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Renormalizability Conditions
for Almost-Commutative Manifolds

Walter D. van Suijlekom

Abstract. We formulate conditions under which the asymptotically
expanded spectral action on an almost-commutative manifold is renor-
malizable as a higher-derivative gauge theory. These conditions are of
graph theoretical nature, involving the Krajewski diagrams that classify
such manifolds. This generalizes our previous result on (super) renormal-
izability of the asymptotically expanded Yang–Mills spectral action to a
more general class of particle-physics models that can be described geo-
metrically in terms of a noncommutative space. In particular, it shows
that the asymptotically expanded spectral action which at lowest order
gives the Standard Model of elementary particles is renormalizable.

1. Introduction

Over the past few years, it has turned out that many particle-physics models
can be described geometrically by modifying the internal structure of space-
time, making it slightly noncommutative. Indeed, there are so-called almost-
commutative manifolds that allow for a geometrical derivation of Yang–Mills
theory [2,8], or even the full Standard Model, including Higgs potential and
neutrino mass terms [9,13,24]. Theories that go beyond the Standard Model
were described in [25,33–35]. Also supersymmetric models such as N = 1
super-Yang–Mills theory and supersymmetric QCD have been derived geo-
metrically [4,5].

The basic idea in all these examples is that one describes an almost-
commutative manifold by spectral data, and then applies a general spec-
tral action principle to derive physical Lagrangians. This paper continues on
some of our recent results on renormalizability of the asymptotically expanded
spectral action considered as higher-derivative theories: in [37,38], we have
shown that the Yang–Mills model is superrenormalizable as a gauge theory by



986 W. D. van Suijlekom Ann. Henri Poincaré

observing that the asymptotically expanded spectral action contains natural
higher-derivative regulators. We stress the importance of taking an asymptotic
expansion, as it allows for a derivation of local Lagrangians, in contrast to eg.
[23]. There, the full spectral action was considered as a non-local field theory,
behaving completely differently for large momenta. This is also explained in
[22].

In the present paper, we will formulate conditions for almost-commutative
manifolds that render the (asymptotically expanded) spectral action renormal-
izable as a gauge theory, and even superrenormalizable if we take sufficiently
many terms into account in the asymptotic expansion. We show that these
conditions apply to the afore-mentioned physical models. A convenient way to
express our conditions is in terms of cycles in Krajewski diagrams for the finite
noncommutative geometries. Such diagrams were introduced in [26], following
a suggestion by Connes [12]. A short partial account of the renormalizability
results has already been published in [36]; here, we provide full details.

As we proceed, we note that the asymptotically expanded spectral action
considered as a higher-derivative gauge theory is not multiplicatively renormal-
izable. This is in concordance with the interpretation of the spectral action as
defining a physical theory at one particular mass scale, as already proposed in
[7,8]. For the Standard Model, this mass scale is the GUT scale.

This paper is organized as follows. In Sect. 2, we recall some basic
definitions from noncommutative geometry, specializing to almost-commutative
manifolds of the form M × F : a product of an ordinary Riemannian manifold
M with a finite noncommutative space F . We recall Krajewski’s diagrammatic
classification and formulate for them a notion of R-connectedness; it will be
related to renormalizability later on. We derive the gauge and scalar fields as
a consequence of the noncommutative structure of M × F . Essentially, these
appear as a twist for a Dirac operator D.

In Sect. 3, we define the spectral action for M × F as

Tr f(D/Λ)

for some positive function f and a cutoff parameter Λ. This is considered as
an action functional in the gauge and scalar fields. We derive the lowest-order
terms in an asymptotic expansion as Λ → ∞, as well as the terms at any order
in Λ but quadratic in the fields.

In Sect. 4, we introduce a gauge fixing for almost-commutative mani-
folds, much inspired by ’t Hooft’s Rξ-gauge fixing for models with sponta-
neous symmetry breaking. This allows in Sect. 4.1 for a power-counting argu-
ment to show that the asymptotically expanded spectral action on M × F is
(super)renormalizable. Using results from the relevant BRST cohomology, this
is then completed to show renormalizability as a gauge theory, provided the
Krajewski diagram for the finite space F satisfies a certain graph-theoretical
property, namely, the afore-mentioned R-connectedness. In particular, this ap-
plies to the asymptotically expanded spectral action that at lowest order is
the Standard Model of elementary particles.
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2. Almost-Commutative Manifolds

The class of noncommutative manifolds we will be interested in is almost-
commutative manifolds. As a motivating example, let us start with a descrip-
tion of ordinary, commutative manifolds in terms of purely spectral data.
Suppose M is a compact Riemannian spin manifold, with a spinor bundle
S. Then, the Hilbert space L2(M,S) of its square-integrable sections sets the
stage for such a spectral description. The Dirac operator DM = iγμ ◦∇S

μ asso-
ciated with the metric via the Levi–Civita connection ∇S lifted to the spinor
bundle defines a self-adjoint operator on L2(M,S). Ellipticity of DM as a dif-
ferential operator and compactness of M imply that the resolvents of DM are
compact operators. Finally, the Dirac operator is compatible with the action
of the coordinate functions: the action of functions f ∈ C∞(M) on L2(M,S)
by pointwise multiplication has bounded commutators [DM , f ].

If the manifold M is of even dimension m, there is a grading (chirality)
γM , making DM an odd operator. Finally, spin-manifolds are selected out of
spinc-manifolds by the charge conjugation operator: it is an anti-linear operator
JM : L2(M,S) → L2(M,S).

This canonical ‘triple’ (C∞(M), L2(M,S),DM ; γM , JM ) motivates the
following abstract definition of a spectral triple [10,11].

Definition 1. A spectral triple (A,H,D) is given by an unital ∗- algebra A
represented faithfully as operators in a Hilbert space H and a self-adjoint
operator D such that (1 +D2)−1/2 is a compact operator and [D, a] bounded
for a ∈ A.

A spectral triple is even if the Hilbert space H is endowed with a Z/2Z-
grading γ such that [γ, a] = 0 and {γ,D} = 0.

A real structure of KO-dimension n ∈ Z/8Z on a spectral triple is an
antilinear isometry J : H → H such that

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ (even case).

The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8:

n 0 1 2 3 4 5 6 7
ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

Moreover, with b0 = Jb∗J−1 we impose that

[a, b0] = 0, [[D, a], b0] = 0, ∀ a, b ∈ A,
A spectral triple with a real structure is called a real spectral triple.

In particular, the real structure gives H the structure of an A-bimodule.
In other words, the algebra A⊗A◦ acts on H, where A◦ is the opposite algebra
to A.
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Definition 2. Let (A,H,D) be a spectral triple. The A-bimodule of Connes’
differential one-forms is given by

Ω1
D(A) :=

{∑
k

ak[D, bk] : ak, bk ∈ A
}

In the case of the canonical triple, Clifford multiplication establishes an
isomorphism (cf. [10,28])

Ω1(M) 
 Ω1
DM

(C∞(M)).

Besides the canonical triple for a Riemannian spin manifold M , there is
the following class of simple examples.

Definition 3. A finite real spectral triple is a spectral triple for which the
Hilbert space is finite dimensional. We will write such a spectral triple sugges-
tively,

F := (AF ,HF ,DF ; γF , JF )

Example 4. The algebra Mn(C) of complex n×n matrices acts on itself by left
and right matrix multiplication; this gives rise to a finite real spectral triple

(AF = Mn(C), HF = Mn(C), DF = 0; JF = (·)∗).

This example is closely related to Yang–Mills theories (cf. [7,8])

Example 5. The noncommutative description of the Standard Model is based
on the real algebra

AF = C ⊕ H ⊕M3(C).

It is represented on C
96, where 96 is 2 (particles and anti-particles) times 3

(families) times 4 leptons plus 4 quarks with 3 colors each. Thus, the noncom-
mutative Standard Model includes right-handed neutrinos. Finally, there is a
96 × 96 matrix DF , a grading γF and real structure JF , which are explicitly
described in [9,13]; they constitute a real spectral triple of KO-dimension 6.

We will be interested in a combination of Riemannian spin manifolds and
such finite triples.

Definition 6. An almost-commutative manifold (AC manifold) is given by the
tensor product of the canonical triple and a finite spectral triple:

M × F := (C∞(M) ⊗AF , L
2(M,S) ⊗HF ,DM ⊗ 1 + γ5 ⊗DF )

The picture one should have in mind is that of Kaluza–Klein theories,
where the spacetime manifold was extended by an extra dimension. In the
present case, this extra dimension is the finite noncommutative space F .
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2.1. Classification of Finite Spectral Triples

A first classification of finite spectral triples (AF ,HF ,DF ; γF , JF ) appeared in
[30]. We follow the work of Krajewski [26] where a diagrammatic approach to
such a classification was introduced, generalizing it to arbitraryKO-dimension.
Recall that if M is an AF -bimodule, the contragredient AF -bimodule M◦ is
defined by

M◦ = {m : m ∈ M}
with action m �→ amb = b∗ma∗ for all a, b ∈ AF ,m ∈ M . In particular, if M
is a left AF -module, M◦ is a right AF -module.

The structure of AF can be determined explicitly from Wedderburn’s
Theorem:

AF 

N⊕
i=1

Mki
(Fi). (1)

for some k1, . . . , kN and Fi = R,C or H depending on i.
In the following, we will denote by Γ(0) and Γ(1) the vertex and edges sets

of an oriented graph Γ with source and target maps s, t : Γ(1) → Γ(0). Also,
we indicate by (v1v2) an edge between vertices v1 and v2.

Definition 7. Given a finite-dimensional algebra AF =
⊕

iMki
(Fi), a Krajew-

ski diagram for AF of KO-dimension n is an oriented decorated graph Γ with
the following properties

1. Edges between two vertices come in pairs with opposite orientation: if
e = (v1v2) is an edge, then there also exists an edge e = (v2v1) and these
come in pairs.

2. Each vertex v is decorated by an irreducible AF -bimodule Mv together
with a choice of basis, i.e.Mv=C

nv ⊗C
mv◦ for some nv,mv∈{k1, . . . , kN}.

3. Each edge e is decorated by a non-zero first-order operator De : Ms(e) →
Mt(e), i.e. such that

De(amb)=aDe(mb)+De(am)b−aDe(m)b; (a, b∈AF ,m ∈ Mv),

and De = D∗
e .

4. There is an involutive graph automorphism j : Γ → Γ such that nj(v) =
mv for all v ∈ Γ(0). In other words, Mj(v) = M◦

v . If Jv : Mv → M◦
v is the

anti-linear map that assigns to a bimodule its contragredient bimodule,1

we demand that for an edge e = (v1v2):

Dj(e) = ε′Jj(v2)DeJ
−1
j(v1)

In the even case, there is an additional labeling on the vertices by signs ±1
and the edges connect only vertices of opposite signs. Moreover, if v has sign
±1, then j(v) has sign ±ε′′.
1 Actually, this is slightly more subtle in the case of KO-dimension 2,3,4, or 5; in that case,
one needs two vertices v1, v2 and one has two maps Jv1 : Mv1 → Mj(v2) and Jv2 : Mv2 →
Mj(v1) that satisfy Jj(v2) ◦ Jv1 = −1.
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Figure 1. The lines between two nodes represent a non-zero
De : C

ns(e) ⊗ C
m◦

s(e) → C
nt(e) ⊗ C

m◦
t(e) , as well as its adjoint

De : C
nt(e) ⊗ C

m◦
t(e) → C

ns(e) ⊗ C
m◦

s(e) . The non-zero compo-
nents Dj(e) and Dj(e) are related to ±De and ε′De

Usually, one depicts a Krajewski diagram as embedded in the plane, with
the columns and rows labeled by the integers ki that appear in the decompo-
sition (1) of AF . One places a node at (nv,mv) for each vertex in Γ with
Mv = C

nv ⊗ C
mv◦. The pairs (e, e) of oriented edges in Γ are indicated by a

single line in the planar diagram, which by (3) run only horizontally or verti-
cally. The graph automorphism j translates as a reflectional symmetry of the
diagram along the diagonal, with the labeling ±1 mapped to ±ε′′. Note that
in [26], these latter signs were all ε′′ = +1, for the KO-dimension 0 case.

Given a Krajewski diagram Γ = (Γ(0),Γ(1)) for AF , we construct a finite
spectral triple for the algebra AF as follows. We define

HF =
⊕
v∈Γ(0)

Mv =
⊕
v∈Γ(0)

C
nv ⊗ C

mv◦

on which AF acts on the left. The real structure JF is the sum of operators

Jv : Mv → Mj(v).

The Dirac operator DF is the sum of the operators

De : Ms(e) → Mt(e).

This defines a symmetric linear operator because De = D∗
e . Finally, in the

even case, the signs on Mv give rise to a grading γF on HF for which DF is
odd and the left action of AF on HF is even, and such that γFJF = ε′′JF γF
(Fig. 1).

Example 8. The Krajewski diagram for the Standard Model (for one genera-
tion) is depicted in Fig. 2. It indicates the precise structure of HF = C

96 as a
representation space of AF = C ⊕ H ⊕M3(C). The double appearance of the
row and column 1 accounts for multiplicities of the corresponding represen-
tations in HF . The nonempty blocks in the matrix DF are indicated by the



Vol. 15 (2014) Renormalizability Conditions 991

Figure 2. The Krajewski diagram of the Standard Model

dotted and straight lines, reflection along the diagonal gives JF , and γF is of
opposite sign when reflected along the diagonal (KO-dimension 6). More (eg.
three) generations can be taken into account by adding multiplicities for all of
the above vertices.

Krajewski has shown in [26] (at least for KO-dimension n = 0) that there
is a one-to-one correspondence between such diagrams and finite real spectral
triples modulo unitary equivalence (related to the choice of basis of Mv). We
recall from loc. cit. a useful result for the Dirac operator.

Lemma 9. [26] Let (AF ,HF ,DF ; γF , JF ) be a finite real spectral triple. There
is a decomposition DF = D0 + Δ + JFΔJ−1

F where D0 commutes with the
action of AF ⊗A◦

F and Δ commutes with the action of A◦
F . Moreover,

Δ = −
∫

U(AF )

g[Δ, g∗]dμ(g), (2)

where dμ is the Haar measure on the Lie group U(AF ) consisting of unitaries
in AF .

Proof. If Γ is the Krajewski diagram corresponding to (AF ,HF ,DF ; γF , JF )
then we can decompose D =

∑
eDe with each De : Ms(e) → Mt(e). As before,

write Mv = C
nv ⊗ C

mv◦ for all v. We denote by D0 the sum of such operators
for which ns(e) = nt(e) and ms(e) = mt(e). If this is not the case, then since any
first-order operator such as De splits into left AF -linear and right AF -linear
components, we have that either ns(e) = nt(e) or ms(e) = mt(e), respectively.
It is clear that DF −D0 is the sum of these, so we define the right AF -linear
(or left A◦

F -linear) operator



992 W. D. van Suijlekom Ann. Henri Poincaré

Δ =
∑

e:ms(e)=mt(e)

De.

Then, JFΔJ−1
F gives the remaining sum over all edges e for which ns(e) = nt(e),

showing DF = D0 + Δ + JFΔJ−1
F .

For the integral formula (2), we compute the matrix coefficients of the
difference between the left and the right-hand side in Eq. (2) in terms of a
basis of the Hilbert space HF . We decompose

HF =
⊕
v

Mv =
⊕
v

C
nv ⊗ C

mv◦,

and write {eαβv } (α = 1, . . . , nv, β = 1, . . .mv) for the corresponding basis.
Then, 〈

eα1β1
v1 ,

∫
U(AF )

gΔg∗dμ(g)eα2β2
v2

〉

=
∫

U(AF )

〈
eα1β1
v1 , ge

α′
1β

′
1

w1

〉
Δα′

1α
′
2

(w2w1)
δβ

′
1β

′
2

〈
e
α′

2β
′
2

w2 , g∗eα2β2
v2

〉
dμ(g)

where we sum over all repeated indices and where Δα′
1α

′
2

(w2w1)
δβ

′
1β

′
2 are the matrix

coefficients of (the right AF -linear) Δ(w2w1) : Mw2 → Mw1 . Next,〈
eα1β1
v1 , ge

α′
1β

′
1

w1

〉
= δv1,w1g

α1α
′
1

v1 δβ1β
′
1

in terms of the defining matrix coefficients gα1α
′
1

v1 of g ∈ U(AF ) in the repre-
sentation C

nv1 . Note that this is a representation of U(AF ), since U(AF ) 
∏
i U(ki,Fi). This turns the above integral into

Δα′
1α

′
2

(v2v1)
δβ1β2

∫
U(AF )

g
α1α

′
1

v1 g
α2α′

2
v2 dμ(g) = Δα1α2

(v2v1)
δβ1β2δv1,v2

by the Peter–Weyl Theorem. However, Δ(v2v1) maps between different irre-
ducible representations of U(AF ) which implies the vanishing of the above
expression and completes the proof. �

We will now formulate a condition on Krajewski diagrams that below will
turn out to characterize renormalizable models. Let Γ be a Krajewski diagram
for AF . We construct a graph Γ̃ whose vertex set Γ̃(0) is the set of inequivalent
irreducible representations of AF , or, of the Lie group U(AF ). In other words,
Γ̃(0) is the set {k1, . . . , kN} appearing in the decomposition (1). The set of
edges for Γ̃ is defined as

Γ̃(1) := {(n, n′) : ∃e ∈ Γ(1) such that ns(e) = n and nt(e) = n′}.
There is a map of graphs ψ : Γ → Γ̃ defined as follows. For a vertex v ∈ Γ(0),
we set ψ(v) = nv ∈ Γ̃(0); for an edge e ∈ Γ(1) we set

ψ(e) = (ns(e), nt(e)).
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Figure 3. The cycle in Γ at the left-hand side is a lift along
ψ of the cycle in Γ̃ at the right-hand side (we have suppressed
the loops at the two vertices)

Essentially, the graph Γ̃ is the projection of the Krajewski diagram Γ onto the
horizontal axis. By symmetry, Γ̃ is also the projection of Γ onto the vertical
axis; this corresponds to pre-composing ψ with the graph automorphism j :
Γ → Γ.

Adopting the usual terminology from graph theory, we will refer to an
edge with the same source and target vertex as a loop; a cycle is a path which
begins and starts at the same vertex, but with no other repeated vertices (i.e.
it does not contain loops). In a Krajewski diagram Γ, we call a cycle horizontal
(vertical) if it consists only of horizontal (vertical) edges.

Definition 10. In the above notation, a lift along ψ of a cycle γ = ẽ1 · · · ẽm
of length m in Γ̃ is a cycle e1 · · · el of length l ≥ m such that the path
ψ(e1) · · ·ψ(el) coincides with γ̃ modulo loops.

Figure 3 illustrates such a ‘horizontal lift’ of graphs; similarly, we can
define a vertical lift by using the map ψ ◦ j.
Definition 11. We say that a Krajewski diagram Γ is R-connected in dimension
m if

1. every cycle γ̃ in Γ̃ of length ≤ m can be lifted along ψ to a horizontal
cycle γ in Γ (necessarily of the same length),

2. every two cycles γ̃1, γ̃2 of total length ≤ m, which are not connected to a
common vertex 1 or 1 in Γ̃, can be lifted to a single cycle γ in Γ along ψ
and ψ ◦ j, respectively, i.e.

ψ(γ) ∼ γ̃1; ψ(j(γ)) ∼ γ̃2

where ∼ denotes equivalence of cycles in Γ̃ modulo loops.
3. For r ≥ 3, there are no tuples γ̃1, . . . γ̃r of cycles in Γ̃ of total length ≤ m,

which are not mutually connected to a common 1 or 1.

Note that the last condition is trivially satisfied in the case m ≤ 4, since
every cycle has length at least 2. The case m = 4 happens to be our case of
interest.

Proposition 12. The Krajewski diagram of the Standard Model (Fig. 2) is
R-connected in dimension 4.
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Proof. Indeed, the graph Γ̃ is given by

2 1 1 3

�������	 �������	 �������	 �������	

where we have suppressed the loops. Every cycle and every pair of distinguished
cycles in Γ̃ of total length 4 can be lifted to a single cycle γ in the Krajewski
diagram of Fig. 2. The pair consisting of two copies of the cycle (12)(21) (going
back-and-forth between 1 and 2) has a common vertex 1. For this reason, they
do not enter in Condition (2) (which, in fact, they would not satisfy). The
concatenated cycle (12)(21)(12)(21) (going back-and-forth twice between 1
and 2) is of length 4, and was already treated (cf. Condition (1)). A similar
argument applies to the cycle (12)(21). �

Example 13. Let us give an example of a Krajewski diagram which is not
R-connected (in dimension 4). Consider Γ given by

1 2 1 3

1◦

2◦

1◦

3◦

�������	 �������	 �������	 �������	

�������	

�������	

�������	

Then, the projected Krajewski diagram Γ̃ is given by

1 2 1 3

�������	 �������	 �������	 �������	

so that Γ is not R-connected. Indeed, the pair of cycles {(12)(21), (13)(31)}
obtained by going back and forth along the left and right edge in Γ̃ does not
lift to a single cycle in Γ.

2.2. Gauge Fields from AC Manifolds

Let us now describe how noncommutative manifolds naturally give rise to a
gauge theory, following [13, Section 10.8]. For simplicity, we will restrict to
almost-commutative manifolds, so that (A,H,D) will always denote M × F ,
i.e.

(A,H,D) = (C∞(M,AF ), L2(M,S) ⊗HF ,DM ⊗ 1 + γM ⊗DF ).

for some finite spectral triple F = (AF ,HF ,DF ; γF , JF ).
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Definition 14. Denote by U(A) the group of unitaries of A. The gauge group
of M × F is given by

SU(A) = {u ∈ U(A) : detFu = 1}
where the determinant is taken pointwise in the representation HF .

The group SU(A) acts naturally on the Dirac operator D by conjugation,
as well as on the representation of A on H: a �→ uau∗. If there is a real
structure, then we transform

D �→ UDU∗,

with U = uu∗◦ ≡ uJuJ−1. This suggests that we should rather take the image
of SU(A) under the map u �→ uu∗◦. Indeed, in [18] the gauge group was
defined in this way, leading to a quotient of SU(A) by an abelian group. Since
in most of our examples the latter group will be finite, it will be ignored in
what follows.

Proposition 15. Let M ×F be an almost-commutative manifold as above and
write

AF =
N⊕
i=1

Mki
(Fi); (Fi = R,C or H).

1. The gauge group of M × F is given by SU(A) = C∞(M,SU(AF )).
2. The Lie algebra su(AF ) of SU(AF ) is isomorphic to

su(A) 

N⊕
i=1

su(ki) ⊕ u(1)⊕(C−1),

where C is the number of complex algebras in the above decomposition
of AF and su(ki) denotes o(ki), su(ki) or sp(ki) depending on whether
Fi = R,C or H, respectively.

Consequently, there is a one-to-one correspondence between irreducible rep-
resentations of the algebra AF and of the Lie algebra su(AF ) provided AF
contains no copies of R, and either no complex subalgebras, or at least one
non-trivial (i.e. not C) complex subalgebra.

Proof. (1) is direct. (2). Note that u(A) is a direct sum of simple Lie algebras
o(ki), u(ki) and sp(ki) according to Fi = R,C,H, respectively. All these matrix
Lie algebras have a trace, and we observe that the matrices in o(ki) and sp(ki)
are already traceless. For the complex case, we can write Xi ∈ u(ki) as Xi =
Yi + zi where zi = TrXi, showing that:

u(ki) = su(ki) ⊕ u(1).

The determinant condition in the definition of SU(A) translates at the
infinitesimal level to the unimodularity condition TrHF

X = 0. Explicitly, this
becomes ∑

i

αi Tr(Xi) = 0
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where αi are the multiplicities of the fundamental representations of Mki
(Fi)

appearing in HF . Using the above property for the traces on simple matrix
Lie algebras, we find that unimodularity is equivalent to

C∑
l=1

αilzil = 0

where the sum is over the complex factors (i.e. for which Fi = C) in A, labeled
by i1, . . . , iC . This reduces the C abelian factors to C − 1 copies of u(1). �

Example 16. For the Standard Model spectral triple of Example 5 (cf. Example
8) this gives su(AF ) = su(3) ⊕ su(2) ⊕ u(1), as desired ([9, Proposition 2.16]
or [13, Proposition 1.185]).

Now that we have found the gauge group of an almost-commutative mani-
fold, let us determine the gauge fields thatM×F naturally gives rise to through
the differential one-forms.

Proposition 17. The differential one-forms Ω1
D(A) on M ×F allow for a direct

sum decomposition:

Ω1
D(A) 
 Ω1(M,AF ) ⊕ C∞(M,Ω1

DF
(AF )).

where Ω1(M,AF ) ≡ Ω1(M) ⊗ AF . Moreover, the AF -bimodule of differential
one-forms Ω1

DF
(AF ) is generated by Δ.

Proof. This follows directly from the splitting

D = DM ⊗ 1 + γM ⊗DF

noting further that γμ and γM are orthogonal with respect to the Hilbert–
Schmidt inner product.

The integral formula for Δ in Lemma 9 combined with the observa-
tion that [D, a] = [Δ, a] for all a ∈ AF shows that Δ is already a one-form;
this shows that AFΔAF ⊂ Ω1

DF
(AF ). The same observation also shows that

Ω1
DF

(AF ) ⊂ AFΔAF . �

Let us describe the linearly independent components of Ω1
DF

(AF ); in-
spired by the discussion in Krajewski [26].

An element φ ∈ Ω1
DF

(AF ) is given by sums of elements of the form

aΔb =
∑

e:ms(e)=mt(e)

aDeb.

Since some edges induce linear operators De between the same representations
of AF , the above summands are not independent. To turn this into a sum
over linearly independent terms, the graph Γ̃ introduced previously is quite
convenient. Namely, given an edge ẽ in Γ̃ connecting different vertices, we
consider the linear span Sẽ in Hom(Cs(ẽ),Ct(ẽ)) of all matrices De with e ∈
ψ−1(ẽ). If {fpẽ }p (p = 1, . . . ,dimSẽ) is a basis for Sẽ we can write

De =
∑
p

Mp
e f

p
ψ(e), Mp

e ∈ C. (3)
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Note that the self-adjointness ofD implies thatMp
e = M

p

e and fpψ(e) = (fpψ(e))
∗.

Adopting this form of De, we can write

aΔb =
∑

ẽ∈Γ̃(1):s(ẽ) �=t(ẽ)

∑
p

⎛
⎜⎜⎝ ∑

e∈ψ−1(ẽ)
ms(e)=mt(e)

Mp
e

⎞
⎟⎟⎠ afpẽ b.

We denote the independent fields by

φpẽ = afpẽ b : a, b ∈ AF .

which is an element in Hom(Cs(ẽ),Ct(ẽ)). Thus, we can write a general element
φ ∈ Ω1

DF
(AF ) as

φ =
∑

e:ms(e)=mt(e)

∑
p

Mp
e φ

p
ẽ.

We conclude that the number of independent components of φ is∑
ẽ:s(ẽ) �=t(ẽ)

s(ẽ)t(ẽ) dimSẽ

A corresponding orthonormal basis (orthonormal with respect to the Hilbert–
Schmidt norm on Ω1

DF
(AF ) ⊂ EndHF ) can be found by combining the indices

ẽ and p with the canonical bases of C
s(ẽ) and C

t(ẽ): we denote this orthonormal
basis of Ω1

DF
(AF ) by {eI}I .

The vertices of Γ̃ label irreducible representations of AF , and conse-
quently of su(AF ). Thus, the fields φpẽ carry the induced representation, that
is, by conjugation of the source and target representations s(ẽ) and t(ẽ).

Example 18. Consider the Krajewski diagram of the Standard Model
(Fig. 2). The fields that appear connect the vertices 2 and 1, and 2 and 1
in Γ̃: they carry the induced representation of u(1) ⊕ su(2). In fact, this is
precisely the Higgs doublet in the electroweak model, having 2 independent
degrees of freedom.

Let us end this section by describing the so-called inner fluctuations of
the metric, induced by coupling D to gauge fields in Ω1

D(A). The origin of this
can also nicely be described in terms of Morita self-equivalences of the algebra
A (cf. [13, Sect. 10.8]).

We consider a self-adjoint element ω + γMφ ∈ Ω1
D(A), in terms of the

splitting in Proposition 17. The unimodularity condition on the gauge group
is transferred to the gauge fields by demanding that TrF ω = 0. Combining
this with self-adjointness implies that ω ∈ Ω1(M, isu(AF )). This allows for an
inner fluctuation:

D � D +A+ γMΦ

where

A = ω + ε′JωJ−1 = iγμ adωμ; Φ = φ+ ε′JφJ−1.

These formulas can be checked using the splitting of Proposition 17.
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Remark 19. Note that a term such as TrF Φl (with the trace in HF ) can be
easily computed from the Krajewski diagram [27]. Indeed, it corresponds to a
sum over cycles in Γ of length l, for which the trace splits over a horizontal
and vertical part:

TrF Φl =
∑

γ=el···e1

∑
pi

cp1...pl
(γ)Trs(ẽ1)

(
φpl

ẽl
. . . φp1ẽ1

)
Tr
s( ˜j(e1))

(
φpl

˜j(el)
. . . φp1

˜j(e1)

)
where we have denoted ẽi = ψ(ei) and φpẽ ≡ 1 if ẽ is a loop in Γ̃ (i.e., if
s(ẽ) = t(ẽ)). The coefficient is given essentially by

cp1...pn
(γ) ∝ Mp1

e1 · · ·Mpl
el

in terms of the basis coefficients of De in Eq. (3). Moreover, the self-adjointness
of Φ implies that the components φpẽ satisfy:

φp
ẽ

= (φpẽ)
∗

where we recall that e is the edge e with reversed orientation.

This last Remark and its relation to the notion of R-connectedness of
Definition 11 will play a crucial role in the subsequent discussion on renormal-
ization of the gauge field theories that correspond to M × F , which we will
now define.

3. Spectral Action for Almost-Commutative Manifolds

Starting with an almost-commutative manifold M×F with Krajewski diagram
Γ for F , we have now set the stage for a gauge theory on M . Summarizing, we
have derived:

1. a gauge group SU(A) = C∞(M,SU(AF ) with reductive (local) gauge
algebra su(AF ),

2. gauge fields A in the adjoint representation of this gauge group,
3. scalar fields Φ, with independent components φẽ ∈ Hom(V,W ) with V

and W irreducible representations of SU(AF ), parametrized by the ver-
tices s(ẽ) and t(ẽ) in the graph Γ̃.

We search for gauge invariant action functionals. The simplest, manifestly
gauge invariant one is given the trace of a function of the fluctuated Dirac
operator [7,8]:

S[A,Φ] := Tr f
(
D +A+ γMΦ

Λ

)
− Tr f

(
D

Λ

)
,

together with a real cut-off parameter Λ. We have subtracted the purely grav-
itational part Tr f(D/Λ), being interested mostly in the gauge part of the
spectral action. Locally, we have

D +A = iγμ(∇S
μ +Aμ).

with ∇S
μ the spin connection on a Riemannian spin manifold M and Aμ a

skew-hermitian traceless matrix. The field Φ is considered as a self-adjoint
element in C∞(M,EndHF ).
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For simplicity, we take M to be flat (i.e. vanishing Riemann curvature
tensor) and 4-dimensional; we, therefore, write γ5 ≡ γM for the grading. Fur-
thermore, we will assume that f is a suitable Laplace transform:

f(x) =
∫
t>0

e−tx2
g(t)dt.

Proposition 20. [8] In the above notation, there is an asymptotic expansion
(as Λ → ∞):

S[A,Φ] ∼
∑
m>0

Λ4−mf4−m
∫
M

am(x, (D +A+ γ5Φ)2), (4)

in terms of the Seeley–De Witt invariants of (D+A+ γ5Φ)2. The coefficients
are defined by fk :=

∫
t−k/2g(t)dt.

We will denote the asymptotic expansion on the right-hand side of
Eq. (4) by SΛ[A,Φ]. Recall that the Seeley–De Witt coefficients am(x, (D +
A + γ5Φ)2) are gauge invariant polynomials in the fields Aμ and Φ. Indeed,
the Weitzenböck formula gives

(D +A+ γ5Φ)2 = −∇μ∇μ − 1
2
γμγνFμν − γ5[D +A,Φ] + Φ2 (5)

in terms of the curvature Fμν = ∂μAν −∂νAμ+[Aμ, Aν ] of Aμ and ∇μ = ∂μ+
Aμ. Consequently, a Theorem by Gilkey [20, Theorem 4.8.16] shows that (in
this case) am are polynomial gauge invariants in Fμν and the endomorphisms

E =
1
2
γμγνFμν + γ5[D +A,Φ] − Φ2

as well as their covariant derivatives (with respect to the connection Aμ). The
order ord of am is m, where we set on generators:

ordAμ1;μ2···μk
= k; ord Φ;μ1···μk

= k + 1.

Consequently, the curvature Fμν has order 2, and Fμ1μ2;μ3···μk
has order k.

For example, a4(x,D2
A) consists of terms proportional to TrF FμνFμν and

TrF ((∇μΦ)2 + Φ4). Moreover, am = 0 for all odd m. In fact, we have:

Theorem 21. The spectral action for the almost-commutative manifold M×F
is given, asymptotically as Λ → ∞, by

SΛ[A,Φ] = −f2Λ2

2π2

∫
M

TrF Φ2 +
f0
8π2

∫
M

TrF
(
(∇μΦ)2 + Φ4

)

− f0
24π2

∫
M

TrF FμνFμν + O(Λ−1)

From Remark 19, it follows that we have in terms of the—now
x-dependent—components φpẽ of Φ:∫

TrF Φ2 =
∑
e,p

cp1p2(ee)
∫

Trs(ẽ)(φ
p1
ẽ )∗φp2ẽ . (6)
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Similarly, ∫
TrF (∇μΦ)2 =

∑
e,p1,p2

cp1p2(ee)
∫

Trs(ẽ)(∇μφ
p1
ẽ )∗∇μφp2ẽ (7)

and finally, in terms of a sum over cycles in Γ:∫
TrF Φ4 =

∑
γ=e1e2e2e1

∑
pi

cp1...p4(γ)
∫

Trs(ẽ1)(φ
p4
ẽ1

)∗(φp3ẽ2 )
∗φp2ẽ2φ

p1
ẽ1

+
∑

γ=j(e1)j(e1)e2e2

∑
pi

cp1...p4(γ)
∫

Trs(ẽ2)(φ
p4
ẽ2

)∗φp2ẽ2 Trs(ẽ1)(φ
p1
ẽ1

)∗φp1ẽ1

+
∑

γ=j(e1)e2j(e1)e2

∑
pi

cp1...p4(γ)
∫

Trs(ẽ2)(φ
p4
ẽ2

)∗φp2ẽ2 Trs(ẽ1)(φ
p1
ẽ1

)∗φp1ẽ1 ,

(8)

where e1, e2 are horizontal edges in Γ. These expressions will become useful
later on.

The appearance of the Yang–Mills action and Higgs-like potential for Φ
at lowest order in the spectral action on M × F is the main motivation to
study this model. As a matter of fact, if we take F to be described by Fig. 2
and choosing the De to correspond to the physical Yukawa coupling and CKM
mass matrices (3×3 for three generations), then one derives in this way the full
Standard Model of elementary particles, including the spontaneous symmetry
breaking potential for the Higgs field [9,13].

In the present paper, we aim at a better understanding also of the higher-
order terms in the asymptotic expansion of the spectral action and, in partic-
ular, the role they play as regulators of the quantum gauge theory defined at
lowest order. The free part of S[A,Φ] is by definition the part of S[A,Φ] that
is quadratic in the fields

S0[A,Φ] =
1
2

d
du

d
dv

(S[uA+ vA, uΦ + vΦ])
∣∣∣∣
u=v=0

. (9)

Theorem 22. There is the following asymptotic expansion (as Λ → ∞) for the
free part of the spectral action on a flat background manifold M

S0[A,Φ] ∼ SΛ
0 [A,Φ] =

∑
k≥0

(−1)kf−2kΛ−2k

(
− ck

∫
TrF F̂μνΔk(F̂μν)

+ c′k

∫
TrF (∂μΦ)Δk(∂μΦ)

)
,

where Δ is the Laplacian on (M, g), F̂μν = ∂μAν − ∂νAμ and ck, c
′
k are the

following positive constants:

ck =
1

8π2

(k + 1)!
(2k + 3)(2k + 1)!

; c′k =
1

8π2

k!
(2k + 1)!

.

The free Yang–Mills part was obtained in [37]. The free contribution for
the scalar field Φ can be derived along the same lines. Let us check the lowest
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order terms appearing in the above formula for S0[A] with the Yang–Mills
action appearing in [9] (cf. Theorem 21 above).

Corollary 23. Modulo negative powers of Λ, we have

SΛ
0 [A,Φ] = − f2

4π2

∫
M

TrF Φ2 +
1

8π2
f0

∫
M

TrF (∂μΦ)(∂μΦ)

− f0
24π2

∫
M

TrF F̂μνF̂μν + O(Λ−1).

We see that SΛ
0 [A,Φ] yields the usual (free part of the) Yang–Mills action

and a free scalar field action. In fact, we can write more concisely

SΛ
0 [A,Φ] = − f2

4π2

∫
M

TrF Φ2 +
∫
M

TrF (∂μΦ)ϑΛ(Δ)(∂μΦ)

−
∫

TrF F̂μνϕΛ(Δ)(F̂μν)

in terms of the following expansions (in Λ):

ϕΛ(x) :=
∑
k≥0

(−1)kΛ−2kf−2kckx
k;

ϑΛ(x) :=
∑
k≥0

(−1)kΛ−2kf−2kc
′
kx

k.

This form motivates the interpretation of the asymptotic expansion of
S0[A,Φ] (and of S[A,Φ]) as a higher-derivative gauge theory. As we will see
below, this indeed regularizes the theory in such a way that the asymptotic ex-
pansion of S[A,Φ] defines a superrenormalizable field theory. This comes with
the usual intricacies of gauge theories with spontaneously symmetry break-
ing. Before proceeding with a gauge fixing and renormalization, we discuss the
Higgs potential for Φ.

3.1. Higgs Mechanism and Higher Derivatives

Given the above Higgs-like form of the spectral action at lowest order in the
asymptotic expansion, it is natural to expand the scalar field Φ around its vac-
uum expectation value 〈Φ〉0 = v, which we assume to be a constant minimum
of the potential appearing in SΛ[A,Φ]. We write

Φ = v + χ

and refer to the fluctuations χ as the Higgs field. The constant vacuum expec-
tation value v will appear in S[A,Φ] as generating mass terms for the Higgs
and the gauge field; this is spontaneous symmetry breaking (which might also
not occur when v = 0). Since the asymptotically expanded spectral action is
considered as a higher-derivative theory, the interpretation of mass terms is
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not so straightforward. Still, we can asymptotically expand the free part of
S[A,Φ] as above:

SΛ
0 [A,Φ] =

1
2

∫
M

TrF (∂μχ)ϑΛ(Δ)(∂μχ) +
1
2

∫
M

TrF χϑ′
Λ(Δ; v)(χ)

+
1
2

∫
M

(∂μAaν)ϕΛ(Δ)(∂μAaν − ∂νAaμ) +Aaμϕ′
Λ(Δ; v)ab(Abμ).

We have written Aμ = AaμT
a in terms of a Lie algebra basis {T a} for g. In

addition to the expansions ϑΛ and ϕΛ, we now have terms involving expansions
ϑ′

Λ and ϕ′
Λ which—as ϑΛ and ϕΛ do—start with a differential operator of

degree 0 (i.e. a mass term). Besides derivatives, they also involve a series
expansion in v.

In addition to the above free part, the splitting Φ = v+ χ induces terms
in SΛ[A,Φ] that are linear in both A and χ (and in v):∫

M

TrF (∂μχ)�Λ(Δ; v)([Aμ, v]) (10)

where we have as above a expansion defined by:

�Λ(x; v) =
∑
k≥l≥0

(−1)kΛ−2kf−2kbk,l(v)xk−l

and bk,l(v) acts (pointwise) on EndHF and is of order 2l ≤ 2k in v. We also
write the components of �Λ in terms of the basis {eI}I of Ω1

DF
(AF ) ⊂ EndHF

introduced in the previous section:

�Λ(x; v) = (�Λ(x; v)IJ )

With a slight abuse of notation, we write e0 for the identity in EndHF , nor-
malized to have Hilbert–Schmidt norm equal to 1.

For convenience, we introduce the following inner product:

(φ1, φ2) =
∫
M

TrF φ∗
1�Λ(Δ; v)(φ2). (11)

on endomorphisms φ1, φ2 ∈ C∞(M,EndHF ). Thus, the above term (10) reads
(∂μχ, [Aμ, v]).

4. Rξ-Gauge Fixing and Renormalization

We add a Rξ-type gauge-fixing term with higher-derivatives of the following
form:

SΛ
gf [A,Φ] =

1
2ξ

∫
TrF (∂μAaμ − ξχ[T a, v])�Λ(Δ; v) (∂νAaν − ξχ[T a, v])

(12)
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which is chosen so that the terms linear in both A and χ cancel the cross-terms
of (10). In terms of the inner product (11), we have more concisely:

SΛ
gf [A,Φ] =

1
2ξ

(∂νAaν − ξχ[T a, v], ∂μAaμ − ξχ[T a, v])

where we consider ∂μAaμ(x) as an endomorphism of HF (i.e. as a multiple of
the identity).

As usual, the above gauge fixing requires a Jacobian, conveniently de-
scribed by a Faddeev–Popov ghost Lagrangian:

SΛ
gh[A,C,C,Φ] =

(
C
a
,ΔCa − ∂μ[Aμ, C]a − ξ[C,Φ][T a, v]

)
(13)

Here C,C are the Faddeev–Popov ghost fields which are g-valued fermionic
fields: C = CaT a and C = C

a
T a. Accordingly, [C,Φ] := Ca[T a,Φ].

Proposition 24. The sum SΛ[A,Φ] + SΛ
gf [A,Φ] + SΛ

gh[A,C,C,Φ] is invariant
under the BRST transformations:

sAμ = ∂μC + [Aμ, C]; sΦ = −[C,Φ];

sC = −1
2
[C,C]; sC

a
=

1
ξ
∂μA

aμ − χ[T a, v]. (14)

Proof. First, s(SΛ) = 0 because of gauge invariance of SΛ[A,Φ]. Indeed, sAμ
and sΦ are just gauge transformations by the (fermionic) field C.

For the gauge fixing and ghost terms, we compute

s(SΛ
gf) =

1
ξ

(∂μAaμ − ξχ[T a, v],−ΔCa + ∂μ[Aμ, C]a + ξ[C,Φ][T a, v])

since sχ = s(v + χ) ≡ sΦ. On the other hand,

s(SΛ
gh) =

(
ξ−1∂μA

aμ − χ[T a, v],ΔCa − ∂μ[Aμ, C]a − ξ[C,Φ][T a, v]
)

which modulo vanishing boundary terms is minus the previous expression. �

Note that s2 �= 0, which can be cured by standard homological methods:
introduce an auxiliary (aka Nakanishi-Lautrup) field h so that C and h form
a contractible pair in BRST cohomology. In other words, we replace the above
transformation in Eq. (14) on C by sC = −h and sh = 0. If we replace
SΛ

gf + SΛ
gh by sΨ with Ψ an arbitrary gauge fixing fermion, it follows from

gauge invariance of SΛ and nilpotency of s that SΛ + sΨ is BRST-invariant.
The above special form of SΛ

gf + SΛ
gh can be recovered by choosing

Ψ = (C
a
, 1

2ξh
a + ∂μA

aμ − ξχ[T a, v]).

We derive the propagators by inverting the non-degenerate quadratic
forms in the fields A, χ and C given by SΛ

0 [A,Φ] + SΛ
gf [A, ξ]. This yields for
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the gauge propagator:

Dab
μν(p, v; Λ) =

[
gμν − pμpν

p2

](
1

p2ϕΛ(p2) + ϕ′
Λ(p2; v)

)ab

+ξ
pμpν
p2

(
1

p2�Λ(p2; v)00 + ξϕ′
Λ(p2; v)

)ab
.

The Higgs propagator becomes:

DIJ (p, v; Λ) =
(

1
p2ϑΛ(p2) + ϑ′

Λ(p2; v) + ξμ(p2; v)

)IJ
where

μ(p2; v)IJ := TrF eI [T a, v]�Λ(p2; v)eJ [T a, v]

The ghost propagator is

D̃ab(p, v; Λ) =
δab

p2�Λ(p2; v)00
.

Remark 25. In [37], we argued that for the pure Yang–Mills system the func-
tion ϕΛ(p2) appearing in the denominator of the propagator is nowhere-
vanishing, provided we impose the conditions f (2k)(0) ≥ 0 on the even deriva-
tives of f . Consequently, the gauge propagator did not have other poles than
a physical pole at p2 = 0. In the present case, where we allow for spontaneous
symmetry breaking, such a conclusion cannot be drawn. Typically, there will
be unphysical poles (involving ξ) appearing in the gauge and also in the Higgs
and ghost propagators. Since we will be mainly concerned with renormaliz-
ability in this paper, we will ignore these poles in what follows. Of course,
a treatment of (the lack of) unitarity for this higher-derivative theory does
require a careful analysis of these unphysical poles as well. At lowest order
(as in Theorem 21), one expects to find a cancellation of the unphysical poles
appearing in the gauge and Higgs propagator, similar to [21].

4.1. Renormalization on an Almost-Commutative Manifold

As said, we consider the asymptotic expansion (as Λ → ∞) of the spectral
action on the AC manifold M × F as a higher-derivative field theory. This
means that we will use the higher derivatives of Fμν and Φ that appear in the
asymptotic expansion as natural regulators of the theory, similar to [31,32]
(see also [19, Sect. 4.4]). However, note that the regularizing terms are already
present in the asymptotic expansion of the spectral action and need not be
introduced as such. Let us consider the expansion of Proposition 20 up to order
n (which we assume to be at least 4), i.e. we set f4−m = 0 for all m > n while
f4, . . . f4−n �= 0. Also, assume a gauge fixing of the form (12) and (13).

Remark 26. Note that for n = 4, the asymptotically expanded spectral action
is given by the action appearing in Theorem 21 and strictly speaking not a
higher-derivative gauge theory. However, in what follows, it is convenient to
also consider the case n = 4, giving us the physically interesting Lagrangian.
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We easily derive from the structure of ϕΛ(p2), ϑΛ(p2) and �Λ(p2; v) that
the propagators of the gauge field, the Higgs field χ, and the ghost field,
respectively, behave as |p|−n+2 as |p| → ∞. Indeed, in this case:

ϕΛ(p2) =
n/2−2∑
k=0

Λ−2kf−2kckp
2k; ϑΛ(p2) =

n/2−2∑
k=0

Λ−2kf−2kc
′
kp

2k;

�Λ(p2) =
n/2−2∑
k=0

Λ−2kf−2kc
′′
k(v)p

2k

which behave like |p|n−4 as |p| → ∞. Moreover, ϑ′
Λ(p2; v) and ϕ′

Λ(p2; v) are
subleading in |p| since they behave as v2|p|n−2 as |p| → ∞.

Let us now consider the weights on the vertices in a Feynman graph
(not to be confused with a Krajewski diagram). For gauge-Higgs interactions
involving i gauge and j Higgs fields, the maximal number of derivatives is
n− i− j, essentially because the total order of the corresponding term in the
Lagrangian is less than or equal to n. Similarly, for the gauge-ghost interaction,
the maximal number of derivatives is n−3. Finally, the Higgs–ghost interaction
behaves slightly better and has ≤ n − 4 derivatives. We adopt the following
notation:

number of . . . number of . . .
IA internal gauge lines Vij gauge-Higgs vertices
Iχ internal Higgs lines ṼA gauge-ghost vertices
Ĩ internal ghost lines Ṽχ Higgs–ghost vertices

Let us now find an expression for the superficial degree of divergence ω
of a Feynman graph. In 4 dimensions, we find in terms of the above notation
at loop order L:

ω ≤ 4L−(IA + Iχ + Ĩ)(n− 2) +
n∑

i+j=3

Vij(n− i−j)+ṼA(n− 3) + Ṽχ(n− 4).

Lemma 27. Let EA, Eχ and Ẽ denote the number of external gauge, Higgs and
ghost edges, respectively. The superficial degree of divergence of the Feynman
graph satisfies

ω ≤ (4 − n)(L− 1) + 4 − (EA + Eχ + Ẽ).

Proof. We use the relations

2IA + EA =
n∑

i+j=3

iVij + ṼA; 2Iχ + Eχ =
n∑

i+j=3

jVij + Ṽχ;

2Ĩ + Ẽ = 2ṼA + 2Ṽχ.

Indeed, these formulas count the number of half (gauge/Higgs/ghost) edges in
a Feynman graph in two ways: from the number of edges and from the valences
of the vertices. We use them to substitute for 2IA, 2Iχ and 2Ĩ in the above



1006 W. D. van Suijlekom Ann. Henri Poincaré

expression for ω so as to obtain

ω ≤ 4L− IAn− Iχn− Ĩn+ n

⎛
⎝∑

i,j

Vij + ṼA + Ṽχ

⎞
⎠ − (EA + Eχ + Ẽ)

from which the result follows at once from Euler’s formula L = IA + Iχ + Ĩ −∑
i,j Vij − ṼA − Ṽχ + 1. �

As a consequence, ω < 0 if E+Ẽ > 4 so that the theory is powercounting
renormalizable. Moreover, if n ≥ 8 then ω < 0 for all L ≥ 2: all Feynman
graphs are finite at loop order greater than 1. In this case, all divergent graphs
are at one loop, and satisfy E + Ẽ ≤ 4. We conclude that the asymptotically
expanded spectral action on an AC manifold is renormalizable, and if n ≥ 8
then it is superrenormalizable.

Of course, the spectral action on an AC manifold being a gauge theory,
there is more to renormalizability than just power counting: we have to es-
tablish gauge invariance of the counterterms. We already know that the coun-
terterms needed to render the perturbative quantization of the asymptotically
expanded spectral action finite are of order 4 or less in the fields and arise only
from one-loop graphs. The key property of the effective action at one loop is
that it is supposed to be BRST-invariant, s(Γ1) = 0. In particular, assuming
a regularization compatible with gauge invariance, the divergent part Γ1,∞
is BRST-invariant. We will use results from [3,14–17] on BRST cohomology
for Yang–Mills type theories to determine the form of the BRST-closed func-
tionals of order 4 or less in the fields. In fact, in these references, a relation
is established between BRST cohomology and Lie algebra cohomology for the
gauge group: BRST-closed functionals are given by integrals of gauge invariant
polynomials in the fields.

First, recall that with respect to the orthogonal decomposition of su(AF )
of Proposition 15 we can write the curvature Fμν =

∑
i F

i
μν with F iμν ∈

u(ki,Fi). Gauge invariant functionals are then given by∫
TrF iμνF

iμν , (15)

for all i. These terms appear, though with a common pre-factor, in
Theorem 21.

Let us then consider the field Φ with independent components φpẽ, as
labeled by the edges of the graph Γ̃ introduced at the end of Sect. 2.1. The
index p runs from 1, . . . ,dimSẽ and the field φẽ is in the representation of
su(AF ) induced by the irreducible representations that are given by s(ẽ) and
t(ẽ) in Γ̃(0). The most general form of a gauge invariant functional in the
components of Φ of degree 2 is given by∫

Tr(φp1ẽ )∗φp2ẽ , (16)
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for all ẽ, p1, p2. Note that these terms appear in Theorem 21 (cf. Eq. (6)).
There is also a term of second order in Φ involving covariant derivatives, it is:∫

Tr(∇μφ
p1
ẽ )∗∇μφp2ẽ , (17)

and is also present in Theorem 21 (cf. Eq. (7)).
Slightly more complicated is the search for the gauge invariant functionals

that are quartic in the fields φpẽ. In terms of the graph Γ̃, they are given by a
combination of the following sums over cycles in Γ̃:∑

γ̃=ẽ1ẽ2ẽ3ẽ4

Trs(ẽ4)=t(ẽ1) φ
p1
ẽ1

· · ·φp4ẽ4 ; (18)

∑
γ̃=ẽẽ

Trs(ẽ)=t(ẽ)(φ
p1
ẽ )∗φp2ẽ

∑
γ̃′=ẽ′

ẽ′

Trs(ẽ′)=t(ẽ′
)(φ

p′
1
ẽ′ )∗φp

′
2
ẽ′ (19)

That is, all gauge invariant quartic polynomials in Φ arise by taking traces
along cycles of length 4 in Γ̃, and traces along pairs of cycles of total length
4. In the latter case, we exclude the possibility that the cycles γ̃ and γ̃′ both
connect to the vertex 1 or the vertex 1. In fact, the contribution arising from
such cycles can be written as the trace along a single cycle of length 4, due to
the fact that Tr1 : C → C acts as the identity.

Example 28. Consider the following graph Γ̃:

2 1 3
�������	 �������	 �������	

The pair of cycles (21)(12) and (13)(31) gives a contribution

Trφ(21)φ(12) Trφ(31)φ(13) = (φ(21)φ(12))(φ(31)φ(13))

since (φ(21)φ(12)) and (φ(31)φ(13)) are elements in Hom(C,C) 
 C. The con-
catenated cycle (21)(12)(13)(31) of length 4 gives the same contribution

Trφ(21)φ(12)φ(31)φ(13) = (φ(21)φ(12))(φ(31)φ(13))

for the same reason.

Now, recalling Definition 11, if the Krajewski diagram Γ is R-connected
(in dimension 4) the above traces can always be written in terms of cycles of
length 4 in Γ which are precisely the terms that are present in Theorem 21
(cf. Eq. (8)). We conclude:

Theorem 29. Let M×F be an almost-commutative manifold with dimM = 4;
suppose that AF contains no copies of R, and either no complex subalgebras,
or at least one non-trivial complex subalgebra (cf. Proposition 15). Consider
the asymptotically expanded spectral action up to order n ≥ 4.

If the Krajewski diagram describing the finite real spectral triple for F is
R-connected in dimension 4, then the asymptotically expanded spectral action
(with f4−m = 0 for all m > n) for M ×F is renormalizable as a gauge theory.
Moreover, it is superrenormalizable as a gauge theory if n ≥ 8.
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As a corollary, we find that the asymptotically expanded Yang–Mills
spectral action is superrenormalizable (n ≥ 8), as was previously shown in
[37,38]. Indeed, the spectral triple of Example 4 has Krajewski diagram

N

N �������	

which is R-connected in a trivial way.
Similarly, Proposition 12 implies that the asymptotically expanded spec-

tral action that at lowest order is the Standard Model, is renormalizable as
a gauge theory. In particular, choosing n = 4 this implies that the Standard
Model is renormalizable as a gauge theory.

Of course, in order to have a sensible renormalizable gauge field theory
we have to make sure that no gauge anomalies appear. The cancellation of
such anomalies has been discussed in terms of Krajewski diagrams already in
[26], imposing further constraints on the diagrams. For the noncommutative
geometry of the Standard Model, the cancellation of anomalies turns out to
be equivalent to the unimodularity condition TrAμ = 0 [1].

More generally, for models beyond the Standard Model we have recently
described the anomaly-free possibilities [6]. In fact, for the chiral gauge anom-
aly to vanish, the charges of all fermions in HF for each of the C − 1 factors
in su(AF ) isomorphic to u(1) (cf. Proposition 15) should add up to zero, thus
imposing restrictions on the multiplicities of the fermions.

Example 30. Let us illustrate the possible failure of renormalizability for the
Krajewski diagram in Example 13 which is not R-connected. There are fields
φ(12) and φ(13) that could combine to give a gauge-invariant counterterms
proportional to (

(φ(12))∗φ(12)

) (
(φ(13))

∗φ(13)

)
However, this term can never appear in the asymptotic expansion of the spec-
tral action, since the edges (12), (21), (13) and (31) do not lift to a cycle
in Γ.

Note that the asymptotically expanded spectral action is not multiplica-
tively renormalizable, since the coefficients in front of the counterterms might
be different for different indices (such as i, ẽ, and p). This is in contrast with
the classical action in Theorem 21 where there is a typical unification of cou-
plings for all simple factors of the gauge group. This suggests that one takes
the spectral action SΛ[A,Φ] (plus gauge fixing) as a starting point for the
renormalization group flow to then run the action to arbitrary energy scales.

It remains an open question whether this approach to renormalizing the
asymptotically expanded spectral action using the intrinsic higher-derivative
regulators is equivalent to perturbatively quantizing the gauge theory defined
by the lowest-order terms (appearing in Theorem 21) using, say, dimensional
regularization and minimal subtraction. Evidence that this might be true can
be found in [29] and is the subject of future research.
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