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Gaussian Free Fields and KPZ Relation
in R

4

Linan Chen and Dmitry Jakobson

Abstract. This work aims to extend part of the two-dimensional results
of Duplantier and Sheffield on Liouville quantum gravity (Invent Math
185(2):333–393, 2011) to four dimensions, and indicate possible extensions
to other even-dimensional spaces R

2n as well as Riemannian manifolds.
Let Θ be the Gaussian free field on R

4 with the underlying Hilbert space
H2

(
R

4
)

and the inner product
(
(I − Δ)2 ·, ·)

L2 , and θ a generic element

from Θ. We consider a sequence of random Borel measures on R
4, denoted

by
{
mθ

εn
(dx) : n ≥ 1

}
, each of which is absolutely continuous with respect

to the Lebesgue measure dx, and the density function is given by the expo-
nential of a centered Gaussian family parametrized by x ∈ R

4. We show
that with probability 1, mθ

εn
(dx) weakly converges as εn ↓ 0, and the limit

measure can be “formally” written as “mθ (dx) = e2γθ(x)dx”. In this set-
ting, we also prove a KPZ relation, which is the quadratic relation between
the scaling exponent of a bounded Borel set on R

4 under the Lebesgue
measure and its counterpart under the random measure mθ (dx). Our
approach is similar to the one used in Duplantier and Sheffield (Invent
Math 185(2):333–393, 2011) with adaptations to R

4.

1. Introduction

Random measures have long been considered in two-dimensional conformal
field theory and quantum gravity since the work of Knizhnik, Polyakov and
Zamolodchikov (KPZ) in [12]. The long celebrated KPZ relation is a formula
that connects the geometric properties of field operators in the Euclidean case
and their analogs in the quantum gravity formulation. A derivation of the KPZ
relation from a physicist’s point of view via the heat kernel method was given
by David and Bauer [3]. More recently, Duplantier and Sheffield gave a math-
ematically rigorous proof of the formula using a probabilistic approach. In [5],
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Duplantier and Sheffield constructed the Liouville quantum gravity measure
“eγh(z)dz” on the unit planar disk D, where dz is the Lebesgue measure on
D, γ is a properly chosen positive constant and h is an instance of the Gauss-
ian free field (GFF) on D with the Dirichlet inner product. To be specific,
they prove that this random measure exists as the weak convergence limit of
εγ2/2eγhε(z)dz as ε ↓ 0, where hε (z) is the circular average of h over the circle
centered at z with radius ε. They further showed that there is a quadratic rela-
tion, the KPZ relation, between the scaling exponent of a random set under
the Lebesgue measure and its counterpart under the quantum gravity mea-
sure. For a comprehensive introduction to the two-dimensional GFF, readers
are referred to [16].

In this article, we generalize part of the results from [5] to four dimen-
sions. We define the Euclidean GFF on R

4, denoted by Θ, with the inner
product determined by the Bessel operator (I − Δ)2. In other words, the
underlying Hilbert space of Θ is given by the Sobolev space H2

(
R

4
)

with
the inner product ((I − Δ)2·, ·)L2 . In this setting, we prove (Sect. 3, The-
orem 5) that given 0 < γ2 < 2π2, almost every θ ∈ Θ admits a random
measure on R

4 which “formally” has the density e2γθ(x) with respect to the
Lebesgue measure dx on R

4. We also show that this random measure satis-
fies a KPZ relation similar to the one in the two-dimensional case. Namely,
if κ ∈ [0, 1] is the scaling exponent of a bounded Borel set in R

4 under the
Lebesgue measure, and K ∈ [0, 1] is the scaling exponent of the same set but
under the random measure obtained above (both κ and K will be defined
in Sect. 4), then κ and K satisfy the following quadratic relation (Sect. 4,
Theorem 9):

κ = K

(
1 − γ2

16π2

)
+

γ2

16π2
K2.

Our proof follows the outline of the proof in [5] with adaptations to four
dimensions. Mainly we have to overcome (both in “designing” the model to
work with and in technical details) the difficulties caused by the absence in
our problem of the two-dimensional conformal structure. To interpret rigor-
ously an instance θ of the GFF on the entire Euclidean space R

4, we adopt
the theory of the abstract Wiener space. A key ingredient in this theory is the
underlying Hilbert space whose inner product determines the covariance struc-
ture of the field. It is already known that to obtain a measure which “formally”
has the exponential of θ (x) as the density with respect to dx, the covariance
function Cov (θ (x) , θ (y)) can at most grow at the rate of − log |x − y| when
|x − y| is small. Taking this into account, H2

(
R

4
)

with the inner product(
(I − Δ)2 ·, ·

)

L2
becomes our natural choice. Also this way of defining the

GFF makes it possible, in certain situations, to obtain explicit formulas of
the covariance function. To construct the random measure and thereafter to
study it, we always need to relate it to a sequence of approximating mea-
sures which converges in some proper sense. So it is our intention to choose
the approximating measures appropriately so they will be convenient to work
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with. In the two-dimensional case in [5], the approximating measures are in
terms of the circular averages of the GFF on D. In fact, the properties of the
Gaussian family consisting of these circular averages play an important role
in the proof. For example, if h is an instance of the GFF on D, then given
any z ∈ D, the one-parameter family {hε (z) : 0 < ε ≤ 1} has up to a time
change the same distribution as a standard Brownian motion. Such properties
are derived from the Green’s function of the Laplace operator Δ on D, which,
in particular, is harmonic. Therefore, it should not be surprising that the triv-
ial analog in four dimensions, that is, the family of spherical averages of θ,
fails to have such properties, which makes it a less than optimal substitute
for hε in carrying out this project on R

4. In Sect. 2, we present one possi-
ble replacement for hε in four dimensions which still has simple and concrete
geometric interpretations (in fact, it is given by a functional of the spherical
average of θ), but possesses, to a large extent, similar properties to those of
hε in two dimensions. In Sect. 3, we use the results from Sect. 2 to build the
approximating measures and then prove that they almost surely admit a limit
measure in the sense of weak convergence. In Sect. 4, we lay out an outline
to derive the KPZ relation and the proofs of the main results are provided in
Sect. 5.

There is another recent work which studies the KPZ relation in dif-
ferent settings. For example, Benjamini and Schramm [1] established the
KPZ relation for one-dimensional multiplicative cascade. Rhodes and Vargas
et al. [11,15] derived the higher-dimensional KPZ relation for multiplicative
chaos. Our project was carried out independently of these studies. Compared
with the existing literature, we directly treat the actual elements of the GFF,
and study them through concrete geometric properties such as their spherical
averages. In the process, we demonstrate how the techniques developed by
Duplantier and Sheffield in dimension two can be adapted to higher dimen-
sions even in the absence of the two-dimensional conformal structure. We think
such treatments and techniques will allow easier extensions to more general
settings, such as Riemannian manifolds. Such an extension is currently being
studied by the authors of this paper.

Our original interest in constructing such a random measure lies in its
potential applications in the study of conformal classes of Riemannian met-
rics. In fact, another more geometric point of view on the GFF on a planar
domain or more generally on a surface Σ is to consider it as a measure on a
conformal class of metrics on Σ, where the measure is constructed with the
help of a reference metric g0 on Σ, but where the result does not depend
on g0. It seems natural to generalize this approach to conformal classes of
metrics on higher-dimensional manifolds. It turns out that on a compact four-
dimensional manifold M, a natural replacement for the Laplace–Beltrami oper-
ator Δ (that is used in the construction of the GFF on surfaces) is the 4-th
order Paneitz operator that arises in the conformal geometry. More generally,
on compact 2n-dimensional manifolds, it seems natural to use the dimension-
critical GJMS operator in the construction of higher-dimensional analogs of
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the two-dimensional GFF. This will be further explained in the second part of
Sect. 6.

2. Spherical Averages of GFF on R
4

We start with a brief review of some fundamental facts about the abstract
Wiener space theory [9] or [17]. An abstract Wiener space is commonly used in
constructions of infinite-dimensional Gaussian measures. The basic setting of
an abstract Wiener space is as follows. Given a (infinite-dimensional) Banach
space Θ and a (infinite-dimensional) Hilbert space H, assume both Θ and
H are separable, and H can be continuously embedded into Θ as a dense
subspace. Therefore, if x∗ is a bounded linear functional on Θ (denoted by
x∗ ∈ Θ∗), then there is unique hx∗ ∈ H such that for every h ∈ H, (h, hx∗)H =
〈h, x∗〉, where 〈·, ∗〉 refers to the action of Θ∗ on Θ (or more specifically in later
discussions, the action of tempered distributions on test functions). Let W be
a probability measure on (Θ,BΘ) , where BΘ is the Borel σ-algebra of Θ. If
W satisfies

E
W [exp (i 〈·, x∗〉)] = exp

(

−‖hx∗‖2
H

2

)

for all x∗ ∈ Θ∗,

then the triple (H,Θ,W) is called an abstract Wiener space. It is known
([18], §8.3) that given any separable Hilbert space, one can always find Θ
and W such that (H,Θ,W) forms an abstract Wiener space. Moreover, since
{hx∗ : x∗ ∈ Θ∗} is also dense in H, the linear mapping

I : hx∗ ∈ H 	→ I (hx∗) ≡ 〈·, x∗〉 ∈ L2 (W)

can be uniquely extended as a linear isometry from H to L2 (W). Its images
{I (h) : h ∈ H}, known as the Paley–Wiener integrals, form a centered Gauss-
ian family whose covariance is given by

E
W [I (h1) I (h2)] = (h1, h2)H for all h1, h2 ∈ H.

We point out that although the Hilbert structure of H plays an essential role,
W (H) = 0 and the choice of Θ is not unique.

As we have mentioned in the previous section, we consider in our project
the infinite-dimensional Gaussian measure on the space of certain tempered
distributions on R

4, with the underlying Hilbert space given by the Sobolev
space H ≡ H2

(
R

4
)
, which is the completion of the real-valued Schwartz test

function space S
(
R

4
)

under the inner product

(f1, f2)H ≡
∫

R4

(I − Δ)2 f1 (x) f2 (x) dx for all f1, f2 ∈ S
(
R

4
)
.

Then, given this particular choice of H, our notion of the Gaussian free field
on R

4 refers to any probability space (Θ,BΘ,W) such that (Θ,H,W) forms an
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abstract Wiener space. For example, if Θ̃ is the space of continuous functions
θ : R

4 → R satisfying

lim
|x|→∞

(log (e + |x|))−1 |θ (x)| = 0,

then Θ can be chosen as the image of Θ̃ under the Bessel operator (I − Δ)
1
4 ,

i.e.,

Θ =
{

(I − Δ)
1
4 θ : θ ∈ Θ̃

}
.

From this, we observe that Θ consists of tempered distributions which in gen-
eral are not defined point-wise. Nonetheless, we can understand some proper-
ties of the GFF by studying the Paley–Wiener integrals, which can be viewed
as “generalized” action of certain tempered distributions on Θ.

In addition, if H−2 = H−2
(
R

4
)

is the Hilbert space consisting of tem-
pered distributions μ such that

‖μ‖2
H−2 ≡ 1

(2π)4

∫

R4

(
1 + |ξ|2

)−2

|μ̂ (ξ)|2 dξ < ∞,

where μ̂ is the Fourier transform (without the factor (2π)−2 in the definition) of
μ, then we can identify H with H−2 since (I − Δ)−2 : H−2 → H is obviously
a linear isometry. We will abuse the notation1 by denoting “hν” the image
of ν ∈ H−2 under (I − Δ)−2. Then hν is the unique element in H such that
〈h, ν〉 = (h, hν)H for all h ∈ H, which suggests that the corresponding Paley–
Wiener integral I (hν) can be viewed as a “representation” of the action of
ν on Θ, even though ν is not in Θ∗ and I (hν) (θ) is only defined for almost
every θ ∈ Θ. Meanwhile,

{
I (hν) : ν ∈ H−2

}
is also a Gaussian family whose

covariance is given by

E
W [I (hν1) I (hν2)] = (hν1 , hν2)H = (ν1, ν2)H−2 .

With these in mind, as a natural analog of the 2D circular average, we
consider the spherical average of the GFF on R

4. To this end, for every x ∈ R
4

and ε > 0, denote σx
ε the tempered distribution determined by

〈f, σx
ε 〉 ≡ 1

2π2ε3

∫

Sε(x)

f (y) dσ (y) for all f ∈ S
(
R

4
)
,

where Sε (x) is the sphere centered at x with radius ε, and dσ is the surface
area measure on Sε (x). Clearly, the action of σx

ε is to take the spherical average
of f over Sε (x). It is an easy matter to verify that σx

ε ∈ H−2. In fact, one only
needs to write down the Fourier transform of σx

ε as

σ̂x
ε (ξ) = 2 (ε |ξ|)−1

J1 (ε |ξ|) ei(x,ξ)
R4 , (2.1)

where Jk (r) is the Bessel function of order k ∈ N, and use the fact that Jk (r)
is asymptotic to r−1/2 when r is large.

1 The subscript of “hν” is an element of H−2, not to be confused with “hx∗” in the definition
of the abstract Wiener space where x∗ ∈ Θ∗.
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As we have indicated in Sect. 1 (and as we will confirm in the next
lemma), the spherical average of the GFF on R

4 does not behave as
“nicely” as the circular average of the GFF in two dimensions. For one thing{
I
(
hσx

ε

)
: ε > 0

}
fails to be a reversed Markov process. An intuitive way to

view this is that, the spherical average does not bear enough information in
itself for this Gaussian family parametrized by radius ε > 0 to be (reversed)
Markovian. It might also be helpful to relate this to the following analogous
problem: when solving PDEs with higher order differential operator on a
domain with boundary, one often needs more than one boundary condition
(e.g., both the Dirichlet and the Neumann boundary conditions) to uniquely
determine the solution. Inspired by this idea, besides the average itself we will
also “collect” one more piece of information about the GFF from each sphere,
which is the “derivative” of the average with respect to the radius. Namely,
for every x ∈ R

4 and ε > 0, denote dσx
ε the tempered distribution given by

〈f,dσx
ε 〉 ≡ d

dε 〈f, σx
ε 〉 for all f ∈ S

(
R

4
)
, then the action of dσx

ε can be viewed
as to take the derivative of the spherical average of the GFF in the radial
direction. It follows trivially from (2.1) that

ˆdσx
ε (ξ) =

d
dε

σ̂x
ε (ξ) = −2ε−1J2 (ε |ξ|) ei(x,ξ)

R4 . (2.2)

In particular, dσx
ε is also in H−2 and so

{
I
(
hσx

ε

)
, I
(
hdσx

ε

)
: x ∈ R

4, ε > 0
}

forms a centered Gaussian family whose covariance is determined by the H−2

inner product of
{
σx

ε ,dσx
ε : x ∈ R

4, ε > 0
}
.

The next lemma in some sense validates our decision to take dσx
ε into

account. It shows that by putting I
(
hσx

ε

)
and its “derivative” I

(
hdσx

ε

)

together,2 not only does the Gaussian family recover the reversed Markov
property in the concentric case (with x ∈ R

4 fixed, parametrized by ε > 0
only), the non-concentric family (parametrized by both ε > 0 and x ∈ R

4)
but also resembles, to a large extent, its counterpart in two dimensions. To be
precise, we define the vector-valued Gaussian random variable:

V x
ε ≡

(
I
(
hσx

ε

)

I
(
hdσx

ε

)
)

for every x ∈ R
4 and ε > 0.

Then, under certain circumstances, the covariance matrix of the Gaussian
family

{
V x

ε : x ∈ R
4, ε > 0

}
can be evaluated explicitly as follows.

Lemma 1. For r ∈ (0,∞), define the following four matrices:

A (r) ≡
(

K ′
1 (r) K1 (r) /r

K ′′
1 (r) −K2 (r) /r

)
, B (r) ≡

(
I1 (r) /r I ′

1 (r)
I2 (r) /r I ′′

1 (r)

)
,

C (r) ≡
(

I1 (r) /r 0
I2 (r) I1 (r) /r

)
, D (r) ≡

(
−K2 (r) K1 (r) /r
K1 (r) /r 0

)
,

where Ik,Kk are the modified Bessel functions of order k ∈ N. Then,

2 This idea came from discussions with Daniel W. Stroock when the first author was studying
at MIT.
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(1) Given x ∈ R
4 and ε1 ≥ ε2 > 0,

E
W
[
V x

ε1

(
V x

ε2

)�] =
(

− 1
4π2

)
A (ε1)B� (ε2) . (2.3)

In particular, {V x
ε : ε > 0} is a vector-valued Gaussian reversed Markov

process in the sense that for every Borel A ⊆ R
2,

W
(
V x

ε2 ∈ A|σ
{
V x

η : η ≥ ε1
})

= W
(
V x

ε2 ∈ A|V x
ε1

)
,

where σ
{
V x

η : η ≥ ε1
}

is the σ-algebra generated by
{
V x

η : η ≥ ε1
}
.

(2) Given x, y ∈ R
4, x �= y, and ε1, ε2 > 0 with ε1 > |x − y| + ε2,

E
W
[
V x

ε1

(
V y

ε2

)�] =
(

− 1
2π2

)
A (ε1)C (|x − y|)B� (ε2) . (2.4)

(3) Given x, y ∈ R
4, x �= y, and ε1, ε2 > 0 with |x − y| > ε1 + ε2,

E
W
[
V x

ε1

(
V y

ε2

)�] =
(

− 1
2π2

)
B (ε1)D (|x − y|)B� (ε2) . (2.5)

The proof of (2.3)–(2.5) relies heavily on the integral formulas and iden-
tities of Bessel functions. The complete detailed computations are given in
appendix. Here we only make the following observations.

First, we claim that the distribution of
{
V x

ε : x ∈ R
4, ε > 0

}
is invariant

under isometries in spatial variables in the sense that
{

V
T (x)
ε : x ∈ R

4, ε > 0
}

has exactly the same distribution as
{
V x

ε : x ∈ R
4, ε > 0

}
for every T : R

4 →
R

4 satisfying |T (x) − T (y)| = |x − y| for all x, y ∈ R
4. Perhaps the most

straightforward way to see this is to write down the covariance matrix of the
family, or equivalently, the H−2 inner product of

{
σx

ε ,dσx
ε : x ∈ R

4, ε > 0
}

in
the integral form using (2.1) and (2.2). We will actually do this in appen-
dix (formulas (7.1)–(7.6)). The result shows that the only dependence of the
covariance matrix on spatial variables is through the distance between centers
of the spheres that are involved.

Second, we point out that all the matrices above A (r), B (r), C (r) and
D (r) are invertible for all r > 0. This fact can certainly be verified by direct
computations using the explicit formulas given above, but it also follows, more
generally, from the simple fact that dσx

ε is linearly independent of σy
ε for every

x, y ∈ R
4 and ε > 0. Therefore, assuming (2.3) is true, then given x fixed and

ε1 ≥ ε2 > 0, the conditional expectation of V x
ε2 conditioning on V x

ε1 equals

E
W
[
V x

ε2

(
V x

ε1

)�] (
E

W
[
V x

ε1

(
V x

ε1

)�])−1

V x
ε1 = B (ε2)B−1 (ε1) V x

ε1 .

On the other hand, we observe that for all η ≥ ε1,

E
W
[(

V x
ε2 − B (ε2)B−1 (ε1) V x

ε1

) (
V x

η

)�] = 0.

This means,

V x
ε2 − B (ε2)B−1 (ε1) V x

ε1

is independent of V x
η for all η ≥ ε1, which certainly implies the reversed Markov

property.
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Next, we observe that under the circumstances as prescribed in Lemma 1,
the covariance matrix of

{
V x

ε : x ∈ R
4, ε > 0

}
is “separable” in the sense that

it splits into factors each of which only depends on one of the variables ε1, ε2
and |x − y|. A second look at the formulas (2.3)–(2.5) suggests that we should
“normalize” V x

ε by B−1 (ε). Namely, if denote Ux
ε ≡ B−1 (ε) V x

ε , then the
previous observations imply that given x fixed, {Ux

ε : ε > 0} is a vector-valued
Gaussian process with independent (reversed) increment whose distribution
does not depend on x. Moreover, (2.4) and (2.5) show that E

W
[
Ux

ε1

(
Uy

ε2

)�]

only depends on ε1 and |x − y| when3 Bε2 (y) ⊆ Bε1 (x), and the same matrix
only depends on |x − y| when Bε2 (y) ∩ Bε1 (x) = ∅. Because Ux

ε has these
properties, we are one step closer to finding a plausible replacement for the
circular average of the two-dimensional GFF.

Clearly, for any constant ζ = (ζ1, ζ2)
� ∈ R

2, (Ux
ε , ζ)

R2 is a scalar-valued
Gaussian random variable (in fact, it is a Paley–Wiener integral), which, when
parametrized by x ∈ R

4 and ε > 0, forms a Gaussian family that preserves the
properties described above. Our goal was to find a proper ζ ∈ R

2 such that
the random variable

θ ∈ Θ 	→ (Ux
ε , ζ)

R2 (θ) = ζ�B−1 (ε) V x
ε (θ)

becomes a “legitimate” approximation for a multiple of the value of θ at point
x for every x ∈ R

4. Namely, we want to choose ζ so that if μx
ε ∈ H−2 is given

by

μx
ε ≡ ζ�B−1 (ε)

(
σx

ε

dσx
ε

)
, (2.6)

then μx
ε converges to a constant multiple of the point mass δx at x as ε ↓ 0

in the sense of tempered distribution. We can reach this goal by writing down
the formula of B−1 (ε) explicitly and examining the asymptotics of the Bessel
functions near the origin (detailed computations are given in appendix). As a
result, we find that ζ = (1, 1)� will serve the purpose, in which case μx

ε → 2δx

as ε ↓ 0 for every x ∈ R
4. From now on, we will assume μx

ε is as in (2.6)
with ζ = (1, 1)�. Since I

(
hμx

ε

)
= ζ�B−1 (ε) V x

ε , we can transfer the results in
Lemma 1 to the Gaussian family

{
I
(
hμx

ε

)
: x ∈ R

4, ε > 0
}
.

Theorem 2. Define the positive function G : r ∈ (0,∞) 	→ G (r) ∈ (0,∞) by

G (r) ≡
(

− 1
4π2

)
2I1 (r) K1 (r) + 2I2 (r) K0 (r) − 1

I2
1 (r) − I0 (r) I2 (r)

. (2.7)

Then, we have

(1) Given x ∈ R
4 and ε1 ≥ ε2 > 0,

E
W
[
I
(
hμx

ε1

)
I
(
hμx

ε2

)]
= E

W
[
I2
(
hμx

ε1

)]
= G (ε1) . (2.8)

3 The notation “Br (x)” (“Br (x)”) denotes the open (closed) ball centered at x with radius r.
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In particular,
{
I
(
hμx

ε

)
: ε > 0

}
is a Gaussian process with independent

reversed increments in the sense that I
(
hμx

ε2

)
−I

(
hμx

ε1

)
is independent

of σ
{

I
(
hμx

η

)
: η ≥ ε1

}
.

(2) Given x, y ∈ R
4, x �= y, and ε1, ε2 > 0 with ε1 > |x − y| + ε2,

E
W
[
I
(
hμx

ε1

)
I
(
hμy

ε2

)]

= I0 (|x − y|) G (ε1) − 1
4π2

I2 (|x − y|)
I2
1 (ε1) − I0 (ε1) I2 (ε1)

. (2.9)

(3) Given x, y ∈ R
4, x �= y, and ε1, ε2 > 0 with |x − y| > ε1 + ε2,

E
W
[
I
(
hμx

ε1

)
I
(
hμy

ε2

)]
=

1
2π2

K0 (|x − y|) . (2.10)

There is not much to be said about the proof since everything follows
from straightforward computations and the results of Lemma 1. However, we
should point out the following facts.

First, it is an easy matter to check that G : (0,∞) → (0,∞) is smooth and
strictly decreasing with limr↓0 G (r) = +∞ and limr↑∞ G (r) = 0. Therefore,
G−1 is defined and also strictly decreasing on (0,∞). Fix a positive constant
R, and for every r ∈ (0, R], define

0 ≤ t ≡ G (r) − G (R) and Xt ≡ I
(
hμx

G−1(t+G(R))

)
− I

(
hμx

R

)
. (2.11)

Then {Xt : t ≥ 0}, as a Gaussian process on Θ under W, has the same distri-
bution as the standard Brownian motion, which in particular is independent
of the choice of x. In other words,

{
I
(
hμx

ε

)
: 0 < ε ≤ R

}
has the distribution

of a Brownian motion up to a non-random time change.
Second, the formulas (2.9) and (2.10) indicate that the covariance func-

tion does not depend on ε2 when Bε2 (y) ⊆ Bε1 (x) and does not even depend
on ε1 or ε2 when Bε2 (y) ∩ Bε1 (x) = ∅. If one does the calculation with circu-
lar averages of the two-dimensional GFF in each case analogously, one would
see the same phenomenon. Namely, the smaller radius does not appear in the
covariance function if one circle is entirely contained in the disk bounded by
the other circle, while neither of the radii matters if the two disks bounded by
the two circles, respectively, do not intersect. Such properties are consequences
of the mean value theorem applied to the Green’s function of the Laplace oper-
ator Δ in two dimensions, and these special properties of harmonic functions
are no longer available to us in four dimensions. Nonetheless, we have seen
from the above that by substituting

{
I
(
hμx

ε

)
: x ∈ R

4, ε > 0
}

for the circular
average, we will recover in the four-dimensional setting the properties similar
to those in two dimensions.

Finally, by examining the asymptotics of the Bessel functions near the
origin, one finds that function G as defined in (2.7) is asymptotic to − 1

2π2 log r
when r is small. Therefore, in both case (1) and case (2) from above, the
covariance function is asymptotic to − 1

2π2 log ε1 for sufficiently small ε1, while
in case (3), the right-hand side of (2.10) is asymptotic to − 1

2π2 log |x − y| for
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sufficiently small |x − y|. In this sense, the covariance function of
{
I
(
hμx

ε

)
:

x ∈ R
4, ε > 0

}
does have logarithmic growth near diagonal as one would have

expected.
By now, one should be able to believe that

{
I
(
hμx

ε

)
: x ∈ R

4, ε > 0
}

is
a reasonable replacement for the circular average of the 2D GFF to construct
a random measure on R

4. Indeed, the construction based on this Gaussian
family will be carried out in the next section. We close this section with an
important observation about I

(
hμx

ε

)
as a mapping from the variable x ∈ R

4

to a random variable on Θ under W.

Corollary 3. Given ε > 0, the mapping x ∈ R
4 	→ I

(
hμx

ε

)
∈ L2 (W) is con-

tinuous. Moreover, if α ∈
(
0, 1

2

)
, then for almost every θ ∈ Θ, x ∈ R

4 	→
I
(
hμx

ε

)
(θ) ∈ R is Hölder continuous with Hölder constant α.

Proof. By Kolmogorov’s continuity criterion ([18], §4.3) applied to Gaussian
random variables, to prove both statements in Corollary 3, it would be suffi-
cient if we can show that there exist constant β > 0 and 0 < Cβ,ε < ∞ such
that for every x, y ∈ R

4,
∥
∥I
(
hμx

ε

)
− I

(
hμy

ε

)∥∥2

L2(W)
≤ Cβ,ε |x − y|β .

To simplify the notations, we write μx
ε as μx

ε ≡ f1 (ε) σx
ε +f2 (ε) dσx

ε , where both
f1 and f2 are actually analytic functions in ε ∈ [0, R] (the explicit formulas
for f1 and f2 are given by (7.9) in appendix). Therefore, we only need to show
that both ‖σx

ε − σy
ε ‖2

H−2 and ‖dσx
ε − dσy

ε ‖2
H−2 are bounded by Cβ,ε |x − y|β .

Perhaps the most straightforward way to see this is writing down the integral
expressions for ‖σx

ε − σy
ε ‖2

H−2 and ‖dσx
ε − dσy

ε ‖2
H−2 . Again, we refer to the for-

mulas (7.1)–(7.6) in appendix. From there, together with the series expression
for the Bessel functions ([19], §3.1), it is an easy matter to check that one can
get the desired upper bound for ‖σx

ε − σy
ε ‖2

H−2 and ‖dσx
ε − dσy

ε ‖2
H−2 so long

as β ∈ (0, 1). �

3. Construction of Random Measure

In this section, we will use the Gaussian family
{
I
(
hμx

ε

)
: x ∈ R

4, ε > 0
}

to construct a random measure on R
4 which “formally” can be written as

“m (dx) = e2γθ(x)dx,” where θ ∈ Θ is chosen under the distribution of W,
γ ≥ 0 is a constant and dx is the Lebesgue measure on R

4. Recall that at
every x ∈ R

4, μx
ε tends to 2δx as ε ↓ 0 in the sense of tempered distribution, so

we can take the value of the random variable θ 	→ 1
2I
(
hμx

ε

)
(θ) as the approxi-

mation for “θ (x)” as ε ↓ 0. Furthermore, Corollary 3 certainly guarantees that
with ε fixed, one can always make the mapping

(x, θ) ∈ R
4 × Θ 	→ I

(
hμx

ε

)
(θ) ∈ R

measurable with respect to BR4 × BΘ. In addition, for almost every θ ∈ Θ,
the function

x ∈ R
4 	→ Eθ

ε (x) ≡ exp
(

γI
(
hμx

ε

)
(θ) − γ2

2
G (ε)

)
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is positive and continuous, and hence if mθ
ε (dx) ≡ Eθ

ε (x) dx, then mθ
ε (dx) is a

positive regular and σ-finite Borel measure on R
4. Moreover, given any Borel

set B ⊆ R
4, the mapping

θ ∈ Θ 	→ mθ
ε (B) =

∫

B

Eθ
ε (x) dx ∈ R

is also non-negative and measurable. Note that for every x ∈ R
4 and ε > 0,

the mapping

θ ∈ Θ 	→ I
(
hμx

ε

)
(θ) ∈ R

under W has centered Gaussian distribution with variance G (ε). Therefore,
E

W [
Eθ

ε (x)
]

= 1 and hence by Tonelli’s Theorem we have that

E
W [

mθ
ε (B)

]
=
∫

B

E
W [

Eθ
ε (x)

]
dx = vol (B) .

Since mθ
ε (dx) is simply the Lebesgue measure on R

4 when γ = 0, from
now on we will only consider the case when γ > 0. We want to study the
convergence of mθ

ε (dx) as ε ↓ 0. In order to have the desired convergence,
we only consider ε taking values along a sequence {εn ≡ εn

0 : n ≥ 1} for some
fixed ε0 ∈ (0, 1). Without loss of generality, we will assume mθ

εn
(dx) is well

defined as above for all n ≥ 1 and every θ ∈ Θ. For the sake of convenience
in later discussions, we will abuse the notation by identifying “mθ

ε0 (dx)” with
0. We want to show that as n → ∞, almost surely the sequence

{
mθ

εn
(dx)

}

converges weakly to a limit measure mθ (dx), written as mθ
εn

(dx) ⇀ mθ (dx),
in the sense that

∫
R4 f (x) mθ

εn
(dx) converges to

∫
R4 f (x) mθ (dx) for every f ∈

Cc

(
R

4
)

which is the space of continuous and compactly supported functions
on R

4. To show this weak4 convergence, it suffices to show the convergence
of
∫

R4 f (x)mθ
εn

(dx) when f is any continuous function on Γ for any given
compact set Γ ⊆ R

4. In fact, we have the following result that holds for more
general f so long as f is bounded and measurable on Γ.

Lemma 4. Assume 0 < γ2 < 2π2 and Γ ⊆ R
4 is compact. There exists a square

integrable random variable θ ∈ Θ 	→ mθ (Γ) ∈ R
+ such that

N−1∑

n=0

∣
∣
∣mθ

εn+1
(Γ) − mθ

εn
(Γ)
∣
∣
∣ converges to mθ (Γ) as N → ∞

almost surely as well as in L2 (W).
Similarly, for every bounded measurable function f with supp (f) ⊆ Γ,

there exists a square integrable random variable θ ∈ Θ 	→ Mθ(f) ∈ R such that

4 If using functional analysis terminology, the convergence defined here should be called
“weak* convergence”. However, we will continue using the term “weak convergence” since
it is more commonly adopted in the probability theory.
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Mθ
εn

(f) ≡
∫

R4

f (x) mθ
εn

(dx) converges to Mθ (f) as n → ∞

almost surely as well as in L2 (W), and
∣
∣Mθ (f)

∣
∣ ≤ mθ (Γ) ‖f‖u almost surely.

Proof. To prove the first statement, we rewrite
(
mθ

εn+1
(Γ) − mθ

εn
(Γ)
)2

, for
n ≥ 1, as the following double integral:

∫∫

Γ2

[
Eθ

εn+1
(x) Eθ

εn+1
(y) + Eθ

εn
(x) Eθ

εn
(y) − 2Eθ

εn+1
(x) Eθ

εn
(y)
]
dxdy.

By Tonelli’s Theorem, the W-expectation of above equals
∫∫

Γ2

{

e
γ2

E

[
I
(

hμx
εn+1

)
I
(

hμ
y
εn+1

)]

+ e
γ2

E

[
I
(
hμx

εn

)
I
(
hμ

y
εn

)]

−2e
γ2

E

[
I
(

hμx
εn+1

)
I
(
hμ

y
εn

)]}

dxdy.

We split this integral by dividing the domain into two parts:
∫∫

|x−y|>2εn

and
∫∫

0≤|x−y|≤2εn

.

The formula (2.10) implies that the integrand is always zero in the desig-
nated domain of the first part. As for the second part, the integrand is always
bounded by 2eγ2G(εn+1) while the volume of the integral domain is bounded
by Cε4n for some constant5 C. Together with the observations made in Sect. 2
about the asymptotics of G, one finds that

E
W
[∣
∣
∣mθ

εn+1
(Γ) − mθ

εn
(Γ)
∣
∣
∣
2
]

≤ Ce−(8π2−γ2)G(εn). (3.1)

The square root of the right-hand side of (3.1) is summable in n ≥ 1 and
meanwhile mθ

ε1 (Γ) is clearly square integrable, so

mθ (Γ) ≡
∞∑

n=0

∣
∣
∣mθ

εn+1
(Γ) − mθ

εn
(Γ)
∣
∣
∣ (3.2)

is square integrable and the convergence takes place in L2 (W). Furthermore,
the series

∑N
n=0

∣
∣
∣mθ

εn+1
(Γ) − mθ

εn
(Γ)
∣
∣
∣ also converges to mθ (Γ) almost surely

along a subsequence, but since the series is monotonic in N , it must converge
to mθ (Γ) almost surely along the full sequence.

The second statement of the lemma follows from the same arguments.
In fact, given a bounded measurable function f with supp (f) ⊆ Γ, if one
replaces mθ

εn
(Γ) by Mθ

εn
(f) in every step of the proof above, one can see that

5 Throughout this section, “C” denotes a positive finite constant that is universal in n. The
value of C may change from line to line.
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∑∞
n=0

∣
∣
∣Mθ

εn+1
(f) − Mθ

εn
(f)
∣
∣
∣ is also square integrable. The rest of the proof is

straightforward. �

Theorem 5. Assume 0 < γ2 < 2π2. For almost every θ ∈ Θ, there exists a
non-negative regular σ-finite Borel measure mθ (dx) on R

4 such that

mθ
εn

(dx) ⇀ mθ (dx) as n → ∞,

and for every compact set Γ ⊆ R
4,
∥
∥mθ

∥
∥
var,Γ

≤ mθ (Γ) , where
∥
∥mθ

∥
∥
var,Γ

is

the total variation of mθ (dx) over Γ and mθ (Γ) is as defined in (3.2).
In particular, for every f ∈ Cc

(
R

4
)
,

∫

R4

f (x)mθ
εn

(dx) converges to
∫

R4

f (x) mθ (dx) as n → ∞

almost surely as well as in L2 (W).

Proof. Clearly we only need to prove the first statement of the theorem,
because assuming mθ

εn
(dx) ⇀ mθ (dx) almost surely, the second statement is

simply repeating the second result of Lemma 4 with Mθ(f)=
∫

R4 f (x) mθ(dx)
for f ∈ Cc

(
R

4
)
. As we mentioned earlier, to obtain the limit measure

mθ (dx), it suffices to show the convergence of mθ
εn

(dx) on any compact
set Γ ⊆ R

4. We will achieve this goal via the Riesz representation theo-
rem. We have already seen from the second part of Lemma 4 that, if denote
Mθ

εn
(f) ≡

∫
R4 f (x) mθ

εn
(dx) for every n ≥ 1 and every bounded measurable

function f supported on Γ, then

Mθ (f) ≡ lim
n→∞

Mθ
εn

(f) exists and
∣
∣Mθ (f)

∣
∣ ≤ ‖f‖u mθ (Γ) < ∞ (3.3)

with probability one. However, to get the almost sure existence of mθ (dx), we
need to argue that with probability one, the statement above holds simulta-
neously for all functions f from a “large enough” class. To this end, we make
use of the separability of the Banach space C (Γ) (when equipped with the
uniform norm ‖·‖u). Namely, we can choose a countable sequence {fk : k ≥ 1}
which is a dense subset of C (Γ), so almost surely the statement (3.3) holds6

simultaneously for all fk, k ≥ 1.
Now let us focus on θ ∈ Θ such that (3.3) holds for all fk, k ≥ 1. Given

a general f ∈ C (Γ), let
{
fkj

: j ≥ 1
}

be a subsequence such that fkj
→ f in

‖·‖u as j → ∞, then for every l, n ≥ 1,
∣
∣Mθ

εl
(f) − Mθ

εn
(f)
∣
∣ ≤

∣
∣Mθ

εl
(f) − Mθ

εl

(
fkj

)∣∣+
∣
∣Mθ

εl

(
fkj

)
− Mθ

εn

(
fkj

)∣∣

+
∣
∣Mθ

εn

(
fkj

)
− Mθ

εn
(f)
∣
∣

≤ 2mθ (Γ)
∥
∥f − fkj

∥
∥

u
+
∣
∣Mθ

εl

(
fkj

)
− Mθ

εn

(
fkj

)∣∣ .

Therefore, by the choice of
{
fkj

: j ≥ 1
}

and (3.3) applied to
{
fkj

: j ≥ 1
}
, we

see that
{
Mθ

εn
(f) : n ≥ 1

}
forms a Cauchy sequence. It directly implies that

6 In this discussion, we will simply assume f ≡ 0 outside Γ for every f ∈ C (Γ), so Mθ (f)
and Mθ

εn
(f) are still well defined.
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(3.3) also holds for f and in addition Mθ (f) = limj→∞ Mθ
(
fkj

)
. Therefore,

for almost every θ ∈ Θ, f 	→ Mθ (f) is a linear and bounded functional
on C (Γ), which, by the Riesz representation theorem, gives rise to a unique
regular Borel measure mθ (dx) on Γ such that Mθ (f) =

∫
Γ

f (x) mθ (dx) for
all f ∈ C (Γ) and the total variation of mθ (dx) is equal to the operator norm
of Mθ which is bounded by mθ (Γ). It is also clear that mθ (dx) is non-negative
and mθ

εn
(dx) ⇀ mθ (dx). �

Compared with the second statement in Lemma 4, the second state-
ment in Theorem 5 seems “weaker” since we have restricted ourselves to
f ∈ Cc

(
R

4
)
. However, we point out that the same statement, i.e., Mθ

εn
(f)

converges to
∫

R4 f (x)mθ (dx) both almost surely and in L2 (W), is no longer
true if f is only assumed to be a bounded measurable function with com-
pact support. The reason is the following: for such a function f , although
the existence of Mθ (f) = limn→∞ Mθ

εn
(f) is guaranteed by Lemma 4, in

general one cannot draw any conclusion on the relation between Mθ (f) and∫
R4 f (x) mθ (dx), because mθ

εn
(dx) only converges to mθ (dx) weakly and one

does not have control over
∥
∥mθ

εn
− mθ

∥
∥
var,supp(f)

. However, under some cir-

cumstances, we can derive a relation between the two random variables Mθ (f)
and

∫
R4 f (x) mθ (dx). For example, if f = χA is the indicator function of a

bounded open set A ⊆ R
4, then the weak convergence result implies that

mθ (A) ≤ limn→∞ mθ
εn

(A) almost surely. Meanwhile, the L2 (W) convergence
of mθ

εn
(A) certainly leads to

E
W
[

lim
n→∞

mθ
εn

(A)
]

= lim
n→∞

E
W [

mθ
εn

(A)
]

= vol (A) ;

on the other hand, let {fl : l ≥ 1} ⊆ Cc

(
R

4
)

be a sequence such that 0 ≤ fl ↗
χA as l → ∞, then by the monotone convergence theorem and the second
statement in Theorem 5,

E
W [

mθ (A)
]

= lim
l→∞

E
W

⎡

⎣
∫

R4

fl (x) mθ (dx)

⎤

⎦ = lim
l→∞

∫

R4

fl (x) dx = vol (A) .

This can only be possible if mθ (A) = limn→∞ mθ
εn

(A) almost surely. More
generally ([18], §9.1), if f is bounded and upper semicontinuous (or lower
semicontinuous or mθ—almost surely continuous), then it follows from a sim-
ilar argument that Mθ (f) = limn→∞ Mθ

εn
(f) almost surely, so the second

statement in Theorem 5 also holds for f .
The fact as stated above that E

W [
mθ (A)

]
= vol (A) for every bounded

open set guarantees that the limit measure mθ (dx) cannot be almost every-
where trivial, i.e., W

(
mθ (dx) = 0

)
< 1. In fact, we will prove later (in Lemma

10) that W
(
mθ (dx) = 0

)
= 0, so mθ (dx) is almost surely a positive measure.

On the other hand, the following simple observation shows that mθ (dx) almost
surely does not assign positive mass to any given point. To see this, recall the
assumption 0 < γ2 < 2π2 and the fact that G (r) is asymptotic to − 1

2π2 log r

when r is small. Then it is an easy matter to check that for any fixed x ∈ R
4,
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E
W
[
lim sup

n→∞
e4γ2G(εn)mθ

(
Bεn

(x)
)]

= 0.

Therefore, if we denote

Θx ≡
{

θ ∈ Θ : lim
n→∞

e4γ2G(εn)mθ
(
Bεn

(x)
)

= 0
}

, (3.4)

then Θx is clearly a measurable subset of Θ and W (Θx) = 1.
We will close this section by a remark about the condition of the constant7

γ. Readers may have noticed that the constraint 0 < γ2 < 2π2 in Lemma 4
and Theorem 5 is more than what the proofs require. However, one reason of
having this condition on γ is that it guarantees the proof of Lemma 4 being
correct even if one replaces γ by 2γ. In other words, if we denote

mθ,2γ
εn

(dx) ≡ e
2γI

(
hμx

εn

)
(θ)−2γ2G(εn)dx

and define mθ,2γ (Γ) similarly using mθ,2γ
εn

(Γ) for any compact set Γ ⊆ R
4,

then mθ,2γ (Γ) is also square integrable and in particular mθ,2γ (Γ) is almost
surely finite. Some proofs in Sect. 5 make use of this consideration and hence
the condition 0 < γ2 < 2π2 becomes necessary there. We will remind readers
when it comes to these situations.

4. KPZ Relation

Throughout later discussions, we will always assume 0 < γ2 < 2π2 and for
every θ ∈ Θ, mθ (dx) is a non-negative regular and σ-finite Borel measure
on R

4 and mθ
εn

(dx) ⇀ mθ (dx) (otherwise one simply assigns mθ
εn

(dx) =
mθ (dx) = dx for all n ≥ 1 on a measurable null set of Θ). In this section, we
would like to establish a KPZ relation between the Euclidean scaling exponent
of a bounded (fractal) Borel set on R

4 and its counterpart under the random
measure mθ (dx). We first recall from [5] some definitions. Given a bounded
Borel D ⊆ R

4, the constant κ ∈ [0, 1] is called the Euclidean scaling exponent8

of D if

lim
λ↓0

log vol (Dλ)
log λ4

= κ,

where λ > 0 and Dλ ≡ ∪x∈DBλ (x) is the canonical λ-neighborhood of D. In
the random measure setting, for every Λ > 0, we first consider the mapping
from R

4 × Θ to [0,∞]:

(x, θ) 	→ rΛ (x, θ) ≡
{

sup
{
r > 0 : mθ (Br (x)) ≤ Λ

}
if θ ∈ Θx,

0 otherwise,
(4.1)

7 In this article, we do not have particular emphasis on the potential physics meaning of γ.
8 Note that this scaling exponent does not always exist, and if it does, 4 − 4κ equals the
Minkowski dimension of D.
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where Θx is as determined in(3.4), then define the isothermal Λ-neighborhood
of D by

DΛ,θ ≡
{

x ∈ R
4 :

either rΛ (x, θ) > 0 and dist (x,D) < rΛ (x, θ)
or rΛ (x, θ) = 0 and x ∈ D

}
. (4.2)

Intuitively, BrΛ(x,θ) (x) is the “largest” ball (in radius) centered at x with
volume Λ under the random measure mθ (dx), and DΛ,θ is the “neighborhood”
obtained by covering D with all such balls with equal volume. If there exists
constant K ∈ [0, 1] such that

lim
Λ↓0

log E
W [

mθ
(
DΛ,θ

)]

log Λ
= K, (4.3)

then K is called the quantum scaling exponent of D. K can be viewed as
the “expected” scaling exponent and as such the counterpart of κ under the
random measure mθ (dx). In two dimensions, κ and K satisfy the so-called
KPZ relation which is a quadratic relation. Our goal in this section is to
extend such a relation to the four-dimensional setting.

However, we have not yet justified the “meaning” of the notations in
(4.3). First we have to check that DΛ,θ is a Borel set in R

4 for every θ ∈
Θ, which requires us to verify the measurability of (x, θ) 	→ rΛ (x, θ) with
respect to BR4 × BΘ. To this end, we observe that (x, θ) 	→ mθ (Br (x)) is
measurable for every r > 0 because there certainly exists continuous mapping
x ∈ R

4 	→ ρx
l ∈ Cc

(
R

4
)

for every l ≥ 1 with 0 ≤ ρx
l ↗ χBr(x) and hence

Mθ (ρx
l ) ↗ mθ (Br (x)) as l → ∞ for every (x, θ). From this, we conclude

that {(x, θ) : θ ∈ Θx} is a Borel set in R
4 × Θ, and then the measurability of

rΛ (x, θ) follows simply by identifying the set {(x, θ) : 0 < rΛ (x, θ) ≤ a} with{
(x, θ) : θ ∈ Θx,mθ (Ba (x)) ≥ Λ

}
for every a > 0. Therefore, for every θ, DΛ,θ

is a Borel set in R
4 since it is the θ-section of the following Borel set in R

4 ×Θ:

(D × Θ) ∪ {(x, θ) : rΛ (x, θ) > 0, dist (x,D) < rΛ (x, θ)} .

Next, we need to show that θ 	→ mθ
(
DΛ,θ

)
is measurable with respect to

BΘ. More generally, if C ∈ BR4 × BΘ and Cθ ≡
{
x ∈ R

4 : (x, θ) ∈ C
}

is the
θ−section of C, we claim that θ 	→ mθ

(
Cθ
)

is measurable with respect to BΘ.
To see this, denote Cθ

N ≡ Cθ ∩ BN (0) for every N ≥ 1 and choose a sequence
of mollifiers {ϕk ∈ [0, 1] : k ≥ 1} ⊆ Cc

(
R

4
)

such that gθ
k ≡ ϕk �χCθ

N
converges

to χCθ
N

under ‖·‖u as k → ∞. Moreover, for every k ≥ 1, since C ∈ BR4 ×BΘ,

(x, θ) 	→ gθ
k (x) =

∫

(y,θ)∈C,|y|<N

ϕk (x − y) dy

is also measurable with respect to BR4 ×BΘ. Thus, because gθ
k ∈ Cc

(
R

4
)

and∥
∥gθ

k

∥
∥

u
≤ 1 for every k ≥ 1 and mθ

εn
(dx) ⇀ mθ (dx),

mθ
(
Cθ
)

= lim
N→∞

lim
k→∞

lim
n→∞

∫

R4

gθ
k (x) Eθ

εn
(x) dx,

which is a measurable function in θ.
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At this point, one can already tell that it is convenient to consider the
spatial variable x and the GFF θ at the same time. In particular, if M (dxdθ) ≡
mθ (dx)W (dθ), then it is clear from the preceding that M (dxdθ) is a non-
negative σ−finite Borel measure on the product space R

4 × Θ. To connect
κ with K, it is natural to investigate the distribution of rΛ (x, θ) under the
M (dxdθ). To get started, we will first look at the distribution of mθ (Br (x))
under M (dxdθ) for any given r > 0. The following lemma says that we can
change our “perspective” by first choosing a “base” point x ∈ R

4 and then
examine the distribution of mθ (Br (x)) at x. This is realized by a procedure of
exchanging the order of integration. The proof of Lemma 6 is given in Sect. 5.

Lemma 6. For every x ∈ R
4, let Θx be the measurable subset of Θ as deter-

mined in (3.4), and define

θ 	→ m̂θ,x (dy) ≡
{

exp
(

γ2

2π2 K0 (|x − y|)
)

mθ (dy) if θ ∈ Θx,

mθ (dy) otherwise.
(4.4)

Then almost surely m̂θ,x (dy) is also a non-negative regular and σ-finite Borel
measure on R

4.
Moreover, for every r > 0, compact set Γ ⊆ R

4 and F ∈ C0(R4 × [0,∞)),
∫

Θ

∫

Γ

F
(
x,mθ (Br (x))

)
mθ (dx)W (dθ)

=
∫

Γ

∫

Θ

F
(
x, m̂θ,x (Br (x))

)
W (dθ) dx. (4.5)

In particular, this implies that for every r > 0, the joint distribution
of

(
x,mθ (Br (x))

)
under M (dxdθ) is the same as the distribution of(

x, m̂θ,x (Br (x))
)

under W (dθ) dx, whose marginal distribution on Θ at x
is independent of x.

Based on Lemma 6, instead of mθ (Br (x)) under M (dxdθ), we may
as well study the distribution of m̂θ,x (Br (x)) under W (dθ) dx. Similarly, to
understand rΛ (x, θ) under M (dxdθ), we only need to look at the random
variable given by

(x, θ) 	→ r̂Λ (x, θ) ≡
{

sup
{
r > 0 : m̂θ,x (Br (x)) ≤ Λ

}
if θ ∈ Θx,

0 otherwise.
(4.6)

under W (dθ) dx, whose marginal distribution on Θ at x is again independent
of x.

To proceed from here, we will follow the same strategy as in [5]. For the
sake of completeness, we will still present the main steps here. For every r > 0
and Λ > 0, since the distribution of m̂θ,x (Br (x)) and r̂Λ (x, θ) under W does
not depend on x, we can assume x is the origin and simplify the notation
by denoting Br ≡ Br (0), r̂Λ (θ) ≡ r̂Λ (0, θ) and m̂θ (Br) ≡ m̂θ,0 (Br (0)). We
want to find an “approximation” for m̂θ (Br) by conditioning on the value
of the GFF restricted to the “boundary” of Br. To be precise, recall from
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the definition (2.11) that if r (t) ≡ G−1 (t + G (R)) with t ≥ 0, then Xt =
I
(
hμ0

r(t)

)
− I

(
hμ0

R

)
has the same distribution as the standard Brownian

motion. We want to investigate the conditional expectation of m̂θ
(
Br(t)

)
given

Xt. To do this, we need to relate m̂θ
(
Br(t)

)
to the approximating measures

mθ
εn

(dx), which requires us to overcome the singularity of e
γ2

2π2 K0(|·|) at the
origin. To this end, assume {fl : l ≥ 1} ⊆ Cc

(
BR

)
is a sequence with 0 ≤ fl ↗

χBr(t) as l → ∞, then9

Cc

(
BR

)
� dl (·) ≡ fl (·) e

γ2

2π2 (K0(|·|)∧l) ↗ χBr(t) (·) e
γ2

2π2 K0(|·|).

Therefore, one can apply the convergence results in Theorem 5 to dl for every
l ≥ 1. Together with the monotone convergence theorem, one sees that for
every t ≥ 0,

E
W [

m̂θ
(
Br(t)

)
|Xt

]
= lim

l→∞
lim

n→∞
E

W [
Mθ

εn
(dl) |Xt

]
. (4.7)

Given the order of taking limits in the right-hand side of (4.7), for every l ≥ 1
and eventually all large n, we have Bεn

(y) ⊆ Br(t) ⊆ BR for every y ∈
supp (dl). Thus, by a simple exercise on conditional expectations of Gaussian
random variables along with (2.9), we can derive from (4.7) that

E
W [

m̂θ
(
Br(t)

)
|Xt

]

=
∫

Br(t)

e
γ2

2π2 K0(|y|) exp [(I0 (|y|) − I2 (|y|) P (t)) γXt]

× exp
[
−γ2t

2
(I0 (|y|) − I2 (|y|) P (t))2

]
dy, (4.8)

where P (t) ≡
(
4π2t

)−1
[(

I2
1 − I0I2

)−1 (r (t)) −
(
I2
1 − I0I2

)−1 (R)
]
.

If one carefully examines the asymptotics near the origin of the Bessel
functions involved, one realizes that (4.8) suggests the conditional expectation
of m̂θ

(
Br(t)

)
given Xt, when t is large, is “approximately”

m̂θ∗ (Br(t)

)
≡ exp

(
γXt −

(
8π2 − γ2

2

)
t

)
. (4.9)

For the moment we will “pretend” m̂θ
(
Br(t)

)
is just m̂θ∗ (Br(t)

)
and formulate

the KPZ relation under this circumstance.
For every Λ > 0, we define the stopping time:

T ∗
Λ ≡ inf

{
t ≥ 0 : m̂θ∗ (Br(t)

)
= exp

(
γXt −

(
8π2 − γ2

2

)
t

)
≤ Λ

}
. (4.10)

The distribution of T ∗
Λ can be completely determined by a martingale argu-

ment, which is straightforward but worth repeating. Namely, for every s ≤ 0,
by Doob’s stopping time theorem,

{
exp

[
sXt∧T ∗

Λ
− s2

2 (t ∧ T ∗
Λ)
]

: t ≥ 0
}

is

9 The notation “α ∨ β” denotes “max {α, β}” and “α ∧ β” denotes “min {α, β}”.
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a uniformly bounded martingale. Furthermore, the continuity of Brownian
motion implies that

XT ∗
Λ

=
log Λ

γ
+
(

8π2 − γ2

2

)
T ∗

Λ

γ
.

Therefore, the fact that the expectation of the martingale at t = 0 is equal to
that at t = T ∗

Λ leads to the formula of the moment generating function of T ∗
Λ:

E
W

⎡

⎣exp

⎛

⎝−
γs2 − 2s

(
8π2 − γ2

2

)

2γ
T ∗

Λ

⎞

⎠

⎤

⎦ = Λ−s/γ . (4.11)

From here we can derive our first version of the KPZ relation which is easy
but revealing.

Lemma 7. Assume D ⊆ R
4 is a bounded Borel set with Euclidean scaling

exponent κ ∈ [0, 1], i.e.,

lim
λ↓0

log Vol (Dλ)
log λ4

= κ. (4.12)

For every Λ > 0, let T ∗
Λ be as in (4.10) and define the random “radius”:

θ 	→ r∗
Λ (θ) ≡ G−1 (T ∗

Λ (θ) + G (R)) ,

and the random “neighborhood”:

θ 	→ DΛ∗,θ ≡ ∪x∈DBr∗
Λ(θ) (x) .

Then, we have

lim
Λ↓0

log E
W [

mθ
(
DΛ∗,θ

)]

log Λ
= lim

Λ↓0

log E
W
[
(r∗

Λ)4κ
]

log Λ
= K (4.13)

where K ∈ [0, 1] is determined by the following quadratic relation with κ:

κ = K

(
1 − γ2

16π2

)
+

γ2

16π2
K2. (4.14)

Proof. Clearly in this setting, we want to cover D with open balls that
all have the same “critical” radius determined by the stopping time associ-
ated with the martingale m̂θ∗ (Br(t)

)
(defined in (4.9)). We do not have to

worry about the measurability of θ 	→ mθ
(
DΛ∗,θ

)
because both θ 	→ r∗

Λ (θ)
and (θ, r) 	→ mθ (Dr) are measurable. Conditioning on r∗

Λ = r ∈ (0, R],
DΛ∗,θ is bounded and open, and the conditional expectation of mθ

(
DΛ∗,θ

)

is a multiple (reciprocal of the probability density function of r∗
Λ at r) of

vol (Dr), which, according to (4.12),10“≈” r4κ for every r ∈ (0, R]. This
means E

W [
mθ
(
DΛ∗,θ

)]
≈ E

W
[
(r∗

Λ)4κ
]

and further ≈ E
W [

exp
(
−8π2κT ∗

Λ

)]
.

10 Throughout this article, the notation “≈” means “bounded from above and below by a
universal constant multiple of”.
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Given (4.11), clearly one wants to set 8π2κ to be s2

2 − s
γ

(
8π2 − γ2

2

)
for some

s ∈ [−γ, 0], in which case

lim
Λ↓0

log E
W [

mθ
(
DΛ∗,θ

)]

log Λ
= lim

Λ↓0

log E
W [

exp
(
−8π2κT ∗

Λ

)]

log Λ
= − s

γ
.

The results in (4.13) and (4.14) follow immediately after setting K ≡ − s
γ .

�

Next, we argue that m̂θ∗ (Br) is indeed a “legitimate” approximation for
m̂θ (Br) in the sense that r∗

Λ, as defined in Lemma 7, approximates r̂Λ : θ 	→
r̂Λ (θ) when “compared” in the limit of the logarithm ratio.

Lemma 8. Assume the pair (κ,K) ∈ [0, 1]2 satisfies the quadratic relation in
(4.14). Then,

lim
Λ↓0

log E
W
[
(r̂Λ)4κ

]

log Λ
= K or equivalently lim

Λ↓0

log E
W
[
(r̂Λ)4κ

]

log EW
[
(r∗

Λ)4κ
] = 1. (4.15)

The proof of this lemma is given in Sect. 5. There we also prove a prelimi-
nary result (Lemma 10) which actually implies the almost sure non-triviality of
the measure m̂θ (dx) as well as mθ (dx). Most importantly, this lemma builds
up the final passage to the KPZ relation for mθ (dx), the “true” case in which
we are interested. Again, we will only present the statement here and leave
the proof to the next section.

Theorem 9. Let D ⊆ R
4 be a bounded Borel set with Euclidean scaling exponent

κ ∈ [0, 1]. Then D has quantum scaling exponent K ∈ [0, 1] as defined in (4.3),
where K is related to κ by (4.14).

5. Proofs of Results in Section 4

We will now prove Lemma 6. The strategy is to relate mθ (dx) to the approx-
imating measures mθ

εn
(dx) and recognize that, by the Cameron–Martin for-

mula, the density of mθ
εn

(dx), i.e., Eθ
εn

(x) = exp
(
γI
(
hμx

εn

)
(θ) − γ2

2 G (εn)
)
,

is just the Radon–Nikodym derivative with respect to W of the Gaussian
measure induced by the translation θ 	→ θ + γhμx

εn
under W. Note that the

constraint 0 < γ2 < 2π2 becomes necessary in this proof.

Proof of Lemma 6: Let m̂θ,x (dy) be the measure as defined in (4.4). The claim
that m̂θ,x (dy) is non-negative regular and σ-finite follows from the observation
that exp

(
γ2

2π2 K0 (|x − ·|)
)

is locally integrable with respect to mθ (dx) if θ ∈
Θx. Without loss of generality, we will assume x = 0. The only possible problem
comes from the singularity at 0. However, if we rewrite
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∫

Bε0 (0)

e
γ2

2π2 K0(|y|)mθ (dy) =
∞∑

k=0

∫

εk≤|y|<εk−1

e
γ2

2π2 K0(|y|)mθ (dy)

≤
∞∑

k=0

e
γ2

2π2 K0(εk)mθ
(
Bεk−1 (0)

)
,

then the criterion (3.4) for Θx guarantees that the series in the right-hand side
of above is convergent.

Now we move on to the second part of the lemma. Clearly both mappings

(x, θ) 	→ F
(
x,mθ (Br (x))

)
and (x, θ) 	→ F

(
x, m̂θ,x (Br (x))

)

are measurable with respect to BR4 ×BΘ, so the two integrals in (4.5) are well
defined and in fact finite. Choose a continuous mapping x ∈ Γ 	→ ρx ∈ C0

(
R

4
)

with 0 ≤ ρx < χBr(x). We first show that (4.5) holds with χBr(x) replaced by
ρx. Namely, we claim that

∫

Θ

∫

Γ

F
(
x,Mθ (ρx)

)
mθ (dx) W (dθ)

=
∫

Γ

∫

Θ

F

(
x,Mθ

(
ρxe

γ2

2π2 K0(|x−·|)
))

W (dθ) dx. (5.1)

We start with rewriting the left-hand side of (5.1). Since F
(
x,Mθ (ρx)

)

is continuous in x ∈ Γ, the weak convergence result implies that
∫

Γ

F
(
x,Mθ (ρx)

)
mθ (dx) = lim

n→∞

∫

Γ

F
(
x,Mθ (ρx)

)
mθ

εn
(dx) ,

which, by the dominated convergence theorem, leads to
∫

Θ

∫

Γ

F
(
x,Mθ (ρx)

)
mθ (dx)W (dθ)

= lim
n→∞

∫

Θ

∫

Γ

F
(
x,Mθ (ρx)

)
Eθ

εn
(x) dxW (dθ) . (5.2)

By Fubini’s Theorem and the consideration (about viewing Eθ
εn

(x) as the
Radon–Nikodym derivative of the translated Wiener measure) we made before
the proof, we have the right-hand side of (5.2) that equals

lim
n→∞

∫

Γ

∫

Θ

F
(
x,M

θ+γhμx
εn (ρx)

)
W (dθ) dx.

Now given x ∈ R
4, the Cameron–Martin theorem guarantees that also with

probability 1, m
θ+γhμx

εn
εk (dy) weakly converges to m

θ+γhμx
εn (dy) as k → ∞

simultaneously for all n ≥ 1. In particular,
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M
θ+γhμx

εn (ρx) = lim
k→∞

M
θ+γhμx

εn
εk (ρx)

= lim
k→∞

∫

R4

ρx (y) exp
(
γ2

E

[
I
(
hμy

εk

)
I
(
hμx

εn

)])
Eθ

εk
(y) dy.

At this point, it is clear that (5.1) would follow if we can show that for every
θ ∈ Θx,

lim
n→∞

lim
k→∞

∫

R4

ρx (y) exp
(
γ2

E

[
I
(
hμy

εk

)
I
(
hμx

εn

)])
Eθ

εk
(y) dy

=
∫

R4

ρx (y) exp
(

γ2

2π2
K0 (|x − y|)

)
mθ (dy) < ∞. (5.3)

The right-hand side of (5.3) is finite for θ ∈ Θx as we have seen in the proof of
the first part of this lemma. To establish the equation in (5.3), we assume that
n ≥ 1 is sufficiently large and k ≥ n and divide the integral in the left-hand
side of (5.3) into three pieces:
⎧
⎪⎨

⎪⎩

∫

|y−x|<εn−εk

+
∫

εn−εk≤|y−x|≤εn+εk

+
∫

|y−x|>εn+εk

⎫
⎪⎬

⎪⎭

ρx (y) exp
{

γI
(
hμy

εk

)
(θ) + γ2

E

[
I
(
hμy

εk

)
I
(
hμx

εn

)]
− γ2

2
G (εk)

}
dy.

(5.4)

We will investigate the limit as k → ∞ and then n → ∞ of each piece sepa-
rately.

By (2.10), the last integral in (5.4) equals
∫

|y−x|>εn+εk

ρx (y) e
γ2

2π2 K0(|x−y|)Eθ
εk

(y) dy. (5.5)

If the domain in (5.5) is replaced by {y : |y − x| > εn}, then the integral would
be

∫

|y−x|>εn

ρx (y) e
γ2

2π2 K0(|x−y|)Eθ
εk

(y) dy

= Mθ
εk

(
ρxe

γ2

2π2 K0(|x−·|∨εn)

)
−e

γ2

2π2 K0(εn)

∫

|x−y|≤εn

ρx (y)Eθ
εk

(y) dy. (5.6)

As k → ∞ and then n → ∞, the first term in the right-hand side of (5.6)

converges to
∫

R4 ρx (y) e
γ2

2π2 K0(|x−y|)mθ (dy) (which is the term we want and
also the only term that should survive in the limit). On the other hand,
as k → ∞, the second term on the right-hand side of (5.6) is bounded

by e
γ2

2π2 K0(εn)mθ
(
Bεn

(x)
)
, which, because θ ∈ Θx, converges to zero when

n → ∞. As for the “redundant annulus” which is the difference between the
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left-hand side of (5.6) and (5.5), it is bounded by e
γ2

2π2 K0(εn) times the integral
of Eθ

εk
over the annulus {εn < |x − ·| ≤ εn + εk}. One can apply the Schwarz

inequality to see that this integral is bounded by

e
γ2
2 G(εk)

√
vol ({εn < |x − ·| ≤ εn + εk})

(
mθ,2γ (2Γ)

) 1
2

, (5.7)

where 2Γ ≡ {2y : y ∈ Γ}. Given the considerations at the end of Sect. 2,
without loss of generality, we can assume mθ,2γ (2Γ) is finite and hence the
limit of (5.7) as k → ∞ with n fixed is zero (because the volume of the
annulus ≈ εk ≈ e−2π2G(εk) and 2π2 > γ2), so this “annulus” is negligible.

The second integral in (5.4) becomes negligible by a similar argument.
This time the Schwarz inequality implies that the second integral is bounded
by

eγ2
√

G(εk)G(εn)e
γ2
2 G(εk)

√
vol ({εn − εk < |x − ·| < εn + εk})

(
mθ,2γ (2Γ)

) 1
2

,

where we use the simple estimate E

[∣∣
∣I
(
hμy

εk

)
I
(
hμx

εn

)∣∣
∣
]

≤
√

G (εk) G (εn).
Again, with n fixed, the factor that involves k converges to zero.

As for the first integral, because of (2.9) and the asymptotics of the
Bessel functions involved, E

[
I
(
hμy

εk

)
I
(
hμx

εn

)]
is bounded by ηG (εn) for

some constant η ∈ (1, 2) for all sufficiently large n. Therefore, with n fixed,
the integral as k → ∞ is bounded by eηγ2G(εn)mθ

(
Bεn

(x)
)
, and as n → ∞

it therefore converges to zero.
So far we have proved the claim (5.1). To reach (4.5), one takes a sequence

{ρx
l : l ≥ 1} ⊆ C∞

c

(
R

4
)

such that 0 ≤ ρx
l ↗ χBr(x) as l → ∞, and for every

l ≥ 1, x ∈ R
4 	→ ρx

l ∈ C0

(
R

4
)

is continuous. So (5.1) holds for each l ≥ 1.
After carefully examining the integrals on both sides of (5.1), one realizes that
the limit as l → ∞ can be passed all the way inside to produce (4.5). At
the end, it is clear that given x, the distribution of m̂θ,x (Br (x)) under W is
independent of x due to the translation invariance of measure mθ (dy). Hence
we have completed the proof of Lemma 6. �

Now we move on to the proofs of the KPZ results. The techniques we
adopt here differ from those used in the two-dimensional proofs in [5], partly
because of the absence in our setting of the two-dimensional conformal struc-
ture as well as the compactness of the domain. For example, the next lemma
is the “tail estimate” which is the key estimate in proving both Lemma 8
and Theorem 9. In the two-dimensional counterpart, the corresponding esti-
mate ([5], §4.3) is a super-exponential type of estimate. Below we prove an
exponential type of estimate in the four-dimensional setting, but by care-
fully “tuning” the exponential decay rate, we can still make it sufficient for
our purposes. Again, the occurrence of m̂θ (dy) in the next lemma refers

to the measure e
γ2

2π2 K0(|y|)mθ (dy), assuming θ ∈ Θ0. In other words, only
balls centered at the origin are concerned. However, since the distribution of
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m̂θ,x (Br (x)) under W does not depend on x, the same result will hold for

m̂θ,x (dy) = e
γ2

2π2 K0(|x−y|)mθ (dy) (assuming θ ∈ Θx) no matter what x is.

Lemma 10. Let B be the closed ball in R
4 centered at the origin with unit

volume under e
γ2

2π2 K0(|y|)dy, i.e.,
∫

B
e

γ2

2π2 K0(|y|)dy = 1. If δ and ρ are constants
satisfying

0 < δ < 4π2 − 2γ2 and
4π2 + γ2

8π2 − γ2 − δ
< ρ < 1,

then there exists C > 0 such that11 for all sufficiently large A > 0,

W
(
m̂θ (B) ≤ e−Aγ

)
≤ C exp

[
−2ρ

γ

(
8π2 − γ2 − γ2

ρ
− δ

)
A

]
. (5.8)

Proof. Since B is closed, it suffices to estimate W(lim supn→∞ m̂θ
εn

(B) ≤
e−Aγ) where m̂θ

εn
(dy) has density e

γ2

2π2 K0(|y|) with respect to mθ
εn

(dy). By
the same argument as used in deriving the estimate (3.1), we can show that
there exists constant C > 0 such that for all n ≥ 1,

E
W
[∣
∣
∣m̂θ

εn+1
(B) − m̂θ

εn
(B)

∣
∣
∣
2
]

≤ Ce−(8π2−γ2)G(εn).

For any δ with 0 < δ < 4π2 − 2γ2, denote A′
n, n ≥ 1, the measurable set

{
∀l ≥ n,

∣
∣
∣m̂θ

εl+1
(B) − m̂θ

εl
(B)

∣
∣
∣ ≤ e−Aγe− δ

2 G(εl)
}

.

Then it follows easily from Chebyshev’s inequality and the Borel–Cantelli
Lemma that W (

⋃∞
n=1 A′

n) = 1. Moreover, if A1 = A′
1 and An = A′

n\A′
n−1 for

n ≥ 2, then there exists constant C > 0 such that for all n ≥ 2,

W (An) ≤ Ce2Aγe−(8π2−γ2−δ)G(εn). (5.9)

Set B ≡
{
lim supn→∞ m̂θ

εn
(B) ≤ e−Aγ

}
, then W (B) =

∑∞
n=1 W (B ∩ An)

and it is clear that θ ∈ B ∩ An implies m̂θ
εn

(B) ≤ cδe
−Aγ , where cδ =

1 +
∑∞

n=1 e− δ
2 G(εn). Given any ρ such that 4π2+γ2

8π2−γ2−δ < ρ < 1 (notice that
such ρ always exists since 0 < δ < 4π2 − 2γ2 and 4π2 + γ2 < 8π2 − γ2 − δ),
we set up the “threshold” N ∈ N which is the unique (recall that G is strictly
decreasing on (0,∞)) integer such that

G (εN ) <
2ρA

γ
but G (εN+1) ≥ 2ρA

γ
. (5.10)

The desired estimate (5.8) is trivial when n ≥ N + 1, because (5.9) and (5.10)
imply

∞∑

n=N+1

W (B ∩ An) ≤ Ce2Aγe−(8π2−γ2−δ)G(εN+1)

≤ C exp
[
−2ρ

γ

(
8π2 − γ2 − γ2

ρ
− δ

)
A

]
.

11 Throughout this section, C denotes a constant that may depend on γ, δ, ρ and R, but
universal in A, n, x and Λ. The values of C may change from line to line.
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When n = 1, . . . , N , we apply Jensen’s inequality to see that

W
(
m̂θ

εn
(B) ≤ cδe

−Aγ
)

≤ W

⎛

⎝exp

⎡

⎣
∫

B

(
γI
(
hμy

εn

)
(θ) − γ2

2
G (εn)

)
e

γ2

2π2 K0(|y|)dy

⎤

⎦ ≤ cδe
−Aγ

⎞

⎠

≤ W

⎛

⎝
∫

B

I
(
hμy

εn

)
(θ) e

γ2

2π2 K0(|y|)dy ≤ −A +
γ

2
G (εn) +

log cδ

γ

⎞

⎠ . (5.11)

By Corollary 3, without loss of generality, we can assume that for all n ≥ 1 and
every θ, the function y ∈ B 	→ I

(
hμy

εn

)
(θ) is continuous and hence uniformly

continuous on B. Therefore, one can easily check (for example, by writing the
integral as the limit of a discrete sum of Gaussian random variables) that

θ ∈ Θ 	→
∫

B

I
(
hμy

εn

)
(θ) e

γ2

2π2 K0(|y|)dy ∈ R

is also a centered Gaussian random variable for every n ≥ 1, and furthermore,
the variance can be bounded by a constant M that is universal in n ≥ 1. In
fact, M can be taken as a constant multiple of

∫∫

B×B

K0 (|x − y|) e
γ2

2π2 (K0(|x|)+K0(|y|))dxdy.

Since G (εn) < 2ρA
γ for n = 1, . . . , N , A − γ

2 G (εn) > (1 − ρ)A, and (5.11)
implies that when A is sufficiently large,

W
(
m̂θ

εn
(B) ≤ cδe

−Aγ
)

≤ exp

[

− 1
2M

(
A − γ

2
G (εn) − 1

γ
log cδ

)2
]

≤ exp

[

− 1
2M

(
(1 − ρ) A − 1

γ
log cδ

)2
]

≤ exp
[
− 1

4M
(1 − ρ)2 A2

]
.

In addition, (5.10) implies that N is approximately a constant multiple of A.
Therefore, when A is large,

N∑

n=1

W (B ∩ An) ≤
N∑

n=1

W
(
m̂θ

εn
(B) ≤ cδe

−Aγ
)

≤ CAe− (1−ρ)2A2

4M .

So
∑N

n=1 W (B ∩ An) actually decays super-exponentially fast as A → ∞, and
this estimate can certainly be transformed into the desired form as in (5.8).

�

We are now ready to prove Lemma 8. Recall the notation r̂Λ : θ 	→
r̂Λ (0, θ) where r̂Λ (0, θ) is as defined in (4.6) with x being the origin. Let
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(κ,K) ∈ [0, 1]2 be a pair as in (4.14). In order to get (4.15), it suffices to show
that

C−1 ≤ Λ−K
E

W
[
(r̂Λ)4κ

]
≤ C (5.12)

for some constant C > 0 universal in Λ as Λ ↓ 0. We will prove the existence
of the upper bound and the lower bound in (5.12) separately.

Proof of the upper bound in (5.12): For notational convenience, we introduce
the “stopping time” corresponding to r̂Λ, i.e., TΛ ≡ G (r̂Λ) − G (R). We want
to show that Λ−K

E
W [

exp
(
−8π2κTΛ

)]
is bounded from above uniformly in

small Λ. It is clear, from (5.8) and the fact that W (Θ0) = 1, where Θ0 is as
in (3.4), that TΛ ∈ (−G (R) ,∞) almost surely. Let constant δ and ρ be as in
the statement of Lemma 10. Set

S ≡ − log Λ
8π2 − γ2

2ρ
(
8π2 − γ2 − γ2

ρ − δ
)

− Kγ2

2ρ
(
8π2 − γ2 − γ2

ρ − δ
) .

Then the expectation of exp
(
−8π2κTΛ

)
can be written as

E
W [

exp
(
−8π2κTΛ

)
χ{−G(R)<TΛ<S}

]
+ E

W [
exp

(
−8π2κTΛ

)
χ{S≤TΛ<∞}

]
.

In the first term, TΛ < S implies that the volume of the closed ball cen-
tered at the origin with radius r (S) = G−1 (S + G (R)) ( ≈ exp

(
−2π2S

)
) is

no greater than Λ under the measure m̂θ (dy), while this ball has volume

≈ (r (S))4− γ2

2π2 (≈ exp
(
−
(
8π2 − γ2

)
S
)
) under the measure e

γ2

2π2 K0(|y|)dy.
However, by Lemma 10, the probability of this event is bounded by

C exp
(

−2ρ

γ

(
8π2 − γ2 − γ2

ρ
− δ

)(
− log Λ

γ
− 8π2 − γ2

γ
S

))
,

which, given this particular choice of S, is equal to a constant multiple of ΛK .
Therefore, the first piece of integral causes no trouble.

The second integral is bounded by e−8π2κS . Hence we only need to check
that Λ−Ke−8π2κS , or equivalently, exp

(
−K log Λ − 8π2κS

)
stays bounded as

Λ ↓ 0. In fact, we will show that for all possible values of (κ,K) and all
sufficiently small Λ > 0, K log Λ + 8π2κS ≥ 0, that is (assuming log Λ < 0),

K ≤ 8π2κ

8π2 − γ2

2ρ
(
8π2 − γ2 − γ2

ρ − δ
)

− Kγ2

2ρ
(
8π2 − γ2 − γ2

ρ − δ
) . (5.13)

To simplify the notations, let us write ζ ≡ 2ρ
(
8π2 − γ2 − γ2

ρ − δ
)
. Recall from

the statement of Lemma 10 that 0 < δ < 4π2 − 2γ2 and 4π2+γ2

8π2−γ2−δ < ρ < 1, so
8π2 < ζ < 16π2 − 4γ2. If we express κ in terms of K according to (4.14), then
the statement in (5.13) is equivalent to

F (K) ≡ γ2K2 +
(
16π2 − γ2 − ζ

)
K − ζ ≤ 0
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for all possible values of K ∈ [0, 1]. However, this is clearly true since F is
quadratic with the only critical point being strictly negative, and F (0) =
−ζ < 0 as well as F (1) = 16π2 − 2ζ < 0. �

Proof of the lower bound in (5.12): Recall that T ∗
Λ is the stopping time (as

defined in (4.10)) associated with the “approximating” measure m̂θ∗, and

E
W [

exp
(
−8π2κT ∗

Λ

)]
= ΛK .

We observe that E
W [

exp
(
−8π2κTΛ

)]
is greater than the integral of

exp
(
−8π2κTΛ

)
over the subset {TΛ ≤ T ∗

Λ}, where the integrand is greater
than or equal to exp

(
−8π2κT ∗

Λ

)
. Therefore, we have

E
W [

exp
(
−8π2κTΛ

)]

≥ E
W [

exp
(
−8π2κT ∗

Λ

)]
− E

W [
exp

(
−8π2κT ∗

Λ

)
χ{TΛ>T ∗

Λ}
]
.

It is clear that to get the desired lower bound, we need to find constant 0 <
c < 1 such that

Λ−K
E

W [
exp

(
−8π2κT ∗

Λ

)
χ{TΛ>T ∗

Λ}
]

≤ c (5.14)

uniformly in small Λ. Conditioning on T ∗
Λ = T , the event TΛ > T implies

that m̂θ
(
Br(T )

)
> Λ and hence

m̂θ(Br(T ))
m̂θ∗(Br(T ))

> 1. By Chebyshev’s inequality,

other than a factor given by the probability density function of T ∗
Λ, the con-

ditional probability of {TΛ > T} is bounded by the expectation of
m̂θ(Br(T ))
m̂θ∗(Br(T ))

,

which, given the expression in (4.8) (which is the conditional expectation of
the numerator given the denominator), can be bounded by constant c ∈ (0, 1)
which is universal in Λ and T . So the estimate in (5.14) will be satisfied by
this choice of c. �

Proof of Theorem 9: Assume D ⊆ BN (0) for some sufficiently large N ≥ 1.
Let rΛ (x, θ) and DΛ,θ be as defined in (4.1) and (4.2). Denote N (dθdx) ≡
W (dθ) dx. Based on Lemma 6, E

W [
mθ
(
DΛ,θ

)]
equals

M ({(x, θ) : either x∈D or dist (x,D)<rΛ (x, θ)})
= N ({(x, θ) : |x| ≤ 2N,dist (x,D)<r̂Λ (x, θ)})

+ lim
2N≤M→∞

N ({(x, θ) : 2N ≤ |x|≤M, dist (x,D) < r̂Λ (x, θ)}) . (5.15)

In the first term of the right-hand side of (5.15), conditioning on r̂Λ (x, θ)
under N (dθdx), since its marginal distribution on Θ does not depend on x, the
conditional probability of the set is proportional to vol

(
Dr̂Λ(x,θ) ∩ B2N (0)

)
.

We further split the set into two cases: r̂Λ (x, θ) > N and r̂Λ (x, θ) ≤ N , the
later of which also implies Dr̂Λ(x,θ) ⊆ B2N (0). Therefore, the first term can
be rewritten as (up to a constant depending on N)
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E
W [

vol
(
Dr̂Λ(x,θ)

)
χ{r̂Λ(x,θ)≤N}

]

+E
W
[
vol
(
Dr̂Λ(x,θ) ∩ B2N (0)

)
χ{r̂Λ(x,θ)>N}

]

= E
W [

vol
(
Dr̂Λ(x,θ)

)]
− E

W [
vol
(
Dr̂Λ(x,θ)

)
χ{r̂Λ(x,θ)>N}

]

+E
W
[
vol
(
Dr̂Λ(x,θ) ∩ B2N (0)

)
χ{r̂Λ(x,θ)>N}

]
.

According to the assumption (4.12) and Lemma 8, E
W [

vol
(
Dr̂Λ(x,θ)

)]
≈ ΛK

when Λ is sufficiently small. On the other hand, given r̂Λ (x, θ) > N , Dr̂Λ(x,θ)

is always contained in the ball centered at the origin with radius 2r̂Λ (x, θ),
so the last two terms in the right-hand side of the equation above are both
bounded by (up to a constant)

E
W
[
(r̂Λ (x, θ))4 χ{r̂Λ(x,θ)>N}

]
≤ 4

∫

[1,∞)

u3W (r̂Λ (x, θ) > u) du. (5.16)

If ζ ≡ 2ρ
(
8π2 − γ2 − γ2

ρ − δ
)

where δ and ρ are the same as in the statement
of Lemma 10, then by (5.8),

W (r̂Λ (x, θ) > u) ≤ W
(
m̂θ,x (Bu (x)) ≤ Λ

)
≤ CΛ

ζ

γ2 u
− ζ

γ2

(
4− γ2

2π2

)

.

Given the particular range of δ, ρ and ζ, one sees that not only is the integral
in (5.16) finite, but it also converges to zero faster than ΛK as Λ ↓ 0 for any
possible value of K ∈ [0, 1].

In the second term in (5.15), since D ⊆ BN (0), the assumptions |x| ≥ 2N
and dist (x,D) < r̂Λ (x, θ) imply r̂Λ (x, θ) > 1

2 |x| whose probability, as we

have seen earlier, is bounded by CΛ
ζ

γ2 |x|−
ζ

γ2

(
4− γ2

2π2

)

which is integrable (with
respect to dx) in the entire domain {|x| ≥ 2N}. Therefore, the second term
also converges to zero faster than ΛK as Λ ↓ 0. To summarize, we have shown
that E

W [
mθ
(
DΛ,θ

)]
is a constant multiple of ΛK + o

(
ΛK
)

as Λ ↓ 0 which is
sufficient for the desired conclusion. �

6. Possible Generalizations

Generalizations to R
2n:

In this subsection, we outline a possible generalization of the four-dimensional
treatments carried out in previous sections to higher even dimensions R

2n

with n ≥ 2. We consider the GFF on R
2n with the underlying Hilbert space

H ≡ Hn
(
R

2n
)

which is the completion of the Schwartz test function space
S
(
R

2n
)

under the inner product ((I − Δ)n ·, ·)L2 . Similarly, for every x ∈
R

2n and ε > 0, σx
ε denotes the tempered distribution which is to take the

spherical average of a test function over the sphere Sε (x). In this setting,
σx

ε ∈ H−n
(
R

2n
)

and again if hσx
ε

≡ (I − Δ)−n
σx

ε , then hσx
ε

∈ H and the
Paley–Wiener integral I

(
hσx

ε

)
can be viewed as the “generalized” action of

σx
ε on the GFF. Moreover, the higher order of the operator (I − Δ)n allows us

to take higher “derivatives” of σx
ε in the radial variable ε. If dmσx

ε ≡ dm

dεm σx
ε
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is defined in the sense of tempered distribution for every m ∈ N, then simple
computations of the Fourier transforms show that

σ̂x
ε (ξ) = Cnei(x,ξ)

R2n (ε |ξ|)1−n
Jn−1 (ε |ξ|)

and (dmσx
ε )ˆ (ξ) =

dm

dεm
σ̂x

ε (ξ) = Cnei(x,ξ)
R2n

dm

dεm

(
Jn−1 (ε |ξ|)
(ε |ξ|)n−1

)

,

where Cn > 0 is a dimensional constant. In particular, we can write

(dmσx
ε )ˆ (ξ) = Cnei(x,ξ)

R2n ϕ(m) (ε |ξ|) |ξ|m

where ([19], §3.31) ϕ (r) ≡ Jn−1(r)
rn−1 for r > 0 and ϕ(m) (r) is analytic in r near

0 and asymptotic to r−(n− 1
2 ) as r → ∞ for every m ∈ N. Therefore, σx

ε and
dmσx

ε for 1 ≤ m ≤ n − 1 are in H−n
(
R

2n
)
.

We can mimic the approach in Sect. 2 and define the vector-valued Gauss-
ian random variable on Θ: for every x ∈ R

2n and ε > 0,

V x
ε ≡

(
I
(
hσx

ε

)
, I
(
hdσx

ε

)
, . . . , I

(
hdn−1σx

ε

))�
.

It turns out that in this setting we can also compute the covariance matrix
of the family

{
V x

ε : x ∈ R
2n, ε > 0

}
explicitly under each circumstance as

prescribed in Lemma 1, and the covariance matrix also has a similar “sep-
arability” property as in four-dimensional case. In fact, following a similar
computation as the one (provided in appendix) conducted to prove Lemma 1,
it is not hard to see that there exist invertible n × n matrices A (r), B (r),
C (r) and D (r) for every r ∈ (0,∞), such that all the entries of A (r)
and D (r) are functions in the linear span of {r−�Kk(r) : 0 ≤ � ≤ k ≤
2n − 2}, while all the entries of B (r) and C (r) are in the linear span of{
r−�Ik (r) : 0 ≤ � ≤ k ≤ 2n − 2

}
. Moreover, given x ∈ R

2n and ε1 ≥ ε2 > 0,

E
W
[
V x

ε1

(
V x

ε2

)�] = A (ε1)B� (ε2); given x, y ∈ R
2n with x �= y and ε1 >

|x − y| + ε2, E
W
[
V x

ε1

(
V y

ε2

)�] = A (ε1)C (|x − y|)B� (ε2); given x, y ∈ R
2n

with x �= y and |x − y| > ε1+ε2, E
W
[
V x

ε1

(
V y

ε2

)�] = B (ε1)D (|x − y|)B� (ε2).

Therefore, if we similarly defined the “normalized” vector Ux
ε ≡ B−1 (ε) V x

ε ,
then the Gaussian family

{
Ux

ε : x ∈ R
2n, ε > 0

}
will have the same properties

as those of the corresponding family (also denoted by Ux
ε ) in four dimensions.

On the other hand, all the entries of the matrix B (ε) are linear com-
binations of ε−lIk (ε) with 0 ≤ l ≤ k ≤ 2n − 2, and if one lets ε2 ↓ 0 in the
covariance matrix obtained in the second circumstance (when ε1 > |x − y|+ε2)
from above, combined with integral expressions for the entries of the covari-
ance matrix, then one can easily conclude that there exists constant matrix B
which is non-degenerate (hence so is B−1) such that B (ε) converges to B as
ε ↓ 0. Therefore, all the entries of B−1 (ε) must be analytic in ε near zero. In
particular, by examining the asymptotics of the entries of B−1 (ε) near zero,
one can find the appropriate constant vector ζ ∈ R

2n such that (Ux
ε , ζ)

R2n

“approximates” the GFF at x when ε is small in the same sense as described
in Sect. 2.
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Clearly, (Ux
ε , ζ)

R2n has all the properties of I
(
hμx

ε

)
in four dimensions as

stated in Theorem 2. When ε1 ≥ ε2 > 0,

G (ε1) ≡ E
W
[(

Ux
ε1 , ζ

)2
R2n

]
= E

W [(
Ux

ε1 , ζ
)

R2n

(
Ux

ε2 , ζ
)

R2n

]
;

when ε1 > ε2 + |x − y|, E
W [(

Ux
ε1 , ζ

)
R2n

(
Uy

ε2 , ζ
)

R2n

]
= c (ε1, |x − y|) which

is independent of ε2; when |x − y| > ε1 + ε2, E
W [(

Ux
ε1 , ζ

)
R2n

(
Uy

ε2 , ζ
)

R2n

]
=

d (|x − y|) which is independent of ε1 and ε2. In principle, we can derive the
explicit formulas of G (ε1), c (ε1, |x − y|) and d (|x − y|), and one can expect
that they have logarithmic growth when ε1 and |x − y| are small because the
Green’s function of the operator (I − Δ)n on R

2n has logarithmic growth near
the diagonal. Therefore, it is reasonable to believe that if one takes (Ux

ε , ζ)
R2n

to construct a sequence of approximating measures, i.e.,

mθ
εk

(dx) ≡ exp
(

γ
(
Ux

εk
, ζ
)

R2n (θ) − γ2

2
G (εk)

)
dx,

then the sequence
{
mθ

εk
: k ≥ 1

}
will almost surely admit a limit measure in

the sense of weak convergence. Furthermore, the quantum scaling component
of a bounded set on R

2n under this limit measure should also satisfy a qua-
dratic relation with its counterpart under the Lebesgue measure. However, the
amount and the complexity of computations quickly become considerable as
n increases.

Generalizations to Manifolds:

In this last part we explain a more conceptual approach to constructing analogs
of the two-dimensional GFF on compact even-dimensional manifolds. As we
have remarked in Sect. 1, in dimension two, the GFF defines a measure on a
conformal class of metrics on a Riemann surface Σ, constructed starting with
a reference metric g0 on Σ, but in the end independent of g0. In fact, the GFF
inner product of two functions f1, f2 ∈ C∞

c (Σ) is defined by [4,5,10,16]

(f1, f2)Δg0
≡ (f1,Δg0f2) ≡

∫

Σ

f1(x)(Δg0f2)(x)dvolg0(x),

where Δg0 is the Laplace–Beltrami operator on Σ with respect to g0. This
inner product is conformally invariant. Indeed, if the metric g0 is changed
conformally to g1 = e2ωg0 for some ω ∈ C∞

c (Σ), then the volume element
changes as

dvolg1 = e2ωdvolg0 ,

while the Laplacian is changed as Δg1 = e−2ωΔg0 . Therefore, after obvious
cancelations, we find that

(f1, f2)Δg1
= (f1, f2)Δg0

.

It seems natural to define a similar measure for conformal classes of met-
rics in higher dimensions. Below, we explain how to do that for certain confor-
mal classes on compact manifolds M of even dimension 2n. In the construction,
we find it convenient to use conformally covariant elliptic operators described
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below. In the discussion, we restrict ourselves to even-dimensional manifolds,
although the corresponding operators can be defined in odd dimensions as
well.

Let M be a manifold of even dimension 2n, n ≥ 2, and g0 a Riemannian
metric on M. Then, there exists on M an elliptic operator P = Pg0 of order 2n,
called the dimension-critical GJMS operator, constructed by Graham–Jenne–
Mason–Sparling in [7], with the following properties:

P = Δn + lower order terms;

in fact, P has a polynomial expression in (Levi-Civita connection) ∇ and
(scalar curvature) R, with coefficients that are rational in dimension 2n; P is
formally self-adjoint ([6,8]); under a conformal change of metric g1 = e2ωg0,
the operator P changes as Pg1 = e−2nωPg0 .

Given these properties, we can imitate the construction of the GFF in
dimension two: for f1, f2 ∈ C∞(M), the inner product is defined by

(f1, f2)Pg0
≡
∫

M

f1(x)(Pg0f2)(x)dvolg0(x).

Then, this inner product is also conformally invariant. When the metric g0 is
changed conformally to g1 = e2ωg0, the volume element changes as

dvolg1 = e2nωdvolg0 ,

while P changes as Pg1 = e−2nωPg0 . Again, we get the relation

(f1, f2)Pg1
= (f1, f2)Pg0

,

just like in dimension two.
When n = 2, the dimension-critical GJMS operator

P4 = Δ2
g0

+ δ[(2/3)Rg0g0 − 2Ricg0 ]d

is also called the Paneitz operator. If M is flat, then the Paneitz operator is
equal to Δ2, hence in R

4 it is natural to work with Δ2. However, since R
4 is

not compact, we need to consider the operator on a compact domain, in which
case we have to choose proper boundary operators to preserve the conformal
covariance property. This will be further explored in future work.

On the compact 2n-dimensional manifold M, if we construct a Gaussian
random field using the dimension-critical GJMS operator P , then the covari-
ance function of the field is given by the Green’s function GP (x, y) of the
operator P . Let d (x, y) be the Riemannian distance between x and y on M.
Then, it is known ([2,13,14]) that as d (x, y) ↓ 0, GP (x, y) is asymptotic to
−Cn log d(x, y) where Cn > 0 depends only on the dimension. This is similar
to the well-known behavior of the Green’s function of the Laplace–Beltrami
operator Δ in dimension two. This will become an important ingredient in
the construction of the random measure on the manifold, which we intend to
explore in a future paper.
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7. Appendix

This section contains all the computations with the Bessel functions. We start
with the Fourier transforms of σx

ε and dσx
ε , and list all the integral expressions

for the covariance function of the family
{
I
(
hσx

ε

)
, I
(
hdσx

ε

)
: x ∈ R

4, ε > 0
}
.

Lemma 11. Recall from (2.1) and (2.2) that the Fourier transforms of σx
ε and

dσx
ε are, respectively,

σ̂x
ε (ξ) = 2 (ε |ξ|)−1

J1 (ε |ξ|) ei(x,ξ)
R4

and ˆdσx
ε (ξ) =

d
dε

σ̂x
ε (ξ) = −2ε−1J2 (ε |ξ|) ei(x,ξ)

R4 .

Therefore, both σx
ε and dσx

ε are in H−2
(
R

4
)
. In fact, for ε1, ε2 > 0,

E
W
[
I
(
hσx

ε1

)
I
(
hσx

ε2

)]
=

1
2π2ε1ε2

∞∫

0

τ

(1 + τ2)2
J1 (ε1τ) J1 (ε2τ) dτ, (7.1)

E
W
[
I
(
hσx

ε1

)
I
(
hdσx

ε2

)]
=

−1
2π2ε1ε2

∞∫

0

τ2

(1 + τ2)2
J1 (ε1τ) J2 (ε2τ) dτ, (7.2)

and

E
W
[
I
(
hdσx

ε1

)
I
(
hdσx

ε2

)]
=

1
2π2ε1ε2

∞∫

0

τ3

(1 + τ2)2
J2 (ε1τ) J2 (ε2τ) dτ. (7.3)

Furthermore, for x, y ∈ R
4, x �= y, and ε1, ε2 > 0,

E
W
[
I
(
hσx

ε1

)
I
(
hσy

ε2

)]

=
1

π2ε1ε2 |x − y|

∞∫

0

1
(1 + τ2)2

J1 (ε1τ) J1 (ε2τ) J1 (|x − y| τ) dτ, (7.4)

E
W
[
I
(
hσx

ε1

)
I
(
hdσy

ε2

)]

=
−1

π2ε1ε2 |x − y|

∞∫

0

τ

(1 + τ2)2
J1 (ε1τ) J2 (ε2τ) J1 (|x − y| τ) dτ, (7.5)
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and

E
W
[
I
(
hdσx

ε1

)
I
(
hdσy

ε2

)]

=
1

π2ε1ε2 |x − y|

∞∫

0

τ2

(1 + τ2)2
J2 (ε1τ) J2 (ε2τ) J1 (|x − y| τ) dτ. (7.6)

Proof. Everything follows from straightforward computations in spherical
coordinates in R

4 and applications of the following integral expression of the
Bessel functions ([19], §3.3 ): for every k ≥ 1 and r > 0,

Jk (r) =

(
r
2

)k

Γ
(
k + 1

2

)
Γ
(

1
2

)
π∫

0

eir cos(θ) sin2k θdθ.

In addition, as we have indicated in Sect. 2, the asymptotic expansion ([19],
§7.1) of Jk says that Jk (r) = O

(
r−1/2

)
as r → ∞, which is sufficient to

guarantee the convergence of each integral involved in (7.1)–(7.6). �

It will be convenient to recognize that all the covariance functions
involved in the previous lemma, i.e.,

E
W
[
I
(
hσx

ε1

)
I
(
hσy

ε2

)]
, E

W
[
I
(
hσx

ε1

)
I
(
hdσy

ε2

)]

and E
W
[
I
(
hdσx

ε1

)
I
(
hdσy

ε2

)]
,

are continuous in all variables x, y ∈ R
4 and ε1, ε2 > 0. In fact,

E
W
[
I
(
hσx

ε1

)
I
(
hdσy

ε2

)]
=

d
dε2

E

[
I
(
hσx

ε1

)
I
(
hσy

ε2

)]

and

E
W
[
I
(
hdσx

ε1

)
I
(
hdσy

ε2

)]
=

d2

dε1dε2
E

[
I
(
hσx

ε1

)
I
(
hσy

ε2

)]
.

These simply follow from the dominated convergence theorem and the fact
that both Jk (r) and Jk (r) /r are bounded in r ∈ (0,∞) for every k ≥ 1.

Proof of Lemma 1: The proof of all the formulas (2.3)–(2.5) is based on the
following integral formulas of Bessel functions which can be found in [19],
§13.53, pp 429–430: if a ≥ b > 0 and p > 0, then

∞∫

0

τ

τ2 + p2
J1 (aτ) J1 (bτ) dτ = K1 (ap) I1 (bp) ; (7.7)

if a > b + c and p > 0, then
∞∫

0

1
τ2 + p2

J1 (aτ) J1 (bτ) J1 (cτ) dτ = p−1K1 (ap) I1 (bp) I1 (cp) . (7.8)
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We hereby provide an alternative proof of these two formulas and complete
the computations in Lemma 1. For a fixed p > 0, we define the function

B (a, b) ≡ 1
2π2ab

∞∫

0

τ

τ2 + p2
J1 (aτ) J1 (bτ) dτ for a, b > 0.

Given a > 0, we observe that if δx is the point mass at x ∈ R
4, then the

following integral is finite:
(

1
2π

)4 ∫

R4

1
p2 + |ξ|2

· ei(x,ξ) · 2J1 (a |ξ|)
a |ξ| dξ

=
1

2π2a |x|

∞∫

0

τJ1 (aτ) J1 (|x| τ)
p2 + τ2

dτ = B (a, |x|) .

But this integral is also “formally” equal to
((

p2 − Δ
)−1

σ0
a, δx

)

L2
. In other

words,
((

p2 − Δ
)−1

σ0
a

)
(x) = B (a, |x|)

is a point-wise defined, radially symmetric function in x ∈ R
4. Therefore, in

the sense of tempered distribution,
(
p2 − Δ

)
B (a, |x|) = σ0

a,

which, when written in spherical coordinates, implies that
(

p2 − ∂2
b − 3

b
∂b

)
B (a, b) = 0 for all 0 < b �= a.

The above is a Bessel-type ordinary differential equation, all the solutions of
which are in the form of

C1 (a)
K1 (bp)

b
+ C2 (a)

I1 (bp)
b

,

where C1 and C2 are two functions only depending on a. Without loss of
generality, we can assume b < a. If one examines the behavior of B (a, b) when
b is close to zero, then one finds that C1 (a) ≡ 0 because bB (a, b) converges to
zero while K1 (bp) blows up as b ↓ 0. On the other hand, with b > 0 fixed, one
can apply exactly the same arguments to see that B (a, b) also satisfies

(
p2 − ∂2

a − 3
a
∂a

)
B (a, b) = 0 for all a > b.

Hence, C2 (a) must be in the form of

C2 (a) = C
K1 (ap)

a
+ C ′ I1 (ap)

a

for some constant C and C ′. This time, the boundedness of aB (a, b) as a ↑ ∞
implies C ′ = 0.
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Thus, the only thing left is to determine the constant C. To this end, we
observe that

2π2a2B (a, a) =

∞∫

0

u

u2 + a2p2
J2

1 (u) du

−→
∞∫

0

J2
1 (u)
u

du as a ↓ 0.

However, one can easily verify that

d
du

(
−J2

0 (u) + J2
1 (u)

2

)
=

J2
1 (u)
u

.

So lima↓0 2π2a2B (a, a) = 1
2 . Meanwhile, lima↓0 I1 (ap) K1 (ap) = 1

2 , which
implies C = 1

2π2 . Therefore,

B (a, b) =
1

2π2ab
I1 (bp) K1 (ap) for a > b > 0.

For the formula (7.8), we define

C (a, b, c) =
1

π2abc

∞∫

0

1
τ2 + p2

J1 (aτ) J1 (bτ) J1 (cτ) dτ for a, b, c > 0.

Assume a > b + c. One can verify, by direct computations inside the integral
signs and the dominated convergence theorem, that

p2C (a, b, c) − ∂2

∂c2
C (a, b, c) − 3

c

∂

∂c
C (a, b, c) = 0 for 0 < c < a − b,

and lim
c↓0

C (a, b, c) = B (a, b) .

Similarly as above, one has

C (a, b, c) =
2I1 (cp)

cp
B (a, b) =

1
π2abcp

K1 (ap) I1 (bp) I1 (cp) .

Thus, (7.7) and (7.8) are proved.
Given (7.7), notice that E

W
[
I
(
hσx

ε1

)
I
(
hσx

ε2

)]
can be computed by

applying the operator −1
2p

d
dp |p=1 to both sides of (7.7) with a = ε1 ∨ ε2 and

b = ε1 ∧ ε2. Then from there, based on the earlier observations, the complete
expression for the covariance matrix in the concentric case can be obtained by
taking derivatives in ε1 and ε2 accordingly. The detailed computations are as
follows. When ε1 ≥ ε2 > 0,

E
W
[
I
(
hσx

ε1

)
I
(
hσx

ε2

)]
=
(

− 1
2p

d
dp

|p=1

)
B (ε1, ε2)

=
−1
4π2

(
K ′

1 (ε1)
I1 (ε2)

ε2
+

K1 (ε1)
ε1

I ′
1 (ε2)

)

=
−1
4π2

(
K ′

1 (ε1) K1 (ε1) /ε1
)
(

I1 (ε2) /ε2
I ′
1 (ε2)

)
.
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Thus,

E
W
[
V x

ε1 (V x
ε2)

�
]

=

⎛

⎝
1 ∂

∂ε2

∂
∂ε1

∂2

∂ε1∂ε2

⎞

⎠E
W
[
I
(
hσx

ε1

)
I
(
hσx

ε2

)]

=
−1

4π2

(
K′

1 (ε1) K1 (ε1) /ε1
K′′ (ε1) (K1 (ε1) /ε1)

′

)(
I1 (ε2) /ε2 (I1 (ε2) /ε2)

′

I ′
1 (ε2) I ′′

1 (ε2)

)
.

Besides, one realizes that

(
K1 (ε1)

ε1

)′
= −K2 (ε1)

ε1
and

(
I1 (ε2)

ε2

)′
=

I2 (ε2)
ε2

,

and the formula (2.3) follows.
The non-concentric case is very similar. Given (7.8), we assign a = ε1

in case (2) and a = |x − y| in case (3). By a similar procedure, i.e., applying
−1
2p

d
dp |p=1 to (7.8) and taking derivatives in ε1 and ε2, we will be able to com-

pute the non-concentric covariance matrix in either (2) or (3). To be specific,
when ε1 > |x − y| + ε2, E

W
[
I
(
hσx

ε1

)
I
(
hσy

ε2

)]
equals

(
− 1

2p

d

dp
|p=1

)
C (ε1, ε2, |x − y|)

=
−1
2π2

(
K ′

1 (ε1)
I1 (ε2)

ε2

I1 (|x − y|)
|x − y| +

K1 (ε1)
ε1

I ′
1 (ε2)

I1 (|x − y|)
|x − y|

)

− 1
2π2

(
K1 (ε1)

ε1

I1 (ε2)
ε2

I ′
1 (|x − y|) − K1 (ε1)

ε1

I1 (ε2)
ε2

I1 (|x − y|)
|x − y|

)

=
−1
2π2

(
K ′

1 (ε1)
I1 (ε2)

ε2

I1 (|x − y|)
|x − y| +

K1 (ε1)
ε1

I ′
1 (ε2)

I1 (|x − y|)
|x − y|

+
K1 (ε1)

ε1

I1 (ε2)
ε2

I2 (|x − y|)
)

=
−1
2π2

(
K ′

1 (ε1)
K1(ε1)

ε1

)
(

I1(|x−y|)
|x−y| 0

I2 (|x − y|) I1(|x−y|)
|x−y|

)(
I1 (ε2) /ε2

I ′
1 (ε2)

)
;

when |x − y| > ε1 + ε2, E
W
[
I
(
hσx

ε1

)
I
(
hσy

ε2

)]
equals

(
− 1

2p

d
dp

|p=1

)
C (|x − y| , ε1, ε2)

=
−1
2π2

(
K ′

1 (|x − y|) I1 (ε1)
ε1

I1 (ε2)
ε2

− K1 (|x − y|)
|x − y|

I1 (ε1)
ε1

I1 (ε2)
ε2

)

− 1
2π2

(
K1 (|x − y|)

|x − y|
I1 (ε1)

ε1
I ′
1 (ε2) +

K1 (|x − y|)
|x − y| I ′

1 (ε1)
I1 (ε2)

ε2

)
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=
−1
2π2

(
−K2 (|x − y|) I1 (ε1)

ε1

I1 (ε2)
ε2

+
K1 (|x − y|)

|x − y|
I1 (ε1)

ε1
I ′
1 (ε2)

+
K1 (|x − y|)

|x − y| I ′
1 (ε1)

I1 (ε2)
ε2

)

=
−1
2π2

(
I1(ε1)

ε1
I ′
1 (ε1)

)
(

−K2 (|x − y|) K1(|x−y|)
|x−y|

K1(|x−y|)
|x−y| 0

)(
I1 (ε2) /ε2

I ′
1 (ε2)

)
.

The rest is straightforward. Thus, we have finished the proof of Lemma 1. �

Before continuing, we point out that similar computations can be carried
out in higher even dimensions R

2n with n ≥ 2. In fact, the formulas (7.7) and
(7.8) remain true if one replaces J1 by Jn−1 in the integrands, times a factor of
τ2−n to the integrand of (7.8), and replaces K1 by Kn−1, I1 by In−1, respec-
tively, in the results. Therefore, one can use these modified results to compute
the covariance function of the Gaussian family

{
I
(
hσx

ε

)
: x ∈ R

2n, ε > 0
}

(as

defined in Sect. 6) by applying the operator
(
− 1

2p
d
dp

)n−1

|p=1 to the modified
version of (7.7) and (7.8). The rest follows similarly as above.

Next, we want to provide details in the deriving the formulas for με
x (2.6)

and G (ε) (2.7) as well as the results (2.8)–(2.10) in Theorem 2.6. It is an easy
matter to check that for every ε > 0,

detB (ε) = ε−1
(
I2
1 (ε) − I0 (ε) I2 (ε)

)
> 0,

where we applied the Bessel function identities ([19], §3.71) I ′
1 (ε) = −I1(ε)

ε

+ I0 (ε) and I ′′
1 (ε) = −I2(ε)

ε + I1 (ε) . Therefore,

B−1 (ε) =
1

I2
1 (ε) − I0 (ε) I2 (ε)

(
εI1 (ε) − I2 (ε) I1 (ε) − εI0 (ε)

−I2 (ε) I1 (ε)

)
.

Recall that Ux
ε = B−1 (ε) V x

ε , when computed explicitly,

Ux
ε =

1
I2
1 (ε) − I0 (ε) I2 (ε)

×
(

(εI1 (ε) − I2 (ε)) I
(
hσx

ε

)
+ (I1 (ε) − εI0 (ε)) I

(
hdσx

ε

)

−I2 (ε) I
(
hσx

ε

)
+ I1 (ε) I

(
hdσx

ε

)
)

,

and if ζ = (1, 1)�, then μx
ε = f1 (ε) σx

ε + f2 (ε) dσx
ε where

f1 (ε) ≡ εI1 (ε) − 2I2 (ε)
I2
1 (ε) − I0 (ε) I2 (ε)

and f2 (ε) ≡ −εI2 (ε)
I2
1 (ε) − I0 (ε) I2 (ε)

, (7.9)

from which one sees that μx
ε has the “right” limit as ε ↓ 0. In addition, we can

apply more Bessel function identities:

I ′
1 (ε) =

1
ε
I1 (ε) + I2 (ε) , I0 (ε) − I2 (ε) =

2
ε
I1 (ε) ,

K ′
1 (ε) =

1
ε
K1 (ε) − K2 (ε) and I1 (ε) K2 (ε) + I2 (ε) K1 (ε) =

1
ε
,
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to write down B−1 (ε)A (ε) explicitly as
(
I2
1 (ε) − I0 (ε) I2 (ε)

)−1 times
(

−(1 + ε−2) I1(ε)K1(ε) + I2(ε)K0(ε) + ε−2

I1(ε)K1(ε) + I2(ε)K0(ε) + ε−2 −ε−2

)
.

Therefore, by setting ζ� = (1, 1), we have that:
(1) Given x ∈ R

4 and ε1 ≥ ε2 > 0,

G (ε1) = E
W
[
I
(
hμx

ε1

)
I
(
hμx

ε2

)]

=
(

− 1
4π2

)
ζ�B−1 (ε1)A (ε1) ζ

=
(

− 1
4π2

)
2I1 (ε1) K1 (ε1) + 2I2 (ε1) K0 (ε1) − 1

I2
1 (ε1) − I0 (ε1) I2 (ε1)

;

(2) Given x, y ∈ R
4, x �= y, and ε1, ε2 > 0 with ε1 > |x − y| + ε2,

E
W
[
I
(
hμx

ε1

)
I
(
hμy

ε2

)]

=
(

− 1
2π2

)
ζ�B−1 (ε1)A (ε1)C (|x − y|) ζ

= −
(

2I1 (|x − y|)
|x − y| + I2 (|x − y|)

)
(I1K1 + I2K0) (ε1)
2π2 (I2

1 − I0I2) (ε1)

+
I1 (|x − y|)

2π2 |x − y| (I2
1 − I0I2) (ε1)

= I0 (|x − y|) G (ε1) − I2 (|x − y|)
4π2 (I2

1 − I0I2) (ε1)
;

(3) Given x, y ∈ R
4, x �= y, and ε1, ε2 > 0 with |x − y| > ε1 + ε2,

E
W
[
I
(
hμx

ε1

)
I
(
hμy

ε2

)]
=
(

− 1
2π2

)
ζ�D (|x − y|) ζ.

=
(

− 1
2π2

)(
2K1 (|x − y|)

|x − y| − K2 (|x − y|)
)

=
1

2π2
K0 (|x − y|) .
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