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Resonant Delocalization on the Bethe Strip

Mira Shamis

Abstract. Recently, Aizenman and Warzel discovered a mechanism for
the appearance of absolutely continuous spectrum for random Schrödin-
ger operators on the Bethe lattice through rare resonances (resonant de-
localization). We extend their analysis to operators with matrix-valued
random potentials drawn from ensembles such as the Gaussian Orthog-
onal Ensemble. These operators can be viewed as random operators on
the Bethe strip, a graph (lattice) with loops.

1. Introduction

Let T be a regular rooted tree with branching number K > 1 (Bethe lattice).
We shall be interested in random Schrödinger operators on the Cartesian prod-
uct T×G of T and a finite graph G with W vertices (Bethe strip). Equivalently,
these can be seen as random Schrödinger operators on T with matrix-valued
potential. The precise definition is as follows: H = Hλ,ω is a random operator
acting on

�2(T ×G) = �2(T → R
W ),

and given by the matrix elements

Hλ,ω(x, y) =

⎧
⎪⎨

⎪⎩

1W×W , x ∼ y (x is adjacent to y)
A+ λVω(x). x = y

0, otherwise
, x, y ∈ T. (1)

Here λ ≥ 0 is a coupling constant, ω denotes an element of the probability
space, A is a fixed W × W Hermitian matrix, and Vω(x) are independent
identically distributed W × W random matrices. The potential A + λVω(x)
will be denoted Uω(x).

The question that we shall address is, what is the spectral type of H
when λ is small. Before stating our results, let us review what was previously
known.
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For the Bethe lattice (W = 1, A = 0 in our notation), the spectrum of
the unperturbed operator (λ = 0) is purely absolutely continuous and fills the
interval [−2

√
K, 2

√
K]. Under mild assumptions on the potential, Klein [9–11]

showed that, for small λ > 0, the spectrum in [−2
√
K + ε, 2

√
K − ε] is also

(almost surely) absolutely continuous. Additional proofs and generalizations
of this result were found by Aizenman et al. [3] and by Froese et al. [7].

On the other hand, Aizenman [1] proved that, for small λ, the spectrum
of H outside [−K − 1 − ε,K + 1 + ε] is almost surely pure point.

In the recent work, Aizenman and Warzel [4] proved the presence of
absolutely continuous spectrum thorough out the interval [−K−1+ε,K+1−ε].
They found a new mechanism for the appearance of absolutely continuous
spectrum, entirely different from the one appearing inside the spectrum of the
unperturbed operator, and coined the term “resonant delocalization” for it. As
opposed to the absolutely continuous spectrum in the interval [−2

√
K, 2

√
K],

which appears due to the stability of the absolutely continuous spectrum on
the Bethe lattice, the absolutely continuous spectrum in [−K − 1,K + 1] \
[−2

√
K, 2

√
K] (in the Lifshitz tails) appears due to resonances between distant

sites. The interval [K−1,K+1] is exactly the �1 spectrum of the unperturbed
operator; the importance of the �1 spectrum is further discussed in [4] and in
the survey by Warzel [15].

The goal of this present work was to extend the result of [4] to the case
W > 1 of the Bethe strip. We make use of significant parts of the work [4]; for
the reader’s convenience, we denote by Statement X* the generalization of [4,
Statement X].

Denote by {νi}W
i=1 the eigenvalues of A, and let

Sε =
⋃

i

[νi − (K + 1) + ε, νi + (K + 1) − ε] .

Our main result is

Theorem 1.1 (Corollary 2.3*). Assume that Vω(x) are drawn from the Gauss-
ian Orthogonal Ensemble (GOE). For any ε > 0 any open interval I ⊂ Sε

almost surely has absolutely continuous spectrum of Hλ,ω in it, when λ > 0 is
sufficiently small.

Thus the mechanism of resonant delocalization from [4] may be extended
to the Bethe strip, a lattice with loops. See [15, Sect. 4] for a more general
discussion of possible further extensions.

Theorem 1.1 should also be compared with the result of Klein and Sadel
[12] (and its ramification [13]), who proved, under weaker assumptions on the
potential Vω, that the spectrum of Hλ,ω in

S−
ε =

⋂

i

[
νi − 2

√
K + ε, νi + 2

√
K − ε

]

is almost surely purely absolutely continuous; the special case K = W = 2 was
earlier considered by Froese et al. [6]. Thus we replace the intersection with
union (i.e. the fastest Lyapunov exponent with the slowest one) and 2

√
K
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with K + 1 (i.e. the �2 spectrum with the �1 spectrum) at the price of more
restrictive assumptions on Vω, and we only manage to show the existence of
absolutely continuous spectrum rather than its purity. The spectrum outside
the set S−ε is pure point, as follows from the results of [1]. Thus our result
provides an additional example of the appearance of absolutely continuous
spectrum in the �1 spectrum of the unperturbed operator H0,ω, well outside
the �2 spectrum.

Theorem 1.1 will follow from Theorems 1.2 and 1.3 below. Theorem 1.3
connects the presence of absolutely continuous spectrum with the (slowest)
Lyapunov exponent L = Lλ(E) ∈ R+, which is defined in the sequel. Theorem
1.2, which holds for any (independent identically distributed) random potential
Uω with E log+ ‖Uω(x)‖ < ∞, guarantees that the assumptions of Theorem
1.2 are satisfied for small λ.

Theorem 1.2. For every ε > 0 and any interval I ⊂ Sε one has

mes {E ∈ I | L(E) < logK} > 0

for sufficiently small λ.

It is probably true that for λ < λ0(ε) one has L|Sε < logK; this is,
however, unsettled even for W = 1 (except for the special case of Cauchy
disorder, see [4]).

In the next two theorems, we assume that Vω(x) are drawn from the
GOE. We shall comment on possible generalizations in the sequel.

Theorem 1.3 (Theorem 2.1*). The absolutely continuous spectrum of H fills
(almost surely) the set {E | L(E) < logK}, meaning that the restriction of the
Lebesgue measure to this set is almost surely absolutely continuous with respect
to the absolutely continuous part of the spectral measure of H. In particular,
this set is a subset of the absolutely continuous spectrum of H.

Similarly to the results of [4], Theorem 1.3 is sharp in the following sense:
the spectrum of Hλ,ω in {E | Lλ(E) > logK} is almost surely pure point, as
follows from the results of [1].

For expositional reasons, we first prove

Theorem 1.4. H has (almost surely) no pure point spectrum in the set

{E | L(E) < logK} .
and then the stronger Theorem 1.3.

Finally, let us comment on the generality of the results. The simplest gen-
eralization of the Bethe strip setting of [4] is the GOE potential, corresponding
to A = 0 (and small λ > 0). In this case, only minor modifications (due to the
non-commutativity of matrix product) would be required in the arguments of
[4], since the Lyapunov exponents differ from one another by a quantity which
vanishes in the limit λ → 0 (at least, in the sense of Theorem 1.2).

When A 
= 0, additional difficulties arise, which are due to the fact
that there may be a significant difference between the fastest and the slowest
Lyapunov exponent. Most of the current paper is devoted to overcoming these
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difficulties. We state the results for the case when Vω(x) are drawn from the
GOE, but the arguments may be extended to more general potentials with
off-diagonal disorder. The crucial requirement is the conditional a.c. prop-
erty, stating that the conditional distribution of Vω(x)i0,j0 given {Vω(x)ij |
(i, j) 
= (i0, j0), (j0, i0)} is absolutely continuous. We try to indicate where the
off-diagonal disorder assumption is used in the proof.

It would be interesting to extend the results of this paper to the case of
diagonal disorder: for example, Vω(x) is a diagonal matrix with independent
identically distributed entries (which would correspond to the usual Bethe
strip).

2. Preliminaries and Proof of Theorem 1.2

For

z ∈ C
+ = {z ∈ C | �z > 0} ,

the Green function Gλ(x, y; z) is the xy block of the resolvent (Hλ−z)−1 (from
this point we suppress the dependence on ω). For a vertex u of T, GTu

λ (x, y, z)
is the xy block of the Green function associated with the restriction of Hλ

to the subgraph Tu obtained by removing u from T. N+
u is the collection of

forward neighbors of a vertex u, and Nu is the collection of all neighbors of u.
The root of T is denoted 0.

Claim 2.1 (Proposition 3.1*). For any matrix-valued Schrödinger operator H
on T with potential U , and any z ∈ C

+,

Gλ(x, x; z) =

⎛

⎝U(x) − z −
∑

y∈Nx

GTx(y, y; z)

⎞

⎠

−1

,

and for any ordered pair 0 ≺ x ≺ y

Gλ(x, y; z) = Gλ(x, x; z)GTx

λ (x1, y; z) = G
Ty

λ (x, xn; z)Gλ(y, y; z)

= Gλ(x, x; z)GTx

λ (x1, x1; z) · · ·GTxn

λ (y, y; z),

where xx1x2 · · ·xny is the path from x to y.

Proof. To prove the first statement, decompose

�2(T → R
W ) = �2({x} → R

W ) ⊕ �2(Tx → R
W ),

and apply the Schur–Banachiewicz formula for block matrix inversion. To prove
the second statement, we iterate the formula

Gλ(x, y; z) = Gλ(x, x; z)GTx

λ (x1, y; z)

which follows from the resolvent identity. �
Let 0x1x2x3 · · ·xn · · · be a branch of T. Denote

L(z) = − lim
n→∞

1
n+ 1

ln ‖Gλ(0, xn; z)‖,
where ‖·‖ stands for the operator norm. This is the slowest Lyapunov exponent.
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Claim 2.2. The Lyapunov exponent L(z) is defined and non-random for any
independent identically distributed matrix potential U(x) which satisfies

E log+ ‖U(x)‖ < ∞.

The claim follows from the Furstenberg–Kesten Theorem [8]. For U =
A+λV , we denote the Lyapunov exponent by Lλ when we need to emphasize
the dependence on λ. For E ∈ R, we set

Lλ(E) = lim
η→+0

Lλ(E + iη).

Claim 2.3. For any matrix potential U = A+ λV , where A is fixed and V (x)
are independent and identically distributed with E log+ ‖V (x)‖ < ∞, and for
any z ∈ C

+,

Lλ(z) → L0(z) as λ → 0.

Claim 2.3 follows from the strong resolvent convergence outside the spec-
trum. From Claim 2.3 and the Fatou Lemma, we obtain

Claim 2.4 (Theorem 6.1*). For any matrix potential U = A + λV , where A
is fixed and V (x) are independent and identically distributed, and for any
bounded interval I ⊂ R, the function

λ �→
∫

I

Lλ(E)dE

is continuous, and, in particular,

lim
λ→0

∫

I

Lλ(E)dE =
∫

I

L0(E)dE.

The argument justifying Claims 2.3 and 2.4 is identical to that of [4, Sect.
6.1]. Theorem 1.2 is a consequence of Claim 2.4 and the explicit computation
of the free Lyapunov exponent L0, which can be performed using Claim 2.1
and which shows that

L0(E) < logK ⇐⇒ E ∈ S0 ≡
⋃

i

(νi − (K + 1), νi + (K + 1)).

3. Proof of Theorem 1.4

The proof of Theorem 1.4 makes use of the following version of the Simon–
Wolff [14] criterion:

Proposition 3.1 (Matrix Simon–Wolff criterion). Suppose an i.i.d. matrix
potential U(x) satisfies the following two properties:
1. U(x) has independent entries on the diagonal,
2. U(x) is irreducible, meaning that it has no non-trivial deterministic

invariant subspace.
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Then the pure point part of the spectral measure is almost surely supported on
the set

Σ =

{

E ∈ σ(H) |
∑

x∈T

‖G(0, x;E + i0)‖2 < ∞ almost surely

}

,

and the continuous part is almost surely supported on its complement.

Proof. By the usual Simon–Wolff [14] criterion, the continuous spectrum is
almost surely supported on the set

Sj =

{
∑

x

∑

i

|G(0, x;E + i0)j,i|2 = ∞
}

,

and the pure point spectrum is almost surely supported on its complement.
By assumption 2, the set Sj is (almost surely) independent of j. Therefore, it
coincides with

⎧
⎨

⎩

∑

x

∑

ij

|G(0, x;E + i0)j,i|2 = ∞
⎫
⎬

⎭
,

and the latter coincides with
{
∑

x

‖G(0, x;E + i0)‖2 = ∞
}

due to equivalence between norms. �

Now, Claim 2.1 yields

‖G(0, x; z)‖ = ‖G(x, x; z)∗GTx(0, x−; z)∗‖ ≥ ‖G(x, x; z)∗GTx(0, x−; z)∗w‖
for any unit vector w (from this point we suppress the dependence on λ, and
x− stands for the backward neighbor of a vertex x). Let v = GTx(0, x−; z)∗w
and ṽ = v/‖v‖. Then

‖G(0, x; z)‖ ≥ ‖G(x, x; z)∗v‖
≥ |〈G(x, x; z)∗v, ṽ〉| = ‖v‖ |〈G(x, x; z)ṽ, ṽ〉|. (2)

Let

w = wmax(GTx(0, x−; z)GTx(0, x−; z)∗)

be the unit eigenvector of GTx(0, x−; z)GTx(0, x−; z)∗ associated with the
largest eigenvalue; then ṽ = wmax(GTx(0, x−; z)∗GTx(0, x−; z)). Denote

Ex =
{

|〈G(x, x;E + iη)ṽ, ṽ〉| ≥ τ ≡ e+(L(E)+2δ)n
}
,

Rx =
{

‖GTx(0, x−;E + iη)‖ ≥ e−(L(E)+δ)n
}
,

and

N =
∑

x∈Sn

1Rx∩Ex
,
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where Sn = Nn
+(0) is the sphere of radius n about the root. According to (2),

‖G(0, x;E + iη)‖ ≥ eδn on Rx ∩ Ex.

Proposition 3.2 (First moment bound). For U(x) = A + λV (x), where V (x)
are drawn from the GOE,

EN ≥ 1
C(λ)τ

Kn

when n is large enough and η > 0 is small enough.

Proof. By continuity in η → +0 which holds for almost every energy
(cf. [4, Corollary 4.10]), it is sufficient to prove the statement for E + i0.

Denote by P the projection on

ṽ = wmax(GTx(0, x−;E + iη)∗GTx(0, x−;E + iη));

ṽ is independent of V (x). Also set Q = 1 − P . By Claim 2.1,

〈G(x, x;E + iη)ṽ, ṽ〉

= P

⎛

⎝A+ λV (x) − E − iη −
∑

y∈Nx

GTx(y, y;E + iη)

⎞

⎠

−1

P. (3)

By the Schur–Banachiewicz formula

PT−1P = (PTP − PTQ(QTQ)−1QTP )−1,

we have

〈G(x, x;E + iη)ṽ, ṽ〉 = (g − σ)−1,

where g = λPV (x)P is Gaussian, and

σ = −PAP + z +
∑

y∈Nx

PGTx(y, y;E + iη)P

+

⎛

⎝PU(x)Q−
∑

y∈Nx

PGTx(y, y;E + iη)Q

⎞

⎠

⎛

⎝QU(x)Q− z −
∑

y∈Nx

QGTx(y, y;E + iη)Q

⎞

⎠

−1

⎛

⎝QU(x)P −
∑

y∈Nx

QGTx(y, y;E + iη)P

⎞

⎠ . (4)

Lemma 3.3. The random variable σ is independent of g.

Proof. (Uses off-diagonal randomness) This fact is an immediate corollary of
the following property of the GOE: for every orthogonal projection P, PV (x)P
is independent of

{(1 − P )V (x)P, PV (x)(1 − P ), (1 − P )V (x)(1 − P )} .
�
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Lemma 3.4. There exists 0 < s < 1 so that

E|σ|s ≤ C,

where C > 0 is a constant.

Proof. We bound the s-moment of every term in (4). The bound on

E

∣
∣
∣
∣
∣
∣

∑

y∈Nx

PGTx(y, y;E + iη)P

∣
∣
∣
∣
∣
∣

s

follows from [4, A.1]. It, therefore, remains to bound the s-moment of the
multipliers in (4) (then the s/3-moment of the product is bounded by Cauchy–
Schwarz). The expressions

E‖PV (x)Q‖s, E‖QV (x)P‖s

are estimated directly (they are finite e.g. for s = 2); the s-moment of the
second multiplier in (4) can be bounded using an argument similar to the
upper bound in Lemma 3.5 below. �

Having the two lemmata, we can conclude the proof of Proposition 3.2.
By Chebyshev’s inequality and Lemma 3.4,

P {|σ| ≤ t} ≥ 1 − C ′/ts (5)

can be made arbitrarily close to 1 by choosing t large enough. Now we estimate
EN as follows: first,

EN =
∑

x∈Sn

P(Rx ∩ Ex) = Kn
P(Rx ∩ Ex).

Then
P(Rx ∩ Ex) = P

(
Rx ∩ {|λg − σ| ≤ τ−1

})

≥ P
(
Rx ∩ {|σ| ≤ t} ∩ {|λg − σ| ≤ τ−1

})

= E

(

1Rx
1|σ|≤t P

{

|g − σ| ≤ 1
λτ

| Rx, σ

})

.

From Lemma 3.3,

P

{

|g − σ| ≤ 1
λτ

∣
∣Rx, σ

}

≥ 1
Cλ,tτ

1|σ|≤t,

therefore,

P(Rx ∩ Ex) ≥ 1
Cλ,tτ

P (Rx ∩ {|σ| ≤ t}) .

Choosing n and t large enough, we get

P(Rx) ≥ 3/4

from Claim 2.2 and

P{|σ| ≤ t} ≥ 3/4,
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from (5); hence

P (Rx ∩ {|σ| ≤ t}) ≥ 1/2

and

P(Rx ∩ Ex) ≥ 1
2Ct,λτ

.

�

Next, we bound the second moment of N from above. The first ingredient
is

Lemma 3.5. For s ∈ (0, 1),

C−1
− (s, z) ≤ E‖GTx(0, x−; z)‖s

E‖GTu,x(0, u−; z)‖sE‖GTu,x(u+, x−; z)‖s
≤ C+(s, z),

where C±(s, z) are uniformly bounded as �z → +0.

Proof. We start from Claim 2.1:

GTx(0, x−; z) = GTu,x(0, u−; z)GTx(u, u; z)GTu,x(u+, x−; z). (6)

Upper bound (Only requires diagonal randomness) Taking norms in (6), we
obtain

‖GTx(0, x−; z)‖s ≤ ‖GTu,x(0, u−; z)‖s‖GTx(u, u; z)‖s‖GTu,x(u+, x−; z)‖s.

By construction, GTu,x(0, u−; z), GTu,x(u+, x−; z), and V (u) are independent.
We shall show that

EV (u)‖GTx(u, u; z)‖s ≤ C+(s, z), (7)

where EV (u) denotes averaging over V (u) (= conditioning on all the other
values of the potential). Averaging (7) over {V (y) | y 
= u}, we obtain the
upper bound in the lemma. To prove (7), note that, by the Schur–Banachiewicz
formula,

GTx(u, u; z) = (λV (u) − σ)−1,

where σ is independent of V (u). Therefore,

EV (u)‖GTx(u, u; z)‖s ≤ Cλ−s
∑

j,k

E|(V (u) − σ)−1
jk |s = C(I + II),

where I is the sum of the diagonal terms and II is the sum of the off-diagonal
terms. To bound the diagonal terms, note that

EV (u)|(V (u) − σ)−1
jj |s = EV (u)EV (u)jj

|V (u)jj − σ̃|−s,

where σ̃ is independent of V (u)jj . Therefore, [by the inequality (II.2) from the
paper of Aizenman–Molchanov [2]]

EV (u)|(V (u) − σ)−1
jj |s ≤ C(s)

and I ≤ C(s)W .



1558 M. Shamis Ann. Henri Poincaré

To bound the off-diagonal terms, we use inequality (II.3) from [2]. This
concludes the proof of the upper bound.

Lower bound (Uses off-diagonal randomness). We shall use

Proposition 3.6. Let V be a random matrix drawn from GOE, and let σ be a
fixed matrix. Then for any two vectors φ and ψ

E
∣
∣〈(V − σ)−1φ, ψ〉∣∣s ≥ C‖σ‖,s‖φ‖s ‖ψ‖s.

Proof. We may assume without loss of generality that φ = e1 (the first vector
of the standard basis) and that ψ = ae1 + be2, a

2 + b2 = 1. Then

〈(V − σ)−1φ, ψ〉 = a(V − σ)−1
11 + b(V − σ)−1

12 .

By Cramer’s rule,

a(V − σ)−1
11 + b(V − σ)−1

12 =
a(g22 − σ̃22) − b(g12 − σ̃12)

(g11 − σ̃11)(g22 − σ̃22) − (g12 − σ̃12)(g12 − σ̃21)
,

where gij are Gaussian, and σ̃ is independent of the gij . By Hölder’s inequality,

Eg

∣
∣a(V − σ)−1

11 + b(V − σ)−1
12

∣
∣s

≥
[
Eg |a(g22 − σ̃22) − b(g12 − σ̃12)|s/2

]2

Eg |(g11 − σ̃11)(g22 − σ̃22) − (g12 − σ̃12)(g12 − σ̃21)|s

It is easy to see that the denominator is bounded from above by a number
depending only on σ̃. The numerator is bounded from below by a constant
independent of σ̃. Averaging over σ̃ concludes the proof of Proposition 3.6. �

For any two matrices A and B one can find φ0 and ψ0 so that ‖φ0‖ =
‖ψ0‖ = 1 and ‖A∗ψ0‖ = ‖A‖, ‖Bφ0‖ = ‖B‖. Then, for S = (V − σ)−1,

‖ASB‖ ≥ |〈ASBφ0, ψ0〉| = |〈SBφ0, A
∗ψ0〉| ,

and by Proposition 3.6

E‖ASB‖s ≥ C−1‖A‖s‖B‖s.

Applying this to A = GTu,x(0, u−; z), S = λGTx(u, u; z) = (V (x) − σ)−1, and
B = GTu,x(u+, x−; z), we obtain

E‖GTu,x(0, u−; z)GTx(u, u; z)GTu,x(u+, x−; z)‖s

≥ EEV (x)‖GTu,x(0, u−; z)GTx(u, u; z)GTu,x(u+, x−; z)‖s1‖σ‖≤t

≥ C−1
λ,tE‖GTu,x(0, u−; z)‖s‖GTu,x(u+, x−; z)‖s1‖σ‖≤t

≥ C−1
t E‖GTu,x(0, u−; z)‖s‖GTu,x(u+, x−; z)‖s

∏

w∈Nu

1‖GTu,x (w,w;z)‖≤Ct,
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where we omitted the dependence on λ and W . This expression is equal to

C−1
t

{
E‖GTu,x(0, u−; z)‖s1‖GTu,x (u−,u−;z)‖≤Ct

}

{
E‖GTu,x(u+, x−; z)‖s1‖GTu,x (u+,u+;z)‖≤Ct

}

∏

w∈Nu\u±

{
E1‖GTu,x (w,w;z)‖≤Ct

}
.

By Chebyshev’s inequality,

E1‖GTu,x (w,w;z)‖≤Ct ≥ 1 − C ′t−s

can be made arbitrarily close to 1 by choosing t large enough. It remains to
show that

EV (w)‖GTu,x(w,w′; z)‖s1‖GTu,x (w,w;z)‖≥Ct ≤ ε(t)EV (w)E‖GTu,x(w,w′; z)‖s,

where ε(t) → 0 as t → ∞. We will prove a stronger statement:

EV (w)diag‖GTu,x(w,w′; z)‖s1‖GTu,x (w,w;z)‖≥Ct

≤ ε(t)EV (w)diagE‖GTu,x(w,w′; z)‖s,

where EV (w)diag denotes the expectation over the diagonal elements of V (w).
Since the dependence on W is not important for us, it is sufficient to show
that, for every j and k,

EV (w)diag |GTu,x(w,w′; z)(j, k)|s1‖GTu,x (w,w;z)‖≥Ct

≤ ε(t)EV (w)diagE|GTu,x(w,w′; z)(j, k)|s.
Choose p, q > 1 so that 1/p+1/q = 1 and sp < 1. By Hölder’s inequality,

EV (w)diag |GTu,x(w,w′; z)(j, k)|s1‖GTu,x (w,w;z)‖≥Ct

≤ {
EV (w)diag |GTu,x(w,w′; z)(j, k)|sp

}1/p
{

E1‖GTu,x (w,w;z)‖≥Ct

}1/q

≤ C ′t−s/q
{
EV (w)diag |GTu,x(w,w′; z)(j, k)|sp

}1/p
.

It remains to show that
{
EV (w)diag |GTu,x(w,w′; z)(j, k)|sp

}1/(sp)

≤ C
{
EV (w)diag |GTu,x(w,w′; z)(j, k)|s}1/s

. (8)

The expression GTu,x(w,w′; z)(j, k) is a fractional-linear function of every di-
agonal element of V (w). Therefore, (8) follows from the following decoupling
lemma:

Proposition 3.7. Let Xj , 1 ≤ j ≤ W , be independent identically distributed
random variables with bounded density and finite moments. Then, for every
function f(x1, . . . , xW ) which is fractional-linear as a function of every vari-
able, and every 0 < α < β < 1,

(E|f(X1, . . . , XW )|β)1/β ≤ C(E|f(X1, . . . , XW )|α)1/α,

where C > 0 may depend on α and β but not on f .
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The proof is given (in more general setting) in [5, Proposition 3.2]. This
concludes the proof of Lemma 3.5. �

Similar considerations allow to extend the arguments leading to two more
statements from [4] to our matrix setting:

Lemma 3.8 (Lemma 3.4*). For s ∈ (0, 1),

1
C(s, z)

≤ E‖GTx(0, x−; z)‖s

‖GTx− (0, x−−; z)‖s
≤ C(s, z),

and
1

C(s, z)
≤ E‖G(0, x−; z)‖s

E‖GTx(0, x−; z)‖s
≤ C(s, z),

where C(s, z) remains bounded (for fixed �z) as �z → +0.

Proposition 3.9 (Theorem 3.2*). Let

φλ(s; z) = lim
dist(x,0)→∞

log E‖Gλ(0, x; z)‖s.

For any z ∈ C
+ the function (0,∞) � s �→ φλ(s; z) has the following properties:

1. φλ(·, z) is convex and non-increasing;
2. for s ∈ (0, 2],

−sL(z) ≤ φλ(s; z) ≤ −s log
√
K;

3. for any s ∈ (0, 1) and x ∈ T,

1
C(s, z)

eφλ(s;z)dist(x,0) ≤ E‖Gλ(0, x; z)‖s ≤ C(s, z)eφλ(s;z)dist(x,0),

where C(s, z) ∈ (0,∞); if s ∈ (0, 1), C(s, z) remains bounded as
�z → +0.

Definition 3.10. The no-a.c. hypothesis holds at energy E ∈ R if, for a fixed
vector v,

�〈(H − E − i0)−1v, v〉 = 0

almost surely.

Note that the definition does not depend on the choice of the vector v.

Claim 3.11. Under the no-ac hypothesis G(0, 0;E + i0) is almost surely real
symmetric.

Proof. Let us show that

G(0, 0;E + i0)kj = G(0, 0;E + i0)jk. (9)

For j = k this follows directly from the definition (applied to v = (0, j)). For
j 
= k, apply the definition to

v1 = δ(0, j) + δ(0, k), v2 = δ(0, j) + iδ(0, k).
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We obtain that

〈G(0, 0;E + i0)v1, v1〉 = G(0, 0;E + i0)jj +G(0, 0;E + i0)kk

+G(0, 0;E + i0)jk +G(0, 0;E + i0)kj

is real; hence

G(0, 0;E + i0)jk +G(0, 0;E + i0)kj

is real; also,

〈G(0, 0;E + i0)v2, v2〉
= G(0, 0;E+i0)jj +G(0, 0;E+i0)kk − iG(0, 0;E+i0)jk+iG(0, 0;E+i0)kj

is real; hence

G(0, 0;E + i0)jk −G(0, 0;E + i0)kj

is pure imaginary. To conclude the proof of (9), note that if a + b is real and
a− b is pure imaginary, then a = b̄.

G is always symmetric; hence (9) implies that G(0, 0;E + i0) is real
symmetric. �

Claim 3.12. For any real symmetric W ×W matrix A,

‖A‖ ≤ CW max
{

max
j

|〈Aej , ej〉|,max
j �=k

|〈A(ej + ek), (ej + ek)〉|
}

.

Proof. Denote ‖A‖ = R. Then ‖A‖∞ ≥ R/BW (where ‖ · ‖∞ stands for the
maximum of the absolute values of the matrix entries). There are two cases:

1. There exists j so that |Ajj | ≥ R
3BW

for some j (then the conclusion of
the claim is obvious)

2. There exist j and k so that |Ajk| ≥ R
BW

, and |Ajj |, |Akk| < R
3BW

. Then

|〈A(ej + ek), (ej + ek)〉|
= |ajj + akk + 2ajk| ≥ 2|ajk| − |akk| − |ajj | ≥ R

BW
.

�

Proposition 3.13. Under the no-ac assumption, there exists C > 0 so that for
any n ≥ 1 and η > 0

EN(N − 1) ≤ Cτ−2K2n.

Proof. Recall that

Ex = {|〈G(x, x;E + iη)ṽ, ṽ〉| ≥ τ} ,
therefore, (by Claim 3.12)

Ex ⊂ Ẽx = {‖G(x, x;E + iη)‖ ≥ τ} ⊂
⋃

j

Ẽj
x ∪

⋃

jk

Ẽjk
x ,

where

Ẽj
x = {|〈G(x, x;E + iη)ej , ej〉| ≥ τ/C}
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and

Ẽjk
x = {|〈G(x, x;E + iη)(ej + ek), (ej + ek)〉| ≥ τ/C} .

Therefore,

EN(N − 1) =
∑

x,y∈Sn,x �=y

P(Rx ∩ Ex ∩Ry ∩ Ey)

≤
∑

P(Ex ∩ Ey)

≤
∑{∑

jj′
P(Ẽj

x ∩ Ẽj′
y ) +

∑

jj′k′
P(Ẽj

x ∩ Ẽj′k′
y )

+
∑

jkj′
P(Ẽjk

x ∩ Ẽj′
y ) +

∑

jkj′k′
P(Ẽjk

x ∩ Ẽj′k′
y )

}

=
∑

(I + II + III + IV).

Let us estimate the terms I (the other terms are estimated in the same way).
We apply [4, Theorem A.2]. It yields

P(Ẽj
x ∩ Ẽj′

y ) ≤ C

τ

⎧
⎨

⎩

C

τ
+ E min

×
⎛

⎝1,
∑

u∼(x,j),v∼(y,j′)

∣
∣
∣H(x, j;u)G(x,j;y,j′)(u, v;E + iη)H(v; y, j)

∣
∣
∣

⎞

⎠

⎫
⎬

⎭
.

Here H(x, j;u) and H(v; y, j) are Gaussian random variables, indepen-
dent of each other and of G(x,j;y,j′), the Green function corresponding to the
operator obtained by erasing the vertices (x, j) and (y, j′) of T ×G. The first
term is of the desired form since the number of addends is bounded by CWK2n.
For the second term we use the inequality

min(1, |x|) ≤ |x|s, 0 ≤ s ≤ 1,

and then estimate

E

∑

u∼(x,j),v∼(y,j′)

∣
∣
∣H(x, j;u)G(x,j;y,j′)(u, v;E + iη)H(v; y, j)

∣
∣
∣
s

=
∑

u∼(x,j),v∼(y,j′)

E|H(x, j;u)|s E|G(x,j;y,j′)(u, v;E + iη)|s E|H(v; y, j)|s

≤ C
∑

u∼(x,j),v∼(y,j′)

E|G(x,j;y,j′)(u, v;E + iη)|s.

If u = (x, k), v = (y, k′) (where k 
= j, k′ 
= j′), repeated application of
Lemma 3.8 and Proposition 3.9 yields

E|G(x,j;y,j′)(u, v;E + iη)|s ≤ CE‖G(x, y;E + iη)‖s ≤ C ′K− s
2dist(x,y).

Combining these estimates and taking s = L(E)+2δ
log K ∈ (0, 1), we obtain

the desired bound. This completes the proof of Proposition 3.13. �
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Proposition 3.14 (Modified Theorem 4.6*). For almost all

E ∈ σ(H) ∩ {L(E) < logK} ∩ {no-ac holds} ,
there exist δ, p0 > 0 and n0 ≥ 0 so that for all n ≥ n0

lim inf
η→0

P

{

max
x∈Sn

‖G(0, x;E + iη‖ ≥ eδn

}

≥ p0.

Proof. By Propositions 3.2 and 3.13 there exist C, η0 and n0 so that for n ≥ n0

and η ∈ (0, η0)

EN2

{EN}2 =
1

EN
+

EN(N − 1)
{EN}2 ≤ C.

Therefore,

P {N ≥ 1} ≥ {EN}2

EN2
≥ 1
C

uniformly in n ≥ n0 and η ∈ (0, η0). �

Proof of Theorem 1.4. We argue by contradiction: if the no-ac hypothesis holds
for a given E ∈ σ(H), the conclusion of Proposition 3.14 implies that

∑
‖G(0, x;E + i0)‖2 = ∞

with positives probability and hence almost surely. Proposition 3.1 concludes
the proof. �

4. Proof of Theorem 1.3

Denote

Γ(y) = Γ(y;E + iη) = GTy− (y, y;E + iη); Γ̃(y) =
Γ(y) − Γ(y)∗

2i
(the latter is the matrix analogue of �Γ from [4]). Theorem 1.3 will follow
from the following statements:

Lemma 4.1 (Lemma 4.4*). For any A > 0, if

P

{
‖Γ̃‖ ≥ A

}
≥ q > 0

for some q ∈ (0, 1), then

P

{

‖Γ̃‖ ≥ A

R

}

→ 1

as R → ∞, uniformly in η > 0.

The proof is identical to that of [4, Lemma 4.4] (note, however, that,
unlike the rest of the current paper, one has to work with the fastest Lyapunov
exponent rather than the slowest one).
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Proposition 4.2 (Theorem 4.6*). For almost all

E ∈ σ(H) ∩ {L(E) < logK} ∩ {no-ac holds} ,
there exist δ, p0 > 0 and n0 ≥ 0 so that for all n ≥ n0

lim inf
η→+0

P

{
∃x ∈ Sn, y ∈ N+

x

∣
∣‖GTx(0, x−, E + iη)‖ ≥ e−(L(E)+δ)n, ‖Γ̃‖ ≥ ξ(p),

∣
∣
∣

〈
G(x, x;E + iη)wmax(Γ̃(y)), wmax(GTx(0, x−;E + iη)∗GTx(0, x−;E+iη))

〉∣
∣
∣

≥ e+(L(E)+2δ)n
}

≥ q > 0,

where
1. q may depend on δ and p, but not on η and n;
2. ξ(p) = inf

{
t | P{‖Γ̃‖ ≥ t} ≥ p

}
is the pth quantile of ‖Γ̃‖;

3. wmax denotes the eigenvector associated with the maximal eigenvalue.

The following lemma will be used both in the proof and in the application
of Proposition 4.2:

Lemma 4.3. The (self-adjoint) matrix Γ̃(0) admits the lower bound

Γ̃(0) ≥
∑

x∈Sn

∑

y∈N+
x

G(0, x;E + iη)Γ̃(y)G(0, x;E + iη)∗

in the sense of quadratic forms.

Proof. From the resolvent identity,

Γ̃(0) =
Γ(0) − Γ(0)∗

2i

=
1
2i

Γ(0)

⎧
⎨

⎩
η +

∑

y∈N+
x

(Γ(y) − Γ(y)∗)

⎫
⎬

⎭
Γ(0)∗

≥
∑

y∈N+
x

Γ(0)(Γ(y) − Γ(y)∗)Γ(0)∗

=
∑

y∈N+
x

G(0, 0;E + iη)(Γ(y) − Γ(y)∗)G(0, 0;E + iη)∗.

This yields the statement for n = 0. The statement for larger n follows by
iteration. �

Proof of Proposition 4.2. Denote

Ix =
{

‖Γ̃(x)‖ ≥ ξ(p)
}
,

Rx =
{

‖GTx(0, x−;E + iη)‖ ≥ e−(L(E)+δ)n
}
,

Ex = {|〈G(x, x;E + iη)v;w〉| ≥ τ} ,
where

v = wmax(Γ̃(y)), w = wmax(GTx(0, x−;E + iη)∗GTx(0, x−;E + iη)).
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Then Proposition 4.2 states that

lim inf
η→+0

P

{
⋃

x

Ix ∩Rx ∩ Ex

}

≥ q > 0.

Denote

N =
∑

x∈Sn

1Ix∩Rx∩Ex
.

As in the proof of Theorem 1.4, we shall prove that

EN2

{EN}2 ≤ C.

The upper bound on EN(N−1) follows from the argument of Proposition 3.13.
Indeed, in the notation of the proof of Proposition 3.13,

P(Ix ∩Rx ∩ Ex ∩ Iy ∩Ry ∩ Ey) ≤ P(Ex ∩ Ey) ≤ P(Ẽx ∩ Ẽy);

hence

EN(N − 1) ≤ Cτ−2K2n.

To bound EN from below, we need to show that

P(Ix ∩Rx ∩ Ex) ≥ Cτ−1.

By the parallelogram law,

〈G(x, x)v, w〉 =
1
4
[〈G(x, x)(v + w), (v + w)〉 − 〈G(x, x)(v − w), (v − w)〉].

In our case, ‖v‖ = ‖w‖ = 1; hence v + w ⊥ v − w. Without loss of generality
we may assume that ‖v + w‖ ≥ ‖v − w‖, then ‖v + w‖ ≥ 2 ≥ ‖v − w‖. Set
e1 = (v + w)/‖v + w‖, e2 = (v − w)/‖v − w‖. Then

{|〈G(x, x)v, w〉| ≥ τ} ⊃ {|〈G(x, x)e1, e1〉| ≥ 2τ, |〈G(x, x)e2, e2〉| ≤ τ} .
No generality is lost if we assume that e1 and e2 are the first two vectors of
the standard basis. Let P be the projection onto e1, e2. Then

(
G11 G12

G12 G22

)

= PG(x, x)P =
(

λ

(
V11 0
0 V22

)

−X

)−1

,

where

X =
(
a b
b c

)

is independent of V11 and V22. Consider two cases:
1. |b| ≤ 1/

√
τ . Then the argument of Proposition 3.2 yields

PV11,V22 {|G11| ≥ 2τ} ≥ 1
Cτ

,

whereas [4, Theorem A.2] yields

PV11,V22 {|G11| ≥ 2τ, |G22| ≥ τ} ≤ C

τ3/2
.
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Therefore,

PV11,V22 {|G11| ≥ 2τ, |G22| ≤ τ} ≥ 1
C ′τ

.

2. |b| > 1/
√
τ . If |G22| ≥ τ , then

|(V11 − a) − b2/(V22 − c)| = |G22|−1 ≤ 1
τ

;

therefore,

|V11 − a| ≤ 1
τ

+
∣
∣
∣
∣

b2

V22 − c

∣
∣
∣
∣ .

If in addition |V22 − c| > 2b, then

|V11 − a| ≤ b

2
+

1
τ

≤ 2b
3
.

Therefore,
∣
∣
∣
∣
V22 − c

V11 − a

∣
∣
∣
∣ ≥ 2b

2b/3
= 3.

This implies

1
|G22| =

∣
∣
∣
∣V22 − c− b2

V11 − a

∣
∣
∣
∣

=
∣
∣
∣
∣
V22 − c

V11 − a

∣
∣
∣
∣

∣
∣
∣
∣V11 − a− b2

V22 − c

∣
∣
∣
∣ ≥ 3

|G11| .

Hence in this case

{V11, V22 | |G11| ≥ 2τ, |G22| ≤ τ}
⊃
{

V11, V22 | 1
3τ

<
1

|G11| <
1
2τ
, |V22| > 2b

}

,

and the probability of this event is again ≥ C−1(b)τ−1. The rest of the
argument follows the proof of Proposition 3.2. �

Proof of Theorem 1.3. Theorem 1.3 follows immediately from Lemma 4.1,
Proposition 4.2, and Lemma 4.3. �
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