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A Class of Conformal Curves
in the Reissner—Nordstrom Spacetime

Christian Liibbe and Juan Antonio Valiente Kroon

Abstract. A class of curves with special conformal properties (conformal
curves) is studied on the Reissner—Nordstrom spacetime. It is shown that
initial data for the conformal curves can be prescribed so that the result-
ing congruence of curves extends smoothly to future and past null infinity.
The formation of conjugate points on these congruences is examined. The
results of this analysis are expected to be of relevance for the discussion
of the Reissner—Nordstrom spacetime as a solution to the conformal field
equations and for the global numerical evaluation of static black hole
spacetimes.

1. Introduction

Conformal methods constitute a powerful tool for the discussion of global
properties of spacetimes—in particular, those representing black holes. The
conformal structure of static electrovacuum black hole spacetimes is, to some
extent, well understood—see e.g. [16,17]. However, the constructions involved
often require several changes of variables and the introduction of some type of
null coordinates. This choice of coordinates may not be the most convenient
to undertake an analysis of global or asymptotic properties of a spacetime
by means of the conformal Einstein field equations—see e.g. the discussion in
[11]. A key issue in this respect, is how to construct in a systematic/canonical
fashion a conformal extension of the spacetime which, in addition, eases the
analysis of the underlying conformal field equations—for a review of the con-
formal equations and the issues involved in their analysis see e.g. [12]. In the
case of vacuum spacetimes, gauges based on the use of conformal geodesics
offer such a systematic approach—see e.g. [13,15]. Conformal geodesics are
invariants of the conformal structure: a conformal transformation maps con-
formal geodesics into conformal geodesics—this is not the case with standard
geodesics unless they are null.

One of the main advantages of the use of conformal geodesics in the con-
struction of gauge (and coordinate) systems in a vacuum spacetime is that
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they provide an a prior: conformal factor which can be read off directly from
the data one has specified to generate the congruence of conformal geodesics.
Hence, one has a canonical procedure to generate a conformal extension of the
spacetime in question. In addition, gauge systems based on conformal geodes-
ics give rise to a fairly straightforward hyperbolic reduction of the conformal
Einstein field equations in which most of the evolution equations are, in fact,
transport equations—see e.g. [12,14].

The useful property of having an a priori conformal factor is lost when
one considers conformal geodesics in non-vacuum spacetimes. Nevertheless, in
[20] it has been shown that this property can be recovered if one considers
a more general class of curves—the conformal curves. These curves satisfy
equations similar to the conformal geodesic equations, but with a different
coupling to the curvature of the spacetime. In the vacuum case they coincide
with the conformal geodesic equations. Gauges based on this class of curves
have been used in [20] to revisit the stability proofs for the Minkowski and
the de Sitter spacetimes first given in [9] and to obtain a stability result for
purely radiative electrovacuum spacetimes. They also have been used in [21]
to analyse the geodesic completeness of non-linear perturbations of Friedman—
Robertson—Walker spacetimes with radiation perfect fluids.

Given the results described in the previous paragraph, a natural question
to be raised is whether conformal geodesics, and more generally, the class of
conformal curves introduced in [20] can be used to analyse global aspects of
black hole spacetimes. A first analysis of this question has been carried out in
[13] where it has been shown that the maximal extension of the Schwarzschild
spacetime, the so-called Schwarzschild-Kruskal spacetime [18], can be covered
with a congruence of conformal geodesics which has no conjugate points. The
conformal Gaussian gauge system obtained using this congruence offers a van-
tage perspective for the study of conformal properties of the Schwarzschild
spacetime and for its global evaluation by means of numerical methods—see
e.g. [27].

In the present article we analyse to what extent a similar construction can
be performed for the Reissner-Nordstrom spacetime. The idea of considering
the Reissner-Nordstrom spacetime is, for several reasons, natural. The inclu-
sion of the electromagnetic field provides a model of angular momentum—see

g. [5,6]. Moreover, we expect our analysis to provide insights into more gen-
eral (i.e. less symmetric) situations—e.g. the Kerr and Kerr—-Newman space-
times. In addition, there is an expectation that black hole spacetimes with
timelike singularities could be more tractable from the point of view of the
conformal geometry than black holes with spacelike singularities.!

The main results of our analysis is the following;:

1 This expectation is based on the analysis of the structure of spatial infinity of the Schwarz-
schild spacetime. In this case, the well understood divergence of the Weyl tensor at spatial
infinity can also be regarded as the timelike singularity of a negative mass Schwarzschild
spacetime—see e.g. [23] for a conformal diagram of this.
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Theorem. The domain of outer communication of a non-extremal Reissner—
Nordstrém spacetime with ¢> < %mQ can be covered with a timelike congruence
of conformal curves which contains no conjugate points. In the extremal case
m? = ¢°, the non-existence of conjugate points for an analogous congruence
can be ensured, in the worst of cases, for the region in the domain of outer
communication outside a certain timelike tube intersecting the horizon. In both

cases, the congruence of conformal curves extends smoothly to null infinity.

A technical version of the main result is given in Theorem 1 of Sect. 7. The
congruence obtained in this theorem is naturally parametrised in terms of the
coordinates of the intersection of the curves with the time symmetric hypersur-
face of the domain of outer communication. In terms of this parametrisation
one observes three different types of behaviour in the curves. Curves starting
at points with a radial coordinate bigger than a certain critical value rg reach
(in the conformal picture) null infinity for a finite value of a (conformal) affine
parameter. Curves starting at an initial radius smaller than rg reach the hori-
zon, again in a finite amount of the conformal affine parameter of the curve.
Finally, curves starting exactly at a radius given by the critical value rg reach
timelike infinity in finite conformal time.

Numerical solutions of the conformal curve equations show that for
%mQ < ¢®> < m? the congruence of conformal curves contains no conjugate
points in the domain of outer communication. Thus, our main result can be cer-
tainly improved. Doing this, however, would increase considerably the length
of our analysis. In view of future applications, the extremal case is certainly the
one of the most interest. The same numerical simulations show that, generi-
cally, conjugate points in the congruence form after the curves have crossed the
horizon and entered the black hole region of the spacetime. From the perspec-
tive of the Cauchy problem for the Einstein field equations, these conjugate
points are not a major concern as one is mainly interested in the behaviour of
the spacetime in the domain of outer communication and at the horizon. This
is, in particular, the case in the problem of the so-called non-linear stability of
black hole spacetimes—see e.g. [7].

An important insight obtained from our analysis concerns the behaviour
of the conformal curves reaching timelike infinity. While in the non-extremal
case the curves become null at timelike infinity, in the extremal Reissner—
Nordstrom spacetime the curves remain timelike up to, and including, timelike
infinity. This change of the causal character of the conformal curves in the
non-extremal case indicates a degeneracy of the conformal structure of the
spacetime—a similar behaviour in conformal curves has been identified in [12].
One concludes from this observation that the structure of timelike infinity in
the extremal Reissner-Nordstrom spacetime is more regular than in the non-
extremal case and amenable to further detailed analysis. This insight will be
explored elsewhere.

Our main result provides a suitable conformal gauge to analyse the prop-
erties of the Reissner—Nordstrom spacetime by means of the conformal Einstein
field equations. In particular, it opens the possibility of global numerical eval-



1330 C. Liibbe and J. A. Valiente Kroon  Ann. Henri Poincaré

uations of the spacetime [26] similar to the ones carried out in [27] for the
Schwarzschild spacetime.

Finally, we point out that some interesting recent work on other aspects
of the Reissner—Nordstrém spacetime can be found in [1-3,8].

Outline of the Article

The present article is structured as follows: in Sect. 2, we present a discussion
of the features of the Reissner—-Nordstrom spacetime that will be used in our
present analysis. Section 3 provides a discussion of the properties of the class
of conformal curves that will be used to study the conformal properties of
electrovacuum spacetimes. Section 4 particularises the expressions of Sect. 3
to the case of the Reissner—Nordstrom, and establishes general properties of the
congruence under consideration. Section 5 contains the main results concerning
the behaviour of the individual curves of the congruence. Section 6 analyses the
behaviour of the deviation equation of the congruence of conformal curves and
provides the proof of the fact that for the congruence under consideration the
curves do not intersect in the domain of outer communication of the black hole
spacetime. Finally, Sect. 7 provides some concluding remark to our analysis.
The article contains an appendix in which the behaviour of conformal geodesics
in the Schwarzschild spacetime is analysed in a way alternative to that of
reference [13].

Notations and Conventions

In what follows pu, v, ... will denote spacetime tensorial indices. The indices
«, 3, ... are spatial tensorial indices. The signature convention for the space-
time metrics is (+, —, —, —). Thus, the induced metrics on spacelike hypersur-
faces are negative definite. The Latin indices 4, j,... denote spacetime frame
indices taking the values 0,...,3, while a, b, ... correspond to spatial frame
ones ranging over 1, 2, 3.

An index-free notation will be often used. Given a 1-form w and a vector
v, we denote their contraction by (w,wv). Furthermore, w® and v” denote,
respectively, the contravariant version of w and the covariant version of wv.
The metric with respect to which the operation of raising/lowering indices
will be clear by the context.

In order to ease the presentation some of the notation used in [13] for the
various types of coordinates has been modified.

2. The Reissner—Nordstrom Spacetimes

We begin by recalling that the Einstein—-Maxwell field equations with vanishing
Cosmological constant are given by

1= ~ 1. =~ =
Ry — §R9W = MF/\V - ZQWFAPF/\pv (1a)
VrE,, =0, (1b)
@[#Fw\] =0, (1c)
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where R#,, denotes the Ricci tensor of the Lorentzian metric g, and F;w is the
Faraday tensor. In view of Birkhoff’s theorem for electrovacuum spacetimes—
see e.g. [24] page 232— the Reissner—Norstrom spacetime is the only spherically
symmetric solution to Egs. (1a)—(1c).

2.1. Basic Expressions and Coordinates

In what follows, we briefly discuss various coordinate representations of the
Reissner—Nordstrom spacetime that will be used in the sequel. Further details
can be found in e.g. [16,17].

2.1.1. Standard Coordinates. In standard spherical coordinates (t,r,0, ), the
line element and the Faraday tensor of the Reissner—Nordstrom spacetime is
given by

2m  ¢? om  ¢?\ ' 2 2
l——+ 5 Jdted—(1-—+ dr®@dr —r“o” (2a)
T rooor

r

g
F="Latna (2b)
2r2
where
o = (df ® df + sin® Ody @ dy)
is the standard metric of S2. All throughout it is assumed that
m>0, m®>g,

so that the solution describes a black hole. If ¢ = 0, the line element (2a)
reduces to the corresponding one of the Schwarzschild spacetime. As this case
was analysed in detail in [13], we assume ¢ # 0 unless explicitly stated. The
extremal case, ¢> = m?, is of particular interest. In that case the line element
reduces to

2 —2
§= (1—@) at ® dt — (1—T) ar ® dr — 0.
T T

In view of our subsequent discussion we define?

. 2m  q? 1
D(T)=<1—T+7,2>:T2(7"—7“+)(7“—T), (3)
where
re =m+/m? — ¢

As it is well known, the locus of points in the spacetime for which r = r and
r = r_ correspond, respectively, to the event horizon and the Cauchy horizon.
Notice that D(ry) = 0. In the extremal case we have that r1 = m so that

2 The function D(r) corresponds to the function F(7) of reference [13]. A different notation
has been introduced to avoid confusion with the Faraday tensor F'.
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the event and Cauchy horizons coincide. Notice that in the non-extremal case
0 <r_ <ry, and that

D(r)y>0 if r_ <ry <,
D(r)y<0 ifr_<r<ry,
D(r)y>0 if0<r<r_<r;.
However, in the extremal case
D(r)>0 for 0<r<m and m<r.
2.1.2. Isotropic Coordinates. An isotropic coordinate o can be introduced in
the line element (2a) via the requirement
e__£ (@)
dr /D
The latter condition implies, for r > r,, r_, the coordinate transforma-
tion

1 1
Q:§(r—m+ r2 —2mr + ¢?), r:4—g(29+m+Q)(2g+m—q), (5)
so as to obtain the line element
2_ 2 2
(1+q4g2 )
g= sdt ® dt

2
+ —
(1+me) (14 m50)

2 2
(144 1+ 279 (do®do+ o%0).
20 20

In the extremal case, the isotropic coordinate transformation reduces to
o=r—m, r=o+m,

and the corresponding line element is given by

—2 2
§= <1+’Z> dt @ dt — (1+’Z> (do ® do + 0*0).

For future reference it is noticed that

(1+%5°)
D(0) = D(r(0)) = .
(1 + %q) (1 n "Q—‘Qq)

and that
1
o+ = o(ry) = i§ m2 — ¢2.

In particular, in the extremal case one has

D(g) = (1 + TD_Q.
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F1cUure 1. Conformal diagrams of the Reissner—Nordstrom
spacetime: the non-extremal case (left) and the extremal case
(right)

2.1.3. Null Coordinates. Eddington—Finkelstein-like null coordinates can be
introduced in the non-extremal case via

2 2
u:t—<r—|—+ln|r—r+|—_lnr—r_>, (6a)
ry —r ry —7rT

2 2
v—t—|—<r—|—+lnr—r+|—_1n|r—r|>, (6b)
ry —T— ry —Tr—

so that one obtains the line elements
g=Dr)du@du+2du®dr—r’c, §=D(r)dvedv—2dvedr—rio.
(7)
In the extremal case, the corresponding change of coordinates leading to

line elements of the form given in (7) is given by
2

2
u:t—(r— m —|—2mlnr—m|>, v:t+(r— m —|—2m1n|r—m|>. (8)
r—m

2.2. Conformal Diagrams of the Reissner—Nordstrom Spacetime
The conformal Reissner—Nordstrom spacetime in both the non-extremal and

the extremal case are well known—see for example [4,16,17] for details on
their construction. These diagrams are included in Fig. 1 for quick reference.

2.3. Time Symmetric Initial Data

In the sequel, it will be shown how to cover portions of the Reissner—Nordstrom
spacetime by means of a congruence of curves whose initial data is prescribed
on the time symmetric slice S = {t = constant} of the spacetime. The hyper-
surface S has the topology of R3\{0}. The initial three-metric expressed in
isotropic coordinates takes the form

h = —¢*x*(do ® do + ¢*0), (9)
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with

¢

m+q m-—q
1 , =|(1 , € [0, ).
< " 20 ) * < " 20 > 2 [B00)
It m? > ¢? then the Riemannian three-dimensional manifold given by
(S, h) has two asymptotically Euclidean ends joined by a throat at o = g4. In

the extremal case one has either ¢ = 1 or x = 1. Accordingly, (S, iz) has one
asymptotically Euclidean end and one so-called trumpet-like end.

3. A Class of Conformal Curves

In what follows, we present a brief discussion of the properties of a class of
conformal curves introduced in [20]. These curves are a generalisation of the
conformal geodesics allowing to recover, for non-vacuum spacetimes, some of
the properties satisfied by conformal geodesics in a vacuum spacetime. Our
discussion of the properties of conformal curves is inspired by and follows
closely the discussion of conformal geodesics in vacuum spacetimes given in
[10,13].

Although the notion of conformal curves is applicable to spacetimes with
an arbitrary matter models, in what follows, for concreteness it is assumed that
(/\?t,g) denotes a spacetime satisfying the Einstein—-Maxwell field equations
(1a)-(1c). Let (M,g) denote a conformal extension of (M, g). Hence, there
exists a scalar © such that the metrics g and g are related via

g = ©%g. (10)

3.1. Basic Definitions

Given an interval I C R, let &(7),7 € I denote a curve in (M, §) and let b(r)
denote a 1-form along @ (7). Furthermore, let & = dz/dr denote the tangent
vector field of the curve x(7). The pairing between the vector & and the 1-form
b is denoted by (b, &). In [20] the following equations for the pair (x(7), b(T))
have been introduced:

Ved = —2(b, &)k + §(&, )b’ (11a)
- 1 -
Vab = (b,&)b — §gﬁ(b, by’ + H(z,-), (11b)

where V; denotes the directional derivative of the Levi-Civita connection of
the metric g, while H denotes a rank 2 covariant tensor which upon the
conformal transformation (10) transforms as:

_ 1
Hy —H, =V, Y, +71T,T, — 5ngf,, g, T,=071'v,0.

This transformation law is formally identical to that of the Schouten
tensor
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The Eqgs. (11a)—(11b) will be referred to as the conformal curve equations.
In a slight abuse of notation, the pair ((7),b(7)) will be called a conformal
curve. Following [20] we set

H =0, (12)
has been adopted so that Eq. (11b) reduces to

Vaib= (b, &)b— %gﬁ(b, b)i’. (13)

In what follows, the choice (12) will be assumed.

The choice given by Eq. (12) leads to an explicit expression for the con-
formal factor © in terms of the parameter 7. Indeed, by requiring x(7) to be
timelike and imposing the normalisation condition

g(@, @) =1, (14)
the conformal curve equations imply
. . 1
©=(bz)0, ©O= 5gﬁ(b, b~ !,  ©=0,
where © = V0, etc. Integrating the last of these equations one finds

@:@*4—@*(7——7*)—1—%@*(7'—7—*)2, (15)

where O,, G)* and @* are p.r_escribed at a fiduciary value 7, of the parameter
7. The coefficients O, and O, satisfy the constraints

where b, and &, denote, respectively, the value of b and & at 7 = 7.

Finally, let e;,7 = 0,...,3, denote a frame basis along (7). The frame
will be said to be Weyl propagated along the conformal curve (x(7),b(7)) if it
satisfies the equation

Vie; = —(b,e;)& — (b,e;)e; + j(e;, &)bF. (17)

It can be readily seen that a Weyl propagated frame which is
g-orthonormal at, say, 7 = 7. remains g-orthonormal all through a(7)—that
is, g(e;,e;) = n;;. Following the discussion of [13,20], if, consistently with
Eq. (14), one sets eg = & then it can be shown that

=070, b,=(0"'be,)., a=1,2 3.

As a consequence, the components of the 1-form b with respect to the
frame e; can be expressed in terms of the value of various fields at 7 = 7.
Hence, the 1-form b, like ©, is known a priori. For full details of the compu-
tations involved see e.g. [13,20].

Remark 1. Notice that by virtue of the normalisation condition (14), 7 is
the g-proper time of the conformal curve. We shall often refer to 7 as the
unphysical proper time.
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Remark 2. With the choice H = L, the Egs. (11a) and (11b) yield the so-called
conformal geodesic equations—see e.g. [10,13,15]. Notice that for a vacuum
spacetime L = 0 and the conformal geodesic equations are formally identical
to Egs. (11a)—(13). In this case, it was shown in Lemma 3.1 of [10] that a
quadratic expression for the conformal factor identical to (15) can be obtained.
Finally, it is observed that in the case of an electrovacuum spacetime one has
that L # 0 and the argument leading to Lemma 3.1 in [10] no longer holds.
The desire of retaining the expression (15) is what led in [20] to the notion of
conformal curves.

3.2. The g-Adapted Equations

As already mentioned, as a consequence of the normalisation condition (14),
the parameter 7 is the unphysical proper time of the curve a(7). In some
computations it is more convenient to consider a parametrisation in terms of
physical proper time 7. The parameter transformation is given by

ds
T = T« 7 N\ 1
T + o0s) (18)

with inverse 7 = 7(7). In what follows, we will write & = x(7(7)). It can then
be verified that

z = 0;x = Oz,

and that g(&’,Z') = 1. Hence, 7 is, indeed, the g-proper time of the curve Z.
Now, in order to write the equation for the curve Z(7) in a convenient
way, we consider the split

b:I;+wdzb,

where the 1-form b satisfies

7 <bv :1:> S\ 2 77
b, &) =0, w= 1, g°(b,b) = (b, &) + g*(b,b),
(b, e A COR O
and the indices of the vectors and forms have been moved using the metric g.
In terms of these objects the g-adapted equations for the conformal curves are

given by

Ve = b, (19a)
Vab =32z, (19b)

where
3 = —g* (b, b) = 6°°d,d; = constant (20)

is, by virtue of the discussion of Sect. 3.1, a constant along the conformal
curve. Finally, it is worth noticing that as a consequence of Eq. (19a), b* can
be interpreted as the physical acceleration of the conformal curve.
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3.3. The Deviation Equations

A crucial part of the analysis of the present article will be concerned with
the question of whether a congruence of conformal curves develops conjugate
points or not. To this end, let (x(7,\),b(7,\)) denote a family of conformal
curves depending smoothly on a parameter \. Following [13], let

X =2z, Z = 0\, B =Vb.
One then has that

A computation then shows that
VxVz(g'(b,b)) = VzVx (g (b b)) =0, (22)
as a consequence of Eq. (20). Hence, one concludes that the coefficients

Vs (gﬂ(B, 13)) and g¥(b, b) are constant along a conformal curve. For simplicity
one can evaluate them at 7 = 7,.

3.4. Formulae in Warped Product Spaces

The Reissner—Nordstrém spacetime in the standard coordinates (¢,7,0,¢) of
the line element of Eq. (2a) is in the form of a warped product. This structure
can be exploited to simplify the analysis of the g-adapted conformal curve
equations (19a)—(19b). In this section, we adapt the discussion of [13] to the
context of the conformal curves.

In what follows, we will consider spacetimes whose metric can be written
as a warped product of the form

g = lapdz? @ da? + f2kogda’ ® da?, (23)

with

lap =14B(z),  kap = kap(2%), f=f(z?) >0,
and A, B, C =0, 1 and a, b, c = 2, 3. In addition, it is assumed that the two-
dimensional metric given by the line element I = I4pd2z? ® dz? is Lorentzian,
while the one given by k = k.qdz¢®dz? is a negative-definite Riemannian one.
In view of this structure it is natural to consider solutions to the conformal
curve equations satisfying ©® = 0 and b, = 0. In the context of the spherically
symmetric Reissner—Nordstréom spacetime this Ansatz leads to solutions to
the conformal curves whose angular coordinates are constant. One only has to
consider evolution equations for the coordinates (r,¢). A direct computation
shows that for this type of conformal curves, the g-adapted equations for the
conformal curves imply

D@ = b, (24a)
i) = iﬁel(£/7 : )7 (24b)

with

€ = \/deo Adzt, A =detlsp,
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and where J) denotes the Levi-Civita covariant derivative of I and 32 given
by Eq. (20). The sign in Eq. (24b) is determined consistently with the initial
conditions. A further computation shows that under the present Ansatz, the
g-adapted deviation equations (21a)—(21b) are equivalent to each other and,
in turn, to the equation

Px PxZ = Rila(X, Z)a(X, ) = (Dzba(X, )+ baDxZ, )),
(25)

where R[l] denotes the Ricci scalar of I. The sign in the last equation is chosen
consistently with that of Eq. (24Db).
For conformal curves satisfying @ = 0 and b. = 0, the issue of whether

the deviation vector field Z degenerates can be rephrased in terms of the
question of the vanishing of the scalar

w=e(X,2Z). (26)

Notice that as long as w # 0,X and Z are linearly independent. A
computation using (25) yields

Dx Dxw= (4 3Rl ) o+ PP (21)

4. Basic Expressions for the Congruence of Conformal Curves
in the Reissner—Nordstrom Spacetime

In the present section, we particularise the discussion made in Sect. 3 to a
specific class of conformal curves in the Reissner—Nordstrom spacetime.

4.1. Initial Data for the Congruence

It follows from the discussion in Sect. 3.1 that the basic pieces of information
to be prescribed in order to construct a congruence of conformal curves are the
initial value of the conformal factor, ©,, and the initial value of the 1-form b,
at some initial hypersurface. Following the discussion of Sect. 2.3, we consider
the time symmetric slice of the Reissner—Nordstrom spacetime. By analogy to
the discussion in [13], and taking into account the three-metric of Eq. (9), we
choose

1 1 02

2 29,2 2 N2
N e N
- 2 2 (02 —t(m?—¢?
b, =b, = e;ld(”)* =——dr, = - (Q m—tq( ! 7)7?—‘1
T 9*(9*+ 2)(9*+ 2)
where it is assumed that r, > r,. The symbols 7, and o, are used to denote,

respectively, the radial coordinates r and p on the time symmetric slice. For
simplicity we also set 7, = 0. In addition, one has that

0, =

*9
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where D, = D(r,) and D(r) is given by Eq. (3). If, moreover, one assumes the
condition

(b, &), =0,

then the expression (15) for the conformal factor, together with the constraints

(16) imply
@:D*<<2§*)2_72>, (28)

where the coefficients D, , ©, and [ in this expression are taken to be constant
along a given conformal curve. Moreover, the conformal curves of the congru-
ence generated by the above conditions can be parametrised by the value of
their radial coordinate on the initial hypersurface, r. (or g.). Using expression
(28) in formula (18) one finds that the parameters 7 and 7 are related to each

other by
_ 1 20, + f7
=—In{——). 29
! ﬂn<2®*ﬁ7> (29)
The inverse relation giving 7 in terms of 7 is given by
20, 1
T = 3 tanh (257> . (30)

In terms of the physical proper time, 7, the expression (28) takes the
form
0.
O=—F5——. 31
cosh? (%ﬁi’) (31)
4.2. The Conformal Curve Equations for the Standard Coordinates

In order to write the conformal curve equations (24a)—(24b) for the Reissner—
Nordstrom metric, it is noticed that the metric I in the warped product line
element (23) is given by

l=D(r)dt®dt — D' (r)dr @ dr.
Equations (24a)—(24b) imply

{ + D(f) = D(’F) /6 T, (328“)
1! 8;D(77) —12 D(f)ar'D(F) 72 _ N\ F
=30 T 5 t"“ = D(r)B¢, (32b)

where consistent with the notation of Sect. 3.2 we have set 7 = r(7),t = (7).
Initial data for these equations is prescribed by observing the discussion of
Sect. 4.1, and by requiring & to be given initially by the unit normal to S. It
follows that

t,=0, T,>7ry, t.=
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where b, = <I;, ay), b, = <I;, 8,). Notice that r, = 7,,t, = t.. As a consequence
of the symmetry of the hypersurface S with respect to the bifurcation sphere at
r+« = r, it is only necessary to consider the case r. > r,. The Eqs. (32a)—(32b)
can be decoupled by making use of the g-normalisation condition

1
D(r)
Solving the latter for ¢ > 0 and substituting into (32b), one obtains that

1
7+ 50:D(r) = Bv/D(r) + 772 = 0. (35)

This equation can be integrated once to yield

\/W_B’F:’Y7

where v is a constant given in terms of the initial data by

v =—+/D..

D(7) 1 — 72 = 1. (34)

It follows that

7 =+\/(y+ pr)2 — D(7), (36)

with the sign depending on the value of r,.

4.3. Expressions for the Conformal Curve Equations in Null Coordinates

In order to discuss the behaviour of the conformal curves through null
infinity and the horizon one needs to consider the conformal curve equa-
tions (24a)—(24b) written in terms of the Eddington—Finkelstein null coor-
dinates of Sect. 2.1.3. A computation renders the pairs of equations

1
u" — 56;D(F)ﬂ'2 = —p,

w+%D®@D@mﬂ+meﬂwzﬂW+Dﬁﬁ%
and

1
7"+ 58;D(F)17’2 = v,
1
7 + 5 D(F)0;D() 0 ~ 0:D(F) ' = —p(i' — D(F)V'),

where 4 = u(7) and ¥ = v(7)—cf. [13]. As in the case of the standard Reissner—
Nordstréom coordinates, the above expressions can be decoupled using the g-
normalisation conditions

D(F)a?+2u'7 =1,  D(F) 0?2007 =1,

which, in turn, yield

= — (37a)
D(r) + 72 + 7

o 1 = — _y

v —%( D(T)+T2+7ﬂ). (37b)
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In the calculations leading to the above equations, it has been required
that v’ > 0 and v" > 0 at the initial hypersurface so as to have future oriented
curves. The initial conditions for these equations are given, for m? > ¢ and
re > 1y, by

2 2
1 - s 1 - T+
U = —T5 — In (T* TJF) 2 Ve =75 + In (7"* TJF) 2 (38)
T T
and in the case m? = ¢? with » > m by
2 2
Use = —Ts+ —2m 11’1(7‘* - m), Vs =Tx— +2m ln(T*_m) (39)
Te —M Te —M

—see Eqs. (6a)—(6b) and (8).

Remark. Once the function 7(7) has been determined, the expressions (37a)—
(37b) allow to obtain «(7) and v(7) by integration.

4.4. The Polynomials P(7) and Q(7)

Equation (36) can be written in the form
_ 1
72 = F—2P(T), (40)

where P(7) is the quartic polynomial

P(r) = ((y + 67)* = D(r)) -
Since 7, = 0, it can be readily verified that ¥ = r, is a root of P(7).
Hence, we write

P(r) = B*(F = r.)Q(F),
with

Q) =7 +nF +¢,
where
1 7>
= —(D,—1), = —.
The discriminant of this equation is given by
1 1
A==+ i
AT
It can be verified that D, —1 < 0 if r, > r4 so that n < 0. Furthermore,
some lengthy algebra shows that A > 0 for r, > ry. Thus, Q(7) has three
different real roots. Now, one readily sees that dQ/d7 = 0 if 7 = i%\/—n.
Furthermore a computation shows Q(5/=7) < 0. Hence, given that Q(7) —
o0 as T — oo, it follows that Q(7) has at least one positive root. Moreover,
as a consequence of the Descartes rules of signs one has that Q(7) has exactly
two positive roots and one negative.
Let a denote the root of Q(7) obtained from using Cardano’s formula:

agzi/—;ng\/EJr Y —%5—\/&
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It can be verified that if r, > r, and m? > ¢?, one has a3 > 0. The remaining
two roots are given in terms of ag and 1 by

1 1 1 1
a1:—§a3—§\/—3a§—4n, a2:—§a3+§\/—3a§—4n.
2

Notice, in particular, that 3a2 + 4n < 0. In the extremal case, ¢* = m?,
one obtains the simpler expressions

o = S (m + m) , (41a)

4(r, —m)
Q2 = *ﬁ (m - \/M) ) (41b)
as = mmiim) (41c)
For future reference it is noticed that given
Q.= Q(ry) = 2r? (2rf — 5mr, + 3q2) ,
one has that
Q(re) >0 if 7, €[rg,o0),
Q(ry) <0 if ry €[ry,re),
where
re = §m + 1 25m? — 244¢>. (42)

4 4

The constant rg will be seen to play a central role in the subsequent
analysis. In particular, one has the following lemma obtained from lengthy
calculations using the expressions obtained in the previous paragraphs:

Lemma 1. Given m? > ¢2, the roots oy, az, as of the polynomial Q(7) satisfy
the inequalities
<0< <r_<ry<r.<rg<as if 1€ (ry,re),
<0< <ro<ry<rg<az<r. if 1€ (rg,00),
<0< <ro<ry<azs=reg if r.=rg.

In the extremal case (m? = ¢*) one has
ap<0<ar<m<r.<rg<asz if 7r.€(mrg),
a1 <0<aa<m<rg<az<r, if 7€ (rg,00),

g <0<m<m<az=rg if r.=rg.

In terms of the roots aq, s and a3, Eq. (40) can be conveniently rewritten
as
ﬂQ

P2 = S (F =) (F = ) (F — a2)(F — a). (43)
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5. Analysis of the Conformal Curves

Our study of the behaviour of the conformal curves on the Reissner-Nordstrom
spacetime will be based on an analysis of the reduced equation (36). Three
qualitatively different behaviours can be identified according to whether 7, <
T@,Tx = I'g O Ty > Tg. As it will be seen, these cases are associated, respec-
tively, with a periodic, constant or monotonically increasing behaviour of the
function 7.

5.1. Conformal Curves with Constant 7

We start by investigating the possibility of having a conformal curve for which
7 is constant—that is, ¥ = 7’ = 0. Using Eq. (35) one obtains the condition

1
§8FD(7:) =0 D(f)- (44)
The latter can be solved to give
5 1
F=—-m=+ —1/25m2 — 244°.
T 4m 1 om q

Under the assumption m? > ¢2, it can be readily verified that

) 1 5 1
zm — Z\/ 25m2 — 24(]2 S T4 S Zm + i\/ 25m2 — 24q2 =T®-

Thus, only the solution to condition (44) with the positive radicand (i.e.
7 = rg) will be relevant for our subsequent discussion. For reasons which will
become clearer in the sequel, this particular conformal curve will be known as
the critical curve.

Some intuition can be obtained by evaluating the constant rg for the
particular cases of the Schwarzschild and the extremal Reissner—Nordstrom
spacetime:

5
re = 5m, for ¢ =0,

3
re = 5m, for ¢> = m>.

Using the cases ¢ = 0 and m? = ¢? as boundaries one can readily check
that § < Dg < £, where Dg = D(rg).

In order to understand the nature of the curve under consideration, one
has to analyse the behaviour of the functions ¢, 4 and ©. Using Eqs. (34) and
(37a)—(37b) with 7 = 0 one obtains

=
VDs’

where ug = Us|r,=rg, Ve = Vs|r,=re and u, and v, are given by expressions
(38) or (39) depending on whether one considers the non-extremal or extremal
case. Equation (45) can be expressed in terms of the unphysical proper time
7 using formula (29). One finds that

f:a—u®=5—v®= (45)

t=u—ugp =0V — Vg

- e In 26@ +ﬁ®7'
a 2D® 2@@ — ﬁ@T ’
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where Og denotes the value of the conformal factor of Eq. (28) evaluated at
(T=0,r. =7g).
From the expressions in (45) one has that

t, i, D — 00 as T — o0.

The region of the Reissner-Nordstrom spacetime described by such
behaviour corresponds, respectively, to the lowermost i T in the right-hand side
of the conformal diagram of the non-extremal Reissner—Nordstrém spacetime,
and the lowermost one of the extremal case—see Fig. 1. This computation also
shows that close to future null infinity the null coordinate u tends asymptoti-
cally to an affine parameter of the generators of .# T—see e.g. [16,22,25]. The
unphysical proper time required for the conformal curve to reach future null
infinity is given by

20 1

Tt = —— =

/8® T® \/5® .

Again, by looking at the cases ¢ = 0, ¢*> = m?

one can estimate

2 2
—— < <=
m

VEm

5.2. Conformal Curves with rg < 7,

The analysis of the conformal geodesics in the Schwarzschild spacetime of [13]
proceeded by solving explicitly Eq. (36) in terms of elliptic functions. One could
approach the analysis of the conformal geodesics in the Reissner-Nordstrom
spacetime in a similar fashion. Notice, however, that while in the Schwarzschild
case the polynomial P(7) is cubic, in the present case one has to deal with a
quartic polynomial. Hence, the elliptic functions one has to deal with are more
complex. In view of potential extensions of the present analysis to more general
classes of spacetimes it is desirable to follow a procedure which, in as much as
it is possible, does not depend on explicit solutions.

If rg < ry, a computation using Eq. (32b) together with the initial data
(33) shows that 7/ > 0. As 7, = 0, one has a local minimum at 7 = 0 and one
needs to consider the positive root of Eq. (40):

7 =/(y+8r)? = D(7), (46a)
= gx/(f—r*)(f—al)(f—az)(f—ag). (46D)

Using Lemma 1, it follows that a conformal curve with rg < 7(0) = 7,
has no turning points—i.e. ¥ # 0 for 7 > 0. Accordingly, the function 7 is
monotonically increasing if 7, > rg.

In order to assert the global existence of the solution to Eq. (46a)—
or (46b)—one has to verify that 7 does not blow up for finite 7. A direct
computation shows that

0-D(F) = %(mf — q2).
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Thus, 9-D(7) > 0 if ¢?/m < 7. As it is being assumed that ¢ > m? and
one has that %m < rg, it follows, indeed, that 0zD(7) > 0. Hence, one has
0 < D, < D(F). Furthermore, one finds that

¥ <+ BE = D. < |y + .

Now, for r, < 7, one has that

ly+ 87 =D.|1-2"| =D, (2T—1>.
T Ty
Thus, one deduces to the differential inequality
2D, _
7 < 3
Tx

which can be integrated to give

7 < 2T/

Thus, one has that 7 does not blow up for finite value of 7, and the
solution to (46a) with 7(0) = r, > rg exists for all times.

In order to obtain more information about the solution we construct a
lower fence. From (46b) one readily has that

N (47)

where

» = \/(7"* —aq)(rs — ag)(re — as).

The inequality (47) can be integrated to yield

T +

1/3
(65267 + 2/16r3 + 0,257 )

| —

27,
— <Tr.

1/3
(626627 + /1677 + 9,257

From this last inequality it follows that 7 — oo as T — oo. Recall that
7 — oo corresponds, following formula (29), to a finite value of 7. Accordingly,
the conformal curve reaches future null infinity .+ for a finite value of 7.

In order to discuss the behaviour of the function ¢, we consider the nor-
malisation condition (34) with 7 being the solution discussed in the previous
paragraphs. An argument similar to the one used for 7 shows that ¢ with
re > rg does not blow up in finite time and that ¢ — oo as ¥ — oo. The
coordinate t, however, is not a good coordinate to discuss the behaviour of the
conformal curves with respect to (future) null infinity. In order to do this, we
consider Eq. (37a), with 7 the solution of Eq. (46a) with r. > rg. Global exis-
tence of solutions to (46a) follows, again, by showing that the solution (and its
derivative) does not blow up in finite time. We now look in more detail at the
behaviour of 4 as T — oo. As D(7) is bounded for 7 € (rg, 00), it follows that
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there exists a sufficiently large positive number 7« and positive constants, C
and Cy, for which
C C
f1<ﬂ’<f2, for 7 > 7.
! ,r/
Using the chain rule in the form @' = 7du/d7 and by increasing 7« if
necessary, one can find constants, C; and Cs, for which one has
01 du
72 dr
From the latter, it follows that @ goes to a finite constant value (which
depends on r,) as ¥ — oo. Thus, one concludes that in the unphysical (i.e.
conformally rescaled) picture, the conformal curve reaches future null infinity
for a finite value of the unphysical proper time 7,+. This value can be read
from the conformal factor (28) to be 74+ = 20./0.

We summarise the results of the present section in the following propo-
sition:

&

= for 7 > 7(7x).

Proposition 1. The conformal curves with initial data given by (33) and r. >
re exist for all T € [0,00). The curves reach future null infinity for a finite
value of the parameter 7.

5.3. Conformal Curves with r, < rg

The case of conformal curves with r. < rg is, in some sense, the most interest-
ing one. From Eq. (40), the factorisation of the quartic polynomial P(7) and
Lemma 1 one concludes that if r. < rg, then the resulting conformal curve
will have turning points at 7 = r. and 7 = as. Using Eq. (35) a computation
shows that
iz, <0, 7' |izay > 0.

Hence, the turning points given by r, and as correspond to a maximum
and a minimum of the function 7, respectively. As 7 (and 7) are bounded, one
concludes that the solution to Eq. (40) with r, < rg exists for all 7 > 0.

5.3.1. Behaviour of the Curves in the Non-Extremal Case. As a consequence
of the discussion in the previous paragraph, the function 7 is initially decreas-
ing. Moreover, from Eqs. (37a)-(37b) one has that w}, v, > 0 so that the
concavity of the curve points, initially, away from the horizon—see Fig. 2.
From oo < 74, it follows there exists a value of 7 for which ¥ = r,—implying
that the conformal curve crosses the horizon. The temporal coordinate ¢ is not
appropriate for this discussion as t — oo for any curve approaching the event
horizon—this can readily be seen using the normalisation (34) and the fact
that D(r) = 0 at the event horizon—that is, at » = r. Hence, one makes use
of the null coordinate v. The evolution of this coordinate along the conformal
curve is described by Eq. (37b). Initially, one has that ¢/(0) = 1/4/D(7), so
that v is, at least initially, increasing. As a consequence of Lemma 1 one sees
that the conformal curve should cross the event and the Cauchy horizon before
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FIGURE 2. Schematic illustration of the behaviour of confor-
mal curves. To the left the non-extremal case: a the curve
starting at . = ry; b a curve with r, < rg; ¢ the critical
curve; d a curve with r, > rg. To the right the extremal case:
e a curve with r, < rg; f the critical curve; g a curve with
T+ > Tg. The curves are not depicted on scale

reaching the minimum of 7 at ¥ = aso. It is just necessary to check that the
various fields remain regular at the horizons.

As the curve approaches the event horizon at ¥ = r, both the numerator
and denominator of the right-hand side of Eq. (37b) vanish—in particular, the
numerator can vanish as 7 < 0. Using the L’Hopital rule and Eq. (35) one finds
that v'|7—,, is well defined and positive. Accordingly, the curve enters region
IT of conformal diagram of the non-extremal Reissner—Nordstrom spacetime—
see Fig. 2. A similar situation occurs as 7 approaches r_: the numerator and
denominator of Eq. (37b) both vanish; using the L’Hopital rule one verifies
that ¥’ is well defined at r_. Notice that as ¥ < 0 and ¥’ > 0, the curve
exits the region II of the conformal diagram through the left-hand side of the
Cauchy horizon. The turning point at 7 = a4 is located in the region III of the
conformal diagram. After the curve has reached this point, one has that 7 > 0
and the behaviour of the curve as it approaches again the horizon at 7 = r_ is
different. In this case, the numerator of the right-hand side of Eq. (37b) tends
to a non-zero value and one has that ¥ — oo—and hence, also v — oo. In
order to discuss the behaviour of the curve beyond this point one would have
to introduce a new set of null coordinates.

In Sect. 5.3.4 it will be shown that the points with 7 = r, r_, ay are
reached for a finite value of the physical proper time 7.

5.3.2. Behaviour of the Curves in the Extremal Case. As in the non-extremal
case, conformal curves in the extremal Reissner—Nordstrom spacetime with
re < rg satisfy 7, < 0 and @, > 0. Using the L'Hopital rule one can verify
that ¢’ is well defined and positive at 7 = ;. = m. Thus, the conformal curve
penetrates in the region II of the conformal diagram of the spacetime—cf.
Fig. 2. The essential difference with respect to the non-extremal case is that
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the turning point given by 7 = s is now in region II. After the curve has
passed this point one has ¥ > 0 and @’ > 0. Hence, from Eq. (37b) it follows
that o, v — oo the second time the curve approaches 7 = r; = m. In order
to follow the behaviour of the curve beyond this point one would need a new
set of null coordinates.

In Sect. 5.3.4 it will be shown that the points with ¥ = m, as are reached
for a finite value of the physical proper time 7.

5.3.3. Regions of the Spacetime Not Covered by the Congruence. As already
discussed, the turning point described by the condition ¥ = as is located in
the region II in the extremal case and in region III in the non-extremal case. In
these regions the curves 7 = constant are timelike. Regarding as as a function
of r, it follows from the expressions given in Sect. 4.4 that there exists a
certain value of r, for which aq attains a (non-zero) minimum. This minimum
value depends only on the value of m and gq.

The phenomenon described in the previous paragraph is better analysed
in the extremal case where simpler analytical expressions are available. Using
expression (41b) one can readily see that as attains a minimum value of (/2 —
1/2)m = 0.91m along the conformal curve with r, = (2—1/v/2)m = 1.29m. All
other conformal curves with r, < rg will have a higher value for the r-location
of the turning point.

The discussion in the previous paragraphs shows that there exist regions
in the regions III of the non-extremal Reissner—Nordstrom spacetime and the
regions II in the extremal case that cannot be probed by means of the family of
conformal curves under consideration. In particular, a conformal curve cannot
get arbitrarily close to the singularities of the spacetime (r = 0). In this sense,
one can regard our class of conformal curves as singularity avoiding.

5.3.4. Explicit Expressions in Terms of Elliptic Functions. As discussed pre-
viously, the function 7 is decreasing if 7 € (aq,7.). If this is the case then
Eq. (40) implies

7= —g\/(F — 1) (7 — 1) (F — ) (7 — az).

The latter implies in turn

sds
5 \/s—oq 8—052)(8—7‘*)(8—043)

The integral in the right-hand side can be evaluated in terms of elliptic
functions—see e.g. [19]. For example, the physical proper time required by the
curve to go from 7 = r, to ¥ = «y is given by

() = 20 (7 — az)(az — a1)
ﬁT( 2) - \/(013 — Ozg)(f* _ al)K (\/(as - 012)(T* - al))

" 2(@2—&1) r « — Qg —042 043—041)
\/(ag—ag)(h—al) s\ (a3 — ) (P —ar) )
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where K( - ) and II( - ; - ) denote, respectively, the complete elliptic integrals
of the first and third kind. The above expression is valid for both the non-
extremal and extremal cases. For specific values of m and 7, these integrals can
be accurately evaluated with a computer algebra system. Hence, the expression
for 7(az) can be used to verify the accuracy of numerical solutions to the
conformal curve equations. However, for analytical purposes, expressions of
the type given above are too clumsy to be used. Insight into the behaviour
of T regarded as a function of 7 and r, can be obtained by means of suitable
estimates.
As a consequence of Lemma 1 one has that for as < 7 < r, one has
—22(F — ) (F — 1) < P(7) < —32(F — ) (F — 14),
where
7 = (ag — o) (g — az), 7y = (re —aq)(ag — 7).
Furthermore, one finds that
1 1
—I(F) <pT < —
al )
where

o ' sds
1= / Voo~ )

=V (T —a)(re —7) + %(ag +7y)

o . 3r. + ao L (24T F g
arcsi | ——m———= —arcsm (| ———m—— .
(g —74)? (g —14)?

In particular, one has that I(«as) is finite. Thus, one concludes that the
conformal curves with 7, < rg reach the turning point ¥ = as (and hence,
also the horizons at 71) in finite physical proper time.

5.4. The Conformal Curve Starting at r

In the case of a non-extremal Reissner—Nordstrom spacetime it is also of inter-
est to analyse the behaviour of the conformal curve starting at the bifurcation
sphere (7. = 7). Observing that D(r;) = 0, so that 54 = 0 it follows from
Eq. (35) that

Using the initial conditions
T =T4, 7, =0,
one can readily integrate to obtain
F=m++\/m?—q?cosT > 0.

Because of the reflection symmetry of the Reissner—Nordstrom spacetime
with respect to the bifurcation sphere and the timelike character of the curve
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in question, the conformal curve always remains in the middle of the conformal
diagram of the spacetime. The curve starts in region II where the surfaces of
constant 7 are spacelike. The function 7 is decreasing in the region II, and
reaches its minimum value at the Cauchy horizon—where 7 = 7_. From here
7 becomes increasing and eventually reaches its maximum (and initial value)
at ¥ = 74. This corresponds to a second bifurcation sphere in the Penrose
diagram of the maximal analytic extension of the spacetime—see Fig. 2. It
is worth observing that any point along the conformal curve can be reached
in a finite amount of (physical or unphysical) proper time. In particular, the
distance between two consecutive bifurcation spheres in the Penrose diagram
measured in terms of the parameter 7 is 2.

5.5. Further Analysis of the Behaviour of the Critical Curve Close to Timelike
Infinity

The purpose of the present section is to further discuss the behaviour of the
critical curve ¥ = rg as it approaches iT. The reason for this analysis is
motivated by the observation made in [12] that in the Schwarzschild spacetime
the corresponding critical curve, which is timelike for 7 € [0, 7;+ ), becomes null
at 7 = 7;+. This observation indicates a degeneracy of the conformal structure
of the spacetime.

5.5.1. The Intersection of the Critical Curve and Null Infinity. First, we con-
sider the behaviour of conformal curves with r, > rg as r. — rg from the
right. These curves reach future null infinity in a finite amount of unphysical
proper time

20, 1

B~ r./D.
as it can be seen from the expression (28) for the conformal factor ©. Setting
r« = (1 4+ €)rg, for small € > 0, it follows that

Tg+ =

(143e+0(e?)) .

1
Tg+ = ——F——
T® \/D7®
Thus, one has in particular that

M| __ 3
de '=0 " yo./Dg’

that is, future null infinity approaches i™ at a finite positive angle.

5.5.2. The Intersection of the Critical Curve and the Horizon. The analysis
of the behaviour of the conformal curves with r, < rg is more delicate. In
what follows, let 7+ denote the value of the physical proper time for which a
conformal curve reaches the horizon. From the expression (43) it follows that

T

- sds
Bl = \/(S—’/’*)(S—Oél)(s—(12)(8—0[3).

T+
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Now, setting 7. = (1 — €)rg for small € > 0, and observing Lemma 1 it follows
that

° = i O(e), s<rg,
Y/ Coon Fmrrey oy ey ST oy T vy MU

where @; and @y are the values of the roots a; and as corresponding to
e = rg. A computation then shows that

_ o T®
BT+ = K \/(7"@ ). Ine+ O(e),

with k a constant depending on m and ¢. One readily sees that 7 -+ — oo as
€ — 0 consistently with the discussion of Sect. 5.1. It can be explicitly shown
that

7 "® <1

V(re —an)(re —az) —

where the equality is achieved only for ¢> = m?2. Finally, noticing that

b

20 1 1
* = 1+ r —me+(’)62>,
- D@( (e = m)e +0(€)

one concludes from Eq. (30) that

1
T+ = —F—— (1 +2€_H€n +

rev/ De (re —m)e+ O (€1+n)) .

reDe
It follows that

2
i dTK;er o0 g <m
11m =
e—0 dE

2(5+2 ") <oo ¢*=m’

Thus, the critical conformal curve and the horizon are tangent at i for
q?> < m?—that is, the critical curve becomes null at i*. A similar singular
behaviour for the conformal geodesic reaching i in the Schwarzschild space-
time has been described in [12]. Indeed, it can be verified that n = % for
g = 0. This behaviour indicates a degeneracy of the conformal structure at ¢+
for ¢> < m?. The most remarkable feature of the present analysis is the fact
that the critical curve remains timelike in the extremal case ¢ = m?2. In this
case, a more regular behaviour of the conformal structure is to be expected.

6. Analysis of the Conformal Deviation Equations

The purpose of this section is to show that the congruence of conformal curves
under consideration does not form caustics in the outer domain of communi-
cation of the Reissner—Nordstrém spacetime.
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6.1. Basic Equations

Inspired on a similar discussion in [13], we will study solutions to the reduced
g-adapted deviation equation (27) with suitable initial data. In the previous
section, the value of the coordinate r on the initial hypersurface S has been
used to parametrise the conformal curves of our congruence. Thus, it would be
natural to use the vector 8, as deviation vector. However, as we are specifically
interested in the behaviour of the congruence near the event horizon, this choice
is no longer adequate. Instead, we consider the vector field 8, where g is the
isotropic radial coordinate given by formulae (5). Thus, in what follows we set

_ 1
Z.= (0,8, x=Rl. C(=Dsb (48)
It follows that Eq. (27) can be rewritten in the form
W = (B +X)w = ¢ (49)

where the bar over y indicates that the function is regarded as depending on
7. In the particular case of the Reissner—Nordstrom spacetime one has that
2m  3¢°
X=— — —. 50
X 73 74 ( )
One readily sees that y > 0 if # > 3¢?/2m. By direct evaluation it can be
checked that if m? > ¢2, then 3¢?/2m < rg, with the equality being achieved
in the extremal case. Finally, it is noticed that
dy 6., 2
E:ﬁ(Zq —mF) >0 if T (51)
Now, recalling that X = 7’ and taking into account (48), one finds that
the initial data for Eq. (49) on S is given, for g, > o4 (i.e r. > r4), by

_ _ [ OF ot T
w*EelX,Z*:t;<) —T;() == >1, 52a
(X, 2) 90 ). 9). " o (52a)
W, = (leel(X,Z))* =0, (52b)
where Eqgs. (4) and (33) have been used to simplify the expression for w,.
Following the discussion of Sect. 3, the coefficients 5% and ¢ in Eq. (49)
are constant along a given conformal curve, and thus, can be conveniently be

evaluated at the initial hypersurface S—cf. the remark after Eq. (22). Recalling
that 5% = 4D, /r2, it follows that

dr 4 (dr dD
2 _ (8" 2 _ [ 2 *
% =(g) 0. = (%), (5 -2.),

d
__8 (T) (r2 — 3mr, + 2¢%).

r2 \de
Finally, using dr/do = rv/D/p and 8,8 = (9,(?)/23 one concludes that
2
C=1(0,0)s = — (r? = 3mr, + 2¢%).

0473
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This expression is positive if

3 1 3 1
T € (m— —/9m? — 8q2,§m+ 3 9m? —8q2> )

2 2
In the extremal case, the expression for ¢ simplifies to
2
= —E(r* —2m), (53)

which is positive for r, < 2m. It is also noticed that

1
B2+ xs = F—4(47‘f — 6mr, +¢°).

*

One concludes then that

3 1
B4+ x. <0 ifr, € <r+, Zm—i— 1 Im?2 — 4q2) , (54a)
) . 31
0+ x>0 ifr, e Zm—f—i 9m?2 — 4¢2, 0 | . (54b)

In the extremal case, the above expressions reduce to
1
B2+x. <0 ifr, e (m,4(3+\/3)m>,
1
BP+x.>0 ifr.e [4(3+\/5)m,oo> ,

where 1(3 4+ v/5) & 1.309. Finally, one has that

C+ (B + X )ws = 1r (2r? = 3¢%),

so that !/ > 0if r. > |/3]q| where \/3 ~ 1.225.

6.2. The Curve Deviation Equation Along the Critical Curve

The simplest situation on which to analyse the solutions of the deviation equa-
tion (49) is along the critical curve ¥ = rg. Letting xyo = x(re), a direct
computation shows that

Xe >0, (g >0, form?>q?%
Xo =0, (g >0, form?=4¢g>

With this information at hand, the solution to the deviation equation can
be found explicitly to be given by

w(T) = (w® + 5(2@3(‘®X®> cosh(\/ﬁg9 + XeoT) — 55@%}(@.

This solution satisfies w(7) > 0,w’(7) > 0 for all 7 > 0. Thus, no conju-
gate points arise in the critical curve when regarded as a curve on the physi-
cal Reissner-Norsdstrom spacetime (M, §). In view of future applications it is
important to verify the absence of conjugate points in the conformally rescaled
spacetime even at i*. In order to do this, one has to consider the conformal
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curve as parametrised by the unphysical proper time 7. Following the discus-
sion of Sect. 3.2 one has that X = Ox. The relevant deviation vector field is
then given by

0o = 0, — X0,T.

It follows that for X and Z to remain linearly independent one requires
that ©¢;(X, Z) # 0 along the critical curve up to (and including) i*. Using
expression (31) together with the explicit expression for w(7) obtained in the
previous paragraph one obtains that

@6[()272) > @@W@ >0

along the critical curve up to, and including i* so that also no conjugate points
arise on the conformal Reissner—Nordstréom manifold.

6.3. Curves with rg < 7,

The analysis of solutions of Eq. (49) with for rg < 7. follows closely the discus-
sion of [13]. It is given here for the sake of completeness. The key observation
is that the solution to (49) admits the representation

o() = =) (w + (1- 22 ) o), (55)

where @(7) and ¢(7) are the solutions to the auxiliary problems

@’ = (P +X)w=0, w(0)=1, «'(0)=0,
= (B +x)s=-1, <(0)=1, ¢(0)=0.

That w as given by (55) is indeed a solution of (49) with the right initial
data that can be verified by directed evaluation. As r, > rg, it follows from
the observation after Eq. (50) that 3% + y > 0 along the conformal curves
under consideration.

Using the equation for @ and the initial data w(0) = 1 one sees that
w’(0) > 0 so that w has a local minimum at 7 = 0. Thus, at least for positive
values of 7 close to 0 one has that  must be increasing. Furthermore, as y > 0
for 7 > rg, one finds that % < @’”. This last differential inequality can be
integrated to yield @ > cosh(57). One concludes that w is increasing for all
7 > 0. A similar argument with the function n = w — ¢ satisfying the equation

' —@B*+xm=1 n0)=0,  7(0)=0,

shows that w > ¢ for all 7 > 0.

The information obtained in the previous paragraph will be used to esti-
mate the term 1 — ¢/w in (55). Due to the monotonicity of w one has that
1—¢/w > 0. Using that @ # 0 for 7 > 0, it follows that there exists a function
f(T) such that ¢ = fw. It can readily be seen that f satisfies the equation

freeZp=—— jO=1 fO=1
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whose solution can be written as

S

I
f:l—/ —2/wds’ ds.
@

0 0

From the latter one obtains the chain of inequalities

0<1——:1—f / /wds’ ds

S —208s
/w /cosh(ﬂs) *2/86 ds
0

Hence, one has that
0<1-S< 21— (Brr1)e?) <2
@ = P " e

For the values of r. > rg for which ( < 0 a direct computation shows
that —1 < 2¢/B3% < 0. Thus,

2
7

For the values of r, > rg for which ¢ > 0 one readily has that

w*—l—(l—i)sz*.
w

+<1——)C>w*+ >w, — 1.
w

Hence, in both cases using Eq. (52a) one concludes that
1
(1——>C>w*—1— —(m? — ¢*> +4p.m) > 0.
Ox
In order to conclude the argument we consider Ow where O is given by

Eq. (31). Putting together the discussion from the previous paragraphs one
has that

Ow = Ow (w* + (1 - %) C) > 9@?(7712 —¢* + 40.m)

cosh(7T) 9 9
>0,———————(m” — q¢° +4o0.m
- 0+ coshz(%ﬂf) ( 1 0-1m)
> = (m? — ¢* +40.m) > 0.

*

This lower bound holds even in the limit 7 — oo (i.e. 7 = 0). By the same
considerations made in Sect. 6.2, it follows that the congruence of conformal
curves remains free of conjugate points even at null infinity.
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6.4. Curves with r, < rg

The observation made in Sect. 5.3 that for r. < rg, curves with a certain value
of 7, can have a lower value of the turning point 7 = a than curves starting
closer to the horizon, shows that curves in our congruence of conformal curves
must intersect at some point. This is because curves with constant coordinate
value r are timelike, respectively, in the regions III of the non-extremal case
and the regions II of the extremal case. The question is then: how long does
this part of the congruence exists without developing conjugate points? In
the sequel it will be shown that the congruence of conformal curves is free
of conjugate points up to, and including, the horizon. More precisely one has
that:

Proposition 2. Assume that ¢> < %mQ andry € (r4,rg). Then, the solutions to
Eq. (49) with initial data given by (52a)—(52b) satisfy w > 0 for T € [0, Tp+].

The case %m2 < ¢?® < m? will not be considered here. Instead, we concen-
trate our attention on the extremal case for which one can prove the following:

Proposition 3. Assume ¢? = m?. Then there exists . € (r1,1g) such that for
T« € (re,T@), the solutions to Eq. (49) with initial data given by (52a)—(52b)
satisfy w > 0 for T € [0, Typ+].

The proof of these propositions is given in Sects. 6.4.1 and 6.4.2, respec-
tively. Clearly, the result of Proposition 3 (which includes the extremal case)
is much more restrictive than that of Proposition 2. In view of the discus-
sion of Sect. 5.5, the extremal Reissner-Nordstrom spacetime is the case of
most relevance from the perspective of conformal geometry. In this respect,
the result given in Proposition 2 will be sufficient for future applications to
be considered elsewhere. Numerical evaluations of the solutions of Eq. (49)
suggest, nevertheless, that the conclusions of Proposition 2 can be extended to
the whole range ¢*> < m? and 7. € (ry,rg)—so that, in particular, Proposi-
tion 3 could be superseded. This proof would require an analysis which would
increase considerably the length of this article.

For simplicity of the presentation, in the remainder of the subsection it
is always assumed that T € [ag,r.]. For these values of T one has that 7' < 0
with ™ = 0 only at T = 74, ay. The amount of technical details in the analysis
of the solutions to Eq. (49) depends on whether the value of the charge, ¢,
is close or not to the extremal value. In order to characterise the values of ¢
requiring a more careful treatment, it is recalled that y > 0 if 7 > 3¢> /2m. As
7 is monotonically decreasing, it follows that for 7 € [r.,ry], X > 0 if and only
if

32
iST‘_,_:m—i-\/mQ—qQ.

2m

The above inequality is saturated if ¢ = %m2. Our subsequent discussion

is split depending on whether ¢? is below or above the critical value found in
the previous lines.



Vol. 15 (2014) A Class of Conformal Curves 1357

6.4.1. Proof of Proposition 2. As already discussed, if ¢® < %mz, one has that
X > 0 for 7 € [ry,r,]. It follows then by an argument similar to the one used in
Sect. 6.3 that w > 0 for 7 € [0, T5+]. The full details will not be provided, but
it is noticed that, in fact, the task in this case is simpler as one is dealing with
finite values of 7 and 7. Hence, it is only necessary to ensure the positivity of
w and not that of Ow.

6.4.2. Proof of Proposition 3. It is assumed throughout that ¢> = m?. In

this case, the analysis of the previous sections shows that there are intervals
of 7 for which ¥ < 0, so that the arguments of Sect. 6.3, do not apply for
the whole interval [0, 7,-+]. Hence, a more detailed analysis is required. In
particular, formula (50) shows that in the extremal case x is always negative
for 7 € [ag,r.]. As before, we will restrict our attention to the behaviour of
the conformal curves in the range 7 € [0,74+]. In such interval 7#(7) is a
monotonic decreasing function of 7 with 7(0) = r, and 7(T,+) = r.. Hence,
for 7 € (0,7 +] it is convenient to reparametrise Eq. (49) in terms of 7. Using
the chain rule to write

dw d dw
ot T
YT _rdr<r dr)
one readily has that the deviation equation (49) implies the equation
P 4T W (8 + Xw = ¢, (56)

with

\ dw w o dPw

w= —, w= —

T T

and where y is now regarded as a function of 7, and #? is given by Eq. (43).
Notice that as 7 = 0 at 7 = r,, as Eq. (56) is formally singular. An explicit
formula for 7 in terms of 7 can be found using
11d 1d

ii(f@) _ -

1

(T,/2).

27 dr 2 dr
One obtains
= ﬁ (7 — 00)(F — 02) (7 — ) 2%, — ) £ 7(F — ) (F — ) (7 — )
—|—7"(7" — 7 ) (T — 1) (F — ag) + 7(F — 7)) (F — o) (T — az)). (57)

In particular, using the information from Lemma 1 one can readily con-
clude that

—// < 0 —// > 0

where 7/ = #'(r,) and 7 = 7' (a2). Thus, one concludes that there exists

r1 € (a2, @) such that 7" = 7”(r) = 0. It can be verified that this zero of 7
in (a2,7g) is unique. An analysis of formula (57) yields the bounds

< < 1
m T —m.
T
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The initial data for Eq. (56) is given by

w(ry) = wy (58a)
\ \ W' oWt
W Ew(r*)_}_%ﬁzll_)oﬁz?gv (58b)
where
ﬂZ

Wl =CH (P +xdws, T =

Using that 7/ < 0, and noticing that w” > 0 if r, > \/gm one concludes

that
3
u\)*< 0, if r, € (\/;m,r®> .

Alternatively, one can compute a\u* directly by evaluating Eq. (56) on 7.
Similarly, differentiating (56) with respect to 7 and evaluating on r, one finds
that

A\
Wi < 07 Ty € (’I"_,_,’/‘@).
In particular, in the extremal case one has the following expressions:

v (3m? — 2r?) N 2m(r, —2m)
T (B3m —2r)(m —r.)?’ e (B3m = 2r.)(m — )2

(59)

Notice, in particular, that both f))*, c\&*—> 00 as Iy — rg = %m.
Analysis of ®. As it will be seen in the sequel, the proof of Proposition 3
requires a knowledge of the sign of . In order to analyse this, it is convenient

to consider a first integral of Eq. (56). Multiplying (56) by w one readily obtains
that

1 1
7@ 1w = S D) = o

Integrating with respect to 7 € [r, 7] leads to
Ty T Tx

3 [renass [ [0 ds—c/wds.

T T T
Integration by parts in the first and third terms yields

Tx Tx

—;_/(T P w 2ds—|—/"’ st—%(ﬂz—k)@aﬂ

Tx

=i
<
<
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Recalling that > = 0 and that ¥ = 1(7'?)", this last expression reduces to
Loonog Lo vo 1o v o 1 [V o

T

This equation will be used, in the sequel to prove the following result:

Lemma 2. The solution, w, of Eq. (56) with initial data given by (58a) and
(58b), ry € (r4,re) satisfies W < W, forr € (ag,ry).

Proof. The proof proceeds by contradiction. Hence, assume that there exists
A\

7 = ry such that v, # r; # r and ‘Dé =w(ry) = W, Equation (56) implies
that

(wy)? = 7,1, (C+ (B2 + x4 )wy — FZ w.)2.

(7})?

Substituting this expression for (44\)&)2 into the first integral (60) with
7 =r,; and grouping terms one obtains

asw] + arwy + ag = (7})? / >\‘< wids, (61)
T
with
az = (B2 + x4) (8% + x)r7 = (7)),
a1 = (208 + )7 O +20(8% + x)TE - 2(7)?)
a0 = (77 = 2007t &y +72C% + 207" s + (7)F (8% + X )u?)
The coefficients ag, a;, ag are explicitly known rational expressions of r;.
Now, as 3\2 > 0 for 7 € [ag, 1], it follows from Eq. (61) that
agw? +aw; +ag >0, Ty F T (62)

A lengthy computation using the explicit expressions for as, a1 and ag in
terms of 7 shows that az < 0 and a? — 4agag < 0 for ry € (a2,74) so that the
polynomial f(x) = agx?+aix+ag is negative for x € R. This is a contradiction
with (62). Thus, assuming that r, # r., r, there is no value of 7 for which

c\() > a* The possibility 7, = can be excluded by continuity. O

In what follows, we restrict our attention to curves such that r, €
(\/gm, r@) so that w, < 0—cf. Eq. (59). Consistent with Lemma 2 it is assumed
that w has a local maximum in (r4,r.)—otherwise one directly has that
wy > 0 and there is nothing to prove. Denote by 7, the location of such
local extremum and write wp = w(rp). A lower bound for w, can be obtained
from the evaluation of Eq. (56) at # = r. As 7' = 0, using Lemma 2 one
concludes that

2 1= C+ (82 + x)wr <72 0.< 0.
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It follows then that

7:{2 ()‘E* —C
W <w < wa. (63)

It can be readily verified that 32 + x: is negative so that the lower bound
of wa given by the inequality (63) is positive. Important for the sequel is the
following observation: combining inequality (63) with the value for a\(}* given
in (59) it follows that

WA — 00  as Ty —Tg.

The subsequent analysis will also require of an upper bound for r,. Such
a bound can be more easily obtained by considering Eq. (49). As already
discussed, for r, € (\/gm, rg) one has that w > 0. As w is assumed to have a

maximum, it follows that there must exist an inflexion point at which w” = 0.
At this inflexion point equation (49) implies —(3%+Y)w = (. This last equality,
together with the observation that at this point w > w,, leads to

¢
— > Wy 64
The above inequality can be regarded as a condition on 7 as ( > 0
for the range of r, under consideration—cf. (53). Notice, in particular, that
(3% 4+ x > 0 in order for (64) to make sense as w, > 1. Some inspection shows

that for r,. € (\/3m,rg)
13
Em.
A final observation concerning the maximum of w is the following: eval-
uating Eq. (56) at the maximum one obtains after some rearranging that

A < Ty =

_/2\\

w —
71/\27/\7C:OJ/\>0.
B% + X

However, 72 W —( < 0 so that necessarily 32 + . < 0.

Estimating w, . In what follows, assume that r, € (\/gm, rg). Moreover, sup-

pose that ry < ry—otherwise, as a consequence of Lemma 2 one has that
w4 # 0 and the result of Proposition 3 follows directly. In order to estimate
w4 we exploit the information on the location and the size of the maximum of
w acquired in the previous section.

Clearly, w > 0 for 7 sufficiently close to r,. We make use of a bootstrap
argument to show that the interval where w > 0 can be extended to include
ro. A calculation similar to the one leading to Eq. (60) yields

TA

72w 2=2<(w—wA)+(ﬁ2+>z)w2—(ﬁ2+>’m)wi+/ Xwids, 7€ [re,ral (65)

T
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where, in particular, it has been used that u\J/\: 0. One needs to estimate
various terms in this expression. To this end it is noticed that r <7 <7, <7y,
so that using formula (43) it follows that

Cfu\JQ <#?Ww? for Fe [r4+,7Al, (66)

where
2
012 = T—Q(m_ —ay)(ry —ag)(re — 7"1‘)(043 - TT) > 0.
T

A\
Moreover, it can be explicitly verified that y< 0 so that
TA
\ \
/ Yy wids < X, wi(ra —74) aslongas w> 0. (67)

T

Finally, one has that

B24+x<0 for 7€ ry,ral (68)
Making use of inequalities (66)—(68) in Eq. (65) one concludes that

\
Of w? < 20w —wn) = (B + XAt Xy wA(ra —14),
on [F,rn] aslongas w > 0.
For the convenience of the presentation let
\
Co=x4 w%(r/\ —ry)— (62 + )’(A)wi — 2Cwhn,
so that
0<C2w?< 2w+ Co. (69)

Asw> 0 on [r4,7A], one can consider the positive square root of inequal-
ity (69) and then integrate over [7,r,] to obtain

2ch+CQ+C£(f—rA) < /2w + Cs. (70)
1

The second term of the left-hand side of this last inequality is negative
as 7 < rn. However, in view of the second equation in (59) and the bound
(63) it is possible to ensure that the left-hand side is positive by choosing
r, sufficiently close to rg—that is, there exists r, € (\/gm,r@g) such that if
T« € (T, Te) then

0< 2CW/\+02+£(T+—T/\)§ 2Cw/\+02—|—i(f—r/\)
01 Cl

Crucially, it can be verified that C'; remains finite and non-zero as r, —

rg. Squaring inequality (70) and simplifying one obtains the lower bound

1
wa + 24?(7% —ra)’ + 5(74 —ra)V20wn + Cp <w.
1

1
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Using the definition of Cy, this inequality can be rewritten as

Cwa + (ry —ra)? <w, (71)

S
207

where

Co=14 (e —r Ve (= 10) = (5 4 30).

A lengthy direct computatlon using the information available about the
various terms in this expression shows that C3 > 0 for 7. € (r,,rg). As ( >0
for the range of r, under consideration it follows from inequality (71) that
w > Cy > 0 where Cy is independent of 7 € [ry,rg]—at least for curves
with 7, close enough to rg. In particular, one has that w; > 0. This proves
Proposition 3.

6.5. Some Remarks

Although the analysis of the extremal Reissner-Nordstrom spacetime has been
restricted to the case of conformal curves which start suitably close to the
critical curve, numerical computations show that, in fact, no conjugate points
appear in the congruence up to (and including) the horizon.

In the present discussion, no attempt has been made to analyse the behav-
iour of the congruence after it crosses the horizon. However, numerical evalua-
tions of Eq. (49) show that the scalar w goes to zero shortly after the curve has
crossed the horizon, and certainly, before it reaches the turning point 7 = as.
In any case, one knows there exists an open neighbourhood after the horizon
where the congruence remains non-degenerate.

7. Conclusions

The analysis carried out in Sects. 4, 5 and 6 allows to provide the following
technical version of our main Theorem:

Theorem 1. Let (M,g) denote a Reissner—Nordstrém spacetime with ¢ <
m? and let re as defined by Eq. (42). On (M,§) consider the congruence
of timelike conformal curves defined by the initial conditions (33) and r. €
(r4,00) on the time symmetric slice of the domain of outer communication.
Let 7 and T denote, respectively, the physical and conformal proper time of the
curves of the congruence. For this congruence one has that:

(a) Fach curve of this congruence exists for T € R. Moreover:

(i) the curves withr, € (rg,o0) reach null infinity in an infinite amount
of physical proper time but in a finite amount of conformal proper
time;

(il) the curves with r. = rg reach past and future timelike infinity in
an infinite amount of physical proper time but a finite amount of
conformal proper time;

(i) the curves with r. € (ry,re) reach the event horizon in a finite
amount of both physical and conformal proper time.
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(b) In addition one has that:
(i) If¢®> < %mQ then the congruence is free of conjugate points in the
domain of outer communication.
(i) In the extremal case q> = m?, there exists r, € (ry,re) such that
the subcongruence defined by r, € (r4,00) is free of conjugate points
i the domain of outer communication.

As already indicated in the main text, numerical evaluations of the con-
gruence suggest that it should be possible to improve Theorem 1 so as to
ensure that the congruence of conformal curves is free of conjugate points in
the domain of outer communication for ¢ < m?2.

The analysis of this article a first step in the study of the Reissner—
Nordstrom spacetime as a solution of the conformal field equations. In view
of this programme, the results of Sect. 5.5 are specially relevant as they sug-
gest that the conformal structure of the timelike infinity, i*, of the extremal
Reissner—Nordstrom spacetime may be more tractable, from an analytic point
of view, than that of the non-extremal case.

Regarding the Reissner—Nordstrom spacetime as a spherically symmetric
model of the Kerr spacetime, it is natural to wonder how much of the struc-
ture observed in the present analysis has an analogue in the Kerr solution. For
example, it is natural to conjecture that the domain of outer communication
of the Kerr spacetime can be covered by means of a non-singular congruence
of conformal geodesics reaching beyond null infinity. It is very likely that this
congruence will degenerate after it has crossed the event horizon and that the
curves will have some type of singularity avoiding properties so that there may
exist regions in the black hole region which cannot be probed in this way. A
more tantalising possibility is that, as in the case of the extremal Reissner—
Nordstrom spacetime, the extreme Kerr may have a more tractable structure
at 7. In any case, the analysis of conformal geodesics in the Kerr spacetime
is bound to be much more complicated as the warped product structure of the
line element is lost.
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Appendix A. Conformal Geodesics in the Schwarzschild
Spacetime

For completeness, we include a study of the solutions to the conformal curve
equations in the case of the Schwarzschild spacetime (where ¢ = 0). In this
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case the conformal curves are, in fact, conformal geodesics. The analysis of
these curves was originally done in [13] using explicit solutions in terms of
elliptic functions. The discussion given here follows the strategy of Sect. 5 in
the main text, and avoids the use of explicit solutions.

As in the case of the main text, essential for our analysis is the factorisa-
tion of the polynomial appearing in Eq. (40). If ¢ = 0, then P(7) is of degree
3 and one has the factorisation

P(7) = B*(F — 1) (F — a)(7 + ), (72)
where
o= QD:'

The constant solution to Eq. (40) can be found to be given by 7 = rg =
5m. As discussed in [13], these curves reach the point i in a finite amount of
unphysical proper time, and divide the two possible regimes for the conformal
geodesics.

A.1. Conformal Geodesics with . > rg

If r¢ < r., then the analysis of the curves is covered by the discussion in
Sect. 5.2 by setting ¢ = 0. These conformal geodesics reach null infinity.

A.2. Conformal Geodesics with 7, < rg

If r. < rg, then one can readily verify that 7, < 0, so that 7 = 0 is a maximum

of the function 7 as one has that 7, = 0. Thus, 7 is initially decreasing. A
computation shows that the following chain of inequalities hold:

—a<0<2m<r,. <a<rg. (73)

Thus, the curve must reach the singularity (r = 0) before it can reach the
turning point at ¥ = —«. It only remains to be seen whether the conformal
geodesic reaches the singularity in finite amount of proper time.

A computation using the factorisation (72) shows that #/ = 0 implies the
condition

T(T =) (F4a) +7(T =7 ) (T+a) +7(F—r) (F—a) = 2(F—7.) (F—a) (T+a).
where it has been assumed that 7 # 0. A further rearrangement yields
272 (F —1y) = (72 — ®)(F — 2r,). (74)
Using the chain of inequalities in (73) one concludes that
(P —-a?) <0, 7—2r,<0, 7—7,<0.

Thus, the left-hand side of condition (74) is negative, while the right-
hand side is positive. This shows that there are no values of ¥ < rg for which
7’ = 0. Hence, one concludes that the function 7 reaches the value ¥ = 0
in a finite value of 7—that is the conformal curves under consideration hit

the singularity in a finite amount of proper time. Moreover, it is noticed that
7 — oo as T — 0—cf. Eq. (49).
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Finally, the conformal geodesic starting at the bifurcation sphere (r, =
2m) is covered by the analysis of Sect. 5.4, by setting ¢ = 0. One finds the
explicit solution

7 =m(l + cosT).

This conformal geodesic reaches the singularity at 7 = .
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