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Exponential Decay of Equal-Time Four-Point
Correlation Functions in the Hubbard Model
on the Copper-Oxide Lattice

Yohei Kashima

Abstract. For the Hubbard model on the two-dimensional copper-oxide
lattice, equal-time four-point correlation functions at positive tempera-
ture are proved to decay exponentially in the thermodynamic limit if the
magnitude of the on-site interactions is smaller than some power of tem-
perature. This result especially implies that the equal-time correlation
functions for singlet Cooper pairs of various symmetries decay exponen-
tially in the distance between the Cooper pairs in high temperatures or in
low-temperature weak-coupling regimes. The proof is based on a multi-
scale integration over the Matsubara frequency.

Notation

Parameters and constants
Notation Description

L Size of lattice of the position variable
t Hopping amplitude
U, Coupling constant on the Cu sites
U, Coupling constant on the O sites
€7, € Spin-dependent on-site energies
(o (1,1}
16 Proportional to the inverse of temperature
EA‘maXA maXUG{T,l}{L|t‘7‘6g|7|eg|}
R Same as (ﬁj,kja&j)v (ﬁjayja'f_j) (j:172)’
(=12 Fixed sites to define the correlation function
h Step size of the discretization of [0, 3), [—3, 3)

Npon 6L23h, Cardinality of I p
Used to modify the interaction
Generic constant depending
only on a fixed smooth function

>
=
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M  Parameter to control the size of the support of the cut-off
function

Nu  [log(2h)/log(M)]

Np  max{[log(1/3)/ log(M)] +1,1}

cg  Constant depending on M and 3

«  Additional parameter used in the multi-scale integration

Sets
Notation Description
r (Z)LZ)?

0,8,  {0,1/h,...,3—1/h}
[=6,8)n {=B,=B+1/h,....,=1/h} U0, B)n

r (370
M {wen(2Z+1)/8 | || < 7h)
Ipn {1,2,3} x T {1, 1} x [0, 8)n
Ipn I x{1,-1}

(Izn)y"  Subset of I3,
Dgman Subset of C*
Dp Subset of C

Functions
Notation Description
Fi8(%) Used to specify the domain of analyticity of the covariance

5(+) Fixed function of spin

C(,-) Covariance of full scale

xi(+) Cut-off function of I-th scale
Ci(-y-) Covariance of I-th scale

1. Introduction

1.1. Introductory Remarks

In order to explain high-temperature superconductivity in ceramic copper
oxide materials, several tight-binding models for the charge carriers in
two-dimensional plane have been proposed with the consensus that the su-
perconducting pairing mechanism should be understood by focusing on the
conducting CuOs plane first. In the hierarchy of the well-known 2D models
(see, e.g., [3]) the three-band Hubbard model on the copper-oxide lattice [4],
or the CuO Hubbard model in short, is believed to be the closest to the reality
since it explicitly distinguishes one relevant electron orbital of the copper and
those of the oxygens surrounding the copper in the unit cell. Being more real-
istic also means being more complex. Rigorous mathematical methods need to
be developed to explore the relatively involved structure of the CuO Hubbard
model in depth.

In this paper we prove that equal-time 4-point correlation functions in
the CuO Hubbard model at positive temperature decay exponentially in the
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thermodynamic limit if the coupling constants on both the copper and the
oxygen sites are smaller than some power of temperature. The result will be
fully stated in Sect. 1.3. One direct consequence of this theorem is the expo-
nential decay of pairing—pairing correlation functions in the distance between
the center of two electrons and that of two holes, excluding long range correla-
tions between singlet Cooper pairs in high temperatures or in low-temperature
weak-coupling regimes.

It has been proved in [11] that finite-temperature equal-time correlation
functions for many-electron models, including the Hubbard model as one in-
stance, on the hyper-cubic lattice of arbitrary dimension decay exponentially
if the interaction is smaller than some power of temperature. The proof of [11]
essentially uses the volume-, temperature-independent determinant bound on
the covariance matrix established by Pedra and Salmhofer [13]. The expo-
nential decay of the correlation functions in the CuO Hubbard model cannot
be deduced as an immediate corollary of the theorems in [11], since Pedra—
Salmhofer’s determinant bound in its original form [13, Theorem 2.4] does not
apply to the covariance for multi-band many-Fermion models such as the CuO
Hubbard model. Thus one has to alter the way to achieve the goal. As a way out
we expand the covariance over the Matsubara frequency through the Fourier
transform this time and try to control the correlation function analytically by
means of a multi-scale expansion along the segments of the large Matsubara
frequency. The dispersion relation for the free particle hopping to the nearest
neighbor sites on the CuO lattice can be a square root of cosine of the mo-
mentum variable, which is, unlike in the single-band models treated in [10,11],
non-analytic. Once transformed into the Matsubara sum, however, the covari-
ance appears to contain only the square of the dispersion relation. Thus the
covariance in the Matsubara sum representation explicitly shows its analytic
property with respect to the momentum variable. As in [11] the analyticity
of the covariance enables us to reformulate the correlation function multiplied
by the distance between the electrons and the holes into a multi-contour inte-
gral of the correlation function with respect to new complex variables inserted
in the covariance. The practical role of the multi-scale integration over the
Matsubara frequency in this paper is to establish a volume-independent upper
bound on the perturbed correlation function inside the multi-contour integral.
Due to a self-contained nature of the multi-scale Matsubara expansion, the
proofs in this paper merely rely on the repeated use of the tree formula for
logarithm of the Grassmann Gaussian integral.

More precisely speaking, the correlation function of our original interest
is expressed as a well-defined finite-dimensional Grassmann integral during the
intermediate technical construction. In the major part of this paper we deal
with the Grassmann integral formulation, which is flexible to mathematical
manipulations, as the rigorous counterpart of the correlation function. This
is the same stance as taken in [10,11], or more generally in the constructive
Fermionic quantum field theory (see, e.g., [6]). Finally, by sending the finite-
dimensional formulation to the limit we withdraw the conclusion on the original
correlation function defined by trace operations over the Fermionic Fock space.
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This paper is not the first to consider multi-scale analysis over the large
Matsubara frequency. On the contrary, a number of papers have already dis-
cussed qualitatively similar problems to the Matsubara ultraviolet problem
posed in this paper, see, e.g., [1,2,7,8] by one of the pioneering groups of the
subject. One of the purposes of this paper is set to provide readers with an
alternative method to solve the Matsubara ultraviolet problem. In order to
help the readers to properly comprehend the purpose of this paper, let us
summarize the main differences between the methods used in this article and
those in the preceding papers. First, this paper uses a version of the finite-
dimensional Grassmann integral formulation reported in [10]. The reduction
to the finite dimensionality in this formulation is based on the discretization
of the interval of temperature in the perturbative expansion of the partition
function. Accordingly the basis of Grassmann algebra is indexed by the finite
space—time variables and the step size of the discretization explicitly appears
in the characterization of the covariance as a parameter, changing the face of
the covariance from the well-known free propagator. This paper does not intro-
duce Grassmann algebra indexed by the momentum variables. In [1,7,8] the
derivation of the finite-dimensional Grassmann integral formulation is based
on the cut-off on the Matsubara frequency. As a result the basis of Grassmann
algebra is indexed by the finite momentum variables. Second, the multi-scale
analysis in this paper is completed by the induction on the scale level, which
assumes a norm bound on the input and then proves the relevant norm bound
on the output produced by the single-scale integration. The papers [1,2,7,8]
use a family of trees, called the Gallavotti—Nicolo trees, to organize the multi-
scale integration process, achieving collective descriptions of the theory all
through the integration levels. This paper’s concept of finding a norm bound
on the output of the integration at one scale is closer to the rigorous analysis on
finite-dimensional Grassmann algebra established in [5,6]. However, the paper
[5] and the book [6] apply a representation theorem developed by themselves
to expand logarithm of the Grassmann Gaussian integral, while this paper as
well as the papers [1,2,7,8] use the tree expansion for the same purpose. Third,
this paper derives equal-time 4-point correlation functions by substituting an
artificial quartic term into the original Hamiltonian and differentiating the free
energy governed by the modified Hamiltonian with respect to the coefficient of
the artificial term. The papers [1,2,7,8] derive correlation functions by insert-
ing the source Grassmann variables into the Grassmann integral formulation
and then letting the Grassmann derivatives act on the modified Grassmann
integral formulation, called the generating function.

Though this paper involves a multi-scale analysis concerning the Mat-
subara sum as the main technical ingredient, it does not treat any infrared
multi-scale analysis around zero points of the dispersion relation. Accordingly,
this paper has no improvement on the temperature dependency of the allowed
magnitude of the interaction over the single-scale analysis [10,11] and can-
not study the behavior of correlation functions at zero temperature. In recent
years, infrared multi-scale integration techniques have been intensively applied
to describe the zero-temperature limit of thermal expectation values of various
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observables in the Hubbard model on the honeycomb lattice by Giuliani and
Mastropietro [8] and by Giuliani et al. [9]. In connection with the main result of
this article we should remark that the many-electron model of graphene stud-
ied in [8,9] also has a matrix-valued kinetic energy, so the single-scale analysis
previously reported in [11] does not prove the exponential decay of the finite-
temperature correlation functions in the system. However, it is straightforward
to adapt the proofs in this article to conclude the same result for the Hubbard
model on the honeycomb lattice as claimed for the CuO Hubbard model.

This paper is outlined as follows: in the following subsections we define
the CuO Hubbard model and state the main result of this paper. In Sect. 2
we characterize the correlation function as a limit of the finite-dimensional
Grassmann integral and derive the contour integral formulation. In Sect. 3 we
prepare some necessary tools for the multi-scale integration such as the cut-off
function and the sliced covariances. In Sect. 4 we carry out the multi-scale
integration over the Matsubara frequency and prove the main theorem. In
Appendix A we derive the covariance governed by the free Hamiltonian on the
CuO lattice. Appendix B provides a sketch of how to prove the convergence
property of the Grassmann integral formulation. In Appendix C we prove a
general formula for logarithm of Grassmann polynomials, which is necessary
for the multi-scale integration. Finally, Appendix D shows that the correlation
function converges to a finite value in the thermodynamic limit if the coupling
constants obey the smallness condition under which the multi-scale analysis is
performed.

1.2. The Hubbard Model on the CuO Lattice

Here we define the model Hamiltonian operator. For L € N let I' := (Z/LZ)?.
The CuO lattice consists of three separate lattices, each of which is isomorphic
to I" (see Fig. 1). For x € T" let (1,x) represent a Cu site, (2,x) represent the
O site right to (1,x), and (3,x) denote the O site above (1,x) (see Fig. 2).
The CuO lattice is viewed as the union of {(p,x) | x €'} (p =1,2,3).

The model Hamiltonian is defined as a self-adjoint operator on the Fermi-
onic Fock space Fr(L*({1,2,3} x I' x {1, })). See, e.g, [10, Appendix A] for
a brief description of the Fermionic Fock space defined on a finite lattice. The
CuO Hubbard model was originally designed to govern the total energy of

F1GURE 1. The CuO lattice for L = 2, where bullet symbols
denotes Cu sites, circles denotes O sites, and diamond symbols
denote the other O sites



1458 Y. Kashima Ann. Henri Poincaré

o
(3,%)
(1,x) (2,x)

FiGURE 2. Labeling each site

holes moving and interacting on the CuOz plane (see [4]). Thus the vacuum
of Fp(L*({1,2,3} xI' x {1, |})) should be interpreted as the state where every
site of {1,2,3} x T is occupied by an electron pair.

For (p,x,0) € {1,2,3} x I' x {1, ]} let 9,x» be the annihilation opera-
tor defined on Fy(L?({1,2,3} x ' x {T,]})). The physical role of ¢,x, is to
annihilate a hole with spin o at the site (p,x). We write the adjoint operator
of Ypxo as ¥5.,. The operator 7, is called the creation operator and physi-
cally considered to be creating a hole with spin o at the site (p,x). The CuO
Hubbard model H is defined as follows:

H5:H0+V,

Hy:=t Z (wi‘xngXG + wixo¢2(x7e1)o + wikxalp?)xa
(x,0)€Tx{T,l}

+wixo‘w3(x—e2 )o + hC)

+ Z ngixa—wle + Z ng;xawﬁxa’a
(x,0)eTrx{1,l} (p,x,0)€{2,3} xI'x{T1,l}
Vi=Ue ) Uiatia@ii®ixt +Uo D Upg Ui Yol Yot
xel (p,x)€e{2,3} xI"
where e; := (1,0),ey := (0,1) € Z? and the terminology “Hermitian conju-

gate” is shortened to “h.c”, meaning that the adjoint operators of the operators
in front are placed. The parameters t, U, U,, €7, €7 (o € {1,]}) are initially
set to be real. The parameter ¢ is the hopping amplitude between a Cu site and
the neighboring O sites. The parameters €7 and €7 represent the on-site energy
minus the hole chemical potential for the Cu sites and the O sites, respectively.
We assume that the quadratic Hamiltonian Hy may contain the contribution
from the magnetic field such as he ), p ST x + ho Z(pﬁx)e{st}XFS;x with
hesho € R, S5 i= §(Uhqpxt — Vi Vo)) (p € {1,2,3},x € T). This is the
reason why € and €7 are defined to be spin-dependent. The strength of the
on-site interaction is expressed by U, on the Cu sites and by U, on the O sites.

Let 8 > 0 denote the inverse of temperature times the Boltzmann con-
stant. The thermal expectation value of an observable O is defined as
Tr(e P 0)/ Tre PH where the trace is taken over the Fock space Fy(L%({1,2,
3}xI'x {1, |})). For conciseness we write (O), in place of Tr(e #70)/ TrePH.
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1.3. Exponential Decay Property of the Correlation Functions
Let ||-||gz denote the Euclidean norm of R? and e(~ 2.71828) be the base of the
natural logarithms. This paper is devoted to establish the following theorem:
Theorem 1.1. There exist non-decreasing positive functions f1(-), f2(-) : R»1 —
R<o such that if

1
fl (maXUE{T,l}{L ‘t|a |€g|7 |€g‘}) max{l, 516}ﬂ7

limLLzglc (V312061 Vhoznts ViiagataVing 1y + o)y exists and satisfies that

Uel, [Us| <

(1.1)

lim <¢;15‘1&1 ¢;2ﬁ2&2¢ﬁ2927‘2¢ﬁ1$’17‘1 + h. C>L

L—oo
LeN
< 1o ms (LI 21161} ) (1, 6%
oe{l,l}
1 7&“ 25:1(§(6j)5<r§(?j)5'j)\lm2
1 1.2
<max{1,1f2}max{ﬁ,ﬁQ}Jr ) ’ (12)

for any (pj,%;5,65), (7, ¥5,7;) € {1,2,3} x Z? x {1,1} (j = 1,2), t,el,eJ € R
(c €{1,1}), B €Rsp and any map 5(-) : {1,1} — {1,—1}.

Remark 1.2. The correlation function (¢ ¢ 5 ¥ o 5 iy, 5 Viig, s, Hhec)p s
defined for X1, %2, ¥1,¥2 € Z2 by considering X1, %2,¥1,¥2 as the correspond-
ing sites in I' by periodicity.

Remark 1.3. As a result of our proof, the growth rates of fi(-), fa() are
estimated as fi(z) = O(z*), fa(z) = O(2*%) (r — o00). However, since it is
not the main aim of our analysis, these orders are not quantitatively optimized.

Remark 1.4. The theorem provides decay bounds on the thermodynamic limit
of the correlation functions for singlet Cooper pairs. For instance, let us define
the s-wave pairing operator Aq(p,x), the extended s-wave pairing operator
Ag«(p,x), and the d,2_,2-wave pairing operator AdmLy2 (p,x) as follows: for
(p,x) € {1,2,3} x T,

As(ﬂ, X) = ¢pxl¢pra
1
As* (pa X) = §(¢p(x+e1)i¢pr + ql}p(x—el)prxT + wp(x—&-ez)prxT
+7r/)p(x7e2)l¢pr)a

1
Adm2_yz (pa X) = Q(wp(erel)iwpr + wp(xfel)l'(/}pr - 1/’p(x+e2)l'l/}pr

_wp(x—e2)l¢PxT)'
If the map $(-) : {1,1} — {1,—1} is identically 1, the theorem shows that
| Hmz oo, nen (Aa(p, X)*Aq (7, ¥) +h.c) | decays exponentially with |[|X — y||g2
for p, 7 € {1,2,3},a = 5,5, dy2_,2. If we take 5(-) to obey 5(T) = —5(|), on the
other hand, the theorem also implies exponential decay of spin—spin correlation

functions of the form limy,_, o0 ren <S§,,z5%,y+5§,ﬁ5§,y>L with [|X—¥||gz, where
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the spin operators S5 ., S¥ . are defined by S}, = %(Q/J;xTwpxi + w;xlwpr),
S}Jl,x = %(_iw;xTprl + iwlewPXT) (<p7 X) € {17273} x F)

Remark 1.5. The coupling constants U., U, satisfying (1.1) can be taken
arbitrarily large as 8 \, 0. This means that the theorem generally proves
exponential decay of the correlation functions in high temperatures.

Remark 1.6. Consider the case that €7 = —3U, and €5 = —1U, (Vo € {1,]}).
The Hamiltonian H becomes invariant under the transform ¥ix, — ¥iy,,
wikxa - '(/1le7 wPXU - _w;xa7 w;xa - _wPXU (p € {2’3}7 (X’ U) el'x {T’ l})
This invariance implies that (%, Ypxo), = 5 (V(p,x,0) € {1,2,3}xT'x{1, |})
and thus the system is half-filled. According to our construction, f;(1) > 1. If
3 > 1, the constraint (1.1) implies |U.|, |U,| < 1. Therefore, we can claim the
theorem for 3 > 1 by eliminating €7, ¢J (o € {T,]}) in the right-hand sides of
(1.1) and (1.2). On the other hand, for arbitrarily large |U.|, |U,| there exists
8 < 1 such that (1.1) holds. Thus, the theorem concludes the exponential
decay of correlation functions with the strong couplings if the temperature is

high enough.

Remark 1.7. A power-law decay property of equal-time 4-point correlation
functions can be proved by exactly following the argument of [12]. One result
is that

: o || —Cf (B
L D (5, 20, Vs Vg s Vg + 1) | < 2% = s @
— 00
LeN

for any %,y € Z* with sufficiently large |x—y ||z, (p;,5;), (1;,7;) € {1,2,3} x
{1,1} (j = 1,2) and 8 € Rsq, where ¢ > 0 is a constant, the function f(-) :
R.g — Ryq is decreasing, and asymptotically behaves as f(8) = O(37!)
(8 — ), O(JlogB]) (8 \, 0). An advantage of the framework [12], apart
from its conciseness, is that it requires no constraint on the magnitude of the
interactions. However, it has not been applied to prove exponential decay of
correlations in 2D many-electron systems, to the author’s knowledge.

2. Formulation

In this section we formulate the correlation function using the notion of Grass-
mann integral and show that the Grassmann integral representation of the
correlation function multiplied by the distance between the holes and the elec-
trons is transformed into a contour integral of the Grassmann integral. This
procedure is essentially the same as we did in [10,11]. In order to avoid unnec-
essary repetition we present the proofs at a minimum.

Let us introduce notations which are used throughout the paper. For
simplicity set Emax = maxgeqr, {1, [t],[€7],[€7|}. The sites on which the
4-point correlation function is defined are fixed to be (p1,%1,51), (p2,%2,052),
(11, 91,71), (72, ¥2,72) € {1,2,3} x Z2 x {1, ]}. We simply write X;, V; (j =
1,2) instead of (p;,%;,65), (1;,¥;,7;) (j = 1,2), respectively. We also fix
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a map 5(-) : {1,1} — {1,—1}. Let us accept that a site of Z? is identi-
fied as the corresponding site of I' whenever we consider a problem in T
For x = (21,22,...,20), ¥ = (y1,42,--,9yn) € C", (x,y) = 20, 5y,
(%, ¥)en = 2 j—y 275 and [|x[lcn := /(X,X)¢n. For x € R, |2 denotes the
largest integer which does not exceed x. Let 1p := 1 if the proposition P is
true, 1p := 0 otherwise. For any subset O of a topological space let O de-
note the interior of 0. Let S,, be the set of all permutations over {1,2,...,n}
(n € N). It will be convenient to use the function F; 5(-) : R — R defined by

R S o
Frp(x) := §Smh <8max{1,t2}max{ﬁ, 52}> ’

Here recall that sinh ™' (z) = log(x + V22 + 1).

The correlation function will be formulated as a limit of Grassmann
integration over a finite-dimensional Grassmann algebra. The reduction to the
finite-dimensional problem is done by discretizing the integrals over the inter-
val [0, §) in the perturbative expansion of the partition function. For this pur-
pose, take a parameter h € 2N/3 and set [0, 3), := {0,1/h,2/h,...,3—1/h},
[7ﬂvﬁ)h = {767 75 + 1/ha R 71/h} U [Oaﬂ)h Note that ﬁ[oaﬁ)h = ﬁhv
8[—03, ) = 28h. We have seen in [10, Appendix C] that taking the para-
meter h from 2N/ rather than from N/f is convenient for the discretiza-
tion of [0,8) and [—3,0). Set I, = {1,2,3} x T x {1,]} x [0,8), and
Npp = 8l = 6L*Bh. We define the lattice of the momentum variable
T and the subset of the Matsubara frequency M; by I'* := (Q%Z/(27TZ))2
and M, :={w e n(2Z+1)/3 | |w| < wh}.

2.1. The Grassmann Gaussian Integral
Here let us summarize the notion of Grassmann Gaussian integral. For a finite-
dimensional complex vector space W and n € N, let \" W denote the n-fold
anti-symmetric tensor product of W and A" W := C. Moreover, set A W :=
S AW

Let V, VT, V7.V, (p € N) be the complex vector spaces spanned by the

. T — =P
basis {¢x,Vx}xer, ., {¥xtxer, {Uxtxer, ., {Ux, Vx}xer,, (0 € N),
respectively. This paper concerns various problems formulated in the Grass-

mann algebras AV, AV, AV~, AV, (p € N). Remark that there is a vector
space isomorphism between AV and (A V") ® (A V™), the tensor product of
AVt and AV~. Then,let P, : AV — (A" VT)@(A" V™) denote the standard
projection (n € {0,1,..., N x}).

Let us give a number from 1 to N, ;, to each element of I, ;, so that we can

. N — -
write IL,h = {Xo,j}j:Lih Set w = (on,l" ) on,NL,hﬂ/JXo,lw .. 7,(/JX0,NL7h),

PP = (EZ))(OJ?. . ,JZO’NLWM/J%O’N . ,’(/Jg(o’NL ) (peN). Takep, qi,...,qn €N
with p # ¢; (Vj € {1,...,n}). The Grassmann Gaussian integral [ -duc(¢P)
with a covariance (C(X,Y))x ver, , is alinear map from A ((@?:1 qu) ) Vp)

to A\ (@?:1 qu) defined as follows. For f € A (@?:1 qu) and X1q,..., Xq,
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Yla"w}/b S ILJH

[ tanetwr) =1
/f@?{l “.El)’(awab Pl dpe(YP) = {get(C(Xka))lSj,kgaf i Z ; Za

Then for any g € A ((EB;L:l Vq].) @Vp), [ gdpc(¥P) can be defined by lin-

earity and anti-symmetry.
Though it is not used during the formulation in this section, let us recall
the notion of left derivative at this stage for later use. For X’ € Iy, j, the left

derivative 9/9¢%, is a linear operator on /\ ((@7:1 qu) @Vp>. By letting
V., be the vector space with the basis {¥, V% }xer, , \{¢% },
5}
o,
for f € A" (D= Ve, ) ®Vy) (m e NU{0}), g€ A((B]= Vi) DV).
Then, (9/0¢%.)g can be defined for any g € A ((@?:1 qu> ) Vp) by linear-
ity. The definition of the left derivative 9/ 8@; is parallel to that of 9/9y%,.

(fo%.g) = (=1)" fg, 0,

9=
Y,

2.2. The Covariance

In our formulation the covariance is given as a 2-point correlation function
governed by the free Hamiltonian Hy. For (p,x,0,2), (n,y,7,y) € {1,2,3} x

{1, 1} < [0,0),

’I‘r(e_ﬁHO T( ;xo' (‘T)wnyT (y>))
Tre—PHo ’

where 1/);)(0(@ = exHUw;xaeiiH[)? wnw(y) = eyHOwnyTeinOa T( ;xa'(x)
Yoyr(y)) = 1ac2y7/’;§xa(33)7/’nyf(y) - 1x<y1/’ny7(y)1/’;xa(x)-
The following characterization of C is done in Appendix A. For any

(pu X, 0, LE), (777%7, y) S IL,hv

Clpxox,nyTy) =

50,7’ —i(x— i(r—y)w Ro
Clpxox,nyTy) = L7 Z e iy k) gile—y) By, (k,w), (2.1)
(k,w)EF*XMh,

where for k = (k1, ko) e T, w e My, 0 € {1, ]},

(Bn(k,w)) 1<p,n<3

Nﬂl(k,w) NfQ(k,w) Nﬁs(k,w)
De (k,w) De (k,w) Do (k,w)

_ | M Gew) 1 1+N§',2(k7“’) N7 5 (k,w)

T Dok,w) h(1—e iw/hteS /Ry De (k,w) h(1—e /Mg /MY Do (k,w) )
Ng,l(ksw) Nl;2(kiw)

1 N 4 (k,w)
i g : = 14 Zo—
D (k,w) h(1—e w/hted/MyDo(k,w)  h(l—e w/h+eg/h) D (k,w)
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7 1 o o 2
D7 (k,w) := h? (1 — e~ nwtag (€ +€o)>

7iw+i(6(r+eﬂ') (65*68’)2 ) 2
—e ¥ Tanl% T — + 2t Z(l + cos k])
Jj=1
et D07 (K),

log o}
6C

€o e—%w{-ﬁ(eg-‘reg)

ﬁl(kvw) =h (1 — e_%“"*‘ﬁ(fg‘irfé’)) +

e T (CHD0Z (k).

NEo(k,w) = (1 + eF1)em it an (< +) (1 4 05 (k)),
10:3(1{,(4}) = Nf:Q((k27 k]),&)),
20,1(1{7“’) = ﬁz(—kaw),
1 3 o o 1 % 1 o o
Nz‘fg(k,w) = 2t2(1 + cos kl)(ie—ﬁwﬁ(ec +el) 4 Ze— Hwtan (e+3€])

n (e—%w—&-ﬁ(e;’-&-eg) n e—%wﬁ(eﬁsez)) 09 (k)
n (e—%w-s-ﬁ(f-%éi) - e—%w+ﬁ<es+3ez>) og(k))7
7ok w) == t3(1+e ™) (1 + ™) (%e*f‘é“*ﬁ(e?“g) + %e*%“ﬁ(eg”’eg)
4 (e—,%awﬁ(eﬁeg) + ef%uﬂrﬁ(éﬁﬁeg)) 07 (k)
n (e—%wﬁ-ﬁ(eg-‘reg) _ e—%u+ﬁ(eg+3eg)) Og(k)),
3?,1(ka) = ﬁz(*(k%kl)aw)a Né’,z(k,w) = ./\/'203(7k,w),

)

N§3(k,W) = 20;2((]{;27]{1)7(“})' (22)

The functions OF (-) : C*?—C((je{l,....,5},0 € {1,]}) are entirely
analytic and satisfy that OF (k+2mme, +27mnes) = OF (k) (Vk € C*,m,n € 7).
Moreover, for any compact set K C C2,

C
wp 070 < T

J

; (2.3)
KEK je{l,..5},0€{1,1} h

where Ck g,,., 1s a positive constant depending only on K and Ey,,x. Though
these information about OF are sufficient for our analysis to proceed, the
functions OF are made explicit in (A.7) in Appendix A.

Remark 2.1. The functions D7 (k,w), N7, (k,w) (p,n € {1,2,3},0 € {1,1})
are analytic with respect to k. This property is one essential requirement of
our method to prove exponential decay of the correlation functions. As shown
in Appendix A, in the preliminary form before being expanded over M, the
covariance C(X,Y) contains a square root of (e7 —€J)?/t?+8 Z?Zl(l +cos kj),
which is not analytic. In order to make the analyticity with k apparent, we
choose to transform the covariance into the sum over I'* x M.
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Remark 2.2. The dispersion relation for the free particle hopping to the nearest
neighbor sites on the CuO lattice is given by (A.1) in Appendix A. As discussed
in Remark 1.6, taking €7, €7 to be —U,./2, —U, /2, respectively, makes the sys-
tem half-filled. If we shift the on-site quadratic term to the interacting part of
the Hamiltonian, one of the dispersion relation denoted by AJ(t,k) in (A.1)
is changed into 0. The formulation including the quadratic term in the inter-
acting part is parallel to the formulation of the half-filled honeycomb lattice
model in [8], though in [8] the quadratic term is eventually erased by the non-
corresponding property of the covariance at equal space-time. One remarkable
fact is that the zero set of the free particle dispersion relation in the half-filled
formulation of the CuO Hubbard model is, thus, the whole momentum space,
while that is the contour of a square in the half-filled Hubbard model on the
square lattice (see, e.g, [14]) and that consists of two distinct points in the
half-filled Hubbard model on the honeycomb lattice (see [8]). This suggests
that trying to improve the temperature dependency of the convergence theory
in the half-filled CuO Hubbard model would require a qualitatively different
method from the infrared integration regimes for the half-filled 2D Hubbard
model developed so far, in which the degeneracy of the zero set of the disper-
sion relation is crucial.

2.3. The Grassmann Integral Formulation

In order to relate the correlation function to the Grassmann Gaussian integral,
we introduce parameters A, A1 € C and define Uy, x_ (-, ) : ({1,2,3} x
L' x{1,1})*— Cby

U(Al,,\,l)(mxlghmxzdz,771)’171,772}’2T2)
1
= 1(1(01,02):“7@ _1(01702):(1»”)(1(T1,T2):(i7T) - 1(71772):(T»l))1X1:x2:Y1ZYZ

'(Uclplzpzzmznz:l + U01p1:p2:771:772:2 or 3)
1
+1/\1(I(Plxlo'l71)2X2<72)=(/'\?17/?2) o 1(P1x1‘71a/’2x2‘72):(/\?27)21))

.(1(771)'17'1,772}’27'2):(5727)71) o 1(U1Y17'17772Y27'2):(3>1 ,572))

1

+1/\_1(1(p1X1017p2X202)=(371,3}2) - 1(;01’(1017P2X202)=(3}273>1))

.(1(171)’17'1,772}'27'2):(?227/"?1) o 1(7]1)’17'17172)'27'2):(?217?22))' (24)
For another application in Sect. 4 we purposely defined Uy, x_,)(-,-, -, ) to sat-
isfy Unya_)(X2, X1,Y1,Y2) = Upya ) (X1, X2,Y2,Y1) = —Un,ay)
(X1, X2,Y7,Ys). Define the Grassmann polynomial Vi, x_,)(¥) € AV by

Vv()xl,)\_ﬂ(w)
1 _
= _E Z U()\l,)\,l)(XlaX27Y17Y2)wX1xwX2x¢Y1x¢Y21"

X1,X5,Y],Y:
z€[0,6)n 6{1,5,3}2x1“1x{%,1}

The Grassmann integral formulation of the correlation function is sum-
marized as follows:
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Lemma 2.3. (i) For any U > 0 there exists Ny € N such that Re [ eVo.0 ()
dpe() > 0 for any h € 2N/G with h > 2Ny /B, N\, U., U, € R with
AL U], [Uo| < U

(i)

e _ 1.9 Vi (#)
W U5, U5, + by = =5 Jim o ([ o aue(w) )|

he2N/B

where for z € C with Rez > 0, logz := log|z| + iArgz, Argz €

(—7/2,7/2).

Lemma 2.3 can be proved in a way similar to [11, Section 3]. For the readers’
convenience we outline the proof in Appendix B.

The analysis in the following sections treats the perturbed covariance
containing complex momentum variables inside. For p € C2,

507’ —i(x— t(x— s
C(pxoz, nyTy)(p) := == Y e ey0ETeEs (Kt $(o)p.w),

2
BL (k,w)GF* X Mp,

C(p) := (C(X,Y)(p))x,ver, ,,- By admitting a few facts proved in Sect. 3, we
can show the next lemma. The equality in Lemma 2.4 (iii) will be estimated
in Sect. 4 as the main objective.

Lemma 2.4. For any L € N, R € (F; 5(8/72),00), € € (8/72,1) and sufficiently
large h € 2N/ there exists Usman > 0 such that the following statements hold
true:

(i) Refev(*l’*fﬂ(w) dpe(we,) () >0 for any p € {1,2} and all (A1, A1, U,
Us,w) € C° with |A1], [A_1], |Uel, 1Uo| € Usman, |Rew| < R, [Imw| <

f‘tﬂ(é‘).
(ii) For any p € {1,2} the function

(M, A1, Ue, Uy, w) — log ( / -0 (¥) dMC(wep>(w))

s analytic in

{()\1; A—17 UCa U07w) € (C5

‘)‘1|7 |)‘*1|a |Uc|7 |Uo‘ < UsmaIb
|Rew| < R, |Imw| < Fyp(e) [

(iii) For anyn € N with 2rn/L+F; 3(8/7%) < R, U, U, € C with |Ue|, |Us| <
Usmall andp € {172};
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<L (e (atsopm =Sz e _ 1)>

27
O tog ([ 00 dpeur)
oA
A=0
2ma/L
Z H o / ’j%i
ae{l,—1}j=1 0

1
dw, j ——————
j{ 7 (Wa,j — ba,5)?

lwa,j—0a,j|=F1,5(8/7)/n

0
o, O (/ "0t dpg lwwep%“’))

WHTE 1y, 1005 1=F i (8/72)
the contour {wq; € C | |wa,; — 04 ;| = Fi,5(8/7%)/n} oriented counter

clock-wise.

Proof. (i): Tt follows from Lemma 3.3 (i), Lemma 3.4 (i) and (3.5) that the
function w — C(X,Y)(wep) is analytic in {w € C | |Imw| < F; g(¢')} for
any ¢’ € (0,1), sufficiently large h € 2N/B and X,Y € I ;. Thus, for any
fixed large h € 2N/f3, |C(X,Y)(wep)| is uniformly bounded with respect to
X,Y € Iy and w € C with |Rew| < R, [Imw| < F; g(e). Note that by
definition fev(*l**fl)(w) dpte(we,) (¥) is a polynomial of Ay, Ay, Ue, U,, whose
constant term is 1 and higher order terms have finite sums and products of
C(X,Y)(wep) (X,Y € I, ;) in their coefficients. Thus, the uniform bounded-
ness of C(X,Y)(we,) ensures that

b
A1=A_1=0

dwg,; represents the contour integral along

lim sup
UNO (AMA_1.Uc . Uo w)€CS
IMIAZ1 L IUel [Uo |<U, | Rew| <R, | Tm w| < Fy g(e)

) ‘/eV(Al,Al)(¢) dNC(wep)(w) - 1‘ =0,

which implies the claim (i).
(ii): The claim (i) and the analyticity of C(X,Y)(we,) with respect to w
verify the statement.

(iii): Set
51(C)
xeﬂ)ﬁ
571(@

Z /wyww%#agﬂaq eV ) dpc (4 // V00 W) dpc (4h).

meﬁ)ﬁ
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Note the equality that
(71 (5(05)%;—3(75)¥5)p) et (Clpjxjo;a;, nkYkayk))1<j n

2T
—det (Clpyposesmvinn) (e, ) (Ya € {1,-1})
1<5,k<n

and the fact that V(o) () is invariant under the scaling ) — ¢iad(0) % (x.ep)

pPXOoT

Eﬂxa'xa prUx — eiiag(g)z%&’eﬁﬁ}pxax (a € {17 _l}a (P’XvU, x) € IL,h)~ Then,
by remarking the definition of the Grassmann Gaussian integral and the claim
(ii) we can justify the following transformations:

(T2, (5(60)% -7 e 9 ) Vi () ‘
o F(Tin g ( [ dne)) |

2T (2 (3(6,)%;—8(7)95) e 2m
— Z e'L ( ]:1( (6)%;—3( ./)yJ)7eP>Sa<C) — Z Sa <C (aLep>>.

ac{l,—1} ac{l,—1}
£ (ei%’r(E?:l(é(éj)ﬁj—S’(ﬂ)f’j)ﬁp) _ 1) 9 1og (/ Vo (®) duc(w)) ‘
21 o\ A=0
= Y % (sa (c <a2;ep)> —~ Sa(C(O)))
ac{l,—1}
27a/L

|
x| =
—
o
>
Q
gla
S]

~
)
5
S]

o
P

I
[N}
=

]
|-
3

dw,

1
msa(c (waep)).
wa—0a|=F¢ 5(8/72) /n

Repeating this procedure n times results in the equality claimed in (iii). O

3. Preliminaries

In this section we show some lemmas concerning the cut-off function and the
sliced covariance, which are the necessary tools for the forthcoming multi-scale
analysis. To begin with, let us fix a function ¢ € C§°(R) with the following
properties: (i) ¢(x) = 1 if || < 1. (ii) ¢(x) = 0 if |z > 2. (iii) ¢(z) € (0,1) if
1 < |z| < 2 and is strictly increasing in (—2, —1), strictly decreasing in (1, 2).
See, e.g, [6, Problem I1.6] for a concrete construction of such a function. From
now let the notation ‘c’ stand for a generic positive constant which depends
only on ¢ and is independent of any other parameters.
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3.1. The Cut-Off Function

With a parameter M € R.g define the function x € C§°(R) by x(x) :=
¢((x — M)/(M? — M)+ 1). We can see that x(z) =1 (Vx € [0, M]), x(x) =0
(Vo € [M? 00)), x(x) € (0,1) (Vo € (M, M?)), x(+) is strictly decreasing in
(M, M?) and

‘((i)mx(w)

In the next subsection y will be differentiated at most four times. Thus, it
suffices to prepare the bound (3.1) only up to m = 4.

Set Np := |log(2h)/log(M)]| for h € 2N/, Ng := max{|log(1/5)/
log(M)] + 1,1}. For large h € 2N/ satisfying Nj, > Ng + 1 we have that

<eM™P™  (Va € [0,00),¥m € {0,...,4}). (3.1)

1 1

<MNﬁ<maX{17}M, 3.2

3 3 (3.2)

M'<2h (V1 € {Ng,Ns+1,...,Np}). (3.3)
Define the functions x;() :R —= R (I € {Ng,Ng+1,...,Ny}) by

XN, (W) = X(MNR|L — e /)),
X(M 7RI — /M) — (MU= Vh|L = et/
(M e{Ng+1,...,Np}).

xi(w) :

Since h|1 — e™/?| < 2h < MNeF1 N (M~Nrh|l — e/R|) =1 (Vw € R). This
implies that

Ny

Z xi(w)=1 (Vw € R). (3.4)

I=Ng

The support property of these functions is described as follows: for any w € R,

1 if h|1 —e/h| < MNsHL
N, (W) =] €(0,1) if MM+l < p|l — e/t < MVt
0 if h|l —e™/h| > MNst2,
0 if Al —e/h < M,
xiw) =1 €(0,1] if M'<h|l —e“/h| < MH2
0 if [l — /R > M!F2,

(VI € {Ns+1,...,Nu}).

The role of x;(+) is a cut-off in the Matsubara frequency. The support of x;(-)
can be estimated as follows:

Lemma 3.1. For anyl € {Ng,Ng+1,...,Np}, %Zwth Ly, ()20 < eMF2.
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3.2. Properties of the Sliced Covariances
By using the cut-off function x; we define the covariance C; of I-th scale (I €
{Nﬂ,Nﬁ +1,... ,Nh}> by

Ci(pxoz,nyTy)(p)

5‘77' —i{x— (x—y)w o A
=G 2 o YR @)Bg (ko s(o)p,w)

(k,w)el™* x My,

for (pv X, 0, Jf), (naY77-a y) € IL,ha P Ec (CQ' Let Cl(p) = (Cl(va)(p))X,YEIL,h'
We will specify a domain where C;(+) is well defined later in this subsection.
On such a domain the equality (3.4) implies that

C(p)= Y _ Cp) (3.5)

In this subsection we study various properties of C;. For this purpose set
2
E(t,k) :=2t>> (1+cosk;) : C* = C, (3.6)
j=1
and let us estimate E(t, k), first of all.

Lemma 3.2. For any k € R?, j,p,q € {1,2}, m € NU{0} and w,z € C with
[Imw|, |[Imz| <7,

‘ (82’) E(t,k +we, + ze,)| < 8t* + 8t*sinh(2r), (3.7)
J

|Im E(t,k + we,, + ze,)| < 4t? sinh(2r), (3.8)

Re E(t,k + we, + ze,) > —4t* sinh(2r). (3.9)

Proof. Note that

E(t,k + we, + zeq)
2

= 4% + 212 Z cos(k; + Rewd, ; + Re 20, ;) cosh(Im wdy, ; + Im 24, ;)
j=1

2
—i2t Z sin(k; + Rewdy, ; + Re 20, ;) sinh(Im wd,, j + Im 20y ;),
j=1

which leads to |E(t,k + we, + ze,)| < 8t2 + 8¢*sinh(2r). The upper bounds
on [(0/0k;)"E(w, k + we, + zeq)|, | Im E(t,k + we, + ze4)| can be obtained
similarly. Moreover, Re E(t, k-+we,+ze,) > 4t>—4t? cosh(2r) > —4t? sinh(2r).
U

The following lemma summarizes properties of Cy,. The 3-dependency

of Theorem 1.1 in low temperatures mainly stems from these upper bounds
on Cpy,. From now we assume that

max-*

M > 78E:2 (3.10)
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Lemma 3.3. For any e € (0,1) there exists N. € N such that for any h € 2N/
with h > 2N. /[ the following statements hold true:

(i)  The function (w,z) — Cn,(X,Y)(we, + ze,) is analytic in {(w,z) €
C? | |Imw|, |Im 2| < Frp(e)} for any X,Y € I p, p,q € {1,2}.

(i)
1

n > ICn, (pxoz,1000)(wey,)| < WMQ No max{1, 5}°

(X,Z)EFX[fﬁ,ﬁ)h

for any p,n € {1,2,3}, o € {1,1}, p € {1,2} and w € C with |Imw| <
.7:7575(5).

(i)

c 2\

| det((uy, Vie)omCn, (X, Yi) (wep))1<jk<n| < (HMG maX{175}3>
for any m,n € N, u;,v; € C™ with |uj|cm, ||vjllcm <1, X;,Y; € I
(j=1,...,n), pe{l,2} and w € C with |Imw| < F; g(e).

Proof. First note that xn,(w) # 0 implies 2|w|/m < MN5+2 since 2/6|/m <
|1 — e| (V0 € [~m,@]). This inequality coupled with (3.2) proves that if
XNg (w) 7é 07

|w] <cmax{1,;}M3. (3.11)

(i): From the definition (2.2), (2.3) and (3.11) we observe that

D7 (k + we, + ze,,w) = —w? + e — Re E(t,k + we, + ze,)
+i(—w(eZ +€5) — Im E(t, k + we, + ze,)) + O(h™ 1),
where O(h™1!) represents terms of order h=1. Moreover, if |Imw|, |Im z| < r,
by (3.8) and (3.9),
|D? (k + we, + ze,,w)|
> max{w? — ¢7¢7 + Re E(t,k + we, + ze,),
jw(ed + €)= [Tm B(t, k + we, + zeq)|} + O(h™1)

> max {;z - %(eg + €7)% — 4t% sinh(2r), %\eg +€7| — 4t? sinh(27‘)}
+0(h™ 1)
2 2
> Liegteg<s <2ﬁ2 — 417 Smh(2r)> + Lz tegi>s (52 — 417 sinh(2r)>
+0(h™1)
772 9
> 2—@ — 4% sinh(2r) + O(h™1).
If r = Fi 3(¢) and h is large enough,
|D? (k + we, + zeq,w)| > M > 0. (3.12)

432
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Therefore, the denominator of xn,(w)Bj , (k + we, + ze,, w) does not vanish
for any p,n € {1,2,3}, which ensures the analyticity of Cn, (X,Y)(we, + ze;)
in the claimed domain.

(ii): Fix w, z € C with | Imw|, |Im z| < F; 5(e) and p, ¢ € {1,2}. We will
use the following bounds. For any (ki, ko) € R?,
| sin(k; + wdjp + 265,q)|, | cos(k; + wdjp + 265,4)],
‘ sin(k1 =+ w61,p + zél)q — Ifg — ’(1)5271) — Z(sgwq)|,
1
| cos(k1 + wdr,p + 201, — ko — wda , — 202,4)| < ¢ (1 + nmx{@[p})
(3.13)

(V5 € {1,2}). By keeping (2.3), (3.10), (3.11) and (3.13) in mind, one can

deduce the following: for any w € M; with xn,(w) # 0 and large enough
h € 2N/g,

1
VY1 (k + wep, + zeq,w)| < cM?’max{l,ﬁ},

1
NG, (k+wey, + zeq,w)| < M (1 + )

max{f3, 3%}
(V(p.m) € {1,2,3}*\{(1,1)}),

[B(1 = G 2 )+ O(h) 2 2.
It follows from these inequalities and (3.12) that
|Bg’n(k + we, + zeg,w)|
5 M? B max{1, B} it (p,m) = (1,1),
< ¢ 5 Mpmax{l, 5} if (p,m) €{(1,2),(1,3),(2,1),(3,1)},
cf+ - MBmax{1, 5} if (p,n) €{(2,2),(2,3),(3,2),(3,3)},

which results in
|Bgm(k + we, + zey,w)| < iM3ﬁmax{1,ﬂ}2 (Vp,n e {1,2,3}). (3.14)
Then, by using Lemma 3.1 and (3.2) we have for any X,Y € I j that

Cn,y (X, Y ) (we, + ze,)| < iMNﬁ%ﬁmax{l, B2 < 1—;M6 max{1, 5}3.
(3.15)

The rest of the proof of (ii) proceeds in the same way as in [11, Subsection
5.2]. By noting the domain of analyticity proved in (i) and the periodicity of
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Bgm(k,w) with respect to k one can derive the following equality: for n € N,

n
i 27 (x— eq) _
(27r (e 7 (x—y,eq) 1)) Cn, (pxox, nyTy)(wep)

n 27 /L

L 1 1
I I 2 2mi (zj —0;)?
Jj=1 _
0 |2 —0|=F,p(e/2)/n

Cn, (pxox, nyTy) | we, + 3(0) Z zjeq | . (3.16)
j=1

By taking the absolute value of both sides of (3.16) and using the inequality
n™ < nle™ and (3.15) we obtain

£ (eiZTﬂ<x7Y7eq> _ ]_)
2

n

ICn, (pxox, nyTy)(wey)|

c nle”
< M 1,3 ——
= 1 _ 8 max{ 7ﬂ} .7:,5,5(5/2)”

for any n € NU {0}, which leads to

C
|CN[f (pXU.T, 77}’71/) (wep)| < 17—€M6 max{l, 5}3

Ji2m(x—y,eq)/L _
2r/L

2

em? 1 R e
. <16max{1,t2}maX{ﬁ,ﬁ2} - )

Then, using the inequality that |(e”>™™/L —1)/(2x/L)| > 2|m|/m (Vm € Z
with |m| < L/2) and (3.2) we can deduce that

1
=Y G (pxoz,n070)(we,)|

(x,2) €L X[=B,8)n

e 1/(4me) 2
c (16 max{1,t2} max{3,8%} ) +1
< M®3max{1, 3}
T e ) 1/(4me)
16 max{1,t?} max{3,3°} + ) B

2
< T M®Fmax{L, B}’ (1 + max{lﬁ}max{ﬁ,ﬂ?})

1- €
¢
=2 M®Bmax{1,3}" <

(1—¢)

(iii): Define the complex Hilbert space H by H := C™ ® L*({1,2,3} x
'™ x {1,1} x My) with the inner product

& _
< 2M9 No max{1, 5}%.

(1-e)e?

W fvogh = Ve g Y fpkowipkee),

p.k,o,
€{1,2,3}xI*x{T,l}x My,
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Moreover, define the vectors f; x, gix € L?({1,2,3} x T x {1,1} x M})
(X €1ILp, L€ {Ng,...,Np}) by

Froxos(n K, 7, w) 1= 85,7 Rl (W) V2BT (k+ §(0)wey,w), (3.17)
xi(w)2. (3.18)

The vectors f; x, gi,x for [ > Ng+ 1 will be used in the proof of the next
lemma. We see that (u,v)cmCn, (X,Y)(we,) = (U® frn,; x,V® 9N, y)y By
Lemma 3.1, (3.2) and (3.14),

lu® fay xlln < (MP max{l,ﬁ_l})l/2éM3ﬁmaX{l,ﬁ}27

IV ® g, xll# < e(MP max{1, 57112,

if ||11||Cm,

9l,pxox (777 k: T, w) = 5/)777507Tefi(x,k>eimw

[v|lcm < 1. Therefore, Gram’s inequality guarantees that if ||u;

([:’"L7
Ivjllem <1 (V5 € {L,...,n}),
| det({u;, Vi) emCn, (X, Yi) (wep)) 1< k<l
< Ty © fapx, Vi @ gy, Ll
=1
< <1CEM6 max{l,ﬁ}3) .
O

The following lemma gives upper bounds on C; (I € {Ng+1,...,Ny}),
which are essentially independent of § in low temperatures:

Lemma 3.4. For any e € (0,1) there exists N. € N such that for any h € 2N/
with h > 2N. /3 and l € {Ng+1,..., Ny} the following statements hold true:
(i) The function w — C(X,Y)(wep) is analytic in {w € C | |[Imw| <
Fip(e)} for any XY € Iy, p € {1,2}.
(ii)
1
7 Z Ci(pxox, n000)(we,)| < cMB™
(x,2) €T X [=B,8)n
for any p,n € {1,2,3}, o0 € {1,1}, p € {1,2} and w € C with |Imw| <
ft,g(f).
(iii)
| det((u), Vi) cm Ci (X, Yie) (wep))1<jhn| < (M)
for any m,n € N, uj,v; € C™ with ||u|lcm, |villem <1, X;,Y; € Iy
(j=1,...,n), pe{l,2} and w € C with | Imw| < F, g(e).
(iv)

Ci(pxoz, nyTy)(we,)| < eM>HNo~!

for any %,y € Z? with 1 < [|x — ylg2 < L/2, (p,0,2), (n,7,y) €
{1,2,3} x {1, 1} x [0, B)n, p € {1,2} and w € C with | Imw| < F; 5(¢).
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C1(p000, n0T0) (we,)| < cM3(M'=Nr 4 pMNs—t

for any (p,o),(n,7) € {1,2,3} x {1,1}, p € {1,2} and w € C with
|Imw| < ftﬁ(E).

Proof. (i): For any w € R with x;(w) # 0 and sufficiently large h,

1 - o0
§Ml — Epax < |W(1 — e@/hHE+)/CRY <o M2 4 Bray. (3.19)
The condition (3.10) implies that 10 + 1 Eyax + 9E2,, < 2F2, < 1M, or

2
1/1 1/1
9E12nax + 10Ml_1 S 5 (2Ml - Emax) S 5 <2Ml - Emax) . (320)

Note that by (3.2) and (3.7),

(i) (52 mekenm)

2

Vi
<9E2, 4+ —— < 9E?
— max + max{ﬁ’ 52} — max

P for any m € {0,...,4}. Then, using (3.19), (3.20) and (3.21) we have for
any k € R? that

+ Mt (3.21)

2
1
ey )| 2 (M~ s ) — e/ MO+ 7201 £ 00

max

=16
(3.22)

Thus, the denominator of x;(w)Bj, (k + wey,w) is non-zero for any p,n €
{1, 2,3}, which proves the claim (i).

(ii), (iv): Take w € R with x;(w) # 0, p € {1,2}, k € R?, o € {1, |} and
w € C with |[Imw| < F; 5(e). Estimating |x;(w)(0/0k;)" By, (k + wey, w)l,
[(0/0w)™ (x1(w) B, (k + wey,,w))| (m = 0,...,4) provides sufficient informa-
tion to bound the sum of C;(we,) over IT' x [0, 3);. By using the inequalities
(3.2), (3.3) and (3.19) we obtain

‘((‘9)’”@0(1{ +wep,w)

1 l 2 2 -1 1 1 l ° 1 21
> (M = Buax ) = 9Ef = 10M'71 2 o (M = B ) > M

< eMMHCEEML (i e {0, ..., 4)),

Ow
oN\" ., N .
B D (k +wep,w)| <cM™ (Vne{l,... 4}, €{1,2}),
J
which, combined with (3.22), yields
aN" 1 4
o < m—(2+m)l o
<8w) D7 (k + wep, w) ’ =M (¥ €10, 4D, (3.23)
o\" 1 '
— ) | < MM 1,...,4},75 €{1,2}).
'<8kj> D‘T(k—l—wep,w)‘_c (Vne{l,...,4},j € {1,2})
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One can similarly derive the following inequalities: For any m € {0,...,4},
ne{l,...,4}, j € {1,2} and (p,n) € {1,2,3}*\{(1,1)},

a\" o 24+ (1—m)l

% U1k +wep,w)| < cM ,

oN\"

BT N1 (k + wey,w)| <,

a] - (3.24)

(&0) Ngn(k + wep, w) < CMNB+1_ml7
2 n/\/" (k + )| < eM Nt
ok o wep,w)| < c .

These imply that for any m € {0,...,4}, n € {1,...,4}, j € {1,2}, p,n €
{1a2a3}a

E’ m -

ON\"
‘((%) Np’n(k—i—weww)‘ < eMNo Tt

As in (3.19), |h(1 — e/h+ec/m)| > LMt — Byax > ¢M!. Thus,

< eM~mHDE (ym e {0,...,4}). (3.26)

oyt
Oow h(l — ei‘*’/hJng/h)

One can also check that

() w| et gme o). G2

Then by using (3.23), (3.25), (3.26), (3.27) and Leibniz’ formula, we have for
any p,n € {1,2,3}, j € {1,2} that

Ly, (w)20 | BS.,(k + we,,w)| < cM?7!, (3.28)
‘ (8?0)4 (xi(w)By , (k +wey,w))| < eM8oL (3.29)
5 \*
Xi(w) (%) By, (k + wep,w)| < eMITNs=2t (3.30)
It follows from (3.28) and Lemma 3.1 that
ICI(X,Y)(wey)| < cM* (VX,Y € I1 ). (3.31)

For a function f : C — C, let dgf(w) := %(f(w +27/08) — f(w)). By
remarking the periodicity that x;(w + 27whm)Bg , (k + 3(0)wep,w + 2whm) =
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xi(w)Bj , (k + 3(0)wey,w) (Vm € Z), we observe that

ﬂ . 4
(2 (e 1)) Ci(pxow, nyTy)(wey)
(5

Z e—i(x—y,k)ei(x—y)wdé (Xl (w)l’)’”
(k w)€ED* X My,

27/
60,7’ —i(x—y,k) Ji(z—y)w : ﬁ
e (e
s (k,w)ET* x M, m=1 0

L )]

Then, the bound (3.29) and Lemma 3.1 lead to

4
QE (e—i%'@f—y) - 1)‘ CI(X, Y ) (we,)| < cM20-4, (3.32)
v

Similarly, using the periodicity that BZ,n(k + §(o)we, + 2mne;j,w) =
Bg,n(k + ‘§(U)wep7w) (Vn € Z) we obtain

L /2 » !
( (el%<x_Y’e.7> — 1)) Cl(pXUx,ﬁyTy)(wep)

2m
507‘ —ilx— i(x—
Sl Y vk
ﬁL (k,w)€EDT™* X My,
27 /L
I o\ ) 4
H o / duy, | xi(w) ET B7 k—i—s(a)wep—i—Zunej,w )
n=1 & 0 J n=1

which, combined with (3.30) and Lemma 3.1, yields

L o 4
- (e’%("—y’eﬂ'> - 1) IC(X, Y ) (wey)| < eM3*No—l (vj e {1,2}). (3.33)

The inequalities (3.31), (3.32) and (3.33) result in
ICi(pxox, nyTy)(wey)|
eM?
ei2m(x—y,e;)/L _ 1)|4 + M4-16 |£(ei2ﬂ'(zfy)/ﬁ _ 1)|4
(3.34)

<
1+Ml N5+IZ

Jj= 1|27T

for all (p,x,0,z), (n,y,7,y) € I . The decay bound (3.34) implies the claim
(ii) and the claim (iv).

(iii): The proof of (iii) is parallel to that of Lemma 3.3 (iii). Recall (3.17)
and (3.18).Using Lemma 3.1 and (3.28) one can show that for any u, v.€ C™
with Jucn, [Vlen < 1, J0® fixln < c(MF2)2A2 v @ g xl <
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C(M”z)l/Q. Thus, we can apply Gram’s inequality to conclude that
|det((uy, Vi) em Ci( X, Vi) (wep))1<jk<nl

< [Ty @ fix, Inllvy © gix, I < (M2 M2 < (eM*)".
j=1

(v): Take w € M, with x;(w) # 0. Since
|Dg(k—|— weww) _ h2(1 _ efiw/h+(eg+eg)/(2h))2‘ < 9E12nax + 10lel
by (3.21), the inequalities (3.19) and (3.20) justify that

1
Do (k + wep,w)

1 N 1
h? (1 — e=iw/hH(eg+eg)/(2m)2  p3 (1 — emiw/ht(+e3)/(2n))?

o (h2 (1 _ g tw/h+(el +éo)/(2h)> 7’D0(k+wep7w)>

>

m=1

. o o 2
| (o) o7 e, )
Z <1.

“— (h(1— e—iw/h+(eg+eg)/(2h)))2’”*1 -

I

(h (1 — e—iw/h+(€g+eg)/(2h)))2m71

m

This particularly implies that

1 g
BL? Z xi(w)BY 1 (k + wep, w)
(k,w)€Er* x My,

1
<sp X

(k,w)€EDT™* X My,

1
+W2

(k,w)EF* XMy,

1 xi(w) 31
=3 2 B (1= itz raem) | T M (3.35)
weMyp,

where Lemma 3.1, (3.19) and (3.22) were also used. Note that

Xl (w)h (1 — e_iw/h+(€g+€g)/(2h))
Do (k + wep,w)

Xl(w) |Nﬂ1(k + wep,w) _h (1 _ efiw/h+(e§+eg)/(2h))|
|D7 (k + wep,w)|

1 xi(w)
3 w;h I (1 — o/ b))

- Q,%h 3 )

weEMy,
h (1= elZ+e)/m)

1
+% w;h Xl(w) h2 (1 _ e—iw/h+(eg+eg)/(2h)) (1 _ eiw/h+(eg+eg)/(2h)) ’
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Then again by using Lemma 3.1, (3.3) and (3.19) we have

! Xi(w) l—Np+2 3—1
8 ez/\:/t h (1 — e~iw/hH(ez+e3)/(2h)) <eMTETE 4 eMPT (3.36)
w h

Substituting (3.36) into (3.35) gives

1
BL? Z X1(W)B] 1 (k + wep, w)| < eM'TN 2 g 3 (3.37)
(k,w)€eEr* x My,

It follows from (3.24) that

1 Z Xt(W) N, (k + wep, w)|
BL? erism, | P7(k+wep,w)

(V(p.m) € {1,2,3}\{(1, 1)}). (3.38)

The procedure to derive (3.36) similarly shows that

S CM3+Ng—l

! Xl(w) [—Np+2 3—1
g XA:A B = ey | S M AT (3:39)
we h

The bounds (3.38) and (3.39) yield that for any (p,n) € {1,2,3}?\{(1,1)},

1 _ _
T D Bkt wew)| < MRy et
(k,w)el™* x My,
(3.40)
By (3.37) and (3.40) we can confirm the inequality claimed in (v). O
4. Multi-Scale Integration
In this section we will find an h-,L-independent upper bound on
n
£ (ei%<z§=1(swj)f«j—éﬁj)yn,en _ 1)
2m
9 Vi (¥)
X log e’ dpe(v) ‘/\:0 (4.1)

(n € NU{0}, p € {1,2}) by estimating the right-hand side of Lemma 2.4
(iii) by means of a multi-scale integration over the Matsubara frequency My,.
Using the upper bound on (4.1) we will complete the proof of Theorem 1.1 in
the end of this section.
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4.1. Notations for the Multi-Scale Expansion

Let us decide some notational rules to systematically handle Grassmann poly-
nomials during the multi-scale expansion, in addition to those already intro-
duced in Sect. 2.1.

For X™ = (X", X" ..., X") € I, (m € N) let (¢)xm := YxmPxm ..
¢Xm7 (Y)xm = Uxmibxp ... bxm € A" V. Define the extended index set
ILh by ILh = ILh x {1,—1}. The index set ILh is used in the following
way: For (X,a) € IL o w(xa =y ifa =1, Y(x,0) = ¥x if a = —1. For

X = (X7 K X) € I let (§) g 1= Vgt Ygn € ATV,
For X™ € I}Zh, X" = (X7, X3, ..., X)) € IT,, with m < n, we write
X™ C X™ if there exist ji,Jo,...,Jm € {1,2,...,n} such that j; < jo <
- < Jm and X™ = (Xﬁ,Xj’-;,...,X%L). Moreover, in this case we define

X”\Xm € I"_m by XM\ X™ = (Xp, X, Xi ), where 1 < ky < kg <
<k3nm<nandk §é{jl,32,...,jm}(Vq€{12 n—m})
For X™ ¢ Iznh, X" e I"h with m < n the notations X™ C X" and

X"\ X" are defined in the same way as above. For X = (X{", X3", ..., XJ}) €
17, and a € {1, —1} let X(a)™ := (X", a), (X3",a),..., (X7}, a)) € I,
For a function fp, : I7%), x If", — C (m € N) let

2m
= (3) X lexmxm,

XmYmelp,

1 2m—1
ool e = maX{ P { Gz X

Xiel , Xm-1-iely 7

> |fm((Xj,X,Xm”>,Ym>|},

Yrelry,

1 2m—1
m{<h> > X

Yier] , Ym-t=iery;td

> MmX (Y, KYm”)ﬂ}}

xmery,
We see that ||-]|1, || ||1,c0 are norms in the complex vector space of all functions
on I7", x I7",. For notational consistency we also set || foll1, [|foll1,00 = [fol
for any complex number fj.
Let us call a function fy, : I7"), x I}, — C bi-anti-symmetric if

S (Xv)ys Xo@ys o0 Xom))s Yeys Ye@)s -5 Ye(m)))
—Sgl’l( )Sgn(g)fm((XlaXQM"7Xm)7(Y17}/27~~~aYm))
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for any (X1, Xo,..., Xon), (Y1,Y2,..., V) € IT"), and v, § € ;. Recalling the

numbering that I, ; = {X, ; }ijlh, let

(IL,h) {( 0,j1> 7]2""’X07j7n) Elﬁh | J1<Jjga <-- <.jm} (VmGN).

It holds for any bi-anti-symmetric function f,(-,-) : 17, x I7%, — C that

= (3) @2 X axmymL G

meY'me(IL,h)Z,n
Bi-anti-symmetric functions appear as kernels of Grassmann polynomials. Note
that f(¢) € EBNL " P, AV can be uniquely written as

Nr.n

fw)=3_ (2) Yo FXT Y (@)xm () ym

m=0 Xm,YmeIg’;h

with bi-anti-symmetric kernels f,,(+,-) : I7", x I7%, — C (m € {0,..., Ny p}).
Moreover, if

(’11) B Z Fm (XY™ (@) xm () ym

XmYmelp,

()" T e @ e

Xm Ymelp,
and f,,(-,-) is bi-anti-symmetric, then the inequalities

[fmllt < llgmlly—and [[fm]l1,00 < llgmll1,00 (4.3)

hold.

Assume that fim(-,-) : I7%, x I, — C is bi-anti-symmetric (VI,m €
NU{0}) and im0 f1,n (X™, Y™) exists in C (Ym € NU{0}, X", Y™ € IT")).
Set

Nr.h 1

f@) =Y (h> > XY (@)xm (§)ym.

m=0 Xm ym ejzz "

In this case we define lim; .o, fi(¢)) € @NL o Pn AV by

Nr.n

2m
i =3 (1) 5 00 Y s e

m=0 Xm,Ymelp,

We call f,(¢) € EBNL " P, AV analytic with respect to z in a domain
O(c Q) if so is every bi-anti-symmetric kernel of f,(¢). Under this condition
we define (d/dz)f.(v) € @5 P, AV by replacing each bi-anti-symmetric
kernel of f,(¢) by its derivative. Moreover, the following Taylor expansion
holds true: For any 2 € O,
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(= —2)"

z=2

=3 () @

in a neighbor of 2.

4.2. A Multi-Scale Integration Over the Matsubara Frequency
Here let us describe the multi-scale integration process. From now until the
proof of Theorem 1.1 in Sect. 4.4 we fix arbitrary R € (F; (8/7°),00), € €
(9/7%,1), p € {1,2}, L € N satisfying max; yeq1,2} [|X; — Yrllre < L/2 and
sufficiently large h € 2N/3. There exists Usman > 0 such that all the statements
of Lemmas 2.4, 3.3, and 3.4 hold true for these fixed parameters. Set
Dsmall = {(21,22723,24) S (C4 | |Zj| S Usmall (VJ S {172a374})}3

Dr:={2€C||Rez| <R, |Imz| < F 3(9/7%)}.
By taking Ugpan smaller if necessary we may assume that
Re [ 0120 ) ity o (%) > 0 for all (A, A-1,Ue, Us) € Dymmant; w €

j=1 i (Wep

Dpr and | € {Ng,...,Np}. This property allows us to define G=!(¢)) € AV
(1€ {Ns,...,Ny+1}) by

0
G (¢) = log (/ N )d:uzj_\’:hl cj(wep)(lﬁo)) (le{Ng,...,Nn}),

GZN}L_H("/’) = V(M,A—l) ('@[J)

for any (M, A_1,U¢,Us) € Dgman, w € Dg. The definition of logarithm of
Grassmann polynomials is provided in Definition C.1 in Appendix C.
By noting the equality that

621 =tog ([ ( [0 o 09 dicaey (1))

(see, e.g, [6, Proposition 1.21] to justify this equality), Lemma C.2 proved in
Appendix C ensures that for any (A1, A_1,U,Us) € Dgman, w € Dpg, | €
{Ng,...,Nyn},

>141 1
G=H () = log ( / ety >ducl<wep><w1)) . (4.4)
Since
I G Apiey e,y (1°) — 1) = 0,
i b e (0°)

weEDR,z€C with |z|<2

one can see from Definition C.1 that z — log (f ?G= T W) dﬂcl(wep)(i/fo))

is analytic in {z € C | |z| < 2} for any (A, A_1,U¢,Us) € Dgman, w € Dp if
Usman is small enough. Thus, the Taylor expansion around z = 0 reads
o0

1 d\" >it1 0
Gzl(d,) — Z o (dz) log (/QZG (4 )dﬂcl(wep)(¢o)>

n=1

(4.5)

z=0
for any (A, A_1,Uc,Us) € Dgman, w € D, 1 € {Ng,...,Np}.
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Each term of (4.5) can be characterized further. It follows from Defini-
tion C.1 and (C.1) that

d Weraxt 0
g (/e G2 (g )ducl<wep)(z/}°)>

= /G’ZH—1 (’Q/J + ¢0) d/J/Cl(wep) (¢0)

The higher order derivatives can be expanded by means of the tree formula.
We especially apply the version clearly proved in [15, Theorem 3]. For n € N>,

L4\ 2GE () 0
o\ dz log € d,uCl(wep) (")
z=0

= Tree(n, C(we,), GZHH), (4.6)
where for n € N>2, a matrix Q = (Q(X,Y))x,yver, , and f(¢) € AV,

T @ D= 3 T A0n@+8,@) [ a5 3 wlmes)

TeTn {q T‘}GT [071]71—1 £ES, (T)

z=0

n
.ezz,u=1 Mat(TvgaS)u,'vAu,v(Q) H f(w] + w) . (47)

= $i=0
J=1 Vie{l,...,n}

The new notations in (4.7) are defined as follows: T, is the set of all trees over
the vertices {1,2,...,n}, for ¢,r € {1,...,n},

Agr Q(X T: Vil| — Vil,
X;e:m awq g\ @ A j@l]

Sn(T) is a T-dependent subset of S, the function ¢(T',¢&,-) : [0,1]""1 — Rsq
depends on T' € T,,, € € S,,(T") and satisfies

ds > @(T,¢s)=1 (VT €T,), (4.8)

[0,1]n—1 £€Sn(T)

and (My(T,€,8)uv)1<uw<n is a (T,&,s)-dependent real symmetric non-
negative matrix satisfying Mo (7,&,8)uu =1 (Vu € {1,...,n}).

Our strategy is to introduce a counterpart of G=! via the tree formula
inductively without assuming that (A, A_1,Uc,Us,) € Dgman and prove that
the counterpart is well defined for larger (A1, A_1,U., U,). Consequently, by
the identity theorem for analytic functions we will be able to find an upper
bound on (4.1) with the enlarged coupling constants U, U, in the end of this
section.

4.3. Estimation by Induction

Let us start the concrete analysis. In the following we fix arbitrary w € Dpg
unless otherwise stated. Define JZ!(v)), FZ!(v), TZ! () € @NL 0 P \V (L e
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{Ng,..., N+ 1}) inductively as follows:

FNHL () = Vi (1), T=Nrt () =0,
JEVT () 1= PENHL() 1 T2V,

For I € {Ng,...,Np},

P2y /J>l+1 b+ 6°) iy e (1°).
T ($) = Tree(n,Co(wey), J271) (In € Noo),  T2'(9) 1= 3 T ()
T (W) = P () + T ().

We will later make sure that 32°°, T2!(1)) is well defined in @)% P AV
if the input JZ!*! satisfies a certain smallness condition. For m € N U {0},
le {Nﬁ,...,Nh—l-l} let

F%l(w) = ,PmFZl(w)

1 2m o
_ (h> S REXTY™)@)xn (),

Xm ym elin,h

T2 () = P T2 ()

= (;) " Z Toh, (X7, Y™) (@) xm (¥)ym  (¥n € Nxg),

Xm,7YmeI$

T2 ) = P T2 (1)
“(A)" T e @

Xm Yymery,

where F2!(-,-), TZh (), TRl () : I, x I, — C are bi-anti-symmetric.
It will be convenient to set Jf;ccm(@[}) = FZL(y), Jgée’m(w) = T2!(¢)) and

write

JEil(w)(i) S T XY ™) @)k () v

Xm,Ymery,
with the bi-anti-symmetric kernel Jl)zfn(-, -) for b € {free, tree}. Moreover, set

co = 1?1374{5)1}1\49 max{1, 3}%, (4.9)
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where the constant c is taken to be the largest one among those appearing in
the upper bounds of Lemmas 3.3 and 3.4. We observe that ¢y > 1 and
[Ci(wep)||1,00 < coM ™" (VI € {Ng,...,Ny}), (4.10)
| det({uj, Vi) em Ci( X5, Yi) (wep))1<jk<n| < G (4.11)
(Wl € {Ng,...,Np},m,n € Nyu;,v; € C™ with ||u;l|cm, ||vj]lcm <1,
X;,Y;€lpn(j=1,...,n),
IC1(p%a0,ny70)(we,)| < co(M'=Nn 4 MV~ (4.12)
(VI € {Ng+1,...,Np}, %,y € Z*
with 0 < % = ¥lwe < L/2,p,m € {1,2,3},0,7 € {1, 1}).

Let us introduce a parameter a@ € R<(. As the main objective in this
subsection we will prove the following:

Proposition 4.1. Assume that

M > max{78E2, ,2%}, a>2"9M?

max?

4.13
s D], U, U] < 24025 20 ™5 (4.13)
Then for anyl € {Ng+1,...,Np, + 1} the following inequalities hold:
M—NﬁaCo Z ”Jlfll |1’OO <1,
be{free,tree}
Np,n (4.14)
D D D D A R
m=1 be{free,tree}

The core part of the proof of Proposition 4.1 is the estimation of

T4 ||1,00, which needs the next lemma.

Lemma 4.2. For any X" € lejl j=1,....,n), T €Ty, £ €S,(T), s €
[0,1]" "t and | € {Ng,..., Ny},
n n . 15 P
g1 Mat(T:8,8)q,rAq,r(Ci(wep)) H(d}J)ij o < Cé Py mi

j=1 vie{l,..., n}

Proof. This can be proved by using (4.11) and the properties of My(T,¢&,s)
and by repeating the same argument as in [10, Lemma 4.5]. O

Lemma 4.3. For any m € {0,...,Nrr}, n € N>g andl € {Ng,..., Ny},

1T 100 < (Lm0 Npp/h+ 1in>1)27 3 eg ™ M~Hn=D)

n(n—1)
NrL.h

n
. H Z 25mj anj HJ%i"‘l ||17oo 12;":1 mj—n+1>m-
j=1

mjzl
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Proof. For T' € T,, and a matrix Q = (Q(X,Y))x ver, , define the operator

0pe(T.Q) on A (@7, V) V) by

0pe(T,Q) = / ds Y p(T,6 8)eShr MorlTE )0 B0.r(Q)

[071]77,—1 geSn(T)

[T 2@ +2.,4Q). (4.15)

{q,r}eT

It follows from the definition that

g n Np . h 1 2m; >i+1 m; mj
Tim () = > n > Sy (XY ) | Ay g entazm

1 \m;=1 XM y™ JeILh

me< e (T, Ci(wep) Hl/’ + ) xma (V! + ¢)yma pizo )
=1 vie{l. ...n}

TGTn

The constraint 12;,:1 m,;—n+1>m 18 due to the fact that the operator H{q’r}eT

(Agyr(Cl(wep)) +A,4(Ci(wey))) erases n — 1 fields from H;-lzl(@j)xmj and
from [T}_, (47 )ym;, respectively. Using anti-symmetry,

meﬁ(%(,ﬁ)m SRS SN SRS >

mj=1 X", Y™ eIy kili=0 Wi cX™i zli Y™
>14+1 k; m; k; l; m; l:

T (W XA\WR, (2, Y J\zJ»)

'12;=1mj—n+12m12n k-zzy Lli=m

nl Z ( pe T Cl wep H X""Q\W’“fl

TeT,

()zia W) ymarzia| i )
vie{l,..., n}
n h

NL, my
_ m; m;
ST X S (1) (7)) 1 mmmesomtssybmsir
] - JlJ_O

j=1 \m;=1k;,l;=

1 n 1 kq+lq4
SXIG) =%
TeTy, q= quGIL?h Zlqequ’h

g k) osbe) (Wks L W) (20, Z0)

n n

@ we [T@)ze

r=1 s=1
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where
Jj(wml,...,mn),(kl,...,kﬂ,),(ll,...,ln)((Wkl L ,Wk"), (le N Zl"))

(ORI

X™i R ery Tt ymiliery' T
.Jn%§+1 ((ij , X mi—k; )’ (le , Y™l ))>

“€(mareemn ) (k1o skin ) (10ensdn) Ope (T Cl(wep) )

—q
’ H(w )xma—ra (V) yma-tq wi=o (4.16)
a=1 /
with the factor €(m, .. m.),(k1,kn)s(irsiln) € 11,—1} depending only on
(my,...,my), (k1,...,kn),(l1,...,1,). By (4.3) and the triangle inequality of
the norm || - ||1,00,

T2 e < f[ NZ > (o) ()

12] L my—n+1>mly =X li=m
LS g ) Q)| (417)
TET

Let us find an upper bound on HJj(,ml"“7’”71)7(’“1w-wkn),(llv---’l")HLOO. Let d;

denote the incidence number of the vertex j in T'. If d; > 2m; — k; — [; for
Tl} H,Jj(ﬂml""’m")’(kl""’k")’(llw.}l”)

some j € {1,..., 1,00 = 0, since in this case

[T (Au-(Clwey) + A (Ci(wey)) [T
{q,r}eT s=1
for any X™s ks ¢ I}J’f;‘;ks, Y™l ¢ I}{f;‘b_ls (s=1,...,n).
Assume that d; < 2m; —k; —1; (Vj € {1,...,n}). First consider the case
that m # 0. Let go € {1,...,n} be a vertex with ky, # 0. For ¢,r € {1,...,n}
let disy(g,7)(€ N U{0}) denote the distance between the vertex ¢ and the
vertex r along the unique path connecting ¢ with r in T'. Define L(T") C T by

LUT) :={{r,s} € T| disy(q,s) = disr(q,r) + 1}. (4.18)
Note that if d, = 1 and r # g, then L%(T) = . If d, # 1 or r = qo, we can
number each line of L% (T) so that
ng (T) - {{QOa Stlzo}a {qo> sgo}v s {QOv SZ(;O }}7
Lgo (T) = {{7", Sq}’ {7“, Sg}’ ) {T, SZT.—I}}
(Vre{1,...,n}\{qo} with d, # 1).
For any {qo,s} € LI(T) there uniquely exists j € {1,2,...,d,,} such that
{q0,s} = {qo,57"}. For v € Sy, set v({qo,s}) := v(j). Similarly, for r €

et (0 )yt =0



Vol. 15 (2014) Exponential Decay of Correlations in the CuO 1487

{1,...,n}\{qo} with d, # 1, {r,s} € L®(T) and v € Sq,_1 let v({r,s}) €
{1,2,...,d, — 1} be defined by v({r, s}) := v(j), where s = s7.

Moreover, define C: INL,h X INL,h — C by

R 0 if u=w,
C((X,u), (Y,v)) =< —C(X,Y)(we,) if u=1v=-1,
Ci(Y, X)(wep) if u=-1Lov=1.
By considering gg as the root of T' we see that
H (Ag,r (Ci(wep)) + A (Ci(wep))) H(Ej)xmj—kj (lbj)ymrlj

{q,r}eT Jj=1

5o o 00 o ,
- H Z C(X Y) ¢(1 a¢r H(wj)fi(l)"”f*’% (QW)Y(*U’”:'*‘;'

{a.r}eT \X,Vel, J=1

': Xjely, p with

X;c&m™i TR ™)

Z > II Xy X0
x%ag eI h with Vag Equo {‘IO’T}EL?I?) (T)

% a0 (% (1)™a0 *’“qo ¥ (—1)™a0 "lao)

: (
q=1 cdg—1_-dg—1 .
a#qq and dg#1 xda e 9" with Vq€Sa,—1

xda—lcxymake v (—nmaTlan g,
5 ody—1 -
II C(Xuqﬁq,r})’XT))
{q,r}eLi®(T)

R (d’qo)(f{(l)’”qo ~kao ¥ (—1)™a0 ~ta0 )\ X %40

T (Casr (%) (xayme—+e F(—1yme—ten £, )\ Kaa 1
o0
+1d :1(1/18)(5(( 1)ms—ks ?(_nmg—lg)\)} ) (419)

where e = 1 or —1. In the following, let H u=1 ¢, denote gigs...g, for

orde:
v € N. One finds this notation useful when each term Gu depends on gi,

92, -+, gu—1. Moreover, set d(T,qp) := maxi<;<n dist(qo,j). By substituting
(4.19) into (4.16) and using (4.8), (4.10), and Lemma 4.2 we have for any
Wiizea € I that

s T IOl s %

o 1 _ kg ok .
Whao ~ter 70 ZqOGILhJ#tm Wk]eIL],th’EILJ,h

fmem)sEeko) (el (WhS WG 1 (W, W ™1),
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k kn l In
Whaott W ),(Zl,...,Z ))|
1 2mgy—1
<(z > > > >
h k 1 k —1 1 1 k m —k 1 m —1
W a0~ eIL‘fQ Z'0 eIL“f;L X ™40~ a0 GIL}LO 90 y"a0 ~tao eILy‘;LO Y
>141 kg —1 mg, —k l Mg, —1
"‘]ﬁqo ((Wfil'ede a0 7X 0 qo)’(Z qO7Y a0 qo))|

2 > I

x4ao eizq2 with Vao €Saqy {qo,r}ELIS(T)

%%90 ¢ (% (1)™a0 ~*a0 ¥ (—1)™d90 ~lao)

" v % 3

k kr 1 L —k mey—kp v —1 me—lp
Wkhrelp", Zirel;”, Xmr—krel " Ymr—trelp 'y,

2.

Xrelp, p with
XpcX@ymr=kr ¥ (—1ymr=ir)

_ me—1lr 5( 5 %a
[T (W X =) (20, Y ) IC(X g,y X))

d(T,q())fl
u=1 je{1,..., n} with sdi—1_=dj—1
ordered dis(q0.4)=u and dj#1 X el with

x4~ e&x@)™i TR ()™ TYNR;

-2 I

vj€8a;—1 {4,r}eLi%(T)

Ny oy oy >
h k 1 9 k 9 1
Whrelpn, Zirel;", Xmr—kre "5 Ymr—leg "7

>

}?rEfL,;L with
Xpc(X(1)ymr—kr ¥ (—1)mr—lr)

My —Ryp r My —lp g ~dj_1 X
I W X =) (20 Y T IDIC(X) () X0

ds S G(T,€,8)eTurms Mat(T)or By (Culwey)
[071]11,—1 fesn(T)

(%) & 1yma0—+a0 (10—t gtno ||
s=1
s#4qq

. (1d57$1 (ws)((X(l)msfks ’Y(,l)wns—ls)\xs)\xds—l

+1a,=1 (V%) (% (1yme—re 7?(_1)ms—ls)\xs)

I =0
vji€e{l,...,n}
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< ||J2l+1||1,oo <2mqo _quo - lqo) dg,!

a0 q0

[T (@m =k =0 oM )
{q0,7}E€LG(T)

d(T,q())fl

) H H Qmjfkjfljfl (d—l)'
v dj —1 Lo
je{1

u=1 \  je{1,..., n} with
disp (a0,4)=u and dj#1

H ((2m, — ky — lr)”J%lTJA

{4,ryeLio(T)

= (coM~")"! H

n
Jj=1

1 n
n[fl 3 2g=1(2mgq—kq—lg—dg)
|1,ooc() )>> Co !

L@em;—k;j—1;—d;
<c3< TR (o ;)

_ <2mj —dfj_—llj - 1) (d; — 1)!). (4.20)

By arbitrariness of ¢y and the fixed variable Wjyizeq,
[y K bn) (B b)) can be bounded by the right-hand side of
(4.20).

In the case that m = 0 we fix any ¢y € {1,...,n} and repeat the same
calculation as above by setting k;, [; to be 0 for all j € {1,...,n}. The only
difference in the consequence is that ||Jn%ijl |l comes in place of ||J,%i?)‘1||1,00.
Since ||Jn21i:1H1 < (NL,h/h)HJ%i:lHLOO, we only need to multiply the right-
hand side of (4.20) by the extra factor Ny, ,/h in this case.

By substituting these results into (4.17), replacing the sum over trees by
the sum over possible incidence numbers and using Cayley’s theorem on the
number of trees with fixed incidence numbers, we can deduce that

1T 1100

n Np.n mj
m; m;
< L Z Z (kj > < ¥ > 12?:1 mj—n-HZle;l:l kj=3%_, lj=m

1 mj:1 k]‘,lj:O
n 2mg—kg—1
1 1 Lata (n—2)!
'7 1 "1 dq=2(n—1 n
n! 11 D 2= =2 DT (g )]

qg=1 dg=1
(Ln=oNz,n /b + Ln>1)(coM )"
- L(2mp—ky—lp—d,
: H <C02( )HJnZzlr—i_l”l,oo(er —kr —1y)

r=1

(e 1)!)
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1
— 17”_ N h 17n —77L7M7l(n71)
(Lm=0NL,n/h+ 1m>1)cq nn = 1)
NL,h TI’Lj

n
m; m; ; 1
T S () (1) armsa s
J=1 \m;=1k;l;=0 ~ 7 J

Ay myens1zmlyr k= =m

2mg — kg — 1, — 1
: (2mg — kg —lg) Z < ! dqq_lq ) 123}:1%:2(71—1)'

n 2mg—kq—lq4
=1 dg=1

(4.21)

By using the inequality that 2m, — k, — I, < 2™~ (*Fa+la)/2+1 gne has

2mg—kq—1lg

. 2 kg —1g—1
H (qu . kq _ lq) Z ( mg 7d 4_71 q ) < 93 =1 mg—3m
g=1 a

dg=1
(4.22)
By combining (4.22) with (4.21), dropping the constraints Iy ky=yr ty=m;
12311 d,=2(n—1) and summing over k;,l; (j =1,...,n) we obtain the claimed
upper bound. O

The following lemma will not be used until Sect. 4.4. Since its proof is
close to the proof of Lemma 4.3, let us show at this point

Lemma 4.4. For any m,m’€{0,...,Np 5}, n€N>q, be {free, tree}, xXm' ym
S IZf;l andl € {Nﬁ, .. .,Nh},

Tz, IN27—2m/ obm/ —3m _m’'—m § r—l(n—1)
D X Y| S Lirz1 (m)"h ™22 « "M
b,m’ ’ 1
n—1 [ Nr,n
SI{PIEEREIII ER—
j=1 \m;=1

Proof. By using anti-symmetry,

T, (Y)
QT (Xm Ym)

n n Nr.n 1\ 2mi
= e SIS () X ey

jo=1 J=1 m,;=1 i ]
Jo g J X™MiY™iel, s,

1 Z
Asn s s mjtm/—n+12m P <Ope(T’ Ci(wey))
TET,
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(@ + B (7 + )y
x T @ +)xma (4 + ) yma

q#3jo

vizo ) (4.23)
n}

Vie{l. ..,

We can see from (4.23) that 8TE%(¢)/5J}§TZ$1(XW,YW') = 0if m’ =0, since

H{q7r}eT(Aq,r(Cl(wep)) +Arq(Ci(wep))) H?:l,j;éjo (@J + ) xms (Y +4)ym; =
0. The equality (4.23) leads to

N
8Tnzin (w) —2m/ 2 E = X
aJ2l+1 Xm/ Ym/ = h (m '> Z 1m307m
b,m/ ( ’ ) Jo=1mj;,=1kjg,l;,=0

n Np.n mj - ma
1> > ()
g=1 \'m;=1k; ;=0

J#io

1
.12?:1 mj_n+12mlz;z:1 kj:Z;_zzl lj:ma Z

TET,
n 1 kq+lqg
1:[1 < h > )3 . Zl
= quEIL?h, ZlqEILq,h,

mi,..., mn), (ks skn), (11, ln ) . | .
'Jé,jé )0 bebn) (Wki W) (0L Z)

n n

T @ we [T @)z

r=1 s=1
where

J(ml;~-~7mn);(k317-~ykn))(ll7~~;ln)((Wkl Wk”) (le Zl"))

T.j0

. n 1 2mj—kj—1;
= hE T Lignsg cxems Lgtio cym H (h)

2 2.

Ji#Jjo
1,

my—kj o™i TR m =ty o™i
Xmi~kier; ) ymilier ),

'J%é+1((wkj ) Xk )7 (le ) ij_lj)))

EwWrio Xm! 210 Y™ Go, (i) (K se ki) (115eeokn )

.OPE (T7 Cl (wep)) (@JO )Xm’ \W"’jg (d’jo )Ym’ \zljo

: H (Eq)xmq_kq (wq)Y’"q—lq

$J =0 ?
vie{l,...,n}
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with the factor ey, X! 2190 X o () (bt i) (s ) € {1,—-1} de-
pending Only on ijo ) xXm ’ le07Ym ) j07 (m17 B n)7 (kla R k’n)>
,1n). Tt follows from (4.3) and the triangle inequality of the norm || - ||

(I1,...
that
8TZ[ , n  Nrn Mo
—2m 11\2
‘ 6J>l+1(Xm Ym) h (m ') Z Z Z mm—m
b,m/ Jo=1mjo=1kj,,lj,=

{2 ()(7)

1
Ayr myeng1zmlyr k=yr L=moy

M1y, ) (K1yeeskn ), (Liseensln)
’ Z HJ T.j0 1
TeT,

(4.24)

) (Rt ek ) (Lol

The estimation of ||J(Tn;;
Hj;ml """ M)y (R1peeeskn) s (feeesln) ||l1,00 in the proof of Lemma 4.3. Here we consider

Jjo as the root of T, while this role was played by the vertex gy in the previous

lemma. By noting that

1\ %o tlio o
() Z Z (P00 Lk, cxm Lzt CY""’)

h
. k. . L
wkioer,79 zlio e1,’0,
Ko Lo

and letting dq,...,d, be the incidence numbers of T" we have

mi,...,mp),(k1,....kn), (1 Sln
J}j; P k), (o)) o 1dv<2mj—k:~—lj (Vi€{l,...n})

mj, Mg nl >l+1
4 g><,)cM IT 193

kjo

q#Jo

n
1T (e -1
j=1

(Pt ), (129

By returning the right-hand side of (4.25) to (4.24) and replacing the sum over
trees by the sum over possible incidence numbers we obtain
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orz! : - 1
n,m <1 />1h72m (m/!)2 com Mfl(nfl)
>l+1 ’ m! - —mZz 0 _
| O (XY™ | —= n(n —1)
n Np.n my
m; mj ) mj
(X X (W)()e
j=1 \m;=1k;,l;=0 \ 7 J
'1m10 =m’ 12;'l=1 m; _"""127”12}1:1 kj=>27_1 lj=m H HJT%[T+1 ”1700
o
n 2mg—kq—lq
2mg — kg =1, —1

JL(@mg—ke—10) ( a1
q=1 dg=1

Ay d,=2(n-1)-

Then, the same calculation as in the last part of the proof of Lemma 4.3 yields
the claimed upper bound. O

For compactness of the argument we assume the condition (4.13) through-
out this section. The following lemma itself, however, can be proved under a
weaker condition:

Lemma 4.5. Fiz anyl € {Ng,...,Ny}. Assume that (4.13) and (4.14) fori+1

hold. Then, TZ'(y)) is well defined in @fioh Pn \V. Moreover, the following
inequalities hold true:

1T 1,00 < (Lm=oNpp/h+ Lin=1)27 ey ™Mo (2607 1)2 M~ (= No)

(Vm € {0,..., Npa}): (4.26)
Nrp.n
MNe N amep MUENOE2 TR < 280t M2 (4.27)
m=1
Nrp.n
M=oy ameg MU FRLy o < 2T (4.28)
m=3
Nr.n 2
M ST () IR e < (Pam M (5 € 1,2,3))
m=3
(4.29)

Proof. Proof of (4.26): The assumptions ensure that

Nrp.n
M_Nﬁ2500||<]12l+1“1,oo < 25a—l7 M—Ns Z 25mcz)n||<]%l+1”1,oo < (25a—1>27
m=2

which result in
Np.n
MNe N 2P | T2 o < 2007 (4.30)

m=1



1494 Y. Kashima Ann. Henri Poincaré

By substituting (4.30) into the upper bound obtained in Lemma 4.3 we have

Z 1T ll100 < (Lm=oNLp/h+ Lm>1)27 ey ™ MY

= 1
. Z 7M—(Z—Ng)(n—1) (26a—1)n
— n(n—1)

< (Lo Npp /B4 1iys1)27 3y ™ MNe M~ N6) (26471)2

where we used that > -, ﬁ = 1. This implies the well-definedness of
TZ! (1)) and (4.26).

Proof of (4.27): It follows from Lemma 4.3 and the inequalities
2 3a M Ne (27 3aM!=Ne —1)71 <2 and 22" M~ < 22M~! (¥m € N) that

Np.n
M—Ns Z amcgzM(l—Ng)(m—Z) ”T%l ||1,oo

m=1

<M NBM 2(1— N@)Zi)M—l(n—l)
(n—1
n=2

Nr.n dg—1mg—n+1
5m; Mj >1+1 —3m _.m (I-Ng)m
S 25 [ JZ o S prdmgm =N

mj=1 m=1

—-

<

IA
[\}
Me L

L - -No)mt)

— n(n—1)
n Np.n
. H MfNﬁ Z 25m]~CO 7 (273aMl*Nﬁ)Zq:1 mg—n+1
j=1 my=1
= 1
=922 S
a; n(n—1)
Nr,n "
230[71M7N[3 Z 22mam66nM(l7Nﬁ)(m72)HJ%ZJ,»l”l o
m=1
< 972, i ;
- — n(n—1)
Nrp.n "
250[71M17N5 Z OémcglM(l+17Nﬂ)(m72)||J,,%l+1||1 o
m=1

o0 1
<270y ———(2°%a"'M)" < 2807 M2
- @ — n(n—l)( @ )" <2
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Proof of (4.28): One can see from the definition of F=!(¢)) and (4.11)
that

Nr.n j 2 Nr.n
j— >1+1 i - >1+1
LD S EA R s T INED SE T
Jj=m j=m

Substituting this inequality and using the inequalities aM'~"% (aM'~No —
)7t <2and 22 M7 < 26M~3 (Vj € N>3) yield that

Np,n
M—Ns Z amc(r)nM(lfNﬁ)(m72)HF%l oo
m=3
Npw j _
S M*N,H Z Z 22jamc(7)M(l7Nﬁ)(’rTL72)||JjZl+1||LDO
j=3 m=3
Nrp,n
- i G dap(=Ng)(i—2)) 7=1+1
S IM Ng Z 22JOzJC€)M(l Ng)(Jj Q)Hjj_ + ||1,oo
=3
Nr,n
S 27M717N[f Z ajcéM(H*lfNﬁ)(j*Q)||JjZl+1||1 - S 27M71.
J=3

Proof of (4.29): By using the inequalities that 22"a~™ < (22a71)? and
MI+1=Ng < M(l+17N[3)(m72) (vm c N>3),

NL,h m 2 NL,h
M Ns Z <j ) chHJq'%l+1||1,OO < M~Ns Z 22mcngJ§Ll+1”LOO

m=3 m=3

Ni.n
< (220171)3M7(l+17NB)M7Nﬁ Z amCBnM(l+lfNﬂ)(mf2)HJ%FH”LOO
m=3

< (22a71)3M7(l+17Nﬁ).
O

Proposition 4.1 can be proved by repeatedly using the inequalities of
Lemma 4.5.

Proof of Proposition 4.1. The proof is made by induction on l € {Ng+1,...,

Np + 1} Set Umax = max{|A\],|A\_1],|Uc|,|Us|}. The bi-anti-
symmetric kernel F5-"" (..} can be written as follows:
FQZNh+1((plaX17 0’17-/1;1)3 (p27x230-27m2)7 (7]173’1771’?}1)» (772a}’2,7'27y2))

:*hslrlzmazylzyaU(Al,,\,l)((Pl,xl,01)7(P2,X2702)7(771,}’177'1),(7727}’2,7'2))7
where Uy, a_,)(; -, ) is defined in (2.4). This implies that

3
||F22Nh+1H1,OO S iUmaxa (431)
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and thus by (4.13),

Np.n
MMy e MO HIEND RN T
m=1 be{free,tree}

23
< M~ Nog? COQUmaX < 1.

Hence, (4.14) holds for I = Ny, + 1.
Take any [ € {Ng+1,..., N} and assume that (4.14) holds true for all

le{l+1,...,N;, +1}. Note the following equalities:
FE'0) = FE @) + 1 [ I35 040 dit o ()
+Py / Ey @+ 0%) = 5 @ 4 0%) dpie (e, ) ()

+TEM (@) + Py / Ty W +4°) dpicy(we,) (V°)

Np.n
+7’1/ Z TP+ 0°) diey e, (4°), (4.32)
Fil(y) = F§l+1(zp) TEH (1)
Ni.n
+7’2/ Z T W+ 4°) ey (we,) (4°)- (4.33)
Since
PI/JQZNh+1(¢+wO) d/’fcl(wep)(wo)
1 —
=2 > (il Loy Ua)Ci(p000, p000) (wey) T prVprs
(p,x,0,x)EIL 1
)\ % $ - A A, J—
=25 3T (G0, 10) (wey )P g, g, — Cu(X10, D20) (wey )5, 1y
ZG[O,ﬁ)h

—Ci (X0, 010)(wep) P 5, by, + Ci(X20, 20) (wep) 5, by, )
A L — P _
2 YT (GO0, 210)(wep) by, g, — Cu(D10, Xo0) (wey )iy, g
z€[0,8)n
—Cl(j)g(), .)210) (wep)ayﬂw/\;?x + Cl()720, .)220) (wep)aﬁlxlﬁ/\?m)’
the Eq. (4.32), coupled with (4.12), leads to
1F e < IEE o (M~ M)
+2%co| By = Iy N e + | T
Nr.n '

+ > 7% I . (4.34)

=3

coll 5 11,00
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By the induction hypothesis we can apply (4.26), (4.29) to derive the following
from (4.33):

>I >N+l >4l >Np+1 >i41
1" =I5 o < FET =I5 oo + 175 oo

Nr.n j 2
j—2 >l+1
+3(3) @
j=3

S ||F2Zl+1 _ J22Nh+1

|1,oo

|1,oo
+276062MN[3 (260471)2M7(l+17Nﬁ)
+062MNB (22a—1)3M—(l+1—N5)

Np,

< (279220 + g A(Pa )M Ne 3 MO
=l

< 27460—2(26(171)2MN/3 M—H1=Ng), (4.35)

where we have also used that M (M — 1)~! < 2. Similarly, we have
||F22l+1 _ JQZNh+1||l,OO S 2_400_2(26a_1)2MNBM_(Z+2_N/3). (436)
Then, by inserting (4.26), (4.29) and (4.36) into (4.34),

IFZ 100 < IFZ " 1100 + Umaxco (MI=Ne + Mo~
+272¢5 1 (2812 M N pp— (1427 Ns)
+2 3¢5 (2% )2 M Ne (L= Ns)
+27 45 (200 )2 M Ne pp (1= Ns)
+egt(22a )3 M N U+ 1= Ns)
< NFZ* Y100 + OUmmaco (M= 4 2rNa 1)
—|—271061(26a*1)2MNﬁM*(Z+1*Nﬁ)

Np
+ MMy 427 e N (2002 M Ne Z M~ (G+1-Ng)
j=l
< 36Unmaxco + cp H (28071 )2MNe pp— (1 =Na), (4.37)

It follows from (4.26) and (4.37) that

M~Naco Y gl
be{free,tree}

< 36Umaxacg M N0 + 21207 1M~ HI=N6) 4 9971 == Ns)
< 36Umaxaca M N 421207\ 2 4 2% T ML, (4.38)
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Moreover, using (4.27), (4.28), (4.31), (4.35) and (4.37),

Np,n
M*NB Z amc$M(l7Nﬁ)(m72) Z ||Jbz,»rln 100
m=1 be{free,tree}
< M~ NracgM™ N | FE 1 oo + MY 0G| 5 1,00
Np,h
_’_M—Ng Z amCBnM(l_NB)(m_2)||Fn21l||1,oo
m=3
Nr.n
+M—N5 Z O[ngLM(l_NB)(m_Q)”T%l 100
m=1

S 36UmaxanM7l 4 212071M2N572l71 + 28MN57Z71
3
5 Unaxa®c M~ +2TM 4 2%~ M
< Waxa?cEMNs 4227073 1 2802 4 2T MY 4 28T M2 (4.39)

One can check that the right-hand sides of (4.38) and (4.39) are less than 1
under the assumption (4.13) and conclude the proof. O

4.4. An Upper Bound on the Final Integration

Later in this subsection we will see that (4.1) is equal to the multi-contour
integral of 8J02Nﬁ/8)\a|()\17>_1):(0,0) (a = 1,-1) if the coupling constants
U., U, obey the sufficient condition for Proposition 4.1 to hold. Keeping
this fact in mind, let us try to find an h-,L-independent upper bound on
|8JOZNB /OAal(x1,A_1)=(0,0)| using the results obtained in the previous subsec-
tion. This will enable us to bound (4.1), too. We need the following lemma:

Lemma 4.6. Assume (4.13). For any b € {free,tree}, m’ € {0,...,Np},
Xm' ym e IZ‘;L andl € {Ng+1,...,Np} the following inequalities hold:

Nr.n

>

m=0

aT!
>l+1 m’ m’
8me%’ (X aY ) 1
< Lot B2 (m/N)2(22 Aco)™ 280 M~ (=M)A. (VA € [2*, MIH1-No)).

(ACQ)m

(4.40)
ajdzé\[ﬁ / ’
3 ’ < B2 ()2 (2e0)™ . (4.41)
>Ng+1 / N
de{free,tree} 8Jl;m’ﬁ (Xm , Y™ )
pag 07!,

(Aco)™ < h=2™ (m/1)2(22 Aco)™

> >

m=0 de{free,tree}

DI (X Y ||
(4.42)

(VA € [24, MUH1=Na]),
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m=0 8Fﬁ21l+1(Xm’Ym) 1
< hTER (R ((MN 4 MY g + Aco)™
(VXm,Ym (S Izrfh with an C ((‘XAl) 8)7 (225 S))7YAvm - (()}17 5)7 (5)27 S))

m!(Aco)™

for some s € [0,8)n, VA > 0). (4.43)
NL h 8F>Nh+1
72 Z m!(Aco)™ < 2(Aco)?  (Ya € {1,-1}). (4.44)
1

Proof. Proof of (4.40): By Lemma 4.4 and the inequality that 273 A(273A —
=<2,

Nr.n
- oTZ!
Z >I+1 , (Aco)™
an m’ (Xm Ym)
— Nr.n
<1 />1h 2m/’ ( m ZM I(n—1) H Z 2577chgn'7||‘]r%l‘+1| oo
mjzl
i) mytm’ —n+1
Z (2—3A>m
m=0
< Lprs1h ™2 (m'1)22(22 Aco)™
0o Np n n-1
Do 2PATMY T 2m AT s : (4.45)
n=2 m=1
By Proposition 4.1 and the assumption that A < M*1=Ns we have
Nrn
23A—1M—l Z 22mAngIHJELl+1”LOO _ 23A—1M—(l—Ng)
m=1
Nr,n
22 NﬁAC ||J>l+1||1,oo +A2M7
m=2
< 2PATTM N (2407t £ 24 4%072) = M NS (1 4 22407 )20 L
(4.46)

By giving (4.46) back to (4.45) and remarking that M —(=Ns)(1 4 22
Aa~t) <1and 1+224a~! < 24, we obtain

Nr,n 8T>l
Z >1+1 m’ m’ (Aco)m
DT (X X ||
< s h ™2™ (m!1)2(22 Acg)™ M~ (- Ns) 22AZ 2°a 11

n=2

which gives the bound (4.40).
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Proof of (4.41): By Lemma 4.4 and (4.30),

oty <1 />1h72m'(m1!)2(2500)m'i(QGafl)nfl
aJEﬁ?“(Xm@Ym’) - b’
< Lprs1h ™2™ (m/1)?(20¢0)™ 270t (4.47)

Let us characterize the derivative of F2!(3)) with respect to Jb> f;f Lxm

Y™, as it will be useful in the rest of the proof of (4.41) as well as in the
proofs of (4.42), (4.43). If m < m/,

OFZ! (1) > /

— h—2m (h2m—2m (m/!)21 1 ,

>1+1 XmCcXm rymcym
an m/’ (Xm Ym ) X"n7Y7n€II7jL,h

)Xm’\Xm (¢O)Ym’\Ym dpic, (we,) (T/’O)) () xm () ym,

0

.€X”L,X7n,,Y7"’,Ym/ /(@

where the factor exm xm’ ym ym' € {1,—1} depends only on Xm, Xm' ym,
Y™ . This equality and (4.3) imply that

OF=!
>l+1 m’ m’
Ty (X' Y™) )
m —0
< h? Z Z ‘/(¢ )Xrn/\xm (¢0)Ym/\ym ducl(wep)(wo) .
Xmerp, Ymerp,
x'mcxm/ Ynzcyﬁﬂ
(4.48)
By using (4.11) one can derive from (4.48) that
oF; N ,
< p2m (m/ ')20m ,
DIy X Y ’

which, coupled with (4.47), yields the bound (4.41).
Proof of (4.42): By using (4.48) and the inequality that

m’ m 2 ,
> ( m ) < (I=o + Lmr21271)27™,

m=0
Np.n
) F>l
Z > 18 (Aco)™
AT (X Y™ ) ||

m’

o)
< B2 (/)2 (Aco)™ mf:( )

< (Lo + L1227 HA™2™ (m/1)2(22 Aco)™ . (4.49)
By combining (4.49) with (4.40) one can obtain (4.42).

ACO
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Proof of (4.43): By applying (4.12) to (4.48) we have

N
L.,h 8FZZ
m |l pl(Aco)™
mzzo OF; X Y ||
m AN 2
=21 (5 1)2 m A [N l—Np, Ng—1 m—m m
< h7#(m!) Z (m) (m —m)Im!I(M*'=™" + M7 )eg) (Aco)

m=0
= B2 ()3 (M Nr 4 Moo + Aco)™.
Proof of (4.44): The claimed inequality follows from (4.3) and the equality

OFZMH(y) ! Bo¥
o = leeagy 2 (LB Pra s
a z€[0,8)n
Hlam 105, 05,0V 20V o)
O

Corollary 4.7. Assume (4.13). Take any | € {Nga,...,Np}, d € {free, tree},
m € {0,1,...,Npp} and X", Y™ € I, Moreover, assume that m = 0 if
I = Ng. The following statements hold true:
(i) J;fn(Xm,Y’”) is analytic with respect to the independent variables
Jbzyrl;?l(me Ym/) (be {free,tree}, m' €{0,...,Np p}, xXm' ym'e (IL}h);"/)
in the domain characterized by (4.14) for 1 + 1.
(ii) The function (A, A_1,Uc,Us,w) — J;L(X’”,Y”L) is analytic in the
domain
{()\1) )‘717 UCa anw) € (C5| |>\1‘a |)\71|7 |UC‘7 |Uo|

<27 ey ?MNe w € DL, (4.50)

Remark 4.8. Since the inequality (4.14) for [ + 1 is independent of JbZOH'1
(b € {free, tree}), the claim (i) implies that J dzﬂln(Xm,Ym) is entirely analytic
with respect to the variables JESH (b € {free, tree}).

Proof of Corollary 4.7. The inequalities (4.41), (4.42) imply the claim (i). It
is trivial that (A, A_1,Ue, Uy, w) — JE,I,Y,"H(X”“',YW) is analytic in (4.50)
for all b € {free,tree}, m’ € {0,...,Np}, xm' ym e Iz’f;L. Then the
analyticity of JdZ’fn(Xm,Ym) with respect to (A1, A_1,U.,U,) follows from
the claim (i), Proposition 4.1 and the analyticity of composition of analytic
functions. Assume that for some I’ € {l,..., Ny}, Jff,;frl(Xm/,Ym/) (b e
{free, tree},m’ € {0,..., Ny}, X™ Y™ € Izl;l) are analytic with respect
to w € D%. For any ¢ € {0,...,Np}, X9,Y? € Iz,h the analyticity of
qul/ (X4,Y9), Tn%g (X7, Y7) (n € N>j) is clear since these consist of finite sums
and products of Jrff/H(Xml,Y’”/) and Cp(we,), which are analytic in Di,.
Moreover, the proof of the inequality (4.26) shows that Ziﬁ T%f; (X?,Y9)
converges to qul/(Xq, Y 9) uniformly with respect to w € Dy as j — oo. This



1502 Y. Kashima Ann. Henri Poincaré

implies that T>ll(Xq,Yq) is analytic in D%. Thus, the induction concludes
that w — J=' (X™ Y™) is analytic in Di,. O

dm

Proposition 4.9. Assume (4.13). The following inequality holds for any a €
{1, -1} and (M1, _1,Uc,Us,w) contained in the domain (4.50):

>N
0Jy " < 9122
ﬂ Mg | = 0
Proof. Let us assume that a = 1. The proof for a = —1 is essentially the same.

By Corollary 4.7 we can apply the chain rule to derive the following:

aJ>Nﬁ Nh+1 Np.n
ﬁ oM 5 H Z Z Z L, =0
I=Ng \mu=0be{freetree} X™i Y™ (I )0"
>Np+1 (X7Nnt1 YN, )
bNj, +1,M Ny, +1 ’
oM
Ny, an ' (Xm] YmJ)
X H >j+1 m.; mai
=N, an_j+1,m]'+1(X it Y J+1)
Np+1
= Y Cl), (451)
I=Ng
where

Nh+1 Nr.n

Sy x0x

I=Ng \mi=00b,&{free,tree} X™1 Y™ (I, )0

'1mN;3 :Olb[:free(Vle{i,i+l ..... Np+1}),b;_ =tree

>Np+1 >j
an_NhilamN}L+1(XmNh+l’YmNh+1) a0 8J ’ (ij Y™i)
o\ ZJ+1 mii1 mis1) |
! Jj=Npg a']bj+1;mj+1(X Y

Let us decompose EN"H Cr(l) into Zl{vﬁj\tl r() and ZZJVh;1+2 r()
=Ng
and estimate each part separately. In the following calculation we use the
equality (4.2) repeatedly. By using (4.41), (4.43), (4.44) in this order,

Npt+1l [N QFZNnt (XM, +1 ymay+1)

1 MNy, +1
-5 I (X X o

I=Ng+1 \mu=0xm Yy™mie(Ir,n)o!

'13936[0’5)}173”75682 st X Nptl :((/\:‘V(l)vw)7(‘;€u(2) aI))vaNh’+1 :((3}5(1)753)7(:)}5(2)71))
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Nh (
Jj=Ng+1

>

de{free,tree}
Np+1l [N QFZNn A1 (XM +1 YN, +1)

IR DYEEDS 0

lNﬁ+1 m=0Xm, Y™ e(In,n)o

OF 21 (X, Y™s)
8F>]+1(Xm +1 Y’I’TLJ+1)

mj41

Ixmj cxmitt ymicy™i+ >

8J>N[3

8F>Nﬁ+1 (XmNﬁ+1 YmNﬁ-H)

MNg+1

'13I€[0,ﬂ)h73m£€§2 st XN =((X, (1),2) (X (2),2)), Y " Nt =((Ve(1),2),(Ve(2),7))

ﬁ ( aFZJ' (X3 Y™ )

Togms sy s s
8F>J+1(Xm +1,Y+1) XTI XL YT CY T

j:Nﬁ+1 mj+1

B g )2(2)
B oA\

mNh+1=0XmNh+1’YmN,L+1 eUr.n)e MNp+1
N, MNp +1
'h_QmNh+1<mNh+1!)3 Z (Ml_N’L +MN5—Z)CO+25CO
l=Ng+1
2
Ny,
<2 > MV MY Theg + 20 (4.52)
l:NﬁJrl

By applying (4.41), (4.42), (4.40), (4.43), (4.44) in this order and recalling
the condition (4.13) we observe that

8F>Nh+1(XmNh+1 YmNh+1)

MNy, +1
oM

= Ng+2 1=i—1 \"u=0xXm1 Y™ie(Iy n)ot

1 om0 Yo
8Fn>1]31'1(xm +1 Y™+ 8F%§(me,me)

Jj= =
'h72m[71(m[_ !)2(22([7271\[‘3)2560)"74[’1
8F>Nh+1(XmNh+1 YmNh+1)

Np+1 Nh +1 NL,h
MN, +1
oA

ZHZZ

i= N5+2 = =0 Xm1 Y™ie(In )0t
8F>1(Xm9‘ ym)
6F>J+1(Xm]+1 Ym3+1)

mMj+1

Np,

1
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.h—zm[(mi!)2(22(i—1—Nﬁ)2560)m5213a—1M—(i—1—N5)22([—2—Nﬁ)
2

Np+1 Ny, ) A
<2 Z Z(MliNh + MV ey 4 2201 Ns) 90 ) (2201 Ns,
i=Ng+2 \1=i
(4.53)
Finally, by putting (4.51),(4.52), (4.53) together,
1]aJ5N
B O\
2
Np+1 Ny, ) A
<2 Z Z(MliNh + Moy 4 22U=1=Ns) 90 | (22011 Ns
[=Ng+1 \ 1=l
Np+1 )
< 2(4cg + 2°¢o)? Z (261~ 1)i=1=Ns
[=Ng+1
!
<2(4+42°)%¢ (1 - 4)
< 2.
U

Here we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume that M = max{78E2_ 2%} and a = 219M?2.
Then, if |A1|, [A_1], |Ue|, |Us| < 27%a~2¢5 > M™N#, the condition (4.13) holds.

By Lemma 2.3 (i), for any sufficiently large h € 2N/ there exists a
domain O, C C containing the interval [-2"%a"2c; 2 MNe, 274a2¢; 2 MNo]
inside such that (Ue, U,) + (9/0X)log([ eV» ™) dpuc(1h))|r=o is analytic in
O x Oy, Let us fix such a large h € 2N/g.

By the construction of G(?Nﬂ and JOZNB and Corollary 4.7 (ii) there exists
Usman > 0 such that J5 % = G5 holds and (A, A_1, Ue, Uo, w) — J5 % is
analytic in D! .., X D%. In order to indicate the dependency on the variable
w, let us write J3 ¢ (we,), Gg® (we,) instead of J;*, Gg ™. Then for any

n € N with 27n/L + F; 5(8/72) < R and (A, A_1,Ue, Us) € D

small?
n

ae{l,—1} j=1

2ma/L
L 1 1
R dea JP— d y———————
o / br 7{ 0T (s — 04)2
0 |wa,j—0a,5|=F,6(8/m2)/n

0 >N - 0 >N -
G0 | 2ommae |~ g | 2 wesen | | =0
a ]:1 a le
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On the other hand, Corollary 4.7 (ii) implies that

o) > 1]

ac{l,—1}j=1
2ma/L

L 1 1
i = 0, . — dw, oo
o / 3 o f{ Y9 (s — 0o 1)
0

[wa,j=0a,1=F¢,5(8/7%)/n

A1=A_1=0

0 .>N;
8)\ ——J; ;wajep

is analytic in {(Ue,U,) € C? | |Uel,|Us| < 27%a~2¢c;?M™No}. Therefore, by
Lemma 2.4 (iii), the identity theorem for analytic functions ensures that

<L (e (Zuatsopm, sz en) _ 1))
2w

L[ )

A=0
a€e{l,—1} j=1
27a/L
L 1 1
- L/n deaj‘gi 7{ dwaj44444444447
o 7o Y (wWe,j — bq,5)?
0 |wa,j—0a,;|=F¢,8(8/72)/n

.68)\ Jge waep (4.54)

for all U.,U, € R with |Ue|,|Us| < 27%a"2c;?MNs. Then using Proposi-
tion 4.9 and n™ < nle™ we can estimate (4.54) as follows:

A1=A_1=0

L (ei%w23:1<é<&j>fcr§<+j>yj>,ep> _ 1)
2w

0
. %51% (/ Vo () duc(iﬁ)

Note that the inequality (4.55) for n = 0 can be derived in the same way. By
Lemma 2.3 (ii) we can send h — oo in (4.55) so that

< 2BcZnle F p(8/m) "

A=0
(4.55)

L (20052 (5(6,)%,—5(3)9,) e ! * )%
o (e (32, (5(65)%;—3(7)F3)vep) _ 1) (6% 0%, by, + hc)]

< 2BcZnle Fi p(8/mH) 7", (4.56)
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As we have fixed the parameters arbitrarily in the beginning of Sect. 4.2, we
can claim (4.56) for all n € NU {0}, p € {1,2}, U.,U, € R with |U,|, |U,| <
2*4a*2ca2MNﬁ and sufficiently large L € N.

Set

2 2
f1(Bax) =20 (ma’j{c’l}Mg) , fo(Bmax) == 2" (MMQ) :

By noting (3.2) and (4.9) we can confirm that
f1(Bmax) max{1, 31018 > 2402 A M N0 fo(Epax) max{1, 816} = 214¢2,

f1(Emax), f2(Emax) are non-decreasing with respect to Emax € R>p and
f1(Bmax) = (Er%ax) f2(Brmax) = O(‘EI?‘;lGaX) as Epax — 00.

It is straightforward to derive the following inequality from (4.56):
|<¢}1¢}2%}2%}1 + hc >L| < f2(Emax) max{l,ﬂw}

L2T(E 1 (3(5)%; —3(7)9).ep) /L
27/L

2

1 816 p=1
. (max{l,tQ}maX{ﬂ, B2} - 1)

for any Ue,U, € R with [Uc|, [Us| < (f1(Emax) maX{LﬁlG}ﬁ)_l and suffi-
ciently large L € N. Finally by Lemma D.2 proved in Appendix D we can take
the limit L — oo and complete the proof. O

—1
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Appendix A. Derivation of the Covariance

In this part of Appendix we derive the representation of the covariance (2.1),
(2.2). Define the 3 x 3 matrix My, = (M7 (p,n))1<pn<s (k = (k1,k2) €
I“teRoe{l,l})b

e t1+e ) f(14 e )
M7y = | t(1+ ) €7 0
t(1 + e'k2) 0 €7

We see that

Hy = Z Z Z b=y k) gk(pa ﬁ)wzxolﬁnya-

6(/Elx; (3'% ) oe{T, l} kel
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ForkeT* teR,o0€{T,|} and p € {2,3} set

o _Je itk=(mm)inT*ort=0,
AT (t, k) == {60 otherwise,
k)

o

(A1)

e ifk=(mm)inT*ort=0,
L(eZ+€)+ (—1)P%\/t%(eg —€Z2)?+ 82?:1(1 + coskj) otherwise.
Recall (3.6), i.e., E(t,k) = 2t? Z?zl(l +cosk;) (t € R,k € T'™), and define

the 3 x 3 matrix U7y, = U7y (p,m))1<pn<s by Uy (p,n) := 0,y if k = (7, 7) in
I'*ort=0,

0 A7 (t.k)—ed AZ (tk)—€g
_ (A3 (tk)—eg)?+E(t k)12 ((Ag(t.k)—eg)*>+E(tk))/2
Ue, = t(14e~F2) t(1+e'F1) t(14etk1)
tk E(tk)!/2 (A3 (tk)—eg)2+B(t k)2 ((Ag(t.k)—eg)*+E(tk))/2
—t(lfe ") t(1+e'*2) t(14et*2)

B(tk)!/? (A (tk)—e3)?+E(k)/? (A (tk)—e3)?+E(t,k))!/?

otherwise. One can check that /7, is unitary and

A7(LK) 0 0
(UF) MU = 0 A3 (t, k) 0 (A.2)
0 Af(t, k)

By using Uy let us define the matrix
Wi = (Wi(px0,1¥T)) (0 x.0).(n.y.m) e (128} xTx (1.1} DY

do.7 —i(x— 70 [N
Wilpxa,yT) == 3 D e YRy (o).
kel™*

One can also verify that (W W;)(pxo,nyT) = 1(,x,0)=(n,y,r)- With the matrix
W, define the operator G(W;) : Fy(L?({1,2,3} x ' x {1,1}))
— Fp(L*({1,2,3} x ' x {1,1})) by
GWy)Q :=Q,
G(Wt)w;1x101w;2x202 e w;nxnﬂng
= (Wtw*)plxlgl (Wt'l/)*)mxzag te (Wtw*)pnxnonQ
(TL eN, (pjaxj70—j) € {172,3} xI'x {T?l} (.7 = 17"'7”)),

and by linearity. Here the notation {2 represents the vacuum of Fy(L?({1,2,3}x
I'x<{1,1})) and (Wi)*) pxo := > Gy Wi(pxa,nyT)iy,. The opera-

E{l,Q,S}XFiT,l
tor G(W;) is unitary. By letting (W;t))xo denote 3 )
i} €{1,2,3)xTx (1.1}
Wi(pxo,nyT)ny-, we observe that G(W;)Ho¢p = HoG(W;)¢ for any ¢ €
Fp(L?({1,2,3} x T x {1,1})), where

1 ) _
Hoi= 3 3 25 3 YO o) (Wit e (Wit iy

E(IEIT)Z(?:]};,} oe{T,l} kel
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By using (A.2) we have

Y DX (R ) vt

pe{1.2,3) .yl o (1.1} ker

For (p,x,0,2), (n,y,7,y) € {1,2,3} x T'x {1, [} x [0, ) let

7 H —zH, 7 H —yH
w;xo(x) =e” prxcr ¢ o’ wnyr(y) =¥ Ownyfe Y O’

Twpxa( )wnyf( ) = nyw;xa(f)J’nyT(y) - 1ac<y1/~)ny7(y)7[1;xa($)-
The unitary property of G(W;) implies that

Clpxoz,nyTy) = > Wi(pxo, p'x'c" )W (nyT,n'y'r’)

(o' x" 0"y, (0" y", ")
e{l 2,3}xIx{1,l}

. ’I‘T( BHOT(wp x'o’ ( )12)77/}"7’(?/))) )

Tre—FHo

(A.3)

Since H, is diagonal with respect to p € {1,2,3}, the characterization of

Tr(e ﬂHOT(?ﬁ,’; wor @)y (y)))) Tre™ BHo can be carried out by a standard
argument. See, e.g., [10, Appendix B] for the derivation of the covariance
governed by a free Hamiltonian defined on Fy(L*(I" x {1,]})). As the result
we obtain

Te(e BT (% 1o (@) Dy (1)) _ Sy lorr Ze—i(x'fy”me(lfy)f‘gf/ (t.k)

—BH, L2
Tre ker=

. 1m2y _ 1a:<y
L4 PAT R AT

(A4)

Substituting (A.4) into (A.3) yields that for (p,x,0,z), (n,y,7,y) € {1,2,3} X
Ix AT, 1} x [075),

Z Z e —i{x—y.k) ,(x—y)AJ (t,k)

75{1 2,3} kel

Ly Lacy 770 (n ~N/C
’ (1_’_63,4%(;5’1() - 1+efﬁAg(t’k) ut,k(p7’7)ut,k(777’7)' (AB)

Clpxox,nyTy)

Moreover, by applying [10, Lemma C.3] to the right-hand side of (A.5) one
reaches the equality that for (p,x,0,2), (1,¥,7,y) € I,

Clpxox, nyTy)

_ doyr Z ot (x—y k) gi(z—y)w Z Uy (o MU (1, 77)

L Ziw/ht A2 (tk)/hy
/BL (k#U)GF*)(Mh "/6{1,2,3} h(l — € / 'y( )/ )
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We need to show that for any (k,w) € I'"" x My, p,n € {1,2,3}, t € R,
oce{l, 1}

Z Ut‘fk(p’ V)ng(nﬁ) ),

h(1 — e w/hHAZ (K7 =87,k w

(A.6)
v€{1,2,3}
where Bf (k,w) is written in (2.2). The equality (A.6) can be confirmed by
direct calculation. To assist the readers’ verification, we present some inter-
mediate results appearing in the calculation. The functions Of(-) : C?—-C
(je{1,...,5},0 €{1,1}) in (2.2) are in fact given as follows:

o\ 1 (€2 —€2)? !
_2;(%)%%2( I +E(t7k)> :

oo o

1 €7 —€7)? "
-2 (2n)th2n—1 <( ° 1 o) +E(t,k)>

n=1

6076600 1 (60760)2 n
c o c o E(t. k
5 z(%ﬂ)!h%( DR

oo

(€2 —€3)? !
Z 2n+1 |h2n ( 4 +E(t7k) ’

Z e 25 () pe (555

c — S —€ = n
070 = 58 z ()

B(t, k)™ ! (W)nm : (A7)

From (A.7) one can see that (2.3) holds.
First assume that k = (7, 7) in T* or ¢ = 0. In this case E(t,k) = 0 and
thus D7 (k,w) and Ny, (k,w) given in (2.2) are simplified as follows:

Do(k w) _ h2( o e—iw/h+e‘c’/h)(1 _ e—iw/h—i—eg/h)’
Nl 1(k w) = ( eiiw/hﬂg/h)v
sn(kw) =0 (V(p,n) € {1,2,33\{(1, )}).

By using these7 the equality (A.6) can be confirmed in this case.
Next consider the case that k # (7, ) in I'* and ¢ # 0. To organize the
calculation, set f(w, A) := h(1 — e~*/P*+4/h) Remark that for p € {2,3},

eI +eg

f(w,AZ(t,k))fh he™ w@t 2m

1/25 2n
=1 (@ =e)? S
.<Z(2n)!h2”<2< 2 +82(1+C°Skj)> )

n=0 j=1
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oo

1 t (€7 —e2)? : S
+(—1)/’§)(znﬂ)!h%+1 <2<( = ) —I-SZ(l—i—COSkj)) ) )

Jj=1

Fw, AZ (£ K)) (@, A5 (1K) = D7 (k,w),
(AF(K) — ) + B(LK) (A (1K) — €2)? + B(L,K)
=4E(t,k)* + E(t,k)(eZ — 7).
By using these equalities we observe that
(The left-hand side of (A.6) for (p,n) = (1,1))
= (f(w, AZ(t,%))(AZ (t. k) — €2)* (A5 (t. k) — €7)* + E(t. k))
Tl AF (LK) (A (K) — €)2((AF (1K) — €)% + E(£,K)))
/(4E(t,k)* + E(t,k)(e] - €7)*)D7 (k,w))
(4B, k)? + E(t,k)(e7 — €2)*)NT, (k,w)
(4E(t,k)? + E(t,k)(e7 — €2)?)D? (k,w)
=B, (kw),
(The left-hand side of (A.6) for (p,n) = (1,2))
= t(1+e™)(f(w, AZ(£,X))(AZ (1, k) — ) (A3 (1, k) — €7)* + B(t, k)
+f(w, AZ (1K) (AF (1. k) — €7) (A3 (1, k) — €7)* + E(t, k)))
/(4B (t, %) + B(t. k) (e — €7)*)D7 (k, w))
~ (4E(, k)? + E(t,k)(e7 — €7)*)NT 5 (k,w)
 (4E(t, k)% + E(t,k)(e5 — €9)2)D (k,w)
= Bf,Q(k’ w),
(The left-hand side of (A.6) for (p,n) = (2,2))

= m + 2t*(1 + cos k1)
-1 2 1
| (E(uk)fw,Aaf(t,k)) L -y +E(t7k))f(w7A§»’(t,k))) |
(A8)
Note that
> 1
B, A" LK) +;2 (A7(t,K) — e3)2 + B(1, K)) f(w, A2 (£, K))

-1
- B(t.k)f(w, A7 (t,k))

oo n
_igyqslted 1 (2 —€3)*
+<hhe Wt Z i ( . + E(t, k)
n=0

o _ g

1
2 nX::o (2n +1)lh2n
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4

o0
i e +e
= <ehw+ “on "

(S i) (5557

n=0

: <(€g€g)2 + E(t k))n)/(E(t k)D?(t,k))

(o2 o
__fc "% 21
—h*e” T |y wYT

(i ((%)!2%2 + 2(2n€i;)!ei2nl> ((Gg _4€g)2 + E(t’m)n

n=0

—th%fS»/(E(t, k) f(w, A7 (£, K))D° (1, K))

= (;e—%w"‘%; + %e—ﬁw“‘éc . + (e” fwrsifes _|_ e—fw‘*‘éc e )09 (k)
et G e 0 g 1)
-/ (fw, AT (t,k))D? (¢, k)). (A.9)

By inserting (A.9) into (A.8) we obtain (A.6) for (p,n) = (2, 2). Moreover,
by using (A.9),
(The left-hand side of (A.6) for (p,n) = (2,3)) = t2(1 + e~ 1) (1 + e'*2)
1
E(t, )f( A" t,k)) +Z 7(t,k) —€g)? + E(t,k)) f(w, A7 (1, k))

_ N2,3(kvw)

flw, A7 (t,%))D (8, k)
= Bg,?)(kv (.4)).

n) = (1,1),(1,2),(2,2),(2,3) and symmetries,
3,1),(3,2),(3,3) can be immediately proved.
(2.2) have been derived.

By using the results for (p

(
(A.6) for (p,n) = (1, )(,}

Thus, the representations (2

)’(
)

Appendix B. Convergence of the Grassmann Integral
Formulation

In this section we sketch how to prove Lemma 2.3. With a parameter A € C
let us introduce the modified Hamiltonian Hy by

H, .= H + A(¢}1¢:€2¢3}2L/)3}1 =+ hC)
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It follows that

Hy=H,+ Z Uiany (X1, Xo, Y1, Yo )by by, Uy, Uy,

X1,X2,Y1,Yn
€{1,2,3}xTx {T,1}

where Uy ») is introduced in (2.4). The partition function Tre~#Hx / Tre=#Ho
can be expanded as a perturbation series by straightforwardly following [10,
Appendix B].

Tre AHx =1

T = 1T
Tre—FAHo * n!

n=1 m

( Xom—1,X2m Y2m—1,Y2m
€{1,2,3}xI'x{T,l}

dsam—1U 2 (Xom—1, Xom, Yam—1, Yzm)>

Tt —x L

-det(C(Xpsp, Yy8¢))1<p.g<an (B.1)

Let the function P(\, U, U,) (: C3 — C) be defined by the right-hand
side of (B.1). Moreover, by replacing the integral over [0, 3) in the right-hand
side of (B.1) by the Riemann sum we can define the discrete analogue of P.

LM U, Uo) o= 1+ Zl n.H
1
( Z E Z U()\’)\)(XQm17X2m7Y2m17Y2m)>
Xom—1:X2m:Yom—1-Y2m  s3,,_1€[0,0)n

€{1,2,3} xI'x{T,l}

~det(C(Xpsp, Yg8q))1<p,g<2n spj=saj_1
Vie{l,...,n}

The function P, uniformly converges to P in the following sense. For any
U >0,

lim sup | PN\, U, Uy) — PN, U, Uy)| = 0. (B.2)
(N, Uc,Ug)€C3

INL UGl Ul <U

To prove the convergence property (B.2) we need to use the determinant bound
of the following form:

| det(CppXpopep, 19 aTqYq) 1<p.a<n| < C1(L) - C2(L)", (B.3)

where the constants Cy(L), C2(L) > 0 may depend on L, but are indepen-
dent of n and how to choose (pp,Xp,0p, Tp)s (Np, ¥p, Tpr Yp) € {1,2,3} x T’ x
{1,1}x][0,8) (p=1,...,n). The bound (B.3) can be verified as follows: we can
choose the operators Ay, Ag, ..., Ay, from {e®rHoy* e~ mrHo eupHoy, o
e"vrHoln | so that

PpXpTp
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| det(C(ppXp0pTp, NgY qTq¥q))1<p.q<n| = | Tr(e*ﬁHOAlAg .. Agn)|/Tr e~ BHo

2

o2 (eﬁHHbH)2n+1
~ TreAHo ’

where ||Hpl|| denotes the operator norm of Hy.

Let us recall that in [11, Lemma 3.4] Pedra—Salmhofer’s determinant
bound [13, Theorem 2.4] was applied to prove the essentially same statements
as Lemma 2.3. Though we do not have a volume-independent determinant
bound like [13, Theorem 2.4] on our covariance C at hand, the crude bound
(B.3) sufficiently works to show (B.2) in the argument parallel to the proof of
[11, Lemma 3.4].

The following equality directly follows from the definition of the Grass-
mann Gaussian integral and Pj,.

/eVM,A)(dJ) d#C(?/}) = Ph(/\v U., UO) (V()\, U., UO) € (Cg)- (B'4)

Since inf(\ v, v.)ers, A |v. ) |uo < P(A, Ue,Us) > 0, the uniform convergence
property (B.2) and the equality (B.4) ensure the claim (i) of Lemma 2.3.

By using [10, Lemma 2.3] and (B.2) we have for any U, U, € R and
6 >0,

<1/1A?11/J;32¢3";21/15;1 +hc), = —BalogP()\, U, Uy,) .
L L[ P
B ﬂp(ovUCan) 21 )\2
IA]=5

1 . 1 1 P\, Ue, Uy)
=—= Jlim S %’dX4444447

B st Pn(0,U, U,) 2mi A2

BYE)

1 . 0
= —— lim 710gPh(Aa UC7UO) (B5)

ﬂ hhaoo 8)\

€2N/B =0

Substituting (B.4) into the right-hand side of (B.5) yields the claim (ii) of
Lemma 2.3.

Appendix C. Logarithm of Grassmann Polynomials

The aim of this section is to extend the notion of logarithm of Grassmann
polynomials summarized in [6] to be available for Grassmann polynomials with
complex constant terms. In the following let fy, g9 € C denote the constant
term of f,g € AV, respectively:

Definition C.1. For f € AV with Re fy > 0, log f € AV is defined by
2NL'h

B n—1 _ n
log f := log(fo) + Z ( 171 (f fofo> ,

where log z :=log |z| + i Arg z, Argz € (—n/2,7/2) for z € C with Rez > 0.

n=1
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Recall that for f € AV, e/ € AV is defined by
2Np n

1 n

ef = er ZO E('f — fo) . (Cl)

It was proved in [6, Problem 1.2] that for any f,g € AV satisfying fg = gf,
ef o9 =e9.ef =eft9, (C.2)

The following equality was also shown in [6, Problem 1.4 b)]. For any f € AV
with fo € Ry,

elosf = f. (C.3)
The multi-scale analysis in this paper needs an extension of (C.3).
Lemma C.2. For any f € \V with Re fy € Rsq, e°8f = f.
Proof. Take f € AV with Re fy > 0. Since log(|fo]?) = log(fo) + log(fo),

2NL,h - n
_ (=1t L f = 2 _
el 1) =los(o") + 3 A (BRI ) <o) .
n=1
(C4)
It follows from (C.3) that
elos(fof) = 7. ¢, (C.5)
By using (C.2), (C.4) and (C.5) we observe that
__ _ _ __ 1
elosf — g—log(fo)+log(fo-f) — o—log(fo) . glog(fo-f) — — . fo-f=1
Jo
O

Appendix D. Existence of the Thermodynamic Limit

Here we show that the correlation function (1/1} UJ} Yy, ¥y, + h.c), converges
1 2

to a finite value as L — oo if |U|, |U,| are smaller than certain value. The
idea of the proof is similar to [11, Appendix B] and based on the perturbative
expansion of logarithm of the Grassmann Gaussian integral. We also use the
following lemma:

Lemma D.1. (1) For any (paxaaa l‘), (777y7T7 y) € {L 273}X22X{T3 L}X [075)
with © # vy,
C(Emax76)
L X () ety /i -1

where the constant ¢(Emax, 5) > 0 depends only on Eyax and (.

(ii) For any (p,x,0,2), (n,y,7,y) € {1,2,3} x Z* x {1, 1} x [0, 8),
limy o0, nen C(pxox, nyTyY) exists.

IC(pxox,nyTy)| < 3
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Proof. (i): Take any (p,x,0,x), (1,y,7,y) € {1,2,3} x Z* x {1, |} x [0, ). By
using the notations introduced in Appendix A, set

9r,(p,o,x),(n,7,y) (k) = 60,7’ Z e(mfy)A,‘;(t,k)

v€e{1,2,3}
(e — T ) G Uk )
1+65Ag(t7k) 1+e_gAg(t7k) £, \0s V) U k11,7 )
By (A5)a C(PXfffa??yTy) = %Zker* eii<X7y’k>gL,(p,a,w),(n,T,y)(k)' Since

|ugk(p77)|7 |ugk(7777)| < 13 |gL,(p,0',J;),(77,T,y)(k)| < 3. This 1mphes that
IC(pxow,nyTy)| < 3.

Let us additionally assume that x # y. In this case we can expand
9L, (p,oa),(n,my) (K) as a sum over 7(2Z + 1)/ so that

Clpxox,nyTy) e_i<x_3'7k>ei(x_y)“3;’;° (k,w),

keF* wen(2Z+1)/8

where

Z uta,k(Pa 7>ng<77a )

Boy (k,w) = iw — AJ(t,k)

v€{1,2,3}

We can see from (A.6) that Bf2°(k,w) = limy .o neanys By, (k,w). Thus by
setting

g,00 . 1 ag (o8 2 1 ag ag 2
D7 (k,w) := <zw— 5 (€ —|—eo)) - (€ —€g)? =2t (1 +cosk;),

j=1

it follows from (2.2) that for any k = (k1,k2) € I and w € 7(2Z + 1) /0,

00 iw— €9 .00 t(1 + etkr)
k — 9 k Sl
Birtew) = poscwy Bz 0w) = posie sy
Bi,go(k’w) = 81,2 ((kQakl)vw)v
o 7,00 .00 1 2t2(1 + cos k
B (k) = B (—k,w), B (k) = ( )

iw—€2  (iw—€g)D">®(k,w)’
t2(1+efik‘1)(1+eik‘2)
3 8 T D7 (k, w)
B3y (k,w) = Bys(—k,w), B3 (k,w) = By5" ((k2, k1), w).

s BET(k,w) = By (—(k2, k1), w),

Periodicity with respect to k € I'* guarantees that for p € {1, 2},
L/ ;on ?
()

2m
Z Z e—i(x—y,k)ei(m—y)w

kel* wen(22+1)/8

ﬂLQ
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L 9 3 3
. H % / daj (ak'p> BZ:;O k+20jep,w . (Dl)
0 j=1

Note that for any k € R?, w € 7(2Z + 1)/,
|D?>°(k,w)| > max{|Re D> (k,w)|, | Im D> (k,w)|}
1
> max{w? — 7€, |w(e +€7)|} > §w2. (D.2)

By using (D.2) we can estimate the equality (D.1) and deduce that

L - 270 3
_ Zﬁ("*)’:ep) _
G )| [Clpxow,nyTy)|
1 c(Emax, B
S =y Z (72) S C(Emaxaﬁ)' (D3)

wen(2Z2+1)/8
By coupling (D.3) with the bound |C(pxox, nyTy)| < 3 we obtain the inequal-
ity in (i).
(11) Note that for any (p7 X, 0, (E)7 (777 Y, T, y) € {17 2, 3} xI'x {T7 l} x [Oa /8)7

1 -
C(pXO’J), 77}’7'?4) = (2’/T)2 / dpl / dp2.gL,(p,x,U,:L’),(n,y,‘r,y) (plapQ)v

[—m,m) [—m,m)

where g1, (p.x.c.a).(n.y.r) (P1,D2) 1= € YO gp (o 0) (2 (B, ) with by €
{—-m,—7 +2n/L,...,m — 2n/L} satisfying that p;, € [k;,k; +2n/L) (j =
1,2). Since k = g1, (p.0.2),(n,7y)(K) is continuous in (—m,m)? by definition,
My, oo, LeN IL,(px,0.2),(n.y,my) (P) exists for any p € (—m,m)%. As we have
seen above, |91, (px,0.2),(ny,my) (P)| = 19L,(p,0.2),(n,my) (K)| < 3. Therefore, the
dominated convergence theorem concludes that

) 1 L
ng]go Clpxox,nyTy) = e / dp ngrolo GL,(px,0,2),(n,y,7) (P)-

LeN LeN
c [~m,m)2 N

O

Lemma D.2. Assume that U, U, € R and (4.13) holds with ¢ defined in (4.9).
Then, <w:21¢;22¢)72¢371 + h.c); converges to a finite value as L — oo (L € N).

Proof. Fix U.,U, € R with |U|,|U,| < 27%*a"2c;?MNe. Tt follows from
Lemma 2.3 (ii) and (4.54) for n = 0 that

(W5, V5,05, ¥y, The)p = -3 lim - >7

he2n/B qe{l,—1}

g (0)‘ .

0
OAg (A1,2-1)=(0,0)

Thus, it suffices to prove the convergence of

. . J >N,
Jim Jim ST g )

LeN he2nN/B qe{l,—1} a

. D.4
(A1,A-1)=(0,0) ( )
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In order to make clear the dependency on U., U, we write

0
O0Aq

) (U, Us)

(A1,2-1)=(0,0)
in place of (8/8)\,1)J()2Nﬁ(0)|()\17>\_1) (0,00 We can take ¢ > 0 such that

(14 )|Ue], (1 4+ ¢)|Us| < 27%a~2¢;>MNe. By Corollary 4.7 (ii) there is a
domain D, C C containing the disk {z € C | |z| €1+ ¢} inside such that

Z Z (0) (zUe, 2U,)
ety 9 (A1 A-1)=(0,0)

is analytic in D,. Thus,

> 38 7V (0)

a

(Ue, Uo)

ac{l,-1} (A1,A-1)=(0,0)
1 d\" 0 .>N;
=y = <dz> > e J5 7 (0) (2U., 2U,)
n=0 ac{l,—1} (A1,A-1)=(0,0) z=0
Moreover, by Proposition 4.9, for any n € NU {0},
1 /d\" 0 >N5
nl (dz) 2 gy © (U, 205)
ac{l,—1} (A1, _1)=(0,0) 2=0
1 —n—1 9 >Nﬁ
= 5. % dz -z Z o (0) (zUe, 2U,)
|z|=1+¢ ac{l,—1} (A1,A-1)=(0,0)

<2B3Bct(14¢)7"

Since (1+4¢)~™ is summable over NU {0}, the dominant convergence theorem
guarantees that (D.4) converges if

. . d " a >Ng
fm - lim (dz) 2 T @

LEN h in2N/8 ac{l,—1}

(2Ue, 2U,)
(A1,A-1)=(0,0)

05)

exists for all n € NU {0}.
Again by (4.54) for n = 0 we can write for any € R with |z| < 1+¢
that

> oo

ac{1,-1} ¢

(2Ue, zU,)
(>\1 »A—l):(ovo)

8 V
o (W)
= 5y lo8 (/e duc(w))

(2U., zU,), (D.6)
A=0
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which implies that

0 >n
S T () (0,0)
a€{1,—1} O (A1,A-1)=(0,0)

= _5(d‘3t(c(é€p0’ j)qo))lﬁp,tﬁ? + det(C(\)}p(), ')eqo))lﬁp-,qSZ)-

Thus, Lemma D.1 (ii) proves the existence of (D.5) for n = 0.
It follows from (D.6) that for any n € N,

1 /d\" 0 >N
nl (dz) 2. ol @ (2Uc, 2Uo)
’ ac{1,-1} ¢ (A1,A-1)=(0,0) 2=0
o 1 d n+1
= <<n+ 0] (m) o </ et d“cw)) )
’ z=0/ Ix=0
0
= apoTree(n + 1767 ‘/(A,)\))
A=0

Recall that Tyee(:, -, ) is defined in (4.7). In the expansion of PyTree(n + 1,C,
Vian)) we apply the operator [T, 17 (Agr(C) +Ar4(C)) first and then erase

the rest of Grassmann polynomials by the operator ez et Mat(T.6:8)q,r 8q,r(C)

By recalling the notation (4.18) we observe that

9

a)\ P(]Tree (TL + ]-7 Ca Vv(k,)\))

A=0

-y T

a€{l,-1} TE€ETn+1  z1€[0,8)n

n+1
H( Z (1p;=10c +1p,=2.300) Z 1(0{@;,7{,75):(T,¢,¢,T)

pi€{1,2,3} of.od.r{ 7
ey

=2

% 3 )

(x;,2;)€TX[0,8)n
2 2
H Z Z Z Cff,lr?cyzl{m}’b{lyr}(Ihxrmr)
{1,r}eLi(T) \k{1, =1l rp=1b1 3 €{1,-1}
n+1 2 2
o (x> ¥
9=2 {q,r}€L}(T) \k{qry=1liqry=1bgyy€{1,~1}

k{g.ry>liq,ry P0q,r
C{;,q?"}} ton }(quqvxrzr)> f(T,a, {k{q,’r}al{q,r}7b{qﬂ'}}{q,T}ETac)a

(D.7)
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where

kg1,ryslin,rysbia,ry
e () x0,)

Q

(X {17}931,prxr7'l{1 -y ) if a=1, by =1,

C(pA xral{1 }xr,yk{l o 1) if a=1, by1,y=—
(Vk {“}xhprerl{l 5 Zy) if a=-1, by =1,

( XTUZ{L,,,)J“T?X’C{LT} 1) if a= —1, b{l,r} = —1,

[

C

ktq,ryolia,rys0ea,r)
C{q,qr} o ! (XQ‘CEQ7 meT)

.: C(pqxqgg{q’r}xqverrTlT{q)T}xr) if b{‘]ﬂ“} =1
' C(prxro'}n{qm}xﬁpqquIZ(q,r}xq) if b{qu} =-1,
F(T, 0, {kq.ry Uairy biaary Haorter C>

= % / ds Z (T 6) ) u,v=1 Mat(T,€,8)u,0Du,v(C)
.[0’1]71 §€Sn+1( )

n+1
kiryslin ey bgn e
H C{ir}},a{ e }(ffl,Xriﬂr) H H
{1,r}eLi(T) a=2 {q,r}eLL(T)
kg.rysliqryb{a.r

.E{;T}} {a,r}»%{ }(qumxrxr)

—1 flA 1 1 flA flA 1 1
'(_la:1w.}2‘1z11/}?(2111/]3}2w1¢j)111 - 1a:71¢y1x1wymw;gﬂll/)/flm)
n+1 . .
' H(_wpsxsafwswpsxsagzswzsxs‘rfwsw;sxstsms) wi=0 s
s=2 Vi€{l,...,n+1}

ki1 ryslin, ey bgae
LY (g )

—1 .
_(a/aw.)?k{lm}zl)(a/awrrxrﬁ"{l r}xr) if a= ]-7 b{l,r} = ]-7
_(a/aaprxrof{l - Jw)(a/awi}k{l }901) if a= 1, b{l,r} = _17

e 1 ’ T .
7(8/81%}’“{1 S )(8/a¢rrxrﬂr{ 3 W) it a=-1, b{lv?"} =1,
_(a/aap,.xro’[{ ] (a/aka{l e ) if a= _1? b{l,T’} = _17

Eq.rysliarysbiq.ry
Loy i (xgag, X )

_(6/8E3)qxqag{ )(a/ wp,x ‘rl{ }xr,.) lf b{‘lﬂ'} = 1
0/ 0,07, =)0/

ququ }zq)

if by =—1.

By the translation invariance and the periodicity of C(pxox, nyTy) with respect
tox,y €T,
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%POTree(n +1,C, ‘/(/\,A))
A=0
n+1
Z H Z FL(LCl,XQQIJQ,...,Xn+1$n+1), (DS)
T1€[0 B)n 3=2 (xj,rj)el“x[o,ﬁ)h

where

n+1

Fp(x1,Xowa, ..., Xpy1Tn41) Z Z H

a€{l,-1} TET,, 1 j=2

( Y pmlUet1p0500) ) 1(0{ﬁ%ﬁfﬁg)—(T,l,l,T)>

pje{1’273} U{,o%,r{,q—g
e{1.1}

2 2
5ki1,rysli1,ry 50010y
11 DOEED DR DRt (v1,%2,)

{1,r}yeLi(T) \Fi1ry=1l{1,=1bg -y €{1,—-1}

n+1

2 2
. H H Z Z Z Cf;f;?’l{q‘r}’b{q’r}(qu,err)

q=2 {q,r}GL}I(T) kiqg.ry=1l{qry=1bgy ye{l,-1}

ST a{kiqry> gy bigrt Harrer: ©), (D.9)

5ki1,ryslen,rysbgn ey
e )

C(Prr 0y 00k, }xl’pTXTTl(l r} ) if a=1, bur =1,
ClorxXro] | T ik, Ok p21) i a=1, buyy=-1,
C(Mk s, T}OTk{l‘T}atl,pTxTTl{lﬂmT) if a=-1, by, =1,
C(prxrgl{l }xr,pk{l T}Oak{l T ) if a= -1, b{l,r} = —1.

Though we do not explicitly write for simplicity, we should remark that the
dependency of f(T',a,{k¢qr},l1q,r}s (g r}}{q T}GT,C) on the variables x; €
0,8)n, (x5,2;) € T'x[0,8)n (j = 2,...,n+ 1) in (D.9) is different from
that in (D.7).

For s; € [0,3), (xj,8;) € Z* x[0,8) (j =2,...,n+1) set

Frn(s1,%252, ..., Xnt15n+41) = Fr(T1, X222, . . ., X4 1Zn1),

where z; € [0, 8)), satisfies that s; € [zj,z;+h™") (Vj € {1,...,n+1}). Since
(z,y) — C(pxox,nyTy) is continuous a.e. in [0, 3)2,

hlirglo Fron(81,%X282, -+ s Xnt15n+1) = Fr(s1,X282, ..., Xpnt15n+1)
he2N/B

for a.e. (s1,82,...,5,41) € [0,3)" "1, and thus
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. 0
lim aPOTree(n +1,C, V()\,/\))

h—o0

he2N/B A=0
B o /B
= lim / ds; H / ds; Fpn(s1,X282, ..., Xn415n41)
he2N/B j=2 0 x;el’
n+1
/d51 H /dsg Fp(s1,%282,. ., Xn415n41)-
x;el’
Lemma D.1 (ii) implies that im0 ren FL(81,X282, ..., Xn418n+1) €X-

ists for any s; € [0, 3), (x5,8;) € Z* x [0,8) (j =2,...,n+1).

By Lemma D.1 (i), (4.8) and the fact that [My(T,&,8)u0] <1 (VYu,v €
{1,...,n+1}) (see the proof of [10, Lemma 4.5]) there exists ¢(n, T, Emax, 5) >
0 depending only on n, T, Eyax and 3 such that [f(T,a,{kigr1,l1qr}s
bigr Harrer:C)| < ¢(n, T, Enax, 8) for a.e. (s1,...,8n41) € [0,3)" . There-
fore, by setting Upax := max{|U.|, |Us|} and using Lemma D.1 (i),

Laje{—1L/2),—|L/2)+1,....— |L/2) +L—1}2 (VjE{2,...n+1})

| FL(s1,%X282, ., Xnt15n41)|
1
SUkae Y. e T Bmax, ) [] PTE = ;
T€Tn 41 rreriry Lt (2) 2 p=t |(Xr,€p)]
n+1

I1 11 ;

3
a=2 {q,r}€LL(T) L+ ( ) Zp:1 (1, €p) |3
n+1

1
—U;;laXH 5 > ¢(n, T, Emax, 8) (D.10)
= 1+ (%) 2127:1 |(x;,ep)[? TET i1
for a.e. (s1,...,8041) € [0,8)"*! and any xJ €z (j= ,n+1). The
right-hand side of (D.10) is in L'([0, ) x (Z* x [0, 8))"). Thus the dominated

convergence theorem proves that

L—oo h—oo
LEN he2N/p

lim lim 5P0Tree(n+ L,C,Vian)

A=0
n+1

= gggo d81 H /de Z

LeN x;€Z2

'1xj€{—LL/2J7— LL/2) 41, = [ L/2]+L—1} (Vj€{2,....,n+1})

'FL(81,X282,-~  Xn+15n41)
n+1
/dS1H /dSJ lim Fp(s1,X282,. .., Xn415n41)-
x;€72) Len

This implies the existence of (D.5) for n € N and completes the proof. O
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