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Spectral Dimension
of Liouville Quantum Gravity

Rémi Rhodes and Vincent Vargas

Abstract. This paper is concerned with computing the spectral dimension
of (critical) 2d-Liouville quantum gravity. As a warm-up, we first treat
the simple case of boundary Liouville quantum gravity. We prove that
the spectral dimension is 1 via an exact expression for the boundary
Liouville Brownian motion and heat kernel. Then we treat the 2d-case via
a decomposition of time integral transforms of the Liouville heat kernel
into Gaussian multiplicative chaos of Brownian bridges. We show that the
spectral dimension is 2 in this case, as derived by physicists (see Ambjørn
et al. in JHEP 9802:010, 1998) 15 years ago.

1. Introduction

String theory is an attempt to overcome the difficulties encountered in the
quantization of 4d gravity by replacing particles by string-like one-dimensional
objects, which describe some two-dimensional “worldsheet” Σ as they evolve in
time. Polyakov [28] showed that such theories could be interpreted as theories
of two-dimensional quantum gravity, in which the worldsheet is exchanged
with the space–time and the string coordinate H(σ) (σ ∈ Σ) is considered
as a d-dimensional matter field defined on Σ. The worldsheet of the string
can be seen as a two-dimensional random surface embedded in d-dimensional
space and equipped with a metric g. This metric is a random variable, which
takes on the form [8,22,28] (we consider an Euclidean background metric for
simplicity)

g(z) = eγX(z)dz2,

where γ is a coupling constant expressed in terms of the central charge of the
matter field H and X is a random field, the fluctuations of which are governed
by the Liouville action. In critical Liouville quantum gravity, this action turns
the field X into a Free Field, with appropriate boundary conditions. The reader
is referred to [7,8,10,11,15,18,19,22,27,28] for more insights on the subject.
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Among the main objectives of 2d-quantum gravity is the understanding
of the fractal structure of space–time. In the case of pure gravity, i.e., when
the central charge of the conformal matter is c = 0 yielding γ =

√
8/3, it is

known that the intrinsic Hausdorff dimension is 4, whereas the intrinsic Haus-
dorff dimension related to the background metric is 2 (see [2,21] on the physics
side and [23–26] for more recent mathematical references). The Knizhnik et al.
formula [22] relating the scaling exponents of the matter field computed under
the background metric to those computed under the metric g is another strik-
ing feature of the fractal structure of space–time, which has recently received
growing interest [3,6,9,13,14,30]. Another interesting feature of the fractal
structure of space–time is the notion of spectral dimension. It has been proved
in [16,17] that one can associate to the Liouville metric a Brownian motion
and a heat kernel pt(x, y). The spectral dimension is about the short time
behavior of the heat kernel along the diagonal. One possible way to rigorously
define the spectral dimension is

dS = 2 lim
t→0

lnpt(x, x)
− ln t

. (1.1)

In a loose sense, this means that

pt(x, x) � Cx

tdS/2
, as t → 0. (1.2)

For instance, the spectral dimension of the Euclidean R
d-space is dS = d.

After averaging in some sense over geometries (the field X) and points x,
the authors in [1] have heuristically obtained 15 years ago that the spectral
dimension of 2d-quantum gravity is 2, irrespective of the coupling constant γ.
From a rigorous angle, giving sense to the above limit is a difficult task because,
for the time being, it is not clear that the Liouville heat kernel possesses any
kind of regularity. Yet, we want to reinforce the statement made in [1] in a
quenched version in X and everywhere in x. The price to pay is that, instead of
considering the heat kernel on the diagonal as a function, we will consider it as
a measure pt(x, x) dt on the positive reals. Then, we focus on the mass of this
measure at the neighborhood of t = 0. Our argument relies on the fact that
the mass at 0 of this measure can be identified via the behavior of its Laplace
transform. A similar idea has already been used by Bauer and David in [9]
where a heat kernel-based KPZ relation is established via the Mellin–Barnes
transform of the heat kernel. Then we will use the fact that Laplace transforms
of the Liouville heat kernel are perfectly defined for all x on the diagonal (and
are even a continuous function of x) and may be decomposed into functionals
of Gaussian multiplicative chaos along Brownian bridges. This allows us to
have a complete description of the Laplace transforms of the Liouville heat
kernel and prove that the spectral dimension is 2 almost surely in X for every
x ∈ R

2.
We will also consider boundary Liouville quantum gravity, corresponding

to the description of open strings. In that case, the worldsheet Σ possesses a
boundary and the field X fluctuates along the boundary. We will treat the case
when the worldsheet Σ is the half-plane. In critical Liouville quantum gravity,
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the field X is then a free field on the half-plane with free boundary conditions.
We are thus led to considering a metric on the real line of the form

g(z) = eγX(z)dz2,

where X is a centered Gaussian distribution with short scale logarithmic cor-
relations. We first give a complete description of boundary Liouville quantum
gravity by giving explicit expressions for its metric, heat kernel and Brown-
ian motion. In particular, the spectral dimension is 1 and thus coincides with
its intrinsic Hausdorff dimension. Though straightforward, it seems that such
explicit formulas have never been written.

2. Boundary Liouville Quantum Gravity

We begin with the case of boundary quantum gravity since it provides interest-
ing intuition for the 2d-case. However, as soon as the problem has been stated
properly, computations are straightforward from the mathematical angle. So
we just explain the main lines without giving details. This section may just be
seen as a warm-up, yet it is instructive.

2.1. Reminder about 1d-Riemannian Structures

Let g(x)dx2 be a smooth metric tensor on R, with g > 0. We denote by �g

the associated Laplace–Beltrami operator, i.e.,

�g = g−1(x)� + g−1/2(x)∂x(g−1/2(·))(x)∂x.

We define the smooth strictly increasing function on R

ϕ(x) =

x∫

0

g1/2(x) du.

If we further assume that ϕ maps R onto R then ϕ is a Riemannian diffeo-
morphism between (R, g) and (R, 1) where 1 stands for the Euclidean metric.
It is then obvious how to describe the geometric objects associated with g.
The Riemannian distance is d(x, y) = |ϕ(x) − ϕ(y)|. The Brownian motion
associated with g is the solution of the SDE

Bx
t = x +

t∫

0

1
2
g−1/2(Bx

r )∂x(g−1/2)(Bx
r ) dr +

t∫

0

g−1/2(Bx
r ) dBr, (2.1)

where B is a standard Brownian motion on R. It is plainly seen that

∀t � 0, Bx
t = ϕ−1(ϕ(x) + Bt). (2.2)

This can be seen because diffeomorphisms of Riemannian manifolds map
Brownian motion to Brownian motion (also follows from �gϕ = 0 and
∂gϕ = 1).

In what follows, we replace the function g by the exponential of a free
field, and more generally by a centered Gaussian distribution with short-scale
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logarithmic correlations. So, we consider a centered Gaussian distribution X
on R with covariance kernel of the type

K(x, y) = ln
1

|x − y| + g(x, y),

for some continuous and bounded function g on R × R. For instance, one may
consider a massive free field X with free boundary condition on the half-plane
H ⊂ R

2 and consider the trace of the field along the real line.

2.2. Standard Phase

We consider γ < 2
√

2. Let us stress that, in the physics literature, people
often use the coupling constant γ′ = γ√

2
∈ [0, 2[ instead of γ. We investigate

the random metric on R formally defined by eγX(x)dx2. Following Sect. 2.1,
one wishes to define the random mapping

ϕ(x) =

x∫

0

e
γ
2 X(r)− γ2

8 E[X2]dr.

This can be done via cutoff approximations of the field X as prescribed by
standard theory of Gaussian multiplicative chaos (see [20,29], for instance).
Almost surely in the field X, this mapping is continuous, strictly increasing
and satisfies

lim
x±∞ ϕ(x) = ±∞.

It can be seen as an isomorphism between R equipped with the Euclidean
metric and R equipped with the metric g = eγX(x)− γ2

4 E[X2]dx2. The boundary
quantum metric is given by

d(x, y) = |ϕ(x) − ϕ(y)|.
The volume form matches

∀A ∈ B(R), M(A) =
∫

A

e
γ
2 X(r)− γ2

8 E[X2]dr

and the boundary Liouville Brownian motion Bx, starting from x, reads

Bx
t = ϕ−1(ϕ(x) + Bt).

It is defined almost surely in X for all starting points x ∈ R. It is further a
strong Feller Markov process with continuous sample paths. Observe that this
process is formally the solution of the SDE

Bx
t = x − γ2

4

t∫

0

∂xX(Bx
r )e−γX(Bx

r )+ γ2
4 E[X2] dr +

t∫

0

e− γ
2 X(Bx

r )+ γ2
8 E[X2] dBr.

(2.3)
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The boundary Brownian motion admits a heat kernel. More precisely, there
exists a continuous family pt(·, ·))t such that for all x, y, t

E[f(Bx
t )] =

∫

R

pt(x, y)f(y)M(dy).

By making straightforward changes of variables, one can obtain the following
explicit form for the heat kernel

pt(x, y) =
1√
2πt

e− d(x,y)2

2t .

Corollary 2.1. The spectral dimension of boundary Liouville quantum gravity,
defined by

dS = −2 lim
t→0

lnpt(x, x)
ln t

is given by dS = 1.

Observe that it is here obvious to see that the intrinsic Hausdorff dimen-
sion of boundary Liouville quantum gravity is also 1. Let us further stress that
the topology of the quantum metric is Euclidean: this results from the fact that
the field ϕ is continuous and strictly increasing. Yet, the quantum metric is
not equivalent to the Euclidean one: this results from the multifractal analysis
of the field ϕ, i.e., a study of the decrease of the size of balls (see [5,29]).

2.3. Critical Phase

The critical phase corresponds to the case γ = 2
√

2. The mathematical proofs
do not differ from the subcritical situation so that we only summarize the
results. By considering a family of smooth cutoff approximations (Xε)ε of the
field X, we introduce the random smooth metric tensor

gε = e2
√

2Xε(x)−2E[X2
ε ]dx2

and we define the random mapping

ϕε(x) =

x∫

0

e
√

2Xε(r)−E[X2
ε ]dr.

It is proved in [12,13] that, almost surely in X, the following convergence

√− ln εϕε → ϕ(x) =
√

2/π

x∫

0

(√
2E[X2] − X(r)

)
e
√

2X(r)−E[X2]dr

holds in the space C(R). The limiting mapping will be called the critical dif-
feomorphism. The mapping ϕ is continuous and strictly increasing and goes
to ±∞ as x → ±∞. Once again, the metric matches

d(x, y) = |ϕ(x) − ϕ(y)|
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and the volume form is given by

∀A ∈ B(R), M ′(A) =
√

2/π

∫

A

(√
2E[X2] − X(r)

)
e
√

2X(r)−E[X2]dr.

Almost surely in X and B, for all x ∈ R, the critical boundary Liouville
Brownian motion is given by

Bx
t = ϕ−1(ϕ(x) + Bt).

It is a Feller Markov process with continuous sample paths. It admits a heat
kernel of the same form as in the standard phase. Therefore, the spectral
dimension of critical boundary Liouville quantum gravity is still 1, as well as
the intrinsic Hausdorff dimension.

3. 2d-Liouville Quantum Gravity

In this section, we consider the same setup as in [16,17]. We just outline
the main tools needed in this paper and the reader is referred to [16,17] for
further details. We consider a whole plane massive Gaussian free field (MFF)
X with mass m (see [19,31] for an overview of the construction of the MFF
and applications). Its covariance kernel is thus given by

∀x, y ∈ R
2, Gm(x, y)=

∞∫

0

e− m2
2 u− |x−y|2

2u
du

2u
=ln+

1
|x−y| + gm(x, y). (3.1)

for some continuous and bounded function gm, which decays exponentially fast
to 0 when |x − y| → ∞ (recall that ln+(x) = max(0, ln x) for x > 0).

We consider a coupling constant γ ∈ [0, 2[ and consider the formal metric
tensor

g = eγX(x)− γ2
2 E[X2] dx2.

This metric tensor has a volume form, which is nothing but a Gaussian mul-
tiplicative chaos [20,29] with respect to the Lebesgue measure dx

M(dx) = eγX(x)− γ2
2 E[X(x)2] dx. (3.2)

One may also associate to this metric a Brownian motion, called Liouville
Brownian motion (LBM for short). More precisely, almost surely in X, for all
x ∈ R

2, the law of the LBM starting from x is given by

Bx
t = Bx

F (x,t)−1

where Bx is a standard two dimensional Brownian motion starting from x and
the random mapping F is defined by

F (x, t) =

t∫

0

eγX(Bx
r )− γ2

2 E[X2] dr. (3.3)

It is a Feller Markov process with continuous sample paths. It is also shown
in [17] that, almost surely in X and for all starting point x ∈ R

2, the law of
the LBM is absolutely continuous with respect to the Liouville measure M ,
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thus giving the existence of the Liouville heat kernel pt(x, y) such that for all
x ∈ R

2 and all measurable bounded function f

E[f(Bx
t )] =

∫

R2

f(y)pt(x, y)M(dy). (3.4)

In what follows, we will also consider the heat kernel pt(x, y) of the standard
Brownian motion on R

2.

3.1. Brownian Bridge Decomposition

Let us denote by (Bx,y,t
s )0�s�t a (standard or Euclidean) Brownian bridge

between x and y with lifetime t. We start with a standard Lemma for Brownian
bridges in dimension 2

Lemma 3.1. Let (Bx
u)u�t be a Brownian motion starting from x. We have the

following absolute continuity relation for the Brownian bridge when s < t

E
[
F ((Bx,y,t

u )u�s)
]

= Ex

[
F ((Bx

u)u�s)
t

t − s
e

|y−x|2
2t − |Bx

s −y|2
2(t−s)

]
(3.5)

Here and in the sequel, E means that we take expectation with respect
to the law of the Brownian bridge Bx,y,t, whereas Ex means expectation with
respect to a Brownian motion started at x. We will also denote by E (or EX in
case there could be an ambiguity) expectation with respect to the free field X.

For each x ∈ R
2 and s ∈ [0, t], we define

F (x, y, t, s) =

s∫

0

eγX(Bx,y,t
r )− γ2

2 E[X2] dr. (3.6)

Actually, a rigorous definition of such an object is not straightforward. One
has to introduce a cutoff approximation sequence (Xn)n of the field X as
considered in [16] and define F (x, y, t, ·) as the limit in law in the space C([0, t])
of the sequence

Fn(x, y, t, s) =

s∫

0

eγXn(Bx,y,t
r )− γ2

2 E[X2
n] dr.

We state the two following Theorems

Theorem 3.2. Assume γ < 2. For each x, y ∈ R
2 and t � 0, almost surely in

X and in Bx,y,t, the family of random mappings (Fn(x, y, t, ·))n converges in
C([0, t], R+) towards a limiting strictly increasing continuous mapping
F (x, y, t, ·).
Theorem 3.3. Assume γ < 2. Almost surely in X, for all x, y ∈ R

2 and t � 0,
the law under PBx,y,t

of the random mappings (Fn(x, y, t, ·))n converges in
C([0, t], R+) towards the law of a random mapping, still denoted by F (x, y, t, ·).
Under PBx,y,t

, the mapping F (x, y, t, ·) is strictly increasing and continuous.
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Furthermore, for each bounded continuous function K : C([0, t], R+) → R, the
mapping

(x, y) 
→ EBx,y,t

[K(F (x, y, t, ·))]

is continuous. Finally,

Ex[G(F (x, t))|Bt = y] = E
[
G(F (x, y, t, t))

]

for all nonnegative measurable function G.

To prove the above two Theorems, a rigorous argument just boils down
to reproducing the arguments of [16]. In particular, to prove Theorem 3.3,
one can adapt the coupling technique between two Brownian motions starting
from distinct points introduced in [16] (or see Lemma 3.10 below). The fact
that this technique can be used here in the context of bridges is a consequence
of the absolute continuity formula (3.5) and the time reversal symmetry of
Brownian bridges.

In what follows, we want to consider integral transforms of the heat kernel∫∞
0

G(t)pt(x, y) dt. However, it is not clear that a measurable version of the
heat kernel exists. We establish below a Brownian bridge decomposition of
these integrals that allows us to show that they are continuous functions of x, y.

Theorem 3.4. For each x, y ∈ R
2, we consider a measure on R+, still denoted

by pt(x, y)dt with a slight abuse of notation and defined by

∞∫

0

G(t)pt(x, y)dt =

∞∫

0

E[G(F (x, y, t, t))]
e− |y−x|2

2t

2πt
dt (3.7)

for any continuous function G : R+ → R+. Furthermore, for all nonnegative
continuous functions f

∞∫

0

G(t)Ptf(x) dt =
∫

R2

⎛

⎝
∞∫

0

G(t)pt(x, y) dt

⎞

⎠ f(y)M(dy),

where (Pt)t stands for the semi-group of the LBM.

Proof. We have for all nonnegative continuous functions f on R
2

∞∫

0

G(t)Ptf(x) dt = Ex

⎡

⎣
∞∫

0

G(t)f(Bx
F (x,t)−1) dt

⎤

⎦

= Ex

⎡

⎣
∞∫

0

G(F (x, t))f(Bx
t )F (x,dt)

⎤

⎦
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= Ex

⎡

⎣
∞∫

0

E
[
G
(
F (x, y, t, t)

)]
y=Bx

t
f(Bx

t )F (x,dt)

⎤

⎦

=
∫

R2

∞∫

0

E
[
G
(
F (x, y, t, t)

)]
pt(x, y) dt f(y)M(dy).

The last equality results from the fact that F is the positive continuous additive
functional (PCAF) associated with the Liouville Brownian motion (see [17])
and in particular we have the relation

Ex

⎡

⎣
∞∫

0

H(Bx
t )F (x,dt)

⎤

⎦ =
∫

R2

∞∫

0

H(y)pt(x, y) dtM(dy)

for all nonnegative measurable function H. This completes the proof. �

Remark 3.5. Note that Theorem 3.4 is quite general and in particular gives a
useful and rather explicit formula for the resolvent density (for G(t) = e−λt

with λ > 0) or the Mellin–Barnes transform considered in [9] (this corresponds
to G(t) = ts−1 with s ∈]0, 1[). Furthermore, the forthcoming proofs also show
that these transforms are continuous functions of x, y and of the parameter λ
or s, depending on the considered integral transform. A more precise study of
the Mellin–Barnes transform will be presented in a forthcoming work.

Now, we take G(t) = tαe−λt for t � 0 and α � 0 to get
∞∫

0

e−λttαpt(x, y)dt =

∞∫

0

E[F (x, y, t, t)αe−λF (x,y,t,t)]
e− |y−x|2

2t

2πt
dt. (3.8)

This identity is valid for every x ∈ R
2 and M -almost every y ∈ R

2. In the fol-
lowing, we will be interested in the diagonal behavior (x = y) of this quantity.
We will see that one can make sense of these quantities on the diagonal.

3.2. Spectral Dimension

We can now state our main result on the spectral dimension

Theorem 3.6. For α � 0, the right-hand side of (3.8) admits a limit as y → x
for all x ∈ R

2. Therefore, (3.8) makes sense on the diagonal y = x. Further-
more, for α > 0 and for all x ∈ R

2

∀λ > 0,

∞∫

0

e−λttαpt(x, x)dt < +∞.

For α = 0, we have for all x ∈ R
2

∀λ > 0,

∞∫

0

e−λtpt(x, x)dt = +∞.

Therefore, the spectral dimension of Liouville quantum gravity is 2.
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Remark 3.7. Here, we do not claim that we can make sense of the quantity
pt(x, x) for all x and then integrate it over time to get formula (3.8). In the
above Theorem, we use a reasonable definition of the measure pt(x, x) dt,
i.e., the measure pt(x, x) dt is defined on R+ as the limit of the mapping
y 
→ pt(x, y) dt when y → x and for the weak convergence of measures.

The stronger statement may be investigated as well. Defining pt(x, x)
pointwise would be required first. For instance, one could then prove that

lim
t→0

tpt(x, x) = cx

for some random constant cx such that cx �= 0 for all x ∈ R
2. In a way, the

above Theorem implies that if one can show that

lim
t→0

tνx/2pt(x, x) = cx

for some random constant νx, then νx can be nothing but 2.

Proof. Let us begin with the case α = 0. For α = 0, we will understand the
“on-diagonal” relation (3.8) as a limit as |x − y| → 0, thus being left with
proving that such a limit exists. For x, y ∈ R

2, we have
∞∫

0

E
[
e−λF (x,y,t,t)

] e− |y−x|2
2t

2πt
dt

�
∞∫

0

E
[
e−λF (x,y,t,t)1{F (x,y,t,t)�1}

] e− |y−x|2
2t

2πt
dt

� e−λ

∞∫

0

E
[
1{F (x,y,t,t)�1}

] e− |y−x|2
2t

2πt
dt

Therefore, by Fatou’s Lemma and for δ arbitrarily small

lim inf
|x−y|→0

∞∫

0

E[e−λF (x,y,t,t)]
e− |y−x|2

2t

2πt
dt � e−λ

∞∫

0

E[1{F (x,x,t,t)�1−δ}]
1

2πt
dt.

Here, we have used the fact that the mapping (x, y) 
→ F (x, y, t, t) is con-
tinuous in law. Since the function x 
→ 1{x�1} is not continuous, we may
estimate from below this function with a continuous piecewise linear func-
tion ϕ such that ϕ(x) = 1 for x � 1 − δ and ϕ(x) = 0 for x � 1, thus
the presence of a small δ in the above relation. By noticing that, for all
x ∈ R

2, limt→0 E[1{F (x,x,t,t)�1−δ}] = 1, we deduce that for all x

∞∫

0

E[1{F (x,x,t,t)�1−δ}]
1

2πt
dt = +∞.

The proof of the case α = 0 follows.
Now, we have to treat the case α > 0. If we can prove that

E[F (x, y, t, t)αe−λF (x,y,t,t)] � Ctε (3.9)
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for some ε > 0 and all y in a neighborhood of x and t � 1, then the part in
the right-hand side of (3.8) corresponding to

1∫

0

E[F (x, y, t, t)αe−λF (x,y,t,t)]
e− |y−x|2

2t

2πt
dt

is continuous on the diagonal and

1∫

0

E[F (x, x, t, t)αe−λF (x,x,t,t)]
1

2πt
dt < +∞. (3.10)

To prove (3.9), it is enough to investigate the quantity E[F (x, y, t, t)α] (just
bound to the exponential term by 1). By using the time reversal symmetry of
the Brownian bridge and the sub-additivity of the mapping x 
→ xα, we get

E[F (x, y, t, t)α] � E[F (x, y, t, t/2)α] + E[F (y, x, t, t/2)α].

Therefore, it suffices to investigate E[F (y, x, t, t/2)α] (or equivalently
E[F (x, y, t, t/2)α]). We will use the fact that the law of the Brownian bridge
on [0, t/2] looks like the Brownian motion (see Lemma 3.1).

Indeed, using Lemma 3.1, we deduce that, for some constant C which
does not depend on t or |y − x| � 1, we have

E[F (y, x, t, t/2)α]e− |y−x|2
2t � CEy[F (y, t/2)]α

� C

⎛

⎜
⎝Ey

⎡

⎢
⎣

t/2∫

0

eγX(By
s )− γ2

2 E[X2] ds

⎤

⎥
⎦

⎞

⎟
⎠

α

= C

⎛

⎜
⎝

t/2∫

0

∫

R2

ps

(
y, z
)
M(dz) ds

⎞

⎟
⎠

α

.

We state the following two Lemmas which we will prove after

Lemma 3.8. We have

t/2∫

0

ps

(
y, z
)
ds � C

(
1 + ln

t1/2

|y − z|
)
1{|y−z|�t1/2} + Ce− |z−y|2

t 1{|y−z|�t1/2}.

and also

Lemma 3.9. Let ε > 0 and R > 0. We set β = 2(1 − γ
2 )2 > 0. Almost surely

in X, there exists a random constant C > 0 such that

sup
x∈[−R,R]2

M(B(x, r)) � Crβ−ε, ∀r ∈]0, 1[.
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Now choose R > |x| + 2 and ε = β/2. We use these two Lemmas to get
for |y − x| � 1 and t � 1

∫

R2

(
1 + ln

t1/2

|y − z|
)
1{|y−z|�t1/2}M(dz)

�
∑

n�1

∫

R2

(
1 + ln

t1/2

|y − z|
)
1{t1/22−n�|y−z|�t1/22−n+1}M(dz)

�
∑

n�1

(1 + n ln 2)M(B(y, t1/22−n+1))

� t
β
4 C
∑

n�1

(1 + n ln 2)2−nβ/2.

Now, we focus on the area |y − z| � t1/2. Let δ ∈]0, 1/2[. We have
∫

R2

e− |z−y|2
t 1{|y−z|�t1/2}M(dz)

� M(B(y, t1/2−δ)) +
∫

{|y−z|�t1/2−δ,|z−x|�4}

e− |z−y|2
t M(dz)

+
∫

{|z−x|�4}

e− |z−y|2
t M(dz)

� Ct(1/2−δ)β/2 + e−t−2δ

M(B(x, 4)) +
∫

{|z−x|�4}

e− |z−x|2
2t M(dz)

� Ct(1/2−δ)β/2 + e−t−2δ

M(B(x, 4)) + Ct2
∫

R2

e− |z−x|2
2 M(dz)

where the constant C does not depend on t � 1. Almost surely in X, the
right-hand side of the above inequality is finite and is less than Ctξ for some
ξ > 0, for all t � 1 and for some random constant C. By gathering all the
above considerations, we deduce

E[F (x, y, t, t)α] � Ctαξ

for some random constant C which is finite for |y − x| � 1 and t � 1.
It remains to prove that the quantity

∞∫

1

E[F (x, y, t, t)αe−λF (x,y,t,t)]
e− |y−x|2

2t

2πt
dt (3.11)

is continuous and finite on the diagonal. Once again, we can use the absolute
continuity of the law of the Brownian bridge for |y − x| � 1 to see that it
suffices to prove
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∞∫

1

sup
|y−x|�1

Ey[F (y, t/2)αe−λF (y,t/2)]
1

2πt
dt < +∞.

By noticing that uαe−λu � C for u � 0 and some constant C, we deduce that
it suffices to prove

∞∫

1

sup
|y−x|�1

Ey[e−λF (y,t/2)]
1

2πt
dt < +∞. (3.12)

Step one: We first prove that
∫∞
1

Ex[e−λF (x,t/2)] 1
2πtdt < +∞.

Without loss of generality, we may assume x = 0. In this first step, for
the sake of clarity, we skip the dependency on the starting point x in F (x, t)
and simply write F (t) for F (0, t). We will also write F (s, t) for F (t) − F (s).

We first assume that X is decorrelated at distance 1, meaning that
E[X(x)X(y)] = 0 for |x − y| � 1 (of course, this formal relation E[X(x)X(y)]
= 0 is not rigorous as the field X does not make sense pointwise, but it is
straightforward to see how to make sense of it). We introduce the following
family of increasing stopping times (Tn, T̃n) for n � 1

Tn = inf{t � T̃n−1, |Bt| = 3n}, T̃n = inf{t � Tn, |Bt − BTn
| � 1},

where by convention T0 = T̃0 = 0. We set N(t) = sup{n, ; T̃n � t}. Now, we
have that

EXE0
[
e−λF (0,t)

]
� EXE0

[
ΠN(t)

n=1 e−λF (Tn,T̃n)
]

= E0
[
ΠN(t)

n=1E
X
[
e−λF (Tn,T̃n)

]]

= E0

[

ΠN(t)
n=1E

X

[

e−λ
∫ T̃n
Tn

eγX(Bt−BTn
)− γ2

2 E[X2] dt

]]

.

We will exploit the fact that the Brownian motions (Bt − BTn
)t∈[Tn,T̃n] are

independent (note however that they are not independent of N(t)). Now, fix
ε > 0. We have

E
0

[

Π
N(t)
n=1E

X

[

e−λ
∫ T̃n
Tn

e
γX(Bt−BTn

)− γ2
2 E[X2]

dt

]]

�P
0(N(t)� t

1
2 −ε)+E

[

1
N(t)�t

1
2 −εΠ

t
1
2 −ε

n=1 E
X

[

e−λ
∫ T̃n
Tn

e
γX(Bt−BTn

)− γ2
2 E[X2]

dt

]]

� P
0

(

sup
0�s�t

|Bs| � (3t + 1)
1
2 −ε

)

+E
0

[

Πt
1
2 −ε

n=1 E
X

[

e−λ
∫ T̃n
Tn

e
γX(Bt−BTn

)− γ2
2 E[X2]

dt

]]

� e−ctε

+

(

E
X

[

E
0

[

e−λ
∫T
0 e

γX(Bt)− γ2
2 E[X2]

dt

]])t
1
2 −ε
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where T = inf{t � 0, |Bt| = 1}. We conclude with the help of the following

strict inequality EX [E0[e−λ
∫ T
0 eγX(Bt)− γ2

2 E[X2]dt]] < 1.
We can get rid of the restriction that the field X be decorrelated at

distance 1 by using Kahane’s convexity inequalities [20]. Indeed, observe that
the covariance kernel of the field X is then dominated by that of X ′ +Y where
X ′ is a centered Gaussian distribution with covariance kernel given by

E[X ′(x)X ′(y)] = ln+
1

|y − x|

and Y is a centered Gaussian random variable with variance sup
R2×R2 |g(x, y)|

and independent of X ′ (and of B too). The field X ′ is thus decorrelated at
distance 1. We can then proceed along the same line as above and to obtain
in the end an estimate of the type

EXE0[e−λF (0,t)] � EY

[
(EX′

E0[e−λeY Z ])t
1
2 −ε

]

where Z =
∫ T

0
eγX′(Bt)− γ2

2 E[(X′)2]dt. We introduce an i.i.d. sequence of random
variables (Zi)

1�i�t
1
2 −ε/2

with law Z and we denote by E expectation with
respect to this sequence. We have

EY

[
(EX′

E0[e−λeY Z ])t
1
2 −ε

]
� E

[

EY

[

e−λeY ∑t
1
2 −ε

/2
n=1 Zn

]]

� CE

⎡

⎣ 1
∑t

1
2 −ε/2

n=1 Zn

⎤

⎦

� C

tα

for some α > 0. This concludes step one.

Step two: We show that
∫∞
1

sup|y−x|�1 E
y[e−λF (y,t/2)] 1

2πtdt < +∞.

Now, we use the following coupling Lemma (this is a slight variant of the
coupling Lemma used in [16])

Lemma 3.10. Fix y0 ∈ R
2 and let us start a Brownian motion By0 from y0.

Let us consider another independent Brownian motion B starting from 0 and
denote by By, for some y ∈ R

2, the Brownian motion By = y + B. Let us
denote by τy

i (i = 1 or 2) the first time at which the ith components of By0

and By coincide

τy
1 = inf

{
u > 0;B1,y0

u = B1,y
u

}
, τy

2 = inf
{
u > 0;B2,y0

u = B2,y
u

}



Vol. 15 (2014) Spectral Dimension of Liouville Quantum Gravity 2295

We set τy0,y = sup(τy
1 , τy

2 ). The random process B
y0,y

defined by

B
y0,y

t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
B1,y0

t , B2,y0
t

)
if t � min (τy

1 , τy
2 )

(
B1,y

t , B2,y0
t

)
if τy

1 < t � τy,y0 or
(
B1,y0

t , B2,y
t

)

if τy
2 < t � τy0,y

(
B1,y

t , B2,y
t

)
if τy0,y < t.

is a new Brownian motion on R
2 starting from y0 and coincides with By for

all times t > τy0,y. Furthermore, as y → y0, we have for all η > 0

∀η > 0, lim
y→y0

P(τy0,y > η) = 0, sup
|y−y0|�1

Ey[ln τy0,y] < +∞.

Proof. The proof of this Lemma is elementary. We use first the symmetries of
the law of the Brownian motion to deduce that the law of τy0,y only depends
on |y − y0|. So, it suffices to compute the law when y − y0 = (|y − y0|, 0), in
which case τy0,y = τy

1 . Then we use the standard stopping time argument to
the exponential martingale associated with the Brownian motion to prove that

E

[
e
−λ τy0,y

|y−y0|2
]

= e−√
2λ.

The random variable τy0,y

|y−y0|2 is thus a stable law with stability index 1/2
and its law is independent of y, y0. The proof of this Lemma is then easily
completed. �

We set x̄ = x + (1, 1). Let y ∈ x + [0, 1]2. In fact, by a straightforward
generalization of the above procedure, one can couple two Brownian motions
By, Bx̄ starting from y and x̄ to a Brownian motion Bx (starting from x) such
that τx,y � τx,x̄. Indeed, in the above Lemma, take the same driving Brownian
motion for By and Bx̄. Hence, we get

sup
y∈x+[0,1]2

Ey[e−λF (y,t/2)]

� Ex̄
[
1{τx,x̄>t/2} + 1{τx,x̄�t/2}EBx̄

τx,x̄

[
e−λF(Bx̄

τx,x̄ ,t/2−τx,x̄)
]]

.

From this, we deduce the following bound
∞∫

1

sup
|y−x|�1

Ey[e−λF (y,t/2)]
dt

t

�
∞∫

1

Ex̄
[
1{τx,x̄>t/2} + 1{τx,x̄�t/2} EBx̄

τx,x̄

[
e−λF(Bx̄

τx,x̄ ,t/2−τx,x̄)
]] dt

t

� Ex̄[ln sup(τx,x̄, 1)] + Ex̄

⎡

⎣
∞∫

2τx,x̄

EBx̄
τx,x̄ [e−λF (Bx̄

τx,x̄ ,t/2−τx,x̄)]
dt

t

⎤

⎦ .
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By stationarity of the field X and applying step one, we get the existence of
C,χ > 0 (independent from everything) such that

EXEBx̄
τx,x̄ [e−λF (Bx̄

τx,x̄ ,t/2−τx,x̄)] � C

(t/2 − τx,x̄ + 1)χ
.

Therefore, we get

EX

⎡

⎣Ex̄

⎡

⎣
∞∫

2τx,x̄

EBx̄
τx,x̄

[
e−λF (Bx̄

τx,x̄ ,t/2−τx,x̄)
]
⎤

⎦ dt

t

⎤

⎦

= Ex̄

⎡

⎣
∞∫

2τx,x̄

EX
[
EBx̄

τx,x̄

[
e−λF (Bx̄

τx,x̄ ,t/2−τx,x̄)
]] dt

t

⎤

⎦

� CEx̄

⎡

⎣
∞∫

2τx,x̄

dt

t(t/2 − τx,x̄ + 1)χ

⎤

⎦

� C,

and hence the desired result. �

We now give the proofs of the intermediate Lemmas

Proof of Lemma 3.8. Let us set

fy,t(z) =

t/2∫

0

ps(y, z) ds =

t/2∫

0

e− |z−y|2
2u

du

2πu
=

t
2|y−z|2∫

0

e− 1
2u

du

2πu
.

If |z − y|2 � t, we have

fy,t(z) �

1
2∫

0

e− 1
2u

du

2πu
+

t
2|y−z|2∫

1
2

du

2πu

� C

(
1 + ln

t1/2

|y − z|
)

.

If |z − y|2 � t, we have

fy,t(z) =
1
4π

+∞∫

2 |z−y|2
t

e− u
2 du

� Ce− |z−y|2
t ,

which completes the proof. �

Proof of Lemma 3.9. See [16] or also [4] for even finer estimates. �
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