
Ann. Henri Poincaré 16 (2015), 289–345
c© 2014 Springer Basel
1424-0637/15/010289-57
published online January 31, 2014
DOI 10.1007/s00023-014-0315-7 Annales Henri Poincaré

Quantitative Mode Stability for the Wave
Equation on the Kerr Spacetime

Yakov Shlapentokh-Rothman

Abstract. We give a quantitative refinement and simple proofs of mode
stability type statements for the wave equation on Kerr backgrounds in
the full sub-extremal range (|a| < M). As an application, we are able to
quantitatively control the energy flux along the horizon and null infin-
ity and establish integrated local energy decay for solutions to the wave
equation in any bounded-frequency regime.

1. Introduction

One of the most central problems in mathematical General Relativity is the
non-linear stability of the 2-parameter family of Kerr spacetimes (M, ga,M ),
indexed by mass M and specific angular momentum a. Though the full non-
linear problem [the stability of (M, ga,M ) as a family of solutions to the Ein-
stein vacuum equations Ric(g) = 0] appears intractable at the moment, much
work has been done in the linear setting. In particular, experience teaches us
that resolving the non-linear problem will require a robust understanding of
decay for solutions of the wave equation �gψ = 0 on the fixed Kerr space-
time (M, g). Let us direct the reader to the lecture notes [11] for a general
introduction to linear waves on black hole backgrounds.

Surprisingly, even the most basic boundedness and decay statements for
the wave equation on Kerr remained unanswered until quite recently. Bound-
edness and decay results for solutions to the wave equation on the 1-parameter
Schwarzschild subfamily (a = 0) were obtained in [13,23], and [6]. The first
global result for general solutions to the Cauchy problem on a rotating black
hole (a �= 0) was obtained in [9] where Dafermos and Rodnianski established
uniform boundedness in the case |a| � M . Following this, decay results, again
in the case |a| � M , were obtained by various authors, e.g. [2,10,11,25,31,32],
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and [27]. For the full sub-extremal range of Kerr black holes (|a| < M), the cou-
pling between “superradiance” and trapping presented serious conceptual diffi-
culties; nevertheless, in [12] Dafermos and Rodnianski succeeded in establishing
boundedness and decay for the wave equation on a general sub-extremal Kerr
background. Their proof required an additional estimate1 for the “bounded
superradiant frequencies”. This paper provides the needed result.

Interestingly, the problem of the superradiant frequencies will lead us
back to the classical mode analysis of the physics literature, see [24] and [36],
albeit from a quite different perspective. Mode solutions to the wave equation
will be reviewed in Sect. 1.2; for now, we simply recall that a solution ψ to the
wave equation �gψ = 0 is called a mode solution if

ψ(t, r, θ, φ) = e−iωteimφS(θ)R(r) with ω ∈ C and m ∈ Z,

where (t, r, θ, φ) are Boyer–Lindquist coordinates (defined in Sect. 1.1) and S
and R must satisfy appropriate ordinary differential equations and boundary
conditions (given in Sect. 1.2) so that, among other things, ψ has finite energy
along suitable space-like hypersurfaces.2 Ruling out the exponentially growing
mode solutions corresponding to Im(ω) > 0 is the content of “mode stability”.
This was established by Whiting in the ground-breaking [36]. We will extend
Whiting’s techniques and establish a quantitative understanding of the lack
of mode solutions with real ω.3 As a byproduct of our methods, we will also
be able to simplify the proof of Whiting’s original mode stability result. Next,
we will show that this “quantitative mode stability on the real axis” can be
upgraded to “integrated local energy decay”, with an explicit constant, for
solutions to the wave equation in any “bounded-frequency regime”.4 Along
the way, we will produce the necessary estimate for section 11.7 of [12].

1.1. The Spacetime

Fix a pair of parameters (a,M) with |a| < M , and define

r+ := M +
√
M2 − a2.

Define the underlying manifold M to be covered by a global5 “Boyer–Lindquist”
coordinate chart

(t, r, θ, φ) ∈ R × (r+,∞) × S
2.

1 See their discussion in section 11.7 of [12].
2 When Im (ω) > 0 one should take asymptotically flat hypersurfaces connecting the future
event horizon and space-like infinity. When Im (ω) ≤ 0 one should instead consider hyper-
boloidal hypersurfaces connecting the future event horizon and future null infinity. See the
discussion in “Appendix D”.
3 See also [18] and [19] which concern solutions to the Cauchy problem of the form
eimφψ0(t, r, θ) and discuss mode solutions with real ω.
4 The phrase “bounded-frequency regime” will be precisely defined in Sect. 1.4; but, lest the

reader be mislead, we take the opportunity to emphasize that the integrated energy decay

statement proven here will assume a priori that the solution and its coordinate derivatives

are square integrable to the future in t.
5 “Global” is be understood with respect to the usual degeneracy of polar coordinates.



Vol. 16 (2015) Quantitative Mode Stability for the Wave Equation 291

The Kerr metric then takes the form

ga,M = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ+

ρ2

Δ
dr2

+ ρ2dθ2 + sin2 θ
Π
ρ2

dφ2,

r± := M ±
√
M2 − a2,

Δ := r2 − 2Mr + a2 = (r − r+)(r − r−),

ρ2 := r2 + a2 cos2 θ,

Π := (r2 + a2)2 − a2 sin2 θΔ.

(1.1)

It is convenient to define an r∗(r) : (r+,∞) → (−∞,∞) coordinate up to a
constant by

dr∗

dr
:=

r2 + a2

Δ
.

We will often drop the parameters and refer to ga,M as g.
It turns out that the manifold M can be extended to a manifold M̃ such

that ∂M̃ is a null hypersurface called the “horizon”. Since Boyer–Lindquist
coordinates would break down at the horizon, one needs a new coordinate
system. The standard choice is “Kerr-star” coordinates (t∗, r, φ∗, θ):

dt
dr

:=
r2 + a2

Δ
,

dφ
dr

:=
a

Δ
,

t∗(t, r) := t+ t(r),

φ∗(φ, r) := φ+ φ(r).

In these coordinates the metric becomes

g = −
(

1 − 2Mr

ρ2

)
(dt∗)2 − 4Mar sin2 θ

ρ2
dt∗dφ∗ + 2dt∗dr

+ρ2dθ2 + sin2 θ
Π
ρ2

(dφ∗)2 − 2a sin2 θdrdφ∗.

Note that we can now extend the metric to the manifold M̃ := (t∗, r, θ, φ∗) ∈
R × (0,∞) × S

2. The (future) event horizon H+ is defined to be the null
hypersurface {r = r+}.

1.2. Separating the Wave Equation: Mode Solutions

When a = 0, in addition to possessing the Killing vector field ∂t, the metric
(1.1) is spherically symmetric. Thus, it is immediately clear that the wave
equation �g0,M

ψ = 0 is separable. When a �= 0 the only Killing vector fields
are ∂t and ∂φ. Nevertheless, as first discovered by Carter [7], the wave equation
�gψ = 0 remains separable (in an appropriate coordinate system). Indeed,
letting (ω,m) ∈ C \ {0} × Z, we have
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eiωte−imφ

ρ2
�g

(
e−iωteimφψ0(r, θ)

)

= ∂r (Δ∂r)ψ0 +
(

(r2 + a2)ω2 − 4Mamrω + a2m2

Δ
− a2ω2

)
ψ0

+
1

sin θ
∂θ (sin θ∂θ)ψ0 −

(
m2

sin2 θ
− a2ω2 cos2 θ

)
ψ0. (1.2)

In fact, the separability of the wave equation follows from the presence on Kerr
of a Killing tensor [34].

We call
1

sin θ
d
dθ

(
sin θ

dS
dθ

)
−
(

m2

sin2 θ
− a2ω2 cos2 θ

)
S + λS = 0 (1.3)

the “angular ODE”. One can show that when ω ∈ R, then (1.3) along with
the boundary condition

eimφS(θ) extends smoothly to S
2 (1.4)

defines a Sturm–Liouville problem with a corresponding collection of eigen-
functions {Sωml}∞

l=|m| and real eigenvalues {λωml}∞
l=|m|. These {Sωml} are an

orthonormal basis of L2(sin θdθ) and are called “oblate spheroidal harmonics”.
When a = 0 these are simply spherical harmonics, and we label them in the
standard way so that λωml = l(l+1). For a �= 0, the labeling is uniquely deter-
mined by enforcing continuity in a. Last, we note that for ω with sufficiently
small imaginary part, one may define the Sωml and λωml via perturbation
theory [29].

Now we are ready for the main definition of the section.

Definition 1.1. Let (M, g) be a sub-extremal Kerr spacetime with parameters
(a,M). A smooth solution ψ to the wave equation

�gψ = 0 (1.5)

is called a “mode solution” if there exist “parameters” (ω,m, l) ∈ C\{0}×Z×
Z≥m such that

ψ(t, r, θ, φ) = e−iωteimφSωml(θ)R(r, ω,m, l), (1.6)

where
1. Sωml satisfies the boundary condition (1.4) and is an eigenfunction with

eigenvalue λωml for the angular ODE (1.3).
2. R is a solution to

∂r (Δ∂r)R+
(

(r2+a2)ω2−4Mamrω+a2m2

Δ
−λωml−a2ω2

)
R=0 (1.7)

3.

R ∼ (r − r+)
i(am−2Mr+ω)

r+−r− at r = r+.
6 (1.8)

6 This notation means that R(r)(r − r+)

−i(am−2Mr+ω)
r+−r− is smooth at r = r+.
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4.

R ∼ eiωr∗

r
at r = ∞.7 (1.9)

We will often suppress some of the arguments of Sωml and R and refer
to them as Sωml(θ) and R(r).

Instead of considering R(r), it is often more convenient to work with the
function

u(r∗) := (r2 + a2)1/2R(r).

Then, letting primes denote r∗-derivatives, Eq. (1.7) is equivalent to

u′′ +
(
ω2 − V

)
u = 0,

V :=
4Mramω − a2m2 + Δ(λωml + a2ω2)

(r2 + a2)2

+
Δ

(r2 + a2)4
(
a2Δ + 2Mr(r2 − a2)

)
.

(1.10)

In Appendix A, we have collected various facts about the relevant class of
ODE’s that will be used throughout the paper. The boundary conditions given
for R and Sωml [(1.8), (1.9), and (1.4)] are uniquely determined by requiring
that ψ, given by (1.6), extends smoothly to the horizon, has finite energy
along asymptotically flat hypersurfaces when Im (ω) > 0, and has finite energy
along hyperboloidal hypersurfaces when Im (ω) ≤ 0 (see the discussion in
“Appendix D”). Furthermore, in Sect. 3.1 we will see that these boundary
conditions directly arise during the proof of integrated local energy decay.
Though they will only concern us tangentially here, it is worth mentioning that
there is a large literature devoted to locating mode solutions with Im (ω) < 0
(see the review [24]). These are called quasi-normal modes and are expected
to provide to great deal of dynamical information about the decay of scalar
fields. For a sample of the mathematical study of quasi-normal modes and
corresponding applications (to black hole spacetimes), we recommend [4,5,14–
16,20,26,33,35], and the references therein.

1.3. Mode Stability Type Statements

Ruling out the exponentially growing mode solutions corresponding to
Im (ω) > 0 is the content of “mode stability (in the upper half plane)”. This
was established by Whiting [36] in 1989. However, this turns out not to be
the full story. Indeed, the existence of mode solutions with ω ∈ R\{0} is a
serious obstruction to “integrated local energy decay” for the wave equation.
We will call the ruling out of these mode solutions “mode stability on the
real axis”. This was first explored numerically in [30]. In addition, Press and
Teukolsky [30] presented a heuristic argument (rigorously established in [21])
indicating that mode stability on the real axis would imply mode stability in

7 This notation means that there exists constants {Ci}∞
i=0 such that for every N ≥ 1,

R(r∗) = eiωr∗

r

∑N
i=0

Ci
ri +O

(
(r)−N−2

)
for large r.
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the upper half plane. In Sect. 3, we will show how one can upgrade mode sta-
bility on the real axis to integrated local energy decay for the wave equation
in any “bounded-frequency regime”. In order for the constant in this estimate
to be explicit, however, we will be interested in a quantitative version of mode
stability of the real axis.

We turn now to an explanation of “quantitative mode stability”. Observe
that if a solution to the angular ODE exists, an asymptotic analysis of (1.10)
(see “Appendix A”) allows one to make the following definitions:

Definition 1.2. Let the parameters |a| < M be fixed. Then define
uhor(r∗, ω,m, l) to be the unique function satisfying
1. u′′

hor +
(
ω2 − V

)
uhor = 0.

2. uhor ∼ (r − r+)
i(am−2Mr+ω)

r+−r− near r∗ = −∞.

3.
∣∣∣∣

(
(r(r∗) − r+)

−i(am−2Mr+ω)
r+−r− uhor

)
(−∞)

∣∣∣∣

2

= 1.

Definition 1.3. Let the parameters |a| < M be fixed. Then define
uout(r∗, ω,m, l) to be the unique function satisfying
1. u′′

out +
(
ω2 − V

)
uout = 0.

2. uout ∼ eiωr∗
near r∗ = ∞.

3.
∣∣(e−iωr∗

uout

)
(∞)

∣∣2 = 1.

See Appendix A for the explicit definition of “∼”. When there is no risk
of confusion, we shall drop some or all of uhor’s and uout’s arguments. Next,
recall that the Wronskian

u′
out(r

∗)uhor(r∗) − u′
hor(r

∗)uout(r∗)

is independent of r∗. Hence, we can define

W (ω,m, l) := u′
out(r

∗)uhor(r∗) − u′
hor(r

∗)uout(r∗). (1.11)

This will vanish if and only if uout and uhor are linearly dependent, i.e. there
exists a non-trivial solution to (1.10) ⇔ W = 0 ⇔ ∣∣W−1

∣∣ = ∞. “Quantita-
tive mode stability” consists of producing an upper bound for

∣∣W−1
∣∣ with an

explicit dependence on a,M, ω,m, and l.

1.4. Statement of Results

Fix a Kerr spacetime (M, g) with parameters (a,M) satisfying |a| < M , and
recall the definition of mode solutions (Definition 1.1) and the Wronskian
(1.11) given in the previous section.

Our main result about mode solutions is

Theorem 1.4 (Quantitative Mode Stability on the Real Axis). Let

A ⊂ {(ω,m, l) ∈ R × Z × Z≥|m|
}

be a set of frequency parameters with

CA := sup
(ω,m,l)∈A

(
|ω| + |ω|−1 + |m| + |l|

)
< ∞.
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Then

sup
(ω,m,l)∈A

∣∣W−1
∣∣ ≤ G(CA, a,M)

where the function G can, in principle, be given explicitly.

Along the way we will give simple8 proofs of

Theorem 1.5 (Mode Stability)(Whiting [36]). There exist no non-trivial mode
solutions corresponding to Im (ω) > 0.

Theorem 1.6 (Mode Stability on the Real Axis). There exist no non-trivial
mode solutions corresponding to ω ∈ R\{0}.

Before discussing our main application, we need a few definitions.

Definition 1.7. We will say that a C∞
(
M̃
)

function ψ (t, r, θ, φ) is admissible
if
1. For each multi-index α with |α| ≥ 1, and sufficiently large r0, we have

∫

r>r0

∫

S2

|∂αψ|2
∣∣∣
t=0

r2 sin θ dr dθ dφ < ∞.

2. For each multi-index α with |α| ≥ 0, and Boyer–Lindquist (r, θ, φ) ∈
(r+,∞) × S

2, we have
∞∫

0

|∂αψ|2 dt < ∞.

3. For every compact K ∈ (r+,∞) × S
2 and multi-index α with |α| ≥ 0, we

have
∞∫

0

∫

K

|∂αψ|2 sin θ dt dr dθ dφ < ∞.

All of these derivatives are Boyer–Lindquist derivatives.

Definition 1.8. Let h be an admissible function on Kerr. Let B ⊂ R and
C ⊂ {(m, l) ∈ Z × Z : l ≥ |m|} be such that

CB := sup
ω∈B

(
|ω| + |ω|−1

)
< ∞,

CC := sup
m,l∈C

(|m| + |l|) < ∞.

Then, we define

PB,Ch :=
∫

B

∑

(m,l)∈C

⎛

⎝
π∫

0

2π∫

0

∞∫

−∞
heiωτe−imϕSωml sinϑ dτ dϕ dϑ

⎞

⎠

×Sωmleimφe−iωt dω.

8 Using Whiting’s integral transformations [36] but avoiding differential transformations or
a physical space argument with a new metric.
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Next, let Σ0 be a space-like hyperboloidal9 hypersurface connecting the
future event horizon H+ and future null infinity. The relevant Penrose diagram
is given by

Let Σ1 be the image of Σ0 under the time 1 map of the flow generated
by ∂t. Define a cutoff χ which is 0 in the past of Σ0 and identically 1 in the
future of Σ1.

Our application of Theorem 1.4 will be

Theorem 1.9 (Boundedness of the Microlocal Energy Flux and Integrated
Local Energy Decay in the Bounded-Frequency Regime). Let ψ be an admis-
sible10 function on Kerr that is also a solution to the wave equation �gψ = 0.
Set

ψQ := χψ.

Let B ⊂ R and C ⊂ {(m, l) ∈ Z × Z : l ≥ |m|} be such that

CB := sup
ω∈B

(
|ω| + |ω|−1

)
< ∞

CC := sup
m,l∈C

(|m| + |l|) < ∞.

Then, for every r+ < r0 < r1 < ∞,
∫

H+

|PB,CψQ|2 +
∫

I+

|∂PB,CψQ|2 +
∫

R×(r0,r1)×S2

|∂PB,CψQ|2

≤ B (r0, r1, CB, CC, a,M)
∫

Σ0

|∂ψ|2 (1.12)

where |∂ψ|2 denotes a term proportional to a non-degenerate energy flux of
a globally time-like vector field (see “Appendix B”). In particular, this energy
will degenerate as r → ∞ due to the hyperboloidal nature of Σ0:

9 The hyperboloidal condition will be satisfied if for sufficiently large r, the hypersurface Σ0

is space-like, given by the zero set of t− f(r∗), and f satisfies

(
f ′)2 − 1 = − C

r2
+O

(
r−3

)
as r → ∞.

See the discussion in “Appendix D”.
10 This condition could be relaxed considerably; however, our main goal is to simply give a
flavor of the sort of results which follow from Theorem 1.4.
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|∂ψ|2Σ0
≈ ((∂t + ∂r∗)ψ)2 + r−2((∂t − ∂r∗)ψ)2

+ r−2
(
sin−2 θ(∂φψ)2 + (∂θψ)2

)
as r → ∞

The energy at future null infinity is explicitly given by

|∂PB,CψQ|2I+ ≈ lim
r→∞ r2

(
|∂tPB,CψQ|2 + |∂rPB,CψQ|2

)
.

Note that the spacetime volume form satisfies

dVol(t,r,θ,φ) ≈ r2 sin θ dtdr dθ dφ.

The function B (r0, r1, CB, CC, a,M) can, in principle, be given explicitly.

Of course, since we are in a bounded-frequency regime, the zeroth order
estimate along the horizon (1.12) controls the microlocal energy flux along the
horizon:

∫

B

∑

(m,l)∈C

ω (am− 2Mr+ω) |u(−∞)|2 dω.

Here

u(r∗) := (r2 + a2)1/2R(r)

where R(r, ω,m, l) is the projection of the Fourier transform in t of ψQ onto
the oblate spheroidal harmonics Sωml, i.e.

R(r) :=

π∫

0

2π∫

0

∞∫

−∞
ψQeiωte−imφSωml sin θ dt dφ dθ.

The estimate for this term is utilized in Dafermos’ and Rodnianski’s proof of
integrated local energy decay for the wave equation [12]. For this application,
it is very important that the right-hand side is at the level of energy.

Before diving into the proofs of our results, we will review the case of
mode solutions on Schwarzschild (a = 0) and what is already known about
mode solutions on Kerr.

1.5. Modes on Schwarzschild

It is instructive to observe that the counterpart to mode stability in the Rie-
mannian setting11 is the “automatic” fact that the Laplace–Beltrami operator
has no spectrum in the upper half plane. A better way to see the triviality
of Riemannian mode stability is to note that the existence of a uniformly
time-like vector field ∂t immediately implies the uniform boundedness of a
non-degenerate energy [1].

Recall that the Schwarzschild spacetime is the Kerr spacetime with van-
ishing angular momentum (a = 0). This is not a product metric; nevertheless,
∂t is a time-like Killing vector field for all r > r+, the associated conserved

11 This is the case of a product metric (R × N,−dt2 + gN ) with (N, gN ) complete and
Riemannian.
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energy is coercive, and mode stability is immediately established in a similar
fashion to the previous paragraph.12

Mode stability on the real axis for Schwarzschild is more subtle since real
mode solutions have infinite energy along asymptotically flat hypersurfaces.
However, this does not preclude physical space methods; one simply observes

1. The boundary conditions at infinity and the horizon imply that real mode
solutions have finite energy along the hypersurface Σ0 (see “Appendix D”).

2. A straightforward computation shows that the energy flux for such real
modes along the portion of null infinity in the future of Σ0 must be infinite.

3. The energy identity associated to ∂t implies that the energy flux along the
portion of null infinity in the future of Σ0 must be less than or equal to the
energy flux along Σ0.

This is a clear contradiction to the existence of real modes.
For later purposes it will be convenient to revisit these arguments from

a “microlocal” point of view. In phase space, the analog of the energy flux is
the microlocal energy current:

QT (r∗) := Im (u′ωu) .

Let us show how the microlocal energy can be used to give a short proof of
mode stability. Suppose we have a mode solution with corresponding u(r∗) and
ω = ωR + iωI for some ωI > 0. First, we observe that the boundary conditions
(1.8) and (1.9) imply that QT (±∞) = 0. Next, we compute

− (QT )′ = ωI |u′|2 + Im
((
ω2 − V

)
ω
) |u|2

= ωI

(
|u′|2 +

(
|ω|2 +

(r − 2M) (rl(l + 1) + 2M)
r4

)
|u|2
)
.

Since the coefficients of |u′|2 and |u|2 are positive, the fundamental theorem
of calculus implies that u is identically 0. Algebraically, we are exploiting the
fact that the potential V does not depend on ω and is positive.

Now consider a real mode solution with corresponding u(r∗) and ω ∈
R\{0}. This time we have “conservation of energy”,

(QT )′ = 0.

Integrating gives

QT (∞) −QT (−∞) = 0:

ω2 |u(∞)|2 + 2Mr+ω
2 |u(−∞)|2 = 0.

We have used the boundary conditions (1.8) and (1.9) to evaluate the mi-
crolocal energy current at ±∞. Applying the unique continuation lemma from
Sect. 6 immediately implies that u vanishes identically.

12 Of course, ∂t becomes null on the horizon, and thus the conserved energy degenerates as
r → r+. However, a moment’s thought shows that this does not affect the argument.
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1.6. Modes on Kerr: The Ergoregion, Superradiance,
and Whiting’s Transformations

On the Kerr spacetime all of these arguments break down.
In the ergoregion

Δ − a2 sin2 θ < 0

the Killing vector field ∂t is no longer time-like. Hence, the associated conserved
quantity is no longer coercive and is useless by itself.

At the level of the ODE, we may again define a microlocal energy current:

QT := Im (u′ωu) .

However,

Im
((

ω2 − V
)

ω
)

= ωI

(
|ω|2 − a2m2

(r2 + a2)2
+

Δ

(r2 + a2)4

(
a2Δ + 2Mr(r2 − a2)

))

+
Δ

(r2 + a2)2
Im
((

λωml + a2ω2
)

ω
)

is no longer always positive. In fact, for ωI > 0

Im
((
ω2 − V

)
ω
)
(−∞) = ωI

(
|ω|2 − a2m2

4M2r2+

)
< 0 ⇔

|am| − 2Mr+ |ω| > 0.

This troublesome frequency regime also arises if ω ∈ R\{0}. For such ω we
still have “conservation of energy”,

(QT )′ = 0.

Integrating and evaluating with the boundary conditions (1.8) and (1.9) gives

Proposition 1.10 (The Microlocal Energy Estimate).

ω2 |u(∞)|2 − ω (am− 2Mr+ω) |u(−∞)|2 = 0.

If ω (am− 2Mr+ω) < 0, then this gives a successful estimate of the
boundary terms |u(−∞)|2 and |u(∞)|2. However, if

ω (am− 2Mr+ω) ≥ 0, (1.13)

then Proposition 1.10 fails to give an estimate for |u(−∞)|2 and |u(∞)|2. In
the case of (1.13) we say that our frequency parameters are superradiant. The
existence of superradiant frequencies is the phase space manifestation of the
fact that the physical space energy flux associated to ∂t may be negative along
the horizon, i.e. energy can be extracted from a spinning black hole.

Despite these difficulties, in [36] Whiting was able to give a relatively
short proof of mode stability for a wide class of equations on sub-extremal Kerr,
including the wave equation �gψ = 0, i.e. Theorem 1.5. By closely examining
the structure of u’s and Sωml’s equations, Whiting found (appropriately non-
degenerate) integral and differential transformations taking u to ũ and Sωml

to S̃ωml such that

ψ̃(t, r, θ, φ) := (r2 + a2)−1/2e−iωteimφS̃ωml(θ)ũ(r∗(r))
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satisfied a wave equation �g̃ψ̃ = 0 associated to a new metric g̃ for which there
was no ergoregion. After this miracle, the proof concluded with a physical space
energy argument as in our discussion of Schwarzschild in Sect. 1.5.

2. The Wronskian Estimate and Proofs of Mode Stability

In this section we will explain our extension of Whiting’s integral transforma-
tions and use this to prove Theorems 1.4, 1.5, and 1.6.

It turns out to be useful to work with the inhomogeneous version of R’s
and u’s equations:

Δ
d
dr

(
Δ

dR
dr

)
− Ṽ R = Δ(r2 + a2)F (r) =: ΔF̂ ,

Ṽ := −(r2 + a2)2ω2 + 4Mamrω − a2m2 + Δ
(
λωml + a2ω2

)
.

(2.1)

Here, F̂ is assumed to be a C∞ function compactly
supported in (r+,∞).
Recalling that u(r∗) = (r2 + a2)1/2R(r), we have

u′′ +
(
ω2 − V

)
u = H, (2.2)

V :=
4Mramω − a2m2 + Δ(λωml + a2ω2)

(r2 + a2)2

+
Δ

(r2 + a2)4
(
a2Δ + 2Mr(r2 − a2)

)
,

H(r∗) :=
Δ

(r2 + a2)1/2
F (r). (2.3)

Our starting point is Whiting’s integral transformation:

ũ(x∗) := (x2 + a2)1/2(x− r+)−2iMωe−iωx

×
∞∫

r+

e
2iω

r+−r− (x−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr. (2.4)

Here, η and ξ are given by

η :=
−i(am− 2Mr−ω)

r+ − r−
,

ξ :=
i(am− 2Mr+ω)

r+ − r−
.

In [36], Whiting used the above transformation only on modes satisfy-
ing the homogeneous equation with Im(ω) > 0, and the integral was thus
absolutely convergent. Since we shall also allow ω ∈ R\{0}, at first, ũ only
makes sense as an L2

loc function. Nevertheless, in Sect. 4 we will establish

Proposition 2.1. Let Im (ω) ≥ 0, ω �= 0, R solve the inhomogeneous radial ODE
(2.1), and R satisfy the boundary conditions from Definition 1.1. Define ũ via
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Whiting’s integral transformation (2.4). Then ũ(x) is C∞ on (r+,∞) and,
letting primes denote x∗-derivatives, satisfies

ũ′′ + Φũ = H̃,

where

H̃(x∗) :=
(x− r+)(x− r−)

(x2 + a2)2
G̃(x), (2.5)

G̃(x) := (x2 + a2)1/2(x− r+)−2iMωe−iωx

×
∞∫

r+

e
2iω

r+−r− (x−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrF̂ (r)dr,

Φ(x∗) :=
(x− r−)Φ̃1(x)

(x2 + a2)2
− Φ̃2(x), 13

Φ̃1(x) := ω2(x− r+)2(x− r−)

−
(

4Mω2 +
4ω(am− 2Mr+ω)

r+ − r−

)
(x− r−)(x− r+)

+4M2ω2(x− r−) +
(
2amω − λωml − a2ω2

)
(x− r+),

Φ̃2(x) :=
(x− r+)(x− r−)

(x2 + a2)4
(
a2(x− r+)(x− r−) + 2Mx(x2 − a2)

)
.

Of course, it is important to understand the boundary conditions for ũ.
When Im (ω) > 0, the following quite crude analysis of ũ is sufficient.

Proposition 2.2. If Im (ω) > 0, then

1. ũ = O
(
(x− r+)2MIm(ω)

)
as x → r+.

2. ũ′ = O
(
(x− r+)2MIm(ω)

)
as x → r+.

3. ũ = O
(
e−Im(ω)xx1+2MIm(ω)

)
as x → ∞.

4. ũ′ = O
(
e−Im(ω)xx1+2MIm(ω)

)
as x → ∞.

When ω ∈ R \ {0} we need to be a little more precise.

Proposition 2.3. If ω ∈ R \ {0}, then
1. ũ is uniformly bounded.
2. |ũ(∞)|2 = (r+−r−)2|Γ(2ξ+1)|2

8Mω2r+
|u(−∞)|2.

3. ũ′ is uniformly bounded.
4. ũ′ − iωũ = O(x−1) at x∗ = ∞.
5. ũ′ + iω(r+−r−)

r+
ũ = O(x− r+) at x∗ = −∞.

Here

Γ (z) :=

∞∫

0

e−ttz−1dt

13 For mode stability on the real axis, it is only important that Φ is real.
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is the Gamma function. Recall the well-known fact that the (extended) Gamma
function is meromorphic, never vanishes, and only has poles at 0,−1,−2, · · · .

Let us see how these propositions restricted to the homogeneous case
allow for immediate proofs of both mode stability in the upper half plane and
on the real axis via the microlocal energy current:

Q̃T := Im
(
ũ′ωũ

)
.

Proof. (Mode Stability, Theorem 1.5) Suppose we had a mode solution with
corresponding (u, Sωml, λωml) and ω = ωR + iωI with ωI > 0. Let ũ be defined
by (2.4). Proposition 2.2 implies that Q̃T (±∞) = 0. We proceed as in our
discussion of Schwarzschild from Sect. 1.5 with ũ replacing u:

0 = −Q̃T

∣∣∞
−∞ = −

∞∫

−∞

(
Q̃T

)′
dr∗ =

∞∫

−∞

(
ωI |ũ′|2 + Im (Φω) |ũ|2

)
dr∗.

Hence, if we can show that Im (Φω) ≥ 0, we may conclude that ũ vanishes.
An easy computation using the formula from Proposition 2.1 gives

Im (Φω) = ωI

(
(x− r−)

(x2 + a2)2
Ψ0 +

(x− r+)(x− r−)
(x2 + a2)4

Ψ1

)

− (x− r+)(x− r−)
(x2 + a2)2

Im
((
λωml + a2ω2

)
ω
)
,

Ψ0 := |ω|2 (x− r+)2(x− r−) +
8M2 |ω|2
r+ − r−

(x− r−)(x− r+)

+4M2 |ω|2 (x− r−),
Ψ1 := a2(x− r+)(x− r−) + 2Mx(x2 − a2).

All of these terms are clearly positive except for −Im
((
λωml + a2ω2

)
ω
)
. For

this term we need to return to Sωml’s equation (1.3):

1
sin θ

d
dθ

(
sin θ

dSωml

dθ

)

−
(

m2

sin2 θ
+ a2ω2 sin2 θ

)
Sωml +

(
λωml + a2ω2

)
Sωml = 0.

Now multiply the equation by ωSωml sin θ, integrate by parts, and take the
imaginary part. There are no boundary terms due to Sωml’s boundary condi-
tions,14 and we find

14 Recall that the boundary conditions (1.4) required that eimφSωml(θ) extend smoothly
to S2. More explicitly, let x := cos θ; then an asymptotic analysis of the angular ODE shows
that the boundary condition (1.4) is equivalent to Sωml ∼ (x± 1)|m|/2 as x → ∓1.
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ωI

π∫

0

(∣∣∣∣
dSωml

dθ

∣∣∣∣

2

+
(

m2

sin2 θ
+ a2 |ω|2 sin2 θ

)
|Sωml|2

)

sin θdθ

= −
π∫

0

(
Im
((
λωml + a2ω2

)
ω
)) |Sωml|2 sin θdθ:

− Im
((
λωml + a2ω2

)
ω
) ≥ 0.

We conclude that Im (Φω) is positive, and hence that ũ must vanish.
In terms of R, this implies that

R̃(x) :=

∞∫

r+

e
2iω

r+−r− (x−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr

vanishes for all x ∈ (r+,∞). To see that this implies that R vanishes, we first
extend R by 0 to all of R and note that the Fourier transform of (r− r−)η(r−
r+)ξe−iωrR(r) is, up to a change of variables,

R̂(z) :=

∞∫

−∞
e2i|ω|2z(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr.

In view of the support of R, R̂ extends to a holomorphic function on the upper
half plane. The vanishing of R̃ for x ∈ (r+,∞) implies that R̂ vanishes along
the line { y

ω : y ∈ (1,∞)}. Analyticity implies that R̂ and hence R itself
vanishes. �

Note that the above proof occurs completely at the level of ũ and Sωml.
In particular, we neither need Whiting’s differential transformations of Sωml

(see section IV of [36]) nor a physical space argument with a new metric (see
section VI of [36]).

Proof. (Mode Stability on the Real Axis, Theorem 1.6) Suppose we have a
mode solution with corresponding (u, Sωml, λωml) and ω ∈ R \ {0}. Let ũ be
defined by (2.4). Then, noting that Φ from Proposition 2.1 is real, we have
conservation of energy:

(
Q̃T

)′
= 0:

Q̃T (∞) − Q̃T (−∞) = 0.

Now the boundary conditions from Proposition 2.3 imply that we get a useful
estimate out of this:

Q̃T (∞) − Q̃T (−∞)

=
1
2

(
ω2|ũ(∞)|2+|ũ′(∞)|2+ω2 r+ − r−

r+
|ũ(−∞)|2 +

r+
r+ − r−

|ũ′(−∞)|2
)
.

The unique continuation lemma from Sect. 6 implies that ũ must vanish.



304 Y. Shlapentokh-Rothman Ann. Henri Poincaré

In terms of R, we see that

R̃(y) :=

∞∫

−∞
e2iωy(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr

vanishes for y ∈ (1,∞), where we have extended R by 0 so that it is defined on
all of R. However, it is well known that the Fourier transform of a non-trivial
function supported in (0,∞) cannot vanish on an open set.15

As an alternative to this argument, one may instead use the fact from
Proposition 2.3 that

|ũ(∞)|2 =
(r+ − r−)2 |Γ (2ξ + 1)|2

8Mω2r+
|u(−∞)|2

to conclude that u(−∞) must vanish. Proposition 1.10 then implies that
u(∞) and hence u vanishes (again using the unique continuation lemma from
Sect. 6). �

Note that this proof is even simpler than the proof of mode stability in
the upper half plane since we only need to refer to ũ.

To produce quantitative estimates for the Wronskian we shall need to
work a little harder than we did for the qualitative statements. Before proving
Theorem 1.4 let us recall some notation and prove two propositions and a
lemma. Let A be as in the statement 1.4, let (ω,m, l) ∈ A, and u solve (2.2)
with a non-zero, smooth, compactly supported right-hand side (2.3). Define ũ
and H̃ via (2.4) and (2.5). Then we have

Proposition 2.4. For (ω,m, l) ∈ A, u solving, satisfying (2.2) with a smooth,
compactly supported right-hand side (2.3), and ε > 0, we have

|u(−∞)|2 � (4ε)−1

∞∫

r+

|F (r)|2 r4dr + ε

∞∫

r+

|R(r)|2 dr.

Remark. The implied constants in our �’s will be allowed to depend on the
frequency parameters; however, the dependence will always be “quantitative”
in the sense of theorem 1.4.

Proof. We have

(
Q̃T

)′
= ωIm

(
H̃ũ
)

:Q̃T (∞) − Q̃T (−∞) = ω

∞∫

−∞
Im
(
H̃ũ
)

dx∗.

As above, the boundary conditions from Proposition 2.3 imply that we get a
useful estimate:

Q̃T (∞) − Q̃T (−∞)

=
1
2

(
ω2|ũ(∞)|2+ |ũ′(∞)|2+ ω2 r+ − r−

r+
|ũ(−∞)|2+

r+
r+ − r−

|ũ′(−∞)|2
)
.

15 This follows from holomorphically extending to the upper half plane and the Schwarz
reflection principle.
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For any ε > 0 changing variables and applying Plancherel implies
∞∫

−∞
Im
(
H̃ũ
)

dr∗ � (4ε)−1

∞∫

r+

|F (r)|2 r4dr + ε

∞∫

r+

|R(r)|2 dr.

To conclude the proof we simply recall that Proposition 2.3 gives

|ũ(∞)|2 =
(r+ − r−)2 |Γ (2ξ + 1)|2

8Mω2r+
|u(−∞)|2 .

�
Next, we would like to bootstrap this estimate by working directly with

u’s/R’s ODE to estimate
∞∫

r+

|R(r)|2 dr

and then obtain

Proposition 2.5. For (ω,m, l) ∈ A and u solving, satisfying (2.2) with a
smooth, compactly supported right-hand side (2.3), we have

|u(−∞)|2 �
∞∫

r+

|F (r)|2 r4dr.

Remark. It is important to observe that there are too many powers of r on the
right-hand side for the above proposition to be directly useful for Theorem 1.9.

Proof. Following [12] and [10], the ODE techniques used in the proof of this
proposition have become fairly standard, e.g. see [3] and [22]; hence, to focus
on the main new ideas we have placed the proof in Sect. 5. �

Next, we switch gears a little and directly construct solutions to the
inhomogeneous radial ODE via the following lemma.

Lemma 2.6. Let H(x∗) be compactly supported. For any (ω,m, l) ∈ A, define

u(r∗) := W−1

(

uout(r∗)

r∗∫

−∞
uhor(x∗)H(x∗)dx∗

+ uhor(r∗)

∞∫

r∗

uout(x∗)H(x∗)dx∗
)

.

Then

u′′ +
(
ω2 − V

)
u = H,

and u satisfies the boundary conditions of a mode solution (1.8) and (1.9).

Proof. This is a simple computation. �
Finally, we can prove Theorem 1.4.
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Proof. Define ũ via Lemma 2.6. Then we have

|u(−∞)|2 = |W |−2

∣
∣∣∣∣∣

∞∫

−∞
uout(x∗)H(x∗)dx∗

∣
∣∣∣∣∣

2

.

Combining this with Proposition 2.5 gives

|W |−2 �
∫∞

r+

∣∣(r2 + a2)1/2Δ−1H
∣∣2 r4dr

∣∣∣
∫∞

−∞ uout(x∗)H(x∗)dx∗
∣∣∣
2

Of course, W is independent of H, so it remains to pick any particular com-
pactly supported H we want so that the right-hand side is finite. Since for
sufficiently large x,

∣∣uout − eiωx∗ ∣∣ ≤ C
x for an explicit constant C (“Appen-

dix A”), it is certainly possible to find such an H. Thus, we have produced a
quantitative bound for W−1. �

3. Proof of the Energy Flux Bound and Integrated Local
Energy Decay

In this section we shall show that Theorem 1.4 (quantitative mode stability
on the real axis) implies Theorem 1.9 (boundedness of the energy flux and
integrated local energy decay in the bounded-frequency regime).

3.1. Some Exponential Damping, Boundary Conditions, and a Representation
Formula

We shall use the notation introduced for the statement of Theorem 1.9. To
avoid dealing with certain technical issues near null infinity, it turns out to be
easier for the proof to work with

ψε := e−εtψ for ε ≥ 0.

Recall that before the statement of Theorem 1.9 we defined a cutoff χ such
that χ is 0 in the past of Σ0 and identically 1 in the future of Σ1. We then
define

ψε,Q := χψε,

Eε := e−εt ((�gχ)ψ + 2∇μχ∇μψ) ,
ωε := ω + iε.

Next, we let Fε be the projection onto the oblate spheroidal harmonics of the
Fourier transform of (r2 + a2)−1ρ2Eε, i.e.

Fε :=

π∫

0

2π∫

0

∞∫

−∞
(r2 + a2)−1ρ2Eεeiωte−imφSωml sin θ dt dφ dθ.
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Then, let uε(r∗) similarly be the projection onto the oblate spheroidal har-
monics of the Fourier transform of (r2 + a2)1/2ψε, and

Hε(r∗) =
Δ

(r2 + a2)1/2
Fε.

We get

u′′
ε +

(
ω2

ε − Vε

)
uε = Hε, (3.1)

V :=
4Mramωε − a2m2 + Δ(λωεml + a2ω2

ε )
(r2 + a2)2

+
Δ

(r2 + a2)4
(
a2Δ + 2Mr(r2 − a2)

)
.

For notational ease, we shall introduce one last set of definitions. Recalling
the notations established in Definitions 1.2 and 1.3, we set

uhor,ε(r∗) := uhor(r∗, ωε,m, l),
uout,ε(r∗) := uout(r∗, ωε,m, l),
Wε := u′

out,εuhor,ε − u′
hor,εuout,ε.

These will satisfy

1. u′′
hor,ε +

(
ω2

ε − Vε

)
uhor,ε = 0.

2. uhor,ε ∼ (r − r+)
i(am−2Mr+ωε)

r+−r− near r∗ = −∞.

3.
∣∣∣∣

(
(r(·) − r+)

−i(am−2Mr+ωε)
r+−r− uhor,ε

)
(−∞)

∣∣∣∣

2

= 1.

4. u′′
out,ε +

(
ω2

ε − Vε

)
uout,ε = 0.

5. uout,ε ∼ eiωεr∗
near r∗ = ∞

6.
∣∣(e−iωε(·)uout,ε

)
(∞)

∣∣2 = 1.
7. Wε �= 0 by mode stability.

The following representation formula is a useful starting point.

Proposition 3.1. For every ε > 0,

uε(r∗) = W−1
ε

(

uout,ε(r∗)

r∗∫

−∞
uhor,ε(x∗)Hε(x∗)dx∗

+ uhor,ε(r∗)

∞∫

r∗

uout,ε(x∗)Hε(x∗)dx∗
)

. (3.2)

Proof. As explained in Appendix C, standard arguments show that the
admissibility assumption implies that ||χψ||L∞ =: β < ∞. Hence, we will
have

|ψε| � βe−εt. (3.3)
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Along the support of ψε, there exists a constant B such that t ≥ |r∗|−B.
We conclude that ψε in fact satisfies

|ψε| � β exp
(

−ε (|r∗| + t)
2

)
. (3.4)

It is easy to see from this that uε is exponentially decreasing as r∗ → ±∞
(remember that ε > 0). Since the argument of Appendix C also applies to the
derivatives of ψ, we may also conclude that Hε is exponentially decreasing as
r∗ → ±∞. Hence, we can define

ûε(r∗) := W−1
ε

(

uout,ε(r∗)

r∗∫

−∞
uhor,ε(x∗)Hε(x∗)dx∗

+ uhor,ε(r∗)

∞∫

r∗

uout,ε(x∗)Hε(x∗)dx∗
)

.

Now, a simple computation shows that

(ûε − uε)
′′ +

(
ω2

ε − V
)
(ûε − uε) = 0.

Furthermore, ûε − uε is exponentially decreasing as r∗ → ±∞. From ODE
theory (“Appendix A”), ûε − uε must be asymptotic to a linear combination
of

{
(r − r+)

i(am−2Mr+ωε)
r+−r− , (r − r+)

−i(am−2Mr+ωε)
r+−r−

}
.

The only possible choice is

ûε − uε ∼ (r − r+)
i(am−2Mr+ωε)

r+−r− at r∗ = −∞.

Next, ODE theory (“Appendix A”) implies that near infinity, ûε −uε must be
asymptotic to a linear combination of

{
eiωεr∗

, e−iωεr∗}
.

The exponential decay of ûε − uε singles out

ûε − uε ∼ eiωεr∗
at r∗ = ∞.

Thus, ûε − uε satisfies the boundary conditions of a mode solution. Finally,
mode stability in the upper half plane implies that ûε = uε. �

It will be convenient to use the above formula when ε = 0; however, it
must be understood in an L2 sense. First we need two lemmas.

Lemma 3.2.

lim sup
ε→0

∫

B

∑

m,l

∞∫

r+

|Fε|2 r2 dr dω =
∫

B

∑

m,l

∞∫

r+

|F |2 r2 dr dω �
∫

Σ0

|∂ψ|2

In particular, even though there are 0th-order terms in F , there are only
derivatives of ψ on the right-hand side.
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Proof. Without loss of generality, we may assume that ψ is compactly sup-
ported along Σ0. By Plancherel,

lim sup
ε→0

∫

B

∑

m,l

∞∫

r+

|Fε|2 r2 dr dω

� lim sup
ε→0

∫

(t,r,θ,φ)

(∣
∣e−εt (�gχ)ψ

∣
∣2 +

∣
∣e−εt∇μχ∇μψ

∣
∣2
)
r2 sin θ dtdr dθ dφ.

We will consider the two terms on the right-hand side separately.
For the second term, we simply observe that the asymptotic behavior of

Σ0 implies
∣∣e−εt∇μχ∇μψ

∣∣2

� e−2εt1supp(∇χ)

(
|(∂t + ∂r∗)ψ|2 +O(r−2) |(∂t − ∂r∗)ψ|2

+O(r−2)
(
|∂θψ|2 + |∂φψ|2

))

where 1supp(∇χ) denotes the indicator function on the support of ∇χ.
For the first term, first pick a null frame (L,L,E1, E2) where

g(L,L) = g(L,L) = g(E1, E2) = g(L,Ei) = g(L,Ei) = 0,
g(L,L) = −2,

g(E1, E1) = g(E2, E2) = 1,
L = ∂t + ∂r∗ +O(r−1),
L = ∂t − ∂r∗ +O(r−1).

Expanding �g in this null frame (see [1]) gives

|�gχ|2 =
∣∣−LLχ+ E2

1χ+ E2
2χ+ (∇LL− ∇E1E1 − ∇E2E2)χ

∣∣2

� 1supp(∇χ)r
−2.

In summary, we have

∣∣e−εt (�gχ)ψ
∣∣2 +

∣∣e−εt∇μχ∇μψ
∣∣2 � 1supp(∇χ)

(
|e−εtψ|2
r2

+ e−2εt |∂ψ|2
)

: lim sup
ε→0

∫

B

∑

m,l

∞∫

r+

|Fε|2 r2dr dω

� lim sup
ε→0

∫

(t,r,θ,φ)

1supp(∇χ)

(
|e−εtψ|2
r2

+ e−2εt |∂ψ|2
)

r2 sin θdtdr dθ dφ

�
∫

(t,r,θ,φ)

1supp(∇χ) |∂ψ|2 r2 sin θdtdr dθ dφ. (3.5)
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In the last inequality we have controlled the 0th-order term via the fol-
lowing two 1-dimensional inequalities:16

1.
∫ 1

0
|ψ|2 du � ψ2 (0) +

∫ 1

0
|∂uψ|2 du.

2.
∫∞
1

|ψ|2 dv �
∫∞
1
v2 |∂vψ|2 dv when ψ vanishes for large v.

Finally, we observe that (3.5) is controlled by a constant times

sup
s∈[0,1]

∫

Σs

|∂ψ|2 �
∫

Σ0

|∂ψ|2 .

The last inequality uses a finite-in-time non-degenerate energy estimate
(see [1]). �

Lemma 3.3.∣∣∣
∣∣∣

∣∣∣
∣∣∣

∞∫

r∗

uhor(x∗)H(x∗)dx∗

∣∣∣
∣∣∣

∣∣∣
∣∣∣
L2

ω∈B,(m,l)∈C

≤ B (r∗, CB, CC)
∫

Σ0

|∂ψ|2 ,

and

lim
ε→0

∞∫

r∗

uhor,ε(x∗)Hε(x∗)dx∗ =

∞∫

r∗

uhor(x∗)H(x∗)dx∗ in L2
ω∈B,(m,l) ∈C.

Proof. We start with the first assertion. Note that a naive application of
Cauchy–Schwarz followed by Plancherel would produce too many powers of
x∗; however, if we somehow gained a power of x−1 we could always use the
inequality

∣
∣∣∣∣∣

∞∫

r∗

uout(x∗)H(x∗)x−1dx∗

∣
∣∣∣∣∣

2

�
∞∫

r(r∗)

|F |2 r2dr.

After integrating in ω and summing in (m, l), this can be controlled by Lemma
3.2. We will denote by G all terms that can be controlled by this sort of brute
force Cauchy–Schwarz inequality. Let us return to the troublesome term. We
start by observing that

∫

B

∑

(m,l)∈C

∣
∣∣∣∣∣

∞∫

r∗

uout(x∗)H(x∗)dx∗

∣
∣∣∣∣∣

2

dω

=
∫

B

∑

(m,l)∈C

⎛

⎜
⎝

∣∣∣∣∣
∣

∞∫

r∗

eiωx∗
H(x∗)dx∗

∣∣∣∣∣
∣

2

+G

⎞

⎟
⎠ dω.

The plan is to take advantage of the oscillations in ω by a suitable application
of Plancherel. However, we will first need to account for all of the ω dependence
in H. Let us introduce the variables

16 Recall that ∇χ is only supported in between Σ0 and Σ1, and ψ is compactly supported
along Σ0.
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u :=
1
2
(t− r∗)

v :=
1
2
(t+ r∗).

From the definitions of the cutoff and the triangle inequality, it follows that
∣∣∣
∣∣∣

∞∫

r∗

eiωx∗
H(x∗)dx∗

∣∣∣
∣∣∣

2

�

∣∣∣∣
∣∣

∫

S2

∞∫

−∞

∞∫

A

e2iωv (∂uχ) (∂vψ) e−imφSωml(θ, ω)r sin θdv du dθ dφ

∣∣∣∣
∣∣

2

+

∣∣
∣∣∣∣

∫

S2

∞∫

−∞

∞∫

A

e2iωv (�gχ)ψe−imφSωml(θ, ω)r sin θdv du dθ dφ

∣∣
∣∣∣∣

2

+G

Here A denotes a large fixed constant possibly depending on r∗. Let us focus
on the first term on the right-hand side since the second term will be treated
similarly. Using Plancherel relative to the orthonormal basis {eimφSωml(θ)} of
L2(sin θdθdφ) gives

∫

B

∑

(m,l)∈C

∣∣∣∣
∣

∫

S2

∞∫

−∞

∞∫

A

e2iωv (∂uχ) (∂vψ) e−imφ

×Sωml(θ, ω)r sin θdv du dθ dφ

∣∣∣
∣∣

2

dω

�
∫

S2

∫

B

∣
∣∣∣∣∣

∞∫

−∞

∞∫

A

e2iωv (∂uχ) (∂vψ) rdv du

∣
∣∣∣∣∣

2

dω sin θdθ dφ. (3.6)

Due to the support of ∂uχ, the u integration occurs over a region of uniformly
bounded size. Hence, Cauchy–Schwarz in the u integral implies that (3.6) is
controlled by

∫

S2

∞∫

−∞

∞∫

−∞

∣∣∣∣∣
∣

∞∫

A

e2iωv∂uχ∂vψrdv

∣∣∣∣∣
∣

2

dω du sin θdθ dφ

�
∫

S2

∞∫

−∞

∞∫

A

|∂uχ∂vψ|2 r2du dv sin θdθ dφ

Now we can just appeal to (the proof of) Lemma 3.2. For the term
∣∣∣∣
∣∣

∫

S2

∞∫

−∞

∞∫

A

e2iωv (�gχ)ψe−imφSωml(θ, ω)r sin θdv du dθ dφ

∣∣∣∣
∣∣

2



312 Y. Shlapentokh-Rothman Ann. Henri Poincaré

we can carry out exactly the same procedure except that we treat the lower-
order terms as in Lemma 3.2 so that we can close the estimate at the level of
derivatives of ψ. In conclusion, we have

∫

B

∑

(m,l)∈C

∣∣∣∣∣∣

∞∫

A

uout(x∗)H(x∗)dx∗

∣∣∣∣∣∣

2

dω �
∫

Σ0

|∂ψ|2 .

It is now clear that the second assertion of the lemma can be proved by
essentially repeating the above argument with the difference of

∞∫

r∗

uhor(x∗)H(x∗)dx∗

and
∞∫

r∗

uhor,ε(x∗)Hε(x∗)dx∗.

�
Now we are ready to prove the following.

Lemma 3.4. Let B ⊂ R and C ⊂ {(m, l) ∈ Z × Z : l ≥ |m|} be such that

CB := sup
ω∈B

(
|ω| + |ω|−1

)
< ∞,

CC := sup
m,l∈C

(|m| + |l|) < ∞.

Then, for each r∗ ∈ (−∞,∞), the formula

u(r∗) = W−1

(

uout(r∗)

r∗∫

−∞
uhor(x∗)H(x∗)dx∗ (3.7)

+ uhor(r∗)

∞∫

r∗

uout(x∗)H(x∗)dx∗
)

. (3.8)

holds in L2
ω∈Bl

2
(m,l)∈C.

Proof. We start with the formula (3.2) and justify the ε → 0 limit term
by term. Of course, the convergence of uε to u is simply a consequence of
Plancherel. Next, we observe the following facts (see “Appendix A”):
1. For any A0 > −∞, uout,ε → uout in L∞

r∗∈[A0,∞),ω∈B,(m,l)∈C.
2. For any A1 < ∞, uhor,ε → uhor in L∞

r∗∈(−∞,A1],ω∈B,(m,l)∈C.
3. W−1

ε → W−1 in L∞
ω∈B,(m,l)∈C.

Thus, it suffices to restrict attention to the two integrals. The term
∞∫

r∗

uout(x∗)H(x∗)dx∗
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has already been treated in Lemma 3.3. For the other term, it is sufficient to
observe

∫

ω∈B

∑

(m,l)∈C

∣∣∣∣∣
∣

r∗∫

−∞
uhor(x∗)H(x∗)dx∗

∣∣∣∣∣
∣

2

dω

=
∫

ω∈B

∑

(m,l)∈C

∣∣∣
∣∣∣∣

r(r∗)∫

r+

uhor(x∗ (x))F (x)
(
x2 + a2

)1/2
dx

∣∣∣
∣∣∣∣

2

dω

�r∗

∫

ω∈B

∑

(m,l)∈C

r(r∗)∫

r+

|F (x)|2 dx dω. (3.9)

We have used the facts

H(r∗) = Δ(r2 + a2)−1/2F (r),

dr∗ =
(r2 + a2)

Δ
dr.

We may control (3.9) via Lemma 3.2. Given this, it is easy to justify the limit
as ε → 0. �

In the same fashion, one may prove the following.

Lemma 3.5.

u′(r∗) = W−1

(

u′
out(r

∗)

r∗∫

−∞
uhor(x∗)H(x∗)dx∗

+u′
hor(r

∗)

∞∫

r∗

uout(x∗)H(x∗)dx∗
)

,

and

lim
r∗→∞ (u′ − iωu) = 0.

Both equalities are understood in the same way as in Lemma 3.4.

3.2. The Estimate

We keep the notation introduced in the previous section. Also, recall the defi-
nition of |∂ψ|2 given in the statement of Theorem 1.9 and Appendix B.

We now prove Theorem 1.9.
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Proof. By Plancherel, it suffices to prove

∫

B

∑

(m,l)∈C

⎛

⎝
(
|u(−∞)|2 + |u(∞)|2

)
+

r1∫

r0

(
|u′|2 + |u|2

)
dr∗

⎞

⎠dω

≤ B (r0, r1, CB, CC)
∫

Σ0

|∂ψ|2 .

We begin with (3.7) which gives

u(r∗) = W−1

(

uout(r∗)

r∗∫

−∞
uhor(x∗)H(x∗)dx∗ (3.10)

+ uhor(r∗)

∞∫

r∗

uout(x∗)H(x
∗)dx∗

)

. (3.11)

The equality is in L2
ω∈Bl

2
(m,l)∈C.

The following properties are simple consequences of the construction of
uout and uhor (see “Appendix A”).
1. ||uout||L∞

r∗,ω∈B,(m,l)∈C
< ∞.

2. ||uhor||L∞
r∗,ω∈B,(m,l)∈C

< ∞.

Thus, simply evaluating (3.10) at r∗ = −∞, integrating, and summing,
gives

∫

B

∑

(m,l)∈C

|u(−∞)|2 dω

≤ lim sup
r∗→−∞

∫

B

∑

(m,l)∈C

W−2

∣∣∣
∣∣∣

∞∫

r∗

uout(x∗)H(x∗)dx∗

∣∣∣
∣∣∣

2

dω.17 (3.12)

Next, for A much larger than r1, we have
∫

B

∑

(m,l)∈C

||u||2L∞(r0,r1)
dω

�
∫

B

∑

(m,l)∈C

W−2

(

sup
r∗∈[r0,r1]

∣∣∣
∣∣∣

r∗∫

−∞
uhor(x∗)H(x∗)dx∗

∣∣∣
∣∣∣

2

17 The point being that one may easily show

lim
r∗→−∞

∫

B

∑

C

∣∣
∣∣∣
∣∣

r∗∫

−∞
uhor (x∗)H (x∗) dx∗

∣∣
∣∣∣
∣∣

2

= 0.
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+ sup
r∗∈[r0,r1]

∣∣∣
∣∣∣

A∫

r∗

uout(x∗)H(x∗)dx∗

∣∣∣
∣∣∣

2

+

∣∣∣
∣∣∣

∞∫

A

uout(x∗)H(x∗)dx∗

∣∣∣
∣∣∣

2)

dω. (3.13)

We have already used multiple times that

sup
r∗∈[r0,r1]

∣
∣∣∣∣∣

r∗∫

−∞
uhor(x∗)H(x∗)dx∗

∣
∣∣∣∣∣

2

�

⎛

⎝
r1∫

−∞
|H| dx∗

⎞

⎠

2

=

⎛

⎝
r1∫

r+

∣∣∣F (r)(r2 + a2)1/2
∣∣∣ dr

⎞

⎠

2

�
r1∫

r+

|F |2 dr.

The constant will depend on r1, but that does not concern us. Combining (the
proof of) this estimate with (3.13) gives

∫

B

∑

(m,l)∈C

||u||2L∞(r0,r1)
dω

�
∫

B

∑

(m,l)∈C

⎛

⎜
⎝W−2

⎛

⎜
⎝

r(A)∫

r+

|F |2 dr +

∣∣
∣∣∣∣

∞∫

A

uout(x∗)H(x∗)dx∗

∣∣
∣∣∣∣

2
⎞

⎟
⎠

⎞

⎟
⎠dω.

(3.14)

Of course, we may integrate this L∞ estimate to get

∫

B

∑

(m,l)∈C

r1∫

r0

|u|2 dr∗ dω

�
∫

B

∑

(m,l)∈C

⎛

⎜
⎝W−2

⎛

⎜
⎝

r(A)∫

r+

|F |2 dr +

∣∣∣∣∣
∣

∞∫

A

uout(x∗)H(x∗)dx∗

∣∣∣∣∣
∣

2
⎞

⎟
⎠

⎞

⎟
⎠dω.

(3.15)

Next, via Lemma 3.5, we may essentially differentiate (3.10), and proceed
exactly as the proof of (3.15) to establish
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r1∫

r0

|u′|2 dr∗

�
∫

B

∑

(m,l)∈C

⎛

⎜
⎝W−2

⎛

⎜
⎝

r(A)∫

r+

|F |2 dr+

∣∣∣∣
∣∣

∞∫

A

uout(x∗)H(x∗)dx∗

∣∣∣∣
∣∣

2
⎞

⎟
⎠

⎞

⎟
⎠dω.

(3.16)

Last, to control |u(∞)|2, we use the already introduced microlocal energy
current and Lemma 3.5 to conclude

ω2 |u(∞)|2 = QT (∞) = QT (−∞) +

∞∫

−∞
(QT )′ dr∗

:
∫

B

∑

(m,l)∈C

|u(∞)|2 dω

�
∫

B

∑

(m,l)∈C

⎛

⎝ω(am− 2Mr+ω) |u(−∞)|2 + ω

∞∫

−∞
Im (Hu) dr∗

⎞

⎠dω.

(3.17)

After applying Plancherel, the proof of Lemma 3.2, Lemma 3.3, Theorem
1.4, and adding inequalities (3.12), (3.15), (3.16), and (3.17) together, we get

∫

B

∑

(m,l)∈C

(
|u(−∞)|2 + |u(∞)|2

)
dω +

∫

B

∑

(m,l)∈C

r1∫

r0

(
|u′|2 + |u|2

)
dr∗ dω

�
∫

Σ0

|∂ψ|2 .

�

Before concluding the section, we would like to emphasize that for the
applications to [12], it is crucial that we have arranged for the right-hand side
of this estimate be given by a non-degenerate energy flux through Σ0.

4. The Integral Transformation

In this section we will prove Propositions 2.1, 2.2, and 2.3. For clarity of
exposition we will restrict ourselves to ω ∈ R \ {0}; indeed, for Im (ω) > 0 the
proofs are much easier and follow from the same sort of reasoning as the real ω
case. Furthermore, due to the symmetries of the radial ODE, we may restrict
ourselves to ω > 0.

It will be convenient to adopt the notation

A :=
2iω

r+ − r−
.
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It will also be useful to consider the following functions

g(r) := (r − r+)−ξ(r − r−)−ηeiωrR(r),

g̃(z) :=

∞∫

r+

eA(z−r−)(r−r−)(r − r−)2η(r − r+)2ξe−2iωrg(r)dr (4.1)

=

∞∫

r+

eA(z−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr.

Here z = x+ iy with y ≥ 0. Recall the previously defined

η :=
−i(am− 2Mr−ω)

r+ − r−
,

ξ :=
i(am− 2Mr+ω)

r+ − r−
.

If y > 0 then the integrals and their derivatives are all absolutely conver-
gent; we immediately conclude that g̃ is holomorphic for z in the upper half
plane. When y = 0, then g̃(x) is, a priori, only an L2 function; however, in
Sect. 4.1 we will show that g̃ (x) is in fact a C1 function on [r+,∞). Then, in
Sect. 4.2 we will verify g̃’s equation and show that g̃ is smooth on (r+,∞).
Finally, in Sect. 4.3 we will carry out an asymptotic analysis of g̃ (x) as x → ∞;
in particular, we will identify limx→∞ |xg̃(x)|. Putting everything together will
prove Propositions 2.1, 2.2, and 2.3.

4.1. Defining g̃ on the Real Axis

For any y > 0 and ε > 0, we shall rewrite g̃ in the following way:

Lemma 4.1.

g̃(z) =

r++ε∫

r+

eA(z−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr

−
(

(A(z − r−))−1 eA(z−r−)(r+−r−+ε)(r+ − r− + ε)η

×ε2ξe−iω(r++ε)ε−ξR(r+ + ε)

)

+

(

(A(z − r−))−2 eA(z−r−)(r+−r−+ε)

× d
dr
(
(· − r−)η(· − r+)ξe−iω·R(·)) (r+ + ε)

)
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+ (A(z − r−))−2

∞∫

r++ε

(

eA(z−r−)(r−r−)

× d2

dr2
(
(r − r−)η(r − r+)ξe−iωrR(r)

)
)

dr.

Proof. This follows by integrating by parts twice the expression (4.1) in a
straightforward manner. �

Lemma 4.2. The function g̃(x) is continuous on [r+,∞) and O
(
x−1

)
as

x → ∞.

Proof. Recall that the boundary conditions for R, (1.8) and (1.9), imply

1. (r − r+)−ξR(r) is smooth at r+.
2. dk

drk

(
e−iωrR(r)

)
= O

(
r−k−1

)
as r → ∞.

In particular, the integral in the last line of the formula from (4.1) is absolutely
convergent even when y = 0. Thus, even when y = 0, we may conclude that
the right-hand side of the formula is continuous in x.

To see the decay in x, set ε = x−1. By direct inspection one finds that
each term is O(x−1). Since the right-hand side of the formula converges in
L2 as y ↓ 0, by uniqueness of L2 limits we conclude that g̃(x) is equal to the
formula. The lemma then follows. �

Now we turn to ∂g
∂x . We have

Lemma 4.3. For any y > 0 and ε > 0 we have

∂g̃

∂x
−A(r+ − r−)g̃

= −(z − r−)−1

r++ε∫

r+

eA(z−r−)(r−r−) d
dr
(
(r − r−)η(r − r+)ξ+1e−iωrR(r)

)
dr

+
(
A−1(z − r−)−2eA(z−r−)(r+−r−+ε)

× d
dr
(
(r − r−)η(r − r+)ξ+1e−iωrR(r)

)
(r+ + ε)

)

−
(
A−2(z − r−)−3eA(z−r−)(r+−r−+ε)

× d2

dr2
(
(r − r−)η(r − r+)ξ+1e−iωrR(r)

)
(r+ + ε)

)

−A−2(z − r−)−3

∞∫

r++ε

eA(z−r−)(r−r−)

× d3

dr3
(
(r − r−)η(r − r+)ξ+1e−iωrR(r)

)
dr.
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Proof. This follows from a straightforward series of integration by parts on the
expression

∂g̃

∂x
−A(r+ − r−)g̃

= A

∞∫

r+

eA(z−r−)(r−r−)(r − r−)η(r − r+)ξ+1e−iωrR(r)dr.

�

Next, we have

Lemma 4.4. ∂g̃
∂x (x) exists and is continuous on [r+,∞). Furthermore,

∂g̃

∂x
−A (r+ − r−) g̃ = O

(
x−2

)
as x → ∞.

Proof. This follows by setting ε = x−1 in Lemma 4.3 and then reasoning as in
Lemma 4.2. �

4.2. Verifying the New Equation

In this section we will compute g̃’s new equation.
We say that a function h satisfies a Confluent Heun Equation (CHE) if

there are complex parameters γ, δ, p, α, and σ and a function G such that

Th := (r − r+)(r − r−)
d2h

dr2

+ (γ(r − r+) + δ(r − r−) + p(r − r+)(r − r−))
dh
dr

+ (αp(r − r−) + σ)h = G. (4.2)

One finds that g satisfies such a CHE with

γ = 2η + 1 =: γ0,

δ = 2ξ + 1 =: δ0,
p = −2iω =: p0,

α = 1 =: α0,

σ = 2amω − 2ωr−i− λωml − a2ω2 =: σ0,

G = (r − r+)−ξ(r − r−)−ηeiωrF̂ =: G0.

We need an integration by parts lemma whose straightforward proof is omitted.
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Lemma 4.5. Let T denote a Confluent Heun operator as defined in (4.2). Then

β2∫

β1

(Tf) (r − r+)δ−1(r − r−)γ−1eprhdr

= (r − r+)δ(r − r−)γepr

(
df
dr
h− f

dh
dr

) ∣∣∣
∣

β2

β1

+

β2∫

β1

(Th) (r − r+)δ−1(r − r−)γ−1eprfdr.

Next we will compute g̃’s equation for y > 0.

Lemma 4.6. If y > 0 we have

(z − r+)(z − r−)
∂2g̃

∂x2

+ ((z − r+) + (1 − 4iMω)(z − r−) − 2iω(z − r−)(z − r+))
∂g̃

∂x

+
(−2iω(2η + 1)(z − r−) + 2amω − 2ωr−i− λωml − a2ω2

)
g̃ = G̃

where

G̃ :=

∞∫

r+

e
2iω

r+−r− (z−r−)(r−r−)(r − r−)2η(r − r+)2ξe−2iωrG0(r)dr.

Proof. Since the coefficients of the CHE are all holomorphic, we may take the
derivatives in the CHE to be complex derivatives. Let Lr denote a Confluent
Heun Operator in the r variable with parameters (γ0, δ0, p0, α0, σ0) and right-
hand side G0. Let L̃z denote a Confluent Heun operator in the z(= x + iy)
variable with, to be determined, tilded parameters.

We wish to determine if
∞∫

r+

eA(z−r−)(r−r−)(r − r−)2η(r − r+)2ξe−2iωrg(r)dr

is a solution to a CHE with tilded parameters. When y > 0 the exponential
damping in the integral allows differentiation under the integral sign, and we
see from Lemma 4.5 that the following two conditions will suffice:

(
L̃z − Lr

)
eA(z−r−)(r−r−) = 0,

(r − r+)δ0(r − r−)γ0ep0reA(z−r−)(r−r−)

(
A(z − r−)g − dg

dr

) ∣∣
∣∣

∞

r+

= 0

∀z such that y > 0.
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We have

e−A(z−r−)(r−r−)
(
L̃z − Lr

)
eA(z−r−)(r−r−)

= A (A(r+ − r−) + p̃) (r − r−)(z − r−)2

−A (A(r+ − r−) + p0) (r − r−)2(z − r−)

−A
(
γ0 + δ0 + p0(r+ − r−) − γ̃ − δ̃ − p̃(r+ − r−)

)
(z − r−)(r − r−)

+(Aγ(r+ − r−)+α̃p̃) (z − r−)−(Aγ̃(r+ − r−)+α0p0) (r − r−)+(σ̃−σ0) .

From this it is clear that we must have

A = −p(r+ − r−)−1 = 2iω(r+ − r−)−1,

p̃ = p0 = −2iω,
α̃ = γ0,

γ̃ = α0 = 1,

δ̃ = γ0 + δ0 − γ̃ = 1 − 4iMω,

σ̃ = σ0.

We still need to check that the boundary conditions are satisfied. Since g and
dg
dr both decay for large r, the exponential decay from eA(z−r−)(r−r−) clearly
implies that
(

(r − r+)δ0(r − r−)γ0ep0reA(z−r−)(r−r−)

(
A(z − r−)g − dg

dr

))
(r = ∞) = 0

for all z with y > 0.

Since δ0 = 2ξ + 1, with ξ purely imaginary, and |g| extends continuously to
r+, we see that

(
(r − r+)δ0(r − r−)γ0ep0reA(z−r−)(r−r−)

(
A(z − r−)g − dg

dr

))

(r = r+) = 0 ⇔ dg
dr∗ (r+) = 0.

If we r∗ differentiate the expression defining g, we get
∣∣
∣∣

dg
dr∗

∣∣
∣∣ (r+) =

∣∣
∣∣
dR
dr∗ − ξ(r+ − r−)

2Mr+
R

∣∣
∣∣ (r+) = 0.

We conclude that g̃ satisfies L̃z g̃ = 0. Last, since g̃ is holomorphic in the upper
half plane, dg̃

dz = ∂g̃
∂x . �

Finally, using the analysis from Sect. 4.1 we can upgrade this lemma to

Lemma 4.7. When y = 0, g̃ is smooth in (r+,∞) and we have

(x− r+)(x− r−)
∂2g̃

∂x2

+ ((x− r+) + (1 − 4iMω)(x− r−) − 2iω(x− r−)(x− r+))
∂g̃

∂x

+
(−2iω(2η + 1)(x− r−) + 2amω − 2ωr−i− λωml − a2ω2

)
g̃ = G̃ (4.3)
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where

G̃ :=

∞∫

r+

e
2iω

r+−r− (x−r−)(r−r−)(r − r−)2η(r − r+)2ξe−2iωrG0(r)dr.

Proof. One consequence of the analysis in Sect. 4.1 is that g̃ (x+ iy) converges
to g̃ in H1

x as y → 0. In particular, we may take y → 0 in the weak formulation
of the equation from Lemma 4.6 to conclude that g̃(x) is a weak H1

x solution
of (4.3). Since G̃ is smooth,18 we may then conclude the proof by an appeal
to elliptic regularity. �

4.3. Asymptotic Analysis of g̃

Recall that in Sect. 4.1 we saw that g̃ = O
(
x−1

)
as x → ∞. In this section we

will carry out the somewhat subtle task of identifying

lim
x→∞ |xg̃(x)| .

We start with

Lemma 4.8. Let h be a smooth function on [r+,∞) which vanishes on
[r+ + 2,∞). Recall that we previously defined

ξ :=
i(am− 2Mr+ω)

r+ − r−
∈ iR.

For τ ≥ 0 and ν > 0, define

Z (ν, τ) :=

∞∫

r+

eiνr (r − r+ + iτ)2ξ
h(r)dr.

Then we have

|Z (ν, τ)| � ν−1

where the implied constant does not depend on τ .

Proof. Integrating by parts twice produces the following expression
for Z (ν, τ):

Z (ν, τ) =

r++ν−1∫

r+

eiνr (r − r+ + iτ)2ξ
h(r)dr (4.4)

− (iν)−1 eiν(r++ν−1) (ν−1 + iτ
)2ξ

h
(
r+ + ν−1

)
(4.5)

18 Recall that

G̃(x) =

∞∫

r+

e
2iω

r+−r− (x−r−)(r−r−)
(r − r−)η(r − r+)ξe−iωrF̂dr

where F̂ is smooth and compactly supported in (r+,∞).
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+ (iν)−2 eiν(r++ν−1) d
dr

(
(· − r+ + iτ)2ξ

h(·)
) (
r+ + ν−1

)
(4.6)

+ (iν)−2

∞∫

r++ν−1

eiνr d2

dr2
(
(r − r+ + iτ)2ξ

h(r)
)

dr. (4.7)

The lemma follows by direct inspection of each term. �

The following lemma is the technical core of our argument. The proof is
a slight adaption from similar problems discussed in the books [8] and [17].

Lemma 4.9. Let h be a smooth function on [r+,∞) which vanishes in
[r+ + 2,∞). Recall that we previously defined

ξ :=
i(am− 2Mr+ω)

r+ − r−
∈ iR.

For ν > 0, define

Z (ν) := Z (ν, 0) =

∞∫

r+

eiνr (r − r+)2ξ
h(r)dr.

Then we have

Z (ν) = exp
(
iπ

2
(1 + 2ξ)

)
Γ (2ξ + 1)h(r+)eiνr+ν−1−2ξ +O

(
ν−2

)
as ν → ∞

where

Γ(z) :=

∞∫

0

e−ttz−1dt

is the Gamma function.

Proof. The key trick is to come up with a clever form of the anti-derivative
of eiνr (r − r+)2ξ. To do this, we extend eiνr (r − r+)2ξ to s ∈ C \ {(−∞, r+]}
where we are taking the principal branch of (s− r+)2ξ. One may easily check
that (s− r+)2ξ = exp (2ξ log (s− r+)) is uniformly bounded in the region

{s : Re (s) ∈ [r+, r+ + 2)} .
Thus, keeping in the mind the exponential decay from eiνs as Im (s) →

∞ and Cauchy’s theorem, we may unambiguously define

l (r, ν) := −
i∞∫

r

eiνs (s− r+)2ξ ds

whenever r ∈ (r+, r+ + 2). This will satisfy

∂l

∂r
= eiνr (r − r+)2ξ

.
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Now, integrating along the curve t �→ r + it implies

l (r, ν) = −ieiνr

∞∫

0

e−νt (r − r+ + it)2ξ dt. (4.8)

Now, keeping in mind that z2ξ := exp (2ξ log z), we have

lim
r→r+

l (r, ν) = −i1+2ξeiνr+

∞∫

0

e−νtt2ξdt (4.9)

= −i1+2ξeiνr+ν−1−2ξΓ (2ξ + 1) . (4.10)

More generally, changing variables in 4.8 implies

l (r, ν) = −ieiνrν−1

∞∫

0

e−t

(
r − r+ + i

t

ν

)2ξ

dt. (4.11)

Now we are ready for an estimate:

Z (ν, τ) =

∞∫

r+

eiνr (r − r+)2ξ
h(r)dr (4.12)

=

∞∫

r+

∂l

∂r
(r, ν)h(r)dr (4.13)

= i1+2ξΓ (2ξ + 1)h(r+)eiνr+ν−1−2ξ (4.14)

−
∞∫

r+

l (r, ν)h′(r)dr (4.15)

= i1+2ξΓ (2ξ + 1)h(r+)eiνr+ν−1−2ξ (4.16)

+ iν−1

∞∫

0

e−t

⎛

⎝
∞∫

r+

eiνr

(
r − r+ + i

t

ν

)2ξ

h′(r)dr

⎞

⎠ dt. (4.17)

We have used (4.11) and Fubini in the last equality.
To conclude the proof we just need to show that

∞∫

0

e−t

⎛

⎝
∞∫

r+

eiνr

(
r − r+ + i

t

ν

)2ξ

h′(r)dr

⎞

⎠ dt = O
(
ν−1

)
. (4.18)

However, this follows by an application of Lemma 4.8 to the inner integral. �

Let us apply this analysis to g̃.
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Lemma 4.10. As x → ∞ we have

g̃(x) =

(

exp
(
iπ

2
(1 + 2ξ)

)
Γ (2ξ + 1) (r+ − r−)η e−A(r+−r−)r−e−iωr+

(4.19)

×
(
2ω (r+ − r−)−1

)−1−2ξ (
(· − r+)−ξ

R (·)
)

(r+) (4.20)

× eAx(r+−r−)x−1−2ξ

)

+O
(
x−2

)
. (4.21)

Proof. Let χ(r) be a positive smooth function which is identically 1 on [r+, r++
1] and identically 0 on [r+ + 2,∞). We may write

g̃(x) =

∞∫

r+

eA(x−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)χ(r)dr (4.22)

+

∞∫

r+

eA(x−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r) (1 − χ(r)) dr. (4.23)

The second integral satisfies
∞∫

r+

eA(x−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r) (1 − χ(r)) dr

= (A (x− r−))−2

∞∫

r+

eA(x−r−)(r−r−)

× d2

dr2
(
(r − r−)η(r − r+)ξe−iωrR(r) (1 − χ(r))

)
dr

= O
(
x−2

)
.

We have used the boundary condition (1.9).
Now we conclude the proof by applying Lemma 4.9 (with ν = Ax) to the

first integral. �

4.4. Putting Everything Together

Now we will prove Propositions 2.1 and 2.3.

Proof. (Proposition 2.1)
Recall the definition of ũ:

ũ(x∗) := (x2 + a2)1/2(x− r+)−2iMωe−iωx (4.24)

×
∞∫

r+

e
2iω

r+−r− (x−r−)(r−r−)(r − r−)η(r − r+)ξe−iωrR(r)dr. (4.25)
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In terms of g̃ we have

ũ (x∗) = (x2 + a2)1/2(x− r+)−2iMωe−iωxg̃(x).

In particular ũ is smooth on (r+,∞) and Proposition 2.1 follows from Lemma
4.3 and a straightforward (if tedious) calculation. �

Proof. (Proposition 2.3)
Keeping in mind that

ũ′ =
(x− r+)(x− r−)

x2 + a2

∂ũ

∂x
,

the lemma follows immediately from

ũ (x∗) = (x2 + a2)1/2(x− r+)−2iMωe−iωxg̃(x),

the fact that g̃ is C1 at r+ (see section 4.1), and Lemma 4.10. �

Recall that we are omitting the proof of Proposition 2.2 since it is much
easier and follows from the same sort of reasoning as the proofs of Propositions
2.1 and 2.3.

5. Some Estimates for the Kerr ODE

For the purposes of Sect. 2 we need to prove Proposition 2.5:

|u(−∞)|2 � (4ε)−1

∞∫

r+

|F (r)|2 r4dr + ε

∞∫

r+

|R(r)|2 dr ∀ε > 0: (5.1)

|u(−∞)|2 �
∞∫

r+

|F (r)|2 r4dr. (5.2)

It will sometimes be useful to switch our perspectives on −∞ and ∞ and write

u′′ +
(
ω2

0 − V0

)
u = H

where

ω0 = ω − am

2Mr+
,

V0 = V + ω2
0 − ω2.

For the following estimates the relevant properties of V and V0 are

1. V is uniformly bounded.
2. V = O(r−2) at ∞.
3. V0 = O(r − r+).
4. For fixed non-zero a,m, and M > 0 there exists a constant c > 0 such that
am− 2Mr+ω ≥ −c (λωml + a2ω2

)
:dV0

dr (r+) > 0.
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The last statement is the only non-obvious one, and the relevant computations
can be found in [12]. It will also be useful to note that

λωml + a2ω2 ≥ |m| (|m| + 1) .

This follows from the observation that when a2ω2 = 0, the eimφSωml(θ)
are simply spherical harmonics with corresponding eigenvalues all larger than
|m|(|m| + 1).

We will explore various estimates and their realm of applicability. Then,
at the end we will show how they can be combined to establish (5.2). We will
borrow the “separated current template” from [12].

5.1. Virial Estimate I

The estimates of this section require that ω be bounded away from 0 and that
we have a priori control of QT (∞). The resulting estimate will be sufficiently
good near ∞, but will require strengthening near −∞.

The virial current is

Qy := y|u′|2 + y
(
ω2 − V

) |u|2

where y is a suitably chosen function. We have

(Qy)′ = y′|u′|2 + y′ω2|u|2 − (yV )′ |u|2 + 2yRe (Hu′) .

Integrating this gives

int∞−∞
(
y′|u′|2 + y′ω2|u|2 − (yV )′ |u|2) dr∗

= Qy(∞) −Qy(−∞) −
∞∫

−∞
2yRe

(
u′H

)
dx∗.

We want to choose y so that the left-hand side controls |u|2 + |u′|2 (possibly
with weights), and so that the boundary terms are controllable. Let ζ(r∗) be
a non-negative function which is identically 1 near r∗ = −∞ and equals r−2

near r∗ = ∞. We set

y(r∗) := exp

⎛

⎝−B
∞∫

r∗

ζdr∗

⎞

⎠ .

Here, B is a large parameter to be chosen later. We have y(r+) = 0, y(∞) = 1,
and y′ = Bζy > 0. We will show that the term

−
∞∫

−∞
(yV )′ |u|2dr∗
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which threatens to destroy the coercivity of our estimate can in fact be ab-
sorbed into the other two terms. After an integration by parts and the inequal-
ity |ab| ≤ ε|a| + (4ε)−1|b|, we find

∣
∣∣∣∣∣

∞∫

−∞
(yV )′ |u|2dr∗

∣
∣∣∣∣∣

≤ 1
2

∞∫

−∞
y′|u′|2dr∗ + 2

∞∫

−∞

(
y′ω2

) y2|V |2
ω2 (y′)2

|u|2dr∗ +
∣∣
∣
(
yV |u|2) ∣∣∞−∞

∣∣
∣ .

Note that |V | is uniformly bounded, decays like r−2, and that y/y′ ≤ B−1r2.
Also, the boundary terms clearly vanish. Thus, for sufficiently large B, we get

∣
∣∣∣∣∣

∞∫

−∞
(yV )′ |u|2 dr∗

∣
∣∣∣∣∣
≤ 1

2

∞∫

−∞

(
y′|u′|2 + y′ω2|u|2) dr∗.

Last, we note that

Qy(∞) = 2QT (∞).

Thus, we end up with
∞∫

−∞

(
y′|u′|2 + y′ω2|u|2) dr∗ � QT (∞) −

∞∫

−∞
yRe

(
u′H

)
dr∗. (5.3)

The usual Cauchy–Schwarz argument then gives
∞∫

−∞

(
y′|u′|2 + y′ω2|u|2) dr∗ � |QT (∞)| +

∞∫

−∞
y|H|2r2dr∗. (5.4)

This estimate is sufficiently strong away from the horizon. However, near −∞,
the exponential decay of the weight y makes the estimate quite weak.

5.2. Virial Estimate II

In this section, we look at the virial current from the opposite direction. This
estimate will require that ω0 is bounded away from 0 and that we have a priori
control of QT (−∞). The resulting estimate will be sufficiently strong near r+,
but will require strengthening near ∞.

We rewrite the virial current as

Qy := y|u′|2 + y
(
ω2

0 − V0

) |u|2.
Let ζ(r) be a positive function equal to Δ near r = r+, and equal to 1 near
r = ∞. Then define

y(r∗) := exp

⎛

⎝−B
r∗∫

−∞
ζdr∗

⎞

⎠ .
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Integrating the virial current gives
∞∫

−∞

(−y′|u′|2 − y′ω2
0 |u|2 + (yV0)

′ |u|2) dr∗

= −Qy(∞) +Qy(−∞) +

∞∫

−∞
2yRe

(
u′H

)
dx∗.

We may deal with the (yV0)
′ exactly as in the previous section. This time

Qy(∞) = 0

Qy(−∞) ≈ 2
ω0

ω
QT (−∞).

We end up with
∞∫

−∞

(−y′|u′|2 − y′ω2
0 |u|2)dr∗ � −ω0

ω
QT (−∞) +

∞∫

−∞
yRe

(
u′H

)
dr∗. (5.5)

As in the previous section, it is clear that we also have
∞∫

−∞

(−y′|u′|2 − y′ω2
0 |u|2) dr∗ �

∣∣∣
ω0

ω
QT (−∞)

∣∣∣+

∞∫

r+

|F |2 dr. (5.6)

This estimate is sufficiently strong away from ∞. However, near ∞, the expo-
nential decay of the weight y makes the estimate very weak.

5.3. The Red-Shift Estimate

The estimate of this section will require that dV0
dr (r+) > 0 and that we can

already estimate
β∫

α

(
|u′|2 + |u|2

)
dr∗

for arbitrary r+ < α < β < ∞.
The following Poincaré type inequality will be useful.

Lemma 5.1. Suppose h has support in [r+, r+ + ε] and has
(
(· − r+) |h|2 (·)

)
(r+) = 0.

Then
∞∫

r+

|h|2dr ≤ C(ε)

∞∫

r+

|h′ + iω0h|2 dr

where

C(ε) �
(
1 + ε2

)
.
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Proof. Keeping in mind that

dh
dr∗ =

(r − r+)(r − r−)
r2 + a2

dh
dr
,

we have
∞∫

r+

|h|2dr =

∞∫

r+

d
dr

(r − r+) |h|2dr = −
∞∫

r+

(r − r+)
(

dh
dr
h+ h

dh
dr

)
dr

= −
∞∫

r+

(
r2 + a2

r − r−

)(
h′h+ hh

′)
dr

= −
∞∫

r+

(
r2 + a2

r − r−

)(
(h′ + iω0h)h+ h

(
h

′ − iω0h
))

dr.

From here the lemma follows by the usual argument. �

The (microlocal) red-shift current is

Qz
red := z |u′ + iω0u|2 − zV0|u|2 = Qz + 2z

ω0

ω
QT .

Note that the boundary conditions for R imply that (u′+iω0u)(r∗) = O(r−r+)
near r∗ = −∞. Hence, we may take z to be a function which blows up at −∞.
We have

(Qz
red)′ = z′ |u′ + iω0u|2 − (zV0)

′ |u|2 + 2zRe
(
(u′ + iω0u)H

)
.

Let ζ(r) be a bump function identically 1 on [r+, r+ + ε] and vanishing on
[r+ + 2ε,∞). ε is a free parameter that we will later take sufficiently small.
Now set

z(r∗) := −ζ(r(r∗))
V0

.

Note that z′ > 0 near −∞ since d
drV0(−∞) > 0. We have

(Qz
red)

∣∣∞
−∞ = −|u(−∞)|2

which has a good sign. For r ∈ [r+, r+ + ε], we have

(Qz
red)′ = z′|u′ + iω0u|2 + 2zRe

(
(u′ + iω0u)H

)
.

Note that we have z′ ∼ (r − r+)−1 in this region.19 For r ∈ [r+ + ε, r+ + 2ε]
we will treat everything as an error:

|(Qz
red)| �

(|u′|2 + |u|2)+
∣∣zRe

(
(u′ + iω0u)H

)∣∣ .

19 Keep in mind that

z′ =
(r − r+)(r − r−)

r2 + a2

dz

dr
.
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Of course for r ≥ r+ + 2ε we have (Qz
red)′ = 0. Putting everything together

will produce an estimate for

r++ε∫

r+

(r − r+)−2|u′(r∗(r)) + iω0u(r∗(r))|2dr.

For ε sufficiently small, an application of Lemma 5.1 will show that this controls

r++ε/2∫

r+

|u(r∗(r))|2dr

at the expense of introducing error terms

r++ε∫

r++ε/2

(|u′(r∗(r))|2 + |u(r∗(r))|2) dr.

We end up with

r++ε∫

r+

(r − r+)−2|u′(r∗(r)) + iω0u(r∗(r))|2dr +

r++ε/2∫

r+

|u(r∗(r))|2 dr

�
2ε∫

ε/2

(
|u|2 + |u′|2

)
dr∗ +

∞∫

−∞

∣∣zRe
(
(u′ + iω0u)H

)∣∣dr∗. (5.7)

As usual, this implies

r++ε∫

r+

(r − r+)−2|u′(r∗(r)) + iω0u(r∗(r))|2dr +

r++ε/2∫

r+

|u(r∗(r))|2 dr

�
2ε∫

ε/2

(
|u(r∗(r))|2 + |u′(r∗(r))|2

)
dr∗ +

∞∫

−∞
|F (r)|2 dr. (5.8)

Note that for every fixed m and l, ε can be assumed to depend continuously on
a and ω. This estimate is good near −∞, but clearly is not sufficient otherwise.

5.4. Proof of Proposition 2.5

Let b0 ∈ (r+,∞) be sufficiently close to r+ and b1 = 2b0. First, we apply virial
estimate I and conclude

∞∫

b0

(

|R|2 +
∣
∣∣∣
dR
dr

∣
∣∣∣

2
)

dr � |QT (∞)| +

∞∫

r+

|F |2r4dr. (5.9)
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Now, depending on whether ω0 is small or large, we either carry out virial
estimate II or the red-shift estimate and combine with 5.9 to get

∞∫

r+

|R|2 dr � |QT (−∞)| + |QT (∞)| +

∞∫

r+

|F |2 dr.

Next, we recall that the energy current QT = ωIm (u′u) satisfies

(QT )′ = ωIm (Hu)

: |QT (∞)| ≤ |QT (−∞)| +

∞∫

r+

(r2 + a2) |F | |R|dr

� ε−1

∞∫

r+

|F (r)|2 r4dr + ε

∞∫

−∞
|R(r)|2 dr

where we have used (5.1) in the last line. Taking ε small enough, we may
combine the various estimates to conclude

∞∫

r+

|R|2 dr �
∞∫

r+

|F (r)|2 r4dr.

Reapplying the energy estimate finally implies

|u(−∞)|2 ≈ |QT (−∞)| �
∞∫

r+

|F (r)|2 r4dr.

6. A Unique Continuation Lemma

Lemma 6.1. Suppose that we have a solution u(r∗) : (−∞,∞) → C to the
ODE

u′′ +
(
ω2 − V

)
u = 0

such that
1. ω ∈ R \ {0},
2. u ∈ L∞ and

(
|u′|2 + |u|2

)
(∞) = 0,

3. V is real, V ∈ L∞, V = O
(
r−1
)

as r → ∞, and V ′ = O
(
r−2
)

as r → ∞.
Then u is identically 0.

Proof. We will slightly refine the estimate from Sect. 5.1.20 Define

y(r∗) := exp

⎛

⎝−B
∞∫

r∗

ζ(r)dr

⎞

⎠

20 Using that estimate directly would require that V = O
(
r−2

)
as r → ∞.
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where B is a large positive constant to be chosen later and ζ is a fixed positive
function which is identically 1 near r = −∞ and is equal to r−2 near r = ∞.
In particular, we have y′|(−∞,∞) > 0, y(−∞) = 0, and y(∞) = 1.

Next, set

Qy(r∗) := y |u′|2 + y
(
ω2 − V

) |u|2 .
Observe that the hypothesis of the lemma implies that Qy (±∞) = 0. A simple
computation gives

(Qy)′ = y′ |u′|2 + y′ω2 |u|2 − (yV )′ |u|2 .
Thus, the fundamental theorem of calculus implies

∞∫

−∞

(
y′ |u′|2 + y′ω2 |u|2 − (yV )′ |u|2

)
dr∗ = 0. (6.1)

Let R ∈ (1,∞) be a large constant to be chosen later. Then set χ(r∗) to be a
function identically 1 on (−∞, R] and 0 on [R+ 1,∞). We then define

V1 := χV,

V2 := (1 − χ)V.

Of course we have V = V1 + V2.
We have the following estimate:

∣∣∣∣∣
∣

∞∫

−∞
(yV1)

′ |u|2 dr∗

∣∣∣∣∣
∣

= 2

∣∣∣
∣∣∣

∞∫

−∞
yV1Re (u′u) dr∗

∣∣∣
∣∣∣

(6.2)

≤ ε

∞∫

−∞
y′ |u′|2 dr∗ + ε−1

∞∫

−∞
y′ω2

(
y2V 2

1

(y′)2 ω2

)

|u|2 dr∗ (6.3)

≤ ε

∞∫

−∞
y′ |u′|2 dr∗ + Cε−1ω−2B−2R2

∞∫

−∞
y′ω2 |u|2 dr∗. (6.4)

Here C is a constant which only depends on ζ and V .
Next, we estimate
∣∣∣∣∣
∣

∞∫

−∞
(yV2)

′ |u|2 dr∗

∣∣∣∣∣
∣
=

∣∣∣∣∣
∣

∞∫

−∞
(y′V2 + yV ′

2) |u|2 dr∗

∣∣∣∣∣
∣

(6.5)

≤ C

∞∫

−∞

(
R−1ω−2 +B−1ω−2

)
y′ω2 |u|2 dr∗. (6.6)
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Taking ε small, R large, and then B sufficiently large and combining (6.1),
(6.4), and (6.6) implies that

1
2

∞∫

−∞

(
y′ |u′|2 + y′ω2 |u|2

)
dr∗ = 0.

�

Acknowledgements

I thank my advisor Igor Rodnianski for suggesting the problem and for many
insightful conversations. I would also like to thank Mihalis Dafermos for very
useful comments on preliminary versions of the paper.

Appendix A. Asymptotic Analysis of the Radial ODE

We will collect various facts concerning the radial ODE:

u′′ +
(
ω2 − V

)
u = 0 for ω ∈ C \ {0}.

The material in this section is standard, and the necessary background can be
found in most textbooks on the asymptotic analysis of ODEs, e.g. [28].

When recast in the r variable our ODE has a regular singularity at r+.
Finding the roots of the indicial equation allows us to uniquely define two
linearly independent functions uhor (already given by Definition 1.2) and uhor2

by

Definition A.1. Let uhor2(r∗) be the unique function satisfying
1. u′′

hor2 +
(
ω2 − V

)
uhor2 = 0.

2. uhor2 ∼ (r − r+)
−i(am−2Mr+ω)

r+−r− near r∗ = −∞.

3.
∣∣∣
∣(r − r+)

i(am−2Mr+ω)
r+−r− uhor2 (−∞)

∣∣∣
∣

2

= 1.

Since we have a regular singularity, the “∼” means that

uhor(r∗)(r − r+)
−i(am−2Mr+ω)

r+−r−

is holomorphic in r near r+. In fact, it can be given by an explicit power series
which exhibits holomorphic dependence on ω. Analogous statements hold for
uhor2.

Our ODE has an irregular singularity at ∞. Nevertheless, we can
uniquely define two linearly independent functions uin and uout (already given
by Definition 1.3) by

Definition A.2. Let uin(r∗) be the unique function satisfying
1. u′′

in +
(
ω2 − V

)
uout = 0.

2. uin ∼ e−iωr∗
near r∗ = ∞.

3.
∣
∣(eiωr∗

uin

)
(∞)

∣
∣2 = 1.
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Since our singularity is irregular, “∼” must be interpreted as follows:
There exists explicit constants

{
C

(in)
i

}∞

i=1
and

{
C

(out)
i

}∞

i=1
such that for every

N ≥ 1

uin(r∗) = e−iωr∗
(

1 +
N∑

i=1

C in
i

(r∗)i

)

+O
(
(r∗)−N−1

)
for large r∗,

uout(r∗) = eiωr∗
(

1 +
N∑

i=1

Cout
i

(r∗)i

)

+O
(
(r∗)−N−1

)
for large r∗.

It is important to note that the constants in these O’s can be estimated ex-
plicitly if desired. By examining the construction of uout, one finds that uout

will be holomorphic in ω in the upper half plane and smooth in ω in R\{0}.
See [21] for a detailed discussion of the holomorphic dependence on ω.

Appendix B. Energy Currents

It will be useful to use the language of energy currents which we now briefly
review (see [1] for a proper introduction).

Fix a smooth function ψ. The energy–momentum tensor is given by

Tαβ := Re
(
∂αψ∂βψ

)− 1
2
gαβg

γδRe
(
∂γψ∂δψ

)
.

Given any vector field X we form the corresponding “current” by

JX
α := TαβX

β .

We have

Lemma B.1. Let X and Y be two linearly independent future oriented time-like
vectors normalized to have g(X,X) = g(Y, Y ) = −1. Set γ := −g(X,Y ). Note
that γ > 1 by the reverse Cauchy–Schwarz inequality. Define

W :=
1

√
2 (γ + 1)

(X + Y ) ,

Z :=
1

√
2 (γ − 1)

(X − Y ) ,

L := W + Z,

L := W − Z.

Let E1 and E2 be an orthonormal basis in the 2-dimensional subspace orthog-
onal to the span of X and Y . Then,

JX
α Y

α =
1
4

(
|Lψ|2 + |Lψ|2

)
+
γ

2

(
|E1ψ|2 + |E2ψ|2

)
.
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Proof. Observe that

g (L, L) = g (L, L) = 0,

g (L, L) = −2,

X = (1/4)
((√

2 (γ + 1) +
√

2 (γ − 1)
)

L +
(√

2 (γ + 1) −
√

2 (γ − 1)
)

L
)

,

Y = (1/4)
((√

2 (γ + 1) −
√

2 (γ − 1)
)

L +
(√

2 (γ + 1) +
√

2 (γ − 1)
)

L
)

.

The result then follows from a simple computation using the algebraic prop-
erties of the energy–momentum tensor (see [1]). �

It is also possible to find a convenient expression for JX
α X

α.

Lemma B.2. Let X be a time-like vector normalized to have g (X,X) = −1.
Let R be any space-like vector orthogonal to X, normalized to have size 1.
Define

L := X +R,

L := X −R.

Let E1 and E2 be an orthonormal basis for the subspace orthogonal to the span
of X and R. Then

JX
α X

α = |Lψ|2 + |Lψ|2 + |E1ψ|2 + |E2ψ|2 .
Proof. This is a simple computation using the algebraic properties of the
energy–momentum tensor (see [1]). �

This leads to

Definition B.3. Let X be a future oriented time-like vector field and Σ be a
space-like hypersurface with future oriented normal nΣ. We define the (non-
degenerate) energy of ψ with respect to X along Σ by

∫

Σ

JX
α n

α
Σ (B.1)

where the integral is with respect to the induced volume form. We will often
use the schematic notation ∫

Σ

|∂ψ|2

to denote (B.1).

Appendix C. From Admissibility to Uniform Boundedness

The following lemma is a straightforward application of techniques developed
in [9] (see also the lecture notes [11] and sections 5.4 and 5.5 of [10]).

Lemma C.1. Suppose that ψ is admissible in the sense of Definition 1.7 and
that ψ solves the wave equation �gψ = 0 on the Kerr spacetime. Then ψ is
uniformly bounded to the future.
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Proof. Fix a choice of r0 sufficiently close to but greater than r+, and r1 < ∞
sufficiently large. Our admissibility assumption implies

∞∫

0

∫

r∈(r0,r1)

∫

S2

|∂ψ|2 sin θ dtdr dθ dφ < ∞.

Let V be a time-like and time translation invariant vector field in the region
r > r0 which equals ∂t for r > r1/2. Let δ > 0 be sufficiently small. By cutting
off ψ to the region r > r0 and applying the energy estimate associated to V
(see [1]), we conclude that for every τ > 0,

∫

r>r0+δ

∫

S2

|∂ψ|2
∣∣∣
t=τ

r2 sin θ dr dθ dφ

�r0,r1,δ

∞∫

0

∫

r∈(r0,r1/2)

∫

S2

|∂ψ|2 sin θ dtdr dθ dφ

+
∫

r>r0

∫

S2

|∂ψ|2
∣∣∣
t=0

r2 sin θ dr dθ dφ.21

To control ψ in the region r < r0 we shall appeal to the red-shift estimate of
Dafermos–Rodnianski (see [9,11], and [13]). As long as r0 is sufficiently close
to r+, this estimate implies

∫

Στ ∩{r≤r0+δ}

|∂ψ|2 +

τ∫

0

∫

Σt∩{r≤r0+δ}

|∂ψ|2 dt

�
∞∫

0

∫

r∈(r0,r1)

∫

S2

|∂ψ|2 sin θ dr dθ dφ

+
∫

Σ0∩{r≤r1}

|∂ψ|2 .22

Let us emphasize that |∂ψ|2 denotes a non-degenerate energy flux (see the
discussion in “Appendix B”) and the integration is with respect to the induced
volume form. Here, Στ refers to the time translations of the hypersurface Σ0

from Theorem 1.12.
Given such a uniform bound on the non-degenerate energy, bounds on

higher-order energies follow in a standard fashion by commuting with the
Killing vector fields ∂t and (a cut-off version of) ∂φ, commuting with the red-
shift commutator Ŷ , and finally applying elliptic estimates. Once the higher-
order energies are controlled, pointwise boundedness follows from Sobolev in-
equalities. In section 13 of [9] one can find this scheme carried out in full detail

21 The point being that V is Killing for r > r1/2, and hence no spacetime error terms arise

in that region.
22 The red-shift estimate also gives a good term on the horizon, but we do not need this.
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for the case of |a| � M . A direct inspection of the argument there shows that
the only difference in the case |a| < M is that one also needs to commute
with (a cut-off version of) ∂φ.23 This fact is explicitly discussed in section 5.5
of [10]. �

Appendix D. Modes and Their Finite Energy Hypersurfaces

In this appendix, we will explore the hypersurfaces on which various modes
have finite energy.

D.1. The Hypersurfaces

For purposes of exposition we will restrict attention to space-like hypersurfaces
Σf which, for sufficiently large R, satisfy

Σf ∩ {r ≥ R} := {(t, r∗, θ, φ) : r ≥ R and t− f(r∗) = 0} .
In addition to the requirement that Σf be space-like, we also ask that Σf

intersects the future event horizon and

f ≥ 0 as r∗ → ∞.

This last requirement implies that Σf connects the event horizon H+ to either
space-like infinity or future null infinity.

Definition D.1. We will say that Σf is asymptotically flat if f ∼ 1 as r∗ → ∞.24

These hypersurfaces converge to space-like infinity as r∗ → ∞. The pro-
totypical example of an asymptotically flat hypersurface is one where f is
identically constant for large r. The relevant Penrose diagram is

Definition D.2. We will say that Σf is hyperboloidal if (f ′)2 − 1 = − C
r2 +

O
(
r−3
)

as r∗ → ∞ for some sufficiently large positive constant C (C ≥ M

will work).25

23 The key point being that in the domain of outer communication, there is always a time-like
direction in the span of ∂t and ∂φ.
24 More generally, one could consider any hypersurface which terminates at space-like infin-
ity, but this extra generality is not useful for the study of mode solutions.
25 In more general contexts one usually says a space-like hypersurface is hyperboloidal if the
induced metric asymptotically approaches a constant negative curvature metric. One could
work with this more general definition here; but, since there is not much advantage for the
study of mode solutions, we shall spare ourselves the extra work.
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These hypersurfaces converge to future null infinity as r∗ → ∞. The
key examples to keep in mind are hyperbolas in Minkowski space (where f =√
C + r2). The relevant Penrose diagram is

D.2. Some Useful Calculations

We start by noting that

gtt =
a2 sin2 θΔ − (r2 + a2)2

ρ2Δ
,

gφφ =
Δ − a2 sin2 θ

sin2 θΔ
,

gtφ = −4Mar

ρ2Δ
.

Then we have

Lemma D.3. Let Σf be an asymptotically flat hypersurface, N be a future
oriented time-like vector field which equals ∂t for large r, and ψ be a smooth
function. Then, for sufficiently large R, the energy of ψ with respect to N along
Σf ∩ {r ≥ R} is proportional to

∫

r≥R

∫

S2

(
|∂tψ|2 + |∂rψ|2 + r−2

(
(∂θψ)2 + sin−2 θ (∂φψ)2

))
(f(r∗), r, θ, φ)

×r2 sin θ dr dθ dφ.

Proof. First, observe that

−∇t = −gtt∂t − gtφ∂φ =
(r2 + a2)2 − a2 sin2 θ

ρ2Δ
∂t +

4Mar

ρ2Δ
∂φ,

g (∇t,∇t) =
−(r2 + a2)2 + a2 sin2 θΔ

ρ2Δ
.

In particular, ∇t is time-like. Next, we calculate

g (∇ (t− f(r∗)) ,∇ (t− f(r∗)))

=
(
(f ′)2 − 1

) (r2 + a2)2

ρ2Δ
+
a2 sin2 θ

ρ2
→ −1 as r → ∞.

We conclude that the normal to Σf satisfies

nΣf
=
(
1 +O

(
r−1
))

(−∇t) +O
(
r−1
)
∂r∗ as r → ∞.



340 Y. Shlapentokh-Rothman Ann. Henri Poincaré

Now, Lemma B.1 implies

JN
α n

α
Σf

≈ |∂tψ|2 + |∂r∗ψ|2 + r−2
(
(∂θψ)2 + sin−2 θ (∂φψ)2

)
as r → ∞.

The volume form on Kerr satisfies

dV ol =
Δρ2

r2 + a2
sin θ dt ∧ dr∗ ∧ dθ ∧ dφ.

Thus, the induced volume on Σf is given by
(
1 +O(r−1)

)
r2 sin θ dr∗ ∧ dθ ∧ dφ+

(
1 +O(r−1)

)
r sin θ dt ∧ dθ ∧ dφ

+
(
1 +O(r−1)

)
r sin θ dt ∧ dr∗ ∧ dθ as r → ∞.

The lemma follows by writing out the integral (B.1) in the parametrization
(r∗, θ, φ) �→ (f(r∗), r∗, θ, φ). �

The analogous lemma in the hyperboloidal case is more subtle since we
need to understand precisely how the energy degenerates due to the hypersur-
face becoming “approximately null”.

Lemma D.4. Let Σf be a hyperboloidal hypersurface, N be a future oriented
time-like vector field which equals ∂t for large r, and ψ be a smooth function.
Then, for sufficiently large R, the energy of ψ with respect to N along Σf ∩{r ≥
R} is proportional to

∫

r≥R

∫

S2

(

r−2 |(∂t − ∂r∗)ψ|2 + |(∂t + ∂r∗)ψ|2

+ r−2
(
(∂θψ)2 + sin−2 θ (∂φψ)2

))

r2 sin θ dr dθ dφ

where the integrand is evaluated at (f(r∗), r∗, θ, φ).

Proof. Let us set

AΣf
:=
√

−g (∇ (t− f(r∗)) ,∇ (t− f(r∗)))

=

√
(
1 − (f ′)2

) (r2 + a2)2

ρ2Δ
− a2 sin2 θ

ρ2

= O
(
r−1
)

as r → ∞.

The normal nΣf
thus satisfies

nΣf
= A−1

Σf

(
−∇t+ f ′ (r

2 + a2)2

ρ2Δ
∂r∗

)
.

The key difference with the asymptotically flat case is that A−1
Σf

= r+O(1) as
r → ∞.

Let us apply Lemma B.1 to the vectors X := (−gtt)
−1/2

∂t and Y := nΣf
.

We have

γ := −g (X,Y ) = (−gtt)
−1/2

A−1
Σf

= r +O(1) as r → ∞.
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Next, we compute

W =
1

√
2 (γ + 1)

(X + Y )

= O
(
r−1/2

)
∂t +

(
r1/2 +O

(
r−1/2

))
(−∇t+ ∂r∗) as r → ∞,

Z =
1

√
2 (γ − 1)

(X − Y )

= O
(
r−1/2

)
∂t −

(
r1/2 +O

(
r−1/2

))
(−∇t+ ∂r∗) as r → ∞,

L = W + Z

= O
(
r−1/2

)
(∂t + (−∇t+ ∂r∗)) as r → ∞,

L = W − Z

= O
(
r−3/2

)
∂t + 2

(
r1/2 +O

(
r−1/2

))
(−∇t+ ∂r∗) as r → ∞.

Finally, as r → ∞, the induced volume form satisfies
(
A−1

Σf

(r2 + a2)2

ρ2Δ
+O

(
r−3
))( Δρ2

r2 + a2

)
sin θ dr∗ ∧ dθ ∧ dφ

+O (1)
Δρ2

r2 + a2
sin θ dt ∧ dr∗ ∧ dθ

−
(
A−1

Σf
f ′ (r

2 + a2)2

ρ2Δ

)(
Δρ2

r2 + a2

)
sin θ dt ∧ dθ ∧ dφ.

The lemma now follows by carefully writing out the integral (B.1) in the para-
metrization (r∗, θ, φ) �→ (f(r∗), r∗, θ, φ), using (f ′)2 − 1 = − C

r2 +O
(
r−3
)
, and

appealing to Lemma B.1. �
D.3. Finite Energy Hypersurfaces for Mode Solutions

Lemma D.5. Let Σf be an asymptotically flat hypersurface, N be a future
oriented time-like vector field which equals ∂t for large r, and

ψ(t, r, θ, φ) = e−iωteimφSωml(θ)R(r)

be a mode solution. If Im (ω) > 0 then ψ has finite energy with respect to N
along Σf . If Im (ω) ≤ 0 then ψ has infinite energy with respect to N along Σf .

Proof. In Kerr-star coordinates, it is easy to see that the volume form remains
bounded in a compact region of r (including the event horizon). Thus, in
order for ψ to have finite energy along Σf ∩{r ≤ R} it is sufficient for ψ to be
smooth (and hence bounded). Furthermore, ψ is manifestly smooth if r > r+.
Since Boyer–Lindquist coordinates break down at r = r+, to investigate the
smoothness of ψ there, we will change to Kerr-star coordinates (t∗, r, θ, φ∗). In
these coordinates we get

ψ(t∗, r, θ, φ∗) = e−iω(t∗−t(r))eim(φ∗−φ(r))Sωml(θ)R(r).

Hence, ψ extends smoothly to r = r+ if and only if

R(r) = e−i(ωt(r)−mφ(r))h(r)
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where h extends smoothly to r+. However, this is precisely what the boundary
condition (1.8) guarantees.

For R sufficiently large, Lemma D.3 implies that the energy along Σf ∩
{r ≥ R} is proportional to

∫

r≥R

∫

S2

(
|∂tψ|2 + |∂rψ|2 + r−2

(
(∂θψ)2 + sin−2 θ (∂φψ)2

))
(f(r∗), r, θ, φ)

×r2 sin θ dr dθ dφ.

Now, if Im (ω) > 0, then the boundary condition (1.9) implies that all of these
terms are decaying exponentially as r → ∞, and hence, the integral is finite. If
Im (ω) = 0, then the first two terms in the integral as proportional to r−2, and
hence the integral is infinite. If Im (ω) < 0, then all the terms are exponentially
growing in r, and hence the integral is infinite. �

Lemma D.6. Let Σf be a hyperboloidal hypersurface, N be a future oriented
time-like vector field which equals ∂t for large r, and

ψ(t, r, θ, φ) = e−iωteimφSωml(θ)R(r)

be a mode solution with Im (ω) ≤ 0. Then ψ has finite energy with respect to
N along Σf .

Proof. The analysis of ψ for any compact region of r is exactly the same as
in the proof of Lemma D.5. In Lemma D.4, we saw that the energy along
Σf ∩ {r ≥ R} is proportional to

∫

r≥R

∫

S2

(

r−2 |(∂t − ∂r∗)ψ|2 |(∂t + ∂r∗)ψ|2

+ r−2
(
(∂θψ)2 + sin−2 θ (∂φψ)2

)
)

r2 sin θ dr dθ dφ

where the integrand is evaluated at (f(r∗), r∗, θ, φ).
When Im (ω) = 0, then the boundary condition 1.9 exactly implies that

(∂t + ∂r∗)ψ = O
(
r−2
)
. Combining this with the fact that ψ and its derivatives

are all O
(
r−1
)

shows that the integral is finite.
Now consider the case where Im (ω) < 0. Using the boundary condition

1.9, we get

ψ (f(r∗), r∗, θ, φ) = exp (−iωf (r∗)) eimφSωml (θ)R (r)

= O
(
r−1 exp (−iωr∗) exp (iω (r∗ − 2M log r))

)
as r → ∞

= O
(
r−1
)

as r → ∞.
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Similarly,

∂tψ (f(r∗), r∗, θ, φ) = O
(
r−1
)

as r → ∞,

∂r∗ψ (f(r∗), r∗, θ, φ) = O
(
r−1
)

as r → ∞,

∂θψ (f(r∗), r∗, θ, φ) = O
(
r−1
)

as r → ∞,

∂φψ (f(r∗), r∗, θ, φ) = O
(
r−1
)

as r → ∞,

(∂t + ∂r∗)ψ (f(r∗), r∗, θ, φ) = O
(
r−2
)

as r → ∞.

Thus, the integral is finite. �
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