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Semiclassics for Particles with Spin
via a Wigner–Weyl-Type Calculus

Omri Gat, Max Lein and Stefan Teufel

Abstract. We show how to relate the full quantum dynamics of a spin-1/2

particle on R
d to a classical Hamiltonian dynamics on the enlarged phase

space R
2d ×S

2 up to errors of second order in the semiclassical parameter.
This is done via an Egorov-type theorem for normal Wigner–Weyl calcu-
lus for R

d (Folland, Harmonic Analysis on Phase Space, 1989; Lein, Weyl
Quantization and Semiclassics, 2010) combined with the Stratonovich–
Weyl calculus for SU(2) (Varilly and Gracia-Bondia, Ann Phys 190:107–
148, 1989). For a specific class of Hamiltonians, including the Rabi- and
Jaynes–Cummings model, we prove an Egorov theorem for times much
longer than the semiclassical time scale. We illustrate the approach for a
simple model of the Stern–Gerlach experiment.

1. Introduction

We consider the semiclassical limit of a quantum system with spin. The under-
lying state space is the Hilbert space H = L2(Rd,Cn) of square-integrable
functions on configuration space R

d taking values in C
n. The Hamiltonian Ĥ

generating the time evolution on H is assumed to be the Weyl quantization of
a matrix-valued symbol H : R

2d → B(Cn), i.e.

Ĥ = H
(
ε, x,−iε∇x

)
:= Op

(
H(ε)

)
.

Under appropriate conditions on the function H, its Weyl quantization Ĥ is
a self-adjoint operator on H and generates a unitary group e−iĤ t

ε . We will
be interested in the semiclassical asymptotics of the evolution of semiclassi-
cal observables. Let A : R

2d → B(Cn) be another matrix-valued function on
classical phase space, then the time evolution of the semiclassical operator
Â = Op(A) is given by

Â(t) := e+iĤ t
ε Â e−iĤ t

ε
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and Â(t) solves the Heisenberg equation of motion

d
dt
Â(t) =

i
ε

[
Ĥ, Â(t)

]
.

Instead of solving the full quantum dynamics, one is often interested in simpler,
approximate solutions in terms of a classical Hamiltonian flow. In the scalar
case n = 1, this is the standard semiclassical problem. Under appropriate
technical conditions, the Egorov Theorem states that

sup
t∈[0,T ]

∥
∥
∥Â(t) − Op

(
A ◦ Φ0

t

)∥∥
∥ = O(ε) , (1.1)

where Φ0
t : R

2d → R
2d denotes the classical Hamiltonian flow corresponding to

the principal symbolH0(q, p) ofH(q, p) = H0(q, p)+O(ε). That is, on bounded
time intervals, one can approximate the quantum mechanical time evolution of
a semiclassical observable by transporting its symbol along a Hamiltonian flow.
As a corollary, the Egorov theorem also implies a semiclassical evolution for
states: here, the Wigner transform of the time-evolved density operator is com-
pared to the Wigner transform of the density operator at t = 0 transported in
time using the classical flow. In addition to its physical and practical relevance
for understanding the quantum time evolution, the Egorov theorem is also the
basis for a number of further mathematical results connecting properties of
quantum and classical systems. For example, in [1,25] quantum ergodicity for
classically ergodic systems was proved based on the Egorov theorem.

The result (1.1) has been generalized in many directions. For example,
when replacing the flow Φ0

t by the flow Φε
t generated by H0(q, p) + εH1(q, p),

where H(q, p) = H0(q, p) + εH1(q, p) + O(ε2), then the error is of order ε2,

sup
t∈[0,T ]

∥
∥
∥Â(t) − Op

(
A ◦ Φε

t

)∥∥
∥ = O(ε2). (1.2)

It is also well known how to construct higher order approximations to Â(t).
However, they cannot be written as the composition of A with a flow map on
phase space R

2d, see e.g. [18, Chaptre IV §6]. Depending on the details of the
classical flow, one can potentially extend this approximation to longer time
scales [3,5].

In this work, we consider the case n > 1 of matrix-valued symbols. Then,
basically two distinct cases appear: If the principal symbol H0 of H has eigen
spaces that are non-trivial functions on R

2d, then this is an adiabatic problem.
Hence, in a first step, the total state space H = L2(Rd,Cn) of the system can
be decomposed into orthogonal subspaces Hj that are each unitarily equiva-
lent to spaces of the form L2(Rd,Cnj ) with

∑
j nj = n, see [7,14,16,17,19].

The operator Ĥ is then block-diagonal with respect to these subspaces up to
errors of order ε∞ and thus the reduced problems on each L2(Rd,Cnj ) can be
analyzed independently. If a subspace Hj is related to an isolated eigenvalue
band Ej of the principal symbol H0, i.e. Ej(q, p) depends smoothly on (q, p)
and is an eigenvalue of H0(q, p) with constant multiplicity, then the block of
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Ĥ on that subspace is unitarily equivalent to a semiclassical Hamiltonian Ĥj

on L2(Rd,Cnj ) with principal symbol Ej 1C
nj where 1C

nj = diag(1, . . . , 1).
These semiclassical Hamiltonians Hj � Ej 1C

nj + O(ε) are an example
for the type of Hamiltonian we will study in this paper: here, the principal
symbol H0 is a scalar multiple of the identity matrix. Since higher order terms
do not contribute on the time scales we are interested in, we assume in the
following that the symbol of the Hamiltonian has the form

H(q, p) = H0(q, p) + εH1(q, p) = h0(q, p)1Cn + εH1(q, p).

Also, the semiclassical limit for this problem has been studied extensively in
the literature, see e.g. [1] and references therein. However, the fact that A
is matrix-valued and that the quantum dynamics is non-trivial on the spin
degrees of freedom makes it impossible to approximate Â(t) in terms of a
classical flow only on R

2d as in (1.1) or (1.2). Instead it is shown in [1] based
on [4] that the symbol of Â(t) can be approximated, to leading order, by

A(t, q, p) = D∗(t, q, p)
(
A ◦ Φ0

t

)
(q, p)D(t, q, p), (1.3)

where Φ0
t is the Hamiltonian flow of the scalar principal symbol h0(q, p) of H.

The orthogonal matrices D(t, q, p) are generated by the sub-principal symbol
H1 according to

d
dt
D(t, q, p) = −i

(
H1 ◦ Φ0

t

)
(q, p)D(t, q, p) , D(0, q, p) = 1Cn .

From the point of view of our results, this description has two shortcomings:
it gives only a leading order description, i.e. an error term as in (1.1), and the
time-evolved A(t, q, p) is not given in terms of a flow on phase space.

The latter shortcoming was solved in [2], where the authors observed
that one can use a Weyl calculus for spin developed by Stratonovich [20] and
further elaborated upon by Gracia-Bond̀ıa and Vàrilly [23] to map matrix-
valued functions A on R

2d to scalar functions a := Symb
S2(A) on the extended

phase space Σ := R
2d × S

2. Note that the two-sphere S
2 carries a natural

symplectic form, namely the volume form. The result is that A(t, q, p) as in
(1.3) can indeed be written in terms of a so-called skew-product flow Φskew

t

on R
2d × S

2,

Symb
S2

(
A(t, q, p)

)
=: a(t, q, p, n) =

(
a ◦ Φskew

t

)
(q, p, n).

Note that the skew-product flow Φskew
t is not a Hamiltonian flow and that the

initial “spin” n has no effect on the dynamics of the translational degrees of
freedom, i.e. with Φskew

t =:
(
Qskew

t , P skew
t , N skew

t

)
it holds that Qskew

t (q, p, n) =
Qskew

t (q, p) and P skew
t (q, p, n) = P skew

t (q, p) are both independent of n. This is
somewhat unsatisfactory from a physical point of view, since the paradigmatic
experiment measuring the spin of a particle, the Stern–Gerlach experiment, is
based on the fact that the trajectory of a particle with spin in an inhomoge-
neous magnetic field depends on its spin orientation. However, this is a small
effect not seen in the leading-order approximation.

The main new result of the present paper is the construction of a Hamil-
tonian flow Φε

t on the extended phase space Σ = R
2d × S

2 that includes the
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influence of spin on the translational degrees of freedom and provides a better
approximation to the evolution of scalar observables A = a1Cn ,

sup
t∈[0,T ]

∥
∥
∥Â(t) − OpΣ (a ◦ Φε

t )
∥
∥
∥ = O(ε2). (1.4)

Here, OpΣ denotes the quantization map from functions on Σ to operators on
L2(R2d,Cn) and a(q, p, n) := a(q, p) (cf. Sect. 2 for details).

For a special class of Hamiltonians on L2(R,C2), including the Rabi and
the Jaynes–Cummings models, we show that the above approximation remains
valid for longer times: Assume h0(q, p) = 1

2 (p2 + ω2q2) is the one-dimensional
harmonic oscillator Hamiltonian and suppose that the entries of H1(q, p) are
polynomials in q and p of degree at most one. Then, we can prove (1.4) for
longer times at the expense of a larger error. More precisely, we arrive at the
estimate

sup
t∈[0,T/εγ ]

∥
∥
∥Â(t) − OpΣ (a ◦ Φε

t )
∥
∥
∥ = O(ε3/2−3γ) (1.5)

for any 0 ≤ γ < 1/2. Note that, on this time scale, the influence of spin on the
position of the particle can be of order ε1−2γ , so almost of order 1. Moreover,
even for general initial observables B̂ = OpΣ(b) with b = b(q, p, n) depending
also on spin, we can go to slightly longer times and show that

sup
t∈[0,T/εγ ]

∥
∥
∥B̂(t) − OpΣ (b ◦ Φε

t )
∥
∥
∥ = O(ε1−4γ) (1.6)

holds for any 0 ≤ γ < 1/4. Concrete applications of these results to the Rabi and
the Jaynes–Cummings model are discussed elsewhere [11]. Note that without
spin the semiclassical approximation for the harmonic oscillator h0 is exact.
On the extended phase-space R

2 × S
2 this is no longer true, even when h1 is

linear in q and p. However, in Theorem 3.4, we show that there is still an exact
evolution equation for the symbol a(t) of Â(t). But this equation can no longer
be solved by classical transport.

The paper is organized as follows: In Sect. 2, we first recall the standard
Weyl calculus on R

2d, then introduce the Stratonovich–Weyl calculus on S
2

and finally show how to combine them. While this idea is not new (e.g. [2,22]),
the results of Sect. 2.3 have not been worked out in this form before. Section 3
contains the rigorous statements and the proofs of the general and the long-
time Egorov theorems. Their proofs rely on estimates on the derivatives of the
classical flow on Σ which we show in Sect. 4. In the final Sect. 5, we illustrate
the method by applying it to a simple model for the Stern–Gerlach experiment.
We conclude, in particular, that the semiclassical approximation captures the
spin-dependent splitting of wave packets correctly.

2. Weyl Calculus

2.1. Standard Weyl Calculus on R
2d

We briefly recall the most important features of Weyl calculus and specific
properties that we will use in the following. Readers familiar with Weyl calculus
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and not interested in the mathematical technicalities can skip this section. For
more details on ε-pseudodifferential operators, we refer e.g. to [12,15,21]. For
a short summary on Weyl calculus with operator-valued symbols, the readers
can also consult Appendix A of [22].

One common and well-studied class of pseudodifferential operators are
those which are Weyl quantizations of symbols. A symbol f of order k ∈ R is
a smooth function from R

2d to B(Cn) such that

‖f‖k,r := max
α,β∈N

d
0

|α|+|β|≤r

sup
(q,p)∈R2d

∥
∥
∥〈p〉−k+|α| ∂α

p ∂
β
q f(q, p)

∥
∥
∥

B(Cn)

is bounded for all r ∈ N0. Here, 〈p〉k := (1+ |p|2)k/2. Equipped with the family
of seminorms {‖·‖k,r}r∈N0 , the set of all symbols of order k, denoted with Sk,
is a Fréchet space. Functions in Sk have the property, that derivatives with
respect to p improve the decay with respect to p. In particular, any partial
derivative of degree k with respect to p of a function in Sk yields a bounded
function with bounded derivatives. The space of uniformly bounded functions
A : [0, ε0) −→ Sk is denoted by Sk(ε).

For a Schwartz function ψ ∈ S(Rd,Cn) and A ∈ Sk(ε), the action of the
Weyl quantization Â = Op

R2d(A) of A can be defined through the oscillatory
integral

(Âψ)(x) =
(
Op

R2d(A)ψ
)
(x)

=
1

(2πε)d

∫

R2d

dpdy A
(
ε, 1

2 (x+ y), p
)
e+ i

ε p·(x−y) ψ(y). (2.1)

For k ≤ 0, by the Caldéron–Vaillancourt theorem [18, Thorme II 36], Â can
be extended to a bounded operator on H = L2(Rd,Cn); we will discuss other
boundedness criteria in Sect. 3.

The inverse of Op is the Wigner transform: if KA is the operator kernel
to Â ∈ B(L2(Rd,Cn)), then we define

(WR2d(Â)
)
(q, p) :=

1
(2π)d/2

∫

Rd

dy e−iy·pKA

(
q + ε

2y, q − ε
2y
)
.

The composition of operators induces a composition of symbols. For any A ∈
Sk1(ε) and B ∈ Sk2(ε), there exists a symbol C ∈ Sk1+k2(ε) denoted by
C = A#B such that Â B̂ = Ĉ. The bilinear map # : Sk1 × Sk2 → Sk1+k2

is called the Moyal product and it is continuous with respect to the Frèchet
topologies uniformly in ε, i.e. for any r ∈ N0 there is a r̃ ∈ N0 and a constant
cr,r̃ < ∞ such that

∥
∥(A#B)(ε)

∥
∥

k1+k2,r
≤ cr,r̃

∥
∥A(ε)

∥
∥

k1,r̃

∥
∥B(ε)

∥
∥

k2,r̃

holds true for all ε ∈ [0, ε0). The last statement follows e.g. from inspecting
the proof of Thm. 2.41 in [9]. If for A ∈ Sk(ε) there exists a sequence (Aj)j∈N0

in Sk(ε) such that
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sup
ε∈[0,ε0)

∥
∥
∥
∥ε

−(m+1)

(
A(ε) −

m∑

j=0

εj Aj(ε)
)∥∥
∥
∥

k,r

< ∞

for all r ∈ N0 and m ∈ N0, then one writes A � ∑∞
j=0 ε

jAj in Sk(ε). If
A ∈ Sk(ε) has an asymptotic expansion with coefficients Aj ∈ Sk−j not
depending on ε, then A is called a classical symbol, A0 its principal symbol
and A1 its subprincipal symbol. The Moyal product C := A#B ∈ Sk1+k2(ε)
of symbols A ∈ Sk1(ε) and B ∈ Sk2(ε) has an explicit asymptotic expansion
C �∑∞

j=0 ε
j Cj such that Cj ∈ Sk1+k2−j(ε) and the remainder maps

Rm+1 :Sk1 × Sk2 → Sk1+k2−m−1 ,

(A,B) → Rm+1 := ε−(m+1)

(
C(ε) −

m∑

j=0

εj Cj(ε)
)

are continuous. The expansion starts with the pointwise product C0(ε) =
A(ε)B(ε) and the Poisson bracket C1(ε) = − i

2{A(ε), B(ε)}R2d , where

{A,B}R2d := ∇pA · ∇qB − ∇qA · ∇pB :=
d∑

j=1

(
∂pj

A∂qj
B − ∂qj

A∂pj
B
)
.

For classical symbols A and B, the Moyal product C := A#B is also a classical
symbol with an asymptotic expansion starting with

A#B � A0B0 + ε
(
A1B0 +A0B1 − i

2{A0, B0}R2d

)
+ O(ε2).

If A = a1Cn is a scalar multiple of the identity, then A and all its derivatives
commute pointwise with any B. As a consequence, one can show that in this
case

[A0, B0]� := A0#B0 −B0#A0 � −iε{A0, B0}R2d + O(ε3). (2.2)

The fact that the remainder term in (2.2) is of order ε3 and not only ε2 is
at the basis of our higher order semiclassical approximations. It distinguishes
Weyl quantization from other quantization rules.

2.2. Stratonovich–Weyl Calculus for Spin

Similar to Weyl calculus that maps functions on phase space R
2d to operators

on the Hilbert space L2(Rd), there is a Weyl calculus that associates functions
on the compact phase space S

2 to operators on the finite-dimensional Hilbert
spaces C

n. It was first proposed by Stratonovich [20] and elaborated upon
further by Gracia-Bondia and Varilly [23,24], and has been applied to study
the dynamics at Josephson junctions [6].

To make the following as transparent as possible, we restrict the presen-
tation to the case of C

2 and use the letter n to denote a point on the unit
sphere S

2 from now on. Higher dimensional spin-spaces can be dealt with in
complete analogy [23,24]. The basic observation is that any 2 × 2 matrix can
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be written as a linear combination of the identity matrix 1C2 and the three
Pauli matrices σj , j = 1, 2, 3,

A = a0 1C2 +
3∑

j=1

aj σj = a0 1C2 + a · σ (2.3)

for some complex coefficients a0, . . . , a3 ∈ C. Now, the quantization map Op
S2 :

C∞(S2) → B(C2) can be defined most easily using the Stratonovich–Weyl
kernel

Δ(n) := 1
2

(
1C2 +

√
3n · σ), n ∈ S

2, (2.4)

by setting

Op
S2(a) :=

1
2π

∫

S2

dna(n)Δ(n). (2.5)

It is clearly many to one, but there is a natural way to define also a dequanti-
zation map WS2 : B(C2) → C∞(S2) by

(WS2(A)
)
(n) := TrC2

(
AΔ(n)

)
. (2.6)

which maps onto the four-dimensional subspace C1(S2) := span{1, n1, n2, n3}
of C∞(S2). Using TrC2 σj = 0, we find that the dequantization of A written
as in (2.3) is the linear polynomial

a(n) =
(WS2(A)

)
(n) = a0 +

√
3 a · n, (2.7)

and Op
S2 : C1(S2) → B(C2) is indeed one-to-one with inverse WS2 . The pro-

jection P = WS2 ◦ Op
S2 maps any a ∈ C∞(S2) to the representative in C1(S2)

that quantizes to the same matrix and is explicitly given by

(Pa)(n) =
1
2π

∫

S2

dk a(k)TrC2

(
Δ(k)Δ(n)

)
=

1
4π

∫

S2

dk a(k)
(
1 + 3k · n)

=
1
4π

∫

S2

dk a(k) +
√

3

⎛

⎝
√

3
4π

∫

S2

dk k a(k)

⎞

⎠ · n

=: a0 +
√

3 a · n (2.8)

For later reference we note that for all a ∈ C∞(S2) we have that

Pa = a for all a ∈ C1(S2) (2.9)

Op
S2Pa = Op

S2a for all a ∈ C∞(S2). (2.10)

Since the symbol a of a given matrix A is not unique, there is a priori also
no unique way to define the corresponding Moyal product 	S2 , i.e. the matrix
product on the level of functions on S

2. However, if we demand that it takes
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its values in C1(S2), it is unique and one finds

(a 	S2 b)(n) := WS2

(
Op

S2(a)Op
S2(b)

)
= WS2

(
Op

S2(Pa)Op
S2(Pb))

= WS2

(
(a0 1C2 + a · σ) (b0 1C2 + b · σ)

)

= WS2

(
(a0b0 + a · b) + (a0b + ab0 + i a ∧ b) · σ

)

=
(
a0b0 + a · b

)
+

√
3
(
a0b + ab0 + i a ∧ b

) · n. (2.11)

As for the calculus on R
2d, the applicability to the semiclassical limit of the

Heisenberg equations of motion rests on the observation that the commutator
of operators corresponds to the Poisson bracket of symbols. The natural sym-
plectic form on S

2 is the volume form η, which we normalize such that for two
tangent vectors v, w at n ∈ S

2

ηn(v, w) = −
√

3
2 (v ∧ w) · n.

Thus, the Hamiltonian vector field associated to a function a ∈ C∞(S2) is

Xa = − 2√
3

∇na ∧ n

and a short computation yields

{a, b}S2 := η
(
Xa,Xb

)
= − 2√

3

(∇na ∧ ∇nb
) · n.

Comparing with (2.11), we immediately see that

[a, b]�
S2

:= a 	S2b− b 	S2a = −i {Pa,Pb}
S2 . (2.12)

Now, there is an observation which is crucial for the following:

Lemma 2.1. Let a, b ∈ C∞(S2), then

{Pa,Pb}
S2 = P {Pa, b}

S2 . (2.13)

Proof. We write (Pa)(n) = a0 +
√

3 a · n and (Pb)(n) = b0 +
√

3 b · n. Then,

P {Pa, b}
S2 = − 2

4π

∫

S2

dk
(
a ∧ ∇nb(k)

) · k

−
√

3

⎛

⎝2
√

3
4π

∫

S2

dk k (a ∧ ∇nb(k)) · k
⎞

⎠ · n.

Integration by parts gives for the first term
∫

S2

dk (a ∧ ∇nb) · k =
∫

S2

dk εjlm aj ∂lb(k) km = 0
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and for the jth component of the second term
∫

S2

dk kj

(
a ∧ ∇nb(k)

) · k =
∫

S2

dk kj εlms al ∂mb(k) ks

= −
∫

S2

dk εljs al b(k) ks = −εjsl al

∫

S2

dk b(k) ks

= (a ∧ b)j
4π√

3
.

Comparing with {Pa,Pb}S2 = −2
√

3(a ∧ b) · n proves the claim. �

Corollary 2.2. Let a ∈ C1(S2) and b ∈ C∞(S2). Then,[
Op

S2a,Op
S2b
]

= −i Op
S2{a, b}S2 . (2.14)

Proof.
[
Op

S2a,Op
S2b
]

= Op
S2 [a, b]�

S2

(2.12)
= −i Op

S2 {Pa,Pb}
S2

(2.13)
= −i Op

S2P {Pa, b}
S2

(2.10)
= −i Op

S2 {Pa, b}
S2

(2.9)
= −i Op

S2 {a, b}
S2 .

�

2.3. Weyl Calculus on R
2d × S

2

It is now straightforward to define a Weyl calculus on the product Σ = R
2d×S

2.
We say a ∈ Sk

Σ(ε), if a(ε) ∈ C∞(Σ) such that Op
S2a ∈ Sk(ε). For a ∈ Sk

Σ(ε),
define OpΣ and WΣ by

OpΣ(a) := Op
R2d

(
Op

S2(a)
)
,

WΣ(Â) := WR2d

(WS2(Â)
)
,

and let
{a, b}Σ := {a, b}R2d + 1

ε{a, b}S2 .

We now formulate our assumptions on the symbol of the Hamiltonian.

Assumption 2.3. Let h(q, p, n) = h0(q, p) + ε h1(q, p, n) such that h0 ∈ S2 and

h1(q, p, n) = h0(q, p) +
√

3 h(q, p) · n
with h0 and all components of h(q, p) in S1.

Note that in view of (2.8) and (2.10), assuming h is a linear polynomial
in n is not a restriction, merely a convenient way to write the symbol.

Lemma 2.4. Let h satisfies Assumption 2.3 and let a ∈ S0
Σ(ε).

(i) Then, ∥
∥
∥
∥

i
ε

[
OpΣh ,OpΣa

]
− OpΣ{h, a}Σ

∥
∥
∥
∥

B(H)

= O(ε).

(ii) If, in addition, there is a symbol a0 such that a(q, p, n)−a0(q, p) = O(ε),
then
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∥
∥
∥
∥

i
ε

[
OpΣh ,OpΣa

]
− OpΣ{h, a}Σ

∥
∥
∥
∥

B(H)

= O(ε2).

(iii) Suppose that h0 is a quadratic polynomial in the components of p and
q, and the components of h0 and h are linear polynomials in q and p.
Then,

i
ε

[
OpΣh,OpΣa

]
= OpΣ{h, a}Σ + ε

2 Op
R2d

(
{H1, A}R2d − {A,H1}R2d

− 2Op
S2{h1, a}R2d

)

= OpΣ{h, a}Σ − ε
2 OpΣ

{
h1, (1 − P)a

}
R2d

holds true where H1 = Op
S2h1 and A = Op

S2a.

The main ingredient in the proof of (iii) is the following auxiliary

Lemma 2.5. Let a, b ∈ C∞(Σ) such that a(q, p, ·), b(q, p, ·) ∈ C1(S2) are at most
linear polynomials in n for all (q, p) ∈ R

2d. Then,

R(a, b) :=
{
Op

S2a,Op
S2b
}

R2d − {Op
S2b,Op

S2a
}

R2d − 2Op
S2 {a, b}

R2d = 0.

Proof of Lemma 2.4. (i) For the scalar symbol h0 ∈ S2, we have according
to (2.2)
[
Op

S2h0 ,Op
S2a
]
�
= −i ε

{
Op

S2h0,Op
S2a
}

R2d + O(ε3), (2.15)

where the remainder is order ε3 in S−1(ε). For h1,
[
Op

S2h1 ,Op
S2a
]
�
=
[
Op

S2h1,Op
S2a
]

− ε
i
2

({
Op

S2h1,Op
S2a
}

R2d − {Op
S2a,Op

S2h1

}
R2d

)
+ O(ε2) (2.16)

where the remainder is order ε2 in S−1(ε). Hence,

i
ε

[
OpΣh , OpΣa

]
= Op

R2d

({
Op

S2h0, Op
S2a
}

R2d + i
[
Op

S2h1, Op
S2a
]

+
ε

2

({
Op

S2h1, Op
S2a
}

R2d −{Op
S2a, Op

S2h1

}
R2d

))
+O(ε2),

(2.14)
= Op

R2d

(
Op

S2{h0, a}R2d + Op
S2{h1, a}S2

+ ε Op
S2{h1, a}R2d +

ε

2

({
Op

S2h1, Op
S2a
}

R2d

−{Op
S2a, Op

S2h1

}
R2d − 2Op

S2{h1, a}R2d

))
+ O(ε2)

= OpΣ{h, a}Σ + ε
2 Op

R2d

({
Op

S2h1, Op
S2a
}

R2d

−{Op
S2a, Op

S2h1

}
R2d − 2Op

S2{h1, a}R2d

)
+ O(ε2),

where the second term of order ε is a bounded operator and the remainder
is order ε2 as a bounded operator.
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(ii) Under the assumption of (ii), also the second term is of order ε2, since
{
Op

S2h1,Op
S2a
}

R2d − {Op
S2a,Op

S2h1

}
R2d − 2Op

S2{h1, a}R2d

=
{
Op

S2h1,Op
S2(a− a0)

}
R2d − {Op

S2(a− a0),Op
S2h1

}
R2d

− 2Op
S2

{
h1, (a− a0)

}
R2d

= O(ε).

(iii) For the first equality in (iii), just note that there are no remainder terms
in (2.15) and (2.16) in this case. In view of (2.10), Op

S2a = Op
S2Pa,

we can replace a by Pa in the above equation. Thus, both arguments
of the Poisson brackets are linear in n and we conclude with the help of
Lemma 2.5 that
{
Op

S2h1,Op
S2a
}

R2d − {Op
S2a,Op

S2h1

}
R2d − 2Op

S2{h1, a}R2d

= R(h1, a) − Op
S2

{
h1, (1 − P)a

}
R2d = −Op

S2

{
h1, (1 − P)a

}
R2d .

This proves the second equality in (iii). �

All that remains is to prove the auxiliary Lemma 2.5:

Proof of Lemma 2.5. Let a = a0 +
√

3 a · n and b = b0 +
√

3 b · n be the scalar
symbols to the matrix-valued functions A = a0 1C2 +a·σ and B = b0 1C2 +b·σ.
We can write the difference of the Poisson brackets as the difference of two
anti-commutators,

{A,B}Rd − {B,A}Rd =
d∑

j=1

(
[∂pj

A , ∂qj
B]+ − [∂pj

A , ∂qj
B]+

)
.

These anti-commutators can be expressed in terms of the coefficients,

[A ,B]+ =
(
a0 1C2 + a · σ) (b0 1C2 + b · σ)+

(
b0 1C2 + b · σ) (a0 1C2 + a · σ)

= 2
(
a0 b0 + a · b

)
1C2 + 2

(
a0 b + b0 a

) · σ.
By a straightforward computation, we can verify that P(3(a ·n) (b ·n)

)
= a · b

holds true and hence

Op
S2

(
3(a · n) (b · n)

)
= Op

S2P(3(a · n) (b · n)
)

= (a · b)1C2 .

This means the right-hand side of

2Op
S2{a, b}Rd = 2

d∑

j=1

Op
S2

((
∂pj

a0 +
√

3 ∂pj
a · n) (∂qj

b0 +
√

3 ∂qj
b · n)

)

+ other terms

= 2
d∑

j=1

Op
S2

((
∂pj

a0 ∂qj
b0 + 3 (∂pj

a · n) (∂qj
b · n)

)
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+
√

3
(
∂qj

b0 ∂pj
a + ∂pj

a0 b
) · n

)
+ other terms

=
d∑

j=1

(
[∂pj

A , ∂qj
B]+ − [∂qj

A , ∂pj
B]+
)

agrees with {A,B}Rd − {B,A}Rd , and R(a, b) vanishes identically. �

3. Egorov Theorems

Suppose h satisfies Assumption 2.3 and denotes by Φε the Hamiltonian flow
associated to Hamilton’s equation of motion

q̇ = +∇ph = +∇ph0 + ε
(∇ph0 +

√
3 ∇p(h · n)

)

ṗ = −∇qh = −∇qh0 − ε
(∇qh0 +

√
3 ∇q(h · n)

)
(3.1)

ṅ = 2 h ∧ n
on extended phase space Σ = R

2d × S
2. To shorten the notation, we will often

use z = (q, p) ∈ R
2d for the translational variables and ∂z stands for either ∂qj

or ∂pj
. Then, the Hamiltonian flow Φε

t =
(
Zε(t), Nε(t)

)
similarly splits into a

translational part Zε(t) =
(
Qε(t), P ε(t)

)
and spin Nε(t). It is easy to see that

under the assumptions placed on h, the flow Φε exists globally in time and is
smooth (Proposition 4.1).

If we replace h by the leading-order term h0 in the first two equations
of (3.1), we obtain the skew product flow Φ0 from [2]; this flow also exists for
all t ∈ R, is smooth and agrees with the Hamiltonian flow Φε

t = Φ0
t + O(ε) to

leading order for all bounded times. We will write Φ0
t =

(
Z0(t), N0(t)

)
for the

translational and spin part. Here, translational and spin dynamics decouple
and there is no back-reaction from the spin dynamics onto the translational
dynamics, the spin is just “dragged along”.

Now, we have the necessary terminology to prove our semiclassical lim-
its: combining standard Weyl and Stratonovich–Weyl calculus with standard
arguments, we obtain an Egorov theorem for times of order 1. The proofs of
the relevant properties of the flow are postponed to Sect. 4.

Theorem 3.1 (O(1)-time Egorov-type theorem). Suppose h satisfies h0 ∈ S0 in
addition to Assumption 2.3. Then, for any a ∈ S0

Σ and T < ∞, the following
two statements hold:
(i) sup

t∈[−T,T ]

∥
∥
∥e+iĥ t

ε OpΣ(a) e−iĥ t
ε − OpΣ

(
a ◦ Φε

t

)∥∥
∥

B(H)
= O(ε)

(ii) If in addition a is independent of n, then the error is of second order,

sup
t∈[−T,T ]

∥
∥
∥e+iĥ t

ε OpΣ(a) e−iĥ t
ε − OpΣ

(
a ◦ Φε

t

)∥∥
∥

B(H)
= O(ε2).

Proof. (i) By Proposition 4.1, the flow Φε exists and all its derivatives are
bounded for all |t| ≤ T . We abbreviate the classically evolved observable
with a(t) := a ◦ Φε

t and set â := OpΣ(a). Then, a Duhamel argument
yields
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eiĥ t
ε â e−iĥ t

ε − â(t) =

t∫

0

ds
d
ds

(
ei s

ε ĥ ̂a(t− s) e−i s
ε ĥ
)

=

t∫

0

ds ei s
ε ĥ
(

i
ε

[
ĥ, ̂a(t− s)

]
+ d

ds
̂a(t− s)

)
e−i s

ε ĥ

=

t∫

0

ds ei s
ε ĥ
(

i
ε

[
ĥ, ̂a(t− s)

]− OpΣ

{
h, a(t− s)

}
Σ

)
e−i s

ε ĥ. (3.2)

Combining Corollary 4.2 with the usual Caldéron–Vaillancourt theorem
[18, Théorème II 36] and Lemma 2.4 (i), we obtain

sup
t∈[−T,T ]

∥
∥
∥ i

ε

[
ĥ, ̂a(t− s)

]− OpΣ

{
h, a(t− s)

}
Σ

∥
∥
∥

B(H)
= O(ε)

and thus we have shown (i).
(ii) If a(q, p, n) = a(q, p), then a1(t) := a ◦ Φε

t − a ◦ Φ0
t = O(ε) by Proposi-

tion 4.1 where Φ0 is the decoupled flow introduced in the beginning of
the section. Thus Lemma 2.4 (ii) applies and

sup
t∈[−T,T ]

∥
∥
∥ i

ε

[
ĥ, ̂a(t− s)

]− OpΣ

{
h, a(t− s)

}
Σ

∥
∥
∥

B(H)
= O(ε2)

holds which in turn implies (ii). �

Note that (i) just shows that we can replace the skew product flow (1.3)
with the Hamiltonian flow Φε without changing the size of the error. For purely
translational observables, one can improve the error estimate by a factor of ε
when going from the skew product flow to Φε.

As an immediate corollary, we obtain a semiclassical limit for states: here
we compare ρ̂(t) = e−i t

ε ĥ ρ̂ e+i t
ε ĥ with WΣ(ρ̂)◦Φε

−t, where WΣ(ρ̂) is the Wigner
transform of the density operator ρ̂.

Corollary 3.2. In addition to the conditions of Theorem 3.1, assume that ρ̂ is
a density operator with Wigner transform W := WΣ(ρ̂).
(i) If a ∈ S0

Σ depends non-trivially on spin, then

Tr
(
OpΣ(a) ρ̂(t)

)
=

1
(2π)d

1
4π

∫

R2d

dq dp
∫

S2

dna(q, p, n)W ◦ Φε
−t(q, p, n)

+ O(ε)

holds for all |t| ≤ T .
(ii) If a ∈ S0

Σ is independent of n, then

Tr
(
OpΣ(a) ρ̂(t)

)
=

1
(2π)d

1
4π

∫

R2d

dq dp
∫

S2

dna(q, p, n)W ◦ Φε
−t(q, p, n)

+ O(ε2)

holds for all |t| ≤ T .
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Proof. The proofs of (i) and (ii) rely on Theorem 3.1,

Tr
(
OpΣ(a) ρ̂(t)

)
= Tr

(
OpΣ(a) e−i t

ε ĥ ρ̂ e+i t
ε ĥ
)

= Tr
(
e+i t

ε ĥ OpΣ(a) e−i t
ε ĥ ρ̂
)
,

the observation that ρ̂(t) and W ◦Φε
t solve the equations of motion for observ-

ables backwards in time and Liouville’s theorem. �

Attempting to extend Egorov theorems to longer time scales is hard and
requires more detailed information on the flow. The non-linearity of the clas-
sical system limits the time scale of validity of semiclassical approximations to
the Ehrenfest time t = O(|ln ε|). While for quadratic Hamiltonians on phase-
space R

2d, one finds that Â(t) = Op
(
A ◦ Φ0

t

)
holds without error since the

equations of motion are linear, any coupling between translational and spin
degrees of freedom introduces additional non-linear terms for the equations of
motion on extended phase space. However, in the case that h0 is a quadratic
polynomial in the components of p and q, and the components of h0 and h are
linear polynomials in q and p, we can still find bounds on the derivatives of
the flow for times of order O(ε−γ) for some γ > 0 (cf. Proposition 4.3). The
Jaynes–Cummings- and Rabi-type Hamiltonians which, among other things,
describe the interaction between an electromagnetic mode in a cavity and an
atomic two-level system, are of this type.

A second important ingredient in our long-time semiclassical limit
involves using suitable boundedness criteria for ΨDOs: the usual Caldéron–
Vaillancourt theorem [18, Théorème II 36] requires us to control 2d+ 1 deriv-
atives where d is the dimension of translational configuration space, i.e. there
exists a constant cd > 0 depending only on d such that

∥
∥OpΣ(a)

∥
∥

B(H)
≤ cd ‖a‖0,2d+1

holds for all a ∈ S0
Σ uniformly in ε ∈ (0, ε0). To reduce the number of deriva-

tives, we will use other bounds: if a decays sufficiently rapidly at ∞, we only
need to control d+ 1 derivatives. More specifically, a straightforward general-
ization of [10, Lemma 1.1] and [8, Lemma 3.1] to matrix-valued symbols gives
the following estimate:

∥
∥OpΣ(a)

∥
∥

B(H)
≤ cd max

|α|≤d+1
sup

(q,p,n)∈Σ

(
〈p〉d+1

∣
∣∂α

p a(q, p, n)
∣
∣
)
. (3.3)

Again, the constant cd > 0 depends only on d and is uniform in ε ∈ (0, ε0).
Finally, for compactly supported symbols a ∈ C∞

c (Σ), we can give a bound
which only involves the sup norm,

∥
∥OpΣ(a)

∥
∥

B(H)
≤ cd
εd/2

Vol
(
supp a

)
sup

(q,p,n)∈Σ

|a(q, p, n)| . (3.4)

It is the last two boundedness criteria which enter the proof of the long-time
semiclassical limit.

Theorem 3.3 (Long-time Egorov theorem). Let d = 1, h0(q, p) = 1
2

(
p2+ω2q2

)
,

h0 = 0 and h be a linear polynomial in q and p. Then, for any T < ∞, the
following statements hold:
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(i) Suppose a ∈ S−2
Σ . Then, for any γ < 1/4, there is ε0 > 0 such that for

ε < ε0

sup
|t|∈[0,T/εγ ]

∥
∥
∥e+i t

ε ĥ OpΣ(a) e−i t
ε ĥ − OpΣ

(
a ◦ Φε

t

)∥∥
∥

B(H)
= O(ε1−4γ

)
. (3.5)

(ii) If in addition a ∈ C∞
c (Σ) is independent of n, then for any γ < 1/2 there

is ε0 > 0 such that for ε < ε0 we have

sup
|t|∈[0,T/εγ ]

∥
∥
∥e+i t

ε ĥ OpΣ(a) e−i t
ε ĥ − OpΣ

(
a ◦ Φε

t

)∥∥
∥

B(H)
=O(ε3/2−3γ

)
. (3.6)

Proof. (i) Assume t = O(ε−γ) for some γ ≥ 0 that has yet to be determined.
Moreover, let b, g > 0 be the constants defined in the proof of Proposi-
tion 4.3 and α = 1/2. Lastly, for better readability, define the remainder

R
(
a(t)
)

:= −Op
S2

{
h1, (1 − P)a(t)

}
R2d

which involves first-order derivatives of a(t) in q and p. Then, the chain
rule

∂z

(
a ◦ Φε

t

)
(z, n) = Da

(
Φε

t (z, n)
)
∂zΦε

t (z, n)

and analogous expressions for higher order derivatives, equation (3.2),
Lemma 2.4 (iii) and boundedness criterion (3.3) imply

sup
|t|∈[0,T/εγ ]

∥
∥
∥e+i t

ε ĥ OpΣ(a) e−i t
ε ĥ − OpΣ

(
a ◦ Φε

t

)∥∥
∥

B(H)

≤ ε

t∫

0

ds
∥
∥
∥Op

R2d

(
R
(
a(t)
))∥∥
∥

B(H)

≤ ε |t| C max
|α|≤3

sup
(z,n)∈Σ

(
〈p〉2 ∥∥∂α

z

(
a ◦ Φε

t

)
(z, n)

∥
∥
)
.

Proposition 4.3 allows us to estimate the right-hand side by

max
|α|≤3

sup
(z,n)∈Σ

(
〈p〉2 ∥∥∂α

z

(
a ◦ Φε

t

)
(z, n)

∥
∥
)

≤ C
(
1 + |t|3)

for |t| ≤ ε−1/2
√

2bg−1. Hence, for t = O(ε−γ), γ < 1/4, we obtain the
bound

sup
|t|∈[0,T/εγ ]

∥
∥
∥e+i t

ε ĥ OpΣ(a) e−i t
ε ĥ − OpΣ

(
a ◦ Φε

t

)∥∥
∥

B(H)

≤ εC
(|t| + |t|4) = O(ε1−4γ

)
.

(ii) Again let t = O(ε−γ) for some γ ≥ 0 that has yet to be determined. In
case a is initially independent of n and has compact support, we have
a(t, z, n) = a

(
Zε(t, z, n)

)
and thus

∂za(t, z, n) = Da
(
Zε(t, z, n)

)
∂zZ

ε(t, z, n).
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Since the volume measure on phase space coincides with the Liouville
measure, the above equation combined with Liouville’s Theorem implies
that for all t ∈ R, we have

Vol
(
supp ∂za(t)

) ≤ Vol
(
supp a(t)

)
= Vol

(
supp a

)
.

The function a0(t) := a ◦ Φ0
t is independent of n and thus Pa0(t) = a0(t)

holds for all t. This means, we can insert a0(t) into the remainder and
estimate its norm for times |t| ≤ ε−1/2

√
2bg−1 using equation (3.4) and

Proposition 4.3,

ε |t| sup
|s|∈[0,t]

∥
∥
∥Op

R2d

(
R
(
a(t) − a0(t)

))∥∥
∥

B(H)

≤ ε |t| C√
ε

max
|α|≤1

sup
|s|∈[0,t]

sup
(z,n)∈Σ

(∣
∣Da
(
Zε(s, z, n)

)−Da
(
Z0(s, z)

)∣∣ |∂α
z Z(s, z, n)|

+
∣
∣Da
(
Z0(s, z)

)∣∣
∣
∣∂α

z

(
Zε(s, z, n) − Z0(s, z)

)∣∣
)

≤ √
εC |t| (ε |t| + ε bg |t|3) = O(ε3/2−3γ

)
.

Hence, as long as t = O(ε−γ) for γ < 1/2, the right-hand side goes to 0
as ε → 0 and we have shown (ii). �

In the special case of a quadratic Hamiltonian, we can actually get an
exact equation for the time-evolution of the symbol of a semiclassical operator,
albeit not in terms of a classical flow.

Theorem 3.4. Let d = 1 and h0(q, p) = 1
2

(
p2 + ω2q2

)
, h0 = 0 and h be a

polynomial in q and p of degree 1. Let a ∈ S−2
Σ and a(t, q, p, n) be a solution of

∂ta(t, q, p, n) =
(P {h, a(t)}Σ

)
(q, p, n)

such that a(t) ∈ S0
Σ for all t ∈ R. Then,

eiĥ t
ε â e−iĥ t

ε = OpΣ

(
a(t)
)
. (3.7)

Proof. By definition a(t, q, p, ·) ∈ C1(S2) for all t ∈ R. Thus, by Lemma 2.4
(iii) we have

i
ε

[
OpΣh,OpΣa(t)

]
= OpΣ{h, a(t)}Σ = OpΣP{h, a(t)}Σ = OpΣ

(
ȧ(t)
)
.

�

4. Estimates on the Classical Flow

In this section, we study properties of the flows Φε and Φ0 as defined in the
beginning of Sect. 3: Φε

t =
(
Zε(t), Nε(t)

)
is the Hamiltonian flow associated to

(3.1) while Φ0
t =

(
Z0(t), N0(t)

)
is the flow associated to (3.1) after replacing h

by h0 in the first two equations. Existence for all times and smoothness follows
from standard arguments from the theory of ordinary differential equations.
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Proposition 4.1. Suppose h satisfies h ∈ S0 in addition to Assumption 2.3.
Then, Φε and Φ0 exist globally in time and are smooth, i.e. for any t ∈ R,
Φε and Φ0 are diffeomorphisms on Σ and depend smoothly on time. Moreover,
for bounded time intervals [−T,+T ], we have Φε

t = Φ0
t + O(ε) and all partial

derivatives ∂α
z ∂

β
nΦε

t and ∂α
z ∂

β
nΦ0

t are uniformly bounded.

Proof. All claims follow from the fact that the vector fields (r.h.s. of (3.1)) have
globally bounded derivatives to all orders. Moreover, the difference between
the vector fields which define Φε and Φ0 is bounded and O(ε), and thus the
Grönwall lemma implies Φε

t = Φ0
t + O(ε) for bounded time intervals. �

This immediately implies that the actions of Φε and Φ0 preserve
Hörmander classes.

Corollary 4.2. Let h satisfies Assumption 2.3 and, in addition, let h ∈ S0.
Then, for a ∈ Sk

Σ(ε) it holds that a ◦ Φε
t , a ◦ Φ0

t ∈ Sk
Σ(ε) for all t ∈ R and for

any T < ∞ and r ∈ N0

sup
t∈[−T,T ]

sup
ε∈(0,ε0)

∥
∥a ◦ Φε

t

∥
∥

k,r
< ∞ and sup

t∈[−T,T ]

sup
ε∈(0,ε0)

∥
∥a ◦ Φ0

t

∥
∥

k,r
< ∞.

Now, let us turn to the case of Jaynes–Cummings- and Rabi-type Hamil-
tonians. If h is the prefactor of h1 =

√
3 h · n, we define the skew symmetric

matrix

H := 2

⎛

⎝
0 −h3 +h2

+h3 0 −h1

−h2 +h1 0

⎞

⎠ .

This convention allows us to write down proofs of the long-time flow estimates
in a more compact fashion.

Proposition 4.3. Let d = 1 and

h0(q, p) = 1
2

(
p2 + ω2q2

)
, h1(q, p, n) =

√
3
(
hc + q hq + p hp

) · n,
where hc, hq, hp ∈ R

3. Then, the flows Φε and Φ0 exist globally in time and the
two are O(ε)-close,

sup
(z,n)∈Σ

∣
∣Zε(t, z, n) − Z0(t, z)

∣
∣ = O(ε |t| ),

sup
(z,n)∈Σ

∣
∣Nε(t, z, n) −N0(t, z, n)

∣
∣ = O(ε |t|2 ).

We abbreviate Z = Zε and N = Nε and introduce the norms

‖X‖t := sup
s∈[−t,t]

∣
∣X(s)

∣
∣.

Let ′ denote a derivative with respect to either q or p. Then, there are constants
b, g > 0 depending only on h1 such that for any 0 < α < 1 and all |t| ≤
ε−1/2

√
α
bg it holds that



1984 O. Gat et al. Ann. Henri Poincaré

∥
∥Z ′∥∥

t
≤ 1

1 − α
,

∥
∥N ′∥∥

t
≤ b|t|

1 − α
,

∥
∥Z ′′∥∥

t
≤ αb|t|

(1 − α)3
,

∥
∥N ′′∥∥

t
≤ b2|t|2

(1 − α)3
,

∥
∥Z ′′′∥∥

t
≤ 4αb2|t|2

(1 − α)5
,

∥
∥N ′′′∥∥

t
≤ 4b3|t|3

(1 − α)5
,

and
∥
∥
∥Z ′ − Z0′

∥
∥
∥

t
≤ ε bg|t|2

1 − α
.

Proof. To write the equations of motion in a concise form, we abbreviate

Ω =
(

0 1
−ω2 0

)
and G =

√
3

(
+hT

p

−hT
q

)

.

Then,

Ż = ΩZ + εGN , Ṅ = H(Z)N = H(Z0)N + H(Z − Z0)N. (4.1)

Let RZ(t) ∈ SO(2) be the propagator of the harmonic oscillator satisfying
ṘZ(t) = ΩRZ(t) with RZ(0) = 1R2 , then the “variation of constants” formula
gives

Z(t) = RZ(t)

⎛

⎝Z(0) + ε

t∫

0

dsRZ(−s)GN(s)

⎞

⎠

= Z0(t) + ε

t∫

0

dsRZ(t− s)GN(s).

Thus, sup(q,p,n)∈Σ

∣
∣Z(t, q, p, n) − Z0(t, q, p)

∣
∣ = O(ε|t|). For N , we find analo-

gously with A0(t) ∈ SO(3) the propagator of the “homogeneous” system

Ȧ0(t) = H
(
Z0(t)

)
A0(t)

that

N(t) = A0(t)

⎛

⎝N(0) +

t∫

0

dsA0(−s)H
(
Z(s) − Z0(s)

)
N(s)

⎞

⎠

= N0(t) +

t∫

0

dsA0(t− s)H
(
Z(s) − Z0(s)

)
N(s)

and thus sup(q,p,n)∈Σ

∣
∣N(t, q, p, n) −N0(t, q, p, n)

∣
∣ = O(ε|t|2).

We now turn to the derivatives of the flow. Let ′ be a derivative with
respect to the initial q or p. Then, the derivatives of the flow map satisfy the
equations
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Ż ′ = ΩZ ′ + εGN ′ , Ṅ ′ = H(Z)N ′ +B(Z ′)N ,

where B(Z ′) is a skew-symmetric matrix with all components linear in Q′ and
P ′. Let RZ(t) ∈ SO(2) be as before and RN (t) ∈ SO(3) be the propagator of
the “homogeneous” system

ṘN (t) = H
(
Z(t)

)
RN (t),

then the variation of constants formula and Φε
0(z, n) = (z, n) gives

Z ′(t) = RZ(t)

⎛

⎝Z ′(0) + ε

t∫

0

dsRZ(−s)GN ′(s)

⎞

⎠

N ′(t) = RN (t)
(
N ′(0)
︸ ︷︷ ︸

=0

+

t∫

0

dsRN (−s)B(Z ′(s)
)
N(s)

)

=

t∫

0

dsRN (t− s)B
(
Z ′(s)

)
N(s).

From this, we infer that
∥
∥Z ′∥∥

t
≤ ∣∣Z ′(0)

∣
∣

︸ ︷︷ ︸
=1

+ε g|t|∥∥N ′∥∥
t
= 1 + ε g|t|∥∥N ′∥∥

t

∥
∥N ′∥∥

t
≤ b|t|∥∥Z ′∥∥

t

where g = ‖G‖B(R3,R2) and b is a constant depending on B. Combining these
estimates, we find that for any α < 1

∥
∥Z ′∥∥

t
≤ 1

1 − ε bg|t|2 ≤ 1
1 − α

and
∥
∥N ′∥∥

t
≤ b|t|

1 − ε bg|t|2 ≤ b|t|
1 − α

uniformly for |t| ≤
√

α
εgb . Similarly, from

Ż ′ − Ż0′
= εGN ′,

and the norm estimate for N ′, we deduce
∥
∥
∥Z ′ − Z0′

∥
∥
∥

t
≤ ε g |t| ‖N ′‖t ≤ ε bg |t|2

1 − α
.

Bounds on higher derivatives are obtained in the same way:

Ż ′′ = ΩZ ′′ + εGN ′′

Ṅ ′′ = H(Z)N ′′ +B(Z ′′)N +B(Z ′)N ′

implies
∥
∥Z ′′∥∥

t
≤ ∣∣Z ′′(0)

∣
∣+ ε g|t|∥∥N ′′∥∥

t
= ε g|t|∥∥N ′′∥∥

t

∥
∥N ′′∥∥

t
≤ b|t|

(∥
∥Z ′′∥∥

t
+
∥
∥Z ′∥∥

t

∥
∥N ′∥∥

t

)
≤ b|t|

(∥
∥Z ′′∥∥

t
+

b |t|
(1 − α)2

)
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and thus
∥
∥N ′′∥∥

t
≤ ε bg|t|2 ∥∥N ′′∥∥

t
+

b2 |t|2
(1 − α)2

.

Solving for
∥
∥N ′′∥∥

t
gives

∥
∥N ′′∥∥

t
≤ 1

1 − ε bg|t|2
b2|t|2

(1 − α)2
≤ b2|t|2

(1 − α)3

and
∥
∥Z ′′∥∥

t
≤ ε b2g|t|3

(1 − α)3
≤ αb|t|

(1 − α)3
.

For the third derivatives, we find

Ż ′′′ = ΩZ ′′′ + εGN ′′′

Ṅ ′′′ = H(Z)N ′′′ +B(Z ′′′)N + 2B(Z ′)N ′′ + 2B(Z ′′)N ′

and thus
∥
∥Z ′′′∥∥

t
≤ ε g|t|∥∥N ′′′∥∥

t
∥
∥N ′′′∥∥

t
≤ b|t|

(∥
∥Z ′′′∥∥

t
+ 2
∥
∥Z ′∥∥

t

∥
∥N ′′∥∥

t
+ 2
∥
∥Z ′′∥∥

t

∥
∥N ′∥∥

t

)

≤ b|t|
(∥
∥Z ′′′∥∥

t
+

2b2|t|2
(1 − α)4

+
2ε b3g|t|4
(1 − α)4

)

≤ ε bg|t|2 ∥∥N ′′′∥∥
t
+

2b3|t|3 (1 + ε bg|t|2)
(1 − α)4

≤ ε bg|t|2 ∥∥N ′′′∥∥
t
+

4b3|t|3
(1 − α)4

where in the last step we have used 0 < α < 1 and |t| ≤ ε−1/2
√

α
bg . Solving

again for N ′′′, we find

∥
∥N ′′′∥∥

t
≤ 4b3|t|3

(1 − α)5
and

∥
∥Z ′′′∥∥

t
≤ 4ε b3g|t|4

(1 − α)5
≤ 4αb2|t|2

(1 − α)5
.

�

5. The Stern–Gerlach Experiment

To illustrate our method, we discuss how the Stern–Gerlach experiment can
be understood in terms of the semiclassical flow on extended phase space
Σ = R

6 ×S
2. In this famous experiment, neutral atoms with magnetic moment

g and spin-1/2 are sent through a weak, inhomogeneous magnetic field B =(
B1,B2,B3

) ∈ C∞
b (R3,R3). For simplicity, we will absorb g into B. In the

experiment one observes that a beam of such particles splits into two parts
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with intensities depending on the initial spin-state. The Hamiltonian describing
a single atom in the beam is the Weyl quantization of

H(q, p) = 1
2p

2 − ε 1
2B(q) · σ

= Op
S2

(
1
2p

2 − ε
√

3
2 B(q) · n

)
=: Op

S2

(
h(q, p, ·)). (5.1)

Due to the assumption on the magnetic field and the fact that the leading-
order term of H(q, p) is quadratic, Theorem 3.1 applies and for observables
a ∈ S0

Σ which are initially independent of spin, we have a semiclassical limit
with error O(ε2). In particular, this implies that we can compute quantum
expectation values

TrL2(R3,C2)

(
e+i t

ε ĥ OpΣ(a) e−i t
ε ĥ ŵ

)

=
1

(2π)3

∫

R6

dq dp
1
4π

∫

S2

dna ◦ Φε
t (q, p, n)w(q, p, n) + O(ε2)

with respect to the state ŵ = OpΣ(w) for times of order 1.
To be able to solve the semiclassical equations of motion (3.1) analyt-

ically, we will make some simplifying assumptions: first of all, we take the
magnetic field to be of the form

B(q) =
(
0, 0, b(q1)

)
= b(q1) e3

where b ∈ C∞(R), and thus ∇q ·B = 0, ∇qBj = 0 for j = 1, 2 and ∇qB3 = b′ e1.
It is easy to solve the equations of motion

q̇ = p

ṗ = ε
√

3
2 ∇q

(
B · n) = ε

√
3

2 b′ n3 e1 = O(ε) (5.2)
ṅ = b e3 ∧ n

explicitly up to O(ε2): the leading-order flow on R
6 × S

2 is given by

Φ0
t (q, p, n) =

⎛

⎜
⎝

q + t p

p

N0(t, q, p, n)

⎞

⎟
⎠

where N0(t, q, p, n) solves

Ṅ0(t, q, p, n) = b(q1 + t p1) e3 ∧N0(t, q, p, n), N0(0, q, p, n) = n.

Note that the spin precesses around the e3-axis and thus N0
3 (t, q, p, n) = n3.

The flow which solves (5.2) can be found up to O(ε2) by iteration: q̈ =
ε

√
3

2 b
′(q1)n3 e1 and hence, for initial momenta p = (0, p2, p3) in the p2p3-plane,

we compute

qε(t, q, p, n) = q + t p+ ε t2
√

3
2 b′(q1)n3 e1.

Thus, classical trajectories starting at (q, p) split into a whole fan of possible
directions depending on n3 ∈ [−1,+1]. This apparent inconsistency with the
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quantum mechanical predictions disappears after averaging over an initial dis-
tribution of spin. Let us assume for simplicity that the initial state is a product
state, ŵ = ŵR6 ⊗ ŵS2 , with symbol w(q, p, n) = wR6(q, p)wS2(n). The fact that
wS2(n) = 1

2

(
s0 +

√
3 s · n) is the symbol of a density matrix, i.e.

Op
S2(wS2) = Op

S2(wS2)∗, 0 ≤ Op
S2(wS2) ≤ 1, TrC2

(
Op

S2(wS2)
)

= 1,

implies s0 = 1, s ∈ R
3 and |s| ≤ 1. The pure states have “spin-direction”

s ∈ S
2, while the completely unpolarized state is w0

S2(n) = 1
2 . Taking the

spin-average of the e1-deflection

Δqε
1(t) := qε

1(t) − q1 = ε t2
√

3
2 b′(q1)n3

for initial momenta p = (0, p2, p3) with respect to Op
S2(wS2) = 1

2

(
1C2 + s · σ)

yields

Ew
S2

(
Δqε

1(t)
)

:= TrC2

(
Op

S2

(
Δqε

1(t)
)
Op

S2(wS2)
)

= ε t2
b′(q1)

2
TrC2

(
σ3 Op

S2(wS2)
)

= ε t2
b′(q1)

2
s3. (5.3)

To conclude that the distribution of Δqε
1(t) is concentrated in two points, we

need to compute higher moments of Δqε
1(t). To this end, note that

(
Op

S2

(
Δqε

1(t)
))2m

=
(
ε t2

|b′(q1)|
2

)2m

σ2m
3 =

(
ε t2

|b′(q1)|
2

)2m

1C2

and
(
Op

S2

(
Δqε

1(t)
))2m+1

=
(
ε t2

|b′(q1)|
2

)2m+1

σ2m+1
3 =

(
ε t2

|b′(q1)|
2

)2m+1

σ3.

Hence,

Ew
S2

((
Δqε

1(t)
)2m
)

=
(
ε t2

|b′(q1)|
2

)2m

and

Ew
S2

((
Δqε

1(t)
)2m+1

)
=
(
ε t2

|b′(q1)|
2

)2m+1

s3.

This computation shows how a continuous distribution of classical trajectories
in R

6 × S
2 leads to a distribution concentrated in two points ±ε t2 b′(q1)

2 with
weights 1

2 (1 ± s3) after averaging against a spin Wigner function wS2 . Since
wS2 is always equivalent to a linear polynomial, PwS2(n) = 1

2

(
1 +

√
3 s · n)

is never concentrated around a point on S
2 and takes negative values in case

|s| ≥ 1/
√

3 is large enough.
Of course, we still need to average over an initial distribution wR6(q, p) of

position and momenta. According to the uncertainty relation, we can assume
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that the width of the initial position distribution is Δq0 = O(ε1/3) and the
width of the initial momentum distribution is Δp0 = O(ε2/3). After time t ∝
ε−1/2, the width Δq = Δq0 + tΔp0 = O(ε1/6) of wave packets following the
classical trajectories is smaller than the separation ε t2 b′(q1) = O(1) of the
trajectories due to the deflection by the inhomogeneous field.

In conclusion, we see that the semiclassical model can correctly repro-
duce the splitting of wave packets in inhomogeneous magnetic fields. For the
particular case where b(q1) = q1 is linear and initial momenta p = (0, p2, p3) lie
in the p2p3-plane, we arrive at an effectively one-dimensional problem. Thus,
Theorem 3.3 applies and we obtain a semiclassical limit for times of order up
to O(ε−γ), γ < 1/2, for suitable observables which are initially independent
of n. Hence, we even have a rigorous proof that the semiclassical predictions
agree at leading order with the quantum mechanical distributions up to times
where the splitting is visible.
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[24] Vàrilly, J.C., Gracia-Bond̀ıa, J., Schempp, W.: The Moyal representation of
quantum mechanics and special function theory. Acta Appl. Math. 11, 225–
250 (1990)

[25] Zelditch, S., Zworski, M.: Ergodicity of eigenfunctions for ergodic billiards. Com-
mun. Math. Phys. 175(3), 673–682 (1996)

Omri Gat
Racah Institute of Physics
Hebrew University of Jerusalem
Jerusalem 91904, Israel
e-mail: omrigat@cc.huji.ac.il

Max Lein
Department of Mathematics and Fields Institute
University of Toronto
40 St. George Street
Toronto, ON M5S 2E4, Canada
e-mail: max.lein@utoronto.ca



Vol. 15 (2014) Semiclassics for Particles with Spin 1991

Stefan Teufel
Mathematisches Institut
Eberhard Karls Universität Tübingen
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