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A Trace Formula for Long-Range
Perturbations of the Landau Hamiltonian

Tomás Lungenstrass and Georgi Raikov

Abstract. We consider the Landau Hamiltonian perturbed by a long-range
electric potential V . The spectrum of the perturbed operator consists
of eigenvalue clusters which accumulate to the Landau levels. First, we
estimate the rate of the shrinking of these clusters to the Landau levels
as the number of the cluster tends to infinity. Further, we assume that
there exists an appropriate V, homogeneous of order −ρ with ρ ∈ (0, 1),
such that V (x) = V(x) + O(|x|−ρ−ε), ε > 0, as |x| → ∞, and investigate
the asymptotic distribution of the eigenvalues within the qth cluster as
q → ∞. We obtain an explicit description of the asymptotic density of
the eigenvalues in terms of the mean-value transform of V.

1. Introduction

Our unperturbed operator is the Landau Hamiltonian

H0 := (−i∇ −A)2,

self-adjoint in L2(R2). Here, A :=
(−Bx2

2 , Bx1
2

)
is the magnetic potential,

and B > 0 is the generated constant magnetic field. It is well known that
the spectrum σ(H0) of H0 consists of infinitely degenerate eigenvalues λq :=
B(2q + 1), q ∈ Z+ := {0, 1, 2, . . .}, called Landau levels.

The perturbation of H0 is an electric potential V : R
2 → R which is

supposed to be bounded and continuous. Set H := H0 + V . Evidently,

σ(H) ⊂
∞⋃

q=0

[λq + inf V, λq + supV ] .

Moreover, if V decays at infinity, and, hence, is relatively compact with re-
spect to H0, then σ(H)\σ(H0) consists of discrete eigenvalues which could
accumulate only to the Landau levels. Recently, in [19] it was shown that if V
satisfies

|V (x)| ≤ c〈x〉−ρ, x ∈ R
2, (1.1)
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with ρ > 1, then σ(H) is contained in the union of intervals centered at the
Landau levels λq, of size O(λ−1/2

q ) as q → ∞. Moreover, in [19] the asymptotic
density of the eigenvalue clusters was studied. To this end, the asymptotic be-
haviour of the trace Trϕ(λ1/2

q (H−λq)) with ϕ ∈ C∞
0 (R\{0}) was investigated,

and it was found that Trϕ(λ1/2
q (H − λq)) is of order λ1/2

q as q → ∞, and its
first asymptotic term could be written explicitly using the Radon transform
of V .

In the present article, we assume that V is long-range, i.e. in contrast to
[19], it satisfies (1.1) with ρ ∈ (0, 1). First, we show that the eigenvalue clusters
of H shrink to the Landau levels at rate λ−ρ/2

q as q → ∞ (see Proposition
2.1). Further, we suppose that there exists an appropriate V, homogeneous of
order −ρ, which is asymptotically equivalent to V , and study the asymptotic
behaviour of the trace Trϕ(λρ/2q (H−λq)). We show that Trϕ(λρ/2q (H−λq)) is
of order λq as q → ∞, and its main asymptotic term could be written explicitly
using the mean-value transform of V (see Theorem 2.1).

The article is organized as follows. In the next section, we formulate our
main results, and briefly comment on them. Section 3 contains auxiliary facts
concerning the properties of Weyl pseudodifferential operators and Berezin–
Toeplitz operators which are the main tools in the proof of Theorem 2.1. The
proof itself could be found in Sect. 4, and is divided into several steps, contained
in separate subsections.

2. Main Results

Our first result concerns the shrinking of the eigenvalue clusters of H in the
case of long-range potentials V .

Proposition 2.1. Assume that V satisfies (1.1) with ρ ∈ (0, 1). Then there
exists a constant C > 0 such that

σ(H) ⊂
∞⋃

q=0

(
λq − Cλ−ρ/2

q , λq + Cλ−ρ/2
q

)
. (2.1)

The proof of Proposition 2.1 could be found in Sect. 3.4.

Remark. (i) Simple considerations (see the remark after Proposition 3.7)
show that the estimate O(λ−ρ/2

q ) of the size of the eigenvalue clusters is
sharp. This will follow also from Theorem 2.1.

(ii) In [19, Proposition 1.1], it was shown that if V satisfies (1.1) with ρ > 1,
then there exists a constant C > 0 such that

σ(H) ⊂
∞⋃

q=0

(
λq − Cλ−1/2

q , λq + Cλ−1/2
q

)
.

In the case of compactly supported V , such a result was already obtained
in [17].
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In order to formulate our main result, we need the following notations.
For d ≥ 1 put

C∞
b (Rd) =

{
u ∈ C∞(Rd) | sup

x∈R

|Dαu(x)| ≤ cα, α ∈ Z
d
+

}
.

Following [26, Chapter 3, Section 8], we write u ∈ H�
−ρ(R

d) if u ∈ C∞(Rd\{0}),
ρ ∈ (0,∞), is a homogeneous function of order −ρ. Moreover, for ρ ∈ [0,∞)
we set

S−ρ
1 (Rd) :=

{
u ∈ C∞(Rd) | sup

x∈Rd

〈x〉ρ+|α||Dαu(x)| ≤ cα, α ∈ Z
d
+

}
.

Assume u ∈ C(R2\{0}), and define the mean-value transform

ů(x) :=
1
2π

∫

S1

u(x− ω)dω, x ∈ R
2\S

1.

Our mean-value transform coincides with the 2D mean-value operator M1

defined in [15, Chapter I, Eq. (15)] with n = 2, and is quite closely related to
the so-called planar circular Radon transform defined, for instance, in [1].

Next, we describe some elementary but yet useful properties of the mean-
value transforms of functions from appropriate classes. The proofs are quite
simple, so that we omit the details. If u ∈ S−ρ

1 (R2), ρ ∈ (0,∞), then the
mean-value transform ů extends to a function ů ∈ S−ρ

1 (R2). If u ∈ H�
−ρ(R

2),
ρ ∈ (0,∞), then ηů ∈ S−ρ

1 provided that η ∈ S0
1 (R2) and supp η ∩ S

1 = ∅.
Moreover, if ρ ∈ (0, 1), then the mean-value transform of u ∈ H�

−ρ(R
2) extends

to a function ů ∈ C(R2). Finally, if u ∈ H�
−ρ(R

2), ρ ∈ (0, 1), and ů(x) = 0 for
each x ∈ R

2, then u(x) = 0 for each x ∈ R
2\{0}.

Theorem 2.1. Let ρ ∈ (0, 1). Assume that V ∈ S−ρ
1 (R2) and there exists V ∈

H�
−ρ(R

2) such that

|V (x) − V(x)| ≤ C|x|−ρ−ε, x ∈ R
2, |x| > 1, (2.2)

with some constant C and ε > 0. Then we have

lim
q→∞λ−1

q Trϕ(λρ/2q (H − λq)) =
1

2πB

∫

R2

ϕ(BρV̊(x))dx (2.3)

for each ϕ ∈ C∞
0 (R\{0}).

Let us comment briefly on Theorem 2.1.
• Let [α, β] ⊂ R\{0} be a bounded interval with α < β. For q ∈ Z+ set

μq([α, β]) :=
∑

λq+αλ
−ρ/2
q ≤λ≤λq+βλ

−ρ/2
q

dimKer (H − λ).

Evidently, μq([α, β]) < ∞ if q ∈ Z+ is large enough. Put

μ([α, β]) :=
1

2πB

∣
∣
∣
{
x ∈ R

2 |αB−ρ ≤ V̊(x) ≤ βB−ρ
}∣∣
∣
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where | · | denotes the Lebesgue measure, and V̊ is the mean-value transform
of V ∈ H�

−ρ(R
2), ρ ∈ (0, 1), the homogeneous function introduced in the

statement of Theorem 2.1. Evidently, 0 
∈ [α, β] implies μ([α, β]) < ∞. We
extend μ to a σ-finite measure defined on the Borel sets O ⊂ R\{0}, and
supported on

[
Bρ infx∈R2 V̊(x), Bρ supx∈R2 V̊(x)

]
\{0}; the compactness of

the support of the limiting measure μ agrees with the fact that, in accor-
dance, with (2.1), we have suppμq ⊂ [−C,C]\{0} for sufficiently large q.
Then the validity of (2.3) for any ϕ ∈ C∞

0 (R2\{0}) is equivalent to the
validity of

lim
q→∞λ−1

q μq([α, β]) = μ([α, β])

for any bounded [α, β] ⊂ R\{0} such that μ({α}) = μ({β}) = 0. Note that
if, for instance, the function V is radially symmetric, then μ({α}) = 0 for
any α ∈ R\{0}.

• As already mentioned, in [19] it was supposed that V satisfies (1.1) with
ρ > 1. Then the Radon transform

Ṽ (s, ω) :=
1
2π

∫

R

V (sω + tω⊥)dt, s ∈ R,

ω = (ω1, ω2) ∈ S
1, ω⊥ := (−ω2, ω1),

is well defined, continuous, and decays as |s| → ∞ uniformly with respect
to ω ∈ S

1. Then, instead of (2.3), we have

lim
q→∞λ−1/2

q Trϕ(λ1/2
q (H − λq)) =

1
2π

∫

R

∫

S1

ϕ(BṼ (s, ω))dωds (2.4)

(see [19, Theorem 1.3]). Note, in particular, that if V 
= 0 satisfies (1.1) with
ρ > 1, then (2.4) implies that Trϕ(λ1/2

q (H − λq)) is of order λ1/2
q , while it

follows from (2.3) that under the hypotheses of Theorem 2.1 Trϕ(λρ/2q (H−
λq)) is of order λq as q → ∞ if V 
= 0.

• Theorem 2.1 admits a similar semiclassical interpretation as [19, Theorem
1.3]. Namely, consider the classical Hamiltonian function

H(ξ, x)=(ξ1+Bx2/2)2+(ξ2−Bx1/2)2, ξ=(ξ1, ξ2)∈R
2, x=(x1, x2)∈R

2.

(2.5)

The projections onto the configuration space of the orbits of the Hamil-
tonian flow of H are circles of radius

√
E/B, where E > 0 is the energy

corresponding to the orbit. The classical particles move around these circles
with period TB = π/B. These orbits are parameterized by the energy E > 0
and the center c ∈ R

2 of the circle. Denote the path in the configuration
space corresponding to such an orbit by γ(c, E, t), t ∈ [0, TB), and set

Av(V )(c, E) =
1
TB

TB∫

0

V (γ(c, E, t))dt, TB = π/B.
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It is easy to see that the r.h.s. of (2.3) can be rewritten as
1

2πB

∫

R2

ϕ(BρV̊(x))dx =
B

2π
lim
E→∞

1
E

∫

R2

ϕ(Eρ/2 Av(V )(c, E)) dc. (2.6)

Given (2.6), we can rewrite (2.3) as

lim
q→∞

1
λq

Trϕ(λρ/2q (H − λq)) =
B

2π
lim
E→∞

1
E

∫

R2

ϕ(Eρ/2 Av(V )(c, E)) dc.

(2.7)

Formula (2.7) agrees with the so-called “averaging principle” for systems
close to integrable ones, according to which a good approximation is ob-
tained if one replaces the original perturbation by its average along the
orbits of the free dynamics (see e.g. [2, Section 52]).

• Neither Theorem 2.1, nor [19, Theorem 1.3], treat the border-line case ρ = 1,
i.e. the case where V is, say, asymptotically homogeneous of order −1. In
this case the Radon transform of V is not well defined, while the mean-
value transform V̊ of V ∈ H�

−1(R
2) generically is not bounded since it may

have a logarithmic singularity at S
1. Therefore, in the border-line case,

the asymptotic density of the eigenvalue clusters of H should be different
from both the short-range case ρ > 1 and the long-range case ρ ∈ (0, 1).
Hopefully, we will consider in detail the border-line case in a future work.

The proof of Theorem 2.1 is contained on Sect. 4.

3. Auxiliary Results

3.1. Weyl Pseudodifferential Operators

Let d ≥ 1. Denote by S(Rd) the Schwartz class, and by S ′(Rd) its dual class.
If f ∈ S(Rd), then

f̂(ξ) := (2π)−d/2
∫

Rd

e−ix·ξf(x)dx, ξ ∈ R
d,

is the Fourier transform of f . Whenever necessary, we extend by duality the
Fourier transform to S ′(Rd).

Let Γ(R2d), d ≥ 1, denote the closure of C∞
b (R2d) with respect to the

norm

‖s‖Γ(R2d) := sup
{α,β∈Zd

+ | |α|,|β|≤[ d
2 ]+1}

sup
(x,ξ)∈R2d

|∂αx ∂βξ s(x, ξ)| < ∞.

Proposition 3.1. [6,8] Assume that s ∈ Γ(R2d). Then the operator Opw(s)
defined initially as a mapping from S(Rd) into S ′(Rd) by

(Opw(s)u) (x) = (2π)−d
∫

Rd

∫

Rd

s

(
x+ x′

2
, ξ

)
ei(x−x′)·ξu(x′)dx′dξ, x ∈ R

d,

(3.1)
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extends uniquely to an operator bounded in L2(Rd), and there exists a constant
c0 independent of s such that

‖Opw(s)‖ ≤ c0‖s‖Γ(R2d).

The operator Opw(s) is called a pseudodifferential operator (ΨDO) with Weyl
symbol s. Assume that s ∈ S ′(R2d), ŝ ∈ L1(R2d). Then the operator defined
in (3.1) extends to an operator bounded in L2(Rd), and we have

‖Opw(s)‖ ≤ (2π)−d‖ŝ‖L1(R2d) (3.2)

(see [16, Lemma 18.6.1]). Assume now s ∈ L2(R2d). Then, evidently, the op-
erator defined in (3.1) extends to a Hilbert–Schmidt operator in L2(Rd), and
we have

‖Opw(s)‖2
2 = (2π)−d

∫

R2d

|s(x, ξ)|2 dxdξ = (2π)−d
∫

R2d

|ŝ(x, ξ)|2 dxdξ. (3.3)

Let X be a separable Hilbert space. Then S∞(X) denotes the class of compact
linear operators acting in X. If T ∈ S∞(X), then {sj(T )}rankT

j=1 denotes the
set of the non-zero singular numbers of T enumerated in non-increasing order,
and S	(X) is the Schatten–von Neumann class of order � ∈ [1,∞), i.e. the
class of operators T ∈ S∞(X) for which the norm ‖T‖	 :=

(∑rankT
j=1 sj(T )	

)
is

finite. Thus, S1(X) is the trace class, and S2(X) is the Hilbert–Schmidt class.
Similarly, S	,w(X) denotes the weak Schatten–von Neumann class of order
� ∈ [1,∞), i. e. the class of operators T ∈ S∞(X) for which the quasinorm
‖T‖	,w := supj j1/	sj(T ) is finite. Whenever appropriate, we omit X in the
notations S	(X) and S	,w(X).

Next, we recall that u ∈ Lpw(Rd), d ≥ 1, the weak Lebesgue space of order
p ∈ [1,∞), if the quasinorm ‖u‖Lp

w(Rd) := supt>0 t
∣
∣{x ∈ R

d | |u(x)| > t
}∣∣1/p

is finite. Evidently, u ∈ H�
−ρ(R

d), ρ ∈ (0, d), implies u ∈ L
d/ρ
w (Rd).

Interpolating between (3.2) and (3.3) (see [4, Theorem 3.1]), we obtain
the following

Proposition 3.2. Let m ∈ (2,∞), m′ := m/(m− 1).

(i) Assume that s ∈ S ′(R2d), ŝ ∈ Lm
′
(R2d). Then Opw(s) ∈ Sm(L2(Rd)),

and

‖Opw(s)‖m ≤ (2π)−d(1− 1
m )‖ŝ‖Lm′ (R2d).

(ii) Assume that s ∈ S ′(R2d), ŝ ∈ Lm
′

w (R2d). Then Opw(s) ∈ Sm,w(L2(Rd)),
and

‖Opw(s)‖m,w ≤ (2π)−d(1− 1
m )‖ŝ‖Lm′

w (R2d).

3.2. Operators Opw(VB ∗ Ψq) and Opw(VB ∗ δk)
Introduce the harmonic oscillator

h := − d2

dx2
+ x2,
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self-adjoint in L2(R). It is well known that the spectrum of h is purely discrete
and simple, and consists of the eigenvalues 2q + 1, q ∈ Z+. Denote by pq the
orthogonal projection onto Ker (h− (2q + 1)), q ∈ Z+. Set

Ψq(x, ξ) =
(−1)q

π
Lq(2(x2 + ξ2))e−(x2+ξ2), (x, ξ) ∈ R

2, q ∈ Z+, (3.4)

where

Lq(t) :=
1
q!
et
dq(tqe−t)

dtq
=

q∑

k=0

(
q

k

)
(−t)k
k!

, t ∈ R, (3.5)

are the Laguerre polynomials. Then 2πΨq is the Weyl symbol of the operator
pq.

Denote by Pq, q ∈ Z+, the orthogonal projection onto Ker (H0 − λq). Set

VB(x) = V (−B−1/2x2,−B−1/2x1), x = (x1, x2) ∈ R
2. (3.6)

Proposition 3.3. [19, Corollary 2.13] There exists a unitary operator UB :
L2(R2) → L2(R2) such that for each V ∈ L1(R2) + L∞(R2) and each q ∈ Z+

we have

U∗
BPqV PqUB = pq ⊗ Opw(VB ∗ Ψq). (3.7)

For k > 0, define the distribution δk ∈ S ′(R2) by

δk(ϕ) :=
1
2π

2π∫

0

ϕ(k cos θ, k sin θ)dθ, ϕ ∈ S(R2).

Proposition 3.4. Assume that V ∈ S−ρ
1 (R2) with ρ ∈ (0,∞). Then the operator

Opw(VB ∗ δk), k > 0, is bounded and there exists a constant c1 such that

‖Opw(VB ∗ δk)‖ ≤ c1

⎧
⎪⎨

⎪⎩

k−ρ if ρ ∈ (0, 1),
k−1 ln k if ρ = 1,
k−1 if ρ ∈ (1,∞),

k ∈ [2,∞). (3.8)

Proof. Proposition 3.4 is an extension of [19, Lemma 3.2] which concerned
only the case ρ > 1. By Proposition 3.1,

‖Opw(VB ∗ δk)‖ ≤ c0 max
α∈Z2

+:0≤|α|≤2
sup
z∈R2

|(DαV ∗ δk)(z)|. (3.9)

By V ∈ S−ρ
1 (R2), we have

|DαV (x)| ≤ c1,α〈x〉−|α|−ρ ≤ c1,α〈x〉−ρ, x ∈ R
2, α ∈ Z

2
+, (3.10)

with constants c1,α which may depend on B but are independent of x. Now
(3.9) and (3.10) imply

‖Opw(VB ∗ δk)‖ ≤ c′1 sup
z∈R2

〈·〉−ρ ∗ δk(z). (3.11)
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Note that the function 〈·〉−ρ ∗δk is radially symmetric. Arguing as in the proof
of [19, Lemma 3.2], we get

(〈·〉−ρ ∗ δk)(z) =
1
2π

2π∫

0

((k cos θ − |z|)2 + k2 sin2 θ + 1)−ρ/2dθ

≤ 1
2π

2π∫

0

(k2 sin2 θ + 1)−ρ/2dθ =
2
π

π/2∫

0

(k2 sin2 θ + 1)−ρ/2dθ

≤
1∫

0

(k2t2 + 1)−ρ/2dt =: Iρ(k). (3.12)

Elementary calculations yield

Iρ(k) =

⎧
⎪⎨

⎪⎩

O(k−ρ) if ρ ∈ (0, 1),
O(k−1 ln k) if ρ = 1,
O(k−1) if ρ ∈ (1,∞),

k ∈ [2,∞). (3.13)

Putting together (3.11)–(3.13), we obtain (3.8). �

Proposition 3.5. Assume that V ∈ S−ρ
1 (R2) with ρ ∈ (0,∞). Then Opw(VB ∗

Ψq) − Opw(VB ∗ δ√2q+1) ∈ S2, and there exists a constant c2 independent of
q, such that

‖Opw(VB ∗ Ψq) − Opw(VB ∗ δ√2q+1)‖2 ≤ c2λ
−3/4
q , q ∈ Z+. (3.14)

Proof. Proposition 3.5 is an extension of the second part of [19, Lemma 3.1]
which concerned the case V ∈ C∞

0 (R2). By (3.3) we have

‖Opw(VB ∗ Ψq) − Opw(VB ∗ δ√2q+1)‖2
2

=
1
2π

∫

R2

|(VB ∗ Ψq)(z) − (VB ∗ δ√2q+1)(z)|2dz

=
1
2π

∫

R2

|( ̂VB ∗ Ψq)(ζ) − ( ̂VB ∗ δ√2q+1)(ζ)|2dζ. (3.15)

An explicit calculation (see [19, Eq. (3.9)]) yields

( ̂VB ∗ Ψq)(ζ) − ( ̂VB ∗ δ√2q+1)(ζ)

=
(
Lq(|ζ|2/2)e−|ζ|2/4 − J0(

√
2q + 1|ζ|)

)
V̂B(ζ), ζ ∈ R

2, (3.16)

where Lq is the Laguerre polynomial defined in (3.5), and J0 is the Bessel
function of zeroth order. Moreover, there exists a constant c̃2 such that

∣
∣
∣Lq(r)e−r/2 − J0(

√
(4q + 2)r)

∣
∣
∣ ≤ c̃2

(
(q + 1)−3/4r5/4 + (q + 1)−1r3

)
,

q ∈ Z+, r > 0, (3.17)
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(see [19, (Eq. (3.10)] for the generic case q ∈ N; if q = 0, then (3.17) follows
from |e−r/2−J0(

√
r)| = O(r2)|, r ∈ (0, 1), and |e−r/2−J0(

√
r)| = O(1), r ≥ 1).

Further,

|V̂B(ζ)| =

⎧
⎪⎨

⎪⎩

O(|ζ|−2+ρ) if ρ ∈ (0, 2),
O(| ln |ζ||) if ρ = 2,
O(1) if ρ > 2,

|ζ| ≤ 1/2,

and

|V̂B(ζ)| = O(|ζ|−N ), |ζ| > 1/2, N > 0,

(see [25, Chapter XII, Lemma 3.1]). In particular, the functions |ζ|mV̂B(ζ),
ζ ∈ R

2, with m > 1 − ρ if ρ ∈ (0, 2) or with m > −1 if ρ ≥ 2, are in L2(R2).
Combining (3.15), (3.16), and (3.17), we get

‖Opw(VB ∗ Ψq) − Opw(VB ∗ δ√2q+1)‖2
2

≤ c̃22
π

∫

R2

(
(q + 1)−3/2|ζ|5 + (q + 1)−2|ζ|12

)
|V̂B(ζ)|2dζ, (3.18)

which yields (3.14). �

Remark. Estimate (3.14) could be interpreted as a manifestation of the equi-
partition of the eigenfunctions of the harmonic oscillator h, i.e. the appropriate
weak convergence as q → ∞ of the Wigner function 2πΨq associated with the
qth normalized eigenfunction of H, to the measure invariant with respect to
the classical flow (see e.g. [5,7,28] for related results concerning various ergodic
quantum systems).

3.3. Norm Estimates for Berezin–Toeplitz Operators

Proposition 3.6. (i) Let V ∈ Lp(R2), p ∈ [1,∞). Then for each q ∈ Z+ we
have PqV Pq ∈ Sp and

‖PqV Pq‖pp ≤ B

2π
‖V ‖pLp(R2). (3.19)

(ii) Let V ∈ Lpw(R2), p ∈ (1,∞). Then for each q ∈ Z+ we have PqV Pq ∈
Sp,w and

‖PqV Pq‖pp,w ≤ B

2π
‖V ‖p

Lp
w(R2)

. (3.20)

Proof. Using the explicit expression for the integral kernel of Pq (see e.g. [12,
Eq. (3.2)]), we easily obtain

‖PqV Pq‖1 ≤ B

2π
‖V ‖L1(R2) (3.21)

with an equality if V = V ≥ 0. Moreover, evidently,

‖PqV Pq‖ ≤ ‖V ‖L∞(R2). (3.22)

Interpolating between (3.21) and (3.22) (see [4, Theorem 3.1]), we obtain (3.19)
and (3.20). �
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Remark. The first part of Proposition 3.6 has been known since long ago (see
[20, Lemma 5.1], [12, Lemma 3.1]).

Corollary 3.1. Let V ∈ Lp(R2), p ∈ [2,∞). Then for each q ∈ Z+ we have
PqV = (V Pq)∗ ∈ Sp, and

‖PqV ‖pp = ‖V Pq‖pp ≤ B

2π
‖V ‖pLp(R2). (3.23)

Proof. Estimates (3.23) follow immediately from (3.19) since we have

‖PqV ‖pp = ‖Pq|V |2Pq‖p/2p/2 ≤ B

2π
‖V 2‖p/2

Lp/2(R2)
=

B

2π
‖V ‖pLp(R2).

�

Proposition 3.7. Assume that V satisfies (1.1) with ρ ∈ (0,∞). Then there
exists a constant c∞ such that

‖PqV Pq‖ ≤ c∞

⎧
⎪⎪⎨

⎪⎪⎩

λ
−ρ/2
q if ρ ∈ (0, 1),

λ
−1/2
q | lnλq| if ρ = 1,

λ
−1/2
q if ρ ∈ (1,∞),

q ∈ Z+. (3.24)

Proof. An elementary variational argument implies that we may assume with-
out loss of generality that V (x) = 〈x〉−ρ, x ∈ R

2; then, V ∈ S−ρ
1 (R2). By

Propositions 3.3 and 3.5 we have

‖PqV Pq‖ = ‖Opw(VB ∗ Ψq)‖
≤ ‖Opw(VB ∗ δ√2q+1)‖ + ‖Opw(VB ∗ Ψq) − Opw(VB ∗ δ√2q+1)‖
≤ ‖Opw(VB ∗ δ√2q+1)‖ + ‖Opw(VB ∗ Ψq) − Opw(VB ∗ δ√2q+1)‖2

≤ ‖Opw(VB ∗ δ√2q+1)‖ + c2λ
−3/4
q . (3.25)

Now, (3.25) and (3.8) yield immediately (3.24). �

Remark. Estimates (3.24) with ρ 
= 1 are sharp. For ρ > 1 this follows from
the argument of [17] where the estimate ‖PqV Pq‖ ≤ c∞λ

−1/2
q was obtained

for compactly supported V . Namely, if {φk,q}∞
k=−q is the so called angular-

momentum orthonormal basis of the Hilbert space Pq L2(R2), q ∈ Z+ (see e.g.
[21]), and 1R is the characteristic function of a disk of finite radius R > 0,
centered at the origin, then

lim inf
q→∞ λ1/2

q 〈1Rφ0,q, φ0,q〉L2(R2) > 0,

which implies the sharpness of estimates (3.24) with ρ > 1. Similarly, if ρ ∈
(0, 1), we can show that

lim inf
q→∞ λρ/2q 〈〈·〉−ρφ−q,q, φ−q,q〉L2(R2) > 0,

which entails the sharpness of estimates (3.24) with ρ ∈ (0, 1). We do not
know whether estimate (3.24) with ρ = 1 is sharp, but it is sufficient for our
purposes.
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Corollary 3.2. Assume that V satisfies (1.1) with ρ ∈ (0, 1). Then for each
� > 2/ρ there exists a constant c	 such that

‖PqV Pq‖	 ≤ c	λ
1
� − ρ

2
q (1 + | lnλq|)1/	, q ∈ Z+. (3.26)

Proof. Similarly to the proof of Proposition 3.7 above, an elementary varia-
tional argument shows that we may assume without loss of generality that
V (x) = 〈x〉−ρ, x ∈ R

2. Note also that in the proof of estimate (3.26) we may
assume that q is large enough since for any fixed q it follows from (3.19).

For brevity, set Tq := PqV Pq, q ∈ Z+; by [21], rankTq = ∞. By (3.20)
with p = 2/ρ, there exists a constant C such that

sj(Tq) ≤ Cj−ρ/2, j ∈ N, q ∈ Z+. (3.27)

On the other hand, (3.24) implies

s1(Tq) ≤ c∞λ−ρ/2
q , q ∈ Z+. (3.28)

Fix � > 2/ρ. By (3.27)–(3.28), for any N ∈ N, we have

‖Tq‖		 =
∞∑

j=1

sj(Tq)	 =
N∑

j=1

sj(Tq)	 +
∞∑

j=N+1

sj(Tq)	

≤ s1(Tq)	−
2
ρ

N∑

j=1

sj(Tq)
2
ρ + C	

∞∑

j=N+1

j− �ρ
2

≤ c
	− 2

ρ∞ C2/ρλ
1− �ρ

2
q

N∑

j=1

j−1 + C	
∞∑

j=N+1

j− �ρ
2

≤ const.
(
λ

1− �ρ
2

q (1 + lnN) +N1− �ρ
2

)

with a constant independent of N and q. Assuming that q is large enough, and
choosing N equal to the integer part of λq, we obtain (3.26). �
Remark. Estimate (3.26) should be regarded as an a priori estimate which is
sufficient for our purposes.

3.4. Proof of Proposition 2.1

Given estimate (3.24) with ρ ∈ (0, 1), the proof of Proposition 2.1 is analogous
to the one of [19, Proposition 1.1]; we include it just for the convenience of the
reader.

In order to prove (2.1) it suffices to show that there exist C̃ > 0 and
s0 ∈ N such that s ≥ s0 implies

σ(H) ∩ [λs −B, λs +B] ⊂
(
λs − C̃λ−ρ/2

s , λs + C̃λ−ρ/2
s

)
. (3.29)

Set R0(z) = (H0 − z)−1, z ∈ C\σ(H0). By the Birman–Schwinger principle,
λ ∈ R\σ(H0) is an eigenvalue of H if and only if −1 is an eigenvalue of
|V |1/2R0(λ)V 1/2 where

V 1/2(x) :=

{
|V (x)|1/2 signV (x) if V (x) 
= 0,
0 if V (x) = 0.
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Hence, in order to prove (3.29), it suffices to show that for some C̃ > 0 and
s0 ∈ N, the inequalities s ≥ s0 and

C̃λ−ρ/2
s < |λs − λ| ≤ B (3.30)

imply

‖|V |1/2R0(λ)|V |1/2‖ < 1. (3.31)

Pick m ∈ N such that ‖V ‖L∞(R2) ≤ λm/2. For s ≥ m write

R0(λ) =
s+m∑

k=s−m
(λk − λ)−1Pk + R̃0(λ; s,m).

Then

‖|V |1/2R0(λ)V 1/2‖≤
s+m∑

k=s−m
|λk−λ|−1‖Pk|V |Pk‖+‖|V |1/2R̃0(λ; s,m)|V |1/2‖.

(3.32)

By the choice of m, we have

‖|V |1/2R̃0(λ; s,m)|V |1/2‖ < 1
2
. (3.33)

On the other hand, by (3.24) with ρ ∈ (0, 1), we have

s+m∑

k=s−m
|λk − λ|−1‖Pk|V |Pk‖ ≤ c∞λ

−ρ/2
s−m (2m+ 1)|λs − λ|−1

which implies

s+m∑

k=s−m
|λk − λ|−1‖Pk|V |Pk‖ < 1

2
, (3.34)

provided that the first inequality in (3.30) holds with appropriate C̃. Now,
(3.31) follows from (3.32), (3.33), and (3.34).

In the proof of Theorem 2.1, we will need also the following

Proposition 3.8. Assume that V satisfies (1.1) with ρ ∈ (0, 1). Then there
exists a constant C ′ > 0 such that for each q ∈ Z+ we have

σ
(
(I − Pq)H(I − Pq)|(I−Pq)Dom(H0)

)

⊂
⋃

s∈Z+\{q}

(
λs − C ′λ−ρ/2

s , λs + C ′λ−ρ/2
s

)
. (3.35)

The proof of Proposition 3.8 is quite the same as that of Proposition 2.1,
so that we omit the details.
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4. Proof of Theorem 2.1

4.1. Passing from V to its Weinstein Average 〈V 〉
Assume that V ∈ L∞(R2) and set

〈V 〉 :=
∑

s∈Z+

PsV Ps (4.1)

where, a priori, the series converges strongly; this is the case if, for instance,
V = 1 identically. If

lim
q→∞ ‖PqV Pq‖ = 0 (4.2)

which, by Proposition 3.7, is the case if V satisfies (1.1) with ρ > 0, then the
series in (4.1) converges in norm. In order to check this, it suffices to show that
{〈V 〉q}q∈Z+

with 〈V 〉q :=
∑q
s=0 PsV Ps, q ∈ Z+, is a Cauchy sequence in the

uniform operator topology. By PjPs = 0 for j 
= s, we have

‖〈V 〉q+m − 〈V 〉q‖ ≤ sup
j≥q+1

‖PjV Pj‖, q ∈ Z+, m ∈ N,

which combined with (4.2), implies the required property of the sequence
{〈V 〉q}q∈Z+

. Since

〈V 〉 =
B

π

π/B∫

0

e−itH0V eitH0 dt,

we call 〈V 〉 the Weinstein average of V (see [27]). Set 〈H〉 := H0 + 〈V 〉.
Proposition 4.1. Under the hypotheses of Theorem 2.1 we have

Trϕ(λρ/2q (H − λq)) = Trϕ(λρ/2q (〈H〉 − λq)) + o(λq), q → ∞. (4.3)

for each ϕ ∈ C∞
0 (R\{0}).

Proof. First, let us write the difference of the traces in (4.3) according to the
Helffer–Sjöstrand formula (see the original works [11,14], or the monographs
[9, Section 2.2], [10, Chapter 8]). Let ϕ ∈ C∞

0 (R\{0}), and let ϕ̃ ∈ C∞
0 (R2) be

an almost analytic continuation of ϕ which satisfies

supp ϕ̃ ⊂ ((a−, b−) ∪ (a+, b+)) × (−c, c) (4.4)

with −∞ < a− < b− < 0 < a+ < b+ < ∞, and 0 < c < ∞, as well as

|ψ(x, y)| ≤ CN |y|N , (x, y) ∈ R
2, N > 0, (4.5)

where ψ := 1
2

(
∂ϕ̃
∂x + i∂ϕ̃∂y

)
. For (x, y) ∈ R

2 set z = x+ iy and

ψq(x, y) := λρ/2q ψ(λρ/2q (x− λq), λρ/2q y), q ∈ Z+. (4.6)
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Then the Helffer–Sjöstrand formula yields

ϕ(λρ/2q (H − λq)) =
1
π

∫

R2

ψ(x, y)(λρ/2q (H − λq) − z)−1dxdy

=
1
π

∫

R2

ψq(x, y)(H − z)−1dxdy.

Similarly,

ϕ(λρ/2q (〈H〉 − λq)) =
1
π

∫

R2

ψq(x, y)(〈H〉 − z)−1dxdy.

Further, let �+ be the smallest integer (strictly) greater than 2/ρ. Write the
iterated resolvent identity

(H − z)−1 =
	+−1∑

s=0

(−1)s((H0 − z)−1V )s(H0 − z)−1

+(−1)	+((H0 − z)−1V )	+(H − z)−1. (4.7)

In the sequel, assume that q ∈ Z+ is so large that −2B < a−λ
−ρ/2
q and

b+λ
−ρ/2
q < 2B (see (4.4) and (4.6)). Then the sum on the r.h.s of (4.7) is

holomorphic on the support of ψq. Therefore,

ϕ(λρ/2q (H − λq)) =
(−1)	+

π

∫

R2

ψq(x, y)((H0 − z)−1V )	+(H − z)−1dxdy.

Similarly,

ϕ(λρ/2q (〈H〉 − λq)) =
(−1)	+

π

∫

R2

ψq(x, y)((H0 − z)−1〈V 〉)	+(〈H〉 − z)−1dxdy.

Thus we get

(−1)	+πTr
(
ϕ(λρ/2q (H − λq)) − ϕ(λρ/2q (〈H〉 − λq))

)

=
∫

R2

ψq(x, y)
(
((H0 − z)−1V )	+(H − z)−1

−((H0 − z)−1〈V 〉)	+(〈H〉 − z)−1
)
dxdy =

∑

j=1,2,3

Tj(q) (4.8)

where

T1(q) := Tr
∫

R2

ψq(x, y)
(
((H0 − z)−1V )	+

−(λq − z)−	+(PqV )	+
)
(H − z)−1dxdy,
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T2(q) := Tr
∫

R2

ψq(x, y)
(
(λq − z)−	+(Pq〈V 〉)	+

−((H0 − z)−1〈V 〉)	+) (〈H〉 − z)−1dxdy,

T3(q) := Tr
∫

R2

ψq(x, y)(λq − z)−	+(PqV )	+

× ((H − z)−1 − Pq(〈H〉 − z)−1
)
dxdy.

Writing T3(q), we have taken into account that (Pq〈V 〉)	+ = (PqV Pq)	+ =
(PqV )	+Pq. Hence, in order to prove (4.3) it suffices to show that

Tj(q) = o(λq), j = 1, 2, 3, q → ∞.

To this end we need some preliminary estimates. Namely, we will show that
if V ∈ Lp(R2), p ∈ [2,∞), (x, y) ∈ suppψq, and q ∈ Z+, then (I − Pq)(H0 −
z)−1V ∈ Sp, and there exists a constant cp such that

sup
(x,y)∈suppψq

‖(I − Pq)(H0 − z)−1V ‖p ≤ cp‖V ‖Lp(R2) (4.9)

for sufficiently large q. Assume at first V ∈ L∞(R2). Then, evidently,

‖(I − Pq)(H0 − z)−1V ‖ ≤ sup
s∈Z+\{q}

|λs − z|−1‖V ‖L∞(R2). (4.10)

Note that if (x, y) ∈ suppψq, then

|x− λq| = O(λ−ρ/2
q ), q → ∞, (4.11)

(see (4.4) and (4.6)). Hence, for q large enough we have

sup
s∈Z+\{q}

|λs − z|−1 ≤ B−1, (x, y) ∈ suppψq. (4.12)

Assume now that V ∈ L2(R2). Then we have

‖(I − Pq)(H0 − z)−1V ‖2
2 =

∑

s∈Z+\{q}
|λs − z|−2TrPs|V |2Ps

=
B

2π

∑

s∈Z+\{q}
|λs − z|−2‖V ‖2

L2(R2) (4.13)

(see (3.21)). Taking into account again (4.11), we find that for q large enough
we have

∑

s∈Z+\{q}
|λs − z|−2 ≤ π2

3B2
, (x, y) ∈ suppψq. (4.14)

Interpolating between (4.10) and (4.13) (see [4, Theorem 3.1]), and bearing in
mind (4.12) and (4.14), we obtain (4.9). Further, since

(H0 − z)−1V = (λq − z)−1PqV + (I − Pq)(H0 − z)−1V,
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elementary combinatorial arguments yield the estimate

|T1(q)| ≤
	+−1∑

m=0

(
�+
m

)
T1,m(q) (4.15)

where

T1,m(q) :=
∫

R2

|ψq(x, y)|‖(I − Pq)(H0 − z)−1

×V ‖	+−m
	+

|λq − z|−m‖PqV ‖m	+‖(H − z)−1‖dxdy. (4.16)

Our next goal is to show that

T1,m(q) = o(λq), q → ∞, m = 0, . . . , �+ − 1. (4.17)

To this end we apply:
• estimate (4.5) with N = 2 in order to get

sup
(x,y)∈suppψq

|ψq(x, y)| ≤ C2λ
3ρ/2
q y2;

• estimate (4.9) in order to handle ‖(I − Pq)(H0 − z)−1V ‖	+ ;
• the fact that, due to (4.4) and (4.6), we have

sup
(x,y)∈suppψq

|λq − z|−1 = O(λρ/2q ); (4.18)

• estimate (3.23) in order to handle ‖PqV ‖	+ ;
• the standard resolvent estimate ‖(H − z)−1‖ ≤ |y|−1;
• the elementary estimate

∫

suppψq

|y|dxdy = O(λ−3ρ/2
q ). (4.19)

As a result, we obtain

T1,m(q) ≤ const. λmρ/2q , m = 0, . . . , �+ − 1, (4.20)

with a constant independent of q. We have λmρ/2q = o(λq) as q → ∞ in all the
cases except the one where 2/ρ is an integer, and m = �+ − 1 = 2/ρ. In this
exceptional case however we have m ≥ 3 and in all the terms of

(
(H0 − z)−1V

)	+ − (λq − z)−	+(PqV )	+

which contain m = �+ − 1 factors of the type (λq − z)−1PqV , at least two of
these factors are neighbours. Therefore, in this exceptional case we can replace
‖PqV ‖m	+ by ‖PqV ‖m−1

	+
‖PqV Pq‖	+ in (4.16), apply (3.26) with � = �+ = m+1,

and obtain

T1,m(q) = O

(
λ

1+ 1
m+1 − 1

m
q (lnλq)

1
m+1

)
= o(λq), q → ∞. (4.21)

Now, (4.20) and (4.21) entail (4.17), which combined with (4.15) implies

|T1(q)| = o(λq), q → ∞. (4.22)
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Similarly, we get

|T2(q)| = o(λq), q → ∞. (4.23)

Let us now turn to T3(q). First, note that due to the cyclicity of the trace, we
have

T3(q) = Tr
∫

R2

ψq(x, y)(λq − z)−	+(PqV )	+

× ((H − z)−1Pq − Pq(PqV Pq + λq − z)−1Pq
)
dxdy.

Next, we need the Schur–Feshbach formula (see the original works [13,23], or a
contemporary exposition available, for instance, in [3, Appendix]). According
to this formula,

(H − z)−1

= PqR‖(z)Pq − PqR‖(z)V (I − Pq)R⊥(z) − (I − Pq)R⊥(z)V PqR‖(z)

+(I − Pq)
(
R⊥(z) +R⊥(z)V PqR‖(z)V (I − Pq)R⊥(z)

)
(4.24)

where R⊥(z) is the inverse of the operator (I − Pq)(H − z)(I − Pq) de-
fined on (I − Pq)DomH0, and considered as an operator in the Hilbert space
(I − Pq)L2(R2), while R‖(z) is the inverse of the operator

PqV Pq − PqV (I − Pq)R⊥(z)V Pq + λq − z

considered as an operator in the Hilbert space PqL2(R2). Applying (4.24) and
the resolvent identity, we obtain

(H − z)−1Pq − Pq(λq + PqV Pq − z)−1Pq

= R‖PqV (I−Pq)R⊥(z)V Pq(PqV Pq+λq−z)−1−(I−Pq)R⊥(z)V R‖(z)Pq

Thus,

T3(q) = T3,1(q) + T3,2(q) (4.25)

where

T3,1(q) := Tr
∫

R2

ψq(x, y)
(λq − z)	+

(PqV Pq)	+

×R‖(z)PqV (I − Pq)R⊥(z)V Pq(PqV Pq + λq − z)−1dxdy,

and

T3,2(q) := −Tr
∫

R2

ψq(x, y)(λq − z)−	+

×(PqV Pq)	+−1PqV (I − Pq)R⊥(z)V PqR‖(z)Pqdxdy.

We have

|T3,1(q)| ≤
∫

R2

|ψq(x, y)|
|λq − z|	+ ‖PqV Pq‖	+	+‖R‖(z)‖‖PqV ‖‖V Pq‖‖R⊥(z)‖

×‖(PqV Pq + λq − z)−1‖dxdy. (4.26)
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In order to show that

|T3,1(q)| = o(λq), q → ∞, (4.27)

we apply:
• estimate (4.5) with N = 3 in order to get

sup
(x,y)∈suppψq

|ψq(x, y)| ≤ C3λ
2ρ
q |y|3;

• estimate (4.18) in order to handle |λq − z|−	+ ;
• estimate (3.26) with � = �+ in order to handle ‖PqV Pq‖	+ ;
• the standard resolvent estimates

‖R‖(z)‖ ≤ |y|−1, ‖(PqV Pq + λq − z)−1‖ ≤ |y|−1; (4.28)

• estimate (3.24) in order to conclude that

‖PqV ‖‖V Pq‖ = ‖PqV 2Pq‖ ≤ c∞

⎧
⎪⎨

⎪⎩

λ−ρ
q if ρ ∈ (0, 1

2

)
,

λ
−1/2
q | lnλq| if ρ = 1

2 ,

λ
−1/2
q if ρ ∈ ( 1

2 , 1
)
,

q ∈ Z+;

(4.29)

• the elementary estimate (4.19);
• Proposition 3.8 in order to deduce the estimate

sup
(x,y)∈suppψq

‖R⊥(z)‖ = O(1), q → ∞; (4.30)

As a result, we obtain

|T3,1(q)| = O (Φ1,ρ(λq)) , q → ∞, (4.31)

where

Φ1,ρ(t) :=

⎧
⎪⎨

⎪⎩

t1−ρ/2| ln t| if ρ ∈ (0, 1
2

)
,

t3/4(ln t)2 if ρ = 1
2 ,

t(1+ρ)/2| ln t| if ρ ∈ ( 1
2 , 1
)
,

t > 0.

Now, (4.31) implies (4.27). Finally, we have

|T3,2(q)| ≤
∫

R2

|ψq(x, y)||λq − z|−	+

×‖PqV Pq‖	+−1
	+

‖PqV ‖	+‖R⊥(z)‖‖PqV ‖‖R‖(z)‖dxdy

In order to show that

|T3,2(q)| = o(λq), q → ∞, (4.32)

we apply (4.5) with N = 2, (4.18), (3.26), (3.23), the first estimate in (4.28),
(4.30), (4.19), and (4.29). Thus we obtain

|T3,2(q)| = O

(

λ

(�+−1)
�+

+ ρ
2

q (lnλq)
(�+−1)

�+ Φ2,ρ(λq)

)

, q → ∞, (4.33)



Vol. 15 (2014) A Trace Formula for Magnetic Hamiltonians 1541

where

Φ2,ρ(t) :=

⎧
⎪⎨

⎪⎩

t−ρ/2 if ρ ∈ (0, 1
2

)
,

t−1/4| ln t|1/2 if ρ = 1
2 ,

t−1/4 if ρ ∈ ( 1
2 , 1
)
,

t > 0,

and (4.32) follows from (4.33).
Now the combination of (4.8), (4.22), (4.23), (4.25), (4.27), and (4.32)

yields (4.3). �

4.2. Passing to Individual Berezin–Toeplitz Operators

Proposition 4.2. Assume the hypotheses of Theorem 2.1. Then for each ϕ ∈
C∞

0 (R\{0}) there exists q0 ∈ Z+ such that

Trϕ(λρ/2q (〈H〉 − λq)) = Trϕ(λρ/2q PqV Pq) (4.34)

for q ≥ q0.

Proof. We have

Trϕ(λρ/2q (〈H〉 − λq)) =
∑

s∈Z+

Trϕ(λρ/2q (λs − λq + PsV Ps)) (4.35)

Due to the presence of the factor λρ/2q in the traces Trϕ(λρ/2q (λs−λq+PsV Ps)),
s ∈ Z+, it suffices to show that there exists q0 such that for q ≥ q0 the operators

λs − λq + PsV Ps = 2B(s− q) + PsV Ps, s 
= q, (4.36)

are invertible, and

sup
q≥q0

sup
s∈Z+\{q}

‖(λs − λq + PsV Ps)−1‖ < ∞. (4.37)

Since ‖PsV Ps‖ ≤ ‖V ‖L∞(R2), s ∈ Z+, there exists m ∈ N such that the
operators in (4.36) with |s− q| > m are invertible, and

sup
q∈Z+

sup
s∈Z+:|s−q|>m

‖(λs − λq + PsV Ps)−1‖ < ∞. (4.38)

On the other hand, Proposition 3.7 implies that for any fixed j ∈ Z we have

lim
q→∞ ‖Pq+jV Pq+j‖ = 0.

Therefore, there exists q0 ∈ Z+ such that the operators in (4.36) with |s−q| ≤
m are invertible for q ≥ q0, and

sup
q≥q0

max
s∈Z+\{q}:|s−q|≤m

‖(λs − λq + PsV Ps)−1‖ < ∞. (4.39)

Putting together (4.38) and (4.39), we obtain (4.37), and hence (4.34). �
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4.3. Passing from PqV Pq to Opw(VB ∗ δ√
2q+1)

Introduce the operator Opw(VB ∗ δ√2q+1). We have

̂VB ∗ δ√2q+1(ζ) = V̂B(ζ)J0(
√

2q + 1|ζ|), ζ ∈ R
2.

Note that J0 is an entire function, and |J0(r)| ≤ 1, r ∈ R. On the other hand,
V̂B ∈ H�

−2+ρ(R
2). Therefore, ̂VB ∗ δ√2q+1 ∈ L

2/(2−ρ)
w (R2), and by Proposition

3.2 we have Opw(VB ∗ δ√2q+1) ∈ S2/ρ;w. The main result of this subsection is

Proposition 4.3. Under the hypotheses of Theorem 2.1 we have

Trϕ(λρ/2q PqV Pq) = Trϕ(λρ/2q Opw(VB ∗ δ√2q+1)) + o(λq), q → ∞. (4.40)

In the proof of Proposition 4.3, as well as in the next subsection, we will
use systematically the following auxiliary result.

Lemma 4.1. Let ϕ ∈ C∞
0 (R\{0}), and let T = T ∗ and Q = Q∗ be compact

operators. (i) Assume Q ∈ Sm, m ∈ [2,∞), T ∈ S	, � ∈ [m,∞). Then

‖ϕ(T +Q) − ϕ(T )‖1 ≤ cϕ,m,	‖Q‖m
(
‖T‖	/m′

	 + ‖Q‖	/m′

	

)
(4.41)

with m′ = m/(m− 1) and a constant cϕ,m,	 independent of T and Q.
(ii) Assume Q ∈ S2, T ∈ S	, � ∈ [2,∞). Then

‖ϕ(T +Q) − ϕ(T )‖1 ≤ cϕ,	‖Q‖2

(
‖T‖	/2	 + ‖Q‖2

)
(4.42)

with a constant cϕ,	 independent of T and Q.
(iii) Assume Q ∈ S2, T ∈ S	;w, � ∈ [2,∞). Then

‖ϕ(T +Q) − ϕ(T )‖1 ≤ cϕ,	;w‖Q‖2

(
‖T‖	/2	,w + ‖Q‖2

)
(4.43)

with a constant cϕ,	;w independent of T and Q.

Proof. By [18], for each p ∈ (1,∞) and each Lipschitz function f : R → C

satisfying

‖f‖Lip := sup
λ∈R, μ∈R, λ�=μ

|f(λ) − f(μ)|
|λ− μ| < ∞,

there exists a constant cp such that

‖f(M +N) − f(M)‖p ≤ cp‖f‖Lip‖N‖p (4.44)

for each self-adjoint M , and each N = N∗ ∈ Sp. Further, assume f ∈
C∞

0 (R\{0}), and set δ := dist (0, supp f). Then for any M = M∗ ∈ S∞ we
have

‖f(M)‖s ≤ max
λ∈R

|f(λ)|
⎛

⎝
∑

j:sj(M)>δ

1

⎞

⎠

1/s

. (4.45)

Let M = M∗ ∈ Sp, p ∈ [1,∞). Then
∑

j:sj(M)>δ

1 ≤ δ−p‖M‖pp. (4.46)
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Finally, let M = M∗ ∈ Sp,w, p ∈ (1,∞). Then
∑

j:sj(M)>δ

1 ≤
∑

j:‖M‖p,wj−1/p>δ

1 ≤ δ−p‖M‖pp,w. (4.47)

Next, pick a real function ν ∈ C∞
0 (R\{0}) such that ν = 1 on the support

of ϕ. Then ϕ(T ) = ϕ(T )ν(T ), ϕ(T + Q) = ϕ(T + Q)ν(T + Q). Assume now
Q ∈ Sm, m ∈ [2,∞), T ∈ S	, � ∈ [m,∞). Then

‖ϕ(T +Q) − ϕ(T )‖1

≤ ‖ν(T +Q) − ν(T )‖m‖ϕ(T )‖m′ + ‖ϕ(T +Q) − ϕ(T )‖m‖ν(T +Q)‖m′ ,

(4.48)

and (4.41) follows from (4.48), (4.44) with M = T, N = Q, and p = m, (4.45)
with M = T or M = T + Q and s = m′, (4.46) with M = T or M = T + Q

and p = �, and the convexity of the function t �→ t	/m
′
, t ≥ 0. Further, assume

Q ∈ S2. Then, instead of (4.48), we can write

‖ϕ(T+Q)−ϕ(T )‖1 ≤ ‖ν(T +Q) − ν(T )‖2‖ϕ(T )‖2

+‖ϕ(T +Q)−ϕ(T )‖2 (‖ν(T )‖2+‖ν(T +Q)−ν(T )‖2) .
(4.49)

If we assume now T ∈ S	 (resp., T ∈ S	,w) with � ∈ [2,∞), then (4.42) (resp.,
(4.43)) follows from (4.49), (4.44) with M = T , N = Q, and p = 2, (4.45) with
M = T and s = 2, and (4.46) (resp., (4.47)) with M = T and p = �. �

Proof of Proposition 4.3. Pick a real radially symmetric η ∈ C∞
0 (R2) such that

0 ≤ η(x) ≤ 1 for all x ∈ R
2, η(x) = 1 for |x| ≤ 1/2, η(x) = 0 for |x| > 1. Our

first goal is to show that

Trϕ(λρ/2q PqV Pq) = Trϕ(λρ/2q Pq(1 − η)VPq) + o(λq), q → ∞. (4.50)

Evidently,

|Trϕ(λρ/2q PqV Pq) − Trϕ(λρ/2q Pq(1 − η)VPq)|
≤ ‖ϕ(λρ/2q PqV Pq) − ϕ(λρ/2q Pq(1 − η)V Pq)‖1

+‖ϕ(λρ/2q Pq(1 − η)V Pq) − ϕ(λρ/2q Pq(1 − η)VPq)‖1. (4.51)

Applying (4.42) with � > 2/ρ, T = λ
ρ/2
q PqV Pq and Q = −λρ/2q PqηV Pq, (3.19)

with p = 2, and (3.26), we obtain the estimate

‖ϕ(λρ/2q PqV Pq) − ϕ(λρ/2q Pq(1 − η)V Pq)‖1

= O
(
λ(1+ρ)/2
q (lnλq)1/2

)
= o(λq), q → ∞. (4.52)

Similarly, assuming without loss of generality that ε ∈ (0, 1 − ρ) in (2.2), and
then applying (4.41), with � = m > 2/ρ, T = λ

ρ/2
q Pq(1 − η)V Pq, Q = −λρ/2q

Pq(1 − η)(V − V)Pq, as well as (3.26), we obtain

‖ϕ(λρ/2q Pq(1 − η)V Pq) − ϕ(λρ/2q Pq(1 − η)VPq)‖1

= O
(
λ

1− ε
2

q (lnλq)
)

= o(λq), q → ∞. (4.53)
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Now, (4.51), (4.52), and (4.53) imply (4.50). Further, by Proposition 3.3 we
have

Trϕ(λρ/2q Pq(1 − η)VPq) = Trϕ(λρ/2q Opw(((1 − η)V)B ∗ Ψq)). (4.54)

Our next goal is to show that

Trϕ(λρ/2q Opw(((1 − η)V)B ∗ Ψq))

= Trϕ(λρ/2q Opw(VB ∗ δ√2q+1)) + o(λq), q → ∞. (4.55)

Similarly to (4.51), we have

|Trϕ(λρ/2q Opw(((1 − η)V)B ∗ Ψq)) − Trϕ(λρ/2q Opw(VB ∗ δ√2q+1))|
≤ ‖ϕ(λρ/2q Opw(((1 − η)V)B ∗ Ψq)) − ϕ(λρ/2q Opw(((1 − η)V)B ∗ δ√2q+1))‖1

+‖ϕ(λρ/2q Opw(((1 − η)V)B ∗ δ√2q+1)) − ϕ(λρ/2q Opw(VB ∗ δ√2q+1))‖1.

(4.56)

Applying (4.42) with � > 2/ρ,

T = λ
ρ/2
q Opw(((1 − η)V)B ∗ Ψq),

Q = λ
ρ/2
q

(
Opw(((1 − η)V)B ∗ δ√2q+1) − Opw(((1 − η)V)B ∗ Ψq)

)
,

as well as Proposition 3.3, (3.26), and Proposition 3.5, we get

‖ϕ(λρ/2q Opw(((1 − η)V)B ∗ Ψq)) − ϕ(λρ/2q Opw(((1 − η)V)B ∗ δ√2q+1))‖1

= O
(
λ

1+ρ
2 − 3

4
q (lnλq)1/2

)
= o(λq), q → ∞. (4.57)

In order to estimate the second factor at the r.h.s. of (4.56), we need an
estimate of the Hilbert–Schmidt norm of the operator Opw((ηV)B ∗ δ√2q+1).
By (3.3) and the generalized Young inequality (see e.g. [22, Section IX.4]) we
have

‖Opw((ηV)B ∗ δ√
2q+1)‖2

2 =
1

2π
‖ ̂(ηV)B ∗ δ√

2q+1‖2
L2(R2)

=
B2

(2π)3

∫

R2

|(η̂ ∗ V̂)(B1/2ζ)|2J0(
√

2q + 1|ζ|)2dζ

≤ B

(2π)3
‖η̂ ∗ V̂‖2

L2(R2) ≤cB‖η̂‖2
L2/(1+ρ)(R2)‖V̂‖2

L
2/(2−ρ)
w (R2)

(4.58)

with a constant c which depends only on ρ. Applying (4.42) with � > 2/ρ and
T = λ

ρ/2
q Opw(((1 − η)V)B ∗ δ√2q+1), Q = λ

ρ/2
q Opw((ηV)B ∗ δ√2q+1), as well

as Propositions 3.3 and 3.5, Corollary 3.2, and (4.58), we get

‖ϕ(λρ/2q Opw(((1 − η)V)B ∗ δ√2q+1)) − ϕ(λρ/2q Opw(VB ∗ δ√2q+1))‖1

= O
(
λ(1+ρ)/2
q (lnλq)1/2

)
= o(λq), q → ∞. (4.59)

Now, (4.56), (4.57), and (4.59) imply (4.55), while (4.50), (4.54), and (4.55)
imply (4.40). �
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4.4. Semiclassical Analysis of Tr ϕ(λρ/2
q Opw(VB ∗ δ√

2q+1))

Proposition 4.4. Under the hypotheses of Theorem 2.1 we have

lim
q→∞λ−1

q Trϕ(λρ/2q Opw(VB ∗ δ√2q+1)) =
1

2πB

∫

R2

ϕ(BρV̊(x))dx. (4.60)

Proof. Let s : R
2d → C be an appropriate Weyl symbol. For � > 0 set

s�(x, ξ) := s(x, �ξ), (x, ξ) ∈ R
2d,

and define the �-ΨDO Opw
�
(s) := Opw(s�). Set

s̃�(x, ξ) := s(
√

�x,
√

�ξ), (x, ξ) ∈ R
2d.

A simple rescaling argument shows that the operators Opw
�
(s) and Opw(s̃�)

are unitarily equivalent (see e.g. [24, Section A2.1]). Set

s(z) := Bρ V̊1(z), z ∈ R
2.

Due to the homogeneity of V we have

λρ/2q VB ∗ δ√2q+1(z) = s((2q + 1)−1/2z), z ∈ R
2.

Therefore, the operator ϕ(λρ/2q Opw(VB ∗ δ√2q+1)) is unitarily equivalent to
ϕ(Opw

�
(s)) with � := (2q + 1)−1. Now, in order to prove (4.60), it suffices to

show that

lim
�→0

�Trϕ(Opw
�
(s)) =

1
2π

∫

R2

ϕ(s(x))dx (4.61)

since
∫

R2 ϕ(s(x))dx =
∫

R2 ϕ(BρV̊(x))dx. If the symbol s were regular, then
(4.61) would follow from standard semiclassical results (see e.g. [10, Theorem
9.6]). Due to the singularity of s at S

1, we need some additional final estimates.
Pick the function η defined at the beginning of the proof of Proposition 4.3,
and for r > 0 set ηr(x) := η(r−1x), x ∈ R

2. Define the symbols

s1,r(x) := Bρ ((1 − ηr)V1)(x), s2,r(x) := Bρ (ηrV1)(x), x ∈ R
2,

so that s = s1,r + s2,r. Evidently, s1,r ∈ S−ρ
1 (R2). By [10, Theorem 9.6],

lim
�→0

�Tr (ϕ(Opw
�
(s1,r)) =

1
2π

∫

R2

ϕ(s1,r(x))dx. (4.62)

On the other hand, estimate (4.43) with � = 2/ρ, T = Opw
�
(s) and

Q = −Opw
�
(s2,r) implies

|Trϕ(Opw
�
(s)) − Trϕ(Opw

�
(s1,r))|

≤ cϕ,	;w‖Opw
�
(s2,r)‖2

(
‖Opw

�
(s)‖1/ρ

2/ρ;w + ‖Opw
�
(s2,r)‖2

)
. (4.63)

By Proposition 3.2,

‖Opw
�
(s)‖2/ρ;w ≤ �

−ρ/2(2π)−(1− 2
ρ )‖ŝ‖

L
2/(2−ρ)
w (R2)

(4.64)
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and, similarly to (4.58),

‖Opw
�
(s2,r)‖2 = �

−1/2(2π)−1/2‖ŝ2,r‖L2(R2)

≤ �
−1/2c‖V̂‖

L
2/(2−ρ)
w (R2)

‖η̂r‖L2/(1+ρ)(R2). (4.65)

Finally,

‖η̂r‖L2/(1+ρ)(R2) = r1−ρ‖η̂‖L2/(1+ρ)(R2). (4.66)

As a result, we find that (4.63)–(4.66) imply the existence of a constant C such
that the estimate

|Trϕ(Opw
�
(s)) − Trϕ(Opw

�
(s1,r))| ≤ C�

−1r1−ρ (4.67)

is valid for each � > 0 and r ∈ (0, 1). Now, (4.62) and (4.67) yield
1
2π

∫

R2

ϕ(s1,r(x))dx− Cr1−ρ

≤ lim inf
�↓0

�Trϕ(Opw
�
(s)) ≤ lim sup

�↓0
�Trϕ(Opw

�
(s))

≤ 1
2π

∫

R2

ϕ(s1,r(x))dx+ Cr1−ρ.

Letting r ↓ 0, and taking into account that

lim
r↓0

∫

R2

ϕ(s1,r(x))dx =
∫

R2

ϕ(s(x))dx,

we obtain (4.61), and hence (4.60). �

Putting together (4.3), (4.34), (4.40), and (4.60), we arrive at (2.3) which
completes the proof of Theorem 2.1.
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