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Structural Stability for Two Convection
Models in a Reacting Fluid with Magnetic
Field Effect

Akil J. Harfash

Abstract. This paper deals with two fundamental models for convection
in a reacting fluid and porous medium with magnetic field effect. We
demonstrate that the solution depends continuously on changes in the
chemical reaction and the electrical conductivity coefficients. The contin-
uous dependence is unconditional in two dimensions but conditional in
three dimensions.

1. Introduction

There has been much recent interest in obtaining stability estimates for solu-
tions to physical problems in partial differential equations where changes in
coefficients are allowed, or even the equations themselves change. This type of
stability, which is often called structural stability to distinguish it from con-
tinuous dependence on the initial data, is studied for example in Ames and
Payne [1–4], Franchi and Straughan [15–18], Lin and Payne [31–35], Payne and
Song [41–43], and Payne and Straughan [45–49], Payne et al. [44], Straughan
and Hutter [60], Harfash [24,26], and also occupies attention in the books of
Bellomo and Preziosi [6], Ames and Straughan [5] and Straughan [58]. Such
stability estimates are fundamental to analysing whether a small change in a
coefficient or other data leads to a drastic change in the solution. A concrete
example of structural stability, and in particular continuous dependence on
modelling, is provided in the paper by Payne and Straughan [45], where it is
shown how a solution to the Stokes equation for slow viscous flow approximates
that to the Navier–Stokes equations. Thus, questions of continuous dependence
on the model itself are fundamental and in many ways are as important as a
study of stability itself.

The effect of the magnetic field on the onset of instability in fluid and
porous medium layers and the effect of magnetic coefficient on the solution have
received considerable attention. Harfash and Straughan [27] consider convec-
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tion of a reacting solute in a viscous incompressible fluid occupying a horizon-
tal plane layer subject to a vertical magnetic field. Then in [59], they study
a model for Poiseuille flow instability in a porous medium of Brinkman type
with magnetic field effect, in particular, they analyse the effect of slip bound-
ary conditions on the onset of instability. Harfash [25] study the problem of
convection in a variable gravity field with magnetic field effect using methods
of linear instability theory and nonlinear energy theory. Then in [23], studies
double-diffusive convection in a reacting fluid in the presence of a concentration
field, a magnetic field, and thermal sources.

This paper continues the investigation of continuous dependence proper-
ties of models introduced by Harfash and Straughan in [23,27]. The first model
which is studied in this paper is the problem of convection with a dissolved
reacting fluid layer and a vertically imposed magnetic field

vi,t + vjvi,j = −p, i + υΔvi + gic+ j × B, (1.1)
vi,i = 0, (1.2)

c,t + vi c, i = DΔc−K1c, (1.3)

vi = 0,
∂c

∂n
= 0, on ∂Ω, (1.4)

vi(x, 0) = ψi(x), c(x, 0) = f1(x), in Ω, (1.5)

where v is the velocity vector, c is the concentration field, p is pressure field, D
is the diffusion coefficient, gi is the gravity vector, B is the magnetic induction
field, j is the current and K1 is the chemical reaction rate. This system holds
on a bounded spatial domain Ω in R

3 with boundary ∂Ω sufficiently smooth to
allow applications of the divergence theorem. Standard indication notation is
employed with Δ denoting the Laplacian. The functions ψi and f1 are assumed
to be smooth functions.

Recently, this model has received considerable interest owing to many
real-life applications. The convective instability created by a top heavy layer of
fluid containing a solute is one with many applications in atmospheric physics,
oceanography, and in pollution where the solute can cover a city and linger for
long periods of time. Models for such behaviour were developed by Franchi and
Straughan [19] and they completed a detailed instability analysis of their highly
nonlinear models. In a separate development, Hayat and Nawaz [28] studied
stagnation point flow in a rotating frame for a fluid containing a reacting solute
with a superimposed magnetic field acting. Since convection in chemically
reacting fluids has been a topic of much recent interest, cf. Malashetty and
Biradar [37], Rahman and Al-Lawatia [50], and electro-magnetic field effects on
such processes have likewise attracted much attention, cf. Eltayeb et al. [11,12],
Kaloni and Mahajan [29], Maehlmann and Papageorgiou [38], Nanjundappa
et al. [39], Reddy et al. [51], Shivakumara et al. [55,56], Sunil et al. [62], thus
we believe that a study of (1.1)–(1.5) is very important.

The second model which is studied in this paper is the problem of dou-
ble diffusive convection with a dissolved reacting fluid layer and a vertically
imposed magnetic field,
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vi,t + vjvi,j = −p, i + υΔvi + hiT + gic+ j × B, (1.6)
vi,i = 0, (1.7)

T,t + vi T, i = KΔT, (1.8)
c,t + vi c, i = DΔc−K1c, (1.9)

vi = 0,
∂c

∂n
= 0,

∂T

∂n
= 0, on ∂Ω, (1.10)

vi(x, 0) = ψi(x), c(x, 0) = f1(x), T (x, 0) = f2(x), in Ω, (1.11)

where v is the velocity vector, c is the concentration field, T is the tempera-
ture field, p is pressure field, D is the diffusion coefficient, B is the magnetic
induction field, j is the current, K1 is the chemical reaction rate and K is the
thermal diffusivity. This system holds on a bounded spatial domain Ω in R

3

with boundary ∂Ω sufficiently smooth to allow applications of the divergence
theorem. The functions ψi, f1 and f2 are assumed to be smooth functions.
In (1.6), we have employed a Boussinesq approximation in the sense that the
density is linear in T and c so that the gravity term may be written as

−kig(αT − αcc)

where α and αc are the thermal and salt expansion coefficients respectively,
and g is gravity, cf. Straughan [57] page 102. Then gi = gkiαc and hi = −gkiα
are gravity coefficients, where ki = (0, 0, 1).

The problem of double diffusive convection in fluid and porous media
has attracted considerable interest during the last 50 years. This is because
of its wide range of applications, for instant modeling geothermal reservoirs
[9,22,54]. Bioremediation, where micro-organisms are introduced to change the
chemical composition of contaminants, is a very topical area, cf. Celia et al.
[7], Chen et al. [8], Suchomel et al. [61]. Contaminant movement or pollution
transport is a further area of multi-component, flow in porous media which
is of much interest in environmental engineering, cf. Curran and Allen [10],
Ewing and Weekes [13], Franchi and Straughan [19]. Other very important and
topical areas of double diffusive occur in oil reservoir simulation, e.g. Ludvigsen
et al. [36], and salinization in desert-like areas, Gilman and Bear [21]. Solar
ponds are a particularly promising means of harnessing energy from the Sun
by preventing convective overturning in thermohaline system by salting from
below, cf. Leblanca et al. [30] and Nie et al. [40].

To make the convective overturning instability problem tractable, we
employ the quasi-static magnetohydrodynamics MHD approximation of Galdi
and Straughan [20]. This assumes that the electric field, E, may be derived
from a potential E = −∇χ. The magnetic field H and the electric field satisfy
Maxwell’s equations, cf. Roberts [53], Fabrizio and Morro [14], so that

curlH = j, curlE = −∂B
∂t
.

Here, B = μH and then Galdi and Straughan [20] show that if the vertical
component in the perturbed motion is zero in the limit magnetic Prandtl
number Pm = ν/η → 0, where η is the resistivity, then j×B in equation (1.1)
and (1.6) may be replaced by
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j × B = σ(v × B0) × B0,

where σ is the electrical conductivity and B0 = (0, 0, B0) is a magnetic field
with only the vertical component. This obviates the need to employ the full
MHD equations which also involve an equation for the evaluation of the mag-
netic field, H, cf. Rionero and Mulone [52].

In both models, we establish that the solution depends continuously on
change in the chemical reaction and electrical conductivity coefficients. This is
extremely important, because if a small change in a coefficient in an equation,
or in the boundary data, or in the equations themselves, will induce a dramatic
change in the solution and it may well say something about how accurate the
model is as a vehicle to describe flow in fluid layer.

The plan of the paper is as follows. In Sect. 2, we study the continuous
dependence for the model of convective motion with a dissolved reacting fluid
layer. In Sect. 3, we investigate the continuous dependence for the model of
double diffusive convection with a dissolved reacting fluid layer.

2. Continuous Dependence for the Problem of Convection
with a Dissolved Reacting Fluid Layer and a Vertically
Imposed Magnetic Field

Lemma 2.1. If c(x, 0) and T (x, 0) ∈ L∞(Ω), then

‖c(x, t)‖∞ ≤ c∞, (2.1)
‖T (x, t)‖∞ ≤ T∞, (2.2)

where c∞ = ‖c(x, 0)‖∞, T∞ = ‖T (x, 0)‖∞.

Proof. Multiply (1.3) by cp−1 for p > 1 (where we assume the concentration
is scaled to be non-negative, otherwise p is chosen as an even integer). Thus,

d
dt

∫

Ω

cpdx = −p(p− 1)
∫

Ω

cp−2|∇c|2dx−K1p

∫

Ω

cpdx. (2.3)

We may integrate this and drop non-positive terms on the right to deduce⎧⎨
⎩
∫

Ω

cpdx

⎫⎬
⎭

1/p

≤
⎧⎨
⎩
∫

Ω

cp0dx

⎫⎬
⎭

1/p

. (2.4)

Let now p → ∞ in (2.4) to find the desired result. Similar argument can be
used to prove (2.2). �
Lemma 2.2. If c(x, 0) ∈ L2(Ω), then

‖c(x, t)‖2 ≤ cl, (2.5)

where cl = ‖c(x, 0)‖2.

Proof. Multiply (1.3) by c and integrating over Ω, we have
d
dt

‖c‖2 = −2D‖∇c‖2 − 2K1‖c‖2.
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We may integrate this and drop non-positive terms on the right to deduce

‖c(x, t)‖2 ≤ ‖c(x, 0)‖2.

�

Lemma 2.3. If vi(x, 0) ∈ L2(Ω), then

‖v(x, t)‖2 ≤ vl, (2.6)

where vl = (cl + ‖v(x, 0)‖2)eT .

Proof. Multiply (1.1) by vi and integrating over Ω. Using the Cauchy–Schwarz
inequality, arithmetic-geometric mean inequality and drop a non-positive term
on the right, we have

1
2

d
dt

‖v‖2 ≤
∫

Ω

givicdx ≤ ‖v‖‖c‖ ≤ 1
2
‖v‖2 +

cl
2
.

We may integrate this, to get

‖v‖2 ≤ cl(et − 1) + et‖v(x, 0)‖2

≤ (cl + ‖v(x, 0)‖2)et ≤ (cl + ‖v(x, 0)‖2)eT.

�

Lemma 2.4. If vi(x, 0) ∈ L2(Ω) and c(x, 0) ∈ L2(Ω), then

∫

Ω

vi,jvi,j dx ≤ 1
υ

⎡
⎢⎣v1/2

l

⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2

+ (vlcl)1/2

⎤
⎥⎦. (2.7)

Proof. Multiply (1.1) by vi and integrating over Ω and drop a non-positive
term on the right, we have∫

Ω

vi,tvi dx ≤ −υ
∫

Ω

vi,jvi,j dx+
∫

Ω

givicdx.

Hence, employing (2.5) and (2.6) in the above inequality, we find, with use of
the Cauchy–Schwarz inequality,
∫

Ω

vi,jvi,j dx ≤ 1

υ

⎡
⎣−

∫

Ω

vi,tvi dx +

∫

Ω

givic dx

⎤
⎦

≤ 1

υ

⎡
⎢⎣
⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vivi dx

⎞
⎠

1/2

+

⎛
⎝
∫

Ω

vivi dx

⎞
⎠

1/2⎛
⎝
∫

Ω

c2 dx

⎞
⎠

1/2
⎤
⎥⎦

≤ 1

υ

⎡
⎢⎣v

1/2
l

⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2

+ (vlcl)
1/2

⎤
⎥⎦.

�
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We now derive an a priori bound for vi,t. Here, we have two different
values for the bound of vi,t. This is because we split the proof into two parts
depending on the availability of the Sobolev inequalities. For two dimensions
case, we have the following inequality [57]:

∫

Ω

v4 dx ≤
⎛
⎝
∫

Ω

v2 dx

⎞
⎠
⎛
⎝
∫

Ω

v,i v,i dx

⎞
⎠, (2.8)

while in three dimensions, we cannot use the above inequality, thus we will use
the following inequality [57]:

∫

Ω

v4 dx ≤ β

⎛
⎝
∫

Ω

v2 dx

⎞
⎠

1/2⎛
⎝
∫

Ω

v,i v,i dx

⎞
⎠

3/2

, (2.9)

Lemma 2.5. For two dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω),
then

∫

Ω

vi,tvi,t dx ≤ vtl(t), (2.10)

where

vtl(t) =

(
R2

√
Φ(0)

R1

√
Φ(0)(e−R2t − 1) +R2e−R2t

)2

,

Φ = Φv + Φc, Φv =
∫

Ω

vi,tvi,t dx Φc =
∫

Ω

c,tc,t dx,

R1 =
v
1/2
l

2υ2
, R2 =

v
1/2
l c

1/2
l

2υ2
+
c 2

∞
2D

+ 1.

Proof.

Φc,t = 2
∫

Ω

c,tc,tt dx = 2
∫

Ω

c,t[−vi c, i +DΔc−K1c],t dx

= 2D
∫

Ω

c,tΔc,t dx− 2K1

∫

Ω

c,tc,t dx− 2
∫

Ω

c,tvi,tc,i dx− 2
∫

Ω

c,tvic,it dx

≤ −2D
∫

Ω

c,itc,it dx+ 2
∫

Ω

c,itvi,tcdx

= −2D
∫

Ω

c,itc,it dx+ 2c∞
∫

Ω

c,itvi,t dx
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≤ −2D
∫

Ω

c,itc,it dx+ 2c∞

⎛
⎝
∫

Ω

c,itc,it dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2

≤ −2D
∫

Ω

c,itc,it dx+ 2D
∫

Ω

c,itc,it dx+
c2∞
2D

∫

Ω

vi,tvi,t dx.

Thus, we have

d
dt

Φc ≤ c2∞
2D

Φv. (2.11)

Next, we will perform the same work for Φv,t,

Φv,t = 2
∫

Ω

vi,tvi,tt dx

= 2
∫

Ω

vi,t

[−vjvi,j − p, i + υΔvi + gic+ σb20(kiw − vi)
]
,t

dx

= −2υ
∫

Ω

vi,jtvi,jt dx− 2
∫

Ω

vi,tvj,tvi,j dx

+ 2
∫

Ω

givi,tct dx+ 2σb20

∫

Ω

(kiw,tvi,t − vi,tvi,t) dx

≤ −2υ
∫

Ω

vi,jtvi,jt dx− 2
∫

Ω

vi,tvj,tvi,j dx+ 2
∫

Ω

givi,tct dx

≤ −2υ
∫

Ω

vi,jtvi,jt dx+2

⎛
⎝
∫

Ω

vi,j vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(vi,tvi,t)2 dx

⎞
⎠

1/2

+Φv+Φc.

where k = (0, 0, 1).
Now, the arithmetic-geometric mean inequality is used on the right-hand

side together with the Sobolev inequality (2.8) and (2.7) to find

Φv,t ≤ −2υ
∫

Ω

vi,jtvi,jt dx

+ 2

⎛
⎝
∫

Ω

vi,j vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vi,jtvi,jt dx

⎞
⎠

1/2

+Φv+Φc

≤ 1
2υ

Φv

∫

Ω

vi,jvi,j dx+Φv+Φc ≤ 1
2υ2

Φv

[
v
1/2
l Φ1/2

v + (vlcl)1/2
]
+Φv+Φc.

(2.12)
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Now, summing (2.11) and (2.12), we have

d
dt

(Φv + Φc) ≤ R1Φ3/2
v +R2Φv + Φc

≤ R1Φv(Φv + Φc)1/2 +R2(Φv + Φc)

≤ R1Φv(Φv + Φc)1/2 +R1Φc(Φv + Φc)1/2 +R2(Φv + Φc)
d
dt

(Φv + Φc) ≤ R1(Φv + Φc)3/2 +R2(Φv + Φc). (2.13)

Integrating (2.13), we find the desired result (2.10) for two dimensions case. �

Lemma 2.6. For three dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω),
then ∫

Ω

vi,tvi,t dx ≤ vtl(t), (2.14)

where

vtl(t) =
R4Φ(0)

R3Φ(0)(e−R4t − 1) +R4e−R4t

Φ = Φv + Φc, R3 =
27vlβ

4

64υ5
, R4 =

27vlclβ
4

64υ5
+
c 2

∞
2D

+ 1.

It is clear that for three dimensions the bound (2.14) is valid just for t <
1

R4
ln(1+ R4

R3Φ(0) ), thus we have conditional continuous dependence in this case.

Proof. Using similar technique which is used for two dimensions case, we have

d
dt

Φc ≤ c2∞
2D

Φv, (2.15)

and

Φv,t ≤ −2υ
∫

Ω

vi,jtvi,jt dx+ 2

⎛
⎝
∫

Ω

vi,j vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(vi,tvi,t)2 dx

⎞
⎠

1/2

+ Φv + Φc.

Next, using the Sobolev inequalities (2.9), Young’s inequality and (2.7) we
derive

Φv,t ≤ −2υ
∫

Ω

vi,jtvi,jt dx

+ 2β

⎛
⎝
∫

Ω

vi,j vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/4⎛
⎝
∫

Ω

vi,jtvi,jt dx

⎞
⎠

3/4

+Φv+Φc

≤ 27β4

128υ3
Φv

⎛
⎝
∫

Ω

vi,jvi,j dx

⎞
⎠

2

+ Φv + Φc
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≤ 27β4

128υ5
Φv[v1/2

l Φ1/2
v + (vlcl)1/2]2 + Φv + Φc

≤ 27β4

64υ5
Φv[vlΦv + vlcl] + Φv + Φc. (2.16)

Now, summing (2.15) and (2.16), we have
d
dt

(Φv + Φc) ≤ R3Φ2
v +R4Φv + Φc ≤ R3(Φ2

v + 2ΦvΦc + Φ2
v) +R4(Φv + Φc).

Thus, we deduce
d
dt

(Φv + Φc) ≤ R3(Φv + Φc)2 +R4(Φv + Φc). (2.17)

Upon integration of (2.17), we find the desired result (2.14) for three dimen-
sions case. �
2.1. Continuous Dependence on σ

This section is devoted to establishing continuous dependence of the solution
on σ. Let (vi1, c1, p1) and (vi2, c2, p2) be two solutions of (1.1)–(1.3) with the
same data (1.4), (1.5), but with different electrical conductivity of the fluid σ1

and σ2. Now set

ui = vi1 − vi2, φ = c1 − c2, π = p1 − p2, σ = σ1 − σ2. (2.18)

The difference in the two solutions (ui, φ, π) then satisfies

ui,t + v1jui,j + ujv2i,j = −π, i + υΔui + giφ+ σb20[(v1 × k) × k]i
+σ2b

2
0[(u× k) × k]i, (2.19)

ui,i = 0, (2.20)
φ,t + v1i φ, i + ui c2,i = DΔφ−K1φ, (2.21)

with the boundary and initial conditions

ui = 0,
∂φ

∂n
= 0, on ∂Ω, (2.22)

θ(x, 0) = 0, ui(x, 0) = 0, in Ω. (2.23)

The proof of continuous dependence commences by multiplying (2.19) by ui

and integrating over Ω to find,
d
dt

‖u‖2 = 2
∫

Ω

uiui,t dx

= 2
∫

Ω

ui

[−v1jui,j − ujv2i,j − π, i + υΔui + giφ+ σb20(kiw1 − v1i)

+σ2b
2
0(kiw − ui)

]
dx

≤ −2υ
∫

Ω

ui,jui,j dx− 2
∫

Ω

uiujv2i,j dx+ 2
∫

Ω

giuiφdx

+2σb20

∫

Ω

(kiw1ui − v1iui) dx
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≤ −2υ
∫

Ω

ui,jui,j dx+ 2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(uiui)2 dx

⎞
⎠

1/2

+2

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2⎛
⎝
∫

Ω

φφdx

⎞
⎠

1/2

+ 4σb20v
1/2
l1

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2

,

where vl1 = (cl1 + ‖v1(x, 0)‖2)eT , cl1 = ‖c1(x, 0)‖2 and w,w1 is the third
component of the velocities ui, vi1, respectively. Using the Sobolev inequality
(2.9), arithmetic-geometric mean inequality and (2.7), we obtain

d
dt

‖u‖2 ≤ −2υ
∫

Ω

ui,jui,j dx

+ 2β

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/4⎛
⎝
∫

Ω

ui,jui,j dx

⎞
⎠

3/4

+
∫

Ω

uiui dx+
∫

Ω

φφdx+ σ2b40vl1 +
∫

Ω

uiui dx

≤ 27β4

128υ3
‖u‖2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

2

+ 2‖u‖2 + ‖φ‖2 + σ2b40vl1

≤ 27β4

128υ5
‖u‖2

[
v
1/2
l2 vlt2(t)1/2 + (vl2cl2)1/2

]2
+ 2‖u‖2 + ‖φ‖2 + σ2b40vl1

≤ 27β4

64υ5
‖u‖2[vl2vlt2(t) + vl2cl2] + 2‖u‖2 + ‖φ‖2 + σ2b40vl1, (2.24)

where vl2 = (cl2 + ‖v2(x, 0)‖2)eT , cl2 = ‖c2(x, 0)‖2, the value vtl1(t) is equal
to the value of vtl(t) which is defined in Lemmas 2.5 and 2.6 at the solution
(vi2, c2, p2). Next, multiply (2.21) by φ and integrate over Ω and using the
Cauchy–Schwarz inequality, arithmetic-geometric mean inequality and (2.1),
we have

d
dt

‖φ‖2 ≤ c 2
2∞

2D
‖u‖2. (2.25)

Let R5(t) = 27β4

64υ5 [vl2vlt2(t)+vl2cl2]+
c 2

2∞
2D +2, and R6(t) =

∫
R5(t)dt. Summing

(2.24) and (2.24), we get

d
dt

(‖u‖2 + ‖φ‖2) ≤ R4(t)(‖u‖2 + ‖φ‖2) + σ2b40vl1. (2.26)

Integrating (2.26), we obtain the continuous dependence inequality on σ

‖u‖2 + ‖φ‖2 ≤ σ2b40vl1

t∫

0

eR5(t)−R5(s)dt. (2.27)
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2.2. Continuous Dependence on K1

In this section, we demonstrate briefly how to establish a continuous depen-
dence result for the chemical reaction rate K1 in (1.1)–(1.3). Let (vi1, c1, p1)
and (vi2, c2, p2) be two solutions of problem (1.1)–(1.3) for different chemical
reaction coefficients K11 and K12, respectively. Then, as previously, (ui, φ, π)
will solve the problem

ui,t + v1jui,j + ujv2i,j = −π, i + υΔui + giφ+ σb20[(u× k) × k]i, (2.28)
ui,i = 0, (2.29)

φ,t + v1i φ, i + ui c2,i = DΔc−K11φ−K1c2, (2.30)

subject to conditions

ui = 0,
∂φ

∂n
= 0, on ∂Ω, (2.31)

θ(x, 0) = 0, ui(x, 0) = 0, in Ω. (2.32)

Multiplying by ui and integrating by parts over Ω, we find

d
dt

‖u‖2 = 2
∫

Ω

uiui,t dx

= 2
∫

Ω

ui

[−v1jui,j − ujv2i,j − π, i + υΔui + giφ+ σb20(kiw − ui)
]

dx

= −2υ
∫

Ω

ui,jui,j dx− 2
∫

Ω

uiujv2i,j dx

+ 2
∫

Ω

giuiφdx+ 2σb20

∫

Ω

(kiw.ui − uiui) dx

≤ −2υ
∫

Ω

ui,jui,j dx+ 2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(uiui)2 dx

⎞
⎠

1/2

+ 2

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2⎛
⎝
∫

Ω

φ2 dx

⎞
⎠

1/2

.

Using the Sobolev inequality (2.9), Young’s inequality and (2.7), we get

d
dt

‖u‖2 ≤ −2υ
∫

Ω

ui,jui,j dx+ 2β

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/4

×
⎛
⎝
∫

Ω

ui,jui,j dx

⎞
⎠

3/4

+
∫

Ω

uiui dx+
∫

Ω

φ2 dx
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≤ 27β4

128υ3
‖u‖2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

2

+ ‖u‖2 + ‖φ‖2

≤ 27β4

128υ5
‖u‖2

[
v
1/2
l2 vlt2(t)1/2 + (vl2cl2)1/2

]2
+ ‖u‖2 + ‖φ‖2

≤ 27β4

64υ5
‖u‖2 [vl2vlt2(t) + vl2cl2] + ‖u‖2 + ‖φ‖2. (2.33)

Next, multiply (2.30) by φ and integrate over Ω to obtain

1
2

d
dt

‖φ‖2 = (uic2, φ,i) −D‖∇φ‖2 −K11‖φ‖2 −K1(φ, c2). (2.34)

Next, the Cauchy–Schwarz and arithmetic-geometric mean inequalities are
employed and then drop a non-positive term on the right to see that

d
dt

‖φ‖2 ≤ c 2
2∞

2D
‖u‖2 +

c 2
2∞

2D
‖φ‖2 + 2DK2

1 . (2.35)

Let R7(t) = (27β4/64υ5)[vl2vlt2(t) + vl2cl2] + (c 2
2∞/2D) + 1, and R8(t) =∫

R7(t)dt. Summing (2.33) and (2.35), we get

d
dt

(‖u‖2 + ‖φ‖2) ≤ R6(t)(‖u‖2 + ‖φ‖2) + 2DK2
1 . (2.36)

An integration yields

‖u‖2 + ‖φ‖2 ≤ 2DK2
1

t∫

0

eR8(t)−R8(s)dt, (2.37)

which is the desired continuous dependence result, thus the continuous depen-
dence for ui and φ follows from (2.37).

3. Continuous Dependence for the Problem of Double Diffusive
Convection with a Dissolved Reacting Fluid Layer
and a Vertically Imposed Magnetic Field

Lemma 3.1. If T (x, 0) ∈ L2(Ω), then

‖T (x, t)‖2 ≤ Tl, (3.1)

where Tl = ‖T (x, 0)‖2.

Proof. The proof of this lemma follows directly using the same argument in
Lemma 2.2. �

Lemma 3.2. If vi(x, 0) ∈ L2(Ω), then

‖v(x, t)‖2 ≤ vl, (3.2)

where vl = (2cl + 2Tl + ‖v(x, 0)‖2)eT .
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Proof. The first step involves multiplying (1.6) by vi and integrating over Ω.
Using the Cauchy–Schwarz inequality, arithmetic-geometric mean inequality
and drop a non-positive term on the right, we have

1
2

d
dt

‖v‖2 =
∫

Ω

givicdx+
∫

Ω

hiviT dx ≤ ‖v‖‖c‖ + ‖v‖‖T‖

≤ 1
2
‖v‖2 + cl + Tl.

We may integrate this, we get

‖v‖2 ≤ (2cl + 2Tl)(et − 1) + et‖v(x, 0)‖2 ≤ (2cl + 2Tl + ‖v(x, 0)‖2)et

≤ (2cl + 2Tl + ‖v(x, 0)‖2)eT .

�

Lemma 3.3. If vi(x, 0) ∈ L2(Ω) and c(x, 0) ∈ L2(Ω), then

∫

Ω

vi,jvi,j dx ≤ 1
υ

⎡
⎢⎣v1/2

l

⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2

+ (vlcl)1/2 + (vlTl)1/2

⎤
⎥⎦. (3.3)

Proof. Multiply (1.6) by vi and integrating over Ω and drop a non-positive
term on the right, we have∫

Ω

vi,tvi dx ≤ −υ
∫

Ω

vi,jvi,j dx+
∫

Ω

givicdx+
∫

Ω

hiviT dx.

Hence, use (2.5), (3.1), (3.2) in this inequality together with the Cauchy–
Schwarz inequality to arrive at

∫

Ω

vi,jvi,j dx ≤ 1
υ

⎡
⎣−

∫

Ω

vi,tvi dx+
∫

Ω

givicdx+
∫

Ω

hiviT dx

⎤
⎦

≤ 1
υ

⎡
⎢⎣
⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vivi dx

⎞
⎠

1/2

+

⎛
⎝
∫

Ω

vivi dx

⎞
⎠

1/2⎛
⎝
∫

Ω

c2 dx

⎞
⎠

1/2

+

⎛
⎝
∫

Ω

vivi dx

⎞
⎠

1/2⎛
⎝
∫

Ω

T 2 dx

⎞
⎠

1/2
⎤
⎥⎦

≤ 1
υ

⎡
⎢⎣v1/2

l

⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2

+ (vlcl)1/2 + (vlTl)1/2

⎤
⎥⎦ .

�

Lemma 3.4. For two dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω),
then
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∫

Ω

vi,tvi,t dx ≤ vtl(t), (3.4)

where

vtl(t) =

(
I2
√

Φ(0)
I1
√

Φ(0)(e−I2t − 1) + I2e−I2t

)2

Φ = Φv + Φc + ΦT , Φv =
∫

Ω

vi,tvi,t dx,

ΦT =
∫

Ω

T,tT,t dx, Φc =
∫

Ω

c,tc,t dx,

I1 =
v
1/2
l

2υ2
, I2 =

(vlcl)1/2 + (vlTl)1/2

2υ2
+
T 2

∞
2K

+
c 2

∞
2D

+ 2.

Proof. Firstly, we observe that

Φc,t = 2
∫

Ω

c,tc,tt dx = 2
∫

Ω

c,t [−vi c, i +DΔc−K1c],t dx

= 2D
∫

Ω

c,tΔc,t dx− 2K1

∫

Ω

c,tc,t dx− 2
∫

Ω

c,tvi,tc,i dx− 2
∫

Ω

c,tvic,it dx

≤ −2D
∫

Ω

c,itc,it dx+ 2
∫

Ω

c,itvi,tcdx

= −2D
∫

Ω

c,itc,it dx+ 2c∞
∫

Ω

c,itvi,t dx

≤ −2D
∫

Ω

c,itc,it dx+ 2c∞

⎛
⎝
∫

Ω

c,itc,it dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2

≤ −2D
∫

Ω

c,itc,it dx+ 2D
∫

Ω

c,itc,it dx+
c2∞
2D

∫

Ω

vi,tvi,t dx,

thus we have

d
dt

Φc ≤ c2∞
2D

Φv. (3.5)

Similar argument can be applied for ΦT to obtain

d
dt

ΦT ≤ T 2
∞

2K
Φv (3.6)
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Next, we will preform similar work for Φv,t,

Φv,t = 2
∫

Ω

vi,tvi,tt dx

= 2
∫

Ω

vi,t

[−vjvi,j − p, i + υΔvi + gic+ hiT + σb20(kiw − vi)
]
,t

dx

= −2υ
∫

Ω

vi,jtvi,jt dx− 2
∫

Ω

vi,tvj,tvi,j dx+ 2
∫

Ω

givi,tct dx

+ 2
∫

Ω

hivi,tTt dx+ 2σb20

∫

Ω

(kiwtvi,t − vi,tvi,t) dx

≤ −2υ
∫

Ω

vi,jtvi,jt dx− 2
∫

Ω

vi,tvj,tvi,j dx

+ 2
∫

Ω

givi,tct dx+ 2
∫

Ω

hivi,tTt dx

≤ −2υ
∫

Ω

vi,jtvi,jt dx

+ 2

⎛
⎝
∫

Ω

vi,j vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(vi,tvi,t)2 dx

⎞
⎠

1/2

+ 2Φv + Φc + ΦT .

Now, we use the Sobolev inequality (2.8), arithmetic–geometric mean inequal-
ity and (3.3), we have

Φv,t ≤ −2υ
∫

Ω

vi,jtvi,jt dx+ 2

⎛
⎝
∫

Ω

vi,j vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/2

×
⎛
⎝
∫

Ω

vi,jtvi,jt dx

⎞
⎠

1/2

+ 2Φv + Φc + ΦT

≤ 1
2υ

Φv

∫

Ω

vi,jvi,j dx+ 2Φv + Φc + ΦT

≤ 1
2υ2

Φv

[
v
1/2
l Φ1/2

v + (vlcl)1/2 + (vlTl)1/2
]

+ 2Φv + Φc + ΦT . (3.7)

Now, summing (3.5), (3.6) and (3.7), we have

d
dt

(Φv + Φc + ΦT ) ≤ I1Φ3/2
v + I2Φv + Φc + ΦT

≤ I1Φv(Φv + Φc + ΦT )1/2 + I2(Φv + Φc + ΦT )

≤ I1Φv(Φv + Φc + ΦT )1/2 + I1Φc(Φv + Φc + ΦT )1/2
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+ I1ΦT (Φv + Φc + ΦT )1/2 + I2(Φv + Φc + ΦT )
d
dt

(Φv + Φc + ΦT ) ≤ I1(Φv + Φc + ΦT )3/2 + I2(Φv + Φc + ΦT ). (3.8)

Upon integration of (3.8), we find the desired result (3.4) for two dimensions
case. �

Lemma 3.5. For three dimensions, if vi,t(x, 0) ∈ L2(Ω) and c,t(x, 0) ∈ L2(Ω),
then

∫

Ω

vi,tvi,t dx ≤ vtl(t), (3.9)

where

vtl(t) =
I4Φ(0)

I3Φ(0)(e−I4t − 1) + I4e−I4t

Φ = Φv + Φc + ΦT , Φv =
∫

Ω

vi,tvi,t dx,

ΦT =
∫

Ω

T,tT,t dx, Φc =
∫

Ω

c,tc,t dx,

I3 =
27vlβ

4

64υ5
, I4 =

27β4(vlcl + vlTl)
32υ5

+
T 2

∞
2K

+
c 2

∞
2D

+ 2.

It is clear that for three dimensions the bound (3.9) is valid just for t <
1
I4

ln(1+ I4
I3Φ(0) ), thus we have conditional continuous dependence in this case.

Proof. Similar argument can be applied for three dimensions case to obtain

d
dt

Φc ≤ c2∞
2D

Φv, (3.10)

d
dt

ΦT ≤ T 2
∞

2K
Φv (3.11)

and

Φv,t ≤ −2υ
∫

Ω

vi,jtvi,jt dx

+ 2

⎛
⎝
∫

Ω

vi,j vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(vi,tvi,t)2 dx

⎞
⎠

1/2

+ 2Φv + Φc + ΦT .

Next, using the Sobolev inequality (2.9), Young’s inequality and (3.3),
we get
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Φv,t ≤ −2υ
∫

Ω

vi,jtvi,jt dx+ 2β

⎛
⎝
∫

Ω

vi,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

vi,tvi,t dx

⎞
⎠

1/4

×
⎛
⎝
∫

Ω

vi,jtvi,jt dx

⎞
⎠

3/4

+ 2Φv + Φc + ΦT

≤ 27β4

128υ3
Φv

⎛
⎝
∫

Ω

vi,jvi,j dx

⎞
⎠

2

+ 2Φv + Φc + ΦT

≤ 27β4

128υ5
Φv[v1/2

l Φ1/2
v + (vlcl)1/2 + +(vlTl)1/2]2 + 2Φv + Φc + ΦT

≤ 27β4

64υ5
Φv[vlΦv + 2(vlcl + vlTl)] + 2Φv + Φc + ΦT . (3.12)

Now, summing (3.10), (3.11) and (3.12), we obtain

d
dt

(Φv + Φc + ΦT ) ≤ I3Φ2
v + I4Φv + Φc + ΦT

d
dt

(Φv + Φc + ΦT ) ≤ I3(Φv + Φc + ΦT )2 + I4(Φv + Φc + ΦT ).
(3.13)

Upon integration of (3.13), we find the desired result (3.9) for three dimensions
case. �

3.1. Continuous Dependence on σ

In this section, we establish continuous dependence on the electrical conductiv-
ity coefficient σ. To do this, let (vi1, T1, c1, p1) and (vi2, T2, c2, p2) be solutions
of (1.6)–(1.9) with the same boundary and initial conditions, but with different
electrical conductivity coefficients σ1 and σ2. Now, we define

ui = vi1 − vi2, θ = T1 − T2, φ = c1 − c2, π = p1 − p2, σ = σ1 − σ2,

(3.14)

Then, (ui, θ, φ, π) is a solution of the problem

ui,t + v1jui,j + ujv2i,j = −π, i+υΔui+hiθ+giφ+ σb20[(v1 × k) × k]i
+σ2b

2
0[(u× k) × k]i, (3.15)

ui,i = 0, (3.16)
θ,t + v1i θ, i + ui T2,i = KΔθ, (3.17)
φ,t + v1i φ, i + ui c2,i = DΔφ−K1φ, (3.18)

subject to the boundary and initial conditions

ui = 0,
∂θ

∂n
= 0,

∂φ

∂n
= 0, on ∂Ω, (3.19)

θ(x, 0) = 0, φ(x, 0) = 0, ui(x, 0) = 0, in Ω. (3.20)

The proof of continuous dependence commences by multiplying (3.15) by ui

and integrating over Ω to find,



2458 A. J. Harfash Ann. Henri Poincaré

d
dt

‖u‖2 = 2
∫

Ω

uiui,t dx

= 2
∫

Ω

ui [−v1jui,j − ujv2i,j − π, i + υΔui + giφ

+hiθ + σb20(kiw1 − v1i) + σ2b
2
0(kiw − ui)

]
dx

≤ −2υ
∫

Ω

ui,jui,j dx− 2
∫

Ω

uiujv2i,j dx+ 2
∫

Ω

giuiφdx

+ 2
∫

Ω

hiuiθ dx+ 2σb20

∫

Ω

(kiw1ui − v1iui) dx

≤ −2υ
∫

Ω

ui,jui,j dx+ 2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(uiui)2 dx

⎞
⎠

1/2

+ 2

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2⎛
⎝
∫

Ω

φ2 dx

⎞
⎠

1/2

+ 2

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2⎛
⎝
∫

Ω

θ2 dx

⎞
⎠

1/2

+ 4σb20v
1/2
l1

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2

,

where vl1 = (2cl1 + 2Tl1 + ‖v(x, 0)‖2)eT , cl1 = ‖c1(x, 0)‖2, Tl1 = ‖T1(x, 0)‖2.
Using the Sobolev inequality (2.9), arithmetic–geometric mean inequality and
(3.3), we obtain

d
dt

‖u‖2 ≤ −2υ
∫

Ω

ui,jui,j dx+ 2β

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/4

×
⎛
⎝
∫

Ω

ui,jui,j dx

⎞
⎠

3/4

+ 3
∫

Ω

uiui dx+
∫

Ω

φ2 dx+
∫

Ω

θ2 dx+ σ2b40vl1

≤ 27β4

128υ3
‖u‖2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

2

+ 3‖u‖2 + ‖φ‖2 + ‖θ‖2 + σ2b40vl1

≤ 27β4

128υ5
‖u‖2[v1/2

l2 vlt2(t)1/2 + (vl2cl2)1/2 + (vl2Tl2)1/2]2

+ 3‖u‖2 + ‖φ‖2 + ‖θ‖2 + σ2b40vl1

≤ 27β4

64υ5
‖u‖2[vl2vlt2(t) + vl2cl2 + vl2Tl2] + 3‖u‖2 + ‖φ‖2 + ‖θ‖2 + σ2b40vl1,

(3.21)
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where vl2 = (2cl2 + 2Tl2 + ‖v2(x, 0)‖2)eT , cl2 = ‖c2(x, 0)‖2, Tl2 = ‖T2(x, 0)‖2,
the value vtl1(t) is equal to the value of vtl(t) which is defined in Lemmas 3.4
and 3.5 at the solution (vi2, T2, c2, p2).

Next, multiply (3.17) and (3.18) by θ and φ, respectively, and integrate
over Ω and using the Cauchy–Schwarz inequality, arithmetic-geometric mean
inequality, we have

d
dt

‖φ‖2 ≤ c 2
2∞

2D
‖u‖2. (3.22)

d
dt

‖θ‖2 ≤ T 2
2∞

2K
‖u‖2. (3.23)

Let I5(t) = (27β4/64υ5)[vl2vlt2(t)+vl2cl2+vl2Tl2]+(c 2
2∞/2D)+(T 2

2∞/2K)+3,
and I6(t) =

∫
I5(t)dt. Summing (3.21), (3.22) and (3.23), we get

d
dt

(‖u‖2 + ‖φ‖2 + ‖θ‖2) ≤ I5(t)(‖u‖2 + ‖φ‖2 + ‖θ‖2) + σ2b40vl1. (3.24)

Upon integration of (3.24), we arrive at the continuous dependence on σ
inequality

‖u‖2 + ‖φ‖2 + ‖θ‖2 ≤ σ2b40vl1

t∫

0

eI6(t)−I6(s)dt. (3.25)

Thus, (3.25) establishes the continuous dependence on the coefficient σ.

3.2. Continuous Dependence on K1

In this section, we show that the solution of the problem (1.6)–(1.9) depends
continuously on the coefficient K1. Let us consider two solutions (vi1, T1, c1, p1)
and (vi2, T2, c2, p2) of (1.6)–(1.9) and have the same initial and boundary data
corresponding to two different nonzero values K11 and K12. Set

ui = vi1 − vi2, θ = T1 − T2, φ = c1 − c2, π = p1 − p2,

K1 = K11 −K12, (3.26)

so that (ui, θ, φ, π) is a solution of the problem

ui = −π, i + υΔui + giφ+ σb20[(u× k) × k]i, (3.27)
ui,i = 0, (3.28)

θt + v1i θ, i + ui T2,i = KΔθ, (3.29)
φt + v1i φ, i + ui c2,i = DΔc−K11φ−K1c2, (3.30)

in Ω × (0,∞), and

ui = 0,
∂θ

∂n
= 0,

∂φ

∂n
= 0, on ∂Ω, (3.31)

θ(x, 0) = 0, φ(x, 0) = 0, ui(x, 0) = 0, in Ω. (3.32)
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The proof of continuous dependence commences by multiplying (3.27) by ui

and integrating over Ω to find ,
d
dt

‖u‖2 = 2
∫

Ω

uiui,t dx

= 2
∫

Ω

ui[−v1jui,j − ujv2i,j − π, i + υΔui + giφ+ hiθ + σb20(kiw − ui)] dx

= −2υ
∫

Ω

ui,jui,j dx− 2
∫

Ω

uiujv2i,j dx

+ 2
∫

Ω

giuiφdx+ 2
∫

Ω

hiuiθ dx+ 2σb20

∫

Ω

(kiw.ui − uiui) dx

≤ −2υ
∫

Ω

ui,jui,j dx+ 2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

(uiui)2 dx

⎞
⎠

1/2

+ 2

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2⎛
⎝
∫

Ω

φ2 dx

⎞
⎠

1/2

+2

⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/2⎛
⎝
∫

Ω

θ2,dx

⎞
⎠

1/2

.

Using the Sobolev inequality (2.9), Young’s inequality and (3.3), we have

d
dt

‖u‖2 ≤ −2υ
∫

Ω

ui,jui,j dx

+ 2β

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

1/2⎛
⎝
∫

Ω

uiui dx

⎞
⎠

1/4⎛
⎝
∫

Ω

ui,jui,j dx

⎞
⎠

3/4

+ 2
∫

Ω

uiui dx+
∫

Ω

φ2 dx+
∫

Ω

θ2 dx

≤ 27β4

128υ3
‖u‖2

⎛
⎝
∫

Ω

v2i,jv2i,j dx

⎞
⎠

2

+ 2‖u‖2 + ‖φ‖2 + ‖θ‖2

≤ 27β4

128υ5
‖u‖2

[
v
1/2
l2 vlt2(t)1/2 + (vl2cl2)1/2 + (vl2Tl2)1/2

]2

+ 2‖u‖2 + ‖φ‖2 + ‖θ‖2

≤ 27β4

64υ5
‖u‖2 [vl2vlt2(t) + 2(vl2cl2 + vl2Tl2)] + 2‖u‖2 + ‖φ‖2 + ‖θ‖2.

(3.33)

Next, multiply (3.29) by θ and (3.30) by φ and integrate over Ω, respectively,
and arithmetic-geometric mean inequality to obtain

d
dt

‖θ‖2 ≤ T 2
2∞

2K
‖u‖2. (3.34)
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Similarly, by multiplying (3.30) by φ and integrate over Ω and using the
Cauchy–Schwarz inequality, arithmetic-geometric mean inequality and drop
a non-positive terms on the right, we have

d
dt

‖φ‖2 ≤ c 2
2∞

2D
‖u‖2 +

c 2
2∞

2D
‖φ‖2 + 2DK2

1 . (3.35)

Let I7(t) = (27β4/64υ5)[vl2vlt2(t)+2(vl2cl2+vl2Tl2)]+(c 2
2∞/2D)+(T 2

2∞/2K)
+ 2, and I8(t) =

∫
I7(t)dt. Summing (3.33), (3.34), and (3.35), we get

d
dt

(‖u‖2 + ‖φ‖2 + ‖θ‖2) ≤ I7(t)(‖u‖2 + ‖φ‖2) + 2DK2
1 . (3.36)

An integration of (3.36) leads to

‖u‖2 + ‖φ‖2 + ‖θ‖2 ≤ 2DK2
1

t∫

0

eI8(t)−I8(s)dt. (3.37)

We thus conclude that the nonzero solutions of double diffusive convection
problem depend continuously on the effective chemical reaction coefficient.

The differences between the estimates (2.27) and (3.25) or between the
estimates (2.37) and (3.37) are mainly in the coefficients involving the integrals
from 0 to t. The same kind of continuous dependence is achieved in both cases.
The situation would be very different if one were to consider stability problems
where a fluid layer was heated below and simultaneously salted below.
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