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Abstract. The Poisson structure arising in the Hamiltonian approach to
the rational Gaudin model looks very similar to the so-called modified
Reflection Equation Algebra. Motivated by this analogy, we realize a
braiding of the mentioned Poisson structure, i.e. we introduce a “braided
Poisson” algebra associated with an involutive solution to the quantum
Yang–Baxter equation. Also, we exhibit another generalization of the
Gaudin type Poisson structure by replacing the first derivative in the
current parameter, entering the so-called local form of this structure, by
a higher order derivative. Finally, we introduce a structure, which com-
bines both generalizations. Some commutative families in the correspond-
ing braided Poisson algebra are found.

1. Introduction

This note arises from the following observation. The Poisson bracket which
enters the construction of the rational Gaudin model (see [2,8]) looks quite sim-
ilar to so-called modified Reflection Equation (RE) algebra. To make this par-
allelism more transparent, we present this Poisson bracket in the local form.1

In this form the Poisson bracket in question (called below Gaudin type Pois-
son bracket) consists of a family of relations between all order derivatives of
the matrix L(u). The usual flip P is involved in these relations. Motivated by
the aforementioned analogy, we consider braided Poisson algebras which are
defined by a similar formula but with a braiding R instead of the flip P .

Let us precise that by a braiding we mean a solution R : V ⊗2 → V ⊗2 to
the quantum Yang–Baxter equation

1 This means that we consider the bracket {f(u), g(v)} restricted to the diagonal u = v, i.e.
for the same value of the current parameter, and similarly for all derivatives of the functions
f and g [see (2.9)].
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R12R23R12 = R23R12R23, where R12 = R ⊗ I, R23 = I ⊗ R, (1.1)

V is a finite-dimensional vector space over the ground field C, and I is the
identity operator.

We call R a Hecke symmetry if it satisfies a complementary condition

(R − q I)(R + q−1I) = 0, q ∈ C

provided q �= 1 and an involutive symmetry provided q = 1. Below, to con-
cretize what type symmetry we are dealing with, and by slightly abusing the
language, we speak about the Hecke case or the involutive one.

To any braiding R we associate the Reflection Equation (RE) algebra,
generated by entries of a matrix L = ‖lji ‖1≤i,j≤n subject to the system of
relations

R L1 R L1 − L1 R L1 R = �(R L1 − L1 R). (1.2)

(We call L the generating matrix of this algebra.) More precisely, we use this
terminology for the algebra (1.2) provided � = 0 and we call it modified RE
algebra provided � �= 0. In terms of the RE algebra in its two forms (modified
and non-modified) we construct a braided analog2 of the Poisson structure
entering the Gaudin model and exhibit a family of elements in involution in
the spirit of the classical theory. The crucial role in our construction is played
by the so-called R-trace TrRL whose properties look like those of the usual
(super-)trace. To ensure the existence of this trace we assume R to be skew-
invertible (see Sect. 4).

Besides, we introduce another generalization of the Gaudin model by
replacing the first derivative in the current parameter v which enters the cor-
responding Poisson bracket, realized in its local form, by a higher order deriv-
ative (Sect. 3). While this derivative is of order 2 we also exhibit this Poisson
structure in a global form (similar to the standard form of the Gaudin type
Poisson bracket). We find also a commutative family of elements of the corre-
sponding Poisson algebra generated by the entries of the matrix L(v) and its
derivatives on v.

In the last section of this note we consider the structures which combine
both the aforementioned generalizations, namely the braided Poisson brackets
with higher order derivatives in its local form. This consideration is preceded
by exhibiting braided Poisson structures associated with symmetries without
parameter (Sect. 4). The aim of this section is to compare braided Poisson
structures arising from involutive symmetries and those arising from the Hecke
ones. In particular, we want to show that the properties of the latter structures
are much more complicated than those of the former ones. We conclude that
a universal definition of braided Poisson structures is somewhat unsustained.
The results of this section enable us to realize the mentioned braiding of Pois-
son structures from Sects. 2 and 3. We realize such a braiding by means of a

2 We use the term “braided” in the sense of the paper [5]. The famous RTT algebra, for
instance, is not a braided one according to the definition from this paper.
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skew-invertible involutive symmetry. We complete this note with a discussion
on an eventual generalization of this construction to the Hecke case.

2. Poisson Algebras Related to Gaudin Model

In this section we consider Poisson algebras related to the rational Gaudin
model. Let

L(v) = ‖lji (v)‖1≤i,j≤n (2.1)

be a n × n matrix with the entries lji (v) which are meromorphic as function of
v ∈ C. Hereafter, i (respectively, j) is the label of the line (respectively of the
column) to which the element lji (v) belongs.

Let us define a Poisson bracket3 by

{L1(u), L2(v)} =
[
L1(u) + L2(v),

P

u − v

]
(2.2)

where L1 = L⊗I, L2 = I⊗L, and P is the usual flip in V ⊗2. Also, the notation
{A,B}, where A = ‖Aj

i‖ and B = ‖Bj
i ‖ are two square matrices of the same

size, stands for the matrix with the entries
∑

k{Ak
i , B

j
k}.

Taking in consideration that L2 = P L1 P we can represent the right
hand side of (2.2) as [

L1(u) − L1(v)
u − v

, P

]
.

Being written via the entries of L(u), the relation (2.2) reads
{

lji (u), llk(v)
}

=
(lli(u) − lli(v))δjk

u − v
− (ljk(u) − ljk(v))δli

u − v
. (2.3)

The Jacobi identity

{{L1(u), L2(v)}, L3(w)} + {{L3(w), L1(u)}, L2(v)}
+{{L2(v), L3(w)}, L1(u)} = 0 (2.4)

is ensured by the fact that the element r(u) = P
u is a classical r-matrix, i.e. it

satisfies the classical Yang–Baxter equation:

[r12(u), r23(v)] + [r12(u), r13(u + v)] + [r13(u + v), r23(v)] = 0. (2.5)

If f (respectively, g) is a polynomial in generators lji (u) (respectively,
lji (v)), the bracket {f, g} can be computed via the Leibniz rule.

Now, we put u = v + h and expand the matrix L(v + h) in the Taylor
series in h

L(v + h) =
∞∑
k=0

L(k)(v)hk

k!
(2.6)

3 This bracket differs from the conventional one by sign. This change is motivated by our
desire to make it more similar to the defining relations (1.2) of the modified RE algebra.
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where L(k)(v) = dk

dvk L(v) stands for the k-order derivative of L(v). Comparing
the terms containing the same powers of h, we get

{
L
(k)
1 (v), L2(v)

}
=

[
L
(k+1)
1 (v), P

]
k + 1

(2.7)

By deriving this equality in v and by using the Leibniz rule for the de-
rivative d

d v

d
d v

{
L
(k)
1 (v), L2(v)

}
=

{
L
(k+1)
1 (v), L2(v)

}
+

{
L
(k)
1 (v), L(1)

2 (v)
}

, (2.8)

we get the following relation

{
L
(k)
1 (v), L(1)

2 (v)
}

=

[
L
(k+2)
1 (v), P

]
(k + 1)(k + 2)

.

By continuing this procedure, we recurrently arrive to the formula{
L
(k)
1 (v), L(l)

2 (v)
}

=
[
L
(k+l+1)
1 (v), P

]
α1(k, l), (2.9)

where

α1(k, l) =
k! l!

(k + l + 1)!
, k, l = 0, 1, 2, . . . (2.10)

(as usual, we assume that L(0)(v) = L(v)).
Observe that the coefficients α1(k, l) entering this formula are symmetric:

α1(k, l) = α1(l, k). Moreover, the elements

β1(k, l,m) = α1(k, l)α1(k + l + 1,m) =
k! l!m!

(k + l + m + 2)!
(2.11)

are invariant with respect to the cyclic permutations of k, l,m. This property
ensures the Jacobi relation for the bracket presented in the local form (2.9).

Thus, we have a family of the relations (2.9) labeled by couples of naturals
(k, l). This family with α1(k, l) given by (2.10) is equivalent to (2.2). The
passage back to the form (2.2) can be also done via the Taylor series (2.6).

The Poisson structure in its local form (2.9) is defined on the algebra A of
polynomials in the entries of L(v) and all its derivatives. The underlying vector
space of this algebra is graded: its component of degree k is just the span of the
elements dk

d vk lji (v). We extend this grading by “linearity” to a graded algebra
structure on A setting deg(ab) = deg(a) + deg(b). This graded structure on A
is “shifted” by the Poisson bracket (2.9) : the components with labels k and l
tmap to that with the label k + l + 1.

Remark 2.1. Note that the Poisson bracket

{L1(v), L2(v)} = [L1(v), P ] (2.12)

which looks like that (2.9) with k = l = 0 but without any derivative in the
right hand side, is nothing but the Lie-Poisson bracket which corresponds to
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the current Lie algebra ĝl(n). Indeed, (2.12) is a matrix form of the following
family of relations {

lji (v), llk(v)
}

= lli(v)δjk − ljk(v)δli. (2.13)

However, this bracket does not admit a “natural” extension to the higher
derivatives of the type {L

(k)
1 (v), L(l)

2 (v)}. Indeed, any such extension{
L
(k)
1 (v), L(l)

2 (v)
}

=
[
L
(k+l)
1 (v), P

]
(2.14)

is not compatible with the action of derivations on the relation (2.12). Never-
theless, if we disregard this compatibility and treat k and l as labels only, the
Poisson (and the corresponding Lie) algebra structure is well defined.

Remark 2.2. The Lie algebra, defined by formula (2.9) is bigger than the cur-
rent algebra ĝl(n). Indeed, our algebra is defined on the graded vector space
while the underlying space of the current algebra has the unique component
of degree 0. However, the latter can be converted into the affine algebra, be-
ing extended by the Kac-Moody cocycle. We have not succeeded to a similar
cocycle on our algebra (in this study the local form is very useful). It seems
that the problem of constructing an analog of quantum affine algebras in the
spirit of [7] is not well consistent in our setting.

Now consider a specialization of the matrix L(u) of the form

L(v) = C +
N∑

p=1

A(p)fp(v) (2.15)

where A(p), p = 1, 2, . . . , N are matrices with the entries aj
i (p) subject to

(2.13) (where the parameter v is canceled) for any p and such that{
aj
i (p), al

k(q)
}

= 0, ∀i, j, k, l if p �= q. (2.16)

Also, C is a constant matrix. Consequently, its entries Poisson commute
with the entries of A(p) for any p.

In other words, we have a Poisson bracket { , }G where

G = gl(n) ⊕ ... ⊕ gl(n) ⊕ gl(n)0, (2.17)

is a direct sum. Hereafter, by { , }g we denote the linear Poisson-Lie bracket
corresponding to the Lie algebra g, and g� stands for the Lie algebra which
differs from g by the factor � introduced at the Lie bracket. Thus, in the Lie
algebra gl(n)0 the bracket is trivial.

Whereas the functional factors fp(v) are to be found. More precisely, we
want the specification (2.15) to satisfy the defining relations (2.2) or (what is
the same) the family of the relations (2.9).

It is easy to see that these relations are equivalent to the following dif-
ferential equation on the factors fp(v)

fp(v)2 =
d

d v
fp(v), ∀ p = 1, 2, . . . , N.
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General solution to this equation is fp(v) = 1
v0−v with any fixed value v0. (It

differs by the sign from the factors in the usual Gaudin model, see footnote 3.)
Consequently, the matrix (2.15) with functional factors fp(v) = 1

vp−v , where
vp, p = 1, 2, . . ., are any fixed complex numbers (poles), is subject to the
relations (2.9) provided α1 are defined by (2.10). Or, equivalently, the matrix
(2.15) satisfies the relation (2.2).

The basic property of the Poisson structure above consists in the fact
that {

Tr(L(u))k,Tr(L(v))l
}

= 0, ∀ k, l = 0, 1, 2 . . . (2.18)

Namely, by using this property for k = l = 2 and by considering the special-
ization (2.15) one constructs a commutative family of Hamiltonians for the
Gaudin model.

More precisely, by considering the quantities

TrL(v)2 =
N∑

p=0

TrA(p)2

(vp − v)2
+

∑
p

H(p)
vp − v

,

one gets a family of the quadratic Hamiltonians

H(p) = TrC A(p) + 2
∑
j �=p

TrA(p)A(j)
vj − vp

, 1 ≤ p ≤ N.

which commute with each other [H(i),H(j)] = 0 for any 1 ≤ i, j ≤ N. For
detail the reader is referred to ([1,8]).

3. Generalization of Gaudin Type Poisson Algebras Via Higher
Order Derivatives in v

Below, we exhibit certain Poisson structures generalizing those considered in
the previous section. Let us fix an integer r ≥ 2 and considering (2.9) as a
pattern, define a Poisson bracket via{

L
(k)
1 (v), L(l)

2 (v)
}

=
[
L
(k+l+r)
1 (v), P

]
αr(k, l) (3.1)

where

αr(k, l) =
(k + r − 1)! (l + r − 1)!
(k + l + 2r − 1)!(r − 1)!

, k, l = 0, 1, 2, . . . (3.2)

The Jacobi identity for such bracket is straightforward to check. This
checking is based on the fact that the terms

βr(k, l,m) = αr(k, l)αp(k + l + r,m) =
(k + r − 1)! (l + r − 1)! (m + r − 1)!

(k + l + m + 2r − 1)!((r − 1)!)2

(3.3)

are invariant with respect to the cyclic permutations of k, l,m.
Our choice of the coefficients (3.2) is motivated by the fact that the matrix

L(v) in this case also admits a specialization of the form (2.15) but with other
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functional factors fp(v), namely, those fp(v) = 1
(vp−v)r . Also, formula (3.1)

with such coefficients is compatible with its differentiations in v.
Denote the Poisson brackets (3.1) by { , }r. Thus, the bracket (2.9) can

be treated as a particular case of (3.1) with r = 1.
Now, we consider the following problem: if it is possible to represent the

Poisson bracket { , }r in a way similar to the bracket (2.2)? In other words, we
want to compute the bracket {L1(u), L2(v)} which is global (i.e. similar to the
standard form of the bracket (2.2)). Here we give an answer to this question
for r = 2.

Proposition 3.1. The bracket { , }2 can be represented as follows

{L1(u), L2(v)}2 =
[
L1(u) + L1(v),

P

(u − v)2

]
− 2

⎡
⎣

u∫
v

L1(t)dt,
P

(u − v)3

⎤
⎦
(3.4)

Proof. Can be done in the same way, namely, by setting u = v + h and ex-
panding L(u) in the Taylor series in h. By doing so, we get

∞∑
k=0

{
L
(k)
1 (v), L2(v)

} hk

k!
=

∞∑
k=0

[
L
(k+2)
1 (v), P

]
α(k, 0)

hk

k!

=
∞∑
k=0

[
L
(k+2)
1 (v), P

] (k + 1)hk

(k + 3)!

=
∞∑
k=0

[
L
(k+2)
1 (v), P

]
hk

(
1

(k + 2)!
− 2

(k + 3)!

)

=

[
L1(v + h) − L1(v) − L

(1)
1 (v)h

h2
, P

]

− 2

[
F1(v + h) − F1(v) − F

(1)
1 (v)h − F

(2)
1 (v)h2/2

h3
, P

]
,

where F (v) is a primitive of L(v). It is not difficult to see that the last expres-
sion is equivalent to the right hand side of (3.4).

Remark 3.2. Nevertheless, formula (3.4) differs from that (2.2)—no classical r-
matrix enters formula (3.4). Thus, a direct verification of the fact that it defines
a Poisson bracket indeed, becomes difficult. However, such a verification for
the bracket, realized under the local form (3.1), is straightforward.

Our next aim is to exhibit a family of elements in involution in the Poisson
algebra equipped with the bracket { , }r. First, we should precise that, similarly
to the construction of the previous section, this bracket is well defined on the
commutative algebra A generated by the entries of the matrix L(v) and its
derivatives.
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Proposition 3.3. In this Poisson algebra the following commutation relations
take place

{
Tr(L(v))k,Tr(L(v))l

}
r

= 0, ∀k, l. (3.5)

Proof. First, observe that the Poisson brackets { , }r in consideration are of
the following form

{L1(v), L2(v)}r = [C1(v), P ] (3.6)

where C(v) is a matrix, which up to a factor equals L(r)(v). Consequently, its
entries belong to the algebra A.

Applying the Leibniz rule to the bracket (3.6) we get (below we omit the
current parameter v and the subscript r)

{
(L1)k, (L2)l

}
=

∑
i,j

(L1)i (L2)j (C1 P − P C1)(L1)k−i−1 (L2)m−j−1. (3.7)

Hereafter in this section we assume that all sums are taken over 0 ≤ i ≤
k − 1, 0 ≤ j ≤ l − 1.

Opening the middle brackets in (3.7), we transform the first term as
follows ∑

(L1)i (L2)j C1 P (L1)k−i−1 (L2)m−j−1

=
∑

(L1)i C1 P (L1)j (L1)k−i−1 (L2)m−j−1 (3.8)

Here, we have used that (L2)j P = P (L1)j . Also, we used the fact that
the entries of (L2)j and those of C1 commute with each other. So, we can
apply the first claim of the following lemma.

Lemma 3.4. Let A and B be two square matrices of the same size and the
entries of A commute with those of B. Then A1B2 = B2A1. Also, Tr AB =
Tr BA.

For the same reason we can represent the right hand side of formula (3.8)
as ∑

(L1)i C1 (L1)m−j−1 P (L1)j (L1)k−i−1. (3.9)

In a similar way we can transform the second term in the right hand side
of formula (3.7)

∑
i,j

(L1)i (L2)j P C1 (L1)k−i−1 (L2)m−j−1

=
∑
i,j

(L1)i P (L1)j C1 (L1)k−i−1 (L2)m−j−1

=
∑
i,j

(L1)i (L1)m−j−1 P (L1)j C1 (L1)k−i−1. (3.10)
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Now, apply the operator Tr12 = Tr1 ⊗ Tr2 to both sides of the relation
(3.7). On the left hand side we get

Tr12 {(L1(v))k, (L2(v))l} = {Tr1 (L1(v))k,Tr2 (L2(v))l}
= {Tr (L(v))k,Tr (L(v))l}.

On the right hand side of (3.7) by employing (3.9) and (3.10) we get

Tr12
∑ (

(L1)i C1 (L1)m−j−1 P (L1)j (L1)k−i−1

−(L1)i (L1)m−j−1 P (L1)j C1 (L1)k−i−1
)
.

Taking in consideration that Tr2 P = I we transform this formula to

Tr
∑ (

(L1)i C1 (L1)m−j−1 (L1)j (L1)k−i−1

−(L1)i (L1)m−j−1 (L1)j C1 (L1)k−i−1
)
. (3.11)

Now, by using the second claim of the above lemma we get that the right
hand side of (3.11) vanishes. This implies the claim of the proposition.

Remark 3.5. It seems that in our setting the stronger identity (2.18) does not
hold. By contrary, we are able to show (using the same method as above) that
for any natural m ≥ 1 the following commutation relation holds{

Tr(L(m)(v))k,Tr(L(m)(v))l
}

= 0, ∀k, l, m = 1, 2, . . . (3.12)

Whereas, in the frameworks of the initial Gaudin model by taking the
derivative in u (respectively, v) m (respectively, n) times of the relation (2.18)
and by setting u = v, we get a more large family of elements in involution
computed at the same value of the current parameter.

4. Braided Structures: Comparing Involutive and Hecke Cases

In this section we compare some structures related to involutive symmetries
and Hecke ones. First, remind some facts about braidings and symmetries (for
the detail the reader is referred to [4]).

Consider a skew-invertible braiding R : V ⊗2 → V ⊗2, where V is a finite-
dimensional vector space dim V = n. Let us recall that a braiding R : V ⊗2 →
V ⊗2 is called skew-invertible if there exists an operator Ψ : V ⊗2 → V ⊗2 such
that

Tr2R12 Ψ23 = Tr2Ψ12 R23 = P13.

For any skew-invertible braiding R : V ⊗2 → V ⊗2 we define two operators
B,C : V → V as follows

B = Tr1Ψ, C = Tr2Ψ. (4.1)

We need these operators for introducing braided analogs of pairings and traces.
Recall the corresponding definition.
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Let V ∗ be the dual space to V . If R is a skew-invertible braiding, then
there exists a unique extension of R up to a braiding

V ⊗2 R→ V ⊗2, V ⊗ V ∗ R→ V ∗ ⊗ V, V ∗ ⊗ V
R→ V ⊗ V ∗,

(V ∗)⊗2 R→ (V ∗)⊗2, (4.2)

such that the pairing

〈 , 〉 : V ⊗ V ∗ → C, 〈xi, x
j〉 = δji (4.3)

is R-invariant. (Here {xi}1≤i≤n and {xj}1≤j≤n are the dual bases in V and
V ∗ respectively.4)

The R-invariance of the paring means, by definition, that the following
properties take place

R〈 , 〉12 = 〈 , 〉23R12R23 on V ⊗ V ∗ ⊗ U,

R〈 , 〉23 = 〈 , 〉12R23R12 on U ⊗ V ⊗ V ∗

where U = V or U = V ∗, and we assume R to act on the spaces U ⊗ C and
C ⊗ U as the usual flip. In the same sense we speak about the R-invariance of
other operators.

Given an operator B (4.1), we define the pairing V ∗ ⊗V → C (where V ∗

is located on the left hand side of V ) by the relation

〈xj , xi〉B = Bj
i ,

where B = ‖Bj
i ‖ is the n × n matrix of the operator B in the basis {xi}. The

pairing 〈 , 〉B is also R-invariant. Note that the operator B is invertible (see
[4]).

As for the operator C, it is used in the definition of the R-trace TrRA
where A is an arbitrary n × n matrix with the entries from the algebra A. We
put

TrRA = Tr (C · A)

where C = ‖Cj
i ‖ is the n × n matrix of the operator C in the basis {xi} and

Tr is the usual trace.
Let us consider the space W = V ⊗ V ∗ and introduce an operator

RW : W⊗2 → W⊗2, RW = R23R12R34R23,

where R is the braiding (4.2). It is easy to see that this operator is also a
braiding.

Note that if R is a Hecke symmetry, the operator RW is not a symmetry
(either involutive or Hecke). By contrary, if R is an involutive symmetry, RW

is also so.
Let L = ‖lji ‖1≤i,j,≤n be the generating matrix of the RE algebra without

the current parameter. The space W can be identified with the linear envelope
span(lji ) of the entries of the matrix L via the following map

W → span(lji ) : xi ⊗ xj 
→ lji . (4.4)

4 The basis {xj} satisfying the relation (4.3) is sometime called right dual.
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Thus, the above braiding RW can be pushed forward to the space
(span(lji ))

⊗2.
This identification and the pairing 〈 , 〉B above enable us to introduce an

R-invariant product in the space span(lji ). On the basis elements we define it
by the rule

lji ◦B llk
def= xi ⊗ 〈xj , xk〉B ⊗ xl = xi ⊗ xlBj

k = lli B
j
k.

Besides, by introducing the R-invariant action lji : V → V

lji (xk)
def= xi ⊗ 〈xj , xk〉B = Bj

kxi,

we can identify the space span(lji ) with the algebra End(V ).
Now, define a pairing (span(lji ))

⊗2 → C by composing the above product
◦B and the paring (4.3)

〈lji , llk〉 def= 〈lji ◦B llk〉 = 〈xi, x
l〉Bj

k = δli Bj
k. (4.5)

The paring (4.5) (also denoted 〈 , 〉B) is R-invariant too.
Next, discuss the problem of introducing a braided analog of the sym-

metric algebra Sym (gl(n)). It is tempting to define a braided analog of the
symmetric algebra of the space W by

T (W )/〈Im(I − RW )〉, (4.6)

where T (W ) is the free tensor algebra of the space W and 〈I〉 is the ideal
generated by a subset I ⊂ T (W ).

However, this algebra does not possess a good deformation property. This
means that dimensions of homogeneous components of this algebra differ from
the classical ones dim Sym k(gl(n)), provided R is a Hecke symmetry which is
a deformation of the usual flip (i.e. the Hecke symmetry R = R(q) in question
depends on q and turns into the usual flip P as q = 1).

In our approach the role of such a “braided symmetric algebra” is played
by the non-modified RE algebra (1.2) (� = 0). (Here we use the above iden-
tification (4.4)). In contrast with the algebra (4.6), the RE algebra has the
good deformation property, i.e. for a generic q dimensions of its homogeneous
components are classical. Whereas the modified RE algebra (1.2) (� �= 0) is
treated to be a braided analog of the enveloping algebra U(gl(n)�). It is mo-
tivated by the fact that if R is a Hecke symmetry, deforming the flip, its limit
as q → 1 is just the enveloping algebra U(gl(n)�). Besides, it has many other
properties similar to those of the algebra U(gl(n)�) (see [4]).

Observe that if R is a Hecke symmetry, the non-modified RE algebra
(� = 0) is isomorphic to the corresponding modified RE algebra (� �= 0).
Their isomorphism is established by the following map

L 
→ �I − (q − q−1)L, lji 
→ �δji − (q − q−1)lji , q �= ±1. (4.7)

Thus, in this case the “braided symmetric” and the “braided enveloping” al-
gebras do not differ from each other.
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Nevertheless, the quotients of these two versions of the RE algebras over
the ideal generated by the elements TrRL (which are central in both alge-
bras) are not isomorphic to each other. One of them turns into the algebra
Sym (sl(n)), the other one into that U(sl(n)

�
) as q → 1.

Also, note that there exists an operator Q : (span(lji ))
⊗2 → (span(lji ))

⊗2

such that the modified RE algebra (1.2) can be cast in the following form

lji ⊗ ljk − Q(lji ⊗ llk) = �[lji , l
l
k] (4.8)

where [ , ] : (span(lji ))
⊗2 → span(lji ) stands for a linear operator, which is

treated to be a braided analog of the Lie bracket. The explicit form of this
bracket is

[ , ] = ◦B(I − Q). (4.9)

The properties of the corresponding braided Lie algebra and its enveloping
algebra (4.8) were studied in [4] (similar algebras corresponding to involutive
symmetries were introduced by one of the authors in the 80’s, see [3]). We use
them below to define the corresponding braided Poisson structures.

Now, let us consider the involutive case. While R is an involutive sym-
metry, the situation simplifies.

Proposition 4.1. If R is an involutive symmetry, the operators RW and Q
become equal to each other. Moreover, the non-modified RE algebra (� = 0)
and the algebra (4.6) coincide.

Besides, the isomorphism (4.7) between two versions of the RE algebra
(modified one and non-modified one) fails.

Moreover, assuming R to be involutive, it is easy to give an axiomatic
definition of a braided commutative algebra.

Definition 4.2. An associative algebra A endowed with an involutive symmetry
R : A⊗2 → A⊗2 is called braided commutative if

◦(a ⊗ b) = ◦R(a ⊗ b), ∀a, b ∈ A

where ◦ : A⊗2 → A is the product in this algebra which is assumed be be R-
invariant. If, besides A is unital, we also assume that R(1⊗a) = a⊗1, ∀a ∈ A.

Also, there is a natural definition of a braided Poisson structure on such
an algebra.

Definition 4.3. Let A be a braided commutative algebra in the sense of the
previous definition. We say that an R-invariant operator { , } : A⊗2 → A is a
braided Poisson bracket, if the following axioms are fulfilled

1. {a, b} = −{ , }R(a ⊗ b),
2. {a, bc} = {a, b}c + { , }23R12(a ⊗ b ⊗ c),
3. { , }{ , }12(I + R12R23 + R23R12)(a ⊗ b ⊗ c) = 0, ∀ a, b, c ∈ A.

Let us exhibit two examples of such structures. One of them is the linear
bracket (4.9) extended on the whole algebra defined by (4.8) with � = 0 via
the braided Leibniz rule, i.e. the property 2 above (we have only to replace the
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braided Lie bracket by the corresponding braided Poisson one). The second
example arises upon replacing lji in the right hand side of (4.9) by δji . Also,
note that these brackets are compatible, so any their linear combination is also
an example of such a braided Poisson structure.

These two examples can be generalized to the Hecke case. However, in
this case the axioms 1–3 above are not valid any more. We are only able to
write their analogs on the generators and exhibit the way of extending the
bracket on whole algebra in question. This extension is usually defined via a
version of the Leibniz rule. Since the Leibniz rule is related to the coproduct
in the algebra in question, we first describe this coproduct in the modified RE
algebra. While � = 1 this coproduct acts on the generators as follows5

Δ(1) = 1 ⊗ 1, Δ(lji ) = lji ⊗ 1 + 1 ⊗ lji − (q − q−1)
∑
k

lki ⊗ ljk (4.10)

On the whole modified RE algebra the coproduct (4.10) must be extended
with the use of the braiding RW . For instance,

Δ(lji llk) = Δ(lji )Δ(llk) = ((lji )1 ⊗ (lji )2)((l
l
k)1 ⊗ (llk)2) = (lji )1

˜(llk)1 ⊗ (̃lji )2(l
l
k)2

where ˜(llk)1 ⊗ (̃lji )2 = RW ((lji )2 ⊗ (llk)1) (here we use the Sweedler’s notation).
If R is an involutive symmetry (i.e. q = 1), this coproduct becomes

similar to the classical one. On the generators it takes the usual form Δ(lji ) =
lji ⊗ 1+1⊗ lji . Its extension to the whole algebra in question must be done via
the braiding RW = Q (see Proposition 4.1).

Now, we introduce a convenient matrix notation, which enables us to
cast all considered structures in a form useful for braiding of the Gaudin type
Poisson brackets.

Let R : V ⊗2 → V ⊗2, dim V = n be a Hecke or involutive symmetry and
L = ‖lji ‖1≤i,j,≤n be a matrix. We put

L1 = L1, L2 = R12 L1 R−1
12 , . . . , Li+1 = Ri i+1 Li R

−1
i i+1. (4.11)

If R is involutive, we can replace R−1 by R.
Also, below we use the notation A � B for the product of two squared

matrices of the same size but with the entries multiplied in the sense of the
tensor product:

(A � B)ji =
∑
k

Ak
i ⊗ Bj

k.

In this matrix notation, the defining relations of the RE algebra can be
written as

R (L1 � L2) − (L1 � L2 )R = �(L2 − L1),

or, equivalently, as

L1 � L2 − R−1(L1 � L2 )R = �(L1R
−1 − R−1L1). (4.12)

5 This coproduct was deduced in [4] from the braided bi-algebra structure discovered in the
(non-modified) RE algebra by Majid (see [6]).
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If R is involutive this relation is also equivalent to

L1 � L2 − L2 � L1 = �(L1 − L2)R. (4.13)

If R is a Hecke symmetry, the action of the operator RW can be written
as follows

RW (L1 � L2) = L2 � L1,

whereas for the operator Q we get

Q(L1 � L2) = R−1(L1 � L2)R.

Following the pattern arising from formula (4.12) (where we put � = 1),
we define the linear Poisson bracket on the generators by the rule

{L1, L2} = L1R
−1 − R−1L1. (4.14)

(For the notation {A,B} see Sect. 2.)
The properties of this bracket are similar to those of the braided Lie

algebras considered in [4]. However, one needs to complement formula (4.14)
with a rule for extending the bracket to monomials of higher order. In our
current setting the Leibniz rule does not have a universal form similar to that
from Definition 9. However, we define the extension of the bracket via the
coproduct (4.10).

Thus, we have

{L1, L2 � L3} = {L1, L2} � L3 + L2 � {L1, L3}
−(q − q−1){L1, L2} � {L1, L3}. (4.15)

Note that {L1, L3} = {L1, R23L2R
−1
23 } = R23{L1, L2}R−1

23 .
In a similar manner the brackets

{L1 � L2}, L3, {L1 � L2, L3 � L4}
and so on can be computed.

Whereas, the braided analog of the Jacobi relation is similar to that from
[4]

{L1, {L2, L3}} = {{L1, L2}, L3} + {L2, {L1, L3}}.
The last property we want to mention, is the skew-symmetry: in the

Hecke case it takes the form

{ , }((q2 + q−2)(L1 � L2) + R−1 (L1 � L2)R + R (L1 � L2)R
−1) = 0.

Note that the expression in the bracket is the image of the symmetrization
operator on W⊗2 (see [4]) realized in the matrix form.

To conclude, we note that to define a Poisson structure on a braided
algebra is a somewhat subtle deal. Especially, the form of the “braided Leibniz
rule” is not a priori clear (see the discussion at the end of the next section).
However, in the involutive case this rule (expressed by the property 2 in the
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Definition 4.3) is simple enough and via the usual R-matrix technique (see [4]
and the references therein) it entails the formula

{(L1)
k, (L2)

l} =
k−1∑
i=0

l−1∑
j=0

(L1)
i � (L2)

j � {L1, L2} � (L1)
k−i−1 � (L2)

l−j−1,

which is used in the next section.

5. Braided Poisson Structures of the Gaudin Type

First, consider the braided version of the Gaudin type bracket (2.2). To this
end we replace the usual flip P in that formula by a skew-invertible involutive
symmetry R. Then we get

{L1(u), L2(v)} =
[
L1(u) + L2(v),

R

u − v

]
. (5.1)

Hereafter, the notation Li(u) stands for the matrices defined according to
formula (4.11) where R is the given involutive symmetry (without the current
parameter). Thus, the braiding and differentiations in the parameter do not
affect each other.

It is not difficult to see that the relation (2.5) is fulfilled with r(u) = R
u .

Here the fact that R is involutive is crucial. However, we prefer to deal with
the corresponding braided Poisson structure by casting it in the local form
similar to (2.9).

Let us consider the algebra A generated by the entries of the matrix L(v)
and its derivatives which are subject to the relations

L
(k)

1
(v) � L

(l)

2
(v) = L

(l)

2
(v) � L

(k)

1
(v), ∀k, l.

This algebra looks like that from definition 8 but now it becomes graded. We
also treat it as a braided commutative algebra. We assume that the bracket
(5.1) is defined on the algebra

Our next aim is to define the bracket (5.1) in the local form on this
algebra.

On expanding L1(u) = L1(v + h) in the Taylor series in h (in analogy
with Sect. 2), we conclude that formula (5.1) is equivalent to the family{

L
(k)

1
(v), L(l)

2
(v)

}
= [L(k+l+1)

1
(v), R]α1(k, l) (5.2)

with coefficients α1(k, l) given by formula (2.10).
In a similar manner we can realize a braiding of the Poisson structures

considered in Sect. 3. Namely, we set{
L
(k)

1
(v), L(l)

2
(v)

}
r

=
[
L
(k+l+r)

1
(v), R

]
αr(k, l) (5.3)

with the coefficients αr(k, l) defined by formula (3.2).
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This Poisson structure can also be cast in the form similar to (3.4). For
r = 2 we have

{L1(u), L2(v)}2 =
[
L1(u) + L1(v),

R

(u − v)2

]
− 2

⎡
⎣

u∫
v

L2(t)dt,
R

(u − v)3

⎤
⎦ .

(5.4)

The properties of all these braided brackets are similar to those exhibited
Definition 4.3 but now the algebra is graded and the bracket is compatible with
the gradation.

Consider the braided enveloping algebra similar to (4.13), which is gen-
erated by the entries of the matrices L(k)(v), k = 0, 1, 2, . . . subject to the
relations

R L
(k)
1 (v)R L

(l)
1 (v) − L

(l)
1 (v)R L

(k)
1 (v)R

= αr(k, l)(R L
(k+l+r)
1 (v) − L

(k+l+r)
1 (v)R) (5.5)

where the coefficients αr(k, l) are defined by formula (2.10). (The correspond-
ing Lie bracket can be also readily defined).

It is not difficult to see that this algebra becomes a braided bi-algebra
being equipped with the coproduct

ΔL(k)(v) = L(k)(v) ⊗ 1 + 1 ⊗ L(k)(v) (5.6)

extended to the algebra A by means of the operator

Q(L(k)

1
(v) � L

(l)

2
(v)) = L

(l)

2
(v) � L

(k)

1
(v).

Namely, this property leads to a proper Leibniz rule in the braided Poisson
algebra in question.

Now, we discuss a specialization of the matrix L(v) similar to (2.15).
Let gl(R) be the braided Lie algebra defined in the space span(aj

i ) by (4.14)
but with the Lie bracket instead of the Poisson one and the matrix A = (aj

i )
instead of L.

By following the pattern (2.17) we consider a braided analog of the direct
sum (2.17) but without the last component

G(R) = gl(R) ⊕R ... ⊕R gl(R).

This means that the commutation relations in the algebra G(R) are

[A1(p), A2(q)] := A1(p) � A2(q) − A2(p) � A1(q) = (A1R − RA1)δ(p, q),
(5.7)

where δ(p, q) is the Kronecker symbol and p and q are labels of the components
(recall that R is involutive).

Proposition 5.1. The matrix L(v) =
∑N

p=1 A(p)fp(v), where the entries of the
matrices A(p) belong to the braided Lie algebra G(R) (i.e. they are subject to
(5.7)) fulfills the relations (5.1) iff the functional factors are fp(v) = 1

vp−v .
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Also, the matrix L(v) =
∑N

p=1 A(p)fp(v) is subject to (5.3) iff the functional
factors are fp(v) = 1

(vp−v)r .

In the same manner as the classical result (see [8]) the following propo-
sition can be proven.

Proposition 5.2. The Hamiltonians H(p) =
∑

j �=p
TrRA(p)A(j)

vj−vp
, 1 ≤ p ≤ N ,

where the matrices A(p) are subject to the relations (5.7) commute with each
other in the sense of the braided Poison bracket { , }G(R).

Also,in the spirit of the Proposition 3.3 we can prove the following.

Proposition 5.3. If the matrices L(k)(v) are subject to the bracket (5.3) then
the quantities TrR(L(v))k, k = 0, 1, 2, . . . commute with each other in the sense
of the bracket (5.3) extended to the whole algebra via the coproduct (5.6).

We want only to emphasize the crucial points of the proof. First, formula
(3.7) is still valid, provided Li(v) is replaced by Li(v). Since the matrix C(v)
equals up to a factor a derivative of the matrix L(v) the relation

L1(v) � C2(v) = C2(v) � L1(v)

is valid.
Now, to get a braided analog of the proposition 4, it suffices to apply the

following lemma.

Lemma 5.4. If two n × n matrices A and B are subject to the relation

A1(v) � B2(v) = B2(v) � A1(v) (5.8)

then

TrRAB = TrRBA. (5.9)

Proof. We will show that this claim is valid even in the Hecke case. Let
us rewrite the relation (5.8) as

A1 R B1 = R B1 R A1 R−1 (5.10)

and apply the R-trace TrR12 = TrR1 ⊗ TrR2 to the both sides of this equality.
Next, we apply the relation

TrR12 R X12 R−1 = TrR12X12,

where X12 ∈ End(V ⊗2) ⊗ A is an endomorphism of the space V ⊗2 with coef-
ficients belonging to any associative algebra A. If we set X12 = B1 R A1 and
use the property TrR2 R12 = I1 we come to the result (5.9).

Completing the note, we want to discuss the following problem: is it
possible to define an analogous structure related to a Hecke symmetry. Let R
be such a symmetry and fix an integer r ≥ 1. Consider an associative algebra
generated by the entries of the matrices L(k)(v), k = 0, 1, 2, . . . subject to the
relations (5.5) with the chosen Hecke symmetry R. It is not difficult to define
a braided Lie bracket (in the spirit of [4]) so that the algebra (5.5) becomes
the enveloping algebra of the corresponding braided Lie algebra. However, it
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is not clear whether there exists a coproduct endowing it with a braided bi-
algebra structure. This is reason why we do not know any consistent form of
the “braided Leibniz rule” in the corresponding “braided Poisson structure”.
Also, the deformation property of this algebra is not clear. Nevertheless, in this
associative algebra the problem of finding an analog of the Cayley–Hamilton
identity in the spirit of [8] is of interest.
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