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Abstract. We prove structural stability under perturbations for a class
of discrete-time dynamical systems near a non-hyperbolic fixed point.
We reformulate the stability problem in terms of the well-posedness of
an infinite-dimensional nonlinear ordinary differential equation in a Ba-
nach space of carefully weighted sequences. Using this, we prove existence
and regularity of flows of the dynamical system which obey mixed ini-
tial and final boundary conditions. The class of dynamical systems we
study, and the boundary conditions we impose, arise in a renormaliza-
tion group analysis of the 4-dimensional weakly self-avoiding walk and
the 4-dimensional n-component |ϕ|4 spin model.

1. Introduction and Main Result

1.1. Introduction

Let V = R
3 with elements V ∈ V written V = (g, z, μ) and considered as a

column vector for matrix multiplication. For each j ∈ N0 = {0, 1, 2, . . .}, we
define the quadratic flow ϕ̄j : V → V by

ϕ̄j(V ) =

⎛
⎝

1 0 0
0 1 0
ηj γj λj

⎞
⎠V −

⎛
⎜⎝
V Tqg

jV

V Tqz
jV

V Tqμ
j V

⎞
⎟⎠, (1.1)

with the quadratic terms of the form

qg
j =

⎛
⎝
βj 0 0
0 0 0
0 0 0

⎞
⎠, qz

j =

⎛
⎜⎝
θj

1
2ζj 0

1
2ζj 0 0

0 0 0

⎞
⎟⎠, (1.2)
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and

qμ
j =

⎛
⎜⎝
υgg

j
1
2υ

gz
j

1
2υ

gμ
j

1
2υ

gz
j υzz

j
1
2υ

zμ
j

1
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gμ
j

1
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zμ
j 0

⎞
⎟⎠. (1.3)

All entries in the above matrices are real numbers. Our hypotheses on the
parameters of ϕ̄ are stated precisely in Assumptions A1 and A2 below. In
particular, we assume that there exists λ > 1 such that λj ≥ λ for all j.

The quadratic flow ϕ̄ defines a time-dependent discrete-time
3-dimensional dynamical system. It is triangular, in the sense that the equa-
tion for g does not depend on z or μ, the equation for z depends only on g,
and the equation for μ depends on g and z. Moreover, the equation for z is
linear in z and the equation for μ is linear in μ. This makes the analysis of the
quadratic flow elementary.

Our main result concerns structural stability of ϕ̄ under a class of infinite-
dimensional perturbations. Let (Wj)j∈N0 be a sequence of Banach spaces and
Xj = Wj ⊕ V. We write xj ∈ Xj as xj = (Kj , Vj) = (Kj , gj , zj , μj). Suppose
that we are given maps ψj : Xj → Wj+1 and ρj : Xj → V. Then, we define
Φj : Xj → Xj+1 by

Φj(Kj , Vj) =
(
ψj(Kj , Vj), ϕ̄j(Vj) + ρj(Kj , Vj)

)
. (1.4)

This is an infinite-dimensional perturbation of the 3-dimensional quadratic
flow ϕ̄, which breaks triangularity and which involves the spaces Wj in a
nontrivial way. We impose estimates on ψj and ρj below, which make Φ a
third-order perturbation of ϕ̄.

We give hypotheses under which there exists a sequence (xj)j∈N0 with
xj ∈ Xj which is a global flow of Φ, in the sense that

xj+1 = Φj(xj) for all j ∈ N0, (1.5)

obeying the boundary conditions that (K0, g0) is fixed, zj → 0, and μj → 0.
Moreover, within an appropriate space of sequences, this global flow is unique.

As we discuss in more detail in Sect. 1.3 below, this result provides an
essential ingredient in a renormalization group analysis of the 4-dimensional
continuous-time weakly self-avoiding walk [2,3,5], where the boundary condi-
tion limj→∞ μj = 0 is the appropriate boundary condition for the study of
a critical trajectory. Similarly, our main result applies also to the analysis of
the critical behaviour of the 4-dimensional n-component |ϕ|4 spin model [4].
These applications provide our immediate motivation to study the dynamical
system Φ, but we expect that the methods developed here will have further
applications to dynamical systems arising in renormalization group analysis in
statistical mechanics.

1.2. Dynamical System

We think of Φ = (Φj)j∈N0 as the evolution map of a discrete time-dependent
dynamical system, although it is more usual in dynamical systems to have the
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spaces Xj be identical. Our application in [2–5] requires the greater generality
of j-dependent spaces.

In the case that Φ is a time-independent dynamical system, i.e., when
Φj = Φ and Xj = X for all j ∈ N0, its fixed points are of special interest:
x∗ ∈ X is a fixed point of Φ if x∗ = Φ(x∗). The dynamical system is called
hyperbolic near a fixed point x∗ ∈ X if the spectrum of DΦ(x∗) is disjoint
from the unit circle [13]. It is a classic result that for a hyperbolic system
there exists a splitting X ∼= Xs ⊕ Xu into a stable and an unstable manifold
near x∗. The stable manifold is a submanifold Xs ⊂ X such that xj → x∗

in X, exponentially fast, when (xj) satisfies (1.5) and x0 ∈ Xs. On the other
hand, trajectories started on the unstable manifold move away from the fixed
point. This result can be generalized without much difficulty to the situation
when the Φj and Xj are not necessarily identical, viewing “0” as a fixed point
(although 0 is the origin in different spaces Xj). The hyperbolicity condition
must now be imposed in a uniform way [6, Theorem 2.16].

By definition, ϕ̄j(0) = 0, and we will make assumptions below which can
be interpreted as a weakened formulation of the fixed point equation Φj(0) = 0
for the dynamical system defined by (1.4). Nevertheless, for simplicity we refer
to 0 as a fixed point of Φ = (Φj). This fixed point 0 is not hyperbolic due to
the two unit eigenvalues of the matrix in the first term of (1.1). Thus, the g-
and z-directions are center directions, which neither contract nor expand in
a linear approximation. On the other hand, the hypothesis that λj ≥ λ > 1
ensures that the μ-direction is expanding, and we will assume below that ψj :
Xj → Wj+1 is such that the K-direction is contractive near the fixed point
0. The behaviour of dynamical systems near non-hyperbolic fixed points is
much more subtle than for the hyperbolic case. A general classification does
not exist, and a nonlinear analysis is required.

1.3. Main Result

In Sect. 2, we give an elementary proof that for ḡ0 positive and sufficiently
small, there exists a unique choice of (z̄0, μ̄0) such that the global flow V̄ =
(ḡ, z̄, μ̄) of ϕ̄ satisfies (z̄∞, μ̄∞) = (0, 0), where we write, e.g., z̄∞ = limj→∞ z̄j .
Our main result is that, under the assumptions stated below, there exists a
unique global flow of Φ with any small initial condition (K0, g0) and with final
condition (z∞, μ∞) = (0, 0), and that this flow is a small perturbation of V̄ .

The sequence ḡ = (ḡj) plays a prominent role in the analysis. Determined
by the sequence (βj), it obeys

ḡj+1 = ḡj − βj ḡ
2
j , ḡ0 = g0 > 0. (1.6)

We regard ḡ as a known sequence (only dependent on the initial condition g0).
The following examples are helpful to keep in mind.

Example 1.1. (i) Constant βj = b > 0. In this case, ḡj ∼ g0(1 + g0bj)−1 ∼
(bj)−1 as j → ∞ (an argument for this standard fact is outlined in the
proof of (2.5) below).
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(ii) Abrupt cutoff, with βj = b for j ≤ J and βj = 0 for j > J , with J 
 1. In
this case, ḡj is approximately the constant (bJ)−1 for j > J . In particular,
ḡj does not go to zero as j → ∞.

Example 1.1 prompts us to make the following general definition of a
cutoff time for bounded sequences βj . Let ‖β‖∞ = supj≥0 |βj | < ∞ and let
n+ = n if n ≥ 0 and otherwise n+ = 0. Given a fixed Ω > 1, we define the
Ω-cutoff time jΩ by

jΩ = inf{k ≥ 0 : |βj | ≤ Ω−(j−k)+‖β‖∞ for all j ≥ 0}. (1.7)

The infimum of the empty set is defined to equal ∞, e.g., if βj = b for all j
then jΩ = ∞. By definition, jΩ ≤ jΩ′ if Ω ≤ Ω′. To abbreviate the notation,
we write

χj = Ω−(j−jΩ)+ . (1.8)

The evolution maps Φj are specified by the real parameters ηj , γj , λj , βj ,
θj , ζj , υαβ

j , together with the maps ψj and ρj on Xj . Throughout this paper,
we fix Ω > 1 and make Assumptions A1 and A2 on the real parameters and
Assumption A3 on the maps, all stated below. The constants in all estimates
are permitted to depend on the constants in these assumptions, including Ω,
but not on jΩ and g0 > 0. Furthermore, we consider the situation when the
parameters of ϕ̄j are continuous maps from a metric space Mext of external
parameters, m ∈ Mext, into R, that the maps ψj and ρj similarly have continu-
ous dependence on m, and that jΩ is allowed to depend on m. In this situation,
the constants in Assumptions A1 and A3 are assumed to hold uniformly in m.

Assumption A1. The sequence β: The sequence (βj) is bounded: ‖β‖∞ < ∞.
There exists c > 0 such that βj ≥ c for all but c−1 values of j ≤ jΩ.

Assumption A2. The other parameters of ϕ̄: There exists λ > 1 such that
λj ≥ λ for all j ≥ 0. There exists c > 0 such that ζj ≤ 0 for all but c−1 values
of j ≤ jΩ. Each of ηj , γj , θj , ζj , υαβ

j is bounded in absolute value by O(χj),
with a constant that is independent of both j and jΩ.

Note that when jΩ < ∞, Assumption A1 permits the possibility that
eventually βk = 0 for large k. The simplest setting for the assumptions is for
the case jΩ = ∞, for which χj = 1 for all j. Our applications include situations
in which βj approaches a positive limit as j → ∞, but also situations in which
βj is approximately constant in j over a long initial interval j ≤ jΩ and then
abruptly decays to zero.

In Sect. 2, in preparation for the proof of the main result, we prove
the following elementary proposition concerning flows of the 3-dimensional
quadratic dynamical system ϕ̄.

Proposition 1.2. Assume (A1–A2). If ḡ0 > 0 is sufficiently small, then there
exists a unique global flow V̄ = (V̄ )j∈N0 = (ḡj , z̄j , μ̄j)j∈N0 of ϕ̄ with initial
condition ḡ0 and (z̄∞, μ̄∞) = (0, 0). This flow satisfies ḡj = O(ḡ0) and

χj ḡ
n
j = O

(
ḡ0

1 + ḡ0j

)n

, z̄j = O(χj ḡj), μ̄j = O(χj ḡj), (1.9)
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with constants independent of jΩ and ḡ0, and with the first estimate valid for
real n ∈ [1,∞) with an n-dependent constant. Furthermore, V̄j is continuously
differentiable in the initial condition ḡ0, for every j ∈ N0, and if the maps ϕ̄j

depend continuously on an external parameter such that (A1–A2) hold with
uniform constants, then V̄j is continuous in this parameter, for every j ∈ N0.

In particular, by (1.9), above scale jΩ each of z̄j , μ̄j decays exponentially.
We now define domains Dj ⊂ Xj on which the perturbation (ψj , ρj) is as-
sumed to be defined, and an assumption which states estimates for (ψj , ρj).
The domain and estimates depend on an initial condition g0 and the possible
external parameter m. For parameters a, h > 0 and sufficiently small g0 > 0,
let (ḡj , z̄j , μ̄j)j∈N0 be the sequence determined by Proposition 1.2 with initial
condition ḡ0 = g0, and define the domain Dj = Dj(g0, a, h) ⊂ Xj by

Dj = {xj ∈ Xj : ‖Kj‖Wj
≤ aχj ḡ

3
j ,

|gj − ḡj | ≤ hḡ2
j | log ḡj |,

|zj − z̄j | ≤ hχj ḡ
2
j | log ḡj |,

|μj − μ̄j | ≤ hχj ḡ
2
j | log ḡj |}. (1.10)

Note that if βj depends on an external parameter m, then the domain Dj =
Dj(g0,m, a, h) also depends on this parameter m through ḡj = ḡj(m).

Throughout the paper, we writeDαφ for the Fréchet derivative of a map φ
with respect to the component α, and Lm(Xj ,Xj+1) for the space of bounded
m-linear maps from Xj to Xj+1. The following assumption depends on posi-
tive parameters (g0, a, h, κ,Ω, R,M). The norm ‖ · ‖V is the supremum norm
on R

3.

Assumption A3. The perturbation: The maps ψj : Dj → Wj+1 ⊂ Xj+1 and
ρj : Dj → V ⊂ Xj+1 are three times continuously Fréchet differentiable, there
exist κ ∈ (0,Ω−1), R ∈ (0, a(1−κΩ)), and a constant M > 0 such that, for all
xj = (Kj , Vj) ∈ Dj ,

‖ψj(0, Vj)‖Wj+1 ≤ Rχj+1ḡ
3
j+1, ‖ρj(xj)‖V ≤ Mχj+1ḡ

3
j+1, (1.11)

‖DKψj(xj)‖L(Wj ,Wj+1) ≤ κ, ‖DKρj(xj)‖L(Wj ,V) ≤ M, (1.12)

and such that, for both φ = ψ and φ = ρ and 2 ≤ n+m ≤ 3,

‖DV φj(xj)‖L(V,Xj+1) ≤ Mχj+1ḡ
2
j+1, (1.13)

‖Dm
V D

n
Kφj(xj)‖Ln+m(Xj ,Xj+1) ≤ M(χj+1ḡ

3
j+1)

1−n(ḡ2
j+1| log ḡj+1|)−m.

(1.14)

The bounds (1.11) guarantee that Φ is a third-order perturbation of ϕ̄.
Moreover, since κ < 1, the ψ-part of (1.12) ensures that the K-direction is
contractive for Φ. The bounds (1.14) permit the second and third derivatives
of ψ and ρ to be quite large. The restriction on R in (A3) may seem unnatural
initially, but its role is seen in Lemma 1.3 below.

The following elementary lemma provides a statement of domain com-
patibility which shows that a sequence (K̄j)j∈N0 can be defined inductively by
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K̄j+1 = ψj(K̄j , V̄j). Denote by πKDj the projection of Dj onto Wj , i.e.,

πKDj = {Kj ∈ Wj : ‖Kj‖Wj
≤ rχj ḡ

3
j }. (1.15)

Lemma 1.3. Assume (A3), let a∗ ∈ (R/(1 − κΩ), a], and assume that g0 > 0
is sufficiently small. Then ψj(Dj(g0, a∗, h)) ⊆ πKDj+1(g0, a∗, h).

Proof. The triangle inequality and the first bounds of (1.11)–(1.12) imply

‖ψj(Kj , Vj)‖Wj+1 ≤ ‖ψj(0, Vj)‖Wj+1 + ‖ψj(Kj , Vj) − ψj(0, Vj)‖Wj+1

≤ Rχj+1ḡ
3
j+1 + κa∗χj ḡ

3
j . (1.16)

Therefore,

‖ψj(Kj , Vj)‖Wj+1 ≤ Rχj+1ḡ
3
j+1 + a∗κΩ(1 +O(g0))χj+1ḡ

3
j+1

≤ a∗χj+1ḡ
3
j+1, (1.17)

where the first inequality uses the facts that ḡ3
j /ḡ

3
j+1 = 1 + O(g0) (verified

in Lemma 2.1(i) below) and that g0 > 0 is sufficiently small, and the second
inequality uses the restriction on R in (A3). �

The sequence x̄ = (K̄j , V̄j)j∈N0 is a flow of the dynamical system Φ̄ =
(ψ, ϕ̄) in the sense of (1.5), with initial condition (K̄0, ḡ0) = (K0, g0) and
final condition (z̄∞, μ̄∞) = (0, 0). We consider this sequence as a function
(K0, g0) → x̄(K0, g0) of the initial condition (K0, g0). Our main result is the
following theorem, which shows that flows x of the dynamical system Φ =
(ψ, ϕ̄+ ρ) = Φ̄ + (0, ρ) are perturbations of the flows x̄ of Φ̄.

Theorem 1.4. Assume (A1–A3) with parameters (a, h, κ,Ω, R,M) and g0 = g′
0,

and let a∗ ∈ (R/(1 − κΩ), a), b ∈ (0, 1). There exists h∗ > 0 such that for all
h ≥ h∗, there exists g∗ > 0 such that if g′

0 ∈ (0, g∗] and ‖K ′
0‖W0 ≤ a∗g3

0 , the
following conclusions hold.

(i) There exists a neighborhood N = N(K ′
0, g

′
0) ⊂ W0 ⊕ R of (K ′

0, g
′
0) such

that, for initial conditions (K0, g0) ∈ N, there exists a global flow x of
Φ = (ψ, ϕ̄ + ρ) with (z∞, μ∞) = (0, 0) such that, with x̄ the unique flow
of Φ̄ = (ψ, ϕ̄) determined by the same boundary conditions,

‖Kj − K̄j‖Wj
≤ b(a− a∗)χj ḡ

3
j , (1.18)

|gj − ḡj | ≤ bhḡ2
j | log ḡj |, (1.19)

|zj − z̄j | ≤ bhχj ḡ
2
j | log ḡj |, (1.20)

|μj − μ̄j | ≤ bhχj ḡ
2
j | log ḡj |. (1.21)

The sequence x is the unique solution to (1.5) which obeys these boundary
conditions and the bounds (1.18)–(1.21).

(ii) For every j ∈ N0, the map (Kj , Vj) : N → Wj ⊕ V is C1 and obeys

∂z0
∂g0

= O(1),
∂μ0

∂g0
= O(1). (1.22)
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Remark 1.5. The proof of Theorem 1.4 shows that N contains a ball centered
at (K ′

0, g
′
0) whose radius depends only on g′

0, the constants in (A1–A3), and
a∗, b, h, and that this radius is bounded below away from zero uniformly in g′

0

in a compact subset of (0, g∗].

Because of its triangularity, an exact analysis of the flows of ϕ̄ with
the boundary conditions of interest is straightforward: the three equations for
g, z, μ can be solved successively and we do this in Sect. 2 below. Triangularity
does not hold for Φ, and we prove in Sects. 3–4 below that the flows of Φ with
the boundary conditions of interest nevertheless remain close to the flows of ϕ̄
with the same boundary conditions.

Application. A fundamental element in renormalization group analysis con-
cerns the flow of local interactions obtained via iteration of a renormalization
group map [15]. The dynamical system (1.4) arises as part of renormaliza-
tion group studies of the critical behavior of two different but related models:
the 4-dimensional n-component |ϕ|4 spin model [4], and the 4-dimensional
continuous-time weakly self-avoiding walk [2,3] (see [5] for a preliminary ver-
sion). The main results of [2,3] are that, for the continuous-time weakly self-
avoiding walk in dimension four, the susceptibility diverges with a logarith-
mic correction as the critical point is approached, and the critical two-point
function has |x|−2 decay. Related results are obtained for the 4-dimensional n-
component |ϕ|4 spin model in [4], complementing and in some cases extending
results of [7–10]. Theorem 1.4 is an essential ingredient in analyzing the flows
in [2–4], and the uniformity of (1.18)–(1.21) in the cutoff time (for a given Ω) is
needed. In [2–4], the index j represents an increasingly large length scale, the
spaces Wj have a subtle definition and are of infinite dimension, and their j-
dependence is an inevitable consequence of applying the renormalization group
to a lattice model.

Remark 1.6. (i) For jΩ = ∞ and with (1.9), the bounds (1.18)–(1.21) im-
ply ‖Kj‖Wj

= O(j−3) and Vj − V̄j = O(j−2 log j). However, the latter
bounds do not reflect that Kj , Vj → 0 as g0 → 0, while the former do.
Furthermore, (1.9) implies χj ḡj → 0 as j → ∞ (also when jΩ < ∞), and
thus (1.18) and (1.20)–(1.21) imply Kj → 0, zj → 0, μj → 0 as j → ∞.
More precisely, these estimates imply zj , μj = O(χj ḡj) so that zj and
μj decay exponentially after the Ω-cutoff time jΩ; we interpret this as
indicating that the boundary condition (z∞, μ∞) = (0, 0) is essentially
achieved already at jΩ.

(ii) We conjecture that the error bounds in (1.18)–(1.21) have optimal decay
as j → ∞. Some indication of this can be found in Remark 3.2 below.

Theorem 1.4 is an analogue of a stable manifold theorem for the non-
hyperbolic dynamical system defined by (1.4). It is inspired by [6, Theo-
rem 2.16] which, however, holds only in the hyperbolic setting. Irwin [11]
showed that the stable manifold theorem for hyperbolic dynamical systems
is a consequence of the implicit function theorem in Banach spaces (see also
[13,14]). Irwin’s approach was inspired by Robbin [12], who showed that the
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local existence theorem for ordinary differential equations is a consequence of
the implicit function theorem. By contrast, in our proof of Theorem 1.4, we
directly apply the local existence theorem for ODEs, without explicit mention
of the implicit function theorem. This turns out to be advantageous to deal
with the lack of hyperbolicity.

Our choice of ϕ̄ in (1.1) has a specific triangular form. One reason for
this is that (1.1) accommodates what is required in our application in [2–5].
A second reason is that additional nonzero terms in ϕ̄ can lead to the failure
of Theorem 1.4. The condition that βj is mainly non-negative is important
for the sequence ḡj of (1.6) to remain bounded. The following example shows
that our sign restriction on the ζj term in the flow of z̄ is also important, since
positive ζj can lead to violation of a conclusion of Theorem 1.4.

Example 1.7. Suppose that ζj = θj = βj = 1, that ρ = 0, and that ḡ0 > 0 is
small. For this constant β sequence, jΩ = ∞ (for any Ω > 1) and hence χj = 1
for all j. As in Example 1.1, ḡj ∼ j−1. By (1.1) and (1.6),

z̄j+1 = z̄j(1 − ḡj) − ḡ2
j = z̄j

ḡj+1

ḡj
− ḡ2

j . (1.23)

Let ȳj = z̄j/ḡj . Since ḡj/ḡj+1 = (1 − ḡj)−1 ≥ 1, we obtain ȳj ≥ ȳj+1 + ḡj and
hence

ȳj ≥ ȳn+1 +
n∑

l=j

ḡl. (1.24)

Suppose that z̄j = O(ḡj), as in (1.9). Then ȳj = O(1) and hence by taking the
limit n → ∞ we obtain

ȳj ≥ lim sup
n→∞

⎛
⎝ȳn+1 +

n∑
l=j

ḡl

⎞
⎠ ≥ −C +

∞∑
l=j

ḡl. (1.25)

However, since ḡj ∼ j−1, the last sum diverges. This contradiction implies that
the conclusion z̄j = O(ḡj) of (1.20) is impossible.

1.4. Continuity in External Parameter

The uniqueness statement of Theorem 1.4 implies the following corollary re-
garding continuous dependence on an external parameter of the global flow for
(1.5) given by Theorem 1.4. In the statement of the corollary, we assume that
Dj is actually the union over m ∈ Mext of the domains on the right-hand side
of (1.10). Recall that the latter domains depend on m through β and ḡ.

Corollary 1.8. Assume that Φj : Dj × Mext → Xj+1 are continuous maps
and that (A1–A3) hold for Φj(·,m), for every m ∈ Mext, and with parame-
ters independent of m. Let x(m,u0) = (K(m,u0), V (m,u0)) be the global flow
for external parameter m and initial condition u0 = (K0, g0) guaranteed by
Theorem 1.4. Then xj is continuous in (m,u0) for each j ∈ N0.
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Proof. We fix m ∈ Mext, u0 ∈ N and show that xj is continuous at this fixed
(m,u0). For any m′ ∈ Mext, u′

0 ∈ N, let x(m′, u′
0) = (K(m′, u′

0), V (m′, u′
0))

denote the unique global flow of Theorem 1.4; it satisfies the estimates

‖Kj(m′) − K̄j(m′)‖Wj
≤ b(a− a∗)χj(m′)ḡj(m′)3, (1.26)

|gj(m′) − ḡj(m′)| ≤ bhḡj(m′)2| log ḡj(m′)|, (1.27)

|μj(m′) − μ̄j(m′)| ≤ bhχj(m′)ḡj(m′)2| log ḡj(m′)|, (1.28)

|zj(m′) − z̄j(m′)| ≤ bhχj(m′)ḡj(m′)2| log ḡj(m′)|. (1.29)

By Proposition 1.2, V̄j(m′, g′
0) is continuous in (m′, g′

0), and thus in particular
V̄0(m′, g′

0) is uniformly bounded for (m′, g′
0) in a bounded neighbourhood I of

(m, g0). With (1.27)–(1.29), we see that V0(m′, u′
0) is therefore also uniformly

bounded in I. Thus, for every sequence (m′, u′
0) → (m,u0), V0(m′, u′

0) has a
limit point. It suffices to show that the limit point is unique. To show this
uniqueness, we fix an arbitrary limit point V ∗

0 and a sequence (m′, u′
0) →

(m,u0) such that V0(m′, u′
0) → V ∗

0 . Since K ′
0 → K0, we also set K∗

0 = K0.
Then define x∗

j = (K∗
j , V

∗
j ) by inductive application of Φj(m, ·) starting

from x∗
0 = (K∗

0 , V
∗
0 ), as long as x∗

j ∈ Dj . Since (K ′
0, V0(m′, u′

0)) → (K∗
0 , V

∗
0 ), it

follows by induction and the assumed continuity of ψj , ρj that xj(m′, u′
0) → x∗

j .
By an analogous induction, using continuity of V̄j and ψj , it follows that
K̄j(m′, u′

0) → K̄j(m,u0). Since χj(m′) → χj(m), we can now take the limit of
(1.26)–(1.29) along the sequence (m′, u′

0) → (m,u0) and obtain

‖K∗
j − K̄j(m)‖Wj

≤ b(a− a∗)χj(m)ḡj(m)3, (1.30)

|g∗
j − ḡj(m)| ≤ bhḡj(m)2| log ḡj(m)|, (1.31)

|μ∗
j − μ̄j(m)| ≤ bhχj(m)ḡj(m)2| log ḡj(m)|, (1.32)

|z∗
j − z̄j(m)| ≤ bhχj(m)ḡj(m)2| log ḡj(m)|. (1.33)

The uniqueness assertion of Theorem 1.4 implies that x∗
j = xj(m,u0), and we

see that the above inductions can in fact be carried out indefinitely. We also
conclude that V ∗

0 = V0(m,u0), so there is a unique limit point of V0(m′, u′
0) as

(m′, u′
0) → (m,u0). This shows that V0 is continuous at (m,u0). The continuity

of xj now follows inductively from the continuity of the Φj . �

2. Quadratic Flow

In this section, we prove that, for the quadratic approximation ϕ̄, there exists
a unique solution V̄ = (V̄j)j∈N0 = (ḡj , z̄j , μ̄j)j∈N0 to the flow equation

V̄j+1 = ϕ̄j(V̄j) with fixed small ḡ0 > 0 and with (z̄∞, μ̄∞) = (0, 0). (2.1)

Due to the triangular nature of ϕ̄, we can obtain detailed information about
the sequence V̄ . In particular, we prove Proposition 1.2.
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2.1. Flow of ḡ

We start with the analysis of the sequence ḡ, which obeys the recursion

ḡj+1 = ḡj − βj ḡ
2
j , ḡ0 = g0 > 0. (2.2)

The following lemma collects the information we need about ḡ.

Lemma 2.1. Assume (A1). The following statements hold if ḡ0 > 0 is suffi-
ciently small, with all constants independent of jΩ and ḡ0.

(i) For all j, ḡj > 0,

ḡj = O
(

inf
k≤j

ḡk

)
, and ḡj ḡ

−1
j+1 = 1 +O(χj ḡj) = 1 +O(ḡ0). (2.3)

For all j and k, ḡj is non-increasing in βk.
(ii) (a) For real n ∈ [1,∞) and m ∈ [0,∞), there exists Cn,m > 0 such that

for all k ≥ j ≥ 0,
k∑

l=j

χlḡ
n
l | log ḡl|m ≤ Cn,m

{
| log ḡk|m+1 n = 1
χj ḡ

n−1
j | log ḡj |m n > 1.

(2.4)

(b) For real n ∈ [1,∞), there exists Cn > 0 such that for all j ≥ 0,

χj ḡ
n
j ≤ Cn

(
ḡ0

1 + ḡ0j

)n

. (2.5)

(iii) (a) For γ ≥ 0 and j ≥ 0, there exist constants cj = 1 + O(χj ḡj)
(depending on γ) such that, for all l ≥ j,

l∏
k=j

(1 − γβkḡk)−1 =
(

ḡj

ḡl+1

)γ

(cj +O(χlḡl)). (2.6)

The constant cj is continuous in g0 and if the βj depend continuously
on an external parameter such that (A1) holds uniformly in that
parameter, then cj is also continuous in the external parameter.

(b) For ζj ≤ 0 except for c−1 values of j ≤ jΩ, ζj = O(χj), and j ≤ l,
(with a constant independent of j and l),

l∏
k=j

(1 − ζkḡk)−1 ≤ O(1). (2.7)

(iv) Suppose that ḡ and g̊ each satisfy (2.2). Let δ > 0. If |̊g0 − ḡ0| ≤ δg̊0 then
|̊gj − ḡj | ≤ δg̊j(1 +O(ḡ0)) for all j.

Proof. (i) By (2.2),

ḡj+1 = ḡj(1 − βj ḡj). (2.8)

Since βj = O(χj), by (2.8), the second statement of (2.3) is a consequence of
the first, so it suffices to verify the first statement of (2.3). Assume inductively
that ḡj > 0 and that ḡj = O(infk≤j ḡk). It is then immediate from (2.8) that
ḡj+1 > 0 if ḡ0 is sufficiently small depending on ‖β‖∞, and that ḡj+1 ≤ ḡj if
βj ≥ 0. By (A1), there are at most c−1 values of j ≤ jΩ for which βj < 0.
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Therefore, by choosing ḡ0 sufficiently small depending on ‖β‖∞ and c, it follows
that ḡj ≤ O(infk≤j ḡk) for all j ≤ jΩ with a constant that is independent of jΩ.

To advance the inductive hypothesis for j > jΩ, we use 1 − t ≤ e−t and∑∞
l=jΩ

|βl| ≤ ∑∞
n=1 Ω−n = O(1) to obtain, for j ≥ k ≥ jΩ,

ḡj ≤ ḡk exp

[
−

j−1∑
l=k

βlḡl

]
≤ ḡk exp

[
Cḡk

j−1∑
l=k

|βl|
]

≤ O(ḡk). (2.9)

This shows that ḡj = O(infjΩ≤k≤j ḡk). However, by the inductive hypoth-
esis, ḡjΩ = O(infk≤jΩ ḡk) for j ≤ jΩ, and hence for j > jΩ we do have
ḡj = O(infk≤j ḡk) as claimed. This completes the verification of the first bound
of (2.3) and thus, as already noted, also of the second.

The monotonicity of ḡj in βk can be proved as follows. Since ḡj does not
depend on βk if k ≥ j by definition, we may assume that k < j. Moreover, by
replacing j by j+k, we may assume that k = 0. Let ḡ′

j = ∂ḡj/∂β0. Since ḡ′
0 = 0,

ḡ′
1 = −ḡ2

0 < 0. (2.10)

Assuming that ḡ′
j < 0 by induction, it follows that for j ≥ 1,

ḡ′
j+1 = ḡ′

j(1 − 2βj ḡj) = ḡ′
j(1 +O(g0)) < 0, (2.11)

and the proof of monotonicity is complete.

(ii-a) We first show that if ψ : R+ → R is absolutely continuous, then

k∑
l=j

βlψ(ḡl)ḡ2
l =

ḡj∫

ḡk+1

ψ(t) dt+O

⎛
⎜⎝

ḡj∫

ḡk+1

t2|ψ′(t)|dt

⎞
⎟⎠ . (2.12)

To prove (2.12), we apply (2.2) to obtain

k∑
l=j

βlψ(ḡl)ḡ2
l =

k∑
l=j

ψ(ḡl)(ḡl − ḡl+1) =
k∑

l=j

ḡl∫

ḡl+1

ψ(ḡl) dt. (2.13)

The integral can be written as
ḡl∫

ḡl+1

ψ(ḡl) dt =

ḡl∫

ḡl+1

ψ(t) dt+

ḡl∫

ḡl+1

ḡl∫

t

ψ′(s) dsdt. (2.14)

The first term on the right-hand side of (2.12) is then the sum over l of the
first term on the right-hand side of (2.14), so it remains to estimate the double
integral. By Fubini’s theorem,

ḡl∫

ḡl+1

ḡl∫

t

ψ′(s) dsdt =

ḡl∫

ḡl+1

s∫

ḡl+1

ψ′(s) dtds =

ḡl∫

ḡl+1

(s− ḡl+1)ψ′(s) ds. (2.15)

By (2.2) and (2.3), for s in the domain of integration we have

|s− ḡl+1| ≤ |ḡl − ḡl+1| = |βl|ḡ2
l ≤ (1 +O(ḡ0))|βl|ḡ2

l+1 ≤ O(s2). (2.16)

This permits us to estimate (2.15) and conclude (2.12).
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Direct evaluation of the integrals in (2.12) with ψ(t) = tn−2| log t|m gives
k∑

l=j

βlḡ
n
l | log ḡl|m ≤ Cn,m

{
| log ḡk|m+1 n = 1
ḡn−1

j | log ḡj |m n > 1.
(2.17)

To deduce (2.4), we only consider the case n > 1, as the case n = 1 is similar.
Suppose first that j ≤ jΩ. Assumption A1 implies that

1 ≤ βl

c
+

(
1 +

|βl|
c

)
1βl<c ≤ O(βl) +O(1βl<c), (2.18)

and therefore
k∑

l=j

χlḡ
n
l | log ḡl|m ≤

jΩ∑
l=j

O(βl)ḡn
l | log ḡl|m +

jΩ∑
l=j

O(1βl<c)ḡn
l | log ḡl|m

+
k∑

l=jΩ+1

Ω−(l−jΩ)+ ḡn
l | log ḡl|m. (2.19)

By (2.17), the first term is bounded by O(ḡn−1
j | log ḡj |m). The second term

obeys the same bound, by (A1) and (2.3), as does the last term (which is only
present when jΩ < ∞) due to the exponential decay. This proves (2.4) for the
case j ≤ jΩ. On the other hand, if j > jΩ, then again using the exponential
decay of χl and (2.3), we obtain

k∑
l=j

χlḡ
n
l | log ḡl|m ≤ Cχj ḡ

n
j | log ḡj |m ≤ Cḡ0χj ḡ

n−1
j | log ḡj |m. (2.20)

This completes the proof of (2.4) for the case n > 1.

(ii-b) To prove (2.5), let c > 0 be as in Assumption A1 and set ĝj+1 = ĝj − cĝ2
j

with ĝ0 = ḡ0. The sequence (ĝj) satisfies the bound (2.5), since application of
(2.12) with ψ(t) = t−2 gives (k+1)c = ĝ−1

k+1 − ĝ−1
0 +O(log(ĝ0/ĝk+1) and hence

ĝj ∼ ĝ0/(1 + cĝ0j). It therefore suffices to prove that χj ḡ
n
j ≤ O(ĝn

j ).
We first show that it suffices to prove that

χj ḡj = ḡj ≤ O(ĝj) for all j ≤ jΩ (2.21)

(the first inequality holds since χj = 1 for j ≤ jΩ by definition). To see this,
we note that for ḡ0 > 0 sufficiently small and for all j,

Ω−1 ≤ (1 − cḡ0)n ≤ (1 − cĝj)n =
(
ĝj+1

ĝj

)n

. (2.22)

For j > jΩ, by (2.21) and the fact that ḡj = O(ḡjΩ) by (2.3), this implies that

χj ḡ
n
j ≤ O(Ω−(j−jΩ)ḡn

jΩ) ≤ O(Ω−(j−jΩ)ĝn
jΩ) ≤ O

⎛
⎝

j−1∏
l=jΩ

ĝl+1

ĝl

⎞
⎠

n

ĝn
jΩ = O(ĝn

j ).

(2.23)

For j ≤ jΩ, since χj = 1, it suffices to prove (2.5) with n = 1, i.e., (2.21).
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Let β̃j = min{c, βj}, and define g̃j by the recursion g̃j+1 = g̃j − β̃j g̃
2
j with

g̃0 = ḡ0. By the monotonicity in β asserted in part (i),

ḡj ≤ g̃j , ĝj ≤ g̃j . (2.24)

Denote by 0 ≤ j1 < j2 < · · · < jm the sequence of j ≤ jΩ such that βj < c.
By (A1), the number of elements in this sequence is indeed finite. By the first
inequality of (2.24) and the definition of g̃j , it follows that, for j ≤ jΩ,

ḡj ≤ g̃j = g̃0

j−1∏
l=0

(1 − β̃lg̃l) = g̃0

j−1∏
l=0

(1 − cg̃l)
∏

k≤m:jm≤j−1

1 − βjk
g̃jk

1 − cg̃jk

. (2.25)

Thus, with g̃0 = ĝ0, the second inequality of (2.24), and the definition of ĝj ,

ḡj ≤ ĝ0

j−1∏
l=0

(1 − cĝl)
∏

k≤m:jm≤j−1

1 − βjk
g̃jk

1 − cg̃jk

= ĝj

∏
k≤m:jm≤j−1

1 − βjk
g̃jk

1 − cg̃jk

.

(2.26)

The product on the last line is a product of at most m factors which are each
1 +O(g0), and can thus be bounded by 1 +O(g0). In particular,

ḡj ≤ (1 +O(g0))ĝj ≤ O(ĝj) for j ≤ jΩ, (2.27)

and the proof of (2.5) is complete.

(iii-a) By Taylor’s theorem and (2.2), there exists rk = O(βkḡk)2 such that

(1 − γβkḡk)−1 = (1 − βkḡk)−γ(1 + rk) =
(

ḡk

ḡk+1

)γ

(1 + rk). (2.28)

For l ≥ j, let

cj,l =
l∏

k=j

(1 + rk) = exp

⎛
⎝

l∑
k=j

log(1 + rk)

⎞
⎠ . (2.29)

Since log(1 + rk) = O(χkḡ
2
k), it follows from (2.4) that the sum on the right-

hand side of (2.29) is bounded by O(χj ḡj) uniformly in l. We can thus define

cj = exp

⎛
⎝

∞∑
k=j

log(1 + rk)

⎞
⎠ = 1 +O(χj ḡj). (2.30)

The bound on the sum also shows

cj − cj,l = cj

(
1 − exp

(
−

∞∑
k=l

log(1 + rk)

))
= cj(1 +O(χlḡl)). (2.31)

Moreover, these estimates hold uniformly in a neighborhood of g0 and in the
external parameter, by assumption. Thus, the dominated convergence theo-
rem implies continuity of cj , both in g0 and in the external parameter, and
the proof is complete.
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(iii-b) Since ζj ≤ 0 for all but c−1 values of j ≤ jΩ, by (2.3) with ḡ0 sufficiently
small,

∏l
k=j(1 − ζkḡk)−1 ≤ O(1) for l ≤ jΩ, with a constant independent of

jΩ. For j ≥ jΩ, we use 1/(1 − x) ≤ 2ex for x ∈ [− 1
2 ,

1
2 ] to obtain

l∏
k=j

(1 − ζkḡk)−1 ≤ 2 exp

⎡
⎣

l∑
k=j

ζkḡk

⎤
⎦ ≤ 2 exp

⎡
⎣Cḡj

∞∑
k=jΩ

χk

⎤
⎦ ≤ O(1).

(2.32)

The bounds for l ≤ jΩ and j ≥ jΩ together imply (2.7).

(iv) If |̊gj − ḡj | ≤ δj g̊j then by (2.2),

|̊gj+1 − ḡj+1| = |̊gj − ḡj |(1 − βj (̊gj + ḡj)) ≤ δj+1g̊j+1 (2.33)

with

δj+1 = δj
1 − βj (̊gj + ḡj)

1 − βj g̊j
= δj

(
1 − βj ḡj

1 − βj g̊j

)
. (2.34)

In particular, if βj ≥ 0, then δj+1 ≤ δj . By (A1), there are at most c−1 values
of j ≤ jΩ for which βj < 0, and hence δj ≤ δ(1 + O(ḡ0)) for j ≤ jΩ. The
desired estimate therefore holds for j ≤ jΩ. For j ≥ l > jΩ, as in (2.9) we have

j∏
k=l

(1 +O(βkḡk)) ≤ exp

[
O(ḡl)

j∑
k=l

χk

]
≤ 1 +O(ḡ0), (2.35)

and thus the claim remains true also for j > jΩ. �

2.2. Flow of z̄ and µ̄

We now establish the existence of unique solutions to the z̄ and μ̄ recursions
with boundary conditions z̄∞ = μ̄∞ = 0 and obtain estimates on these solu-
tions.

Lemma 2.2. Assume (A1–A2). If ḡ0 is sufficiently small then there exists a
unique solution to (2.1) obeying z̄∞ = μ̄∞ = 0. This solution obeys z̄j =
O(χj ḡj) and μ̄j = O(χj ḡj). Furthermore, if the maps ϕ̄j depend continuously
on m ∈ Mext and (A1–A2) hold with uniform constants, then ḡj , z̄j and μ̄j

are continuous in Mext.

Proof. By (1.1), z̄j+1 = z̄j − ζj ḡj z̄j − θj ḡ
2
j , so that

z̄j =
n∏

k=j

(1 − ζkḡk)−1z̄n+1 +
n∑

l=j

l∏
k=j

(1 − ζkḡk)−1θlḡ
2
l . (2.36)

In view of (2.7), whose assumptions are satisfied by (A2), the unique solution
to the recursion for z̄ which obeys the boundary condition z̄∞ = 0 is

z̄j =
∞∑
l=j

l∏
k=j

(1 − ζkḡk)−1θlḡ
2
l , (2.37)
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and by (A2), (2.4), and (2.7),

|z̄j | ≤
∞∑
l=j

O(χl)ḡ2
l ≤ O(χj ḡj). (2.38)

Since ḡj is defined by a finite recursion, its continuity in m ∈ Mext follows
from the assumed continuity of each βk in m. To verify continuity of z̄j in
m, let z̄j,n =

∑n
l=j

∏l
k=j(1 − ζkḡk)−1θlḡ

2
l . Since ḡj is continuous in Mext for

any j ≥ 0, z̄j,n is also continuous, for any j ≤ n. By (2.7) and (2.4)–(2.5),
|z̄j − z̄j,n| ≤ O(χnḡn) → 0 as n → ∞, uniformly in m, and thus, as a uniform
limit of continuous functions, z̄j is continuous in m ∈ Mext.

For μ̄, we first define

σj = ηj ḡj + γj z̄j − υgg
j ḡ2

j − υgz
j ḡj z̄j − υzz

j z̄2
j , τj = υgμ

j ḡj + υzμ
j z̄j , (2.39)

so that the recursion for μ̄ can be written as

μ̄j+1 = (λj − τj)μ̄j + σj . (2.40)

Alternatively,

μ̄j = (λj − τj)−1(μ̄j+1 − σj). (2.41)

Given α ∈ (λ−1, 1), we can choose ḡ0 sufficiently small that
1
2λ

−1 ≤ (λj − τj)−1 ≤ α. (2.42)

The limit of repeated iteration of (2.41) gives

μ̄j = −
∞∑
l=j

⎛
⎝

l∏
k=j

(λk − τk)−1

⎞
⎠σl (2.43)

as the unique solution which obeys the boundary condition μ∞ = 0. Geometric
convergence of the sum is guaranteed by (2.42), together with the fact that
σj ≤ O(χj ḡj) ≤ O(1). To estimate (2.43), we use

|μ̄j | ≤
∞∑
l=j

αl−j+1O(χlḡl). (2.44)

Since α < 1, the first bound of (2.3) and monotonicity of χ imply that

|μ̄j | ≤ O(χj ḡj). (2.45)

The proof of continuity of μ̄j inMext is analogous to that for z̄j . This completes
the proof. �

2.3. Differentiation of Quadratic Flow

The following lemma gives estimates on the derivatives of the components of
V̄j with respect to the initial condition ḡ0. We write f ′ for the derivative of
f with respect to g0 = ḡ0. These estimates are an ingredient in the proof of
Theorem 1.4(ii).
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Lemma 2.3. For each j ≥ 0, V̄j = (ḡj , z̄j , μ̄j) is twice differentiable with respect
to the initial condition ḡ0 > 0, and the derivatives obey

ḡ′
j =

(
ḡ2

j

ḡ2
0

)
, z̄′

j = O

(
χj

ḡ2
j

ḡ2
0

)
, μ̄′

j = O

(
χj

ḡ2
j

ḡ2
0

)
, (2.46)

ḡ′′
j = O

(
ḡ2

j

ḡ3
0

)
, z̄′′

j = O

(
χj

ḡ2
j

ḡ3
0

)
, μ̄′′

j = O

(
χj

ḡ2
j

ḡ3
0

)
. (2.47)

Proof. Differentiation of (1.6) gives

ḡ′
j+1 = ḡ′

j(1 − 2βj ḡj), (2.48)

from which we conclude by iteration and ḡ′
0 = 1 that for j ≥ 1,

ḡ′
j =

j−1∏
l=0

(1 − 2βlḡl). (2.49)

Therefore, by (2.6),

ḡ′
j =

(
ḡj

ḡ0

)2

(1 +O(ḡ0)). (2.50)

For the second derivative, we use ḡ′′
0 = 0 and ḡ′′

j+1 = ḡ′′
j (1 − 2βj ḡj) − 2βj ḡ

′2
j to

obtain

ḡ′′
j = −2

j−1∑
l=0

βlḡ
′2
l

j−2∏
k=l

(1 − 2βkḡk). (2.51)

With the bounds of Lemma 2.1, this gives

ḡ′′
j = O

(
ḡj

ḡ0

)2 j−1∑
l=0

βl
ḡ2

l

ḡ2
0

= O

(
ḡ2

j

ḡ3
0

)
. (2.52)

For z̄, we define σj,l =
∏l

k=j(1 − ζkḡk)−1. Then (2.37) becomes z̄j =∑∞
l=j σj,lθlḡ

2
l . By (2.7), σj,l = O(1). It then follows from (A2), (2.50), and

Lemma 2.1(ii,iii-b) that

σ′
j,l = σj,l

l∑
k=j

(1 − ζkḡk)−1ζkḡ
′
k =

l∑
k=j

O(ζkḡ′
k) = O

(
χj
ḡj

ḡ2
0

)
. (2.53)

We differentiate (2.37) and apply (2.50) and Lemma 2.1(ii) to obtain

z̄′
j =

∞∑
l=j

σ′
j,lθlḡ

2
l + 2

∞∑
l=j

σj,lθlḡlḡ
′
l = O

(
χj

ḡ2
j

ḡ2
0

)
. (2.54)

Similarly, σ′′
j,l = O(ḡj/ḡ

3
0) and

z̄′′
j =

∞∑
l=j

σ′′
j,lθlḡ

2
l + 4

∞∑
l=j

σ′
j,lθlḡlḡ

′
l + 2

∞∑
l=j

σj,lθl(ḡlḡ
′′
l + ḡ′2

l ) = O

(
χj

ḡ2
j

ḡ3
0

)

(2.55)
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using the fact that ḡ3
j /ḡ

4
0 = O(ḡ2

j /ḡ
3
0) by (2.3). It is straightforward to justify

the differentiation under the sum in (2.54)–(2.55).
For μ̄j , we recall from (2.42)–(2.43) that

μ̄j = −
∞∑
l=j

⎛
⎝

l∏
k=j

(λk − τk)−1

⎞
⎠σl, (2.56)

with τj and σl given by (2.39), and with 0 ≤ (λj − τj)−1 ≤ α < 1. This gives

μ̄′
j = −

∞∑
l=j

⎛
⎝

l∏
k=j

(λk − τk)−1

⎞
⎠

⎛
⎝σ′

l +
l∑

i=j

(λi − τi)−1τ ′
i

⎞
⎠ . (2.57)

The first product is bounded by αl−j+1, and this exponential decay, together
with (2.39), (2.38), and the bounds just proved for ḡ′ and z̄′, lead to the
upper bound |μ̄′

j | ≤ O(χj ḡ
2
j ḡ

−2
0 ) claimed in (2.46). Straightforward further

calculation leads to the bound on μ̄′′
j claimed in (2.47) (the leading behaviour

can be seen from the z̄′′
j contribution to the σ′′

l term). �

2.4. Proof of Proposition 1.2

Proof of Proposition 1.2. The estimates (1.9) follow from Lemma 2.1(ii) and
Lemma 2.2. The continuity of ḡj , z̄j , and μ̄j in m follows from Lemma 2.2, and
their differentiability in the initial condition ḡ0 follows from Lemma 2.3. �

3. Proof of Main Result

In this section, we prove Theorem 1.4. We begin in Sect. 3.1 with a sketch of
the main ideas, without entering into details.

3.1. Proof Strategy

Two difficulties in proving Theorem 1.4 are as follows: (i) from the point of
view of dynamical systems, the evolution map Φ is not hyperbolic; and (ii)
from the point of view of nonlinear differential equations, a priori bounds that
any solution to (1.5) must satisfy are not readily available due to the presence
of both initial and final boundary conditions.

Our strategy is to consider the one-parameter family of evolution maps
(Φt)t∈[0,1] defined by

Φt(x) = Φ(t, x) = (ψ(x), ϕ̄(x) + tρ(x)) for t ∈ [0, 1], (3.1)

with the t-independent boundary conditions that (K0, g0) is given and that
(z∞, μ∞) = (0, 0). This family interpolates between the problem Φ1 = Φ we
are interested in, and the simpler problem Φ0 = Φ̄ = (ψ, ϕ̄). The unique
solution for Φ̄ is x̄j = (K̄j , V̄j), where V̄ is the unique solution of ϕ̄ from
Sect. 2, and where K̄j is defined inductively for j ≥ 0 (recall Lemma 1.3) by

K̄j+1 = ψj(V̄j , K̄j), K̄0 = K0. (3.2)

We refer to x̄ as the approximate flow.
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We seek a t-dependent global flow x which obeys the generalisation of
(1.5) given by

xj+1 = Φt
j(xj). (3.3)

Assuming that xj = xj(t) is differentiable in t for each j ∈ N0, we set

ẋj =
∂

∂t
xj . (3.4)

Then differentiation of (3.3) shows that a family of flows x = (xj(t))j∈N0,t∈[0,1]

must satisfy the infinite nonlinear system of ODEs

ẋj+1 −DxΦj(t, xj)ẋj = ρj(xj), xj(0) = x̄j . (3.5)

Conversely, any solution x(t) to (3.5), for which each xj is continuously differ-
entiable in t, gives a global flow for each Φt.

We claim that (3.5) can be reformulated as a well-posed nonlinear ODE

ẋ = F (t, x), x(0) = x̄, (3.6)

in a Banach space of sequences x = (x0, x1, . . .) with carefully chosen weights,
and for a suitable nonlinear functional F . For this, we consider the linear
equation

yj+1 −DxΦj(t, xj)yj = rj , (3.7)

where the sequences x and r are held fixed. Its solution with the same boundary
conditions as stated below (3.1) is written as y = S(t, x)r. Then we define F ,
which we consider as a map on sequences, by

F (t, x) = S(t, x)ρ(x). (3.8)

Thus, y = F (t, x) obeys the equation yj+1 −DxΦj(t, xj)yj = ρj(x), and hence
(3.6) is equivalent to (3.5) with the same boundary conditions.

The main work in the proof is to obtain good estimates for S(t, x), in
the Banach space of weighted sequences, which allow us to treat (3.6) by the
standard theory of ODE. We establish bounds on the solution simultaneously
with existence, via the weights in the norm. These weights are useful to obtain
bounds on the solution, but they are also essential in the formulation of the
problem as a well-posed ODE.

As we show in more detail in Sect. 4.1 below, the occurrence ofDxΦj(t, xj)
in (3.5), rather than the naive linearisation DxΦj(0) at the fixed point x = 0,
replaces the eigenvalue 1 in the upper left corner of the square matrix in (1.1)
by the eigenvalue 1 − 2βjgj , which is less than 1 except for those negligible
j values for which βj < 0. This helps address difficulty (i) mentioned above.
Also, the weights guarantee that a solution in the Banach space obeys the final
conditions (z∞, μ∞) = (0, 0), thereby helping to solve difficulty (ii).

3.2. Sequence Spaces and Weights

We now introduce the Banach spaces of sequences used in the reformulation
of (3.5) as an ODE. These are weighted l∞-spaces.
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Definition 3.1. Let X∗ be the space of sequences x = (xj)j∈N0 with xj ∈ Xj .
For each α = K, g, z, μ and j ∈ N0, we fix a positive weight wα,j > 0. We write
xj ∈ Xj = Wj ⊕ V as xj = (xα,j)α=K,g,z,μ. Let

‖xj‖Xw
j

= max
α=K,g,z,μ

(wα,j)−1‖xα,j‖Xj
, ‖x‖Xw = sup

j∈N0

‖xj‖Xw
j
, (3.9)

and

Xw = {x ∈ X∗ : ‖x‖Xw < ∞}. (3.10)

It is not difficult to check that Xw is a Banach space for any positive
weight sequence w. The required weights are defined in terms of the sequence
g̊ = (̊gj)j∈N0 which is the same as the sequence ḡ for a fixed g̊0; i.e., given
g̊0 > 0, it satisfies g̊j+1 = g̊j − βj g̊

2
j . We need two different choices of weights

w, defined in terms of the parameters a, h of (1.10) and the parameter a∗ of
Lemma 1.3. These are the weights w = w(̊g0, a, a∗, h) and r = r(̊g0, a, a∗, h)
defined by

wα,j =

⎧⎪⎨
⎪⎩

(a− a∗)χj g̊
3
j α = K

h̊g2
j | log g̊j | α = g

hχj g̊
2
j | log g̊j | α = z, μ,

rα,j =

{
(a− a∗)χj g̊

3
j α = K

hχj g̊
3
j α = g, z, μ,

(3.11)

where (χj) is the Ω-dependent sequence defined by (1.8). Furthermore, let
x̄ = (K̄, V̄ ) = x̄(K0, g0) denote the sequence in X∗ that is uniquely determined
from the boundary conditions (K̄0, ḡ0) = (K0, g0) and (z̄∞, μ̄∞) = (0, 0) via
V̄j+1 = ϕ̄j(V̄j) and K̄j+1 = ψj(K̄j , V̄j), whenever the latter is well-defined.
Given an initial condition (K̊0, g̊0), let x̊ = x̄(K̊0, g̊0).

Let sB denote the closed ball of radius s in Xw. If g̊0 = g0 and K̊0 =
K0, the desired bounds (1.18)–(1.21) are equivalent to x ∈ x̊ + bB. Also, the
projection of x̊+ B onto the jth sequence element is contained in the domain
Dj defined by (1.10). We always assume that g̊0 is close to g0 = ḡ0, but not
necessarily that they are equal. The use of g̊ rather than ḡ permits us to vary
the initial condition g0 = ḡ0 without changing the Banach spaces Xw,X r.
The use of g0-dependent weights rather than, e.g., the weight j−2 log j for
jΩ = ∞ [see Remark 1.6(i)] allows us to obtain estimates with good behaviour
as g0 → 0. Note that the weight wg,j does not include a factor χj , and thus
does not go to 0 when jΩ < ∞ [see Example 1.1(ii)].

Remark 3.2. The weights w apply to the sequence ẋ of (3.4). As motivation for
their definition, consider the explicit example of ρj(xj) = χjg

3
j . In this case,

the g equation becomes simply

gj+1 = gj − βjg
2
j + tχjg

3
j . (3.12)

With the notation ġj = ∂
∂tg

t
j , differentiation gives

ġj+1 = ġj(1 − 2βjgj + 3tχjg
2
j ) + χjg

3
j . (3.13)
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Thus, by iteration, using ġ0 = 0, we obtain

ġj =
j−1∑
l=0

χlg
3
l

j−1∏
k=l+1

(1 − 2βkgk + 3tχkg
3
k). (3.14)

For simplicity, consider the case t = 0, for which g = ḡ. In this case, it follows
from (2.6), (2.3), and (2.4) that

ġj ≤ O(1)
j−1∑
l=0

(
ḡj

ḡl+1

)2

χlḡ
3
l = O(1)g2

j

j−1∑
l=0

χlḡl ≤ O(1)ḡ2
j | log ḡj |, (3.15)

which produces the weight wg,j of (3.11). (It can be verified using (2.12) that
if we replace χj by βj in the above then no smaller weight will work.)

3.3. Implications of Assumption A3

For φ equal to either of the maps ρ, ψ of (1.4), we define φ : x̊+ B → X∗ by

(φ(x))0 = 0, (φ(x))j+1 = φj(xj). (3.16)

The next lemma expresses immediate consequences of Assumption A3 for ρ
and ψ in terms of the weighted spaces.

Lemma 3.3. Assume (A3) and that g̊0 > 0 is sufficiently small. The map ρ
obeys

‖ρ(x)‖Xr ≤ Mh−1. (3.17)

Let ω > κΩ, and let φ denote either ψ or ρ. The map φ : x̊+ B → X r is twice
continuously Fréchet differentiable, and there exists a constant C = C(a, a∗, h)
such that

‖DKρ(x)‖L(Xw,Xr) ≤ C, ‖DKψ(x)‖L(Xw,Xr) ≤ ω,

‖DV φ(x)‖L(Xw,Xr) ≤ O(̊g0| log g̊0|), ‖D2
xφ(x)‖L2(Xw,Xr) ≤ C.

(3.18)

Proof. The bound (3.17) is equivalent to (1.11) [recall (3.16)] since

‖ρj(xj)‖Xr
j+1

= r−1
g,j+1‖ρj(xj)‖V ≤ r−1

g,j+1Mχj+1g̊
3
j+1 = M/h. (3.19)

Next, we verify the bounds on the first derivatives in (3.18). By assump-
tions (1.12)–(1.13), together with (2.3), the definition of the weights (3.11), and
for (3.21) also the fact that χj/χj+1 ≤ Ω by (1.8), we obtain for x ∈ x̊+ B,

‖DV ψj(xj)‖L(Xw
j ,Xr

j+1)
≤ Mχj+1g̊

2
j+1r

−1
K,j+1wg,j ≤ O(̊g0| log g̊0|), (3.20)

‖DKψj(xj)‖L(Xw
j ,Xr

j+1)
≤ κr−1

K,j+1wK,j ≤ κΩ(1 +O(̊g0)), (3.21)

‖DV ρj(xj)‖L(Xw
j ,Xr

j+1)
≤ Mχj+1g̊

2
j+1r

−1
g,j+1wg,j ≤ O(̊g0| log g̊0|), (3.22)

‖DKρj(xj)‖L(Xw
j ,Xr

j+1)
≤ M r−1

g,j+1wK,j ≤ O(1), (3.23)

which establishes the bounds on the first derivatives in (3.18), for g̊0 sufficiently
small.
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The bounds on the second derivatives are also immediate consequences
of Assumption A3. First, (1.14) and the definition of the weights (3.11) imply
that, for 2 ≤ n+m ≤ 3,

‖Dn
KD

m
V φ‖Ln+m(Xw,Xr) ≤ C. (3.24)

In addition, these bounds on the second and third derivatives imply that

‖φ(x+ y) − φ(x) −Dφ(x)y‖Xr ≤ C‖y‖2
Xw , (3.25)

‖Dφ(x+ y) −Dφ(x) −D2φ(x)y‖L(Xw,Xr) ≤ C‖y‖2
Xw , (3.26)

and hence that φ : x̊+B → X r is indeed twice Fréchet differentiable. The above
bound on the third derivatives also implies continuity of this differentiability.
This completes the proof. �

The smoothness of x̄ is addressed in the following lemma.

Lemma 3.4. Assume (A1–A3), and let δ > 0 and g̊0 > 0 both be sufficiently
small. Then, there exists a neighbourhood N̄ = N̄δ ⊂ W0 ⊕ R+ of (K̊0, g̊0) such
that x̄ : N̄ → x̊+ δB is continuously Fréchet differentiable, and

‖Dg0 x̄‖Xw ≤ O(̊g−2
0 | log g̊0|−1). (3.27)

The neighbourhood N̄ contains a ball centered at (K̊0, g̊0) with radius depending
only on g̊0, δ, and the constants in (A1–A3), which is bounded below away from
0, uniformly on compact subsets of small g̊0 > 0.

Proof. Let

N̄ = ([12 g̊0, 2̊g0] × W0) ∩ x̄−1(̊x+ δB). (3.28)

We will show that N̄ is a neighbourhood of (K̊0, g̊0) and that x̄ : N̄ → x̊+ δB
is continuously Fréchet differentiable. Since x̄−1(̊x + δB) = V̄ −1(̊x + δB) ∩
K̄−1(̊x+ δB), it suffices to show that each of V̄ −1(̊x+ δB) and K̄−1(̊x+ δB) is
a neighbourhood of (K̊0, g̊0), and that each of V̄ and K̄ is continuously Fréchet
differentiable on N̄ as maps with values in subspaces of Xw.

We begin with V̄ . Let V̄ ′
j denote the derivative of V̄j with respect to g0,

and let V̄ ′ = (V̄ ′
j ) denote the sequence of derivatives. It is straightforward to

conclude from Lemma 2.3, Lemma 2.1(iv), and (3.11) that

‖V̄ ′‖Xw ≤ O(̊g−2
0 | log g̊0|−1). (3.29)

In particular, this implies that V̄ −1(̊x + δB) contains a neighbourhood of g̊0
satisfying the condition stated below (3.27). That V̄ ′ is actually the deriva-
tive of V̄ in the space Xw can be deduced from the fact that the sequence
V̄ ′′(g0) is uniformly bounded in Xw for g0 ∈ N̄g (though not uniform in g̊0) by
Lemma 2.3, using

‖V̄j(g0 + ε) − V̄j(g0) − εV̄ ′
j (g0)‖Xw

j
≤ O(ε2) sup

0<ε′<ε
‖V̄ ′′

j (g + ε′)‖Xw
j
.

(3.30)

The continuity of V̄ ′ in Xw follows similarly.
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For K̄, we first note that ‖DK0K̄0‖L(W0,W0) = 1, ‖Dg0K̄0‖W0 = 0. By
(A3) and induction,

‖DK0K̄j+1‖L(W0,Wj+1) ≤ κ‖DK0K̄j‖L(W0,Wj) ≤ κj+1. (3.31)

Since κ < Ω−1 < 1, and since g̊j+1/̊gj → 1 by (2.3), we obtain

‖DK0K̄j+1‖L(W0,Wj+1) ≤ O(̊g−3
0 wK,j+1). (3.32)

Similarly, by (1.13) and Lemma 2.3,

‖Dg0K̄j+1‖Wj+1 ≤ κ‖Dg0K̄j‖Wj
+O(χj ḡ

2
j )‖Dg0 V̄j‖V

≤ κ‖Dg0K̄j‖Wj
+O(χj ḡ

4
j /ḡ

2
0). (3.33)

By induction, again using κ < Ω−1 and ḡj ≤ ḡ0, we conclude

‖Dg0K̄j+1‖Wj+1 ≤ O(χj ḡ
4
j /ḡ

2
0) ≤ O(̊g−1

0 wK,j+1). (3.34)

These bounds imply that K̄−1(̊x + δB) contains a neighbourhood of (K̊0, g̊0)
satisfying the condition stated below (3.27), and also that the component-wise
derivatives of K̄ with respect to g0 and K0 are respectively in Xw ∼= L(R,Xw)
and L(W0,X

w).
To verify that the component-wise derivative of the sequence K̄ is the

Fréchet derivative in the sequence space Xw, it again suffices to obtain bounds
on the second derivatives in Xw, as in (3.30). For example, since D2

K0
K̄0 = 0,

DK0 V̄j = 0, and

D2
K0
K̄j+1 = DKψ(K̄j , V̄j)D2

K0
K̄j +D2

Kψ(K̄j , V̄j)DK0K̄jDK0K̄j , (3.35)

it follows from (3.31), (1.12)–(1.14), and induction that, for (K0, g0) ∈ N̄ with
N̄ ⊂ W0 ⊕ R chosen sufficiently small, and with ω ∈ (κΩ, 1),

‖D2
K0
K̄j+1‖ ≤ κ‖D2

K0
K̄j‖ +O(ḡ−3

0 κjωj) ≤ O(̊g−6
0 wK,j+1), (3.36)

and thus that the component-wise derivative D2
K0
K̄ is bounded in the norm

of L2(W0,X
w) for (K0, g0) ∈ N̄. Similarly, slightly more complicated recursion

relations than (3.35) for D2
g0
K̄j and Dg0DK0K̄j show that the component-

wise second derivative of K̄ is bounded in L2(W0 ⊕ R,Xw) when N̄ is again
chosen sufficiently small. This shows as in (3.30) that K̄ is continuously Fréchet
differentiable from N̄ to Xw.

We have thus shown that x̄ is continuously Fréchet differentiable from
a neighbourhood N̄ of (K̊0, g̊0) to Xw, and (3.27) follows from (3.29) and
(3.34). �

3.4. Reduction to a Linear Equation with Nonlinear Perturbation

For given sequences x, r ∈ X∗, we now consider the equation

yj+1 −DxΦj(t, xj)yj = rj . (3.37)

With x and r fixed, this is an inhomogeneous linear equation in y. Lemma 3.5
below, which lies at the heart of the proof of Theorem 1.4, obtains bounds on
solutions to (3.37), including bounds on its x-dependence. The latter allows
us to use the standard theory of ODE in Banach spaces to treat the original
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nonlinear equation, where x and r are both functionals of the solution y, as a
perturbation of the linear equation.

In addition to the decomposition Xj = Wj ⊕ V, with xj ∈ Xj written
xj = (Kj , Vj), it is convenient to also use the decomposition Xj = Ej ⊕ Fj

with Ej = Wj ⊕ R and Fj = R ⊕ R, for which we write xj = (uj , vj) with
uj = (Kj , gj) and vj = (zj , μj). We denote by πα the projection operator onto
the α-component of the space in which it is applied, where α can be in any of
{K,V }, {u, v} = {(K, g), (z, μ)}, or {K, g, z, μ}.

Recall that the spaces of sequences Xw are defined in Definition 3.1 and
the specific weights w and r in (3.11). The following lemma is proved in Sect. 4.

Lemma 3.5. Assume (A1–A3). Then there is a constant CS , independent of
the parameters a and h in (1.10), and a constant C ′

S = C ′
S(a, h), such that if

g̊0 > 0 is sufficiently small, the following hold for all t ∈ [0, 1], x ∈ x̊+ B.

(i) For r ∈ X r, there exists a unique solution y = S(t, x)r ∈ Xw of (3.37)
with boundary conditions πuy0 = 0, πvy∞ = 0.

(ii) The linear solution operator S(t, x) satisfies

‖S(t, x)‖L(Xr,Xw) ≤ CS . (3.38)

(iii) As a map S : [0, 1] × (̊x + B) → L(Xw,X r), the solution operator is
continuously Fréchet differentiable and satisfies

‖DxS(t, x)‖L(Xw,L(Xr,Xw)) ≤ C ′
S . (3.39)

Lemma 3.5 is supplemented with the information about the perturbation
ρ given by Lemma 3.3, and by the information about the initial condition x̄
provided by Lemmas 2.2. (Note that the sequence x̄ serves as initial condition,
at t = 0, for the ODE (3.5), not as initial condition for the flow equation (1.4).)

Proof of Theorem 1.4(i). Let CS be the constant of Lemma 3.5, fix δ > 0 such
that b > 2δ and 1 − b > 2δ, and define h∗ = CSM/((b − 2δ) ∧ (1 − b − 2δ)).
As in the statement of the theorem, assume h > h∗ with this value of h∗. For
t ∈ [0, 1] and x ∈ x̊+ B, let

F (t, x) = S(t, x)ρ(x). (3.40)

Let (K̊0, g̊0) = (K ′
0, g

′
0). Lemmas 3.3 and 3.5 imply that if g̊0 > 0 is sufficiently

small then F : [0, 1]× (̊x+B) → Xw is continuously Fréchet differentiable and

‖F (t, x)‖Xw ≤ ‖S(t, x)‖L(Xr,Xw)‖ρ(x)‖Xr ≤ CSM

h
≤ (b− 2δ) ∧ (1 − b− 2δ).

(3.41)

Similarly, by the product rule, there exists C such that

‖DxF (t, x)‖L(Xw,Xw) ≤ ‖[DxS(t, x)]ρ(x)‖L(Xw,Xw)

+ ‖S(t, x)[Dxρ(x)]‖L(Xw,Xw) ≤ C, (3.42)

and thus, in particular, F is Lipschitz continuous in x ∈ x̊+ B.
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We can now apply the standard local existence theory for ODE in Banach
spaces, as follows. For y ∈ B, let

F̊ (t, y) = F (t, x̊+ y). (3.43)

Let Xw
0 = {y ∈ Xw : πuy0 = 0} and B0 = B ∩ Xw

0 . Then Lemma 3.5(i)
and (3.41) imply that F̊ (t, (b − 2δ)B0) ⊆ F̊ (t,B0) ⊆ (b − 2δ)B0. Let N̄ be the
neighbourhood of u0 defined by Lemma 3.4 with the same δ so that x̄ : N̄ →
x̊ + δB. With (3.41)–(3.42), the local existence theory for ODEs on Banach
spaces [1, Chapter 2, Lemma 1] implies that the initial value problem

ẏ = F̊ (t, y), y(0) = x̄(u0) − x̊ (3.44)

has a unique C1-solution y : [0, 1] → Xw
0 such that y(t) ∈ (b − 2δ + δ)B0 =

(b − δ)B0 for all t ∈ [0, 1]. In particular, [1, Chapter 2, Lemma 1] implies
that the length of the existence interval of the initial value problem (3.44) in
(b− δ)B is bounded from below by (b− 2δ)/((b− 2δ) ∧ (1 − b− 2δ)) ≥ 1 since
‖F̊ (t, y)‖ ≤ (b−2δ)∧ (1− b−2δ) when ‖y−y(0)‖ ≤ b−2δ. It does not depend
on the Lipschitz constant of F̊ .

As discussed around (3.6), it follows that x = x̊ + y(1) is a solution to
(1.5). By construction, πux0 = πux̊0 + πuy(0) = ů0 + (u0 − ů0) = u0. Also,
πvy∞(1) = 0 because y(1) ∈ Xw, and since πvx̊∞ = πvx̄∞(u0) = 0, it is also
true that πvx∞ = 0. Thus, x satisfies the required boundary conditions.

To prove the estimates (1.18)–(1.21) for x(u0) with u0 ∈ N ⊆ N̄, we apply
‖x(u0) − x̊‖Xw ≤ b− 2δ and ‖x̄(u0) − x̊‖Xw ≤ δ to see that

‖Kj − K̄j‖Wj
≤ ‖Kj − K̊j‖Wj

+ ‖K̊j − K̄j‖Wj
≤ (b− δ)(a− a∗)̊g3

j ,(3.45)

and analogously that

|gj − ḡj | ≤ (b− δ)h̊g2
j | log g̊2

j |, (3.46)

|zj − z̄j | ≤ (b− δ)hχj g̊
2
j | log g̊2

j |, (3.47)

|μj − μ̄j | ≤ (b− δ)hχj g̊
2
j | log g̊2

j |. (3.48)

Since b− δ < b, by assuming that |̊g0 − ḡ0| is sufficiently small, i.e., shrinking
N̄ to a smaller neighbourhood N if necessary, we obtain with (2.46) that

(b− δ)̊g2
j | log g̊2

j | ≤ bḡ2
j | log ḡ2

j |. (3.49)

The required shrinking is uniform on compact subsets of g0 > 0. With the
property of the neighbourhood N̄ stated below (3.27), this shows the assertion
of Remark 1.5.

To prove uniqueness, suppose that x∗ is a solution to (1.5) with boundary
conditions (K∗

0 , g
∗
0) = (K0, g0) and (z∗

∞, μ
∗
∞) = (0, 0) that satisfies (1.18)–

(1.21) (with x replaced by x∗, and with x̄ as before). Let x̊ = x̄(K ′
0, g

′
0) as

before. By assumption and an argument analogous to that given around (3.45)–
(3.49), x∗−x̊ ∈ (b+2δ)B0. It follows that F : [0, 1]×(x∗+(1−b−2δ)B0) → Xw

is Fréchet differentiable and ‖F (t, x)‖Xw ≤ 1 − b− 2δ for all t ∈ [0, 1] and for
all x ∈ x′ + (1 − b − 2δ)B0 ⊂ x̊ + B0, as discussed around (3.40)–(3.42). By
considering the ODE backwards in time, which is equally well-posed, there
is a unique solution x∗(t) for t ∈ [0, 1] to ẋ∗ = F (t, x∗) with x∗(1) = x∗
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and x∗(t) ⊂ x̊ + B0. It follows that x∗(0) is a flow of Φ0 = Φ̄ with the same
boundary conditions as x̊. The uniqueness of such flows, by Lemma 2.2, implies
that x∗(0) = x̊, and the uniqueness of solutions to the initial value problem
(3.44) in x̊+ B0 then also implies that x = x∗ as claimed. This completes the
proof of Theorem 1.4(i). �

Proof of Theorem 1.4(ii). By Lemma 3.4, the map x̄ : N ⊂ N̄ → x̊+ δB ⊂ Xw

is continuously Fréchet differentiable. It therefore follows from [1, Chapter 2,
Lemma 4] that the solution to the initial value problem (3.44) is continuously
Fréchet differentiable in the initial condition. To denote the dependence of the
solution on the latter, we write y : [0, 1] × N → Xw

0 . Let x(u0) = x̊+ y(1, u0),
as before.

By Proposition 1.2, V̄j is continuously differentiable in g0 for each j ∈ N0.
Note also that V̄j is independent of K0. It can be concluded from the differ-
entiability of V̄j and from (A3) that K̄j is continuously Fréchet differentiable
in (K0, g0). Together with the continuous differentiability of y in the sequence
space Xw, this implies that as elements of the spaces Xj , each xj = (Kj , Vj)
is a C1 function of u0. To prove that the derivatives of z0 and μ0 with respect
to g0 are uniformly bounded, it suffices to verify this for the contributions to
x due to y, by Lemma 2.3. To this end, observe that

d
dt

(Dy)(t) = DxF̊ (t, x̄+ y(t)) ◦Dy, Dy(0) = id. (3.50)

Thus, by Lemma 3.5 and Gronwall’s inequality [1, Chapter 2, Lemma 2],

‖Dg0y(t,K0, g0)‖Xw ≤ C ‖Dg0 x̄(K0, g0)‖Xw . (3.51)

With Lemma 3.4, this gives

‖Dg0y(t,K0, g0)‖Xw ≤ O(̊g−2
0 | log g̊0|−1). (3.52)

Since ∂z̄0/∂g0 = O(1) and ∂μ̄0/∂g0 = O(1) by Lemma 2.3, it follows from
(3.52) and the definition of the weights (3.11) that

∂z0
∂g0

= O(1),
∂μ0

∂g0
= O(1). (3.53)

This completes the proof of Theorem 1.4(ii). �

4. Proof of Lemma 3.5

It now remains only to prove the key Lemma 3.5. The proof proceeds in three
steps. The first two steps concern an approximate version of (3.37) and the
solution of the approximate equation, and the third step treats (3.37) as a
small perturbation of this approximation.
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4.1. Step 1: Approximation of the Linear Equation

Define the map Φ̄0
j : Xj → Xj+1 by extending the map ϕ̄j : V → V trivially to

the K-component, i.e., Φ̄0
j = (0, ϕ̄j) in the decomposition Xj+1 = Wj+1 ⊕ V.

Thus, Φ(t, x) = Φ̄0(x) + (ψ(x), tρ(x)). Explicit computation of the derivative
of ϕ̄j of (1.4), using (1.1), shows that

DΦ̄0
j (xj) =

⎛
⎜⎜⎝

0 0 0 0
0 1 − 2βjgj 0 0
0 −ξ̃j 1 − ζjgj 0
0 η̃j γ̃j λ̃j

⎞
⎟⎟⎠ , (4.1)

with

η̃j = ηj − 2υgg
j gj − υgz

j zj − υgμ
j μj ,

γ̃j = γj − υgz
j gj − 2υzz

j zj − υzμ
j μj , (4.2)

λ̃j = λj − υgμ
j gj − υzμ

j zj ,

ξ̃j = 2θjgj + ζjzj .

The block matrix structure in (4.1) is in the decomposition Xj = Ej ⊕ Fj

introduced in Sect. 3.4. The matrix DΦ̄0
j (xj) depends on xj ∈ Xj , but it is

convenient to approximate it by the constant matrix

Lj = DΦ̄0
j (̊xj) =

(
Aj 0
Bj Cj

)
, (4.3)

where the 2 × 2 blocks Aj , Bj , and Cj of Lj are defined by

Aj =
(

0 0
0 1 − 2βj g̊j

)
, Bj =

(
0 −ξ̊j
0 η̊j

)
, Cj =

(
1 − ζj g̊j 0
γ̊j λ̊j

)
(4.4)

with η̊j , γ̊j , λ̊j , and ξ̊j as in (4.2) with x replaced by x̊. Thus, we study the
equation

yj+1 = Ljyj + rj , (4.5)

which approximates (3.37). To analyze (4.5), and also for later purposes, we
derive properties of the matrices Aj , Bj , Cj in the following lemma.

Lemma 4.1. Assume (A1–A2). Let α ∈ (λ−1, 1). Then for g̊0 > 0 sufficiently
small (depending on α), the following hold.

(i) Uniformly in all l ≤ j,

Aj · · ·Al =
(

0 0
0 O(̊g2

j+1/̊g
2
l )

)
. (4.6)

(ii) Uniformly in all j,

Bj =
(

0 O(χj g̊j)
0 O(χj)

)
. (4.7)

(iii) Uniformly in all l ≥ j,

C−1
j · · ·C−1

l =
(
O(1) 0
O(χj) O(αl−j+1)

)
. (4.8)
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Proof. (i) It follows immediately from (4.4) that

Aj · · ·Al =
j∏

k=l

(1 − 2βkg̊k)πg, (4.9)

and thus (2.6) implies (i).
(ii) It follows directly from (4.4) and Lemma 2.2 that (4.7) holds.
(iii) Note that (

c1 0
b1 a1

)
· · ·

(
cn 0
bn an

)
=

(
c∗ 0
b∗ a∗

)
(4.10)

with

a∗ = a1 · · · an, b∗ =
n∑

i=1

a1 · · · ai−1bici+1 · · · cn, c∗ = c1 · · · cn. (4.11)

We apply this formula with the inverse matrices

C−1
j =

(
(1 − ζj g̊j)−1 0

−(1 − ζj g̊j)−1γ̊jα̊j α̊j

)
(4.12)

where α̊j = λ̊−1
j . Thus

C−1
j · · ·C−1

l =
(
τ̊j,l 0
σ̊j,l α̊j,l

)
(4.13)

with

α̊j,l = α̊j · · · α̊l, τ̊j,l =
l∏

k=j

(1 − ζkg̊k)−1, (4.14)

σ̊j,l =
l−j+1∑

i=1

⎛
⎝

l∏
k=j+i

(1 − ζkg̊k)−1

⎞
⎠ (−γ̊j+i−1)

⎛
⎝

j+i−2∏
k=j

α̊k

⎞
⎠. (4.15)

The product defining τ̊j,l is O(1) by (2.7). Assume that g̊0 is sufficiently
small that, with Lemma 2.2 and (A2), α̊m < α for all m. Then α̊j,l ≤
O(αl−j+1). Similarly, since γ̊m ≤ O(χm),

|̊σj,l| ≤
l−j+1∑

i=1

αiO(χj+i−1) ≤ O(χj). (4.16)

This completes the proof. �
The following lemma provides a solution to (4.5).

Lemma 4.2. Assume (A1–A2) and that g̊0 > 0 is sufficiently small. We write
y as a column vector y = (u, v). Then

uj =
j−1∑
l=0

Aj−1 · · ·Al+1πurl (4.17)

vj = −
∞∑
l=j

C−1
j · · ·C−1

l (Blul + πvrl) (4.18)
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is the unique solution to (4.5) which obeys the boundary conditions u0 = v∞ =
0 and for which the series (4.18) converges.

The lemma indeed solves (4.5): given r we first obtain u via (4.17) and
then insert u into (4.18) to obtain v. The empty product in (4.17) is interpreted
as the identity, so the term in the sum corresponding to l = j − 1 is simply
πurj−1.

Proof of Lemma 4.2. The u-component of (4.5) is given by

uj+1 = Ajuj + πurj . (4.19)

By induction, under the initial condition u0 = 0 this recursion is equivalent to
(4.17).

The v-component of (4.5) states that

vj+1 = Bjuj + Cjvj + πvrj , (4.20)

which is equivalent to

vj = C−1
j vj+1 − C−1

j Bjuj − C−1
j πvrj . (4.21)

By induction, for any k ≥ j, the latter is equivalent to

vj = C−1
j · · ·C−1

k vk+1 −
k∑

l=j

C−1
j · · ·C−1

l (Blul + πvrl). (4.22)

By Lemma 4.1(iii), with some α ∈ (λ−1, 1) and with g̊0 sufficiently small,
‖C−1

0 · · ·C−1
k ‖ is uniformly bounded. Thus, if yj = (uj , vj) satisfies (4.5) and

vj → 0, then C−1
0 · · ·C−1

k vk+1 → 0 and hence

vj = −
∞∑
l=j

C−1
j · · ·C−1

l (Blul + πvrl), (4.23)

which is (4.18). �

4.2. Step 2: Solution Operator for the Approximate Equation

We now prove existence, uniqueness, and bounds for the solution to the ap-
proximate equation (4.5).

Lemma 4.3. Assume (A1–A2) and that g̊0 > 0 is sufficiently small. For each
r ∈ X r and x ∈ x̊ + B, there exists a unique solution y = (u, v) = S0r ∈ Xw

to (4.5) obeying the boundary conditions πuy0 = 0, πvy∞ = 0. The solution
operator S0 is block diagonal in the decomposition x = (K,V ), with

S0 =
(

1 0
0 S0

V V

)
. (4.24)

There is a constant CS0 > 0, such that, uniformly in small g̊0,

‖S0
V V ‖L(Xr,Xw) ≤ CS0 . (4.25)

The constant CS0 is independent of the parameters a, h which define the do-
main Dj in (1.10).
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Proof. By Lemma 4.2, it suffices to prove that the map r → y defined by
(4.17)–(4.18) gives a bounded map S0 : X r → Xw. For this, we use Lemma 2.1
(ii), from which we recall that for all k ≥ j ≥ 0 and m ≥ 0,

k∑
l=j

χlg̊
n
l | log g̊l|m ≤ Cn,m

{
| log g̊k|m+1 n = 1
χj g̊

n−1
j | log g̊j |m n > 1.

(4.26)

(i) K-component. Since πKAl = 0, we have πKuj = πKrj−1. Therefore, by
(3.11) and (2.3),

‖πKy‖Xw ≤ sup
j

‖πKrj−1‖Xw
j

≤ sup
j

[
w−1

K,jrK,j−1

]‖r‖Xr ≤ 2‖r‖Xr . (4.27)

(ii) g-component. By Lemma 4.1(i), (3.11), (2.3), and (4.26),

‖πgy‖Xw ≤ sup
j

w−1
g,j

j−1∑
l=0

|πgAj−1 · · ·Al+1πurl|

≤ sup
j

w−1
g,j

j−1∑
l=0

rg,lO(̊gj /̊gl)2‖r‖Xr

≤ c‖r‖Xr sup
j

| log g̊j |−1

j−1∑
l=0

χlg̊l ≤ c‖r‖Xr . (4.28)

(iii) z-component. By (4.7)–(4.8), (4.28), (3.11), and (4.26),

‖πzy‖Xw ≤ sup
j

w−1
z,j

∞∑
l=j

|πzC
−1
j · · ·C−1

l (Blul + πvrl)|

≤ sup
j

w−1
z,j

∞∑
l=j

O(1) (χlg̊lwg,l‖r‖Xr + χlrz,l‖r‖Xr) ≤ c‖r‖Xr . (4.29)

(iv) μ-component. We begin with

‖πμy‖Xw ≤ sup
j

w−1
μ,j

∞∑
l=j

|πμC
−1
j · · ·C−1

l (Blul + πvrl)|. (4.30)

It is an exercise in matrix algebra, using (4.7)–(4.8) and (4.28), to see that

|πμC
−1
j · · ·C−1

l Blul| ≤ O(1)
(
χlg̊l + αl−j+1

)
wg,l‖r‖Xr , (4.31)

|πμC
−1
j · · ·C−1

l πvrl| ≤ O(1)
(
χjrz,l + αl−j+1rμ,l

) ‖r‖Xr . (4.32)

Now, we use (3.11), (4.26), and also
∞∑
l=j

αl+1−jχlg̊
n
l | log g̊l|m ≤ O(χj g̊

n
j | log g̊l|m), (4.33)

to conclude that ‖πμy‖Xw ≤ c‖r‖Xr . This completes the proof. �
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4.3. Step 3: Solution of the Linear Equation

Now, we prove Lemma 3.5, which involves solving the Eq. (3.37) and estimating
its solution operator. In preparation, we make some definitions and prove two
preliminary lemmas.

We rewrite (3.37) as

yj+1 = DxΦj(t, xj)yj + rj = Ljyj +Wj(t, xj)yj + rj , (4.34)

where

Wj(t, xj) = DxΦj(t, xj) − Lj . (4.35)

It is convenient to define an operator W (t, x) on sequences via (W (t, x))0 = 0
and (W (t, x))j+1 = Wj(t, x). This operator can be written as a block matrix
with respect to the decomposition x = (K,V ) as

W (t, x) =
(
WKK WKV

WV K WV V

)
, (4.36)

with Wαβ = παW (t, x)πβ .

Lemma 4.4. Fix ω ∈ (κΩ, 1). The map W obeys W : [0, 1] × (̊x + B) →
L(Xw,X r), W is continuously Fréchet differentiable, and if x ∈ x̊+ B then

‖WKK‖L(Xw,Xr) ≤ ω, ‖WV K‖L(Xw,Xr) ≤ C, (4.37)
‖WKV ‖L(Xw,Xr) ≤ o(1), ‖WV V ‖L(Xw,Xr) ≤ o(1), as g̊0 → 0, (4.38)

‖DxWj(t, xj)‖L(Xw
j ,L(Xw

j ,Xr
j+1))

≤ C. (4.39)

Proof. By definition,

Wj(t, xj) = [DxΦ̄0
j (xj) −DxΦ̄0

j (̊x)] +Dx(ψj(xj), tρj(xj)). (4.40)

The first term on the right-hand side of (4.40) only depends on the V -
components, and is continuously Fréchet differentiable since, by (4.1), D2Φ̄0

j

is a constant matrix for each j with coefficients bounded by O(χj). Therefore,
for x ∈ x̊+ B (with weights chosen maximally),

‖[DΦ̄0
j (̊xj) −DΦ̄0

j (xj)]πV ‖L(Xw
j ,Xr

j+1)
≤ cχjr

−1
g,j+1w

2
g,j‖x̊j − xj‖Xw

j

= O(h̊g0| log g̊0|2). (4.41)

This contributes to the bounds (4.38), with g̊0 taken small enough.
Lemma 3.3 gives bounds on the second term on the right-hand side of

(4.40), as well as its derivative, and with these the proof of (4.39) is complete.
�

Lemma 4.5. For x ∈ x̊ + B, the map 1 − S0W (t, x) has a bounded inverse in
L(Xw,Xw).

Proof. As in (4.24), we write S0 as a block matrix with respect to the decom-
position x = (K,V ) as

S0 =
(

1 0
0 S0

V V

)
. (4.42)
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By definition, 1 − S0W (t, x) = A−B with

A =
(

1 −WKK 0
−S0

V V WV K 1 − S0
V V WV V

)
, B =

(
0 WKV

0 0

)
. (4.43)

For any bounded operators A,B on a Banach space, with A−1 bounded and
‖A−1B‖ < 1, the operator A−B = A(1 −A−1B) has a bounded inverse since
(1 − A−1B)−1 is given by its Neumann series. Thus, it suffices to prove that
the matrices A,B defined in (4.43) have these two properties.

By (4.37)–(4.38) (with g̊0 sufficiently small), ‖WKK‖L(Xw,Xw) < 1 and
‖S0

V VWV V ‖L(Xw,Xw) < 1. Thus A is a block matrix of the form

A =
(
AKK 0
AV K AV V

)
, (4.44)

where AKK and AV V have inverses in L(Xw,Xw). It follows that A has the
bounded inverse on Xw given by the block matrix

A−1 =
(

A−1
KK 0

A−1
V V AV KA

−1
KK A−1

V V

)
. (4.45)

By (4.37)–(4.38) (with g̊0 sufficiently small), ‖A−1B‖L(Xw,Xw) < 1, and the
proof is complete. �

Proof of Lemma 3.5. (i) By the assumption that y ∈ Xw, Lemma 4.3, and
(4.38), the equation (4.34) with the boundary conditions of Lemma 3.5(i)
is equivalent to

y = S0W (t, x)y + S0r. (4.46)

It follows that the solution operator is given by

S(t, x) = (1 − S0W (t, x))−1S0, (4.47)

with the existence of the inverse operator guaranteed by Lemma 4.4.
(ii) This follows from (4.47) and Lemmas 4.3 and 4.5.
(iii) By (4.47), continuous Fréchet differentiability in x of S(t, x) follows from

the continuous Fréchet differentiability of S0W (t, x), which itself follows
from part (i) and from DxS

0W (t, x) = S0DxW (t, x) by linearity of S0.
Explicitly,

DxS(t, x) = (1 − S0W (t, x))−1DxS
0W (t, x)(1 − S0W (t, x))−1S0.

(4.48)

By (4.39),

‖DxS
0W (t, x)‖L(Xw,L(Xw,Xw)) ≤ C‖DxW (t, x)]‖L(Xw,L(Xw,Xr)) ≤ C. (4.49)

Together with the boundedness of the operators (1 − S0W (t, x))−1 and
S0, this proves (3.39) and completes the proof. �
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