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Inverse-Closed Algebras of Integral
Operators on Locally Compact Groups

Ingrid Beltiţă and Daniel Beltiţă

Abstract. We construct some inverse-closed algebras of bounded integral
operators with operator-valued kernels, acting in spaces of vector-valued
functions on locally compact groups. To this end we make use of covari-
ance algebras associated to C∗-dynamical systems defined by the C∗-
algebras of right uniformly continuous functions with respect to the left
regular representation.

1. Introduction

The spectral investigation on differential operators by using the C∗-algebras
generated by their resolvents has attracted much interest recently, motivated
to a large extent by problems that come from the quantum physics; see for
instance [6,7,16,17] and the references therein. These operators often act in the
Hilbert space L2(Rn), and yet it turned out in [16] that a deep insight into the
spectral theory can be gained by working in a more general setting obtained by
replacing the abelian group (Rn,+) by a Lie group or even by a locally compact
group G. We contribute to this circle of ideas by constructing some inverse-
closed Banach algebras of L2-bounded integral operators on locally compact
groups, a property called sometimes the Wiener property. The relevance to
the spectral problems is enhanced by the fact that our algebras of integral
operators are Banach algebras which contain the compact operators and are
continuously and densely embedded into the C∗-algebras generated by the
resolvents of differential operators studied in [9] and [16] (Theorem 5.2 and
Corollary 5.3).

The method of our study is provided by the link to the duality theory for
crossed products (Remark 3.8) and by the systematic use of covariance alge-
bras associated to C∗-dynamical systems defined by the C∗-algebras of right
uniformly continuous functions with respect to the left regular representation.
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This method allows us to partly simplify the proofs of some results from the
earlier literature and also to obtain some new results.

A particular feature of our work is that we deal with operator-valued
integral kernels, which define integral operators on spaces of vector-valued
functions on locally compact groups. This possibility was mentioned in [17] in
the case of abelian groups. Besides that, in the case of discrete groups, this
allows us to construct inverse-closed algebras of bounded operators defined by
block matrices.

In this connection we recall that pseudo-differential operators with
operator-valued symbols have been used in the study of periodic Schrödinger
operators; see for instance [18,34], and the references therein. Note that in
this case it is important to have specific information on some integral ker-
nels related to the inverses of the operators involved. In abstract terms, this
amounts to inverse-closedness of a Banach or even Fréchet algebra of the type
considered in Corollary 5.3 below.

The paper is organized as follows. Section 2 is devoted to some prelimi-
naries on symmetric involutive Banach algebras and covariance algebras of C∗-
dynamical systems, and in Corollary 2.8 we also answer a question raised in the
earlier literature. In Sect. 3 we introduce the main classes of operator-valued
integral kernels and we investigate the relationship between these kernels and
the covariance algebras of certain C∗-dynamical systems. In this section we also
obtain our main inverse-closed algebras of integral operators on vector-valued
functions on locally compact groups (Theorem 3.10). In Sect. 4 we provide a
method for constructing larger inverse-closed algebras of integral operators,
and the corresponding result (Theorem 4.3) applies in the situation that we
encountered in our earlier paper [2] in connection with Weyl-Pedersen calculus
for unitary irreducible representations of nilpotent Lie groups. Finally, certain
symmetry groups of our inverse-closed algebras of integral operators are stud-
ied in Sect. 5, and some of their special features are established in the Lie
group setting, with motivation coming from the recent results of [7] and [3].

General Notation

For any topological spaces X and Y we denote by C(X,Y ) the set of all contin-
uous maps from X into Y . If moreover X and Y are smooth (maybe infinite-
dimensional) manifolds, then C∞(X,Y ) stands for the subset of C(X,Y ) con-
sisting of smooth maps.

For any set S and any Banach space Y with the norm ‖·‖Y , we denote by
�∞(S,Y) the Banach space consisting of all bounded functions φ : S → Y with
the norm ‖φ‖∞ := supS ‖φ(·)‖Y . If Y = C then we denote simply �∞(S) :=
�∞(S,C).

If A is any associative complex algebra and we define A1 := A if there
exists a unit element 1 ∈ A and A1 := C1 � A (the unitized algebra of A)
otherwise, then for every element a ∈ A we define its spectrum as the set of
all z ∈ C for which z1 − a is invertible in A1.

For any involutive Banach algebra A we denote by C∗(A) its enveloping
C∗-algebra as in [30, Def. 10.1.10] (or [14, Def. 10.4]).
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2. Preliminaries on Symmetric Involutive Banach Algebras

We begin by recalling the basic notions of symmetric algebra and locally com-
pact group. See for instance [4] for a self-contained account of various charac-
terizations of the symmetric algebras in the setting of locally convex algebras
with continuous inversion.

Definition 2.1. An involutive Banach algebra B (with continuous involution)
is symmetric if for every b ∈ B the spectrum of b∗b is contained in [0,∞).

A locally compact group G is said to be rigidly symmetric if for every
C∗-algebra A the projective tensor product L1(G)̂⊗A is a symmetric Banach
algebra. If merely L1(G) is assumed to be a symmetric Banach algebra, then
we say that G is a symmetric group.

It is still unknown whether every symmetric group is rigidly symmet-
ric. By [33, Cor. 6], nilpotent locally compact groups are rigidly symmetric.
Moreover, by [28, Th. 1], also compact groups are rigidly symmetric.

Definition 2.2. For any unital complex algebra B we denote by B× the group
of invertible elements in B and by 1 its unit element, unless B is realized as a
unital algebra of operators on some Hilbert space H, when we denote by idH
the identity operator. A unital subalgebra A of B is inverse closed if and only
if A× = A ∩ B×. Note that we always have A× ⊆ A ∩ B×.

Proposition 2.3. If A is any involutive symmetric unital Banach algebra with
its canonical homomorphism ρ0 : A → C∗(A) into its universal C∗-algebra,
then ρ0(A) is an inverse-closed subalgebra of C∗(A).

Proof. See for instance [4, Prop. 7.5] for a more general statement. �
Corollary 2.4. Let G be any locally compact group with the left regular rep-
resentation λ : L1(G) → B(L2(G)). If G is amenable and symmetric, then
the unitization of the algebra of convolution operators C1 + λ(L1(G)) is an
inverse-closed subalgebra of B(L2(G)).

Proof. Since G is amenable, it follows by [31, Th. 4.21] or [37, Th. A.18] that
the enveloping C∗-algebra of L1(G) is the closure of λ(L1(G)) in the norm
operator topology of B(L2(G)), which is just the reduced group C∗-algebra of
G. That is, C∗(L1(G)) = C∗

r (G) and λ : L1(G) → C∗
r (G) is the corresponding

canonical homomorphism. Then Proposition 2.3 implies that C1 + λ(L1(G))
is an inverse-closed subalgebra of the C∗-algebra C1+C∗

r (G) which is in turn
inverse closed in B(L2(G)) since every unital C∗-algebra is inverse closed in any
larger C∗-algebra. Consequently C1+λ(L1(G)) is an inverse-closed subalgebra
of B(L2(G)), and this completes the proof. �

It is noteworthy that if the group G is assumed to be rigidly symmetric,
rather than merely symmetric, in Corollary 2.4, then the conclusion holds true
for the regular representation in spaces of vector-valued functions L2(G,H0),
where H0 is an arbitrary Hilbert space.

Another consequence of Proposition 2.3 is Lemma 3.9 below, which is
needed in the proof of Theorem 3.10.
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Definition 2.5. A C∗-dynamical system (A, G, α) consists of a C∗-algebra A
endowed with a continuous action of a locally compact group G by automor-
phisms of A,

α : G× A → A, (x, a) 	→ αx(a).

The corresponding covariance algebra L1(G,A;α) is the involutive associative
Banach algebra obtained from the space of equivalence classes of Bochner
integrable A-valued functions on G with the multiplication defined by

(f � h)(x) =
∫

G

f(y)αy(h(y−1x))dy (2.1)

and the involution

f∗(x) = Δ(x−1)αx(f(x−1)∗) (2.2)

for f, h ∈ L1(G,A;α) and almost every x ∈ G. Here Δ: G → (0,∞) is the
modular function of G.

Definition 2.6. Let (A, G, α) be a C∗-dynamical system and π : A → B(H0) be
a faithful ∗-representation of A. The π-regular representation of the covariance
algebra L1(G,A;α) is the continuous ∗-representation

Π: L1(G,A;α) → B(L2(G,H0))

defined by

(Π(f)ξ)(x) =
∫

G

π(αx−1(f(y)))ξ(y−1x)dy

for f ∈ L1(G,A;α), ξ ∈ L2(G,H0), and almost every x ∈ G.

Proposition 2.7. Let (A, G, α) be a C∗-dynamical system. Then there exist
a C∗-dynamical system (Ā, G, ᾱ) with trivial action ᾱ and an isometric ∗-
homomorphism θ : L1(G,A;α) → L1(G, Ā; ᾱ) = L1(G)̂⊗Ā.

Proof. We may assume without loss of generality that there exist a complex
Hilbert space H0 and a continuous unitary representation V : G → B(H0) with
A ⊆ B(H0) and αx(a) = V (x)aV (x)−1 for every a ∈ A and x ∈ G (see for
instance [32, 7.7.1] or [37, Ex. 2.14]). Let Ā be the C∗-algebra generated by
A ∪ V (G) with the trivial action ᾱ of G, and define

θ : L1(G,A;α) → L1(G, Ā; ᾱ), f 	→ f(·)V (·).
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Since V (x) ∈ B(H0) is a unitary operator for every x ∈ G, it follows at once
that the mapping θ is an isometry. Moreover, for f, h ∈ L1(G,A;α) we have

(θ(f) � θ(h))(x) =
∫

G

(θ(f))(y)(θ(h))(y−1x)dy

=
∫

G

f(y)V (y)h(y−1x)V (y−1x)dy

=
∫

G

f(y)V (y)h(y−1x)V (y)−1dyV (x)

=
∫

G

f(y)αy(h(y−1x))dyV (x)

= (f � h)(x)V (x)

= (θ(f � h))(x).

Also,

θ(f)∗(x) = Δ(x−1)((θ(f))(x−1))∗ = Δ(x−1)(f(x−1)V (x−1))∗

= Δ(x−1)V (x)f(x−1)∗ = Δ(x−1)αx(f(x−1)∗)V (x) = (θ(f∗))(x),

and this concludes the proof. �

The result of the above Proposition 2.7 is actually a by-product of the
proof of [26, Satz 6]. Note that the isometric ∗-homomorphism θ in the state-
ment need not be surjective.

Corollary 2.8. Let (A, G, α) be a C∗-dynamical system. If the group G is rigidly
symmetric, then the covariance algebra L1(G,A;α) is a symmetric involutive
Banach algebra.

Proof. It follows by Proposition 2.7 that L1(G,A;α) is isometric ∗-isomorphic
to a closed involutive subalgebra of L1(G, Ā; ᾱ) � L1(G)̂⊗Ā for a suitable
C∗-algebra Ā. On the other hand, the involutive Banach algebra L1(G)̂⊗Ā is
symmetric since the group G is rigidly symmetric. Now the conclusion follows
since any closed involutive subalgebra of a symmetric Banach algebra is in
turn symmetric (see for instance [4, Prop. 7.10]). �

The above Corollary 2.8 answers in the affirmative a question raised in
the concluding remarks of [33] and will be used in the proof of Theorem 3.10.

3. Integral Operators on Vector-Valued Functions

Setting 3.1. Throughout what follows in the present paper, unless otherwise
mentioned, we shall work in a setting involving the following basic ingredients:

1. G stands for a unimodular locally compact topological group with a fixed
Haar measure denoted by dx.
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2. D0 is a unital C∗-algebra of operators on some complex Hilbert space
H0.

Notation 3.2. For every complex Banach space Y and every p ∈ [1,∞) we
denote by Lp(G,Y) the Banach space consisting of the equivalence classes of
Y-valued, Bochner p-integrable functions on G (see for instance [11,21], and
[10]). If Y = C, we denote simply Lp(G,C) = Lp(G), as usual.

Algebras of Operator-Valued Integral Kernels

In the following definition we introduce several objects of major importance
for the subsequent developments in the present paper, namely some spaces
of operator-valued integral kernels on locally compact groups, operations on
them along with natural norms, and also the corresponding integral operators.
The basic properties of these objects which will be needed below (the fact
that we obtain a normed algebra of integral kernels, or that the corresponding
integral operators are bounded etc.) are contained in Proposition 3.4 below.

Definition 3.3. Pick any linear subspace F ⊆ L1(G). If K : G × G → D0 is a
Bochner measurable function, then we define ‖K‖KernF (G,D0) as the infimum of
the norms ‖β‖L1(G) for β ∈ F such that ‖K(x, y)‖ ≤ |β(xy−1)| for a.e. x, y ∈
G. If no function β satisfies these conditions, then we set ‖K‖KernF (G,D0) = ∞.
We introduce the space of Bochner measurable functions

KernF (G,D0) := {K : G×G → D0 | ‖K‖KernF (G,D0) < ∞}.
If F = L1(G), then we will omit F from the notation KernF (G,D0) and we
also introduce the linear mapping

Kern(G,D0) → B(L2(G,H0)), K 	→ TK , (3.1)

where TK is the operator on L2(G,H0) defined by the integral kernel K, that
is,

(TKf)(x) =
∫

G

K(x, y)f(y)dy

for every f ∈ L2(G,H0). We denote by � both the usual composition of integral
kernels, that is,

(K1 � K2)(x, z) =
∫

G

K1(x, y)K2(y, z)dy for x, z ∈ G,

and the convolution operation

(β1 � β2)(x) =
∫

G

β1(xy−1)β2(y)dy for x ∈ G

for β1, β2 ∈ L1(G). Moreover, we denote K∗(x, y) := K(y, x)∗ for any integral
kernel K : G×G → D0.
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We now record a few basic properties of the objects introduced in Defin-
ition 3.3. The mapping (3.1) will be called sometimes the canonical represen-
tation of the associative algebra Kern(G,D0), although it implicitly depends
on the realization of the C∗-algebra D0 as an operator algebra on H0.

Proposition 3.4. The space of D0-valued integral kernels Kern(G,D0) equipped
with the above-defined product and involution is an involutive associative Ba-
nach algebra with the faithful contractive ∗-representation by integral operators
given by the mapping (3.1).

Proof. It easily follows by [19, Th. 3.8] (see also [5]) that

(∀K ∈ Kern(G,D0)) ‖TK‖ ≤ ‖K‖Kern(G,D0).

Moreover, it is straightforward to check that Kern(G,D0) is a an associative
normed ∗-algebra with a faithful ∗-representation defined by the mapping (3.1),
which is a contractive representation by the above norm estimate.

It remains to check that the norm of Kern(G,D0) is complete. To this
end denote by L∞,1(G×G,D0) the space of (equivalence classes of) Bochner
measurable functions ϕ : G×G → D0 for which

‖ϕ‖∞,1 :=
∫

G

‖ϕ(·, s)‖∞ds < ∞.

Then L∞,1(G×G,D0) is a Banach space by [10, Th. 3.1] (see also [11, Th. 3.1]
and [21]). Moreover, for every Bochner measurable function ϕ : G × G → D0

we have (see for instance [25, Prop. 2.2])
∫

G

‖ϕ(·, s)‖∞ds = inf{‖β‖L1(G) | β ∈ L1(G)

and ‖ϕ(t, s)‖ ≤ |β(s)| a.e. on G×G}.
Therefore, if we define the homeomorphism

Ψ: G×G → G×G, Ψ(x, y) = (y, xy−1)

with the inverse given by Ψ−1(t, s) = (st, t) for all s, t ∈ G×G, then we obtain
a surjective isometry

Kern(G,D0) → L∞,1(G×G,D0), K 	→ K ◦ Ψ−1

hence Kern(G,D0) is in turn a Banach space. �
C∗-Dynamical Systems of Uniformly Continuous Functions

The next remark introduces the maximal space of bounded D0-valued functions
on G which is continuously acted on by left translations of G and thus gives
rise to a C∗-dynamical system.

Remark 3.5. Let RUCb(G,D0) be the unital C∗-algebra consisting of the right
uniformly continuous bounded D0-valued functions on G. That is, if we de-
fine (αxf)(y) = f(x−1y) for arbitrary x, y ∈ G and any continuous func-
tion f : G → D0, then we have f ∈ RUCb(G,D0) if and only if ‖f‖∞ :=
sup{‖f(x)‖ | x ∈ G} < ∞ and limx→1 ‖αxf − f‖∞ = 0.
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Then it is clear that (RUCb(G,D0), G, α) is a C∗-dynamical system. For
any f ∈ L1(G,RUCb(G,D0);α) and x ∈ G we have f(x) ∈ RUCb(G,D0),
hence we can define f(x, y) := (f(x))(y) ∈ D0 for almost every y ∈ G. This
convention is also used below in other spaces, for instance in Eq. (3.3).

There exists a faithful ∗-representation

π : RUCb(G,D0) → B(L2(G,H0)), (π(f)ξ)(·) = f(·)ξ(·)
and the corresponding π-regular representation

Π: L1(G,RUCb(G,D0);α) → B(L2(G,L2(G,H0))) (3.2)

can be described by the formula

(Π(f)ξ)(x, z) =
∫

G

f(y, xz)
︸ ︷︷ ︸

∈D0

ξ(y−1x, z)
︸ ︷︷ ︸

∈H0

dy (3.3)

for arbitrary x, z ∈ G, f ∈ L1(G,RUCb(G,D0)), and ξ ∈ L2(G,L2(G,H0)) �
L2(G×G,H0).

Proposition 3.6. The following assertions hold:

1. There exists an isometric ∗-homomorphism

R : L1(G,RUCb(G,D0);α) → Kern(G,D0), (Rf)(x, y) = f(xy−1, x).

2. For every K ∈ RanR and x, y ∈ G we have (R−1K)(x, y) = K(y, x−1y).
3. If G is a discrete group, then RanR = Kern(G,D0).
4. We have RanR ⊇ Kern(G,D0) ∩ C(G × G,D0) if and only if the group
G is either compact or discrete.

Proof. First note that for f ∈ L1(G,RUCb(G,D0);α) and x, y ∈ G we have

‖Rf(x, y)‖D0 = ‖f(xy−1, x)‖D0 ≤ ‖f(xy−1)‖RUCb(G,D0).

Since ‖f(·)‖RUCb(G,D0) ∈ L1(G), we see that Rf ∈ Kern(G,D0) and

‖Rf‖Kern(G,D0) ≤
∫

G

‖f(z)‖RUCb(G,D0)dz = ‖f‖L1(G,RUCb(G,D0);α).

Moreover, since the group G is unimodular, we obtain by Eq. (2.2) that for
all a, b ∈ G we have f∗(a, b) = f(a−1, a−1b)∗, and therefore for all x, y ∈ G we
have

R(f∗)(x, y) = f∗(xy−1, x) = f((xy−1)−1, (xy−1)−1x)∗ = f(yx−1, y)∗

= (Rf)∗(x, y)

using the involution in Kern(G,D0). When applied for the C∗-dynamical sys-
tem (RUCb(G,D0), G, α), formula (2.1) gives the following expression for the
product in L1(G,RUCb(G,D0);α):

(f � h)(x, z) =
∫

G

f(y, z)h(y−1x, y−1z)dy.
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Therefore, we obtain

(R(f � h))(x, z) = (f � h)(xz−1, x)

=
∫

G

f(y, x)h(y−1xz−1, y−1x)dy

=
∫

G

f(xv−1, x)h(vz−1, v)dv

=
∫

G

(Rf)(x, v)(Rh)(v, z)dv

= (Rf � Rh)(x, z).

So far we have proved that R : L1(G,RUCb(G,D0);α) → Kern(G,D0) is a
contractive ∗-homomorphism. It is clear from the definition that KerR = {0}.

It is easily checked that (R−1K)(x, y) = K(y, x−1y) for any K ∈ Kern
(G,D0). For any function β ∈ L1(G) with ‖K(v, w)‖ ≤ |β(vw−1)| for v, w ∈ G,
then ‖(R−1K)(x, y)‖ ≤ |β(x)| for x ∈ G, hence

‖R−1K‖L1(G,RUCb(G,D0) ≤ ‖β‖L1(G). (3.4)

Therefore, ‖R−1K‖L1(G,RUCb(G,D0) ≤ ‖K‖Kern(G,D0), and in view of what we
have already proved, it follows that R is an isometry. This completes the proof
of Assertions (1)–(2).

For Assertion (3) we first note that if the group G is discrete, then
RUCb(G,D0) = �∞(G,D0). In fact, since G is discrete, for every topological
space Y and every function φ : G → Y it follows that φ is continuous.

Now, to prove that we have not only RanR ⊆ Kern(G,D0), but rather
the equality there, let K ∈ Kern(G,D0) arbitrary. Then there exists β ∈
�1(G) with ‖K(x, y)‖ ≤ |β(xy−1)| for all x, y ∈ G. It follows that the function
f : G → �∞(G,D0) = RUCb(G,D0), (f(x))(y) = K(y, x−1y), is well defined
and has the property

(∀x ∈ G) ‖f(x)‖�∞(G,D0) ≤ |β(x)|
hence f ∈ �1(G, �∞(G,D0)). This implies f ∈ L1(G,RUCb(G,D0);α), and we
have Rf = K by the formulas that define R and f . Hence K ∈ RanR, and
this completes the proof of the equality RanR ⊆ Kern(G,D0).

For Assertion (4), it is well known that if G is either discrete or compact,
then we have RUCb(G,D0) = C(G,D0)∩�∞(G,D0). (See the proof of Assertion
(3) above for the discrete case.) If G is compact, then we obtain a natural linear
inclusion map

C(G×G,D0) = C(G×G,D0) ∩ �∞(G×G,D0) ↪→ L1(G,RUCb(G,D0);α)

and it is easily seen that R(C(G×G,D0)) = C(G×G,D0); hence, by applying
R to the above inclusion, we obtain C(G × G,D0) ⊆ RanR. Since RanR ⊆
Kern(G,D0), it follows that C(G × G,D0) ∩ Kern(G,D0) ⊆ RanR. On the
other hand, if G is discrete, then the assertion follows by Assertion (3)
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Conversely, if we have RanR ⊇ Kern(G,D0) ∩ C(G×G,D0), then

RUCb(G,D0) = C(G,D0) ∩ �∞(G,D0). (3.5)

In fact, the inclusion R(L1(G,RUCb(G,D0);α)) ⊇ Kern(G,D0)∩C(G×G,D0)
implies L1(G,RUCb(G,D0);α) ⊇ R−1(Kern(G,D0) ∩ C(G × G,D0)). For ar-
bitrary φ ∈ C(G,C) ∩ L1(G,C) and ψ ∈ C(G,D0) ∩ �∞(G,D0) let us define
K(x, y) = φ(xy−1)ψ(x) for all x, y ∈ G. Then K ∈ Kern(G,D0)∩C(G×G,D0),
henceR−1K ∈ L1(G,RUCb(G,D0);α), that is, φ⊗ψ ∈ L1(G,RUCb(G,D0);α).
If we pick φ ∈ C(G,C) ∩ L1(G,C) with

∫

G
φ �= 0 and integrate the function

φ⊗ ψ = φ(·)ψ ∈ L1(G,RUCb(G,D0);α) then the integral of that function be-
longs to RUCb(G,D0), while on the other hand the integral is equal to (

∫

G
φ)ψ,

hence ψ ∈ RUCb(G). Since ψ ∈ C(G,D0) ∩ �∞(G,D0) is arbitrary, we obtain
(3.5).

Since the C∗-algebra D0 is unital, it is straightforward to show that (3.5)
implies RUCb(G,C) = C(G,C) ∩ �∞(G,C), and then it follows by [8, Th. 2.8]
along with [23, Cor. 2] that the group G is either discrete or compact. This
completes the proof. �

Some Inverse-Closed Algebras of Integral Operators

The isometric ∗-homomorphism constructed in Proposition 3.6 can be used to
establish a close relationship between the π-regular representation Π described
in Remark 3.5 and the representation that occurs in Proposition 3.4. In partic-
ular, using the following result along with the faithful ∗-representation referred
to in Proposition 3.4, one obtains an alternative proof for the fact that the
mapping R from Proposition 3.6(1) is a ∗-homomorphism, since the π-regular
representation (3.2) is.

Proposition 3.7. If G is a unimodular group, then there exists a unitary oper-
ator

W : L2(G×G,H0) � L2(G,H0)⊗̄L2(G)
→ L2(G,L2(G,H0)) � L2(G×G,H0)

such that (Wξ)(x, z) = ξ(xz, z) for x, z ∈ G and ξ ∈ L2(G×G,H0). Moreover,
for every f ∈ L1(G,RUCb(G,D0);α) the diagram

L2(G,H0)⊗̄L2(G) W ��

TR(f)⊗idL2(G)

��

L2(G,L2(G,H0))

Π(f)

��
L2(G,H0)⊗̄L2(G) W �� L2(G,L2(G,H0))

is commutative. Here Π is the π-regular representation of (3.2)–(3.3).

Proof. It is easily seen that the operator W in the statement is unitary. More-
over, for f ∈ L1(G,RUCb(G,D0);α) and ξ ∈ L2(G×G,H0) we have

((TR(f) ⊗ idL2(G))ξ)(v, u) =
∫

G

f(vw−1, v)ξ(w, u)dw =
∫

G

f(y, v)ξ(y−1v, u)dy,
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hence

(W (TR(f) ⊗ idL2(G))ξ)(x, z)
= ((TR(f) ⊗ id)ξ)(xz, z)

=
∫

G

f(y, xz)ξ(y−1xz, z)dy

=
∫

G

f(y, xz)(Wξ)(y−1x, z)dy = (Π(f)Wξ)(x, z),

where the latter equality follows from (3.3). �

Remark 3.8. The proofs of our Propositions 3.6(1) and 3.7 are partially based
on some ideas related to the Takai duality theorem on crossed products of C∗-
algebras; compare for instance the proof of [32, Th. 7.7.12] or [35]. The special
case of the discrete groups was also independently treated along the same lines
in [15, Prop. 1 and 3]. We also mention that crossed products involving the
C∗-algebras of uniformly continuous bounded functions on a locally compact
group, along with the related algebras of integral operators, were studied in
[16] in connection with some problems in the spectral theory. See also Sect. 5
below.

Lemma 3.9. Let A be an involutive symmetric Banach algebra and denote by
ρ0 : A → C∗(A) the canonical homomorphism into the universal C∗-algebra of
A. Assume we have fixed a faithful ∗-representation C∗(A) ↪→ B(H1) satisfying
the condition that if A has a unit element, then idH1 ∈ C∗(A), and if A has
no unit element, then idH1 �∈ C∗(A). Also assume that ρ : A → B(H) is a
continuous injective ∗-representation satisfying the following condition:

• There exist a Hilbert space H2 and a unitary operator S : H1 → H⊗̄H2

such that for every a ∈ A the diagram

H1
S ��

ρ0(a)

��

H⊗̄H2

ρ(a)⊗idH2

��
H1

S �� H⊗̄H2

is commutative.
Then CidH + ρ(A) is an inverse-closed subalgebra of B(H).

Proof. We must prove that (CidH + ρ(A))× = (CidH + ρ(A)) ∩ B(H)×. We
will consider separately the two cases that can occur.

Case 1◦ Assume that there exists a unit element 1 ∈ A, hence idH1 ∈
C∗(A) by the hypothesis. Since ρ0(1) is the unit element of C∗(A), it fol-
lows by the uniqueness of the unit element that ρ0(1) = idH1 , and then the
commutative diagram from the statement shows that also ρ(1) = idH.

The conclusion reduces to ρ(A)× = ρ(A) ∩ B(H)×. Since ρ is a faithful
representation, the latter equality is equivalent to the fact that for a ∈ A we
have a ∈ A× if and only if ρ(a) ∈ B(H)×. In fact, we have
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a ∈ A× ⇐⇒ ρ0(a) ∈ C∗(A)× ⇐⇒ ρ0(a) ∈ B(H1)× ⇐⇒ ρ(a) ∈ B(H)×,

where the first equivalence follows by Proposition 2.3, the second equivalence
relies on the fact that every C∗-algebra of operators is inverse closed, and
the third equivalence is a consequence of the commutative diagram in the
statement.

Case 2◦ Now assume that A has no unit element, hence idH1 �∈ C∗(A),
again by the hypothesis. It suffices to prove the inclusion (CidH + ρ(A))× ⊇
(CidH +ρ(A))∩B(H)×, since the converse inclusion always holds. So let z ∈ C

and a ∈ A arbitrary with zidH + ρ(a) ∈ B(H)×. We will show that (zidH +
ρ(a))−1 ∈ CidH + ρ(A).

To this end let A1 := C1 � A be Banach ∗-algebra obtained as the
unitization of A, with the canonical unital ∗-homomorphism into its enveloping
C∗-algebra ρ1 : A1 → C∗(A1). Also let ι : A ↪→ A1 be the canonical inclusion
map. It follows by the functorial property of enveloping C∗-algebras (see for
instance [30, Th. 10.1.11(c)]) that there exists a unique ∗-homomorphism φ
for which the diagram

A ι ��

ρ0

��

A1

ρ1

��
C∗(A)

φ �� C∗(A1)

is commutative. Using the commutative diagram from the statement and then
the fact that unital C∗-algebras of operators are inverse closed, we then obtain

zidH + ρ(a) ∈ B(H)× ⇒ zidH1 + ρ0(a) ∈ B(H1)×

⇒ zidH1 + ρ0(a) ∈ (CidH1 + C∗(A))×.

Now, using the hypothesis idH1 �∈ C∗(A)×, it follows that the C∗-algebra
C∗(A)1 := CidH1 �C∗(A) is the unitization of C∗(A). Therefore, if we extend
φ to C∗(A)1 by φ(idH1) = 1 ∈ C∗(A1), then we further obtain

zidH1 + ρ0(a) ∈ (C∗(A)1)× ⇒ φ(zidH1 + ρ0(a)) ∈ C∗(A1)×

⇒ ρ1(z1 + a) ∈ C∗(A1)×

⇒ z1 + a ∈ A×
1

where the first implication holds since unital ∗-homomorphisms map invert-
ible elements into invertible elements, the second implication relies on the
above commutative diagram, and the third implication follows using Propo-
sition 2.3 for the symmetric unital Banach ∗-algebra A1 with its canonical
∗-homomorphism ρ1 : A1 → C∗(A1).

Finally, by z1 + a ∈ A×
1 we obtain (zidH + ρ(a))−1 ∈ CidH + ρ(A), and

this completes the proof. �

Unlike other approaches to constructing inverse-closed algebras, Lemma
3.9 above relies neither on Hulanicki’s lemma [22, Prop. 2.5] which requires
computations of spectral radii, nor on its later improvements along the same
lines.
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Theorem 3.10. Let the group G be unimodular, amenable, and rigidly sym-
metric, and denote AG,D0 := {TK | K ∈ RanR}, using the notation of
Proposition 3.6. Then C1 + AG,D0 is an inverse-closed involutive subalgebra
of B(L2(G,H0)). If moreover G is a discrete group, then 1 ∈ AG,D0 = {TK |
K ∈ Kern(G,D0)}.
Proof. Let us define

ρ : L1(G,RUCb(G,D0);α) → B(L2(G,H0)), f 	→ TR(f).

Since the group G is unimodular, it follows by Propositions 3.6 and 3.4 that
the mapping ρ is a continuous injective ∗-homomorphism.

Moreover, since G is a rigidly symmetric group, Corollary 2.8 shows
that the covariance algebra L1(G,RUCb(G,D0);α) is a symmetric involu-
tive Banach algebra. On the other hand, the universal enveloping C∗-algebra
C∗(L1(G,RUCb(G,D0);α)) is isomorphic to the norm-closure of the range of
the regular representation

Π: L1(G,RUCb(G,D0);α) → B(L2(G×G,H0)),

sinceG is an amenable group; see for instance [37, Th. 7.13]. The corresponding
canonical homomorphism

ρ0 : L1(G,RUCb(G,D0);α) → C∗(L1(G,RUCb(G,D0);α)), f 	→ Π(f)

is the one induced by Π.
We have thus checked that the hypothesis of Lemma 3.9 is satisfied,

using Proposition 3.7 and the following facts: If the group G is discrete, then
the Banach ∗-algebra L1(G,RUCb(G,D0);α) is unital and ρ0 is a unital ∗-
homomorphism, while if G fails to be discrete, then L1(G,RUCb(G,D0);α)
has no unit element and also the crossed product C∗(L1(G,RUCb(G,D0);α))
does not contain the identity operator on L2(G×G,H0). Then the first part of
the conclusion follows since we have AG,D0 = ρ(L1(G,RUCb(G,D0);α)). For
the second assertion we use Proposition 3.6(3). �

Example 3.11. The hypothesis of Theorem 3.10 is satisfied if G is a locally
compact nilpotent group. Indeed, as already noted after Definition 2.1, such a
group is rigidly symmetric by [33, Cor. 6]. Moreover, every nilpotent group is
amenable; see for instance [31, Prop. (0.15)–(0.16)].

Recall also that locally compact nilpotent group have polynomial growth
by [31, Cor. (6.18)]. Theorem 3.10 applies for any discrete finitely generated
group G with polynomial growth. Indeed, every group of that type has a
nilpotent subgroup of finite index by [20], and therefore it is rigidly symmetric
by [28, Cor. 3] (see also [27, Th. 3]). Moreover, the groups with polynomial
growth (the locally compact ones, not necessarily discrete) are unimodular by
[31, Prop. (6.6), (6.9)] and amenable by [31, Prop. (0.13)].

Corollary 3.12. Let H be a complex Hilbert space and assume that we have
an orthogonal direct sum decomposition H =

⊕

γ∈Γ Hγ whose summands are
isomorphic to each other, where Γ is a finitely generated group with polynomial
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growth. Denote by Pγ ∈ B(H) the orthogonal projection on Hγ for γ ∈ Γ, and
define

B := {S ∈ B(H) | (∃β ∈ �1(Γ)) ‖Pγ1SPγ2‖ ≤ βγ1γ−1
2

for γ1, γ2 ∈ Γ}.
Then B is a unital subalgebra of B(H) and we have B× = B ∩ B(H)×.

Proof. Since the Hilbert spaces in the family {Hγ}γ∈Γ are isomorphic to each
other, we may actually assume that there exists some complex Hilbert space
H0 such that Hγ = H0 for every γ ∈ Γ. Then H = �2(Γ)⊗̄H0 = �2(Γ,H0). It
follows by Example 3.11 that the group Γ is amenable and rigidly symmetric,
hence Theorem 3.10 applies with D0 = B(H0). Specifically, the formula

(∀S ∈ B(H))(∀γ1, γ2 ∈ Γ) KS(γ1, γ2) = Pγ1S|RanPγ2

defines an algebra isomorphism B ∼→ Kern(G,D0), S 	→ KS , which is actually
the inverse of the canonical representation Kern(G,D0)

∼→AG,D0 , K 	→ TK
(see (3.1) and Proposition 3.4). We thus obtain B = AG,D0 , and the conclusion
follows by Theorem 3.10. �
Remark 3.13. The special case Corollary 3.12 when Γ is an abelian group is
also a special case of [1, Cor. 1 to Th. 2]. On the other hand, the special case
of Corollary 3.12 when dim Hγ = 1 for every γ ∈ Γ was obtained in [15].

4. Larger Inverse-Closed Algebras of Integral Operators

For the sake of completeness, we will sketch here a procedure that allows one
to construct, on some special topological groups, inverse-closed algebras of
integral operators that are larger than the algebra from Theorem 3.10.

Lemma 4.1. If A is a unital associative algebra and J is a left ideal in A (that
is, AJ ⊆ J ), then C1 + J is an inverse-closed subalgebra of A.

Proof. To prove that (C1 + J )× ⊇ (C1 + J ) ∩ A×, let a ∈ (C1 + J ) ∩ A×

arbitrary. Then there exist α ∈ C, a0 ∈ J and b ∈ A such that a = α1+a0 and
ab = ba = 1. Then b(α1+ a0) = 1, hence αb = 1− ba0 ∈ C1+ AJ ⊆ C1+ J .

Now, if J = A, then the assertion is trivial. Otherwise, J cannot contain
invertible elements, hence α �= 0, and then the above relation implies b =
a−1 ∈ C1 + J , hence a ∈ (C1 + J )×. �

In the Step 2◦ of the proof of the following lemma we use an idea from the
proof of [2, Th. 2.13(3)]. See Remark 4.6 for an alternative proof and additional
information on specific applications.

Lemma 4.2. Let B be any unital associative Banach algebra. Assume that A0

is another associative Banach algebra such that there exists a continuous in-
jective homomorphism A0 ↪→ B. Moreover, let J be a left ideal of A0 with the
following properties:

• J is dense in A0;
• (C1 + J )× = (C1 + J ) ∩ B×.

Then we have (C1 + A0)× = (C1 + A0) ∩ B×.



Vol. 16 (2015) Inverse-Closed Algebras of Integral Operators 1297

Proof. The inclusion “⊆” is clear.
To prove the converse inclusion “⊇”, let α1 + a0 ∈ (C1 + A0) ∩ B×

arbitrary, where α ∈ C and a0 ∈ A0. We will proceed in two steps.
Step 1◦ First assume α �= 0. Then we may (and do) assume α = 1.
The ideal J is dense in A0, hence there is ā ∈ J with ‖ā− a0‖A0 < 1/2.

Then 1 + (a0 − ā) ∈ (C1 + A0)×, so we can consider the element

k := (1 + (a0 − ā))−1(1 + a0) = (1 + (a0 − ā))−1(1 + (a0 − ā) + ā)
= 1 + (1 + (a0 − ā))−1ā.

Here k ∈ (C1 + A0)× and ā ∈ J , hence actually

k ∈ (C1 + A0)× ∩ (C1 + J ) = (C1 + J )×,

where the latter equality follows by Lemma 4.1 for A = C1 + A0.
Thus k−1 ∈ C1 + J , and then we get by the definition of k that

(1 + a0)−1 = k−1(1 + (a0 − ā))−1 ∈ C1 + A0

and this concludes the first step of the proof.
Step 2◦ Now assume α = 0, hence a0 ∈ (C1 + A0) ∩ B×. Since B is a

Banach algebra, it follows that its set of invertible elements B× is an open
subset, hence there exists ε > 0 for which for every α ∈ C with |α| ≤ ε we
have α1 + a0 ∈ (C1 + A0) ∩ B×. Then by the conclusion of Step 1◦ above
we have (α1 + a0)−1 ∈ C1 + A0 if α ∈ C with |α| = ε. Now we may use the
holomorphic functional calculus in the unital Banach algebra B to write

a−1
0 =

1
2πi

∫

|α|=ε

(α1 + a0)−1dα

and this implies a−1
0 ∈ C1 + A0 since the integral from the right-hand side is

convergent both in the norm of B and in the norm of C1+ A0, and the values
of its integrand belong to C1 + A0.

Consequently (C1 + A0)× ⊇ (C1 + A0) ∩ B×, and we are done. �

For the following theorem we recall the notation introduced in Defin-
ition 3.3. We also denote by A(G) the image of the canonical representa-
tion (3.1) for D0 = C. It follows by Proposition 3.4 that A(G) has a natural
structure of involutive associative Banach algebra. Specifically, A(G) is en-
dowed with the norm obtained by transporting the norm of the Banach algebra
of integral kernels Kern(G,C) via the canonical representation (3.1), which is
thus turned into an isometric ∗-isomorphism Kern(G,C) ∼→ A(G). Since the
canonical ∗-representation is contractive by Proposition 3.4, we see that the
inclusion map A(G) ↪→ B(H) is a contractive ∗-homomorphism of involutive
Banach algebras.

Theorem 4.3. Let G be any locally compact group. For every linear subspace
F ⊆ Kern(G,C) define

AF (G) := {TK | K ∈ KernF (G,C)} ⊆ B(L2(G)).

Then the following assertions hold true:
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1. If F is any subalgebra (right/left/two-sided ideal, respectively) of the con-
volution algebra L1(G), then AF (G) is a subalgebra (right/left/two-sided
ideal, respectively) of the algebra of integral operators A(G) ⊆ B(L2(G)).

2. If C1 + A(G) is an inverse-closed subalgebra of B(L2(G)), then AF (G)
is an inverse-closed subalgebra of B(L2(G)) for every right/left ideal F
of L1(G).

3. Conversely, if there exists a right/left ideal F of L1(G) for which the
subalgebra C1+AF (G) of B(L2(G)) is inverse closed and for all functions
0 ≤ β ∈ L1(G) there exists a sequence {βn}n≥1 in F with 0 ≤ βn ≤ β
and limn→∞ βn = β almost everywhere on G, then C1+ A(G) is inverse
closed in B(L2(G)).

Proof. For Assertion (1), just note that if Kj ∈ Kern(G,C), 0 ≤ βj ∈ L1(G),
and |Kj(x, y)| ≤ βj(xy−1) for almost all x, y ∈ G and j = 1, 2, then

|(K1 � K2)(x, y)| ≤ (β1 � β2)(xy−1) and |(K1 +K2)(x, y)| ≤ (β1 + β2)(xy−1)

for almost all x, y ∈ G.
Assertion (2) follows by Lemma 4.1 and its obvious version for right

ideals.
For Assertion (3) we may assume that F is a left ideal, since the case of

right ideals can be treated similarly. Let K ∈ Kern(G,C) and 0 ≤ β ∈ L1(G)
arbitrary with |K(x, y)| ≤ |β(xy−1)| for almost all x, y ∈ G. By the hypothesis,
there exists a sequence {βn}n≥1 in F with 0 ≤ βn ≤ β and limn→∞ βn = β
almost everywhere on G. For every n ≥ 1, let an be any measurable function
on G with 0 ≤ an ≤ 1 and βn = anβ. The function an is uniquely determined
almost everywhere on the set where β does not vanish. Now define

Kn : G×G → C, Kn(x, y) = an(xy−1)K(x, y).

Then we have |Kn(x, y)| ≤ (anβ)(xy−1) = βn(xy−1) for almost all x, y ∈ G.
Since βn ∈ F , it follows that K ∈ KernF (G,C).

On the other hand, for almost all x, y ∈ G we have

|(K −Kn)(x, y)| = |(1 − an)(xy−1)K(x, y)|
≤ ((1 − an))β)(xy−1) = (β − βn)(xy−1)

and this implies ‖K −Kn‖Kern(G,C) ≤ ‖β − βn‖L1(G). The conditions satisfied
by {βn}n≥1 entail that limn→∞ ‖β − βn‖L1(G) = 0 by Lebesgue’s dominated
convergence theorem, and therefore limn→∞ ‖K −Kn‖Kern(G,C) = 0.

Consequently, KernF (G,C) is dense in Kern(G,C), and this implies that
AF (G) is dense in the Banach algebra A(G). Moreover, since F is a left ideal
of the convolution algebra L1(G), it follows by Assertion (1) that AF (G) is
a left ideal of A(G). Since the hypothesis ensures that AF (G) is an inverse-
closed subalgebra of B(L2(G)), it follows that Lemma 4.2 can be applied for
A0 = A(G), J = AF (G), and B = B(L2(G)), to obtain that A(G) is an
inverse-closed subalgebra of B(L2(G)). This completes the proof. �
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Corollary 4.4. Let G be any locally compact group. If there exists a left/right
ideal F ⊆ L1(G) that contains every function in L∞(G) with compact es-
sential support, and for which C1 + AF (G) is an inverse-closed subalgebra of
B(L2(G)), then also C1 + A(G) is an inverse-closed subalgebra of B(L2(G)).

Proof. Let K ∈ Kern(G,C) and 0 ≤ β ∈ L1(G) with |K(x, y)| ≤ β(xy−1) for
almost all x, y ∈ G. Since the finite Borel measure β(x)dx is regular on G, it
follows that for every ε > 0 there exists a compact set Eε ⊆ G for which

0 ≤
∫

G\Eε

β(x)dx < ε. (4.1)

Now pick any continuous function with compact support φε : G → [0, 1] with
φε|Eε

≡ 1, and define βε = φεβ, so that 0 ≤ βε ≤ β, the support of βε is
compact, and by (4.1) also ‖β − βε‖L1(G) < ε.

Now for every n ≥ 1 define βε,n = min{βε, n}, so that 0 ≤ βε,n ≤ βε ≤ β
and limn→∞ βε,n = βε almost everywhere on G. If Lpcomp(G) denotes the set
of all functions in Lp(G) with compact essential support, then βε ∈ L1

comp(G),
hence βε,n ∈ L∞

comp(G) ⊆ F for all n ≥ 1. Moreover, by Lebesgue’s dominated
convergence theorem we have limn→∞ ‖βε,n−βε‖L1(G) = 0, hence there exists
nε ≥ 1 with ‖βε,nε

− βε‖L1(G) < ε.
Thus for every ε > 0 we obtained the function ψε := βε,nε

∈ L∞
comp(G) ⊆

F with 0 ≤ ψε ≤ β and ‖ψε − β‖L1(G) < 2ε. Now the sequence {ψ1/j}j≥1

is convergent to β in L1(G), and then it has a subsequence which is conver-
gent to β almost everywhere. This shows that F satisfies the hypothesis of
Theorem 4.3(3), and an application of that theorem completes the present
proof. �
Example 4.5. Let G be an abelian locally compact group. It was proved in
[24] and [25] that the hypothesis of the above Corollary 4.4 is satisfied if F
is the Wiener amalgam space W (L∞, �1) of [13]. The same property was then
established for the reduced Heisenberg groups in [12].

Remark 4.6. We will indicate here an alternative proof for Step 2◦ of Lema 4.2
which is relevant for explaining the applicability of Theorem 4.3, as discussed
below.

Using the notation from the aforementioned proof, if α = 0 then a0 ∈
A0 ∩ B×. Since the inclusion map A0 ↪→ B is continuous and B× is open in B,
it follows that A0 ∩B× is an open subset of A0. On the other hand, J is dense
in A0 hence there exists aI ∈ J ∩ (A0 ∩B×) = J ∩B× ⊆ (C1+J )∩B×. Then
by the second hypothesis of Lema 4.2 we obtain a−1

I ∈ C1 + J ⊆ C1 + A0.
Thus C1 + J is a left ideal of C1 + A0 which contains invertible elements.
Then it is well known and easy to check that C1 + J = C1 + A0, that is,
J = A0, and in this case the conclusion coincides with the second hypothesis
from the statement of the lemma. This ends the alternative proof of Step 2◦

of Lema 4.2.
As a by-product of the above reasoning, in the setting of Lema 4.2, if

we have J � A0 (that is, the conclusion does not coincide with the second
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hypothesis) then necessarily A0 ∩ B× = ∅, and in particular 1 ∈ B \ A0.
In the special case of Theorem 4.3(3), where A0 = A(G), if the conclusion
is nontrivial (i.e., different from the hypothesis) then A(G) cannot contain
any invertible operator on L2(G), since otherwise every F which satisfies the
hypothesis actually has the property AF (G) = A(G). In particular, the latter
situation happens if G is a discrete group since the identity operator on L2(G)
does belong to A(G) in that case.

The above observations illustrate the fact that the interest in Theo-
rem 4.3(3) does not come from its applications to discrete groups but rather
from the fact that in some concrete situations (see Example 4.5) it essentially
reduces the study of some algebras of integral operators on Lie groups as R

n

or the reduced Heisenberg groups to the study of operator algebras on some
of their discrete co-compact subgroups. The situation of discrete groups can
be dealt with by using Theorem 3.10.

5. Dense Inverse-Closed Subalgebras of Some C∗-Algebras

In this section we apply the above results to the elliptic algebra introduced
in [16, Sect. 6] for any unimodular noncompact locally compact group G. We
recall that the elliptic algebra is the C∗-algebra E(G) ⊆ B(L2(G)) generated
by the operators defined by integral kernels K ∈ RUCb(G × G,C) satisfying
the following controllability condition:

• There exists a compact set SK ⊆ G for which K(x, y) = 0 if xy−1 �∈ SK .

To explain the terminology and point out the physical significance of the elliptic
algebra, we recall from [9] the following fact which holds true for the abelian
Lie group G = (Rn,+): Let m ≥ 1 be any integer and h : R

n → R be any
elliptic polynomial of order m. Then the elliptic algebra E(G) coincides with
the C∗-subalgebra of B(L2(G)) generated by the resolvents of all self-adjoint
operators h(i∇) +W , where W runs over the set of all symmetric differential
operators of order strictly less than m, whose coefficients are smooth functions
which are bounded together their derivatives of arbitrarily high order.

Now return to the general case where G is any unimodular noncompact
locally compact group and denote by K(L2(G)) the C∗-algebra of compact
operators on L2(G). It was already noted in [16, subsect. 6.1] that K(L2(G)) ⊆
E(G) � RUCb(G,C) �r G. In Theorem 5.2 below we show that the involutive
Banach algebra AG,C (see Theorem 3.10) can be used in order to complete the
foregoing relationship to a commutative diagram

K(L2(G)) � � �� E(G) RUCb(G,C) �r G����

AG,C ∩ K(L2(G))
��

��

� � �� AG,C

��

��

L1(G,RUCb(G,C);α)����
��

��

consisting of continuous inclusion maps and isometric ∗-isomorphisms. The
vertical arrows in that diagram have dense ranges and are inverse closed after
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the algebras of the above diagram have been unitized, if the group G is also
amenable and symmetric.

Since it is not the case that 1 ∈ E(G) if the group G is nondiscrete and
amenable, we will need to introduce the unital C∗-algebra

E1(G) := C1 + E(G) ⊆ B(L2(G)).

We also need the unitary representations λ, ρ : G → B(L2(G)) defined by

(λ(a)φ)(x) = φ(a−1x) and (ρ(a)φ)(x) = φ(xa)

for φ ∈ L2(G) and a, x ∈ G. For every unitary operator V : L2(G) → L2(G)
define

AdV : B(L2(G)) → B(L2(G)), (AdV )T = V TV −1.

For Theorem 5.2 we need the following remark.

Remark 5.1. If the canonical representation (3.1), which is faithful by Propo-
sition 3.4, namely

Kern(G,C) → B(L2(G)), K 	→ TK

is composed with the isometric ∗-homomorphism given by Proposition 3.6,
namely

R : L1(G,RUCb(G,C);α) → Kern(G,C)

then we obtain a ∗-isomorphism onto the ∗-algebra AG,C from Theorem 3.10

Ψ: L1(G,RUCb(G,C);α) ∼→AG,C, f 	→ TR(f)

which will be used for defining a norm on AG,C, thus turning it into an invo-
lutive Banach algebra for which Ψ is an isometry. Since the aforementioned
canonical ∗-representation is contractive by Proposition 3.4, we also obtain the
inclusion maps

AG,C ↪→ A(G) ↪→ B(H),

where AG,C ↪→ A(G) is an isometric ∗-homomorphism and A(G) ↪→ B(H) is
a contractive ∗-homomorphism of involutive Banach algebras.

Theorem 5.2. If G is any locally compact group G which is noncompact, uni-
modular, amenable, and symmetric, then we have:

1. There exists a continuous inclusion AG,C ↪→ E(G).
2. The intersection AG,C ∩ K(L2(G)) is a dense ∗-subalgebra of K(L2(G)).
3. The unitization C1 + AG,C is a dense inverse-closed ∗-subalgebra of the

unital C∗-algebra E1(G).
4. The group G acts by isometric ∗-automorphisms on the C∗-algebra E(G)

by both Adλ(·) and Ad ρ(·). The Banach algebra AG,C is invariant under
each of these actions, which give rise to actions of G by isometric ∗-
automorphisms of AG,C, and moreover the mapping

G× AG,C → AG,C, (a, S) 	→ (Adλ(a))S (5.1)

is continuous.
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Proof. For Assertion (1) recall from [16, Prop. 6.5] that the reduced crossed
product RUCb(G) �r G is ∗-isomorphic to E(G) by means of the mapping T
that maps an integral kernel to the corresponding integral operator. On the
other hand, as noted in Remark 5.1, we have the isometric ∗-isomorphism

Ψ: L1(G,RUCb(G,C);α) → AG,C, f 	→ TR(f)

which is given explicitly by

((Ψf)φ)(x) = (TR(f)φ)(x) =
∫

G

(R(f))(x, y)φ(y)dy =
∫

G

f(xy−1, x)φ(y)dy

for all f ∈ L1(G,RUCb(G,C);α) and φ ∈ L2(G), and this shows that Ψ
agrees with the ∗-homomorphism Λ from [16, subsect. 6.1]. Therefore, the norm
closure of Ran Ψ in B(L2(G)) is the reduced crossed product RUCb(G) �r G
([16, Th. 6.2]). Hence we have the continuous inclusion AG,C ↪→ E(G) and
the norm closure in B(L2(G)) of the unital ∗-algebra C1 + AG,C is equal to
E1(G). It also follows by Theorem 3.10 that C1 + AG,C is inverse closed in
B(L2(G)), hence it is also inverse closed in E1(G), and this completes the
proof of Assertion (3) as well.

For proving Assertion (2) pick any φ, ψ ∈ C(G,C) with compact supports.
Then (R(φ ⊗ ψ))(x, y) = φ(xy−1)ψ(x) for all x, y ∈ G, hence the integral
operator TR(φ⊗ψ) belongs to AG,C∩K(L2(G)). Moreover, the integral operators
of this type span a dense subspace of K(L2(G)) (see for instance [36, Lemma
5.2.8]).

As regards Assertion (4), it follows by [16, Prop. 6.4–6.5] that E(G) is in-
variant under Ad ρ(·), while the invariance of E(G) under Adλ(·) is a straight-
forward consequence of the definitions. For proving the assertions on AG,C it
is convenient to denote

((ρ(a) ⊗ ρ(a))K)(x, y) = K(xa, ya) and ((λ(a) ⊗ λ(a))K)(x, y)
= K(a−1x, a−1y)

for all a, x, y ∈ G and K : G × G → C. Then it is easily checked that for
every integral kernel K ∈ Kern(G,C), the corresponding integral operator
TK ∈ B(L2(G)) satisfies for arbitrary a ∈ G,

ρ(a)TKρ(a)−1 =T(ρ(a)⊗ρ(a))K and λ(a)TKλ(a)−1 = T(λ(a)⊗λ(a))K . (5.2)

Therefore, if f ∈ L1(G,RUCb(G,C);α), then for all a, x, y ∈ G we have

((ρ(a) ⊗ ρ(a))R(f))(x, y) = (R(f))(xa, ya) = f(xy−1, xa)

(see Proposition 3.6) and then

((R−1(ρ(a) ⊗ ρ(a))R)(f))(x, y) = (ρ(a) ⊗ ρ(a))R(f))(y, x−1y) = f(x, ya).

Since the space RUCb(G,C) is invariant under right translations, it follows
by the above formula that (R−1(ρ(a) ⊗ ρ(a))R)(f) ∈ L1(G,RUCb(G,C);α)
and the mapping f 	→ (R−1(ρ(a) ⊗ ρ(a))R)(f) is an isometry of L1(G,RUCb
(G,C);α). Then by using the first equality in (5.2) and the definition of AG,C

(see Theorem 3.10), we obtain that AG,C is invariant under Ad ρ(a), and the
restriction of Ad ρ(a) to AG,C is an isometric ∗-automorphism.
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Similarly,

((λ(a) ⊗ λ(a))R(f))(x, y) = (R(f))(a−1x, a−1y) = f(a−1xy−1a, a−1x)

and then

((R−1(λ(a) ⊗ λ(a))R)(f))(x, y) = (λ(a) ⊗ λ(a))R(f))(y, x−1y)
= f(a−1xa, a−1y).

The space RUCb(G,C) is also invariant under left translations, hence by the
above formula we have that (R−1(λ(a) ⊗ λ(a))R)(f) ∈ L1(G,RUCb(G,C);α)
and the mapping f 	→ (R−1(λ(a) ⊗ λ(a))R)(f) is an isometry of L1(G,RUCb
(G,C);α). Then by using the second equality in (5.2) and the definition of
AG,C, we see that AG,C is invariant under Adλ(a), and the restriction of
Adλ(a) to AG,C is an isometric ∗-automorphism.

In addition, the action of G by left translations on RUCb(G,C) is contin-
uous (see Remark 3.5). By taking into account the above formulas, it follows
that if f = φ⊗ ψ with φ ∈ L1(G) and ψ ∈ RUCb(G), then we have

lim
a→1

‖(Adλ(a))TR(f) − TR(f)‖AG,C
= 0. (5.3)

Since the algebraic tensor product L1(G) ⊗ RUCb(G) is dense in the pro-
jective tensor product L1(G)̂⊗RUCb(G) = L1(G,RUCb(G,C);α) and we al-
ready proved that the restriction of Adλ(a) to AG,C is an isometry for every
a ∈ G, a standard approximation argument shows that (5.3) holds true for
any f ∈ L1(G,RUCb(G,C);α). We thus obtain that the mapping (5.1) from
the statement is continuous, and this completes the proof. �

The above theorem emphasizes the close relationship between the C∗-
algebra E1(G) and the Banach algebra C1+AG,C, which not only continuously
embeds as a dense inverse-closed subalgebra, but also shares with E1(G) a
couple of natural symmetry groups. It would be quite interesting to determine
the whole group of automorphisms of E(G) that leave invariant the subalgebra
AG,C.

Corollary 5.3. If G is any finite-dimensional Lie group which is unimodular,
amenable, and rigidly symmetric, and we define

A∞
G,C = {T ∈ AG,C | (Adλ(·))T ∈ C∞(G,AG,C)},

then C1+A∞
G,C is a dense inverse-closed ∗-subalgebra of the unital C∗-algebra

E1(G). Moreover, C1 + A∞
G,C has the structure of a Fréchet algebra with con-

tinuous inversion and is invariant under the action (5.1). The corresponding
action of G on A∞

G,C is smooth and gives rise to a natural representation of
the Lie algebra g of G by derivations of A∞

G,C.

Proof. The continuity of the group action (5.1) actually shows that we have a
continuous isometric representation of G on AG,C. Then we obtain the dense
subalgebra A∞

G,C of AG,C consisting of differentiable vectors for that represen-
tation, just as in [3, Cor. 3.1(ii)]. Since AG,C is a Banach algebra, it is easily
seen that C1 + A∞

G,C is an inverse-closed subalgebra of C1 + AG,C, and then
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by Theorem 5.2(3) we obtain that C1 + A∞
G,C is also an inverse-closed subal-

gebra of E(G). Finally, the assertions on the topology of A∞
G,C follow by [29,

Th. 6.2], which actually holds true for isometric Lie group actions on Banach
algebras. �

To conclude, we mention that some motivation for the above Corollary 5.3
can be found in the recent results of [7] and [3]. For instance, the framework
in [7] (see also [6]) is provided by a so-called Lie C∗-system, which means
a pair (X,A) consisting of some unital C∗-algebra A which admits faithful
irreducible representations and is endowed with an injective homomorphism of
Lie algebras δ : X → Der A0, where A0 is some dense unital ∗-subalgebra of A.
As mentioned in [7], this framework covers quantum physics, where algebras
of observables are constructed in terms of some distinguished representation,
as for instance the Fock representation.

In the case when the Lie algebra X is abelian, one studied certain pseudo-
resolvents associated to δ, which are families of elements of the dense ∗-
subalgebra A0 that behave as resolvents of self-adjoint operators affiliated
with A in some sense and which satisfy suitable commutation relations in
terms of δ. One of the problems suggested in [7] is that of extending their
results to non-abelian Lie algebras.

On the other hand, it is clear that in the setting of our Corollary 5.3 (see
also Theorem 5.2) the derivative of the group homomorphism Adλ(·) : G →
Aut E1(G) is a representation δ : g → Der E1(G) of the Lie algebra g by un-
bounded derivations of the C∗-algebra E1(G). We thus obtain a Lie C∗-system
in the above sense, for which the role of the dense ∗-subalgebra A0 (the com-
mon invariant domain of the unbounded derivations in the range of δ) is played
by the Fréchet algebra A∞

G,C from the above Corollary 5.3. Therefore, it is nat-
ural to wonder what is the bearing of our specific examples of Lie C∗-systems
on the problem raised in [7].
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