +∞

0

dsk

(
E
[(

X̃ [k]
sk

)k]
)

= − 1
ηn + n

n−1∏

k=1

(

1 − 2k + 1)
ηk + k

)

. (86)

We finally obtain for the odd whole-plane Lévy–Loewner evolution:

Theorem 3.2. For n ≥ 1, setting b2n+1 := b2n+1(0),

b2n+1(0)
(law)
= einLtb2n+1(t), (87)

E(b2n+1) = −
∏n−1

k=1(ηk − k − 1)
∏n

k=1(ηk + k)
=

n−1∏

k=0

ηk − k − 1
ηk+1 + k + 1

. (88)

Corollary 3.2. The expected conformal map E[h0(z)] of the oddified whole-plane
Lévy–Loewner evolution, in the setting of Theorem 1.1, is polynomial of degree
2k+1 if there exists a positive k such that ηk = k+1, has radius of convergence
1 for an α-stable Lévy process of symbol ηn = κnα/2, α ∈ (0, 2], except for the
Cauchy process α = 1, κ = 2, where E[h0(z)] = ze−z2/2.
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3.1.3. Some Results for Lévy–Loewner Maps. In the general case (or in the
specific case of SLEκ), the formula (79) gives for the first terms:

E(a2) = − 2
η1 + 1

= − 4
2 + κ

,

E(a3) = −η1 − 3
η2 + 2

2
η1 + 1

= − κ − 6
(1 + κ)(2 + κ)

,

E(a4) = −η2 − 4
η3 + 3

η1 − 3
η2 + 2

2
η1 + 1

= − 4(κ − 2)(κ − 6)
(6 + 9κ)(1 + κ)(2 + κ)

.

For the oddified map, Eq. (88) gives

E(b3) = − 1
η1 + 1

= − 2
κ + 2

,

E(b5) = − η1 − 2
(η1 + 1)(η2 + 2)

= − κ − 4
2(κ + 1)(κ + 2)

,

E(b7) = − (η1 − 2)(η2 − 3)
(η1 + 1)(η2 + 2)(η3 + 3)

= − (κ − 4)(2κ − 3)
3(κ + 1)(κ + 2)(3κ + 2)

.

An interesting further identity, valid for n ≥ 1, gives the truncated series

Sn := 1 + 2 E(a2) + · · · + n E(an) = −1
2
[
ηn−1 − (n + 1)

]
E(an)

= −1
2
[
ηn + n

]
E(an+1). (89)

Due to the peculiar factorized and recursive form of E(an) in Theorem 3.1
(respectively, of E(bn) in Theorem 3.2), we have seen in Corollary 3.1 (respec-
tively, 3.2) that if there exits an integer N such that ηN = N +2 (respectively,
ηN = N + 1), E[f0(z)] is polynomial of degree N + 1 (respectively, E[h0(z)] is
polynomial of degree 2N + 1).

In the first case, E(aN+
) = 0,∀� ≥ 2, and E[f ′
0(z = 1)] = SN+1 = 0,

therefore, the derivative E[f ′
0(z)] necessarily contains the monomial (1 − z) as

a factor.
The first such case, N = 1, gives a Lévy symbol η1 = 3. This includes in

particular the SLEκ process for κ = 6 (recall then that ηn = κn2/2), for which

E[f0(z)] = z − z2/2 =
1
2
(
1 − (1 − z)2

)
,

E[f ′
0(z)] = 1 − z.

(90)

The N = 2 case gives η2 = 4. This includes in particular the SLEκ process for
κ = 2, for which

E[f0(z)] = z − z2 + z3/3 =
1
3
(
1 − (1 − z)3

)
,

E[f ′
0(z)] = (1 − z)2.

(91)

More generally, the SLEκ expected map, z �→ E[ft(z)], is polynomial for the
decreasing sequence of values κ = κN := 2(N+2)

N2 , N ≥ 1.
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For the oddified Lévy–Loewner evolution, the N = 1 first case gives
η1 = 2. This includes in particular the SLEκ for κ = 4, for which

E[h′
0(z)] = 1 − z2. (92)

The odd SLEκ expected map E[ht(z)] is polynomial for κ = κ̃N := 2(N+1)
N2 ,

N ≥ 1.

3.2. Derivative Moments

In this section, motivated by the observations made in Sects. 2.1 and 2.2,
completed in Appendix 5.2.2, we prove the first part of Theorem 1.2, which
we recall here:
Theorem 1.2 Cases (i)–(ii). Let (ft)t≥0 be the Loewner whole-plane process
driven by the Lévy process Lt with Lévy symbol η. We write

ft(z) = et

(

z +
∑

n≥2

an(t)zn

)

,

f0(z) = z +
∑

n≥2

an(0)zn.
(93)

The conjugate whole-plane Lévy–Loewner evolution e−iLtft

(
eiLtz

)
has the

same law as f0(z), i.e., ei(n−1)Ltan(t)
(law)
= an(0) =: an, and E(|an(t)|2) =

E(|an|2). Then:
(i) if η1 = 3, we have

E(|an|2) = 1, ∀n ≥ 1,

which includes the case of SLE6;
(ii) if η1 = 1, η2 = 4, we have

E(|an|2) = n, ∀n ≥ 1,

which includes, and indeed coincides with the case of SLE2.
This will be proven in several steps, namely for SLE through Theo-

rem 3.3 and its Corollary 3.6, and for LLE through Theorem 3.4 followed
by Remark 3.1, and Proposition 3.3. These results will be a by-product of
a thorough study of the derivative moments F (z) := E[|f ′

0(z)|p], p ∈ R, of
the inner whole-plane SLE or LLE maps. Using (93) for p = 2, one gets the
derivative’s quadratic moment

E[|f ′
0(z)|2] =

∞∑

n,m=1

E[anam]nmzm−1z̄m−1, z ∈ D, (94)

so that its integral means,

1
2π

∫ 2π

0

E[|f ′
0(|z|eiθ)|2] = 1 +

∑

n≥2

E(|an|2)n2(zz̄)n−1, (95)

is a generating function for the coefficients’ quadratic moments. Our study uses
a partial differential equation satisfied by F (z) above, which is an extension
of that derived by Beliaev and Smirnov (BS) in their study of the harmonic
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measure for SLE [6]. We follow it by studying the space of its analytic solu-
tions in the unit disk, among which some special factorized solutions exist. We
then develop the same formalism, i.e., the martingale derivation of a BS-like
equation for the derivative moments and the construction of special explicit
solutions, for the oddified whole-plane SLE and LLE processes (10), and for
the higher m-fold transforms (12).

3.2.1. The Beliaev–Smirnov Equation. In Ref. [6], Beliaev and Smirnov first
consider a standard radial (outer) SLE process (gt(z), t ≥ 0), from C\Kt to the
complement D− of the unit disk, where, as usual, Kt denotes the SLE hull at
time t. This SLE process satisfies a standard ODE, which can be continued to
negative times (via a two-sided Brownian motion Bt in the Schramm–Loewner
source term λ(t) = ei

√
κBt). The harmonic spectrum is best studied via the

inverse map, g−1
t , which satisfies a Loewner-type PDE (as the whole-plane

evolution considered in this article). Since the processes g−1
t and g−t have the

same law (up to conjugation by ei
√

κBt), BS redefine in Ref. [6] a radial SLE
(denoted there by ft) as

f̃t(z) := g−t(z)
(law)
= e−i

√
κBtg−1

t (ei
√

κBtz), t ∈ R, (96)

thus mapping D− to C\K−t. Then, they show that the expectation

F̃ (z, t) := E(|f̃ ′
t(z)|p), (97)

where p is real, is solution to the differential equation

p
r4 + 4r2(1 − r cos θ) − 1

(r2 − 2r cos θ + 1)2
F̃ +

r(r2 − 1)
r2 − 2r cos θ + 1

F̃r

− 2r sin θ

r2 − 2r cos θ + 1
F̃θ + ΛF̃ − F̃t = 0, (98)

with z = reiθ, and where subscripts represent partial derivatives of F̃ with
respect to r, θ and t, and where Λ stands for the infinitesimal generator of the
SLE driving Brownian process, i.e., Λ = (κ/2)∂2/∂θ2.

To derive (98), they consider the martingale Ms := E(|f̃ ′
t(z)|p | Fs),

where Fs denotes the σ−algebra generated by {Bτ ; τ ≤ s}. From the SLE
Markov property, they show (Lemma 2 in [6]) that

E(|f̃ ′
t(z)|p | Fs) = |f̃ ′

s(z)|pF̃ (zs, t − s),

in terms of the conjugate variable zs := f̃s(z)e−i
√

κBs . Expressing the fact that
the ds drift term vanishes in the Itô derivative of the right-hand side then gives
Eq. (98) above.

The next step in their derivation is to remark that, by stationarity, the
limit of e−tf̃t(z) as t → +∞ exists, and has the same law as the value f̂0(z)
at proper time zero of the (outer) whole-plane SLE (denoted by F0(z) in [6]).
Rewrite F̃ (z, t) (97) above trivially as

F̃ (z, t) = eσpt
E(|e−σtf ′

t(z)|p), (σ = 1), (99)
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to obtain

F (z) := E[|f̂ ′
0(z)|p] = lim

t→∞ e−σptF̃ (z, t). (100)

Note that this exterior whole-plane map f̂0(z), acting on the exterior D− of
the unit disk, has precisely the same law as the conjugate via z �→ 1/z of the
interior whole-plane SLE map f0(z) that we consider in this article. Substitut-
ing (99) into (98) and taking the large t limit, BS thereby obtain the following
equation for F (z)

p

(
r4 + 4r2(1 − r cos θ) − 1

(r2 − 2r cos θ + 1)2
− σ

)

F +
r(r2 − 1)

r2 − 2r cos θ + 1
Fr

− 2r sin θ

r2 − 2r cos θ + 1
Fθ + ΛF = 0. (101)

For our interior case, we similarly introduce the function f̃t, t ≥ 0, as the
continuation g−t of the standard inner radial SLE process gt to negative times,
which has the same law as its inverse map g−1

t . Then, the limit etf̃t(z) as
t → +∞ exists, and has the same law as the inner whole-plane process f0(z)
considered in this work. This amounts to formally taking σ = −1 in (99),
in effect changing the sign of the term −σpF in (101) that results from the
time-derivative term in (98). This simple observation results in:

Proposition 3.1. For the interior whole-plane Schramm–Loewner evolution, as
considered here in the setting of Theorem 1.1, the expected moments of the
derivative modulus, F (z) = E(|f ′

0(z)|p), satisfy the Beliaev–Smirnov equation
(101) with σ = −1, and Λ = (κ/2)∂2/∂θ2 the generator of the driving Brown-
ian process.

Finally, note that the BS derivation for SLE, as recalled above, is also
valid for the Lévy–Loewner evolution, which possesses the same Markov prop-
erty, together with the existence of similar whole-plane stationary limits. Sto-
chastic calculus (and Itô formula) can be generalized to Lévy processes [3],
resulting in the same martingale argument. As mentioned by Beliaev and
Smirnov in [6], one simply has to take for Λ in (101) the generator of the
driving Lévy process. We therefore state:

Proposition 3.2. For the interior whole-plane Lévy–Loewner evolution, as con-
sidered here in the setting of Theorem 1.1, the expected moments of the deriv-
ative modulus, F (z) = E(|f ′

0(z)|p), satisfy the Beliaev–Smirnov equation (101)
with σ = −1, and Λ the generator of the driving Lévy process.

3.2.2. Whole-Plane SLE Solutions. We first study the SLEκ case. Let us switch
to z, z̄ variables, instead of polar coordinates, and write F (z) above as where

F (z) = E(|f ′
0(z)|p) = F (z, z̄), (102)

F (z1, z2) := E[(f ′
0(z1))

p/2(f̄ ′
0(z2))

p/2], (103)

f̄ ′
0(z) := f ′

0(z̄). (104)

Note that the function F (z1, z2) is holomorphic in the bi-disk D × D, or in
its inverse D− × D− for the exterior case (expectation and derivation can be
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interchanged). This allows one to consider hereafter the variables z and z̄
as formally independent in F (z, z̄) = E[(f ′

0(z))p/2(f̄ ′
0(z̄))p/2]. Using ∂ := ∂z,

∂ := ∂z̄, Eq. (101) then becomes

P(D)[F (z, z̄)] = 0, (105)

P(D) := −κ

2
(z∂ − z̄∂)2 +

z + 1
z − 1

z∂ +
z̄ + 1
z̄ − 1

z̄∂

−p

[
1

(z − 1)2
+

1
(z̄ − 1)2

+ σ − 1
]

. (106)

To study this equation for the interior case z ∈ D and σ = −1, we shall need
the three lemmas below.

Lemma 3.1. The space of formal series F (z, z̄) =
∑

k,
∈N
ak,
z

kz̄
 in non-
negative integer powers of z, z̄ with complex coefficients that are solutions of
(105) is one dimensional.

Proof. The Lemma is an easy consequence of the two following observations:
First, the differential operator, P(D), involved in (105), is polynomial in z∂
and z̄∂, and the monomials zkz̄
 are eigenvectors of the latter two operators.
Second, the non-differential term in P(D), may be written as A(z) + A(z̄),
with A(0) = 0.

Now, assuming that G is a solution of (105) with G(0, 0) = 0, it suffices to
prove that, necessarily, G = 0. We argue by contradiction: If not, consider the
minimal (necessarily non constant) term ak,
z

kz̄
 in the series, with ak,
 �= 0
and k + � minimal (and non-vanishing). Then, P(D)[F ] will have a minimal
non-vanishing term of the form

−ak,


[
κ

2
(k − �)2 + k + �

]

zkz̄
,

contradicting the fact that P(D)[F ] = 0. �

Lemma 3.2. The quantity F (z, z̄ = 0) satisfies the boundary equation obtained
by setting z̄ = 0 in (105) (here σ = −1):

P(∂)[F (z, 0)] :=
{

−κ

2
(z∂)2 +

z + 1
z − 1

z∂ − p

[
1

(z − 1)2
− 1

]}

F (z, 0) = 0. (107)

The complex conjugate equation also holds for F (z = 0, z̄).

Proof. The bi-analytic function F (z, z̄) has a double series expansion of the
form F (z, z̄) =

∑
k≥0,
≥0 ak,lz

kz̄
. When acting on it with a differential opera-
tor P(D) as in (105), the resulting double series must vanish identically, hence
all its coefficients ak,
 must as well. This implies that the variables z and z̄ can
be considered as two independent complex variables in (105). By symmetry,
the complex conjugate equation also holds for F (z = 0, z̄). �

Lemma 3.3. The action of the operator P(D) (106) on a function of the fac-
torized form F (z, z̄) = ϕ(z)ϕ(z̄)P (z, z̄), with the definition ϕ̄(z̄) := ϕ(z), is by
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Leibniz’s rule given by

P(D)[ϕϕ̄P ] = −κ

2
ϕϕ(z∂ − z̄∂̄)2P − κ(z∂ − z̄∂)(ϕϕ)(z∂ − z̄∂)P

+κ(z∂ϕ)(z̄∂ϕ)P + ϕϕ
z + 1
z − 1

z∂P + ϕϕ
z̄ + 1
z̄ − 1

z̄∂P

+
[

−κ

2
ϕ(z∂)2ϕ − κ

2
ϕ(z̄∂)2ϕ + ϕ

z + 1
z − 1

z∂ϕ + ϕ
z̄ + 1
z̄ − 1

z̄∂ ϕ

]

P

−p

[
1

(z − 1)2
+

1
(z̄ − 1)2

+ σ − 1
]

ϕϕP. (108)

Corollary 3.3. For the the particular choice: P (z, z̄) := P (zz̄), the first line of
the r.h.s. of Eq. (108) vanishes identically.

Proof. P is then radial, and the differential operator in the first line acts on
the angular variable only. �

Corollary 3.4. In the interior case (σ = −1), and for the particular choice:

ϕ(z) = F (z, z̄ = 0), ϕ̄(z̄) = F (z = 0, z̄), (109)

the last two lines of the r.h.s. of Eq. (108) in Lemma 3.3 vanish identically.

Proof. Use Lemma 3.2. The last two lines of (108) are precisely of the form

P × [
ϕ̄P(∂)ϕ + ϕP(∂)ϕ̄

]
= 0.

�

Corollary 3.5. The function

F (z, z̄) = E
[|f ′

0(z)|p] = E
[
(f ′

0(z))p/2(f ′
0(z̄))p/2

]

is the unique solution of rm (105) such that F (0, 0) = 1. The function

ϕ(z) = F (z, 0) = E
[
(f ′

0(z))p/2
]

is the unique solution of (107) such that F (z = 0, 0) = 1. Corollary 3.4 applies
to it.

In the particular case p = 2, and for SLEκ, with κ = 6 or 2, we have
obtained above the derivative expectations (90) and (91):

ϕ(z) = E
[
f ′
0(z)

]
= (1 − z)α, α = 1, κ = 6; α = 2, κ = 2. (110)

From Corollary 3.5, we know that they are annihilated by the boundary opera-
tor P(∂) of Lemma 3.2 (with a similar result for the conjugate quantities), and
that the two last lines of (108), equal to ϕ̄P(∂)[ϕ]P + ϕP(∂̄)[ϕ̄]P , identically
vanish.

Denote then by Psing(D) the singular operator made of the second line
of (108), which contains the pole at z = 1, z̄ = 1:

Psing(D)[ϕϕ̄P ] := κ(z∂ϕ)(z̄∂ϕ)P + ϕϕ
z + 1
z − 1

z∂P + ϕϕ
z̄ + 1
z̄ − 1

z̄∂P.
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For ϕα(z) := (1 − z)α, its action gives the factorized form

Psing(D)[ϕαϕ̄αP ] = ϕαϕ̄α

[
κα2zz̄

(1 − z)(1 − z̄)
+

z + 1
z − 1

z∂ +
z̄ + 1
z̄ − 1

z̄∂

]

P. (111)

Thanks to Lemma 3.3, it is now natural to look for radial solutions,
P (z, z̄) = P (zz̄), that make (111) vanish. The resulting equation is simply

P ′(zz̄)
P (zz̄)

=
κα2

2
1

1 − zz̄
, (112)

which is immediately solved, for P (0) = 1, into

P (zz̄) = (1 − zz̄)−κα2/2. (113)

From Corollaries 3.3 and 3.4, we obtain that

F (z, z̄) =
(1 − z)α(1 − z̄)α

(1 − zz̄)β
, β =

κ

2
α2, (114)

is the unique solution to the differential equation (105), such that F (0, 0) = 1,
if and only if ϕα(z) = (1 − z)α is a solution to the boundary equation (107) of
Lemma 3.2. From (110), we already know this to hold true for p = 2, in the
two cases α = 1, κ = 6, or α = 2, κ = 2.

In the general case, we obtain:

P(∂)[ϕα] = A(α)ϕα + B(α)ϕα−1 + C(α)ϕα−2, (115)

A(α) := −κ

2
α2 + α + p, (116)

B(α) :=
κ

2
α(2α − 1) − 3α, (117)

C(α) := −κ

2
α(α − 1) + 2α − p. (118)

Notice that A + B + C = 0. The boundary equation (107) P(∂)[ϕα] = 0 thus
reduces to the set of equations: A(α) = 0, B(α) = 0, which is solved into

α = α(κ) :=
6 + κ

2κ
, p = p(κ) :=

(6 + κ)(2 + κ)
8κ

. (119)

This set of values naturally includes the above cases (110) for κ = 6 and κ = 2.
From Corollary 3.5, we therefore obtain the general result:

Theorem 3.3. The whole-plane SLEκ map f0(z) has derivative moments

E
[
(f ′

0(z))p/2
]

= (1 − z)α,

E
[|f ′

0(z)|p] =
(1 − z)α(1 − z̄)α

(1 − zz̄)β
,

for the special set of exponents p = κα(α + 1)/6 = (6 + κ)(2 + κ)/8κ, with
α = (6 + κ)/2κ and β = κα2/2 = (6 + κ)2/8κ.

Corollary 3.6. The whole-plane SLEκ map f0(z) has first and second derivative
moments, for κ = 6:

E(f ′
0(z)) = 1 − z, E(|f ′

0(z)|2) =
(1 − z)(1 − z̄)

(1 − zz̄)3
;
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for κ = 2:

E(f ′
0(z)) = (1 − z)2, E(|f ′

0(z)|2) =
(1 − z)2(1 − z̄)2

(1 − zz̄)4
.

In the setting of Theorem 1.2, the coefficient n2
E(|an|2) is that of the

term of order (zz̄)n−1 in the expansion (94) of E(|f ′
0(z)|2). It can be obtained

directly from the explicit expressions in Corollary 3.6, as E(|an|2) = 1 for
κ = 6, and E(|an|2) = n for κ = 2. Equivalently, we can evaluate the respective
integral means (95),

1
2π

∫

∂D

E(|f ′
0(zu)|2) |du| =

1 + zz̄

(1 − zz̄)3
;

1 + 4zz̄ + (zz̄)2

(1 − zz̄)4
,

which establishes the equivalent Corollary 1.2. This achieves for SLEκ the
proof of cases (i) and (ii) of Theorem 1.2. As mentioned earlier, the expressions
for the second moments in Corollary 3.6 appeared in Ref. [59], as computer-
assisted solutions to a double recursion; the set (119) was also mentioned there,
and was further studied in Refs. [60,61].

3.2.3. Lévy–Loewner Evolution.

Theorem 3.4. If a Lévy process has its first symbol given by η1 = 3, then the
associated Lévy–Loewner map f0(z) has the same derivative moment of order
2 as SLE6.

We actually prove the seemingly stronger statement:

Remark 3.1. If a Lévy process has its first m symbols (m ≥ 1) given by
ηj = κj2/2, 1 ≤ j ≤ m, with κ = 6/(2m − 1), then the associated Lévy–
Loewner map f0(z) has the same derivative moments of order p as SLEκ, for
the particular value of the exponent p = m(m + 1)/(2m − 1), as given in
Theorem 3.3 with α = m,β = 3m2/(2m − 1).

Proof. For the whole-plane Lévy–Loewner evolution, the Beliaev–Smirnov
equation (105) becomes [6]

ΛF +
z + 1
z − 1

z∂F +
z̄ + 1
z̄ − 1

z̄∂F − p

[
1

(z − 1)2
+

1
(z̄ − 1)2

− 2
]

F = 0. (120)

The action of the Lévy infinitesimal generator Λ on a term zkz̄
 is

Λ [zkz̄
] = −η(k − �)zkz̄
,

where η(·) here is real and even. It is such that η(0) = 0, therefore, for any
n ∈ Z,

Λ [(zz̄)n] = 0.

For the set of solutions F (z, z̄) (114) of (105), as given in Theorem 3.3, we
thus have

ΛF (z, z̄) =
1

(1 − zz̄)β
Λ[(1 − z)α(1 − z̄)α]. (121)
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If the exponent α = (6 + κ)/2κ equals an integer m ≥ 1, ϕα = (1 − z)α

is polynomial of order m, and Λ[ϕαϕ̄α] contains only the finite set of Lévy
symbols {η1, . . . , ηm}. If this set coincides with the set of values (κ/2)�2 for
� = {1, . . . , m}, the action of the Lévy generator Λ on ϕαϕ̄α in (121) coincides
with that of the Brownian generator −κ

2 (z∂ − z̄∂)2. In this case, F (z, z̄) (114),
solution of the SLEκ Eq. (105), is also a solution of the Lévy–Loewner equation
(120), and Theorem 3.3 is also valid for a Lévy–Loewner evolution with such
symbols. �

Remark 3.2. The cases m = 1 and m = 2 give, respectively, the condition
η1 = 3 with an equivalent SLEκ parameter κ = 6, with p = 2, α = 1, β = 3,
and the conditions η1 = 1, η2 = 4, corresponding to κ = 2, p = 2, α = 2, β = 4,
as in Corollary 3.6. Cases (i) and (ii) of Theorem 1.2 thus follow.

Case (ii) actually coincides with that of SLE2, as all of the m ≥ 2 cases of
Remark 3.1 coincide with that of SLEκ for κ = 2η1, as shown by the following
proposition.1

Proposition 3.3. Let Lt be a symmetric Lévy process, with (positive real) Lévy
symbol η. If η2 = 4η1, then Lt =

√
κBt + Mt, where Bt is standard Brownian

motion, κ = 2η1, and where Mt is a pure jump process whose jumps are integer
multiple of 2π; thus, its Lévy symbol is given by ηj = κj2/2,∀j ∈ Z, and
exp(iLt) = exp(i

√
κBt), so the whole-plane LLE and SLE processes coincide.

Proof. We show that η2 ≤ 4η1, and that the limit case, η2 = 4η1, corresponds
to a Lévy–Khintchine decomposition (8), Lt =

√
κBt +Mt, where Mt is a pure

jump process whose jumps are integer multiple of 2π. In the case of real and
even η, the Lévy–Khintchine formula (8) simply becomes

η(ξ) = κξ2/2 + η̃(ξ),

η̃(ξ) =
∫

R\{0}
[1 − cos ξy] ν(dy),

where the measure ν is symmetrical with respect to the origin. We thus have

4η1 − η2 = 4η̃1 − η̃2

=
∫

R\{0}
[3 − 4 cos y + cos 2y] ν(dy) = 2

∫

R\{0}
[1 − cos y]2 ν(dy).

Therefore, the equality 4η1 = η2 requires the measure ν to charge only the
points yn := 2πn, n ∈ Z. This implies η̃j = 0,∀j ∈ Z, and ηj = κj2/2,
∀j ∈ Z. �

3.3. Odd Whole-Plane SLE

In this section, we study the oddified whole-plane SLEκ map, ht(z) =
z
√

ft(z2)/z2, and derive the analog of the Beliaev–Smirnov equation for its
derivative moments, E[|h′

0(z)|p], before proceeding along lines similar to those

1 We wish to thank the referee for pointing out to us the possibility that Remark 3.1 is not
more general than the SLE case, as shown by Proposition 3.3.
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in Sect. 3.2.2, to find special solutions to that equation. This will lead us to
the proof of the second part of Theorem 1.2, which we recall here:

Theorem 1.2. Case (iii). Let (ft)t≥0 be the Loewner whole-plane process driven
by the Lévy process Lt with Lévy symbol η. We write for the oddification of ft,

ht(z) = z
√

ft(z2)/z2 = et/2

(

z +
∑

n≥1

b2n+1(t)z2n+1

)

.

The conjugate oddified whole-plane Lévy–Loewner evolution e−(i/2)Lt

ht

(
e(i/2)Ltz

)
has the same law as h0(z), i.e., einLtb2n+1(t)

(law)
= b2n+1(0) =: bn,

and E(|b2n+1(t)|2) = E(|b2n+1|2).
Then, if η1 = 2, we have

E(|b2n+1|2) =
1

2n + 1
, ∀n ≥ 1;

this includes the oddified SLE4 case.

For p = 2, one has the derivative’s quadratic moment

E[|h′
0(z)|2] =

∞∑

n,m=0

E[b2n+1b2m+1](2n + 1)(2m + 1)z2nz̄2m, z ∈ D, (122)

so that its integral means,

1
2π

∫ 2π

0

E[|h′
0(|z|eiθ)|2] = 1 +

∑

n≥1

E(|b2n+1|2)(2n + 1)2(zz̄)2n, (123)

is a generating function for the coefficients’ quadratic moments. The proof of
case (iii) of Theorem 1.2 will be obtained in Corollary 3.7 of Theorem 3.5 in
the SLEκ=4 case, and in Proposition 3.4 in the LLE case.

3.3.1. Martingale Argument. The Loewner equation for ht(z) is easily derived
from the one (2) governing ft(z), with a driving function λ(t), as

∂tht(z) =
z

2
h′

t(z)
λ(t) + z2

λ(t) − z2
. (124)

To avoid cumbersome factors of 2, it is convenient in this section to work with
(t, z) �→ h2t(z), which is a normalized whole-plane Loewner process with

∂th2t(z) = zh′
2t(z)

λ(2t) + z2

λ(2t) − z2
. (125)

Note that for this oddified whole-plane process, the underlying probability
measure is no longer a single Dirac measure, but the barycenter of two Dirac
masses at two diametrically opposite points, λ(2t) and −λ(2t).

In the case where (ft) is the SLEκ Loewner chain, we can write, instead
of λ(2t) = ei

√
κB2t , ξt := ei

√
2κBt which has the same law. We then follow the

same method as in [6], as recalled above, to find an equation satisfied by

F (z) := E(|h′
0(z)|p). (126)
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To this aim, we consider the odd whole-plane map at time 0, h0(z), as a
particular large time limit, limt→∞ etf̃t(z), where f̃t is now the (inner) radial
Loewner process satisfying

∂tf̃t(z) = zf̃ ′
t(z)

z2 + ξt

z2 − ξt
. (127)

It is easy to see that the Markov Lemma 2 in [6] goes through for f̃ in this
new setting; we can then argue as in Lemma 4 therein, namely using a similar
martingale argument. More precisely, we consider the martingale with respect
to the Brownian filtration Fs, s ≤ t, together with the traduction of the Markov
property,

Ns := E(|f̃ ′
t(z)|p | Fs) = |f̃ ′

s(z)|pF̃ (zs, t − s), (128)

where

zs := f̃s(z)/
√

ξs, (129)

and

F̃ (z, t) := E(|f̃ ′
t(z)|p). (130)

Following step by step the argument therein, we write in our new setting

zs = reiθ, d log zs = d log r + idθ = d log f̃s − i

√
κ

2
dBs,

where

d log f̃s =
df̃s

f̃s

=
z2s + 1
z2s − 1

ds.

Using here a somehow redundant notation in terms of r, θ and ρ := r2, α := 2θ,
we get

d log r + idθ =
z2s + 1
z2s − 1

ds − i

√
κ

2
dBs,

∂s log |f̃ ′
s(z)| =

ρ4 + 8ρ2 − 6ρ3 cos α − 2ρ cos α − 1
(ρ2 − 2ρ cos α + 1)2

,

dθ = − 2ρ sin α

(ρ2 − 2ρ cos α + 1)
ds −

√
κ/2dBs,

dr

r
=

(ρ2 − 1)
(ρ2 − 2ρ cos α + 1)

ds.

Writing F̃ (z, t), as defined in (130), as F̃ (r, θ, t), the vanishing of the ds term
in the Itô derivative of Ns gives a PDE in (r, θ, t) satisfied by F̃ , similar to
Eq. (98). To finish, a large t limit argument, entirely similar to (99)–(100) in
Sect. 3.2.1, leads to the following PDE satisfied by F (z) (126), still using at
this moment the mixed notation in r, θ, and ρ := r2, α := 2θ:

p

(
ρ4 + 8ρ2 − 6ρ3 cos α − 2ρ cos α − 1

(ρ2 − 2ρ cos α + 1)2
+ 1

)

F +
(ρ2 − 1)

ρ2 − 2ρ cos α + 1
rFr

− 2ρ sin α

ρ2 − 2ρ cos α + 1
Fθ +

κ

4
Fθθ = 0. (131)
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Retaining (ρ, α) as the only variables, this finally gives:

p

(
ρ4 + 8ρ2 − 6ρ3 cos α − 2ρ cos α − 1

(ρ2 − 2ρ cos α + 1)2
+ 1

)

F +
2ρ(ρ2 − 1)

ρ2 − 2ρ cos α + 1
Fρ

− 4ρ sin α

ρ2 − 2ρ cos α + 1
Fα + κFαα = 0. (132)

In terms of the z, z̄ variables, writing F = F (z, z̄), this equation becomes

−κ

4
(z∂z − z̄∂z̄)2F +

z2 + 1
z2 − 1

z∂zF +
z̄2 + 1
z̄2 − 1

z̄∂z̄F

+p

[
1

1 − z2
+

1
1 − z̄2

− 2
(1 − z2)2

− 2
(1 − z̄2)2

+ 2
]

F = 0. (133)

Naturally, defining ζ = z2, we can also rewrite this equation in the ζ, ζ̄ vari-
ables, with now F = F (ζ, ζ̄), as

−κ

2

(

ζ∂ζ − ζ̄∂ζ̄

)2

F +
ζ + 1
ζ − 1

ζ∂ζF +
ζ̄ + 1
ζ̄ − 1

ζ̄∂ζ̄F

−p

2

[

− 1
1 − ζ

− 1
1 − ζ̄

+
2

(1 − ζ)2
+

2
(1 − ζ̄)2

− 2
]

F = 0. (134)

Remark 3.3. In the ζ, ζ̄ variables, Eq. (134) for the oddified moment func-
tion has exactly the same differential part as the BS one (105), the differ-
ence being only in the singular function B(ζ) + B(ζ̄) multiplying the F term.
Notice that this function also vanishes at ζ = ζ̄ = 0, hence from Lemma 3.1,
the space of solutions which are double power series is one dimensional.

3.3.2. Special Solutions. We can now argue as in Sect. 3.2.2, and look for
solutions of (134) of the form

F (ζ, ζ̄) = ϕα(ζ)ϕα(ζ̄)P (ζζ̄), (135)

where ϕα(ζ) := (1 − ζ)α; P is thus rotationally invariant.
The restriction of Eq. (134) to ζ̄ = 0 gives the boundary operator:

P(∂)ϕ := −κ

2
(ζ∂ζ)2ϕ +

ζ + 1
ζ − 1

ζ∂ζϕ +
p

2

(
1

1 − ζ
− 2

(1 − ζ)2
+ 1

)

ϕ, (136)

resulting in the boundary equation P(∂)(ϕα) = 0. One easily finds

P(∂)(ϕα) = A2(α)ϕα + B2(α)ϕα−1 + C(α)ϕα−2,

with

A2(α) := −κα2/2 + α + p/2, (137)
B2(α) := κα2 − κα/2 − 3α + p/2, (138)

C(α)=−κα2/2 + (κ/2 + 2)α − p. (139)

As before, we see that A2 + B2 + C = 0, and solving for A2(α) = B2(α) = 0
now gives the special set of values

α = α2(κ) :=
8 + κ

3κ
, p = p2(κ) :=

(8 + κ)(2 + κ)
9κ

. (140)
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For these values of α, we look for a solution P (ζζ̄) of the singular equation
analogous to Eqs. (111) and (112) in Sect. 3.2.2. Because of Remark 3.3, when
plugging the factorized form (135) into Eq. (134), one obtains the same singular
operator as in (108):

Psing(D)[P ] =
[

−κ

2
ϕ(ζ∂)2ϕ − κ

2
ϕ(ζ̄ ∂̄)2ϕ + ϕ

ζ + 1
ζ − 1

ζ∂ϕ + ϕ
ζ̄ + 1
ζ̄ − 1

ζ̄ ∂̄ ϕ

]

P.

As a consequence, the singular equation Psing(D)[P ] = 0 is the same as in
(111), with the same solution (113), now in the ζ, ζ̄ variables:

P (ζζ̄) = (1 − ζζ̄)−β , β =
κα2

2
. (141)

We thus can use Remark 3.3 and Lemma 3.1 to conclude to the unicity of
the solution F to (134) with value 1 at 0. This yields, in the original z variable:

Theorem 3.5. The oddified whole-plane SLEκ map h0(z) has derivative mo-
ments

E
[
(h′

0(z))p/2
]

= (1 − z2)α,

E
[|h′

0(z)|p] =
(1 − z2)α(1 − z̄2)α

(1 − z2z̄2)β
,

for the special set of exponents p = κα(α + 1)/4 = (8 + κ)(2 + κ)/9κ, with
α = (8 + κ)/3κ and β = κα2/2 = (8 + κ)2/18κ.

Notice that p = 2 if and only if κ = 4, in which case α = 1 , β = 2.

Corollary 3.7. For κ = 4, the oddified whole-plane SLEκ map h0(z) has first
and second derivative moments:

E(h′
0(z)) = 1 − z2, F (z, z̄) = E(|h′

0(z)|2) =
(1 − z2)(1 − z̄2)

(1 − z2z̄2)2
.

By considering the terms that are powers of (zz̄)2 in the double expansion
(122) of F (z, z̄) in Corollary 3.7, or by computing the latter’s integral means
(123), one finally proves assertion (iii) in Theorem 1.2 for the oddified whole-
plane SLEκ=4, i.e., when the driving function of the whole-plane Loewner
process is the exponential of a Brownian motion.

3.3.3. Oddified Lévy–Loewner Evolution. In the case where the driving func-
tion in the oddified Loewner equation (124) is the complex exponential of a
Lévy process (Lt),

λ(2t) = ξt := eiL2t , (142)

and to compute F (z, z̄) (126), we follow the same martingale argument as in
Sect. 3.3.1 [see Eqs. (127), (128), (129), and (130)].

The characteristic function of the exponential’s argument, 1
2L2t, associ-

ated with
√

ξt is

E

(
eξ i

2L2t

)
= e−2tη(ξ/2).
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The Lévy generator Λ is thus defined by its action on the characters

Λ(einθ) := −2η
(n

2

)
einθ, n ∈ Z. (143)

Equation (131) in Sect. 3.3.1 now becomes

p

(
ρ4 + 8ρ2 − 6ρ3 cos α − 2ρ cos α − 1

(ρ2 − 2ρ cos α + 1)2
+ 1

)

F +
(ρ2 − 1)

ρ2 − 2ρ cos α + 1
rFr

− 2ρ sin α

ρ2 − 2ρ cos α + 1
Fθ + ΛF = 0.

By retaining, as in Eq. 132, ρ = r2 and α = 2θ as the only variables, this
finally gives

p

(
ρ4 + 8ρ2 − 6ρ3 cos α − 2ρ cos α − 1

(ρ2 − 2ρ cos α + 1)2
+ 1

)

F +
2ρ(ρ2 − 1)

ρ2 − 2ρ cos α + 1
Fρ

− 4ρ sin α

ρ2 − 2ρ cos α + 1
Fα + Λ̃F = 0,

where the rescaled generator Λ̃ is defined so that

Λ̃(einα) = −2η(n)einα, n ∈ Z. (144)

In terms of the z, z̄ variables, and writing F = F (z, z̄), this equation becomes

ΛF +
z2 + 1
z2 − 1

z∂zF +
z̄2 + 1
z̄2 − 1

z̄∂z̄F

+ p

[
1

1 − z2
+

1
1 − z̄2

− 2
(1 − z2)2

− 2
(1 − z̄2)2

+ 2
]

F = 0, (145)

where the original generator Λ (143) now acts on monomials as

Λ(zkz̄
) = −2η

(
k − l

2

)

zkz̄
.

In the p = 2 case, observe that F (z, z̄) in Corollary 3.7 involves only chiral
terms of the form e±2iθ. For n = ±2, the Lévy generator Λ (143) acts on these
terms by multiplying them by −2η(1). If η1 := η(1) = 2, we see that this action
is the same as that of the Brownian generator in the SLEκ=4 case. Therefore,
we obtain the following proposition:

Proposition 3.4. Corollary 3.7 for the derivative second moment goes through,
in the oddified Lévy setting, under the sole condition that η1 = 2. This com-
pletes the proof of case (iii) of Theorem 1.2.

3.3.4. Oddified Lévy–Loewner Moments.

Theorem 3.6. If a Lévy process has its first m (≥ 1) symbols given by ηj =
κj2/2, 1 ≤ j ≤ m, with κ = 8/(3m−1), then the associated odd Lévy–Loewner
map h0(z) = z

√
f0(z2)/z2, where f0(z) is the whole-plane LLE, has the same

derivative moments of order p as for SLEκ, for the particular value of the
exponent, p = 2m(m + 1)/(3m − 1), as given in Theorem 3.5 with α = m,β =
4m2/(3m − 1).
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Remark 3.4. The case m = 1 gives the condition η1 = 2 with an equivalent
SLEκ parameter κ = 4, with p = 2, α = 1, β = 2.

Proof. For the odd case of the whole-plane Lévy–Loewner evolution, the
BS-like Eq. (145) becomes, when setting F = F (ζ, ζ̄) in the ζ = z2 variable,

Λ̃F + 2
ζ + 1
ζ − 1

ζ∂ζF + 2
ζ̄ + 1
ζ̄ − 1

ζ̄∂ζ̄F

+p

[
1

1 − ζ
+

1
1 − ζ̄

− 2
(1 − ζ)2

− 2
(1 − ζ̄)2

+ 2
]

F = 0. (146)

The action of the Lévy infinitesimal generator Λ̃ (144) on a term ζk ζ̄
 is

Λ̃ [ζk ζ̄
] = −2η(k − �)ζk ζ̄
,

where η(·) here is real and even. It is such that η(0) = 0, therefore, for any
n ∈ Z,

Λ̃ [(ζζ̄)n] = 0.

For the set of solutions F (ζ, ζ̄) = (1 − ζζ̄)−βϕα(ζ)ϕα(ζ̄), as given in Theo-
rem 3.5, we thus have

Λ̃F (ζ, ζ̄) =
1

(1 − ζζ̄)β
Λ̃[(1 − ζ)α(1 − ζ̄)α]. (147)

If the exponent α = (8 + κ)/3κ equals an integer m ≥ 1, ϕα = (1 − ζ)α

is polynomial of order m, and Λ̃[ϕαϕ̄α] contains only the finite set of Lévy
symbols {η1, . . . , ηm}. If this set coincides with the set of values (κ/2)�2 for
� = {1, · · · ,m}, the action of the Lévy generator Λ̃ on ϕαϕ̄α coincides with
that of the Brownian generator. In this case, F (ζ, ζ̄), solution to the SLEκ

Eq. (134) is also solution to the Lévy–Loewner differential equation (146), and
Theorem 3.5 is also valid for an oddified Lévy–Loewner evolution with such
symbols. �

3.4. Generalization to Processes with m-Fold Symmetry

The preceding results may be generalized to the case of functions with m-
fold symmetry. These are functions of the form [f(zm)]1/m with f ∈ S and
m ∈ N, m ≥ 1. The case of odd functions corresponds to m = 2; equiva-
lently, the functions with m-fold symmetry are functions in S whose Taylor
series has the form f(z) =

∑∞
k=0 amk+1z

mk+1. As for the oddification case,
we can associate to f0, where (ft) is a whole-plane SLEκ, its m-folded version
h
(m)
0 (z) := [f0(zm)]1/m. By setting ζ := zm, we obtain the following Beliaev–

Smirnov-like equation for F (ζ, ζ̄) := E

(
|(h(m)

0 )′(z)|p
)
:

Pm(D)[F (ζ, ζ̄)] = 0, (148)

Pm(D) := −κ

2
(ζ∂ζ − ζ̄∂ζ̄)

2 +
ζ + 1
ζ − 1

ζ∂ζ +
ζ̄ + 1
ζ̄ − 1

ζ̄∂ζ̄

+
p

m

[
m − 1
1 − ζ

+
m − 1
1 − ζ̄

− m

(1 − ζ)2
− m

(1 − ζ̄)2
+ 2

]

. (149)
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We then look for special solutions of the form ϕα(ζ)ϕα(ζ̄)P (ζζ̄) where
ϕα(ζ) := (1 − ζ)α = (1 − zm)α and ϕα(ζ̄) := ϕα(ζ) = (1 − ζ̄)α = (1 − z̄m)α.
For ϕα, we look for solutions of the boundary equation for ζ̄ = 0 :

Pm(∂)[ϕα]

= −κ

2
(ζ∂ζ)2ϕα +

ζ + 1
ζ − 1

ζ∂ζϕα +
p

m

(
m − 1
1 − ζ

− m

(1 − ζ)2
+ 1

)

ϕα = 0.

We identically have

Pm(∂)[ϕα] = Am(α)ϕα + Bm(α)ϕα−1 + C(α)ϕα−2, (150)

Am(α) := −κ

2
α2 + α +

p

m
, (151)

Bm(α) :=
κ

2
α(2α − 1) − 3α +

(

1 − 1
m

)

p, (152)

C(α) = −κ

2
α(α − 1) + 2α − p. (153)

Notice that we again have the identity Am+Bm+C = 0. Setting the conditions
Am(α) = 0, C(α) = 0 so that (150) vanishes, gives the special set of values:

α = αm(κ) :=
2m + 4 + κ

(m + 1)κ
, p = pm(κ) :=

m(2m + 4 + κ)(2 + κ)
2(m + 1)2κ

. (154)

For the rotationally invariant pre-factor P (ζ, ζ̄), Eq. (149) shows that the
resulting singular Eq. (111), Psing(D)[P ] = 0, does not depend on m, so that
P (ζ, ζ̄) = (1 − ζζ̄)−β , with β = κα2/2. This leads to

Theorem 3.7. The m-fold whole-plane SLEκ map h
(m)
0 (z) has derivative mo-

ments

E
[(

(h(m)
0 )′(z)

)p/2] = (1 − zm)α,

E
[|(h(m)

0 )′(z)|p] =
(1 − zm)α(1 − z̄m)α

(1 − zmz̄m)β
,

for the special set of exponents p = pm(κ) = m(2m + 4 + κ)(2 + κ)
/2(m + 1)2κ, with α = αm(κ) = (2m + 4 + κ)/(m + 1)κ and β = κα2

m(κ)/2 =
(2m + 4 + κ)2/2(m + 1)2κ.

The case p = 2 is of special interest, since it allows one to find the
moments E

(|amk+1|2
)

from Plancherel formula. Setting p = 2 in the above,
and solving for κ yields

κ = 2m, or κ =
2(m + 2)

m
. (155)

In the first case, we have α = 2/m, β = 4/m, thus

F (ζ, ζ̄) =
(

(1 − ζ)(1 − ζ̄)
(1 − ζζ̄)2

)2/m

, κ = 2m. (156)
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In the second case, we have α = 1, β = m+2
m , and

F (ζ, ζ̄) =
(1 − ζ)(1 − ζ̄)

(1 − ζζ̄)
m+2

m

, κ =
2(m + 2)

m
. (157)

Let us detail all possibilities with m ≤ 4:

(i) m = 1 yields the two cases κ = 6, κ = 2, corresponding to the two first
cases of Theorem 1.2;

(ii) m = 2 gives rise to the single value κ = 4, and to the third case in
Theorem 1.2;

(iii) m = 3 corresponds to κ = 6 and κ = 10/3, with respective F -functions

F (ζ, ζ̄) =
(1 − ζ)2/3(1 − ζ̄)2/3

(1 − ζζ̄)4/3
, F (ζ, ζ̄) =

(1 − ζ)(1 − ζ̄)
(1 − ζζ̄)5/3

;

(iv) for m = 4, one gets κ = 8 or 3, with respective F -functions;

F (ζ, ζ̄) =
(1 − ζ)1/2(1 − ζ̄)1/2

1 − ζζ̄
, F (ζ, ζ̄) =

(1 − ζ)(1 − ζ̄)
(1 − ζζ̄)3/2

.

Let us return for p = 2 to general values of m, with κ given by (155), and
compute E

(|amk+1|2
)
. Write

(1 − x)α =
∞∑

k=0

λk(α)xk,

with coefficients λk(α) := ((−1)k/k!)α(α − 1) · · · (α − k + 1). In the first case,
κ = 2m, we have from (156):

E
(|amk+1|2

)
=

∑k
j=0 λ2

j (2/m)|λk−j(−4/m)|
(mk + 1)2

. (158)

In the second case, κ = 2(m+2)
m , Eq. (157) gives

E
(|amk+1|2

)
=

λk(m+2
m ) + λk−1(m+2

m )
(mk + 1)2

=

∏k−1
j=0 (jm + 2)

(mk + 1)mkk!
; (159)

for m = 1, 2 one recovers the values already computed.
In conclusion, we have found infinitely many cases where one may exactly

compute the variances of the coefficients of whole-plane SLE. The following
cases correspond to some physically significant situations:

(a) m = 1, κ = 6 with formula (159) (percolation [76,78]);
(b) m = 1, κ = 2 with formula (158) (loop-erased random walk [51,76]);
(c) m = 2, κ = 4 with formula (158) or (159) (Gaussian free field contour

lines [77]);
(d) m = 3, κ = 6 with formula (158) (percolation [78]);
(e) m = 4, κ = 8 with formula (158) (spanning trees [76]);
(f) m = 4, κ = 3 with formula (159) (critical Ising model [12,79]);
(g) m = 6, κ = 8/3 with formula (159) (self-avoiding walk [22,55]).
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4. Multifractal Spectra for Infinite Whole-Plane SLE

The aim of this section is to give compelling arguments that support State-
ment 1.1 concerning the explicit averaged integral means spectra, as defined
in (14), for the interior whole-plane SLE map f0(z), its oddified version h0(z),
or its m-fold transforms h

(m)
0 (z) [which generalize f0(z) = h

(1)
0 (z) and h0(z) =

h
(2)
0 (z)]. On the rigorous side, we establish Theorem 1.3 and Theorem 1.5:

that these spectra do have a phase transition for p large enough [respectively,
at (23), and at (24) or (29)]. Above this phase transition, they are bounded
below by the multifractal spectrum Bm(p, κ) (22) that appears on the right-
hand side of formulae (20) and (21), up to the special points pm(κ) (32) and
(33). Thereafter, they are bounded above by the same expression. We strongly
believe these bounds to be exact as in Statement 1.1. Let us begin with some
relevant results for integral means spectra and related multifractal spectra.

4.1. Integral Means Spectrum

4.1.1. SLE’s Harmonic Measure Spectra. The general theory of the integral
means spectra, and of the associated multifractal properties of the harmonic
measure, has been the subject of important pioneering works, among which
stand out those of L. Carleson, P. Jones and N. Makarov [11,41,64,65]. The
search for universal spectra, which provide universal functions as upper-
bounds, have lead to well-known results and conjectures which we briefly recall
below (Sect. 4.1.2).

In the case of conformally invariant critical curves, i.e., SLEs, the multi-
fractal spectrum associated with the harmonic measure near those curves was
first obtained from quantum gravity methods by one of the authors [18–23].
(See Refs. [45,52] for earlier rigorous results on random walks and Brownian
motion, Ref. [53] for related results for conformally invariant paths, and Refs.
[48–50] for multifractal Brownian intersection exponents; see Refs. [46,47] for
multifractal properties of SLE.) This was extended to the mixed multifractal
spectrum describing both the singularities and the winding of equipotentials
near a conformally invariant curve [24].

Another heuristic derivation of the harmonic measure spectrum was ob-
tained from a Laplacian growth equation, similar to Eq. (101) here, but for
chordal SLE [37]. The corresponding SLE integral means spectrum was later
rigorously established, in an expectation sense, by Beliaev and Smirnov [6],
starting from Beliaev’s thesis [4]. These authors used the very same equation
as Eq. (101) here, that they first derived for the exterior whole-plane SLE
case. Another method, the so-called “Coulomb gas” approach of conformal
field theory, is also applicable [9,74], and was extended to the mixed multi-
fractal spectrum [7,25]. Amazingly, the predictions for the fine structure of
the harmonic measure were tested numerically, and successfully, for percola-
tion and Ising clusters [1,2].

Let us mention that Chen and Rohde obtained in Ref. [13] derivative
estimates for the (chordal) Loewner evolution driven by a symmetric α-stable
process, and showed that its hull has Hausdorff dimension 1, thereby presenting



1354 B. Duplantier et al. Ann. Henri Poincaré

a non-multifractal behavior. Similar results were found by Johansson and Sola
[39] for a random growth model obtained by driving the Loewner equation
by a compound Poisson process. We therefore restrict our study here to the
interior whole-plane SLE curve.

In the radial setting, the integral means spectrum (13)–(14) is associated
with the divergent behavior of the moments of order p of the map derivative’s
modulus |f ′(z)| near the unit circle ∂D, possibly augmented by the extra sin-
gular behavior of the map at point z = 1, where the SLE driving function
originates at time t = 0. When the latter singular behavior starts to dominate,
in fact when p becomes negative enough [6], the integral means spectrum
undergoes a phase transition, after which the harmonic measure behavior is
dominated by the tip of the SLE curve. This was observed in Ref. [37], while
the tip spectrum was later obtained rigorously, in the sense of expectations in
Ref. [6], and in an almost sure sense in Ref. [40].

4.1.2. Universal Spectra. Given f holomorphic and injective in the unit disk,
we define, for p ∈ R,

βf (p) = lim sup
r→1−

ln
∫ 2π

0
|f ′(reiθ)|pdθ

ln 1
1−r

,

so that βf (p) is the smallest number q such that, for every ε > 0, there exists
a C > 0 such that

∫ 2π

0

|f ′(reiθ)|pdθ ≤ C

(1 − r)q+ε

as r → 1−.

Theorem 4.1. If f is holomorphic and injective in the unit disk, then

βf (p) ≤ 3p − 1, 2/5 ≤ p < ∞.

If, moreover, f is bounded, then

βf (p) ≤ p − 1, p ≥ 2.

Both exponents are sharp, the first one being attained for the Koebe function.

This theorem is due to Feng and MacGregor [32]. For a proof, consult,
e.g., Ref. [70]. We will need below the following variant of this theorem:

Theorem 4.2. Let f be a function injective and holomorphic in the unit disk,
such that f(0) = 0, and let us denote by h(z) its oddification:

h(z) := z
√

f(z2)/z2.

Then, we have βh(p) ≤ 2p − 1 for p ≥ 2/3. This bound is attained for the
oddification of the Koebe function.

This variant is originally due to Makarov [65]; a proof that parallels that
of Feng and MacGregor is given below in Appendix C 5.3.



Vol. 16 (2015) Coefficients and Multifractality of Whole-Plane SLE 1355

In the sequel, we will need some facts about three different universal spec-
tra, respectively, for the schlicht class S, the subclass Sb of bounded functions,
and the subclass So of odd functions. For p ∈ R, define:

BS(p) := sup{βf (p), f ∈ S}; BSb
(p) := sup{βf (p), f ∈ Sb};

BSo
(p) := sup{βf (p), f ∈ So}.

The BSb
spectrum is the most studied one in the literature. By Theorems 4.1

and 4.2, respectively:

BS(p) = 3p − 1 for p ≥ 2/5; BSb
(p) = p − 1 for p ≥ 2;

BSo
(p) = 2p − 1 for p ≥ 2/3.

For the sake of completeness, let us briefly recall some known or conjectured
results about these universal spectra. The main one is Brennan conjecture,
which reads: B(−2) = 1. If true, this conjecture would imply that BSb

(p) =
|p| − 1, for p ≤ −2. This is not known, but Carleson and Makarov [11] have
shown that there exists p0 ≤ −2 such that BSb

(p) = |p| − 1 for p ≤ p0. Notice
that BSb

(p) = |p| − 1 for p ≥ 2. A rather speculative conjecture, named after
Kraetzer, asserts that

BSb
(p) =

p2

4
, −2 ≤ p ≤ 2.

Makarov [65] has proven that

BS(p) = max(BSb
(p), 3p − 1),

so that if both Kraetzer and Brennan conjectures are true, then for |p| ≤ −2,

BS(p) = |p| − 1, for −2 ≤ p ≤ 6 − 4
√

2, BS(p) = p2

4 , and for p ≥ 6 − 4
√

2,
BS(p) = 3p − 1.

In our study, the unbounded character of the whole-plane maps under
consideration plays a crucial role for the spectrum. This can already be seen
in the limit κ → 0, where the spectra should converge to that of the Koebe
function (1), K(z) = z/(1+z)2, hence to βK(p) = 3p−1, or to βKo

(p) = 2p−1
for its oddified version, Ko(z) = z/(1 + z2)2.

The Theorem 4.2 can be generalized to the class Sm defined for nonzero
m ∈ N as the set of functions of the form

h(m)(z) := z[f(zm)/zm]1/m , f ∈ S.

The case of odd functions above corresponds to m = 2. We may define as
above

BSm
(p) := sup{βh(p) , h ∈ Sm},

and a straightforward adaptation of the proof of Theorem 4.2 (as given in
Appendix C 5.3) gives [65] the

Theorem 4.3. For p ≥ 2m
m+4 , we have

BSm
(p) =

m + 2
m

p − 1.
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4.2. Integral Means Spectrum for Unbounded Whole-Plane SLE

4.2.1. Restriction to the Unit Circle. The method introduced in [6] consists
in finding approximate solutions to Eq. (101) in the vicinity of the unit circle
for |z| > 1, and near z = 1. We generalize it here to the inner whole-plane Eq.
(101), for which σ = −1 and |z| < 1,

p

(
r4 + 4r2(1 − r cos θ) − 1

(r2 − 2r cos θ + 1)2
− σ

)

F +
r(r2 − 1)

r2 − 2r cos θ + 1
Fr

− 2r sin θ

r2 − 2r cos θ + 1
Fθ +

κ

2
Fθθ = 0. (160)

It is convenient to write this equation as

p

(
N(r, θ)
D2(r, θ)

− σ

)

F +
r(r2 − 1)
D(r, θ)

Fr − 2r sin θ

D(r, θ)
Fθ +

κ

2
Fθθ = 0, (161)

with

D(r, θ) := r2 − 2r cos θ + 1 = |1 − z|2, (162)
N(r, θ) := r4 + 4r2(1 − r cos θ) − 1

= 2r2D(r, θ) + (r − 1)(r3 − r2 + 3r + 1). (163)

We then look for approximate (but possibly exact) solutions of the form

ψ(r, θ) = [−σ(1 − r2)]−βg(r2 − 2r cos θ + 1) = [−σ(1 − zz̄)]−βg(|1 − z|2).
(164)

Let us first remark that for any given value of κ, and for the special values
p = p(κ) and α = α(κ) given in (119), the exact solution found in Theorem 3.3
is precisely of the form (164), with β = (κ/2)α2 and g(x) = xα. It is thus
necessarily a solution, for p = p(κ), to the following explicit equation, obtained
from (161), [−σ(1 − r2)]−β being further factored out:

p

(
N(r, θ)
D2(r, θ)

− σ

)

g − 2r2

D(r, θ)
β g − −r(1 − r2)

D(r, θ)
(2r − 2 cos θ)g′

−4r2 sin2 θ

D(r, θ)
g′ +

κ

2
(
2r cos θ g′ + 4r2 sin2 θ g′′) = 0, (165)

where g = g(r2 − 2r cos θ + 1).
When p is not equal to the special value p(κ) of Eq. (119), the trial

exponent β and the function g are determined from the restriction of Eq. (165)
to the unit circle ∂D. One observes that on the unit circle

D(r = 1, θ) = 2 − 2 cos θ; N(1, θ) = 2D(1, θ); g = g(2 − 2 cos θ). (166)

Setting r = 1 in Eq. (165) and factoring out [D(1, θ)]−1, we therefore arrive at

p [2 − σD(1, θ)] g − 2β g − 4 sin2 θ g′ +
κ

2
D(1, θ)

(
2 cos θ g′ + 4 sin2 θ g′′) = 0.

(167)
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Define now x := 2 − 2 cos θ = D(1, θ), such that 0 ≤ x ≤ 4; the equation on
the unit circle simply becomes

[p(2 − σx) − 2β] g(x) +
[κ

2
(2 − x) − (4 − x)

]
x g′(x) +

κ

2
(4 − x)x2 g′′(x) = 0.

(168)

By homogeneity, for a function of the power law form g(x) = xγ , the left-hand
side of (168) becomes (c + dx)g(x), with

c = 2p − 2β − (κ + 4)γ + 2κγ2,

d = −σp + γ − κ

2
γ2.

We thus get a power law solution to (168) if and only if c = 0 and d = 0, i.e.,

β = p − (κ + 4)
γ

2
+ κγ2, (169)

γ2 κ

2
− γ + σp = 0. (170)

Upon substituting g(x) = xγg0(x) into (168), we obtain, for arbitrary γ,
[
2β(γ) − 2β + xAσ(γ)

]
g0(x) +

[κ

2
(2 − x) + (κγ − 1)(4 − x)

]
xg′

0(x)

+
κ

2
(4 − x)x2g′′

0 (x) = 0, (171)
β(γ) := κγ2/2 − C(γ), (172)

Aσ(γ) := A(γ) − (1 + σ)p, (173)

where we recall definitions (116) and (118) for A and C:

A(γ) = −κ

2
γ2 + γ + p, C(γ) = −κ

2
γ2 +

(κ

2
+ 2

)
γ − p. (174)

We thus have

β(γ) = κγ2/2 − C(γ) = κγ2 − (κ/2 + 2)γ − p, (175)

Aσ(γ) = A(γ) − (1 + σ)p = −κ

2
γ2 + γ − σp. (176)

A power law solution, g(x) = xγ to Eq. (168), i.e., g0 constant, is obtained if
the first term of Eq. (171) vanishes, so that

β = β(γ) = κγ2/2 − C(γ), (177)
Aσ(γ) = 0, (178)

which is equivalent to equations (169) and (170). Recall that for the inte-
rior whole-plane SLE considered here, we have σ = −1, hence A(−1)(γ) =
A(γ), while in the exterior case considered by BS [6] one has σ = +1, hence
A(+1)(γ) = A(γ) − 2p.

The solutions to Eqs. (177) and (178) are

γσ
±(p) =

1
κ

(
1 ±

√
1 − 2σκp

)
, (179)

βσ
±(p) = (1 − 2σ)p − κ

2
γσ

±(p) = (1 − 2σ)p − 1
2
(
1 ±

√
1 − 2σκp

)
. (180)
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We have thus obtained a pair of power law solutions,

ψσ
±(z, z̄) := [−σ(1 − zz̄)]−βσ

±g(|1 − z|2), g(x) = xγσ
± , (181)

to the boundary equation (168).
For the interior case σ = −1, we shall use hereafter the simplified nota-

tion,

γ±(p) := γ
(−1)
± (p) =

1
κ

(
1 ±

√
1 + 2κp

)
, (182)

β±(p) := β
(−1)
± (p) = 3p − κ

2
γ±(p) = 3p − 1

2
(
1 ±

√
1 + 2κp

)
. (183)

Besides the power law solutions obtained here for the particular values (179)
of γ, the second-order differential equation (171) for g0 has a general class of
solutions which depends on the continuous parameter γ. Observe in particular
that, for a given γ, the choice of parameter β = β(γ) reduces the equation (171)
to the following hypergeometric equation, which will be studied in Sects. 4.2.4
and 4.2.7:

Aσ(γ) g0(x) +
[κ

2
(2 − x) + (κγ − 1)(4 − x)

]
g′
0(x) +

κ

2
(4 − x)xg′′

0 (x) = 0.

(184)

4.2.2. Action of the Differential Operator. Let us consider a general function
of the type

ψ(r, θ) = [−σ(1 − r2)]−β(r2 − 2r cos θ + 1)γ . (185)

This function is of the form

ψ(z, z̄) = [−σ(1 − zz̄)]−βxγ = [−σ(1 − zz̄)]−β |1 − z|2γ

= [−σ(1 − zz̄)]−βϕγ(z)ϕγ(z̄), (186)

where

x = r2 − 2r cos θ + 1 = |1 − z|2 = 1 − (z + z̄) + zz̄. (187)

It will prove useful to evaluate the action of the differential operator P(D)
(106) on the function (186) for general values of β and γ using (108), (111)
and (115). The general result, using the identity A+B+C = 0 in (115), (116),
(117), and (118), is

P(D)[ψ(z, z̄)]
ψ(z, z̄)

= (κγ2 − 2β)
zz̄

x
+ C(γ)

[
1 − zz̄

x

(
1 − zz̄

x
+ 1

)

− 2
x

]

−A(γ)
(

1 − zz̄

x
− 1

)

− (1 + σ)p, (188)
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where A and C are given by (174). Using (172) and (173), we can recast the
above equation as

P(D)[ψ(z, z̄)]
ψ(z, z̄)

=
(
β(γ) − β

) 2
x

+ C(γ)
(

1 − zz̄

x

)2

+
(
2β − 2β(γ) − A(γ) − C(γ)

)1 − zz̄

x
+Aσ(γ). (189)

Note that

1 − zz̄ = 2	(1 − z) − |1 − z|2 = 2x1/2 cos ϕ − x,

ϕ := arg(1 − z).
(190)

Hence, in the z → 1, x → 0 limit, one has

1 − zz̄ ∼ 2x1/2 cos ϕ (191)

along any ray passing through 1, except if ϕ = ±π/2, which corresponds to z
reaching 1 tangentially to the unit circle zz̄ = 1.

From the equivalence (191) for x → 0, we conclude that the most singular
terms in the action (189) of the differential operator P(D) are the two terms
on the r.h.s. of the first line, scaling like x−1 and (1 − zz̄)2x−2. They are
furthermore independent of each other because the second one is parameterized
by the angle ϕ.

4.2.3. General Action of the Operator P(D). Consider in this section the
function

ψ0(z, z̄) := P (zz̄)g(x),

P (zz̄) = [−σ(1 − zz̄)]−β ,

g(x) = xγg0(x), x = (1 − z)(1 − z̄),

(192)

where g satisfies the boundary equation (168), or, equivalently, g0 satisfies
(171), β and γ being considered here as parameters. After some calculation,
we obtain:

P(D)[ψ0(z, z̄)]
ψ0(z, z̄)

= (1 − zz̄)
[

1
x

(β − p − γ) +
1

4 − x

(

− β + p(1 − 2σ) − κ

2
γ

)]

+(1 − zz̄)
[(

κ

2
− 1 − 2κ

4 − x

)
g′
0

g0

]

+
(1 − zz̄)2

x2

[
1

4 − x

(

2p(1 − 2σ) − 2β − κx
g′

g

)

+(σ − 1)p+
(

κ

2
+ 1

)

x
g′

g

]

,

(193)

where xg′/g = γ + xg′
0/g0.
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Substituting the particular value (177) β = β(γ) = κγ2/2 − C(γ) gives

P(D)[ψ0(z, z̄)]
ψ0(z, z̄)

= (1 − zz̄)
[

− 1
x

[
C(γ) + A(γ)

]
+

1
4 − x

2Aσ(γ) +
(

κ

2
− 1 − 2κ

4 − x

)
g′
0

g0

]

+
(1 − zz̄)2

x2

{
1

4 − x

[

2p(1 − 2σ) − 2β(γ) − κ

(

γ + x
g′
0

g0

)]

+(σ − 1)p +
(κ

2
+ 1

)(

γ + x
g′
0

g0

)}

. (194)

Using the identity, 4Aσ(γ) = 2p(1 − 2σ) − 2β(γ) − κγ, we obtain

P(D)[ψ0(z, z̄)]
ψ0(z, z̄)

= (1 − zz̄)
[

− 1
x

[
C(γ) + A(γ)

]
+

1
4 − x

2Aσ(γ) +
(

κ

2
− 1 − 2κ

4 − x

)
g′
0

g0

]

+
(1 − zz̄)2

x2

{
1

4−x

[

4Aσ(γ)−κx
g′
0

g0

]

+(σ−1)p +
(κ

2
+ 1

)(

γ + x
g′
0

g0

)}

.

(195)

In the x → 0 limit, assuming that xg′
0(x)/g0(x) = o(1), the third line in

Eq. (195) is equivalent to

(1 − zz̄)2

x2

{
Aσ(γ) + (σ − 1)p +

(κ

2
+ 1

)
γ
}

=
(1 − zz̄)2

x2

{
A(γ) − 2p +

(κ

2
+ 1

)
γ
}

=
(1 − zz̄)2

x2
C(γ). (196)

4.2.4. The Beliaev–Smirnov Approach. In this section, we discuss the Beliaev–
Smirnov approach of Ref. [6] to the standard BS spectrum (16), and compare
it to the formulation here.

Remark 4.1. The study carried out in Ref. [6] by Beliaev and Smirnov con-
sists first in selecting a particular function ψ0 of the form (192), with the
choice β = β(γ) (172). The corresponding solution to the differential equa-
tion (168) for g, or, equivalently, to the hypergeometric equation (171), (184)
for g0, then involves a combination of two hypergeometric functions. While
obtained in Ref. [6] for the exterior case σ = +1, it can be readily generalized
to the interior whole-plane case with σ = −1, and is written for general σ
as:

g(x)=
(

x

4

)γ

g0(x), g0(x)=2F1

(

a, b, c,
x

4

)

−C0

(
x

4

)1/2−a−b

2F1

(

a′, b′, c′,
x

4

)

(197)
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with

a = a(γ) := γ − γσ
+, b = b(γ) := γ − γσ

−, c =
1
2

+ a + b, (198)

a′ =
1
2

− b, b′ =
1
2

− a, c′ =
1
2

+ a′ + b′ =
3
2

− a − b, (199)

where γσ
± is defined in (179). The constant

C0 =
Γ(c)

Γ(a)Γ(b)
Γ(a′)Γ(b′)

Γ(c′)
(200)

is chosen such that g0(x) is singularity free at x = 4, i.e., at the point z = −1
on the unit circle (see pp. 590–591 in [6]).

Remark 4.2. In the action (195) of the differential operator, one notices the
existence of apparently singular terms involving (4 − x)−1. In fact, the choice
of the constant C0 (200) in (197), made to insure that g0(x) is regular at x = 4,
yields in turn the particular identity

g′
0(4)

g0(4)
= −ab

2
= −1

2
(γ − γσ

+)(γ − γσ
−) =

1
κ

Aσ(γ). (201)

This resolves the apparent singularities at x = 4 in (197).

Remark 4.3. The parameter γ = γ0, hence β = β0 := β(γ0), [corresponding to
Eqs. (11) and (12) in Ref. [6]] is chosen such that the leading singularities in
the action (189) of the differential operator P(D) on the truncated ψ function
(186) vanish:

C(γ0) = 0, β0 = β(γ0) = κγ2
0/2. (202)

When considering the action (195) of the operator P(D) onto the full ψ0 func-
tion (192) including g0(x), the leading singularity (196) vanishes. Because the
functions C(γ) (174) and β(γ) (175) are independent of σ, the BS exponents
γ0 and β0 stay the same for the interior problem. The solutions to (202) are

γ±
0 (p) :=

1
2κ

(
4 + κ ±

√
(4 + κ)2 − 8κp

)
, (203)

β±
0 (p) :=

1
2
κγ±

0 (p)2, (204)

β0(p) := β−
0 (p) =

1
2
κγ2

0 , γ0 := γ−
0 , (205)

where the lower branch γ0 := γ−
0 is the one selected among the two solutions

γ±
0 [see Eq. (11) in Ref. [6] and Eqs. (15) and (16) here].

The method of proof in Ref. [6], that (205) yields the integral means
spectrum of the whole-plane SLE in the exterior case, requires the BS solution
(197), (203), (205) to the boundary equation (184) to be bounded and positive.
When checking these conditions, one finds the following results for the two
cases σ = ±1.
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Proposition 4.1. For σ = +1, the BS average integral means spectrum (203),
(205), while analytic up to p = (4 + κ)2/8κ, holds only up to p0(κ) := 3(4 +
κ)2/32κ, after which it stays linear [6]. For σ = −1, the BS spectrum only
holds for p ≤ p∗(κ), where p∗(κ) is given by (23):

p∗(κ) =
1

16κ

(
(4 + κ)2 − 4 − 2

√
4 + 2(4 + κ)2

)
, (206)

and corresponds to the intersection of spectra (205) and (183) β0(p∗) = β+(p∗).
Note that ∀κ ≥ 0, p∗(κ) < p0(κ).

Proof. Following Lemma 5 in [6], let us recall the values of the parameters
(198) of the hypergeometric functions, in the case γ = γ0:

a0(p) := a(γ0) = γ0(p) − γσ
+(p) = γ0(p) − 1

κ
− 1

κ

√
1 − 2σκp, (207)

b0(p) := b(γ0) = γ0(p) − γσ
−(p) = γ0(p) − 1

κ
+

1
κ

√
1 − 2σκp, (208)

where γ0 = γ−
0 is the lower BS parameter in (203), and where γσ

± is defined in
(179).

A first condition [6] for the existence of a bounded BS solution g0(x)
when x → 0, i.e., z → 1 on the circle ∂D, is the condition 1/2 − a0 − b0 ≥ 0,
which insures that the second term in (197) is non-diverging, and gives p ≤
3(4 + κ)2/32κ, independently of σ.

Then, a second condition [6] concerns the positivity of g0(x) on the in-
terval x ∈ [0, 4], which is shown to amount to g0(4) > 0, or explicitly

Γ(1/2 − a0)Γ(1/2 − b0) > 0.

For σ = +1 and for 0 ≤ p ≤ 1/2κ, BS show that 1/2 − a0 ≥ 1/2 − b0 > 0,
whereas for p ≥ 1/2κ, the inequality is fulfilled since a0 and b0 are complex
conjugate, thus Γ(1/2 − b0) = Γ(1/2 − a0).

For σ = −1, the situation turns out to be different. The parameters a0

(207) and b0 (208) are real for p ≥ 0, but the inequality 1/2 − b0 > 0 is no
longer necessarily satisfied. One has indeed from (182),

1
2

− b0(p) =
1
2

+
1
κ

− 1
κ

√
1 + 2κp − γ0(p)

=
1
2

+
2
κ

− γ+(p) − γ0(p). (209)

Since γ+ and γ0 are both increasing functions of p, there may be a point
where 1/2 − b0 = 0, after which it becomes negative and the positive BS
solution g0 (197), (200) ceases to exist for σ = −1. Recall that the four
pairs (γ0±, β0

±) (203)–(204), and (γ±, β±) (179)–(180) all belong to the curve
(γ, β(γ)) (175) (Fig. 4). In these notations, the transition point p∗(κ) (23)
is defined by the intersection of the two spectra β0(p∗) = β+(p∗). Thus,
the corresponding parameters γ0 = γ−

0 (p∗) and γ+ = γ+(p∗) are such that
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Figure 4. Curves A(γ), β(γ) = κγ2/2−C(γ), and C(γ), for
the value κ = 6 of the SLE parameter. They are displayed
for three different values of the moment order p: respectively
for the critical value p∗(κ = 6) where the two spectra β0 :=
β(γ−

0 ) and β+ := β(γ+) coincide; for a generic p = 0.9 ∈(
p∗(6), p(6)

)
, for which β(γ−

0 ) < β(γ+); and for the special
point p(κ = 6) = 2, where γ+ = γ+

0 = 1 and β(γ+) = 3

β(γ0) = β0(p∗) = β+(p∗) = β(γ+) (see Fig. 4, top figure). Because β(γ) is the
quadratic form (175), γ0 + γ+ = 2/κ + 1/2. Thus, p∗ is precisely the point
where 1/2 − b0 (209) vanishes. For p > p∗, 1/2 − b0 < 0 and a positive BS
solution g0 to the boundary equation (184) no longer exists. �
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Remark 4.4. In the original Beliaev–Smirnov case σ = +1, one has

1
2

− b0(p) =
1
2

+
1
κ

− 1
κ

√
1 − 2κp − γ0(p)

=
1
2

+
2
κ

− γ
(+1)
+ (p) − γ0(p). (210)

In the negative range of moments, there exists a value of p where 1/2 − b0(p)
(210) vanishes, p∗∗(κ) = −(4 + κ)2(8 + κ)/128, and below which 1/2 − b0(p)
is negative. This signals the possible onset of a phase transition, similar to
the one studied here in the σ = −1 case and occurring at p∗(κ). This will be
further studied in a separate publication with Dmitry Beliaev [5]. It has also
been noticed in Ref. [61].

Recall now that the special point (119) (p(κ), α(κ) > 0) of Theorem 3.3
was obtained as obeying both conditions (116) A(α) = 0 and (118) C(α) = 0,
together with β = κα2/2 (see Fig. 4, bottom figure, where α = γ+ = γ+

0 ).
This leads to the following remark.

Remark 4.5. The special point (p(κ), α(κ)) (119) is such that

β+ = β+
0 = κα2/2, α = γ+ = γ+

0 , (211)

and lies at the intersection of the curve γ+(p) (182) and of the complementary
BS curve γ+

0 (p) (203). This is illustrated in Fig. 6 further below.

We therefore conclude that Beliaev and Smirnov’s method of proof works
up to p∗(κ) in the interior case σ = −1, in such a way that the integral means
spectrum is given by β0 = β(γ0), with γ0 = γ−

0 such that C(γ−
0 ) = 0 (Fig. 4).

Above the transition point p∗(κ), we will argue in the next sections that the
integral means spectrum is given by β+ = β(γ+) (183), where γ+ (182) satisfies
A(γ+) = 0 (see Fig. 4, middle figure).

To study the integral means spectrum of the inner whole-plane SLE above
the transition point p∗(κ), we shall use as a first step in the next Sect. 4.2.5
the truncated function (186), ψ(z, z̄) = (1−zz̄)−βxγ , where γ and β belong to
the curve (γ, β(γ)), as given by the relation (177) (see Fig. 4, middle figure).
The action of the differential operator P(D) on this function ψ is given by
Eq. (189), which can be written as

P(D)ψ(z, z̄) = ψ(z, z̄)x−1

[

C(γ)
1 − zz̄

x
− A(γ)

]

(1 − zz̄ − x). (212)

For the BS parameter γ = γ−
0 , the first term inside the brackets (the most

singular term for x → 0, i.e., z → 1) vanishes, while in our case, γ = γ+, the
second term A vanishes.

4.2.5. Beyond the Transition Point: p ≥ p∗(κ). In that range, we now look for
the interior case σ = −1 at the properties of the function ψ(z, z̄) = (1−zz̄)−βxγ

(186), where γ and β are assumed throughout this section to satisfy the relation
(177) β = β(γ), and γ is such that A(γ) = A(−1)(γ) = 0 (178); they are given
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Figure 5. The unit disk D and the disk D1/2 (214). The
signs indicated are those (217) of P(D)[ψ+] for p ≤ p(κ),
which vanishes on ∂D and ∂D1/2

by the pair of solutions γ± = γ±(p) (182) and β± = β±(p) (183). Eq. (212)
then yields the explicit result:

P(D)[ψ(z, z̄)] = ψ(z, z̄)C(γ)(1 − zz̄)(1 − zz̄ − x)x−2, (213)

where we recall that C(γ) = κ
2γ2 − β(γ).

The quantity in factor of ψ(z, z̄) in (213) vanishes both on the unit circle
∂D and on the circle ∂D1/2 := {z : 1 − zz̄ − x = 0}, centered at (1/2, 0) and of
radius 1/2, which passes through z = 0 and z = 1, and is tangent to the unit
circle ∂D at z = 1 (see Fig. 5). The overall sign of (213) crucially depends on
the position of z with respect to the circle ∂D1/2: For z inside the disk

D1/2 := {z : 1 − zz̄ − x > 0}, (214)

(213) has the same sign as the coefficient C(γ), and the opposite sign when z
lies outside of that disk.

The sign of the coefficient C(γ) itself depends on which branch is chosen
in (182) and (183). One easily finds that

C(γ±(p)) =
κ

2
γ2

±(p) − β±(p) =
(

1
κ

+
1
2

)(
1 ±

√
1 + 2κp

)
− 2p.

For the negative branch, and for p ≥ 0, it is clear that

C(γ−) ≤ 0. (215)

The positive branch C(γ+), on the other hand, has a zero for p = p(κ) =
(6 + κ)(2 + κ)/8κ with γ+ = α = (6 + κ)/2κ, which naturally corresponds to
the special set of values (119) where there exits the exact solution (114) with
β+ = β = κα2/2. One therefore has

C(γ+) > 0, p < p(κ),

C(γ+) = 0, p = p(κ),

C(γ+) < 0, p > p(κ).
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We therefore arrive at the various domain inequalities for p �= p(κ), with the
obvious notation ψ±(z, z̄) := (1 − zz̄)−β±xγ± ,

P(D)[ψ−(z, z̄)] < 0, z ∈ D1/2 , P(D)[ψ−]>0, z ∈ D\D1/2; (216)

p < p(κ) : P(D)[ψ+(z, z̄)] > 0, z ∈ D1/2 , P(D)[ψ+]<0, z ∈ D\D1/2; (217)

p > p(κ) : P(D)[ψ+(z, z̄)] < 0, z ∈ D1/2 , P(D)[ψ+]>0, z ∈ D\D1/2; (218)

the resulting ratio P(D)[ψ±]/ψ± vanishes at the boundaries of the above do-
mains, i.e., on ∂D and ∂D1/2. For p = p(κ), ψ+ is an exact solution such that
P(D)[ψ+] = 0.

Logarithmic modification. Following Ref. [6], let us consider now the action
of the differential operator on the modified function ψ(z, z̄)�δ(zz̄), where here
ψ := ψ± and where the factor

�δ(zz̄) := [− log(1 − zz̄)]δ, δ ∈ R, (219)

brings in a (soft) logarithmic singularity. From Eq. (106) one finds the simple
result

P(D)[ψ(z, z̄)�δ(zz̄)] = �δ(zz̄)P(D)[ψ(z, z̄)] − ψ(z, z̄)2zz̄(1 − zz̄)x−1� ′
δ(zz̄)

= �δ(zz̄)
{

P(D)[ψ(z, z̄)] − ψ(z, z̄)
2δzz̄x−1

[− log(1 − zz̄)]

}

,

(220)

where the derivative � ′
δ(zz̄) is taken with respect to zz̄. Using Eq. (213) yields

(here γ := γ±):

P(D)[ψ(z, z̄)�δ(zz̄)] = �δ(zz̄)ψ(z, z̄)x−1

×
[

C(γ)(1 − zz̄)(1 − zz̄ − x)x−1 − 2zz̄δ

[− log(1 − zz̄)]

]

. (221)

• Consider first the domain D1/2 (Fig. 5). The sign of P(D)[ψ±(z, z̄)] for
z ∈ D1/2 is given in the three different cases by the first column of Eqs.
(217), (217) and (218). In each case, this sign is also that of the first term
of (221) in the same domain and for the same case. For each case, choose
the sign of δ so that the second term in (221) has the same uniform sign
as the first term in D1/2. Then, P(D)[ψ±(z, z̄)] and P(D)[ψ±(z, z̄)�δ(zz̄)]
have the same sign in D1/2.

• Consider now the complementary domain D\D1/2, where 1 − zz̄ ≤ x

(Fig. 5). In (221), one then has (1−zz̄)(1−zz̄−x)x−1 = O(1−zz̄). There-
fore, for |z| close enough to 1, say r < |z| < 1, the second term on the
r.h.s of (221), which vanishes logarithmically when r → 1−, dominates
the first term, hence determines the overall sign of P(D)[ψ±(z, z̄)�δ(zz̄)]
for z ∈ D\D1/2.

• Recall now that δ has been chosen precisely such that the sign of the sec-
ond term in (221) is that of P(D)[ψ±�δ] and P(D)[ψ±] in D1/2. We thus
conclude that in the whole annulus r < |z| < 1, the sign of P(D)[ψ±(z, z̄)
�δ(zz̄)] is uniform and given by that of P(D)[ψ±(z, z̄)] for z ∈ D1/2, as
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given for the three canonical cases [ψ−], [ψ+, p ≤ p(κ)], [ψ+, p ≥ p(κ)] by
the first column in Eqs. (217), (217) and (218).
We therefore conclude that there exist for these three cases (denoted by

i = 1, 2, 3) three open annuli A(ri) := {z : ri < |z| < 1} = D\D(ri) whose
boundary includes ∂D, where one has respectively (for a specific sign of δ
chosen in each case as described above):

• P(D)[ψ−(z, z̄)�δ(zz̄)] < 0, z ∈ A(r1), so that ψ−(z, z̄)�δ(zz̄) is locally a
subsolution to the equation P(D)[F (z, z̄)] = 0;

• for p < p(κ), ψ+(z, z̄)�δ(zz̄) is a supersolution with P(D)[ψ+(z, z̄)�δ

(zz̄)] > 0 for z ∈ A(r2);
• for p > p(κ), ψ+(z, z̄)�δ(zz̄) is a subsolution with P(D)[ψ+(z, z̄)�δ(zz̄)] <

0 for z ∈ A(r3);
• for p = p(κ), P(D)[ψ+(z, z̄)] = 0, z ∈ D, so that ψ+(z, z̄) = F (z, z̄) =

(1−zz̄)−β+ |1−z|2γ+ is the exact solution in Theorem 3.3 with parameters
(119): γ+ = α(κ) and β+ = κα2/2.
We then follow the same method as in Refs. [4,6]. The operator P(D),

when written in polar coordinates as in (160), is parabolic, where θ corresponds
to the spatial variable, and r to the time variable [30]. In the above, the func-
tions ψ±(z, z̄)�δ(zz̄) are positive functions bounded on the respective circles of
radius ri, as F (z, z̄) = E

[|f ′
0(z)|p] is. One can thus find positive constants ci

such that

F < c1 ψ− �δ, r = r1;
c2 ψ+ �δ < F, r = r2, p < p(κ);
F < c3 ψ+ �δ, r = r3, p > p(κ).

Using then in each of the corresponding annuli where P(D)[ψ±�δ] has a definite
sign, respectively, the maximum principle, the minimum principle, and the
maximum principle ([30], Th. 7.1.9), yields the

Proposition 4.2. There exist positive constants ci, i = 1, 2, 3, such that

F < c1 ψ− �δ, z ∈ A(r1), ∀p, (222)
c2 ψ+ �δ < F, z ∈ A(r2), p < p(κ), (223)
F < c3 ψ+ �δ, z ∈ A(r3), p > p(κ). (224)

These inequalities will be used in the following section to establish the
existence at p∗(κ) of a phase transition in the integral means spectrum of the
inner whole-plane SLE and to prove Theorem 1.3.

4.2.6. Proof of Theorem 1.3.

Proof. The average integral means spectrum of the whole-plane SLE is given
by the asymptotic behavior for r → 1− of the F integral (in the sense of
equivalence of logarithms):

∫ 2π

0

F (r, θ)dθ =
∫ 2π

0

E(|f ′
0(r, θ)|p)dθ

(r→1−) (1 − r)−β(p). (225)
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For the ψ function defined in Eqs. (185)–(186), the integral means are:
∫ 2π

0

ψ(r, θ)dθ = (1 − r2)−β

∫ 2π

0

g(r, θ)dθ, (226)

where we write g(r, θ) = g[D(r, θ)] = Dγ(r, θ) = |1 − z|2γ . This function g has
a singularity at z = 1, i.e., for r = 1, θ = 0. Near that point, its argument
D(r, θ) = r2 − 2r cos θ + 1 is equivalent to D(r, θ) ∼ (1 − r)2 + θ2.

The exponents β and γ in the above are given by Eqs. (183) and (182).
For the (+) branch, γ+ > 0 and the integral

∫ 2π

0
g+(1, θ)dθ is integrable at

θ = 0, which is a zero of g. For the other branch, γ− is negative for p ≥ 0,
and the singularity along the unit circle at θ = 0 is no longer integrable when
2γ− + 1 ≤ 0. This corresponds to a cross-over value p = p̃(κ) := (4 + κ)/8.
One therefore has:

∫ 2π

0

ψ+(r, θ)dθ
(r→1−) (1 − r)−β+ , (227)

∫ 2π

0

ψ−(r, θ)dθ
(r→1−)

{
(1 − r)−β− , p ≤ 4+κ

8 ,

(1 − r)−β−+2γ−+1, p ≥ 4+κ
8 .

(228)

Consider now the modified functions ψ± �δ, where �δ is the weakly di-
verging or vanishing logarithmic function (219). The asymptotic power law
behaviors of their integral means near the unit circle are obviously the same
as for ψ±:

∫ 2π

0

ψ+(r, θ)�δ(r2)dθ
(r→1−) (1 − r)−β+ , (229)

∫ 2π

0

ψ−(r, θ)�δ(r2)dθ
(r→1−)

{
(1 − r)−β− , p ≤ 4+κ

8 ,

(1 − r)−β−+2γ−+1, p ≥ 4+κ
8 .

(230)

By plugging the asymptotic behaviors (225) and (230) into inequalities (223)
and (224) of Proposition 4.2, we obtain

β+(p) ≤ β(p), p < p(κ) =
(6 + κ)(2 + κ)

8κ
, (231)

β(p) = β+(p), p = p(κ), (232)

β(p) ≤ β+(p), p > p(κ) =
(6 + κ)(2 + κ)

8κ
. (233)

This ends the proof of Theorem 1.3 for the m = 1 case. �

By plugging the asymptotic behaviors (225) and (230) into inequality
(223) of Proposition 4.2, we obtain

β(p) ≤
{

β−(p), p ≤ 4+κ
8 ,

β−(p) − 2γ−(p) − 1, p ≥ 4+κ
8 .

(234)

At this point, we can invoke the bound implied by the existence of an universal
spectrum BS for the S schlicht class of univalent functions f in the unit disk.
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As we have seen in Sect. 4.1.2, the integral means spectrum βf (p) of such an
f ∈ S is bounded, for p ≥ 2/5, as:

βf (p) ≤ BS(p) = 3p − 1, p ≥ 2/5,

the maximum being attained for the Koebe function (1). For p > 0, we have
from the definitions (183) and (182):

β+ < 3p − 1 < β−, p ≤ 4 + κ

8
, (235)

β+ < 3p − 1 < β− ≤ β− − 2γ− − 1, p ≥ 4 + κ

8
. (236)

This therefore excludes the (−) branch as a possible integral means spectrum.
This strongly suggests that the average integral means spectrum of the

unbounded inner whole-plane SLEκ is simply given, for p ≥ 0, by

β(p, κ) = max
{

β0(p, κ), 3p − 1
2

− 1
2

√
1 + 2κp

}

, (237)

where β0(p, κ) is given by Eq. (16). If one extends the range of moment orders
to p ≤ 0, β0 is replaced by βtip (31) for p sufficiently negative. The phase tran-
sition in Eq. (237) occurs at the critical point p∗(κ), as given by Eq. (23), where
the BS spectrum ceases to hold (see Proposition (4.1)). These conclusions are
illustrated in Fig. 6.

4.2.7. Proof of Theorem 1.4. In this section, we provide a proof of Theorem
1.4. It is based on an extended use of a duality property of the boundary
solution (197), which we specialize here to the interior whole-plane case σ =
−1. A similar study can be made for the exterior BS case σ = +1 [5]. Define
the dual parameters (γ, γ′) such that

β(γ) = β(γ′), (238)

γ + γ′ =
2
κ

+
1
2
, (239)

where β(γ) is defined in (177) (see Fig. 7). Using this duality, we make the
following observation:

Remark 4.6. The solution to the differential equation (168) for g, or (184) for
g0, which involves the combination of two hypergeometric functions (197), can
be written in a dual manner as:

g(x) =
(

x

4

)γ

2F1

(

a, b, c,
x

4

)

− C0

(
x

4

)γ′

2F1

(

a′, b′, c′,
x

4

)

(240)

=:
(

x

4

)γ

g0(x) (241)

=:
(

x

4

)γ′

g̃0(x), (242)
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Figure 6. Various integral means spectra for the interior
whole-plane SLEκ (here for κ = 6): Standard BS branch of
the SLEκ=6 bulk average means spectrum β0(p, κ) = β−

0 (p, κ)
in Eqs. (16) and (205) (in blue); second “non-physical” BS
branch β+

0 (p, κ) in Eq. (204) (in red); whole-plane multifrac-
tal function β+(p, κ) = 3p − 1/2 − (1/2)

√
1 + 2κp in Eq. 183

(in green). The resulting average integral means spectrum
β(p, κ) (237) of whole-plane SLEκ undergoes a phase tran-
sition at p = p∗(κ) (23), where the first two curves inter-
sect, β0(p∗, κ) = β+(p∗, κ), such that β(p, κ) = β0(p, κ),∀p ∈
[0, p∗(κ)], and β(p, κ) = β+(p, κ),∀p ∈ [p∗(κ),∞). Note that
the special point p = p(κ) (119) (here p(6) = 2) lies at the in-
tersection (211) of the curve β+(p, κ) with the “non-physical”
BS branch β+

0 (p, κ)

Figure 7. Curves A(γ), β(γ) = κγ2/2 − C(γ), and C(γ),
for the value κ = 6 of the SLE parameter, and for a generic
p = 0.9 ∈ (

p∗(6), p(6)
)
. The dual parameters (γ, γ′) obey

γ + γ′ = 2/κ + 1/2, so that β(γ) = β(γ′). The choice of
parameter γ ∈ [

γ+, γ+
0

)
yields values β(γ) ≥ β(γ+), A(γ) ≤ 0,

C(γ) > 0, and A(γ′) > 0, C(γ′) < 0
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with

a = a(γ) := γ − γ+, b = b(γ) := γ − γ−, c =
1
2

+ a + b, (243)

a′ = a(γ′) =
1
2

− b(γ), b′ = b(γ′) =
1
2

− a(γ), c′ =
1
2

+ a′ + b′, (244)

where γ± is defined in (182):

γ± =
1
κ

(
1 ±

√
1 + 2κp

)
, β(γ±) = 3p − 1

2
− 1

2

(
1 ±

√
1 + 2κp

)
. (245)

Recall that the constant

C0(a, b) :=
Γ(c)

Γ(a)Γ(b)
Γ(a′)Γ(b′)

Γ(c′)
=

Γ(1/2 + a + b)
Γ(a)Γ(b)

Γ(1/2 − a)Γ(1/2 − b)
Γ(3/2 − a − b)

(246)

is chosen such that g(x) is singularity free at x = 4, i.e., at the point z = −1
on the unit circle.

In Sects. 4.2.5 and 4.2.6, we studied the properties of the truncated func-
tion ψ+(z, z̄) = xγ+(1 − zz̄)−β(γ+), which, once modified by an adequate log-
arithmic factor, provided a supersolution to the BS differential equation for
p ∈ [p∗(κ), p(κ)], and a subsolution for p ≥ p(κ). Here, we propose to use
the complete solution (240) for a value of the parameter γ slightly above γ+,
to obtain a subsolution for p ≥ p∗(κ), such that β(γ) > β(γ+) (Fig. 7). We
therefore set γ = γ+ + a, with a > 0, and will ultimately let a → 0+ to prove
that the limit β(γ+) yields the rigorous average integral means spectrum.

Remark 4.7. We have seen above that the phase transition at p∗(κ) occurs
when 1/2 − b(γ0) = 0. Because of the duality Eq. (244), this corresponds to
the equality a(γ′

0) = 0, hence γ′
0 = γ+, i.e., γ0 = γ′

+. One has furthermore
γ′
+ ≥ γ0 for p ≤ p∗(κ) and γ′

+ ≤ γ0 for p ≥ p∗(κ). Since γ0 = γ−
0 is the lower

value such that C(γ0) = 0, one has C(γ′
+) ≤ 0 after the transition, hence

C(γ′) < 0 for γ′ < γ′
+ (see Fig. 7). This last property is the key to obtain a

subsolution to the partial differential equation for γ > γ+.

• The x → 0, z → 1 limit. In this limit, the leading term in the function
g (240) is the second one, since γ′ < γ; it gives the equivalent g(x) ∼
−C0(x/4)γ′

, so that g0 (241) diverges as g0(x) ∼ −C0(x/4)γ′−γ , while
for (242), g̃0(0) = −C0. It is easy to see from (246) that for a small and
positive,

C0(a, b) ∼ a

1/2 − b

Γ(1/2 + b)Γ(1/2)
Γ(b)

.

We furthermore have 1/2 − b(γ) = a(γ′) = γ′ − γ+ = γ′
+ − γ+ − a < 0,

so that C0 < 0 and g(x) > 0 for x small, and g̃0(0) > 0.
• Sign of g. To show that g (240) is positive on the interval [0, 4], we argue

as in Ref. [6]. Since γ+ is the rightmost zero of A, we have A(γ) < 0 for
γ > γ+ (Fig. 7). In the hypergeometric equation (184), the signs of the
g0 and g′′

0 terms are thus opposite. We already know that g(0+) > 0, and
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it suffices to prove that at the endpoint x = 4, g(4) = g0(4) = g̃0(4) > 0,
to show the positivity of g on the whole interval. From (240) and (246),
we have [6]

g(4) =
Γ(1/2)Γ(1/2 + a + b)
Γ(1/2 + a)Γ(1/2 + b)

(1 − tan πa tan πb) .

By continuity, it is sufficient to study the sign of this quantity for a → 0+.
Recall that b = a + 1/2 + γ+ − γ′

+, where the constant added to a is
positive. If that constant is different from 1/2 + n, n ∈ N, then g(4)
tends to 1 for a → 0+. If the constant happens to be an half-integer,
1 − tan πa tan πb = 2, independently of a, and g(4) is positive for a ≥ 0,
and tends to 2 for a → 0+.

• Action of the operator P(D). The action of the partial differential oper-
ator P(D) on the function in the unit disk, ψ0(z, z̄) = (1 − zz̄)−β(γ)g(x),
where g(x) is the boundary solution (240), (241), is given by (195), here
specified for σ = −1,
P(D)[ψ0(z, z̄)]

ψ0(z, z̄)

= (1 − zz̄)

[

− 1

x

[
C(γ) + A(γ)

]
+

1

4 − x
2A(γ) +

(
κ

2
− 1 − 2κ

4 − x

)
g′
0

g0

]

+
(1 − zz̄)2

x2

{
1

4 − x

[

4A(γ) − κx
g′
0

g0

]

− 2p +
(κ

2
+ 1

)(

γ + x
g′
0

g0

)}

.

(247)

We now use the (γ, γ′) duality (239) and the associated dual function g̃0
(242), to rewrite the operator’s action as
P(D)[ψ0(z, z̄)]

ψ0(z, z̄)

= (1 − zz̄)

[

− 1

x

[
C(γ′) + A(γ′)

]
+

1

4 − x
2A(γ′) +

(
κ

2
− 1 − 2κ

4 − x

)
g̃′
0

g̃0

]

+
(1 − zz̄)2

x2

{
1

4−x

[

4A(γ′)−κx
g̃′
0

g̃0

]

− 2p +
(κ

2
+ 1

)(

γ′ + x
g̃′
0

g̃0

)}

.

(248)

Remark 4.8. The Remark (4.2) about the absence of singularity in the opera-
tor’s action at x = 4 is also valid after using duality in (248). More specifically,
the identity (201) there can be recast as

g̃′
0(4)

g̃0(4)
= −1

2
(γ′ − γ+)(γ′ − γ−) =

1
κ

A(γ′).

Remark 4.9. In the x → 0 limit, because xg̃′
0(x)/g̃0(x) = O(xγ−γ′

), the second
line of (248) is equivalent to

(1 − zz̄)2

x2

{
A(γ′) − 2p +

(κ

2
+ 1

)
γ′
}

=
(1 − zz̄)2

x2
C(γ′). (249)

Because of Remark 4.7, we know that C(γ′) < 0 for p ≥ p∗(κ).



Vol. 16 (2015) Coefficients and Multifractality of Whole-Plane SLE 1373

We can therefore write (248) under the form

P(D)[ψ0(z, z̄)]
ψ0(z, z̄)

=
1 − zz̄

x
h0(x) +

(1 − zz̄)2

x2
h̃0(x), (250)

h0(x) = −[
C(γ′) + A(γ′)

]
+

x

4 − x
2A(γ′) +

(
κ

2
− 1 − 2κ

4 − x

)

x
g̃′
0

g̃0
,

h̃0(x) =
1

4 − x

[

4A(γ′) − κx
g̃′
0

g̃0

]

− 2p +
(κ

2
+ 1

)(

γ′ + x
g̃′
0

g̃0

)

,

where h0(x) and h̃0(x) are two bounded functions on the interval [0, 4]. Owing
to (249), h̃0(0) = C(γ′) < 0.

• Logarithmic modification. As in Sect. 4.2.5, let us consider now the action
of the differential operator on the modified function ψ0(z, z̄)�δ(zz̄), with
the logarithmic factor

�δ(zz̄) := [− log(1 − zz̄)]δ, δ ∈ R.

Equation (220) yields

P(D)[ψ0(z, z̄)�δ(zz̄)]

= �δ(zz̄)
{

P(D)[ψ0(z, z̄)] − ψ0(z, z̄)
2δzz̄x−1

[− log(1 − zz̄)]

}

;

Equation (250) then gives

xP(D)[ψ0(z, z̄)�δ(zz̄)]
�δ(zz̄)ψ0(z, z̄)

= (1 − zz̄)h0(x) +
(1 − zz̄)2

x
h̃0(x) − 2δzz̄

[− log(1 − zz̄)]
. (251)

• Consider now the annulus A(r) = {z : r < |z| < 1}, and its intersection
with the domain D\D1/2, where 1 − zz̄ ≤ x (Fig. 5). In this domain,

(1 − zz̄)h0(x) + (1 − zz̄)2x−1h̃0(x) = O(1 − zz̄),

so that this term is dominated by the logarithmic term in (251) for r
close enough to 1. The sign of P(D)[ψ0�δ] is therefore given by that of
−δ in this domain.

• Consider next the domain A(r)∩D1/2. For r → 1−, the first term in (251)
is dominated as before by the logarithmic one. The second term is not
O(1 − zz̄), but its sign, for x small enough, hence for r near 1, is that of
h̃0(0) = C(γ′) < 0. Therefore, if we choose δ > 0, the sign of the r.h.s. of
(251) will be negative in A(r) ∩ D1/2, for r close enough to 1.
As seen just above, this also holds in A(r)∩(D\D1/2), so that we conclude
that for δ > 0, P(D)[ψ0�δ] < 0 in the whole annulus A(r), i.e., ψ0�δ is a
positive subsolution there.
We then follow the same method as in Proposition 4.2 and Sect. 4.2.6. The

subsolution ψ0(z, z̄)�δ(zz̄) is a positive function on A(r), as the true solution
F (z, z̄) = E

[|f ′
0(z)|p] is. The maximum principle then yields
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Proposition 4.3. There exists a positive constant c such that

F < cψ0 �δ, z ∈ A(r), p ≥ p∗(κ). (252)

Recall now that ψ0 here involves a parameter γ > γ+, whereas ψ+ =
ψ+(z, z̄) = xγ+(1 − zz̄)−β(γ+), which appears in Proposition 4.2 (about the
existence of a positive constant c2, such that c2 ψ+ �δ < F for z ∈ A(r) and
p < p(κ)), involves γ = γ+ exactly.
Proof of Theorem 1.4.

Recall that the average integral means spectrum β(p) := β(p, κ) of the
whole-plane SLEκ is defined by (225) [a notation which should not be confused
with β(γ), as defined in (177)]. For the function ψ0(z, z̄) = ψ0(r, θ), the integral
means are

∫ 2π

0

ψ0(r, θ)dθ = (1 − r2)−β(γ′)
∫ 2π

0

g(r, θ)dθ, (253)

where we write (240) as g(x) = g(|1 − reiθ|2) = g(r, θ). Recall that g(x) ∼ xγ′

for x → 0, where γ′ = γ′
+ − a ≤ γ′

+ can be negative, and the singularity along
the unit circle at θ = 0 is no longer integrable when 2γ′ +1 ≤ 0. For the upper
limit of γ′, γ′

+ = 1/2 + (1/κ)(1 − √
1 + 2κp), this corresponds to a cross-over

value p = p̂(κ) := 1 + κ/2, after which 2γ′
+ + 1 < 0.

Consider now the logarithmically modified functions ψ+ �δ and ψ0 �δ,
whose integral means asymptotic power law behaviors are obviously the same
as for ψ+ and ψ0:

∫ 2π

0

ψ+(r, θ)�δ(r2)dθ
(r→1−) (1 − r)−β(γ+), (254)

∫ 2π

0

ψ0(r, θ)�δ(r2)dθ
(r→1−)

{
(1 − r)−β(γ′), 2γ′ + 1 ≥ 0,

(1 − r)−β(γ′)+2γ′+1, 2γ′ + 1 < 0.
(255)

Using the asymptotic behaviors (225), (255), and (255) in Propositions 4.2 and
4.3, we obtain

β(γ+) ≤ β(p, κ), p∗(κ) ≤ p ≤ p(κ) =
(6 + κ)(2 + κ)

8κ
, (256)

β(p, κ) ≤ β(γ′) = β(γ), 0 ≤ 2γ′ + 1, p∗(κ) ≤ p, (257)
β(p, κ) ≤ β(γ′) − 2γ′ − 1, 2γ′ + 1 < 0, p∗(κ) ≤ p. (258)

Suppose first that 2γ′
++1 > 0, i.e., p < p̂(κ) = 1+κ/2, then 2γ′+1 = 2γ′

++1−
2a is non-negative for a > 0 small enough. Equation (257) then gives by duality
β(p, κ) ≤ β(γ′) = β(γ′

+ − a) = β(γ+ + a) = β(γ). Similarly, if 2γ′
+ + 1 = 0,

i.e., p = p̂(κ), then 2γ′ + 1 = −2a, and by (258), β(p, κ) ≤ β(γ′) + 2a =
β(γ′

+ − a) + 2a = β(γ+ + a) + 2a. In both cases, by letting a → 0+, we obtain
β(p, κ) ≤ β(γ+) for p∗(κ) ≤ p ≤ p̂(κ). By combining this with Eq. (256), we
obtain the expected identity β(p, κ) = β(γ+) for p∗(κ) ≤ p ≤ min{p̂(κ), p(κ)}.
By recalling that β(γ+) = β(γ+(p)) = β+(p) (Eqs. (182), (183)), we finally
obtain β(p, κ) = 3p − 1/2 − (1/2)

√
1 + 2κp, i.e., Theorem 1.4.
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Remark 4.10. For p > p(κ), in contrast to (234), (256), we have from (233)
the (subsolution) inequality β(p, κ) ≤ β+(p) = β(γ+); this simply coincides
with the inequality obtained here by the duality method. Hence, we cannot
prove that β(p, κ) = β+(p) for p > p(κ) by this method.

4.3. Spectrum of the m-fold Whole-Plane SLE (m ≥ 1)

In this section, we address the derivation of Statement 1.1 for general m.
For the m-fold inner whole-plane SLEκ map, defined as h

(m)
0 (z) =

z
[
f0(zm)/zm

]1/m, m ≥ 1, the average integral means spectrum is, for p ≥ 0,

βm(p, κ) = max
{
β̄0(p, κ), Bm(p, κ)

}
,

Bm(p, κ) =
(

1 +
2
m

)

p − 1
2

− 1
2

√

1 +
2κp

m
,

(259)

where β̄0(p, κ) is the BS expected integral mean spectrum (18). The phase
transition takes place when the second term Bm on the r.h.s. of (259) equals,
then exceeds, the first one. For 1 ≤ m ≤ 3, this takes place at the critical
point (24) p∗

m(κ) ≤ p∗
0(κ), hence before the transition point p∗

0(κ) (19) of the
BS spectrum β0 in (18) to the linear behavior β̂0 (17). For m ≥ 4, the order
of the two critical points p∗

0(κ) and p∗
m(κ) depends on κ, and is given by (26):

p∗
m(κ) � p∗

0(κ), κ � κm, κm := 4
m + 3
m − 3

, m ≥ 4,

such that for κ ≤ κm,

βm(p, κ) =

{
β0(p, κ), 0 ≤ p ≤ p∗

m(κ),
Bm(p, κ), p∗

m(κ) ≤ p,

whereas for κ ≥ κm,

βm(p, κ) =

⎧
⎪⎨

⎪⎩

β0(p, κ), 0 ≤ p ≤ p∗
0(κ),

β̂0(p, κ), p∗
0(κ) ≤ p ≤ p∗∗

m (κ),
Bm(p, κ), p∗∗

m (κ) ≤ p,

where p∗∗
m (κ) is the second critical point (29) p∗∗

m (κ) := m(κ2 −16)/32κ, where
the spectrum Bm(p, κ) intersects the linear spectrum β̂0(p, κ) (17).

These results for βm(p, κ) obviously satisfy Makarov’s Theorem 4.3 [65]
for m-fold symmetric functions:

βm(p, κ) ≤
(

1 +
2
m

)

p − 1 for p ≥ 2m

4 + m
. (260)

4.3.1. Derivation of Statement 1.1. Rather than providing here in full detail
the calculation of the spectrum for the m-fold whole-plane SLE map, which is
quite similar to those of Sect. 4.2 above, we shall take the following shortcut,
as suggested by Remark 4.3 and by the comment after Eq. (212).

We now use the identities (151), (152) and (153) giving A, B and C in
the m-fold case. We first remark that the expression (153) for C does not
depend on m, hence the standard spectrum, as given by β = κα2/2 and
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C = −κ
2α(α − 1) + 2α − p = 0, coincides with the BS spectrum β0(p) (for the

choice of the negative branch solution β−
0 (p) to C = 0). This is expected, since

this part of the spectrum should correspond to the fine multifractal structure
of the bulk of the SLE curve, which should stay invariant under any m-fold
transform.

The spectrum corresponding to the unbounded nature of the m-fold
whole-plane SLE can now be obtained by setting Am = 0 in (151), and using
again β = κα2/2 − C together with C (153). This gives the two solutions

α = γ±
m(p, κ) := κ−1

(
1 ±

√
1 + 2κp/m

)
, (261)

β = B±
m(p, κ) :=

(
2
m

+ 1
)

p − κ

2
γ±

m(p, κ)

=
(

2
m

+ 1
)

p − 1
2

(

1 ±
√

1 + 2κ
p

m

)

. (262)

Note that in the case m = 1, the two functions B±
1 (p, κ) coincide with the func-

tions β±(p, κ) used in Sect. 4.2, and defined in (183). Thanks to the universal
spectrum for m-fold symmetric analytic functions, as given by Makarov’s The-
orem 4.3, the negative branch B−

m is clearly excluded, while the positive one
B+

m(≡ Bm(22)) satisfies the universal bound (260). The transition point where
Bm(p, κ) = β0(p, κ) is given by p = p∗

m(κ) in Eq. (24).
Consider first the case 1 ≤ m ≤ 3 for which, for all κ, this transition

point p∗
m(κ) ≤ p∗

0(κ) (19), where the BS spectrum (16) in (18) changes to
the linear spectrum (17). For p ≤ p∗

m(κ) one has β0(p, κ) ≥ Bm(p, κ), hence
βm(p, κ) = β0(p, κ). For p ≥ p∗

m(κ), the unbounded integral means spectrum
Bm(p, κ) dominates, hence βm(p, κ) = Bm(p, κ).

The alternative inequality p∗
0(κ) ≤ p∗

m(κ) arises only for m ≥ 4 and for
κ ≥ κm (26). In this case, the phase transition at p∗

0(κ) to the linear piece (17)
of the BS spectrum appears before the phase transition from β0(p, κ) to the
m-fold unbounded spectrum Bm(p, κ) happens at p∗

m(κ). The latter transition
therefore takes place at the second phase transition point p∗∗

m (κ) (29), where
β̂0(p, κ) intersects Bm(p, κ). We thus expect the sequence of spectra (28) to
take place for m ≥ 4, κ ≥ κm. This concludes the (non-rigorous) derivation of
Statement 1.1.

4.3.2. Proof of Theorem 1.5.

Proof. A rigorous proof of Theorem 1.5 for general m can be achieved in the
same manner as in Sect. 4.2 above for the m = 1 case. Using the differential
operator Pm(D) (149) instead of (105) [or the cylindrical coordinate version
thereof instead of (160)] in the analysis of Sect. 4.2, we search for approximate
solutions to Pm(D)[ψ(ζ, ζ̄)] = 0 (148) of the form

ψ(ζ, ζ̄) := (1 − ζζ̄)−βxγ , (263)

with here

ζ := zm, x := (1 − ζ)(1 − ζ̄) = (1 − zm)(1 − z̄m).
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Since ψ(ζ, ζ̄) = (1−ζζ̄)−βϕγ(ζ)ϕγ(ζ̄), with ϕγ(ζ) = (1−ζ)γ , the same algebra
as in (150) in Sect. 4.2.2 yields, for arbitrary values of β, γ, the analog of the
action (188),

Pm(D)[ψ(ζ, ζ̄)] = ψ(ζ, ζ̄)x−1

{

(κγ2 − 2β)ζζ̄ − Am(γ)(1 − ζζ̄ − x)

+ C(γ)
[

(1 − ζζ̄)
(

1 − ζζ̄

x
+ 1

)

− 2
]}

, (264)

where Am is given by (151) and C by (153) (for α = γ), in conjunction with
(150). We write ψ = ψ+ for the choice β := B+

m(p, κ) and γ := γ+
m(p, κ), as

defined in Eqs. (261) and (262), such that Am(γ) = 0 and C(γ) = κγ2/2 − β.
The action (264) then simply becomes, as in (213),

Pm(D)[ψ+(ζ, ζ̄)] = ψ+(ζ, ζ̄)C(γ)(1 − ζζ̄)(1 − ζζ̄ − x)x−2. (265)

In complete analogy to Eqs. (217) and (218), we then have, with the special
point pm(κ) defined as in (154),

p < pm(κ) : Pm(D)[ψ+(ζ, ζ̄)] > 0, ζ ∈ D1/2, Pm(D)[ψ+] < 0, ζ ∈ D\D1/2;

p = pm(κ) : Pm(D)[ψ+(ζ, ζ̄)] = 0, ζ ∈ D;

p > pm(κ) : Pm(D)[ψ+(ζ, ζ̄)] < 0, ζ ∈ D1/2 Pm(D)[ψ+] > 0, ζ ∈ D\D1/2.

A modification by the logarithmic factor (219) of ψ+ into ψ+(ζ, ζ̄)�δ(ζζ̄), yields
the same conclusions as in Sect. 4.2.5: there exist open annuli Am(ri) := {ζ :
ri < |ζ| < 1} = D\D(ri), i = 1, 2, whose boundary includes ∂D, and where one
has respectively (for a specific sign of δ chosen appropriately to each case):

• for p < pm(κ), ψ+�δ is a supersolution with Pm(D)[ψ+(ζ, ζ̄)�δ(ζζ̄)] > 0
for ζ ∈ Am(r1);

• for p > pm(κ), ψ+�δ is a subsolution with Pm(D)[ψ+(ζ, ζ̄)�δ(ζζ̄)] < 0 for
ζ ∈ Am(r2);

• for p = pm(κ), Pm(D)[ψ+(ζ, ζ̄)] = 0, ζ ∈ D, so that ψ+(ζ, ζ̄) = F (ζ, ζ̄) =
(1 − ζζ̄)−β |1 − ζ|2γ is the exact solution of Theorem 3.7 with parameters
(154): γ = γ+

m(pm(κ), κ) = αm(κ) and β = B+
m(pm(κ), κ) = καm(κ)2/2.

We then follow the same method as above [4,6]. The operator Pm(D),
when written in polar coordinates, is parabolic. Using in each of the two annuli
where Pm(D)[ψ+�δ] has a definite sign, respectively, the minimum principle,
and the maximum principle ([30], Th. 7.1.9), yields

Proposition 4.4. There exist two positive constants ci, i = 1, 2, such that

c1 ψ+ �δ < F, ζ ∈ Am(r1), p < pm(κ), (266)
ψ+ = F, ζ ∈ D, p = pm(κ),
F < c2 ψ+ �δ, ζ ∈ Am(r2), p > pm(κ), (267)

where ζ = zm and F = F (ζ, ζ̄) := E

(
|(h(m)

0 )′(z)|p
)
, with h

(m)
0 (z) :=

[f0(zm)]1/m.
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From the inequality (266) [resp. (267)], we therefore conclude that the
spectrum associated with ψ+ or ψ+�δ,

B+
m(p, κ) ≡ Bm(p, κ) =

(

1 +
2
m

)

p − 1
2

− 1
2

√

1 +
2κp

m
,

is, for p ≤ pm(κ) (resp. for p ≥ pm(κ)), a lower bound Bm ≤ βm (resp. upper
bound Bm ≥ βm) to the exact average integral means spectrum βm(p, κ) of
the m-fold inner whole-plane SLEκ.

Recall then that the BS average integral means spectrum β̄0(p, κ) (18)
becomes smaller than the spectrum Bm(p, κ) at the transition point p = p∗

m(κ)
(24) [for 1 ≤ m ≤ 3,∀κ, or for m ≥ 4, κ ≤ κm (26)], or at the transition
point p = p∗∗

m (κ) (29) [for m ≥ 4, κ ≥ κm]. Observe that these transition
values are both smaller than the special point pm(κ) (33). We thus conclude
that βm(p, κ) = β̄0(p, κ) before these transition points, whereas necessarily
βm(p, κ) ≥ Bm(p, κ) > β̄0(p, κ) after them. At the higher special value p =
pm(κ), we know that the two spectra βm(p, κ) and Bm(p, κ) coincide. For
p > pm(κ), the inequality is reversed: βm(p, κ) ≤ Bm(p, κ). This concludes the
proof of Theorem 1.5. �

4.4. Integral Means Spectrum and Derivative Exponents

4.4.1. Motivation. In this section, we (heuristically) explain the striking re-
lationship between the packing spectrum (35) and the whole-plane average
integral means spectrum (36) after the phase transition that takes place at
p = p∗(κ) (23). (See also Remark 1.8.)

The average integral means spectrum (14) involves evaluating, for the
whole-plane SLE map f0(z), the integral

Ip(r) :=
∫

∂D

E [|f ′
0(rz)|p] |dz|, (268)

on a circle of radius r < 1 concentric to ∂D, and taking the limit for r → 1−,

β(p) = lim sup
r→1

log Ip(r)
− log(1 − r)

. (269)

If Ip(r) has a power law behavior, an alternative definition of β(p) would be
such that

(1 − r)β(p)
Ip(r)

r→1 1. (270)

To understand why the average integral means spectrum, for p ≥ p∗(κ) (23),
crosses over to the special whole-plane form (36), one should consider that the
integrand in (268) behaves more like a distribution for p large enough. Then,
the circle integral (268) concentrates in the vicinity of the pre-image point
z0 := f−1

0 (∞) ∈ ∂D, which is sent to infinity by the unbounded whole-plane
SLE map f0 (Fig. 1). To see this and the relation with the packing spectrum,
we first need to recall the relation of our inner whole-plane SLE to standard
radial SLE.
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4.4.2. Radial and Whole-Plane SLE. Let us consider the standard inner radial
SLEκ process gt in the unit disk D [76], satisfying the stochastic differential
equation

∂tgt(w) = gt(w)
λ(t) + gt(w)
λ(t) − gt(w)

, λ(t) = ei
√

κBt , t ≥ 0.

It is defined for w ∈ D\Kt, where (Kt, t ≥ 0) is a random increasing family of
subsets (hulls) of the unit disk that grows towards the origin 0 (Fig. 8). The
map gt is the unique conformal map from D\Kt onto D, such that gt(0) = 0
and g′

t(0) = et.
Denote by g−1

t (z), t ≥ 0, z ∈ D, the inverse map of gt, which maps D to
D\Kt (Fig. 8). It is such that g−1

t (0) = 0 and (g−1
t )′(0) = 1/g′

t(0) = e−t. It
also has the same law as the continuation to negative times, g−t, of the forward
radial map gt. Consider now the inner whole-plane map ft(z) as defined in (2)
for t ≥ 0, z ∈ D, its inverse map f−1

t , and the whole-plane map at t = 0, f0(z).
Define

ϕt(z) := f−1
t ◦ f0(z), z ∈ D. (271)

We then have the identities in law [54,73]

ϕt(z)
(law)
= g−t(z)

(law)
= g−1

t (z). (272)

As already mentioned in Sect. 3.2.1 [see also [54]], the limit for t → +∞ of

etϕt(z)
(law)
= etg−t(z)

(law)
= etg−1

t (z) exists, and has the same law as the inner

Figure 8. Inverse Schramm–Loewner map z �→ g−1
t (z) from

D to the slit domain D\Kt, where Kt is the SLEκ hull (here
a single curve for κ ≤ 4). The distance from the SLE tip to
the origin is of order e−t when t → +∞. The length Lt :=
|gt(At)| of the image of the boundary set At := ∂D\Kt gives
the harmonic measure Lt/2π of At as seen from 0 in D\Kt.
The inner circle radius rt is chosen so that 1 − rt = Lt
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whole-plane process f0(z):

f̃t(z) := etg−1
t (z), z ∈ D, (273)

f0(z)
(law)
= lim

t→+∞ f̃t(z) = lim
t→+∞ etg−1

t (z). (274)

In the limit t → +∞ of the radial inverse SLE map etg−1
t , the boundary circle

et∂D is pushed back to infinity, while the limit of hulls (etKt)t→+∞ becomes
the whole-plane SLE hull (e.g., for κ ≤ 4 the single slit γ([0,∞)) in Fig. 1).
Since the tip of g−1

t (∂D) is at distance of order e−t from 0, the limit of the
tip of etg−1

t (∂D) for t → +∞ stays at a finite distance from 0, as does the tip
f0(1) = γ(0) (Figs. 1 and 8).

4.4.3. Packing and Derivative Exponents. Let us briefly recall Lemma 3.2 in
Ref. [49]:

Lemma 4.1. Let

At := ∂D\Kt,

which is either an arc on ∂D or At = ∅. Let s ≥ 0, and set

ν = ν(s, κ) :=
s

2
+

1
16

(
κ − 4 +

√
(4 − κ)2 + 16κs

)
. (275)

Assume κ > 0 and s > 0. Let H(θ, t) denote the event {w = exp(iθ) ∈ At},
and set

F(θ, t) := E
[∣
∣g′

t

(
exp(iθ)

)∣
∣s 1H(θ,t)

]
, (276)

q = q(s, κ) := U−1
κ (s) =

κ − 4 +
√

(4 − κ)2 + 16κs

2κ
, (277)

h∗(θ, t) := exp(−ν t)
(
sin(θ/2)

)q
.

Then there is a constant c > 1 such that

∀t ≥ 1, ∀θ ∈ (0, 2π), h∗(θ, t) ≤ F(θ, t) ≤ c h∗(θ, t), (278)

which we denote by h∗(θ, t)  F(θ, t).

By conformal invariance, the harmonic measure from 0 of the boundary
arc At in the slit domain Dt := D\Kt is Lt/2π, where Lt is the length of the
arc gt(At). Let us then also recall Theorem 3.3 in [49]:

Theorem 4.4. Suppose the κ > 0 and s ≥ 1. Then, when t → +∞,

E [(Lt)s]  exp(−ν t).

Notice that Lemma 4.1 and Theorem 4.4 taken together strongly suggest
that |g′

t(w)|  Lt for w ∈ At and t → +∞.
Let us now use (274), and replace the whole-plane map f0(z) by its large

time equivalent in law, f̃t(z) = etg−1
t (z) (273), taken for some large time t.

The domain which is sent far away from the origin by this map f̃t is the subset
gt(At) ⊂ ∂D of the unit circle, as well as its immediate vicinity in D (see
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Fig. 8). This corresponds, in the image domain D\Kt, to w ∈ At. Define then
the restricted boundary integral:

Ip(t) :=
∫

At

ept|(g′
t(w)|s |dw| (279)

=
∫ 2π

0

ept|(g′
t

(
eiθ

)|s 1H(θ,t) dθ,

s = s(p, κ) = β(p, κ) + 1 − p, (280)

where β(p, κ) is given by (36) and s(p, κ) by (37). This choice for s is precisely
the one that insures that ν (275) equals

ν(s(p, κ), κ) = p. (281)

From (278) in Lemma 4.1, we have for w ∈ At the asymptotic behavior for
large t:

E
[∣
∣g′

t(w)
∣
∣s 1H(θ,t)

]  exp(−ν t)
(
sin(θ/2)

)q
,

so that

E
[Ip(t)

] 
∫ 2π

0

sinq(θ/2)dθ. (282)

This integral converges as Eqs. (37), (275), and (281) imply that
κ

8
q(s, κ) = ν(s, κ) − s

2
= p − s

2
=

1
4

(√
1 + 2κp − 1

)
≥ 0.

The integral (279) over At can be mapped back via the gt map to the subset
gt(At) of the unit circle and equals

Ip(t) =
∫

gt(At)

ept|(g−1
t

)′(z)|p−β(p) |dz|, z = gt(w)

=
∫

gt(At)

|f̃ ′
t(z)|p |(g−1

t

)′(z)|−β(p) |dz|. (283)

Consider then the set of sub-arc integrals

Ip(C, t) :=
∫

C
|f̃ ′

t(z)|p |(g−1
t

)′(z)|−β(p) |dz|, (284)

Ip(C, t) ≤ Ip(t), ∀C � gt(At). (285)

Using Schwarz’s reflection principle, the function g−1
t (z) (therefore its blow-up

f̃t(z) = etg−1
t (z)) can be analytically extended, outside of the unit disk D, by

inversion with respect to the unit circle of any angular sector spanned by a
strict sub-arc C � gt(At). Koebe’s theorem then implies in all these angular
sub-sectors the uniformly bounded behavior

C−1 ≤
∣
∣
∣
∣
∣

f̃ ′
t(rz)
f̃ ′

t(z)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
g−1

t (rz)
g−1

t (z)

∣
∣
∣
∣ ≤ C, r ≤ 1, ∀z ∈ C � gt(At) ⊂ ∂D, (286)

where the constant C depends on the sub-arc C of gt(At), and may go to
infinity when C → gt(At).
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By Koebe’s bounds (286), one can extend the boundary integral (284) to
the interior of D:

Ip(C, t)  Ip(r C, t)

:=
∫

C
|f̃ ′

t(rz)|p |(g−1
t

)′(rz)|−β(p) |dz|, ∀r ≤ 1, ∀C � gt(At). (287)

Introduce now the time-dependent (random) radius rt

rt := 1 − Lt; rt → 1−, Lt → 0, t → +∞. (288)

In the boundary arc w ∈ g−1
t (C) � At, and z = gt(w) ∈ C � gt(At), we have

seen that the derivative tends to zero uniformly as |g′
t(w)| = |(g−1

t

)′(z)|−1 
Lt = 1 − rt, for t → +∞. For the particular choice of radius r = rt, the
equivalence (287) can then be rewritten as

Ip(C, t)  Ip(rt C, t)  (1 − rt)β(p)

∫

C
|f̃ ′

t(rtz)|p|dz|, ∀C � gt(At). (289)

As suggested in Sect. 4.4.1 above in the case of the whole-plane map f0, and
for p ≥ p∗(κ), one assumes that the similar integral, extended to the whole
circle of radius rt < 1, is dominated by the localized integral (289) for t →
+∞. This condensation of the integral’s support is precisely the signal of the
onset of the transition from the standard SLE bulk spectrum β0(p, κ) (16)
to the unbounded whole-plane spectrum β(p, κ) (36). We therefore expect for
p ≥ p∗(κ),

Ip(rt C, t)  (1 − rt)β(p)

∫

∂D

|f̃ ′
t(rtz)|p|dz|. (290)

From Eqs. (285), (289) and (290), and from the finite expectation result (282),
one therefore concludes that, in expectation,

E

[

(1 − rt)β(p)

∫

∂D

|f̃ ′
t(rtz)|p|dz|

]

1, t → +∞. (291)

Since the random radius rt → 1, this equivalence is (formally) very similar
to the equivalence (270) above, which can serve as a heuristic definition of
the average integral means spectrum. This strongly suggests why the average
integral means spectrum β(p, κ) (36), which is specific to the unbounded whole-
plane SLE map, is intimately related, via the packing spectrum s(p, κ) =
β(p, κ) − p + 1 (35), to the derivative exponents (275), as derived by Lawler,
Schramm and Werner in Ref. [49]: the derivative exponent p = ν(s, κ) is the
inverse function of the unbounded whole-plane packing spectrum s(p, κ). �
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5. Appendices

5.1. Appendix A: A Brief History of Bieberbach’s Conjecture

5.1.1. Proof for n = 2 (Bieberbach [10], 1916). First, let us introduce the
normalized, so-called schlicht class of univalent functions

S = {f : D → C holomorphic and injective ; f(0) = 0, f ′(0) = 1}.

The Bieberbach conjecture is clearly equivalent to |an| ≤ n, n ≥ 2 for f ∈ S.
A related class of normalized functions is

Σ =

{

f : Δ = C\D → C holomorphic and injective;

f(z) = z +
∞∑

n=0

bnz−n at ∞
}

.

The mapping f �→ F , where F (z) = 1/f(1/z), is clearly a bijection from S
onto Σ′, the subclass of Σ consisting of functions that do not vanish in Δ. A
simple application of the Stokes formula shows that if f ∈ Σ then, denoting
by |B| the Lebesgue measure (area) of the Borelian subset B of the plane,

|C\f(Δ)| = π

(

1 −
∑

n≥1

n|bn|2
)

.

Since the area is a positive quantity, a consequence of this equality is that
|b1| ≤ 1. But applying this inequality directly to the function F , image in Σ′

of f ∈ S, does bring anything conclusive. Bieberbach’s idea was then to apply
this inequality to an odd function in S.

Let f ∈ S then z �→ f(z)/z does not vanish in the disk and thus it has a
unique holomorphic square root g which is equal to 1 at 0. Then, h(z) = zg(z2),
such that f(z2) = h(z)2, is still in class S, but is moreover odd. This establishes
a bijection (f �→ h) between S and the set of odd functions in S. Now, if
f(z) = z +a2z

2 +a3z
3 + . . . belongs to class S, then h(z) = z + 1

2a2z
3 +O(z5)

and the associated H ∈ Σ satisfies H(z) = 1/h(1/z) = z −a2/2z + · · · . By the
area proposition, |a2| ≤ 2.

Remark 5.1. The fact that |a2| is bounded above for functions in class S
implies (see [69]) that the class S is compact.

Remark 5.2. As a corollary, one can state a weak form of the Bieberbach
conjecture, namely that for each n ≥ 2 there exists a positive constant Cn <
+∞ such that for any f ∈ S, f(z) = z +

∑
n≥2 anzn, then |an| ≤ Cn.
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5.1.2. Proof for n = 3 (Loewner [63], 1923). Replacing f(z) by f(rz) with
r < 1 but close to 1, one sees that it suffices to prove the estimate for conformal
mappings onto smooth Jordan domains containing 0. Consider such a domain
Ω and let γ : [0, t0] → C be a parametrization of its boundary. Introduce then
Γ : [0,∞) → C, a Jordan arc joining γ(0) = γ(t0) to ∞ inside the outer Jordan
component. We then define

Λ(t) := γ(t), 0 ≤ t ≤ t0; Λ(t) := Γ(t − t0), t ≥ t0,

and define for t > 0,

Ωt = C\Λ([t,∞)).

The domain Ωt is a simply connected domain containing 0 and we can thus
consider its Riemann mapping ft : D → Ωt, ft(0) = 0, f ′

t(0) > 0. By the
Caratheodory convergence theorem, ft converges as t → 0 to f , the Riemann
mapping of Ω. We may assume without loss of generality that f ′(0) = 1 and,
by a change of time t if necessary, that f ′

t(0) = et.
The key idea of Loewner is to observe that the sequence of domains Ωt

is increasing, which translates into 	
(

∂ft

∂t /z ∂ft

∂z

)
> 0 or, equivalently, that

the same quantity is the Poisson integral of a positive measure, actually a
probability measure because of the choice of parametrization f ′

t(0) = et. Now,
the fact that the domains Ωt are slit domains implies that for every t this
probability measure must be, on the unit circle, the Dirac mass at λ(t) =
f−1

t (Λ(t)). Even if this is not needed in Loewner’s proof, it is worthwhile to
notice that λ is a continuous function. The process Ωt is then driven by the
function λ, in the sense that (ft) satisfies the Loewner differential equation

∂ft

∂t
= z

∂ft

∂z

λ(t) + z

λ(t) − z
. (292)

To finish Loewner’s proof, one extends both sides of the last equation as power
series, with ft(z) = et(z + a2z

2 + a3z
3 + · · · ), and simply identifies the coeffi-

cients, as was done in Sect. 2. This leads to

ȧ2 − a2 = 2λ,

ȧ3 − 2a3 = 4a2λ + 2λ
2
.

As seen above [Eqs. (54) & (55)], this is solved by

a2(t) = −2et

∫ ∞

t

λ(s)e−sds,

a3(t) = 4e2t

(∫ ∞

t

λ(s)e−sds

)2

− 2e2t

∫ ∞

t

e−2sλ
2
(s)ds.

The first equation gives a new proof that |a2| ≤ 2|a1| = 2. For a3, by consider-
ing e−iαf(eiαz), one remarks that it suffices to prove that 	(a3) ≤ 3. To this
aim, write λ(s) = eiθ(s). The Cauchy–Schwarz inequality,

(

et

∫ ∞

t

e−s cos θ(s)ds

)2

≤ et

∫ ∞

t

e−s cos2 θ(s)ds,
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gives

	(a3) = 4e2t

(∫ ∞

t

e−s cos θ(s)ds

)2

−4e2t

(∫ ∞

t

e−s sin θ(s)ds

)2

− 2e2t

∫ ∞

t

e−2s cos 2θ(s)ds

≤ 4
∫ ∞

t

(
et−s − e2(t−s)

)
cos2 θ(s)ds + 1

≤ 4
∫ ∞

t

(
et−s − e2(t−s)

)
ds + 1 = 3.

5.1.3. The Bieberbach Conjecture After Loewner. The next milestone after
the 1923 theorem by Loewner is the proof in 1925 by Littlewood [57] that in
class S, |an| ≤ en. In 1931, Dieudonné [16] proved the conjecture for functions
with real coefficients. In 1932, Littlewood and Paley [58] proved that the coef-
ficients of an odd function in S are bounded by 14, and they conjectured that
the best bound is 1, a conjecture that implies Bieberbach’s. This conjecture
was disproved in 1933 by Fekete and Szegő [31] for n = 5. In 1935, Robertson
[72] stated the weaker conjecture

n∑

k=1

|a2k+1|2 ≤ n,

which also implies the Bieberbach conjecture. The next milestone was due in
the sixties to Lebedev and Milin [56]. It had already been observed by Grunsky
[34] in 1939 that the logarithmic coefficients γn defined by

log[f(z)/z] = 2
∞∑

n=1

γnzn

can easily be estimated. Lebedev and Milin [56] showed, through three inequal-
ities, how to pass from those estimates to estimates for f . This allowed Milin
[67] to prove that |an| ≤ 1.243n. He then stated what has become known as
Milin conjecture:

n∑

m=1

m∑

k=1

(
k|γk|2 − 1/k

) ≤ 0.

It should be noticed that γn = 1/n for the Koebe function, but the stronger
conjecture |γn| ≤ 1/n is false, even as an order of magnitude. It happens that
Milin ⇒ Robertson ⇒ Bieberbach, and de Branges actually proved the Milin
conjecture.

5.2. Appendix B: Coefficient Quadratic Expectations

5.2.1. Quadratic Third-Order Coefficient. For calculations involving a3 as
given by (55), we compute E(|a3 − μa2

2|2) for all μ real constant, and prove
Proposition (2.2).
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Proof. We write

e−4t|a3 − μa2
2|2 = 16(1 − μ)2I1 − 16(1 − μ)	I2 + 4I3,

where

I1 =
∫ ∞

t

∫ ∞

t

∫ ∞

t

∫ ∞

t

e−(s1+s2+s3+s4)λ(s1)λ(s2)λ(s3)λ(s4)ds1ds2ds3ds4,

I2 =
∫ ∞

t

∫ ∞

t

∫ ∞

t

e−(s1+s2+2s3)λ(s1)λ(s2)λ(s3)2ds1ds2ds3,

I3 =
∫ ∞

t

∫ ∞

t

e−2(s1+s2)λ(s1)2λ(s2)2ds1ds2.

From now on, we set the parameter t = 0 in the above formulae. The compu-
tation of I3 follows the same lines as that in Proposition 2.1 and we find

E(I3) = 	
(

1
2(2 + η2)

)

.

To compute E(I2) we use the strong Markov property. First, we may write by
symmetry

I2 = 2
∫ ∞

s1=0

∫ ∞

s2=s1

∫ ∞

s3=0

e−(s1+s2+2s3)ei(Ls3−Ls1 )ei(Ls3−Ls2 )ds1ds2ds3;

we then cut this integral into I2 = 2(I2,1 + I2,2 + I2,3), where in I2,1 (resp. in
I2,2, I2,3), s3 lies in [0, s1] (resp. in [s1, s2], [s2,∞)). For I2,1, write

ei(Ls3−Ls1 )ei(Ls3−Ls2 ) = e−2i(Ls1−Ls3 )e−i(Ls2−Ls1 ),

so that the Markov property can be used to get its expectation as e−η2(s1−s3)

e−η1(s2−s1). From this, the value of E(I2,1) easily follows as

E(I2,1) =
1

4(1 + η1)(2 + η2)
.

Similar considerations lead to

E(I2,2) =
1

4(1 + η1)(3 + η1)
, E(I2,3) =

1
4(2 + η2)(3 + η1)

.

By combining these computations, we get

	E(I2) = 	
(

1
2(1 + η1)(2 + η2)

+
1

2(1 + η1)(3 + η1)
+

1
2(2 + η2)(3 + η1)

)

.

The computation of I1 follows the same lines. First, by symmetry,

I1 = 4
∫ ∞

0

∫ ∞

s1

∫ ∞

0

∫ ∞

s3

e−(s1+s2+s3+s4)ei(Ls3−Ls1 )ei(Ls4−Ls2 )ds1ds2ds3ds4.

We then split this integral into the sum of six pieces, respectively, associated
with the domains (I) s3 < s4 < s1 < s2; (II) s3 < s1 < s4 < s2; (III)
s3 < s1 < s2 < s4; (IV) s1 < s3 < s4 < s2; (V) s1 < s3 < s2 < s4; (VI)
s1 < s2 < s3 < s4.
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Clearly, the respective contributions of (I) and (VI), (II) and (V), (III)
and (IV), are complex conjugate of each other. The same arguments as above
give, in a short-hand notation,

E(I) =
1

4(1 + η1)(2 + η2)(3 + η1)
,

E(II) =
1

8(1 + η1)(3 + η1)
, E(III) =

1
8(1 + η1)(3 + η1)

.

Altogether, we get

E(I1) = 	
(

2
(1 + η1)(2 + η2)(3 + η1)

+
1

(1 + η1)(3 + η1)

+
1

(1 + η1)(3 + η1)

)

.

�

5.2.2. Higher Orders. Using dynamic programming, we performed computa-
tions of E(|a2

n|) (formal up to n = 8 and numerical up to n = 19) on a usual
computer. The results for a3 and a4 in the LLE case are given in Eqs. (56)
and (57), respectively, whereas for a5:

E

(
|a5|2

)
=

5!24

(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)

+
(η1 − 1)(η1 − 3)

(η1 + 1)(η1 + 3)(η1 + 5)(η1 + 7)(η2 + 2)(η2 + 4)(η2 + 6)(η3 + 3)(η3 + 5)

×
[
4η2(η2 − 4)(η1 + 3)(η3 + 1)(η3 − 5)(η1 + 3)(η1 + 5)(η2 + 4)

3(η4 + 4)
+ Q

]

,

Q =
4
3
(24η2

1η
2
2 + 9η2

1η2η
2
3 + 72η2

1η2η3 + 39η2
1η2 + 36η2

1η
2
3 + 288η2

1η3 + 520η2
1

+19η1η
3
2η3 + 77η1η

3
2 + 56η1η

2
2η3 + 472η1η

2
2 − 36η1η2η

2
3 − 816η1η2η3

−3660η1η2 − 144η1η
2
3 − 1152η1η3 − 2160η1 + 75η3

2η3 + 285η3
2

+348η2
2η

2
3 + 2952η2

2η3 + 6420η2
2 + 3507η2η2

3 + 26184η2η3 + 43245η2
+8460η2

3 + 67680η3 + 126900). (293)

In each expression for E(|an|2), and after the first term there, notice the pres-
ence of the common factors (η1 − 1)(η1 − 3) in the numerators. The first term,
hence E(|an|2) itself, equals 1 for η1 = 3 (or κ = 6), or equals n for η1 = 1
(or κ = 2). We checked these results explicitly in symbolic computations up
to n = 8, and in numerical ones up to n = 19.
Let us end this Appendix with the results for a5 to a8 in the SLE case:

E

(
|a5|2

)
= (27κ8 + 3242κ7 + 194336κ6 + 6142312κ5 + 42644896κ4

+119492832κ3 + 153156096κ2 + 87882624κ + 18144000)
/[36(κ + 14)(3κ+2)(κ + 10)(2κ + 1)(κ+6)(κ+3)(κ+1)(κ + 2)2];
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E

(
|a6|2

)

=
2

225
(216κ10 + 29563κ9 + 2062556κ8 + 90749820κ7 + 2277912280κ6

+ 16419864848κ5 + 50825787744κ4 + 76716664128κ3

+ 58263304320κ2 + 21233664000κ + 2939328000)

/[(κ + 18)(3κ + 2)(κ + 14)(2κ + 1)(κ + 10)(κ + 6)(5κ + 2)

(κ + 3)(κ + 1)(κ + 2)2] ;

E

(
|a7|2

)

=
1

8100
(27000κ15 + 4479353κ14 + 373838334κ13 + 20594712527κ12

+ 787796136854κ11 + 19121503739240κ10 + 221861771218136κ9

+ 1386550697705712κ8 + 5130607642056896κ7 + 11854768997862912κ6

+ 17547915006086400κ5 + 16725481436226816κ4 + 10110569026936320κ3

+ 3711483045734400κ2 + 749049576192000κ + 63371911680000)

/[(κ + 22)(3κ + 1)(5κ + 2)(κ + 18)(2κ + 1)(κ + 14)(3κ + 2)

(κ + 10)(κ + 6)(κ + 5)(κ + 3)(κ + 1)2(κ + 2)3] ;

E

(
|a8|2

)

=
2

99225
(729000κ18 + 143757261κ17 + 14031668642κ16 + 906444920407κ15

+ 42715714646750κ14 + 1476227672190480κ13 + 34674813906653712κ12

+ 471116720002819536κ11 + 3802657434377773600κ10

+ 19218418658636100992κ9 + 63191729416067875840κ8

+ 138392538501661946112κ7 + 204258207932541043200κ6

+ 203508494170475323392κ5 + 135640094878259859456κ4

+ 59063686024095313920κ3 + 16005106174366310400κ2

+ 2435069931098112000κ + 158176291553280000)

/[(7κ + 2)(5κ + 2)(κ + 26)(3κ + 1)(κ + 22)(2κ + 1)(κ + 18)(κ + 14)

(3κ + 2)(κ + 10)(κ + 5)(κ + 3)(κ + 6)2(κ + 1)2(κ + 2)3].

These results call for two observations:

– All the coefficients of the polynomial expansions in κ are positive.
– For κ → ∞ (or η → ∞), the coefficients’ quadratic moments vanish as

κ−1.
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5.3. Appendix C: A Proof of Theorem 4.2

Proof. The proof closely follows the steps of that of Feng–MacGregor’s theo-
rem. We start with the computation of h′:

h′(z) = zf ′(z2)(f(z2))−1/2.

We may then write, setting ρ = r2,
∫ 2π

0

|h′(reiθ)|pdθ ≤
∫ 2π

0

|f ′(ρeiθ)|p
|f(ρeiθ)|p/2

dθ.

Consider now two positive reals a, b such that a − b = 1 and fix 0 < p < 2. By
Hölder inequality,
∫ 2π

0

|f ′(ρeiθ|p
|f(ρeiθ)|p/2

dθ ≤
(∫ 2π

0

|f ′(ρeiθ)|2
|f(ρeiθ)|a dθ

)p/2(∫ 2π

0

|f(ρeiθ)| bp
2−p dθ

)(2−p)/2

.

We write
∫ 2π

0

|f ′(ρeiθ)|2
|f(ρeiθ)|a dθ =

∫ 2π

0

|f ′(ρeiθ)|2|f(ρeiθ)|(2−a)−2dθ, (294)

and we invoke the following Lemma, which is a consequence of Hardy’s identity
and Koebe’s theorem [see [70]]:

Lemma 5.1. There exists a universal constant C > 0 such that, for f holomor-
phic and injective in the unit disk, with f(0) = 0, f ′(0) = 1,
(i) if p > 0,

∫ 2π

0

|f ′(ρeiθ)|2|f(ρeiθ)|p−2dθ ≤ C

(1 − ρ)2p+1
;

(ii) if p > 1/2,
∫ 2π

0

|f(ρeiθ)|pdθ ≤ C

(1 − ρ)2p−1
.

Consider the last Lemma and (294); we seek for a such that 2−a > 0 ⇔ b < 1,
together with

bp

2 − p
> 1/2 ⇔ b >

1
p

− 1
2
,

and we may find such a pair (a, b) iff 1
p − 1

2 < 1 ⇔ p > 2/3. �

With this condition on p satisfied, and for that choice of (a, b), Lemma 5.1
implies that [note: 1 − r ≤ 1 − ρ ≤ 2(1 − r)],

∫ 2π

0

|h′(reiθ)|pdθ ≤ C(1 − r)−[2(2−a)+1)p/2](1 − r)−[bp−(2−p)/2]

≤ C(1 − r)−(2p−1).

The last statement shows that βh(p) ≤ 2p − 1 for 2/3 < p < 2. To prove it for
all p > 0, we first need



1390 B. Duplantier et al. Ann. Henri Poincaré

Lemma 5.2. There exists a universal constant C > 0 such that

|h′(z)| ≤ C(1 − r)−2.

Proof. We write

|h′(z)| =

∣
∣
∣
∣
∣
z

√
f ′(z2)
f(z2)

√
f ′(z2)

∣
∣
∣
∣
∣
≤ C(1 − ρ)−1/2(1 − ρ)−3/2,

by the Koebe distortion theorem. (Use inequalities (11) and (13) on page 21
of [69].) An immediate corollary of this Lemma is that βh(p) ≤ 2p if p > 0.

We now argue as in [70], using the fact that the function βh is convex.
Any number bigger than 2/3 may be written as p + q with 2/3 < p < 2 and
q > 0. We can then write

p + q = t
p

t
+ (1 − t)

q

1 − t
,

where t ∈ [0, 1] is close to 1 and

βh(p + q) ≤ tβh

(p

t

)
+ (1 − t)βh

(
q

1 − t

)

≤ t
(
2
p

t
− 1

)
+ 2q

by the Lemma above. Finally

βh(p + q) ≤ 2(p + q) − t

which converges to 2(p + q) − 1 as t → 1. �
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