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The Mass Shell in the Semi-Relativistic
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Abstract. We consider the semi-relativistic Pauli–Fierz model for a single
free electron interacting with the quantized radiation field. Employing
a variant of Pizzo’s iterative analytic perturbation theory we construct
a sequence of ground state eigenprojections of infra-red cutoff, dressing
transformed fiber Hamiltonians and prove its convergence, as the cutoff
goes to zero. Its limit is the ground state eigenprojection of a certain
renormalized fiber Hamiltonian. The ground state energy is an exactly
twofold degenerate eigenvalue of the renormalized Hamiltonian, while it
is not an eigenvalue of the original fiber Hamiltonian unless the total
momentum is zero. These results hold true, for total momenta inside a ball
about zero of arbitrary radius p > 0, provided that the coupling constant
is sufficiently small depending on p and the ultra-violet cutoff. Along the
way we prove twice continuous differentiability and strict convexity of the
ground state energy as a function of the total momentum inside that ball.

1. Introduction and Main Results

1.1. The General Framework

The scope of this paper is a mathematically rigorous investigation of the infra-
red (IR) problem for a single free electron in a simplified model for quantum
electrodynamics (QED). Due to the absence of external potentials the Hamil-
tonian for the electron interacting with the quantized radiation field is transla-
tion invariant, and it is, therefore, possible to decompose the Hamiltonian with
respect to the spectrum of the total momentum operator, i.e. the generators
of translations. In mathematical terms the Hamiltonian is unitarily equivalent
to a direct integral of fiber Hamiltonians. The ground state energy of the fiber
Hamiltonians as a function of the total momentum is called the mass shell.
While the mass shell can be computed explicitly when the interaction between
the electron and the photon field is set equal to zero, almost nothing is known
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a priori about its shape and regularity when the interaction with the ultra-
violet cut-off quantized radiation field is turned on. The shape of the mass
shell reflects the influence of the quantized radiation field onto the electron;
see for instance [2], where the mass shell enters into the implementation of an
effective dynamics for a non-relativistic (NR) electron coupled to the quan-
tized radiation field in a slowly varying external potential. Another example
for the importance of the mass shell is the definition of the renormalized elec-
tron mass as its inverse second derivative at zero. For this definition to make
sense it is of course necessary to prove sufficient regularity and strict convexity
of the mass shell. In the NR Pauli–Fierz model this has been achieved in [17].
Finally, information on the mass shell is an essential input for the construction
of infra-particle scattering states which, in the one-electron sector, has recently
been carried out in [12] for the NR Pauli–Fierz model and earlier in [30,31]
for Nelson’s model.

While a general guideline for the mathematical treatment of the IR prob-
lem and in particular of infra-particle scattering has been settled long ago in
a study of the Nelson model [14,15], several problems could not be treated
until the past decade. The main reason for these difficulties is the occurrence
of, in general, infinitely many soft photons in the ground states (understood
as positive linear functionals on a certain observable algebra) of the combined
electron–photon system described by a fiber Hamiltonian. Intuitively, due to
the vanishing photon mass arbitrarily small contributions to the total energy
may be spread over arbitrarily many low-energetic photons. This is reflected
in two technical difficulties: the spectrum of the fiber Hamiltonians is contin-
uous up to their ground state energies and their ground states (if any) may
give rise to disjoint coherent IR representation spaces for a certain algebra of
observables; see [33]. In fact, unless the total momentum is zero, the ground
states of the fiber Hamiltonians (still understood as functionals) are not normal
in the Fock representation and the fiber Hamiltonians do not possess ground
state eigenvectors. The analysis of these phenomena again requires non-trivial
knowledge about the mass shell: for a start one can directly show that a fiber
Hamiltonian attached to a total momentum p, where the mass shell is assumed
to be differentiable, can only have a ground state eigenvector provided that
the derivative of the mass shell at p vanishes. In the NR situation this has
been done in [18]. To show, however, that a non-zero p entails a non-zero
derivative one needs to prove strict convexity of the mass shell (or at least uni-
form convexity of approximations to it [3,9]) and to verify that its minimum
is attained at zero as it is certainly expected. In the NR Pauli–Fierz model
the disjointness of coherent IR representations associated with distinct total
momenta has been established in [10] based on bounds on the renormalized
electron mass from [9].

There are mainly two sophisticated multi-scale techniques which are
responsible for the recent progress in this area. The first one is the spec-
tral renormalization group introduced by Bach, Fröhlich, and Sigal. In the
present setting it was applied first in [9] and later on in [3] to the stan-
dard model of NR QED. Here we will apply the second method, namely
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the iterative analytic perturbation theory (IAPT) developed mainly by Pizzo
in his analysis of Nelson’s model [30,31] and later applied in [11,17] to the
translation-invariant NR Pauli–Fierz model. In [4–6] the IAPT has been used
to provide expansions of atomic ground state energies and eigenvectors and
of scattering amplitudes. More recently, the removal of the ultra-violet cut-
off in Nelson’s model has been studied by means of the IAPT [8]. A related
procedure based on continuous flows instead of discrete iteration steps as in
the IAPT can be found in [7]. We should mention here that in the Nelson
model it is actually possible to show real analyticity of the mass shell near
zero [1] thanks to the applicability of path integral and cluster expansion
techniques.

In contrast to the previously mentioned works we will investigate the IR
problem for the semi-relativistic (SR) Pauli–Fierz model, i.e. we start from
the relativistic energy-momentum dependency for the electron and introduce
the quantized radiation field as usual via minimal coupling. The study of the
so-obtained square-root Hamiltonian was initiated in [28] where the bottom of
the essential spectrum of fiber Hamiltonians is characterized. The main results
of [28] are, however, obtained under certain simplifying assumptions that ren-
der the model more IR regular. A scalar square-root Hamiltonian appeared
earlier in the mathematical analysis of Rayleigh scattering [16]. In the study
of binding in the presence of electrostatic potentials the IR singularities of the
SR Pauli–Fierz model can be dealt with similarly as in the NR model; see
[19,22–24,27] where binding energies, exponential localization of low-energy
states, and the existence of ground state eigenvectors are investigated (in con-
trast to the NR model the SR one with Coulomb potential becomes unstable if
the Coulomb coupling constant is too large). One may hope, however, that the
large energy behavior of the interaction between the electron and the photon
field is described more realistically by SR operators. In fact, thanks to the SR
nature of our model we may choose an upper bound on the moduli of total
momenta covered by our results as large as we please, at the expense, however,
of choosing the coupling constant sufficiently small. The latter restriction is
likely to be a technical one, while in the NR setting the results of [10,11,17]
are not expected to be true for large total momenta where the influence of
soft photons is dominant in the low-energy states due to the NR dispersion
relation of the electron.

Fiber Hamiltonians with a relativistic kinetic energy for the matter par-
ticles and linearly coupled radiation fields appear, e.g., in [14,29] and more
recently in [13], where it is shown that even a mass renormalization in the
linearly coupled model cannot prevent the mass shell from becoming flat as
the ultra-violet cut-off tends to infinity.

Although one might expect the analysis of square-root Hamiltonians to
be technically more involved we are able to establish essentially all main results
of [10,11,17] in the SR case, viz. existence of the renormalized electron mass
(Theorem 1.1(1) below; cf. [17] for the NR case), existence of ground state
eigenvectors at total momentum zero (Theorem 1.1(2); cf. [9,11]), absence of
eigenvalues at non-zero momenta (Theorem 1.1(3); cf. [10,18]), existence of
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ground state eigenvectors of renormalized Hamiltonians (Theorem 1.2(1); cf.
[9,11]), and disjointness of coherent IR representations (Theorem 1.2(3); cf.
[10]). Needless to say, in many details and aspects we profit from the works
on the NR Pauli–Fierz operator and on Nelson’s operator [30,31]. Concerning
the IAPT, however, we also propose several new arguments or alterations of
earlier ones within its general framework which, as we hope, will be helpful
in future investigations including the NR case (To mention some keywords for
the experts: we do not employ contour integrals and avoid repeated Neumann
series expansions and certain bounds relating expectations of operators with
expectations of their absolute values; by a minor modification of the dressing
transforms we avoid the discussion of intermediate Hamiltonians). As a novel
application of the IAPT we further found a very simple and entirely self-
contained discussion of the disjointness of coherent IR representations, which
avoids the use of infinite tensor products and any reference to abstract results
on CCR representations.

Another novelty achieved here is a proof of the exact twofold degener-
acy of the ground state eigenvalues of renormalized fiber Hamiltonians in the
presence of spin; see Theorem 1.2(1) below (without spin the non-degeneracy
follows from Perron–Frobenius arguments [14]). As our corresponding argu-
ment is essentially based on a certain relative form bound required to get the
IAPT started, it is clear that it also applies mutatis mutandis to Nelson’s model
(proving uniqueness of ground states) and to the NR Pauli–Fierz model (for
which it was still an open problem [20] to prove exact two-fold degeneracy).

1.2. The Model and Main Results

In this subsection we explain the model under investigation and state our main
results. The organization of this article is explained in Sect. 1.3.

The semi-relativistic (SR) Pauli–Fierz Hamiltonian, Hsr, generates the
dynamics of a single free electron with spin one-half and mass unity interacting
with the quantized radiation field. The interaction is introduced via minimal
coupling, −i∇x �→ −i∇x+e A, of the quantized vector potential, A, with sharp
ultra-violet cutoff at κ > 0,

A(x) :=
∑

λ∈Z2

∫

|k|<κ

ε(k, λ)
(2|k|)1/2

(
e−ik·x a†(k, λ) + eik·x a(k, λ)

) d3k

(2π)3/2
. (1.1)

The parameter e > 0, chosen sufficiently small later on, models the elementary
charge; in our units the square of the elementary charge equals Sommerfeld’s
fine-structure constant whose physical value is roughly 1/137. Throughout this
article A satisfies the Coulomb gauge condition, ∇x · A = 0. Therefore, the
polarization vectors appearing in (1.1) are chosen such that {k/|k|, ε(k, 0),
ε(k, 1)} is an oriented orthonormal basis of R

3. A lot of attention by mathe-
maticians has been attracted by the standard model of non-relativistic QED
where the dispersion relation for a non-interacting electron is p2/2. In contrast
we choose a relativistic dispersion relation for the electron, i.e. its energy at
momentum p is (p2 +1)1/2 when the radiation field is turned off. The resulting
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total Hamiltonian, thus, is

Hsr :=
√

(σ · (−i∇x ⊗ 1 + e A))2 + 1 + 1 ⊗Hf . (1.2)

HereHf is the energy of the free radiation field and σ = (σ1, σ2, σ3) denotes the
vector of Pauli spin matrices. The Hilbert space for this Hamiltonian is the
tensor product of the electron Hilbert space L2[R3

x,C
2] and the state space

of the photon field which is the bosonic Fock space, F , over L2[R3
k × Z2].

Since no external potentials are present the Hamiltonian is space translation
invariant and we may hence decompose it with respect to the generalized
eigenspaces of the total momentum operator. In mathematical terms Hsr is
unitarily equivalent to a direct integral of fiber Hamiltonians, H(p),

Hsr
∼=

⊕∫

R3

H(p) d3p. (1.3)

In a sense the Hamiltonian H(p) describes an idealized situation where the
total momentum of the system is fixed at p ∈ R

3. It is given by

H(p) :=
√

(σ · (p − pf + eA))2 + 1 +Hf , (1.4)

where A = A(0) and pf is the field momentum operator. We postpone a
rigorous definition of H(p) to Sect. 2. Here we just mention that H(p) acts in
the Hilbert space C

2 ⊗ F (careful discussions of (1.2) and (1.3) can be found,
e.g., in [25] and [23], respectively). One of the main objectives of this paper is
the study of the mass-shell, that is, the ground state energy, E(p), of H(p) as
a function of the total momentum,

E(p) := inf Spec[H(p)] , p ∈ R
3.

In order to state our first main result we introduce the notation

Bp := {p ∈ R
3 : |p| < p},

for the set of all total momenta taken into account. Here the radius 0 < p < ∞
as well as the ultra-violet cutoff 0 < κ < ∞ can be chosen arbitrarily large.
The elementary charge, 0 < e � e0, is treated as a small parameter with an
upper bound e0 depending on p and κ.

Theorem 1.1. For all κ, p > 0, we find e0 > 0 such that the following holds,
for all e ∈ (0, e0]:

(1) E is twice continuously differentiable and strictly convex on Bp and it
attains its unique global minimum at zero, E(0) = inf{E(p) : p ∈ R

3}.
(2) E(0) is a twofold degenerate eigenvalue of H(0). The expectation value of

the photon number operator in any corresponding eigenstate is finite.
(3) If p ∈ Bp\{0}, then E(p) is not an eigenvalue of H(p).

Proof. The assertions are contained in Theorems 4.6 and 5.3, Corollary 6.4,
and Theorem 6.5; see also (2.22). �
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While, for non-vanishing p ∈ Bp, E(p) is not an eigenvalue of H(p), it
is an eigenvalue of a certain renormalized Hamiltonian denoted by H̃∞(p).
Let us briefly explain the construction of the latter operator and of associated
representations (all objects will be re-introduced in Sect. 2 in a systematic
fashion):

We introduce a sequence of regularized vector potentials cut-off in the
infra-red at ρj := κ/2j ,

Aj :=
∑

λ∈Z2

∫

ρj�|k|<κ

ε(k, λ)
(2|k|)1/2

(
a†(k, λ) + a(k, λ)

) d3k

(2π)3/2
,

where j ∈ N0. We further define regularized fiber Hamiltonians by

H∞
j (p) :=

√
(σ · (p − pf + eAj))2 + 1 +Hf .

(The purpose of the superscript ∞ is to keep the notation consistent with
the one introduced in Sect. 2). Combining Lemma 3.3, Theorem 3.5, and
(2.22) below we shall see that, for all p ∈ Bp, the Hamiltonian H∞

j (p) has
an exactly twofold degenerate ground state eigenvalue. We denote the corre-
sponding ground state eigenprojection by Π∞

j (p). While H∞
j (p) converges to

H(p) in the norm resolvent sense, the projections Π∞
j (p) cannot have a non-

trivial norm-limit by Theorem 1.1(3). To analyze this situation in more detail
we proceed as follows:

Let Fj denote the bosonic Fock space over L2[{|k| � ρj} × Z2] and let
F∞

j be the one over L2[{|k| < ρj} × Z2]. In view of the natural embeddings
Fj ⊂ Fj+1 ⊂ F and the isomorphisms Fj ⊗ F∞

j = F it makes sense to
define the C∗-algebra, A, of local observables by

A := A◦‖·‖B(C2⊗F) , A◦ :=
∨

j∈N

B(C2 ⊗ Fj) ⊗ 1F∞
j
. (1.5)

(B(h) denotes the set of bounded operators on a Hilbert space h.) In physical
terms the observables in A◦ are unable to detect photon momenta below a
certain positive threshold value. To come back to our analysis of ground state
projections we define a sequence of states, ωj,p, on A by

ωj,p(X) :=
1
2
Tr{Π∞

j (p)X}, X ∈ A. (1.6)

It will turn out that, unlike the projections Π∞
j (p) themselves, the states ωj,p

do have a limit, say ωp, and the convergence takes place not only in the weak-∗
sense, but even in the norm on the dual space of A. These remarks apply to
all p ∈ Bp.

In a particular coherent IR representation of A the limit ωp turns out to
be normal. In fact, we shall find unitary Bogoliubov transformations, Wj(p) ∈
B(C2 ⊗Fj)⊗1F∞

j
, called dressing transformations in this context, having the

following properties: They are consistent in the sense that

Wj(p)XWj(p)∗ = Wm(p)XWm(p)∗, X ∈ B(C2 ⊗ Fm) ⊗ 1F∞
m
, m � j.

(1.7)
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As a consequence the relations

πp(X) := Wj(p)XWj(p)∗ , X ∈ B(C2 ⊗ Fm) ⊗ 1F∞
m
, m � j,

and a continuous extension define a ∗-representation πp : A → B(C2 ⊗F ). Let

H̃∞
j (p) := Wj(p)H∞

j (p)Wj(p)∗.

Then our sequence of dressing transformations further satisfies

H̃∞(p) := lim
j→∞

H̃∞
j (p) exists in the norm resolvent sense. (1.8)

In particular, E(p) = inf Spec(H̃∞(p)). Finally, we can prove the following
main theorem which partly summarizes some of the above remarks. In its
statement we abbreviate

Π̃∞
j (p) := Wj(p)Π∞

j (p)Wj(p)∗, Π̃∞(p) := 1{E(p)}(H̃∞(p)).

Theorem 1.2. For all κ, p > 0, we find c, e0 > 0 such that the following holds,
for all p ∈ Bp and e ∈ (0, e0]:

There exists a sequence of Bogoliubov transformations, Wj(p), on C
2⊗F

satisfying Wj(0) = 1, (1.7), and (1.8) such that

(1) E(p) is an exactly twofold degenerate eigenvalue of H̃∞(p), and
∥∥Π̃∞

j (p) − Π̃∞(p)
∥∥ � c e (1 + c e)jρj

j→∞−−−−→ 0.

(2) There is a state ωp ∈ A∗ such that

ωj,p → ωp in A∗ and ωp(X) =
1
2
Tr{Π̃∞(p)πp(X)}, X ∈ A.

(3) If q ∈ Bp \ {p}, then the representations πp and πq of A are disjoint and,
in particular, ωp is not a πq-normal state on A.

Proof. (1) follows from Corollary 4.5, Theorem 5.3, (2.22), and (2.53). (2)
follows from Part (1) and the constructions explained above. (3) follows from
Corollary 7.1. �

Explicit formulas for the dressing transformations Wj(p) can be found in
Sects. 2.4 and 2.5.

1.3. Organization of the Paper

The remainder of this paper is organized as follows:
• In Sect. 2 the most important definitions are collected and their relevance

is indicated. Sect. 2 is divided into six subsections:
2.1. The concept of second quantization in Fock space is recalled. The

scales underlying the IAPT are introduced.
2.2. Technically convenient “doubled” Hilbert spaces and fiber Dirac

operators are introduced.
2.3. IR regularized Hamiltonians Hj

m(p) (acting in the doubled Hilbert
spaces) and related objects are defined.

2.4. Objects necessary to prove regularity of the mass shell, in particular,
“partially” dressing transformed operators Ȟj(p) are introduced.
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2.5. “Fully” dressing transformed Hamiltonians H̃j
m(p) are introduced.

2.6. Coherent IR representations πp are defined.
2.7. A general class of Hamiltonians Kj

m is introduced which contains
Hj

m(p), Ȟj(p), and H̃j
m(p) as special cases.

• Section 3, devoted to preliminary results on the mass shell, is divided
into three subsections:
3.1. The ground state energy and the spectral gap of Hamiltonians

restricted to the initial scale are discussed.
3.2. Some a priori results on the mass shell are discussed (without regress

to the IAPT).
3.3. Spectral gaps are bounded from below. This subsection is one of the

key ingredients of the IAPT.
• Section 4 deals with the C2-regularity and strict convexity of the mass

shell. It has two subsections:
4.1. In two preparatory lemmas we state estimates crucially used in the

proof of the regularity. Both are proved in Appendix C.
4.2. The C2-regularity of the mass shell is proved.

• In Sect. 5 the degeneracy of ground state eigenvalues is investigated.
• The absence of ground state eigenvectors in the Fock representation for

p �= 0 is proved in Sect. 6. The proof uses a formula for a(k) applied to
a ground state eigenvector of Hj

m(p) derived in Appendix D.
• In Sect. 7 the disjointness of the representations πp is proved.

The main text is followed by four appendices:
A. Self-adjointness of fiber Dirac operators and Hamiltonians is discussed.

Basic relative bounds involving various Hamiltonians are provided.
B. Analyticity of p �→ Hj

m(p) is discussed. Hellmann–Feynman formulas and
bounds on the derivatives of Hj

m(p) are derived.
C. The proofs of two technical lemmas needed in Sect. 4 are given.
D. A formula for a(k) applied to a ground state of Hj

m(p) is derived.

2. Definitions, Notation, and Outlines

2.1. Scales, Fock Spaces, and Second Quantization

The IAPT comprises a recursive application of perturbation theory to suc-
cessively increase the range of photon momenta taken into account in the
interaction part of the Hamiltonian, starting from the non-interacting situa-
tion. The iteration steps are labeled by j ∈ N0 = {0, 1, 2, . . . } and associated
with infra-red cut-offs ρj , defined by

ρj := κ (1/2)j , j ∈ N0 , ρ∞ := 0 , ρ−∞ := ∞. (2.1)

Here κ > 0 is the ultra-violet cutoff parameter. Hence, the set of photon
momenta is split into a sequence of annuli,

R
3 × Z2 = A0 ∪

⋃

j∈N0

Aj+1
j ∪ {0}, (2.2)
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Aj
m := {(k, λ) ∈ R

3 × Z2 : ρj � |k| < ρm},
Aj := {(k, λ) ∈ R

3 × Z2 : ρj � |k|}.

Notice that Aj = Aj
−∞ and R

3 × Z2 = A∞ = A∞
−∞. The arguments of

photon wave functions are denoted by k = (k, λ) where k is representing the
momentum and λ the polarization of a single photon. We will frequently use
the following convention for the scalar product of f, g ∈ L2[Aj

m]:

〈 f | g 〉 :=
∫

Aj
m

f(k) g(k) dk :=
∑

λ∈Z2

∫

ρj�|k|<ρm

f(k, λ) g(k, λ) d3k. (2.3)

The bosonic Fock space over the one photon Hilbert space L2[Aj
m] is defined

as

F j
m := C ⊕

∞⊕

n=1

L2
s [(Aj

m)n], m < j. (2.4)

Here, L2
s [(Aj

m)n] denotes the totally symmetric, square integrable wave func-
tions on (Aj

m)n with respect to dnk. The elements of F j
m are sequences

ψ = {ψ(n)}∞
n=0 with ψ(n) ∈ L2

s [(Aj
m)n], n ∈ N, and ψ(0) ∈ C, satisfying

‖ψ‖2 := |ψ(0)|2 +
∞∑

n=1

‖ψ(n)‖2 < ∞.

The vector Ωj
m := (1, 0, 0, . . .) ∈ F j

m is called the vacuum (vector) in F j
m.

The Fock space over L2[Aj ] is denoted by Fj := F j
−∞, its vacuum is Ωj .

Moreover, F := F∞
−∞ and Ω denote the Fock space over L2[R3 × Z2] and the

corresponding vacuum, respectively.
Pointwise creation and annihilation operators are usually interpreted as

operator-valued distributions, but we refrain from using this formalism and
use a(k)ψ with ψ ∈ F j

m to denote a k-dependent sequence of wave functions
defined, for almost every k ∈ Aj

m, by a(k)ψ = {(a(k)ψ)(n)}n∈N0 with

(a(k)ψ)(n)(k1, . . . , kn) = (n+ 1)1/2 ψ(n+1)(k, k1, . . . , kn),

and a(k)Ωj
m = 0. The (smeared) annihilation operator of a photon state f ∈

L2[Aj
m] is defined as

a(f)ψ :=
∫

Aj
m

f(k) a(k)ψ dk,

on its maximal domain. It is densely defined and closed and the (smeared) cre-
ation operator is its adjoint, i.e. a†(f) := a(f)∗. Straightforward computations
yield the canonical commutation relations (CCR),

[a�(f), a�(g)] = 0 , [a(f), a†(g)] = 〈 f | g 〉1 , f, g ∈ L2[Aj
m], (2.5)

on a suitable domain, where a� is a† or a. Recall that all these remarks cover
the cases Aj = Aj

−∞ and R
3 × Z2 = A∞

−∞.
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Another application of (sharp) annihilation operators is the representa-
tion of the quadratic forms of second quantized multiplication operators, dΓ(	),
given by measurable functions 	 : Aj

m → R,

〈ψ |dΓ(	)ψ 〉 =
∫
	(k) 〈 a(k)ψ | a(k)ψ 〉dk, (2.6)

for ψ such that the integral exists. More precisely, the second quantization of
a multiplication operator 	 is the infinite direct sum

dΓ(	) :=
∞⊕

n=0

dΓ(n)(	),

where dΓ(0)(	) := 0, and dΓ(n)(	) is the maximal operator in L2
s [(Aj

m)n] of
multiplication with

(k1, . . . , kn) �→ 	(k1) + · · · +	(kn).

Writing ω(k) := |k| and m(k) = k we define

H
(m,j)
f := dΓ(ω�Aj

m
), H

(j)
f := dΓ(ω�Aj

),

p(m,j)
f := dΓ(m�Aj

m
), p(j)

f := dΓ(m�Aj
),

N
(m,j)
f := dΓ(1�Aj

m
) , N

(j)
f := dΓ(1�Aj

).

(2.7)

The operators in the first line are called field energy operators, the triplet in the
second line denotes field momentum operators, and the operators appearing in
third line are number operators. If the underlying Hilbert space is F , then
they are denoted by Hf ,pf , and Nf , respectively.

Moreover, the following relations hold:

‖a†(f)ψ‖2 = ‖a(f)ψ‖2 + ‖f‖2 ‖ψ‖2,

‖a(f)ψ‖ � ‖	−1/2 f‖ ‖dΓ(	�Aj
m

)1/2 ψ‖.
(2.8)

The identity in the first line follows from the CCR, for f ∈ L2[Aj
m] and ψ ∈

dom([N (m,j)
f ]1/2), which is a core for a†(f) and a(f). The bound in the second

line is valid, for ψ ∈ dom(dΓ(	�Aj
m

)1/2) and f ∈ L2[Aj
m] with ‖	−1/2 f‖ < ∞

and 	 > 0 a.e.
For h ∈ L2[Aj

m], we define field operators, on dom([N (m,j)]1/2) to start
with, by

ϕ(h) := 2−1/2(a†(h) + a(h)), 	(h) := 2−1/2(ia†(h) − ia(h)). (2.9)

The subspace of F j
m consisting of finite sequences (ψ(0), . . . , ψ(n), 0, 0, . . .) is a

core of analytic vectors for ϕ(h) and 	(h), which, therefore, have unique self-
adjoint extensions, henceforth again denoted by the same symbols. We use the
notation ϕ(f), a†(f), and a(f), for f = (f1, f2, f3) ∈ L2[Aj

m,C
3], to denote

triplets of operators,

ϕ(f) :=
(
ϕ(f1), ϕ(f2), ϕ(f3)), a�(f) :=

(
a�(f1), a�(f2), a�(f3)).

Finally, we sketch a construction of the frequently used isomorphism

F j
m = F r

m ⊗ F j
r , m < r < j. (2.10)
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For a given orthonormal basis (ONB) {fν}ν∈N of L2[Aj
m], the set

{
Ωj

m, (a†(fν1))
n1 · · · (a†(fνα

))nαΩj
m : α ∈ N, ns, νs ∈ N, s = 1, . . . , α

}

defines a complete orthogonal system of vectors in F j
m. Now, let {gν}ν∈N be an

ONB of L2[Ar
m] and let {hμ}μ∈N be an ONB of L2[Aj

r]. Clearly, {gν , hμ}ν, μ∈N

defines an ONB of L2[Aj
m]. Thus, there is a unique isometric isomorphism

between F j
m and F r

m ⊗ F j
r satisfying

(a†(gν1))
n1 · · · (a†(gνα

))nα(a†(hμ1))
m1 · · · (a†(hμβ

))mβ Ωj
m

�→ (a†(gν1))
n1 · · · (a†(gνα

))nα Ωr
m ⊗ (a†(hμ1))

m1 · · · (a†(hμβ
))mβ Ωj

r.

2.2. Doubled Hilbert Spaces and Dirac Operators

Recall that the Hilbert space the operators H(p) and H∞
j (p) with p ∈ R

3 are
acting in is C

2 ⊗F . For technical reasons it is, however, convenient to perform
calculations in the doubled space C

4 ⊗F where we can represent square-roots
as absolute values of Dirac operators. In this subsection we introduce the
corresponding notation.

First, we introduce the Hilbert spaces

Hj := C
4 ⊗ Fj , j ∈ N0 ∪ {∞}, H := H∞. (2.11)

Many calculations will be performed on the dense subspace Cj given by

Cj := C
4 ⊗

{
ψ ∈ Fj : ψ = (ψ(0), . . . , ψ(n), 0, 0, . . .), for some n ∈ N,

ψ(i) has compact support for every i ∈ N

}
. (2.12)

The 4 × 4-Dirac matrices,

α0 :=
(
1 0
0 −1

)
, αj :=

(
0 σj

σj 0

)
, j = 1, 2, 3, (2.13)

satisfy αi = α∗
i = α−1

i and the Clifford algebra relations

{αi, αj} = 2 δij 1, i, j ∈ {0, 1, 2, 3}. (2.14)

We recall that the 2 × 2-Pauli matrices appearing in (2.13) are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

As a consequence of (2.14) and the C∗-equality we obtain

‖α · v‖ = |v|, v ∈ R
3, (2.15)

where α · v := α1v1 + α2v2 + α3v3. With regard to (1.1) we define coupling
functions

Gm(k) := 1Am
(k)G(k), G(k) := (2π)−3/2 1|k|<κ |k|−1/2ε(k), (2.16)

where m ∈ N0 ∪ {∞}. Let p ∈ R
3 and let the fiber Dirac operator, Dj

m(p), be
defined as the closure of the symmetric operator in Hj given by

Dj
m(p)ψ := α · (p − p(j)

f + eϕ(Gm))ψ + α0 ψ, ψ ∈ dom(H(j)
f ). (2.17)
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Let us remark at this point that, most of the time, we shall drop the argu-
ments (p) in the notation for all operators introduced here and below to avoid
cluttered notation; i.e. we write Dj

m ≡ Dj
m(p), etc. We keep the explicit ref-

erence to p in the notation only when it becomes important and also in most
definitions to clarify the dependence on p of the new objects.

According to Lemma A.1 below Dj
m is self-adjoint and Cj is a core for

Dj
m. Moreover, we give an argument in Lemma A.1 which also shows that its

square, (Dj
m)2, is essentially self-adjoint on Cj .

A direct computation shows, however, that

(Dj
m)2 = T j

m ⊕ T j
m on Cj , (2.18)

where the direct sum refers to the splitting of the spinor components C
4 =

C
2 ⊕ C

2, and where

T j
m ≡ T j

m(p) :=
(
σ · (p − p(j)

f + eϕ(Gm))
)2 + 1.

In particular,

Spec(Dj
m) ⊂ (−∞,−1] ∪ [1,∞). (2.19)

We denote the resolvent at iy ∈ iR and the sign function of the fiber Dirac
operator by

Rj
m(iy) ≡ Rj

m(p, iy) := (Dj
m(p) − iy)−1,

Sj
m ≡ Sj

m(p) := Dj
m(p) |Dj

m(p)|−1.
(2.20)

Invoking the essential self-adjointness of (Dj
m)2 it is easy to see that two pos-

sibilities to make sense out of the square root in (1.4) yield the same operator:
we may take the square root of the closure of T j

m defined by means of the
spectral theorem, or, equivalently, we may define the square root in (1.4) to
be equal to the upper left (or lower right) 2×2 block of the block-diagonal
operator |Dj

m|.
An advantage of working with Dirac operators is the linear dependence

of Dj
m on the field operators. At the same time we have a convenient integral

representation of their sign functions in terms of their resolvents; see (2.58)
below.

For shortness we write Dj , Sj , Rj , for the operators Dj
j , S

j
j , R

j
j .

2.3. The Hamiltonians Hj
m and Hj

m, Ground State Energies, and Spectral
Gaps

We define fiber Hamiltonians on four spinors by

Hj
m(p) := |Dj

m(p)| +H
(j)
f , (2.21)

which are self-adjoint on the domain

dom(Hj
m(p)) := dom(H(j)

f ) ⊂ Hj

by Lemma A.3. These operators are block diagonal,

Hj
m(p) = Hj

m(p) ⊕ Hj
m(p), Hj

m(p) := T j

m(p)1/2 +H
(j)
f . (2.22)
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Hence, for j = ∞, they are twofold copies of the operators acting on two-
spinors that appeared in Sect. 1.2. Clearly, it suffices to prove the analogs of
Theorems 1.1 and 1.2 for the Hamiltonians H∞

m acting in C
4 ⊗ F instead of

proving them for the operators H∞
m in C

2 ⊗ F .
Define the ground state energy and the spectral gap of Hj

m(p) by

Ej
m(p) := inf Spec[Hj

m(p)],

gapj
m(p) := inf(Spec[Hj

m(p) − Ej
m(p)] \ {0}).

(2.23)

The ground state projection of Hj
m(p) is denoted by

Πj
m(p) := 1{Ej

m(p)}(H
j
m(p)) ;

i.e. by the same symbol we have used for the ground state projections of
operators acting on two-spinors. This should not cause any confusion in what
follows. For Re z > 0, we further define

Rj
m(p, z) :=

(
Hj

m(p) − Ej
m(p) + z

)−1
, (2.24)

and, in case Ej
m(p) is an isolated point of the spectrum, we define a projected

resolvent,

(Rj
m)⊥(p) :=

(
Hj

m(p) (Πj
m)⊥(p) − Ej

m(p)
)−1(Πj

m)⊥(p), (2.25)

where P⊥ := 1 − P , for any orthogonal projection P .
As agreed on in the previous subsection we shall usually drop all argu-

ments (p) in the notation; for instance, we shall write Ej
m, gapj

m,H
j
m,Rj

m(z)
instead of Ej

m(p), gapj
m(p),Hj

m(p),Rj
m(p, z).

Similarly, as in the previous subsection, we further use Hj ,Hj ,Rj(z),
(Rj)⊥,Πj , Ej , gapj as shorthands for Hj

j ,H
j
j ,R

j
j(z), (R

j
j)

⊥,Πj
j , E

j
j , gapj

j .
Without any subscript we denote quantities associated with A∞

−∞ = R
3×

Z2, that is, H := H∞,H := H∞, E := E∞, etc.
To motivate the above definitions we note the following:

Remarks on Sect. 3. In the iteration steps of the IAPT one infers spectral
information on Hj from the corresponding knowledge about operators with a
larger infra-red cutoff, Hm,m < j. It is trivial to analyze the initial operator
in this sequence, H0, as it contains no field operators, G0 = 0; it is merely a
multiplication operator; see Lemma 3.1. In principle one would like to compare
Hm and Hj with m < j directly. However, these operators are defined on
different Hilbert spaces so that effectively none of the usual spectral methods
can be applied. This problem is solved by introducing Hj

m which contains the
same field operators as Hm but acts in the same Hilbert space as Hj , namely
Hj . To explain this more precisely we recall that

Hj = Hm ⊗ F j
m =

∞⊕

n=0

X (m,j)
n ,

X (m,j)
n := Hm ⊗ L2

s [(Aj
m)n], n ∈ N, X

(m,j)
0 := Hm. (2.26)
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It is essential to note that Hj
m leaves this decomposition invariant. More-

over, by a natural identification, see for instance [32], we have X
(m,j)

n =
L2

s [(Aj
m)n;Hm], and

Hj
m(p)�

X
(m,j)

n
=

⊕∫

(Aj
m)n

(
Hm(p − k) + |k1| + · · · + |kn|

)
dk1 . . . dkn (2.27)

with k := k1+ · · ·+kn. Thus, we can deduce the spectrum of Hj
m(p) from that

of Hm(p − k); see Lemma 3.3. As a result of Sect. 3, obtained by combining
Lemma 3.3 and Theorem 3.5, we shall see that the ground state energy is an
isolated, fourfold degenerate eigenvalue of Hj

m(p), for all m � j < ∞,p ∈ Bp,
and small e > 0, and that

gapj(p) � c ρj and Em(p) = Ej
m(p).

Here the constant c can be chosen independently of j and e ∈ (0, e0], for some
e0 > 0. One of the consequences of this result used later on is the following:

By means of the formula (2.58) (below) for the absolute value of Dirac
operators it is straightforward to prove type A analyticity of the family
{Hj

m(p)}p∈R3 ; see Lemma B.1. For small e, this entails analyticity of Ej
m,m �

j < ∞, on the set Bp where it is an isolated eigenvalue of constant multiplicity,
and it allows to express its derivatives by means of Hellmann–Feynman type
formulas; see Lemma B.1:

∂hE
j
m = Tr{Πj

m (∂hH
j
m)Πj

m}/4,
∂2

hE
j
m = Tr{Πj

m(∂2
hH

j
m)Πj

m}/4 − ‖((Rj
m)⊥)1/2 (∂hH

j
m)Πj

m‖2
HS/2.

(2.28)

Here, ‖ ·‖HS denotes the Hilbert–Schmidt norm and ∂h the derivative in direc-
tion h ∈ R

3. We should mention here that parts of the proofs in Sect. 3 are
formulated for more general operators.

2.4. The Partially Dressing Transformed Hamiltonians Ȟj .

Since Ej turns out to be analytic on Bp it suffices to show that
∞∑

j=0

sup
p∈Bp

|∂ν
hEj+1(p) − ∂ν

hEj(p)| < ∞, ν = 0, 1, 2, h ∈ R
3, (2.29)

to prove C2-regularity of E ≡ E∞, which is the pointwise limit of Ej (in
fact, H∞

j converges to H in the norm-resolvent sense; see Lemma A.3). If
we attempted to prove (2.29) by means of the Hellmann–Feynman formulas in
(2.28) for ∂ν

hEj+1 and ∂ν
hE

j+1
j = ∂ν

hEj applied to the operatorsHj+1 andHj+1
j

(which both act in Hj+1) we would encounter the problem of estimating the
difference between Πj+1

j and Πj+1. But if we expect Theorem 1.1(3) to be true,
then the norms ‖Πj+1

j − Πj+1‖ cannot be summable at p �= 0, for otherwise
one could infer the existence of ground states of H(p). In fact, anticipating a
result of Lemma 3.3(1), we have

Πj+1
j = Πj ⊗ PΩj+1

j
∈ B(Hj+1) = B(Hj) ⊗ B(F j+1

j ), (2.30)



Vol. 15 (2014) The Mass Shell in the Semi-Relativistic Pauli–Fierz Model 877

where PΩj+1
j

is the one-dimensional projection onto the space spanned by Ωj+1
j

in F j+1
j . In other words, there are no photons in the range of Πj+1

j with
momentum in Aj+1

j . A moving electron, however, emits and absorbs radiation
and is thought of being surrounded by a cloud of soft photons. So, if the total
system is moving with a non-vanishing momentum p, then Πj+1

j (p) will not
be a good approximation to its ground state projection. Roughly speaking the
idea is then to remedy this situation by introducing a unitary (partial) dressing
transformation, U∗

j (p), that dresses Ωj+1
j into a cloud of soft photons.

Hence, we compare Hj+1
j not with Hj+1, but with

Ȟj+1 := UjHj+1U
∗
j

instead. The definition of the p-dependent unitary Uj is given in formula (2.32)
below. Clearly,

Spec[Ȟj+1] = Spec[Hj+1], Ej+1 = inf Spec[Ȟj+1],

gapj+1 = inf(Spec[Ȟj+1 − Ej+1] \ {0}),

and the ground state projection of Ȟj+1 satisfies

Π̌j+1 := 1{Ej+1}(Ȟj+1) = UjΠj+1U
∗
j .

By unitary invariance of the trace and the Hilbert–Schmidt norm we obtain
from (2.28)

∂hEj+1 = Tr{Π̌j+1 Uj(∂hHj+1)U∗
j Π̌j+1}/4,

∂2
hEj+1 = Tr{Π̌j+1Uj(∂2

hHj+1)U∗
j Π̌j+1}/4

− ‖((Řj+1)⊥)1/2 Uj(∂hHj+1)U∗
j Π̌j+1‖2

HS/2, (2.31)

where (Řj+1)⊥ = Uj(Rj+1)⊥U∗
j ; see also (2.41) below. For Uj(p) one chooses

a Bogoliubov transformation of the form

Uj(p) := e−ie�(fj+1
j (p)),

f j+1
j (p) :=

Gj+1
j · ∇Ej(p)

ω − k · ∇Ej(p)
, Gj+1

j := 1Aj+1
j

G.
(2.32)

We define f j+1
j (p) only for p ∈ Bp and sufficiently small e. In fact, by

Lemma 3.2, Theorem 3.5, and Lemma B.1 below,

sup
e∈(0,e0]

sup
j∈N

sup
Bp

|∇Ej | � q < 1, (2.33)

where e0 and q depend only on κ and p.
It is well known that, for every real-valued h ∈ L2[Aj+1

j ,R],

Uj a
�(h)U∗

j = a�(h) − 〈h | f j+1
j 〉, Uj ϕ(h)U∗

j = ϕ(h) − 2〈h | f j+1
j 〉,

on the domain of [H(j,j+1)
f ]1/2 (which stays invariant under Uj). So, Uj actually

gives rise to a new representation of the CCR. The explicit choice of f j+1
j can

be motivated by the bound (6.3) below which reflects the IR behavior of the
ground state eigenvectors of Hj .
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The action of Uj on various operators can be expressed by means of the
quantities

F j+1
j := f j+1

j k + Gj+1
j , čj := 〈 f j+1

j |F j+1
j + Gj+1

j 〉,
b̌j := 〈 f j+1

j |ω f j+1
j 〉,

which all depend on p through f j+1
j . For later reference we note the bounds

|b̌j |, |čj | � c ρj ,
∥∥F j+1

j

∥∥ � c ρj ,
∥∥ω−1/2 F j+1

j

∥∥ � c ρ
1/2

j . (2.34)

On account of (2.33) the bounds (2.34) hold true uniformly, for j ∈ N0,p ∈ Bp,
and e ∈ (0, e0], with c, e0 > 0 depending only on κ and p. The following identity
will lead to some crucial cancellations:

F j+1
j · ∇Ej =

1
(2π)3/2

1Aj+1
j

ω1/2

ε · ∇Ej

1 − k̊ · ∇Ej

= ω f j+1
j , k̊ := |k|−1 k. (2.35)

Abbreviating

Ďj+1 := Uj Dj+1 U
∗
j , Ȟ

(j+1)
f := Uj H

(j+1)
f U∗

j , j ∈ N0,

we deduce the following explicit formulas for these operators:

Ȟ
(j+1)
f = H

(j+1)
f − eϕ(ω f j+1

j ) + e2b̌j , (2.36)

Ďj+1 = Dj+1
j + α · {eϕ(F j+1

j ) − e2čj}, (2.37)

which hold true on the domain of H(j+1)
f . The resolvents of Ďj and

Ȟj = |Ďj | + Ȟ
(j)
f

are tagged with a check on top, i.e. we set

Řj(iy) ≡ Řj(p, iy) := (Ďj(p) − iy)−1, y ∈ R, (2.38)

Řj(z) ≡ Řj(p, z) := (Ȟj(p) − Ej(p) + z)−1, Re z > 0, (2.39)

Ř⊥
j (z) ≡ Ř⊥

j (p, z) := (Ȟj(p) − Ej(p) + z)−1 Π̌⊥
j (p), Re z > −gapj(p),

(2.40)

Ř⊥
j := Ř⊥

j (p, 0) = (Ȟj(p) − Ej(p))−1 Π̌⊥
j (p). (2.41)

The latter resolvents will only be used when Ej is an isolated point of the
spectrum.

Outline of Sect. 4.2. To give the reader an idea on where and how Ȟj+1 cru-
cially enters into the analysis we add a few remarks on Sect. 4.2: A simple but
lengthy calculation (carried out in Lemma 4.1) using (2.35) yields

(
Ȟj+1 −Hj+1

j + e2κj

)
Πj+1

j

= e(Π⊥
j ∇HjΠj) ⊗ {a†(F j+1

j ) − e čj}PΩj+1
j

+ O(e ρ2
j ),

where κj � 0. Since Ej belongs to the resolvent set of Ȟj+1 Π̌⊥
j+1 we further

have

Π̌⊥
j+1Π

j+1
j = (Ȟj+1 − Ej + t)−1 Π̌⊥

j+1 (Ȟj+1 −Hj+1
j + t)Πj+1

j , (2.42)
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for every t � 0. Using a “resolvent comparison lemma” (Lemma 4.2) and the
two identities above we deduce in Lemma 4.3 that

‖Π̌j+1 − Πj+1
j ‖HS � 4‖Π̌⊥

j+1Π
j+1
j ‖HS � c e ρj L

(1)
j + O(e ρj) , (2.43)

where

L
(s)
j := ‖(R⊥

j )s Π⊥
j ∇Hj Πj‖HS, j ∈ N0, s ∈ {1/2, 1}. (2.44)

Notice that it is essential not to estimate the operator norm of the resolvent in
(2.42) trivially in the leading order contribution to (2.42). Rather it has to be
related to R⊥

j by means of Lemma 4.2. The square of L(1/2)
j is up to a trivial

factor the second part of the Hellmann–Feynman formula (2.28) for ∂2
hEj and

its control is, therefore, necessary to derive (2.29). We shall prove the following
relations:

L
(1)
j+1 � (1 + c e)j+1 − 1, |L(1/2)

j+1 − L
(1/2)
j | � c e ρ

1/2

j (1 + c e)j ; (2.45)

see Lemma 4.4 and Corollary 4.5. Estimating the resolvents in L(s)
j trivially,

L
(1)
j � c ρ−1

j , L
(1/2)
j � c ρ

−1/2

j , (2.46)

would again by far not be sufficient. It is a guiding theme in the IAPT to
avoid such trivial bounds by relating singularities of resolvents recursively to
those corresponding to a preceding scale. (In the initial scale L(s)

0 = 0.) The
final result of Sect. 4.2 on the C2-regularity of the mass shell (Theorem 4.6)
is based on the estimates (2.43) and (2.45).

2.5. The Fully Dressing Transformed Hamiltonians H̃j
m

In order to establish Theorem 1.2 we define the following dressing transforms:

W j
m(p) :=

j−1∏

�=m

U�(p), m < j < ∞, Wm := Wm
0 . (2.47)

We shall often identify W j
m ≡ W j

m ⊗ 1F�
j
, if m < j < �. Of course, we assume

here that U� is well defined, i.e. we assume that we are in the situation described
in the paragraph below (2.32). Furthermore, we abbreviate

fm(p) :=
m−1∑

�=0

f �+1
� (p), F m(p) :=

m−1∑

�=0

F �+1
� (p),

c̃m(p) := 〈 fm(p) |Gm + F m(p) 〉, b̃m(p) := 〈 fm(p) |ω fm(p) 〉,

where m ∈ N0 ∪ {∞}, |p| � p, and empty sums are zero. Then we define

D̃j
m(p) := α · {p − p(j)

f + eϕ(Gm + F m(p)) − e2 c̃m(p)} + α0, (2.48)

a priori as an essentially self-adjoint operator on Cj , and then by taking its
closure; see Lemma A.3. Furthermore, we define, on the domain dom(H(j)

f ),

H̃j
m(p) := |D̃j

m(p)| +H
(j)
f − eϕ(ω fm(p)) + e2 b̃m(p). (2.49)
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In (2.48) and (2.49) we may choose j,m ∈ N0 ∪ {∞} with m � j. Notice,
however, that

H̃j
m = WmHj

mW ∗
m, if m < ∞, (2.50)

while there is no analog of (2.50) with m = ∞. In fact, it does not make
sense to define W∞ by (2.47) because

∑∞
0 f j+1

j /∈ L2[R3 × Z2]. In view of the
identity

inf Spec[H̃j
m] = Ej

m,

which is obvious for m < ∞ and follows from Lemma A.3(iii) in the case
m = j = ∞, we set

Π̃j
m(p) := 1{Ej

m(p)}(H̃
j
m(p)).

In view of (2.50) we then have

Π̃j
m = Wm Πj

mW ∗
m, if m < ∞. (2.51)

By virtue of Lemma 3.3(1) and Theorem 3.5 below we shall see that

Π∞
j = Πj ⊗ PΩ∞

j
= Πj+1

j ⊗ PΩ∞
j+1
, j ∈ N0. (2.52)

Hence, the ground state projections defined so far are related as

Π̃∞
j+1 − Π̃∞

j = Wj (UjΠj+1U
∗
j − Πj+1

j )W ∗
j ⊗ PΩ∞

j+1

= Wj (Π̌j+1 − Πj+1
j )W ∗

j ⊗ PΩ∞
j+1
. (2.53)

In particular, (2.43) combined with (2.45) implies the convergence of Π̃∞
j to

some limit projection, provided that e > 0 is sufficiently small. This limit
projection is discussed in Sect. 5.

2.6. Coherent IR Representations

We define an algebra analog to that in the introduction,

A := A◦‖·‖B(H )
, A◦ :=

∨

j∈N

B(Hj) ⊗ 1F∞
j
. (2.54)

(It differs from the one in (1.5) only in that we now consider Hilbert spaces of
four-spinors instead of two-spinors. We shall use the same notation for algebras
and representations in both cases. This should not lead to any confusion).
In (2.54) we have used the identifications H = Hj ⊗ F∞

j and B(H ) =
B(Hj) ⊗ B(F∞

j ), which follow from (2.10). The coherent representations are
the unital ∗-representations πp : A → B(H ) determined, for each p ∈ Bp and
sufficiently small e, by

πp

(
X ⊗ 1F∞

j

)
:= Wj XW ∗

j ⊗ 1F∞
j
, X ∈ B(Hj), j ∈ N.

Note that we have the consistency relations (1.7) so that πp is well defined and
isometric on A◦. It, therefore, has a unique isometric extension to the whole
C∗-algebra A which is again denoted by πp.
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Since we are now dealing with four-spinors instead of two-spinors we
define the states ωj,p by

ωj,p(X) :=
1
4
Tr{Π∞

j (p)X}, X ∈ A.

Of course, we shall employ this definition only in a situation where we already
know that Π∞

j (p) has rank four. On account of the invariance of the trace with
respect to unitary conjugations we obtain, for m < j and X ∈ B(Hm),

ωj,p(X ⊗ 1F∞
m

) =
1
4
Tr{Π∞

j X ⊗ 1F∞
m

} =
1
4
Tr{Π̃∞

j πp(X ⊗ 1F∞
m

)}.

In view of (2.43), (2.45), and (2.53) we thus have convergence of ωj,p to some
state ωp with respect to the norm on A∗.

The disjointness of representations πp corresponding to distinct p is
shown in Sect. 7.

2.7. Generalized Operators

We define generalized operators Kj
m which cover the special cases

{Hj
m(p)}m�j , {Ȟj(p)}j , and {H̃j

m(p)}m�j . (2.55)

In what follows we pick g ∈ L2[A∞
0 ,R

3], h ∈ L2[A∞
0 ,R], and cm ∈ R

3, bm ∈
R,m ∈ N, and set c0 := 0, b0 := 0, and for m < j,

cj
m := cj − cm, bjm := bj − bm,

gj
m := 1Aj

m
g, hj

m := 1Aj
m
h, gm := gm

0 , hm := hm
0 .

On the dense domain Cj [introduced in (2.12)] we define

Dj
m(p) := α · (p − p(j)

f + eϕ(gm) − e2cm) + α0,

Kj
m(p) := |Dj

m(p)| +H
(j)
f − eϕ(hm) + e2bm.

(2.56)

Notice that Dj
m(p) is essentially self-adjoint on Cj by Lemma A.1. Denoting

its self-adjoint closure again by the same symbol we have (Dj
m(p))2 � 1 and

we define

Rj
m(p, iy) := (Dj

m(p) − iy)−1, y ∈ R.

As 0 belongs to the resolvent set of Dj
m its sign function can be represented

as a strongly convergent principal value (see, e.g., [21, Page 359]),

Sj
m(p)ψ := Dj

m(p) |Dj
m(p)|−1ψ = lim

τ→∞

τ∫

−τ

Rj
m(p, iy)ψ

dy
π
, (2.57)

for all ψ ∈ Hj . This yields a convenient representation of its absolute value,

|Dj
m|ψ = Sj

m Dj
m ψ = lim

τ→∞

τ∫

−τ

(
1 + iyRj

m(iy)
)
ψ

dy
π
, ψ ∈ dom(Dj

m), (2.58)
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where, as usual, all arguments (p) have been dropped. For convenience we will
assume that

H
(m)
f − eϕ(hm) + e2bm � 0, (2.59)

which is fulfilled by the Hamiltonians in (2.55). Furthermore, we assume the
existence of a constant, c0 > 0, such that, for all 0 � m < j � ∞,

|cj |, |bj |, ‖(1 + ω−1/2)gj‖, ‖(1 + ω−1/2)hj‖ � c0,

|cj
m|, |bjm|, ‖gj

m‖, ‖hj
m‖ � c0 ρm, ‖ω−1/2 gj

m‖, ‖ω−1/2 hj
m‖ � c0 ρ

1/2
m .

(2.60)

The results of Sect. 3 shall imply that, for given κ, p > 0, we find some e0 > 0
such that, for all e ∈ (0, e0] and p ∈ Bp, the choices gm = Gm + F m, hm =
ω fm, cm := c̃m, bm = b̃m satisfy the assumptions (2.59) and (2.60). This is a
consequence of straightforward estimations based on (2.32) and (2.33); recall
(2.34).

We shall again write Kj ,Dj ,Sj ,Rj instead of Kj
j ,D

j
j ,S

j
j ,R

j
j to reduce

clutter.
Relative bounds involving the above operators and a discussion of their

self-adjointness can be found in Appendix A.

3. First Results on the Mass Shell and Spectral Gaps

3.1. The Spectrum at the Initial Scale

In the IAPT one infers estimates on the ground state energy and the spectral
gap of an operator likeHj+1 from estimates on the same quantities correspond-
ing to an operator on a preceding scale (i.e. Hj). It is, therefore, important to
ensure existence of a spectral gap and estimates on the ground state energy
at the initial scale.

First, we recall that Hj
0(p) = ((p−p(j)

f )2 +1)1/2 +H
(j)
f . Moreover, recall

that p(j)
f and H(j)

f act in L2
s [(Aj)n] simply by multiplication with k1 + · · ·+kn

and |k1| + · · · + |kn|, respectively, and p(j)
f Ωj = 0,H(j)

f Ωj = 0, where Ωj is
the vacuum vector. In particular, it is an elementary exercise to derive the
following lemma. We present its proof only for the convenience of the reader:

Lemma 3.1 (spectrum of Hj
0(p)). For all p ∈ R

3 and j ∈ N0 ∪ {∞}, the
following holds:

(i) Ej
0(p) = (p2 + 1)1/2 is a fourfold degenerate eigenvalue of Hj

0(p). The
corresponding eigenspace is {v ⊗ Ωj : v ∈ C

4}.
(ii) gapj

0(p) � min{ρj , 1}/(2(|p|2 + 1)).

Proof. (i): It is obvious that (p2 + 1)1/2 is an eigenvalue of Hj
0(p) and that

C
4⊗Ωj belongs to the corresponding eigenspace. It follows from the arguments

below that the latter is actually the whole eigenspace (even in the case j = ∞)
and that (p2 + 1)1/2 is the infimum of the spectrum.
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To prove (ii) we observe that the spectrum of Hj
0(p) restricted to the

invariant subspace {C
4 ⊗ Ωj}⊥ is given by the closure of

∞⋃

n=1

{([
p −

n∑

i=1

ki

]2
+ 1

)1/2

+
n∑

i=1

|ki| : |ki| � ρj , i = 1, . . . , n
}
. (3.1)

On account of the triangle inequality
∣∣∑n

i=1 ki

∣∣ �
∑n

i=1 |ki| this implies

inf Spec
[
Hj

0(p)�{C4⊗Ωj}⊥
]

� inf
k∈R3

((
[p − k]2 + 1

)1/2 + max{ρj , |k|}
)

= inf
r�0

((
[|p| − r]2 + 1

)1/2 + max{ρj , r}
)
.

Writing g(r) := ([|p| − r]2 + 1)1/2 − (p2 + 1)1/2 + max{ρj , r}, r ∈ [0,∞), we
find g′ > 0 on [ρj ,∞); thus minr�ρj

g(r) = g(ρj). The possible minima of g
on [0, ρj ] are g(ρj), g(0) = ρj , and g(|p|), if |p| � ρj . Since R � t �→ (t2 + 1)1/2

is convex Taylor’s formula yields, for all p ∈ R
3,

g(ρj) � ρj − |p|
(p2 + 1)1/2

ρj =
ρj

(p2 + 1)1/2((p2 + 1)1/2 + |p|) >
ρj

2(p2 + 1)
.

In the case |p| � ρj we apply the inequality

f(t) := 1 − (t2 + 1)1/2 + t � min{t, 1}/2, t � 0, (3.2)

to get g(|p|) = 1 − (p2 + 1)1/2 + ρj � min{ρj , 1}/2 (At least for t ∈ [0, 1], (3.2)
is clear by Taylor’s formula; for t > 1, then, use f(t) = tf(1/t)). �

3.2. A Priori Bounds on the Mass Shell

Note that the next lemma is valid even when Ej belongs to the essential
spectrum of Hj and when no ground state exists. In particular, it holds for
E = E∞. The bound on the derivative of Ej

k derived in the following lemma
justifies the definitions of Ȟj(p) and H̃j

k(p), at least for almost every p ∈ Bp,
if e is sufficiently small. The bound of Lemma 3.2(3) is a crucial ingredient in
the estimation of spectral gaps in the next subsection; it follows from the fact
that Ej tends to infinity as |p| gets large and on the bound on the derivative
mentioned before. Here, it suffices to have absolute continuity of Ej along
every line in R

3. This property is fulfilled in many models and is usually proved
without regress to the IAPT; see [15]. However, the fact that the derivative of
Ej is strictly smaller than one, even for arbitrarily large p, is a special property
of semi-relativistic models: It is false for the non-relativistic model, at least at
scale j = 0.

Lemma 3.2. (1) There exists c > 0 such that, for all e ∈ (0, 1] and p ∈ R
3,

(1 − c e)E0(p) � Ej(p) � (1 + c e)E0(p). (3.3)

(2) There is some c > 0 such that, for all e ∈ (0, 1], j ∈ N∪{∞}, normalized
u ∈ R

3, and p ∈ R
3 for which ∂uEj(p) := d

dtEj(p + tu)|t=0 exists,

|∂uEj(p)| � 1 − 1
2(1 + c e)E0(p)2

+ c eE0(p). (3.4)
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(3) For all p > 0, we find e0 > 0 and q ∈ (0, 1/2] such that

Ej(p + h) − Ej(p) � −(1 − q) |h|, (3.5)

for all e ∈ (0, e0],h ∈ R
3,p ∈ Bp, and j ∈ N0 ∪ {∞}.

Proof. (1): The form bound (A.7) implies Hj
0 � (1 + c e)Hj and (A.8) implies

Hj � (1+ c e)Hj
0 . Hence, Part (1) is a consequence of the variational principle

and the identity Ej
0 = E0.

(2): Let φ ∈ dom(H(j)
f ) and j ∈ N ∪ {∞}. On account of Lemma B.1,

Hj(p + h)φ−Hj(p)φ = ∂hHj(p + h)φ+ |h|2O(1)φ, |h| → 0,

where the norm of O(1) ∈ B(Hj) can be bounded uniformly in p ∈ R
3 and in

j. Note that Hj
0(p + h) = (v2 + 1)1/2 +H

(j)
f with v := p + h − p(j)

f . Since the
components of v and p(j)

f commute strongly we obtain

〈φ | ∂hH
j
0(p + h)φ 〉 = 〈φ |h · v (v2 + 1)−1/2 φ 〉

� −|h| ‖φ‖2 + |h| 〈φ | (1 − |v| (v2 + 1)−1/2)φ 〉
� −|h| ‖φ‖2 + |h| 〈φ | (v2 + 1)−1 φ 〉/2.

By the trivial bound (v2 + 1)−1 � (Hj
0(p + h))−2 (between multiplication

operators) this yields ∂hH
j
0(p + h) � −|h| + |h| (Hj

0(p + h))−2/2. Next, we
have, pointwise at every value of the total momentum,

(Hj
0)−2 − (Hj)−2 = ((Hj

0)−1 −H−1
j ) (Hj

0)−1 +H−1
j ((Hj

0)−1 −H−1
j ).

Using Lemma A.3(ii) and ‖(Hj
0)−1‖, ‖H−1

j ‖ � 1 we find some c > 0 such that

‖(Hj
0)−2 − (Hj)−2‖ � 2 ‖(Hj −Hj

0)(Hj
0)−1‖ � 2 c e, (3.6)

at every value of the total momentum. We end up with

∂hH
j
0(p + h) � −|h| + (|h|/2) (Hj(p + h))−2 − c e |h|. (3.7)

By virtue of (B.1), ±{∂hHj − ∂hH
j
0} � c e |h| (H(j)

f + 1) � c′e |h|Hj , whence

Hj(p + h) − Ej(p) � Hj(p + h) −Hj(p)

� −|h| + (|h|/2)Hj(p + h)−2 − c e |h|
−c′e |h|Hj(p + h) − O(|h|2).

In particular, we obtain by means of the spectral calculus

Ej(p + h) − Ej(p) � −|h| + |h|Ej(p + h)−2/2 − c e |h|
−c′e |h|Ej(p + h) − O(|h|2). (3.8)

Now, let p ∈ R
3, let u ∈ R

3 be normalized, and assume ∂uEj(p) exists.
Replacing h by ± su, for small s > 0, in (3.8), dividing by ±s, and passing
to the limit s ↘ 0, we obtain an estimate for |∂uEj(p)| in terms of Ej(p).
Employing (3.3), then, we arrive at (3.4).

(3): We fix p ∈ Bp and some normalized u ∈ R
3 and define

e(t) := Ej(p + tu), hφ(t) := 〈φ |Hj(p + tu)φ 〉,
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for all normalized φ ∈ dom(H(j)
f ) and all t ∈ R. Thanks to Lemma B.1, we

know that |h′′
φ(t)| = |〈φ | ∂2

uHj(p + tu)φ 〉| � c1. Consequently, the function
defined by Δφ(t) := −c1 t

2+hφ(t), t ∈ R, is concave. Thus, Δ(t) := inf{Δφ(t) :
φ ∈ dom(H(j)

f ), ‖φ‖ = 1}, t ∈ R, defines a concave function, as well. By a
general theorem on concave functions, we know that the left derivative Δ′

−(t)
and right derivative Δ′

+(t) exist, and that Δ′
± are both decreasing, and coincide

outside a countable set. Δ is differentiable at every point t ∈ R where Δ′
−(t) =

Δ′
+(t). Moreover, Δ(t) − Δ(s) =

∫ t

s
Δ′

±(r) dr. Since e(t) = Δ(t) + c1 t
2, the

function e also has left and right derivatives e′
± on R which coincide almost

everywhere, and

e(t) − e(s) =

t∫

s

e′
±(r) dr, s, t ∈ R. (3.9)

Given h �= 0 we may choose u := h/|h| and, inserting t = |h| and s := 0 into
(3.9), we obtain

Ej(p + h) − Ej(p) = e(|h|) − e(0) =

|h|∫

0

e′(r) dr. (3.10)

Finally, we prove (3.5). If (3.5) happens to be true, for all p ∈ Bp,h ∈ R
3, e ∈

(0, 1], and q = 1/2, then there is nothing left to show, of course. So, let p ∈
Bp,h ∈ R

3, e ∈ (0, 1], and assume that Ej(p + h) − Ej(p) < −|h|/2, which
together with (3.3), Ej � 1, E0(p) =

√
p2 + 1 � |p| + 1, and |p| � p implies

|h| � 2 (1 + c e)E0(p) − 2 � 2 p + 1, if e > 0 is sufficiently small, say e ∈
(0, e0]. Thus, E0(q) � c (p + 1), for every q on the line segment from p to
p + h we integrate over in (3.10) and for e ∈ (0, e0]. Thanks to (3.4) we may
conclude that |∂uEj(q)| � 1 + c′e (p + 1) − 1/4c2(p + 1)2, for all q on the same
segment, where ∂uEj(q) exists, and for small e. Combining this with (3.10)
and decreasing the value of e0, if necessary, we see that the assertion of (3)
holds true. �

3.3. The Spectral Gap

The results of this subsection shall be applied to the families of operators

{Hj
m(p)}m�j and {H̃j

m(p)}m�j ,

for p ∈ Bp and for e > 0 at least so small, that Lemma 3.2(3) holds true, for
some q ∈ (0, 1). In this case H̃j

m is well defined by Lemma 3.2 almost every-
where on Bp to start with. Notice, however, that Theorem 3.5 below together
with the type A analyticity of the Hamiltonians Hj

m proven in Appendix B
shows that Ej , j ∈ N, is actually analytic on Bp, and we may then conclude
that H̃j

m is well defined on all of Bp.
Recall that, in the case m < ∞, the operators H̃j

m and Hj
m are unitar-

ily equivalent. This is not true anymore if m = j = ∞. Hence, the state-
ments of Lemma 3.4 below involving H̃ = H̃∞

−∞ do not follow at once from
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corresponding statements on H = H∞
−∞. Therefore, we employ the generalized

notation of Sect. 2.7. More specifically, we fix the convention

Kj
m ≡ Kj

m(p) is either Hj
m or H̃j

m throughout Sect. 3.3. (3.11)

In particular, we then know that

Ej
m := inf Spec(Hj

m) = inf Spec(H̃j
m) = inf Spec(Kj

m), m � j � ∞,

by unitary equivalence, if m < ∞, and by Lemma A.3(iii), if m = ∞. Likewise,
under the convention (3.11) the spectral gap of Hj

m defined in (2.23) satisfies

gapj
m = inf(Spec[Kj

m(p) − Ej
m(p)] \ {0}), if m < ∞.

Recall that Km := Km
m , Em := Em

m , gapm := gapm
m, etc.

The main result of this subsection (Theorem 3.5), an estimate on the
spectral gaps of Kj and Kj+1

j , is obtained by induction on j. In fact, as usual
in the IAPT we successively estimate the gaps of

K1
0 ,K1,K

2
1 , . . . ,Kj ,K

j+1
j ,Kj+1, . . . .

Notice that K1
0 = H1

0 , so that the result of Lemma 3.1 is applicable.
To our knowledge this is the first version of the IAPT that is elaborated

for an operator with spin where one expects a degeneracy of eigenvalues. The
additional problem that occurs is to rule out a splitting of the lowest eigenvalue
which would probably destroy the gap estimate. The absence of a splitting
follows, however, from Kramer’s degeneracy rule as observed in [28] for (a
slight modification of) our model. We also remark that in [28] the authors
show the existence of a spectral gap, for strictly positive photon masses and
small e > 0, when a pre-factor γ ∈ (0, 1) is introduced in front of the square-
root in (1.4) (motivated by requirements of adiabatic perturbation theory).

Lemma 3.3. Let m, j ∈ N0 ∪ {∞},m < j. Assume there exist p, e0 > 0 such
that, for all p ∈ Bp and e ∈ (0, e0], Em(p) is a fourfold degenerate eigenvalue
of Km(p). Let Pm := 1{Em}(Km) denote the spectral projection onto the cor-
responding eigenspace. Then the following holds, at every p ∈ Bp and for all
e ∈ (0, e0]:

(1) Em is the minimum of the spectrum of Kj
m, and Pj

m := 1{Em}(Kj
m) =

Pm ⊗ PΩj
m
. In particular, the ground state energy of Kj

m is an exactly
four-fold degenerate eigenvalue.

(2) With q as in Lemma 3.2(3) we have, for all ρ � 0 and λ > 0,

gapj
m � min

{
gapm, q ρj

}
, Ej

m = Em, (3.12)

H
(m,j)
f + ρ � max{q−1, λ−1} (Kj

m − Em + λ ρ). (3.13)

Proof. We will give the proof only for Hj
m, but by unitary equivalence the

result is also valid for H̃j
m. By the natural identification in (2.27) and by
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virtue of (3.5), we obtain

Hj
m(p)�

X
(m,j)

n
�

⊕∫

(Aj
m)n

(
Em(p − k) + |k1| + · · · + |kn|

)
dk1 . . . dkn

� Em(p) + q

⊕∫

(Aj
m)n

(
|k1| + · · · + |kn|

)
dk1 . . . dkn

= (Em(p) + qH
(m,j)
f )�

X
(m,j)

n
,

for n � 1. Since

Hj
m(p)�

X
(m,j)
0

= Hm(p)

we may easily deduce Ej
m(p) = Em(p),Pm ⊗PΩj

m
� Pj

m, Estimate (3.12) and
Estimate (3.13). On the other hand,

ranPj
m ⊂ kerH(m,j)

f = X
(m,j)
0 .

Hence, every ground state eigenvector lies in X
(m,j)
0 and is hence an element of

the range of Pm⊗PΩj
m

. Notice that 1⊗PΩj
m

is the projection onto X
(m,j)
0 . �

In what follows we shall use the notation

μj
5(p) := sup

L∈G4(Hj)

inf
{
〈φ | (Kj(p) − Ej(p))φ 〉 : φ ∈ Q(H(j)

f ), ‖φ‖ = 1, φ⊥L
}
,

where G4(Hj) is the set of four-dimensional subspaces of Hj . According to the
minimax principle μj

5(p) is the fifth eigenvalue of Kj(p)−Ej(p), counting from
below including multiplicities, or the lower bottom of the essential spectrum
of Kj(p)−Ej(p). This notation shall be useful in a situation where we do not
already know whether μj

5(p) be equal to gapj(p).

Lemma 3.4. Let m, j ∈ N0 ∪ {∞},m < j, and suppose that all assumptions of
Lemma 3.3 are satisfied with e0 sufficiently small depending on κ and p. Then
the following form bounds hold true on Q(H(j)

f ), at every p ∈ Bp and for all
e ∈ (0, e0] and λ > 0, with constants depending only on p and e0:

|Dj | � max{1, c/λ}(Kj − Ej + λ), (3.14)

±(Kj −Kj
m) � c′e max{1, 1/λ} (Kj

m − Em + λ ρm), (3.15)

±(Kj −Kj
m) � c′′e (Kj − Em + ρm). (3.16)

Furthermore,

|Ej − Em| � c e ρm, (3.17)

and, if j < ∞ and gapm > 0, then

μj
5 � (1 − c e) gapj

m − c e ρm. (3.18)



888 M. Könenberg and O. Matte Ann. Henri Poincaré

Proof. To start with we observe that (3.3) implies the upper bound, Ej(p) �
(1 + c e0) max|q|�pE0(q) =: C, which is uniform in j ∈ N ∪ {∞}, e ∈ (0, e0],
and |p| � p. From now on we again drop the reference to p in the notation.
Then |Dj | � Kj −Ej +C (recall (2.59)) which implies (3.14). Combining (A.8)
and (3.13) we further obtain

± (Kj −Kj
m) � c e ρm |Dj

m| + c e (Kj
m − Em + ρm) (3.19)

on Q(H(j)
f ). Adding the term c e ρm (H(j)

f − eϕ(hm) + e2 bm −Em +C) � 0 to
the RHS of (3.19) and absorbing one factor ρm � κ in the constant we arrive
at (3.15). If, say, c′e � 1/2, then (3.16) follows from (3.15) and some trivial
manipulations. From (3.15) we further deduce that Ej − Em � Kj − Em �
(1 + c e)(Kj

m −Em) + c e ρm. By Lemma 3.3 we have Em = inf Spec[Kj
m] and,

hence, the variational principle yields Ej −Em � c e ρm. Using this we infer the
bound Em − Ej � c′ e ρm from (3.16) in a similar way. Altogether this proves
(3.17). Writing Nj := ker(Km−Em)⊗Ωj

m and Sj := {ψ ∈ Q(H(j)
f ) : ‖ψ‖ = 1}

and employing (3.15) and (3.17) we finally obtain

μj
5 � inf

φ∈N ⊥
j ∩Sj

〈φ | (Kj − Ej)φ 〉

� (1 − c e) inf
φ∈N ⊥

j ∩Sj

〈φ | (Kj
m − Em)φ 〉 + Em − Ej − c e ρm

� (1 − c e) gapj
m − c′e ρm.

�
In the next theorem we combine the previous lemmas in an induction

argument to derive a bound on the spectral gaps of Kj and Kj+1
j , j ∈ N. Let

ϑ :=
(
σ2 0
0 −σ2

)
C, X1 :=

(
1 0
0 0

)
, X2 :=

(
0 0
1 0

)
, (3.20)

where σ2 is the second Pauli matrix and C denotes complex conjugation.

Theorem 3.5 (spectral gaps of Kj and Kj+1
j ). There exist e0 > 0 and q ∈ (0, q)

such that, at every p ∈ Bp and for all e ∈ (0, e0] and j ∈ N0, the following
holds:
(1) Ej = inf Spec[Kj ] = inf Spec[Kj+1

j ] is a fourfold degenerate eigenvalue of
both Kj and Kj+1

j and

gapj � q ρj/2 and gapj+1
j � q ρj/2. (3.21)

(2) The operators ϑ,X1, and X2 commute with Kj and Kj+1
j . If ψ(1)

j is a

normalized ground state eigenvector of Kj satisfying X1ψ
(1)
j = ψ

(1)
j (which

always exists), then four mutually orthonormal ground state eigenvectors
are given by ψ(1)

j and

ψ
(2)
j := X2 ψ

(1)
j , ψ

(3)
j := ϑψ

(1)
j , ψ

(4)
j := X2 ϑψ

(1)
j . (3.22)

(3) Any vector ψj ∈ Hj is a ground state eigenvector of Kj, if and only if
ψj ⊗ Ωj+1

j is a ground state eigenvector of Kj+1
j .
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Proof. (1)&(3): It suffices to prove the following assertions by induction on
j ∈ N0:

Aj :⇔ Ej is a 4-fold eigenvalue of Kj and gapj � q ρj/2.

In fact, if j ∈ N0 and the assertion Aj holds true, then Lemma 3.3 implies
gapj+1

j � q min{ρj/2, ρj+1} = q ρj/2 and all the remaining statements of (1)
and (3).

Assertion A0 follows, however, from Lemma 3.1, if |p| � p, provided that
q is sufficiently small.

Now, assume that Aj holds true, for some j ∈ N0. Then the bound (3.18)
is available as well as our conclusion gapj+1

j � q ρj/2. In combination they
give

μj+1
5 � (1 − c e) q ρj/2 − c e ρj = q ρj+1 (1 − c′e) � q ρj+1/2,

for small e > 0. In particular, there is some non-vanishing φj+1 ∈ dom(Kj+1)
with Kj+1 φj+1 = Ej+1 φj+1. Below we apply Kramer’s degeneracy theorem
to show that Ej+1 is an at least fourfold degenerate eigenvalue of Kj+1. After
that it also follows that gapj+1 = μj+1

5 � qρj+1/2.
(2): Since σ2 = σ∗

2 has purely imaginary entries we have ϑ2 = −1 and

〈φ |ϑψ 〉 = −〈ψ |ϑφ 〉, φ, ψ ∈ Hj . (3.23)

Obviously, ϑ leaves dom(Kj) = dom(H(j)
f ) invariant and using {σk, σ�} =

2δk� 12 and the fact that α0, α1, and α3 have real entries it is straightforward
to check that ϑDj = Dj ϑ on dom(H(j)

f ). Since the fiber Dirac operator Dj is
essentially self-adjoint on dom(H(j)

f ) we deduce that it commutes with ϑ on
ϑ dom(Dj) = dom(Dj) and its resolvent satisfies ϑRj(iy) = Rj(−iy)ϑ on Hj .
Using, e.g., (2.58) (and a substitution y → −y) we infer that ϑ |Dj | = |Dj |ϑ
on dom(Dj). Altogether it follows that ϑKj = Kj ϑ on dom(Kj) and the same
argument can be applied to Kj+1

j . In view of (2.22) it is clear that X1 and X2

commute with the Hamiltonians.
So, let ψ(1)

j be as in the statement of Part (2). Then ψ
(3)
j = ϑψ

(1)
j ∈

dom(Kj) and Kj ψ
(3)
j = Ej ψ

(3)
j . Upon choosing φ := ψ := ψ

(1)
j in (3.23) we

further see that ψ(3)
j ⊥ψ(1)

j . Since the lower two components of the four-spinors

ψ
(1)
j = X1 ψ

(1)
j and ψ

(3)
j = X1 ψ

(3)
j are zero and since Kj is block diagonal it

follows that ψ(1)
j , . . . , ψ

(4)
j as in (3.22) are mutually orthonormal ground state

eigenvectors of Kj . �

4. Regularity of the Mass Shell

4.1. Preparatory Lemmas

Recall the definitions of Hj+1
j and Πj+1

j in Sect. 2.3 and the definitions of
Ȟj+1 and Π̌j+1 in Sect. 2.4. Thanks to Theorem 3.5 we know that, on Bp

and for small e, both Πj+1
j and Π̌j+1 are rank four projections and that the
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ground state eigenvalue Ej is separated from the rest of the spectrum by a
gap satisfying (3.21).

In the following important lemma we compare the Hamiltonians Ȟj+1

and Hj+1
j on the range of the projection Πj+1

j . Thanks to (2.35) the error
term Aj in the next lemma is of order e ρ2

j . If it were of order e ρj only, then
the proof of Lemma 4.3 did not work. The term e2κj in the next lemma, with

κj := cj · ∇Ej − 〈 f j+1
j |ω f j+1

j 〉 = 〈 f j+1
j |∇Ej · Gj+1

j 〉 � 0, κj = O(ρj),

does not cause any harm to Lemma 4.3 since it is non-negative.

Lemma 4.1. For all p > 0, there exist c, e0 > 0 such that, for all e ∈ (0, e0] and
j ∈ N0, we find some rank four operator Aj ∈ B(Hj+1) with ‖Aj‖ � c e ρ2

j and
(
Ȟj+1 −Hj+1

j + e2κj

)
Πj+1

j

= e (Π⊥
j ∇Hj Πj) ⊗ {a†(F j+1

j ) − e čj}PΩj+1
j

+Aj .

In order to control the difference of various operators attached to succeed-
ing scales in the IAPT it is necessary to prepare a number of resolvent compar-
ison estimates. These are collected in the following lemma where we employ
notation introduced in (2.25) and the paragraph below it, (2.26), and (2.40).
The resolvents in (4.1)–(4.3) are well-defined because of (3.5) and Theorem 3.5:

Lemma 4.2. Pick p > 0 and let δj be some real-valued function of small e > 0
with δj = O(e ρj). Then we find c, e0 > 0 such that the following holds, for all
p ∈ Bp, e ∈ (0, e0], and j ∈ N0:

(1) For all ψ ∈ Hj and (k, λ) ∈ Aj+1,
∥∥(Hj(p − k) − Ej(p) + |k|

)−1 Π⊥
j (p)ψ

∥∥ � c ‖R⊥
j (p)ψ‖. (4.1)

(2) For all ψ ∈ X
(j,j+1)
0 ⊕ X

(j,j+1)
1 ⊂ Hj+1, s ∈ {1/2, 1}, we have the bounds

∥∥Ř⊥
j+1(δj)

s (Πj+1
j )⊥ψ − Π̌⊥

j+1((Rj+1
j )⊥)s ψ

∥∥

� c e ρ1−s
j

(
‖ψ‖ + ‖(Rj+1

j )⊥ ψ‖
)
, (4.2)

∥∥Ř⊥
j+1(δj) (Πj+1

j )⊥ ψ
∥∥ � (1 + c e) ‖(Rj+1

j )⊥ ψ‖ + c e ‖ψ‖. (4.3)

The proofs of Lemma 4.1 and Lemma 4.2 can be found in Appendix C.

4.2. Proof of C2-regularity

The main objective of this section is to show that E∞ is twice continuously
differentiable and strictly convex on Bp, at least for small e > 0. The start-
ing point of our analysis are the Hellmann–Feynman type formulas (2.28) for
the first and second derivatives of the ground state energy Ej , j ∈ N; see
Lemma B.1 for their derivation.

Let κ, p > 0 be fixed in the whole section. The first step is to bound
the difference of the rank four projections Π̌j+1 and Πj+1

j in terms of L(1)
j ;

compare this with Sect. 2.3.
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Lemma 4.3. We find c, e0 > 0 such that, for all p ∈ Bp, e ∈ (0, e0], and j ∈ N0,

‖Π̌j+1 − Πj+1
j ‖HS, ‖Π̌⊥

j+1Π
j+1
j ‖HS, ‖(Πj+1

j )⊥Π̌j+1‖HS � c e ρj (L(1)
j + 1).

Proof. Step 1. First, we consider ‖Π̌⊥
j+1Π

j+1
j ‖HS. Let κj � 0 be the constant

appearing in Lemma 4.1. By (3.17) and (3.21) we have |Ej+1 −Ej | � c e ρj �
gapj+1/2, for small e > 0, and we conclude that

‖(Ȟj+1 − Ej + e2κj)−1Π̌⊥
j+1‖ � c ρ−1

j .

Since Ȟj+1 andHj+1
j have the same domain, which contains the range of Πj+1

j ,
this permits us to write

Π̌⊥
j+1 Πj+1

j = (Ȟj+1 − Ej + e2κj)−1 Π̌⊥
j+1 (Ȟj+1 −Hj+1

j + e2κj)Πj+1
j .

Applying Lemma 4.1 we obtain

Π̌⊥
j+1Π

j+1
j = (Ȟj+1 − Ej + e2κj)−1Π̌⊥

j+1 Θj + O(e ρj),

where the rank four operator

Θj := e (Π⊥
j ∇Hj Πj) ⊗ {a†(F j+1

j ) − e čj}PΩj+1
j

satisfies ‖Θj‖HS � c e ρj , due to ‖F j+1
j ‖, |čj | � cρj , see (2.34), and due to

the boundedness of ∇Hj relative to Hj , see (B.7). Since we have Ran(Θj) ⊂
Ran(Πj+1

j )⊥ ∩{X (j,j+1)
0 ⊕X

(j,j+1)
1 } we may apply (4.3) (with δj = Ej+1−Ej

using κj � 0) to deduce that

‖Π̌⊥
j+1 Πj+1

j ‖HS � (1 + c e) ‖(Rj+1
j )⊥ Θj‖HS + c e ρj .

Next, we consider the action of (Rj+1
j )⊥ on Θj more closely, taking into

account that (Πj+1
j )⊥ = Π⊥

j ⊗ PΩj+1
j

+ 1 ⊗ P⊥
Ωj+1

j

and, hence,

(Rj+1
j )⊥�

X
(j,j+1)
0

= R⊥
j ,

(Rj+1
j )⊥�

X
(j,j+1)
1

=

⊕∫

Aj+1
j

(
Hj(p − k) − Ej(p) + |k|

)−1dk.

For the member of Θj without creation operator we thus have

(Rj+1
j )⊥(Π⊥

j ∇Hj Πj ⊗ PΩj+1
j

) = (R⊥
j ∇Hj Πj) ⊗ PΩj+1

j
.

Applying (4.1) we further deduce that
∥∥(Rj+1

j )⊥(Π⊥
j ∇Hj Πj) ⊗ a†(F j+1

j )PΩj+1
j

∥∥
HS

� c ‖F j+1
j ‖‖R⊥

j ∇Hj Πj‖HS,

by computing the Hilbert–Schmidt norm on the LHS in a basis of the form
{ei ⊗e′

�}, where {ei} and {e′
�} � Ωj+1

j are orthonormal bases of Hj and F j+1
j ,

respectively. Using the boundedness of ∇Hj relative to Hj , see (B.7), as well
as ‖Θj‖HS � c e ρj , and ‖F j+1

j ‖, |čj | � c ρj , we obtain, for sufficiently small e,

‖Π̌⊥
j+1 Πj+1

j

∥∥
HS

� c e ρj (L(1)
j + 1) � 1/2. (4.4)
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Step 2. Next, we turn to ‖Π̌j+1 −Πj+1
j ‖HS and ‖(Πj+1

j )⊥ Π̌j+1‖HS. Choose any
orthonormal basis, {χk}∞

k=1, of Hj+1 with Π̌j+1 χk = χk, for k = 1, 2, 3, 4, and
Π̌⊥

j+1 χk = χk, for k � 5. Then

‖Π̌j+1 − Πj+1
j ‖2

HS =
∞∑

k=1

‖(Π̌j+1 − Πj+1
j )χk‖2

=
4∑

k=1

‖(Πj+1
j )⊥ Π̌j+1 χk‖2 +

∞∑

k=5

‖Πj+1
j Π̌⊥

j+1 χk‖2. (4.5)

The last expression on the right side of (4.5) is just

∞∑

k=5

‖Πj+1
j Π̌⊥

j+1 χk‖2 = ‖Πj+1
j Π̌⊥

j+1‖2
HS = ‖Π̌⊥

j+1Π
j+1
j ‖2

HS. (4.6)

Thanks to Theorem 3.5(1) we may pick a normalized φ1 ∈ Ran(Πj+1
j ) satis-

fying X1 φ1 = φ1. By (4.4) we have ‖Π̌j+1 φ1‖ � 1/2. Thus, we may define
χ1 := Π̌j+1φ1/‖Π̌j+1φ1‖. Clearly, X1 χ1 = χ1. Since X1,X2, and ϑ commute
with Uj we may choose χ2 := X2 χ1, χ3 := ϑχ1, and χ4 = X2 ϑχ1; see Theo-
rem 3.5(2). Moreover,

‖(Πj+1
j )⊥ Π̌j+1‖2

HS =
4∑

k=1

‖(Πj+1
j )⊥ Π̌j+1 χk‖2 = 4 ‖(Πj+1

j )⊥ Π̌j+1 χ1‖2

� 16 ‖(Πj+1
j )⊥Π̌j+1 Πj+1

j φ1‖2 � 16 ‖Π̌⊥
j+1 Πj+1

j ‖2
HS. (4.7)

Combining (4.4), (4.5), (4.6), and (4.7) we conclude the proof. �

Lemma 4.4. There exist c, e0 > 0 such that, for all p ∈ Bp, e ∈ (0, e0], and
j ∈ N0,

L
(1)
j+1 � (1 + c e)L(1)

j + c e, |L(1/2)
j+1 − L

(1/2)
j | � c e ρ

1/2

j (L(1)
j + 1). (4.8)

Proof. Let s ∈ {1/2, 1} and recall the notation (2.41). We derive a bound on
the difference between the two numbers

as :=
∥∥(Ř⊥

j+1)
s (Uj ∇Hj+1 U

∗
j ) Π̌j+1

∥∥
HS
,

a′
s :=

∥∥{(Rj+1
j )⊥}s ∇Hj+1

j Πj+1
j

∥∥
HS
.

Notice that as = L
(s)
j+1 by unitary invariance of the Hilbert–Schmidt norm,

and a′
s = L

(s)
j because Πj+1

j = Πj ⊗ PΩj+1
j

and (Rj+1
j )⊥ and ∇Hj+1

j reduce

to R⊥
j and ∇Hj , respectively, on X

(j,j+1)
0 = Hj ⊗ C Ωj+1

j . To compare these
two numbers we successively replace each operator in as by a corresponding
one associated with the preceding scale j. More precisely, we estimate

|as − a′
s| � |as − bs| + |bs − cs| + |cs − ds| + |ds − es| + |es − a′

s|, (4.9)
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with

bs :=
∥∥(Ř⊥

j+1)
s (Uj ∇Hj+1 U

∗
j )Πj+1

j

∥∥
HS
,

cs :=
∥∥(Ř⊥

j+1)
s ∇Hj+1

j Πj+1
j

∥∥
HS
,

ds :=
∥∥(Ř⊥

j+1)
s (Πj+1

j )⊥ ∇Hj+1
j Πj+1

j

∥∥
HS
,

es :=
∥∥Π̌⊥

j+1 {(Rj+1
j )⊥}s ∇Hj+1

j Πj+1
j

∥∥
HS
.

Each of the following five steps deals with one of the absolute values on the
RHS of (4.9):

Step 1. First, we replace the projection Π̌j+1 in as by Πj+1
j ,

|as − bs| �
∥∥∇Hj+1(R⊥

j+1)
s
∥∥∥∥Πj+1

j − Π̌j+1

∥∥
HS
. (4.10)

From (B.7) and the spectral calculus we deduce that

∥∥∇Hj+1 (R⊥
j+1)

s
∥∥ � ‖∇Hj+1H

−1/2

j+1 ‖
∥∥∥

H
1/2

j+1 Π⊥
j+1

(Hj+1 − Ej+1)s

∥∥∥ � c ρ−s
j . (4.11)

By Lemma 4.3 we obtain |as − bs| � c e ρ1−s
j (L(1)

j + 1).

Step 2. Next, we replace the velocity Uj ∇Hj+1 U
∗
j in bs by ∇Hj+1

j . This
is just a direct application of the bound (B.3) below which together with
‖(Ř⊥

j+1)
s‖ � c ρ−s

j and (H(j,j+1)
f + ρj)

1/2 Πj+1
j = ρ

1/2

j Πj+1
j implies

∥∥(Ř⊥
j+1)

s
(
Uj∇Hj+1U

∗
j − ∇Hj+1

j

)
Πj+1

j

∥∥
HS

� c e ρ1−s
j .

By definition of bs and cs we thus have |bs − cs| � c e ρ1−s
s .

Step 3. By (2.28), i.e. Πj+1
j ∇Hj+1

j Πj+1
j = ∇Ej Πj+1

j , and by Lemma 4.3 we
obtain

|cs − ds| � |∇Ej | ‖(Ř⊥
j+1)

s‖
∥∥Π̌⊥

j+1 Πj+1
j

∥∥
HS

� c e ρ1−s
j

(
L

(1)
j + 1

)
.

Step 4. We employ (4.2) with δj := 0 to deduce that |ds −es| � c e ρ1−s
j (a′

1+1),

where a′
1 = L

(1)
j .

Step 5. By Lemma 4.3 and the fact that the Hilbert–Schmidt norm dominates
the operator norm,

|es − a′
s| � ‖Π̌j+1 (Πj+1

j )⊥‖HS a
′
s � c e ρj (L(1)

j + 1) a′
s. (4.12)

Here the projection (Πj+1
j )⊥ in (4.12) is coming from the resolvent (Rj+1

j )⊥ =
(Πj+1

j )⊥(Rj+1
j )⊥ in es and a′

s.

Collecting the results of the above steps and using as = L
(s)
j+1, a

′
s = L

(s)
j ,

and a′
s � c ρ−s

j (by (B.7)), we arrive at |L(s)
j+1 −L(s)

j | � c e ρ1−s
j (L(1)

j +1), which
implies (4.8). �

Corollary 4.5. There exist c, e0 > 0 such that, for all p ∈ Bp, e ∈ (0, e0], and
j ∈ N0, we have

L
(1)
j � (1 + c e)j − 1, L

(1/2)
j � c e

(
1 − (1/2)j/2(1 + c e)j

)
,
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as well as

‖Π̌j+1 − Πj+1
j ‖HS, ‖Π̌⊥

j+1Π
j+1
j ‖HS, ‖(Πj+1

j )⊥Π̌j+1‖HS � c e (1 + c e)jρj .

Proof. First, we prove the bound on L
(1)
j by means of (4.8) using L

(s)
0 =

0, which follows from the fact that ∂hH0 and Π0 are merely multiplication
operators which commute with each other. After that we use again (4.8) to
obtain the recursion formula L(1/2)

j+1 � L
(1/2)
j + c e (1 + c e)jρ

1/2

j , which together

with L
(1/2)
0 = 0 yields the second asserted bound. The remainder of the proof

follows from Lemma 4.3 and the bound on L(1)
j we have just obtained. �

Theorem 4.6. There exist c, e0 > 0 such that the following assertions hold,
for all e ∈ (0, e0]: we have E∞ = limj→∞Ej in the norm of C2

b (Bp) and
‖E∞ −E0‖C2

b (Bp) � c e. More precisely, we have the following estimates:

|Ej − E∞| � c e ρj , (4.13)

|∂h(Ej − E∞)| � c e (1 + c e)jρj , (4.14)

|∂2
h(Ej − E∞)| � c e (1 + c e)jρ

1/2

j , (4.15)

uniformly on Bp and for all h ∈ R
3, |h| = 1, and j ∈ N0. In particular, E∞ is

strictly convex on Bp and attains its global minimum, infR3 E∞, at p = 0.

Proof. For sufficiently small e, we may infer (4.13) from (3.17). Recall the
formulas in (2.28) for the first and second derivative of Ej

m = Em. When we
represent ∂ν

hEj+1, ν = 1, 2, by means of these formulas we actually replace all
involved operators by unitarily equivalent ones using the fact that the trace
and the Hilbert–Schmidt norm are invariant under conjugation with Uj . For
instance, 4 ∂hEj+1 is equal to a1 with

aν := Tr
[
Π̌j+1 Uj {∂ν

hHj+1}U∗
j Π̌j+1

]
, ν = 1, 2. (4.16)

In order to deal with operators defined on the same Hilbert space we represent
∂ν

hEj , ν = 1, 2, in terms of the Hamiltonian Hj+1
j . In particular, recalling that

Ej = Ej+1
j we write 4 ∂hEj = a′

1 with

a′
ν := Tr

[
Πj+1

j {∂ν
hH

j+1
j }Πj+1

j

]
, ν = 1, 2.

We plan to estimate |aν − a′
ν | � |aν − bν | + |bν − cν | + |cν − a′

ν | with

bν := Tr
[
Π̌j+1 Uj {∂ν

hHj+1}U∗
j Πj+1

j

]
,

cν := Tr
[
Π̌j+1 {∂ν

hH
j+1
j }Πj+1

j

]
,

for ν = 1, 2. Here, we have

|aν − bν | � ‖Π̌j+1 Uj{∂ν
hHj+1}U∗

j ‖HS ‖Πj+1
j − Π̌j+1‖HS,

and because of ‖Π̌j+1 Uj{∂ν
hHj+1}U∗

j ‖2
HS � 4 ‖{∂ν

hHj+1 }Πj+1‖2 it follows
from the boundedness of ∂ν

hHj+1 relative to Hj+1, see (B.7), and Corollary 4.5
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that |aν − bν | � c e (1 + c e)jρj , ν = 1, 2. By (B.3) we further have

|bν − cν | �
∥∥(Uj{∂ν

hHj+1}U∗
j − ∂ν

hH
j+1
j

)
(H(j,j+1)

f + ρj)−1/2
∥∥

·‖(H(j,j+1)
f + ρj)1/2Πj+1

j ‖HS · ‖Π̌j+1‖HS � c e ρj ,

since (H(j,j+1)
f + ρj)1/2 Πj+1

j = ρ
1/2
j Πj+1

j by Theorem 3.5(3). Again by (B.7)
below and Corollary 4.5 we finally know that

|cν − a′
ν | � ‖{∂ν

hH
j+1
j }Πj+1

j ‖HS ‖Πj+1
j − Π̌j+1‖HS � c e (1 + c e)jρj .

Altogether this yields

4 |∂h(Ej − Ej+1)| if ν=1= |aν − a′
ν | � c e (1 + c e)jρj , (4.17)

which implies (4.14), if e is sufficiently small; compare (4.20) below.
Next, we turn to the second member in the formula (2.28) for the second

derivatives. We have

4 ∂2
h(Ej − Ej+1) = a′

2 − a2 + 2�, (4.18)

with

� := ‖(Ř⊥
j+1)

1/2Uj{∂hHj+1}U∗
j Π̌j+1‖2

HS − ‖((Rj+1
j )⊥)1/2{∂hH

j+1
j }Πj+1

j ‖2
HS.

Employing the definition (2.44), Lemma 4.4, and Corollary 4.5 we infer
that

|�| =
∣∣(L(1/2)

j+1 + L
(1/2)
j )(L(1/2)

j+1 − L
(1/2)
j )

∣∣

� (L(1/2)
j+1 + L

(1/2)
j ) |L(1/2)

j+1 − L
(1/2)
j | � c e2 (1 + c e)jρ

1/2

j . (4.19)

Combining (4.17)–(4.19) and using ρ� = ρj (1/2)�−j , � � j � 0, we get
∞∑

�=j

|∂2
h(E�+1 − E�)| � c e

∞∑

�=j

(1 + c e)�ρ
1/2

� � c e

1 − b
(1 + c e)jρ

1/2

j , (4.20)

uniformly on Bp, provided that e > 0 is sufficiently small with b := (1 +
c e) (1/2)1/2 < 1. By the Weierstraß test this implies (4.15). Since Ej and E∞
are rotationally symmetric this also implies convergence in C2(Bp).

To discuss the convexity of E∞ we recall that E0(p) = (p2 + 1)1/2. Since
infBp ∂

2
pE0 > 0, we obtain infBp ∂

2
pE∞ > 0 from (4.15), provided that e is small

enough. So E∞ is strictly convex on Bp. By rotational symmetry, ∇E∞(0) = 0;
thus E∞ attains its unique minimum in Bp at 0. Thanks to Lemma 3.2(1) we
know, however, that for small e, the global infimum of E∞ is located in Bp,
i.e. at p = 0. �

5. Existence and Multiplicity of Ground States

By Lemma 3.3, Corollary 4.5, and (2.53) we may define the rank four projection

Q(p) := lim
j→∞

Π̃∞
j (p) = lim

j→∞
Π̃j(p) ⊗ PΩ∞

j
, (5.1)
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if e is sufficiently small. The goal of this section is to show that Q is the ground
state eigenprojection of the operator H̃∞, i.e.

Q(p) = Π̃∞(p) := 1{E∞(p)}(H̃∞(p)). (5.2)

This will prove the first assertion in Theorem 1.2(1). From (2.22) and Corol-
lary 4.5 we then also infer that the rate of convergence asserted in Theo-
rem 1.2(1) is correct.

The proof is based on the following consequence of (3.16) and (3.17):

c1 (H̃∞ −E∞ + e ρj) � H̃∞
j − Ej . (5.3)

Proposition 5.1. Let p ∈ Bp and suppose that φ is a normalized ground state
eigenvector of H̃∞(p). If e > 0 is sufficiently small depending on p, then

lim inf
j→∞

‖Π̃∞
j (p)φ‖ > 0. (5.4)

Proof. Defining Fj(t) := (1+tc1 e ρj)
1/2(1+tc1(H̃∞−E∞+e ρj))−1/2, t � 0, j ∈

N, we observe that, since ‖Fj‖ � 1,

1 = lim
t→∞ ‖Fj(t)φ‖ � lim

t→∞ ‖Fj(t)1 ⊗ PΩ∞
j
φ‖ + ‖1 ⊗ P⊥

Ω∞
j
φ‖

� lim
t→∞ ‖Fj(t) Π̃⊥

j ⊗ PΩ∞
j
φ‖ + ‖Π̃j ⊗ PΩ∞

j
φ‖ + ‖1 ⊗ P⊥

Ω∞
j
φ‖,

for every j ∈ N. If e > 0 is sufficiently small, then (5.3) and the operator
monotonicity of the inversion T �→ T−1 permit to get

‖Fj(t)Π⊥
j ⊗ PΩ∞

j
φ‖2 � (1 + tc1 e ρj)

∥∥(1 + t (H̃∞
j − Ej))−1/2 Π̃⊥

j ⊗ PΩ∞
j
φ
∥∥2

= (1 + tc1 e ρj)
∥∥{(1 + t (H̃j − Ej))−1/2Π̃⊥

j } ⊗ PΩ∞
j
φ
∥∥2

� 1 + t c1 e ρj

1 + t gapj

� 1 + t c1 e ρj

1 + t q ρj/2
t→∞−−−−→ 2c1 e/q � c2 < 1,

for all j ∈ N. Since also limj→∞ ‖(1⊗P⊥
Ω∞

j
)φ‖ = 0 (by dominated convergence)

this implies 0 < 1 − √
c2 � lim infj→∞ ‖Π̃∞

j φ‖. �

For later use we record the following observation. In the case p �= 0
we shall use it to produce a contradiction showing that φ as in the following
statement cannot exist:

Corollary 5.2. Given p > 0 we find e0 > 0 such that, if p ∈ Bp, e ∈ (0, e0], and
if φ is a normalized ground state eigenvector of H∞(p), then {Πj ⊗PΩ∞

j
φ}j∈N

contains a subsequence with a non-zero weak limit, φ′ �= 0.

Proof. The bound (5.3) holds true also with H̃∞ and H̃∞
j replaced by H∞

and H∞
j , respectively. Hence, by exactly the same proof as above (just drop

the tildes) we obtain lim infj→∞ ‖Πj ⊗ PΩ∞
j
φ‖ � 1 − √

c2.
Now, the bounded sequence defined by φj := Πj ⊗PΩ∞

j
φ, j ∈ N, contains

a weakly convergent subsequence, say φ′
κ

= φjκ
,κ ∈ N. Denoting its weak

limit by φ′, we have 〈φ |φ′ 〉 = limκ→∞〈φ |φ′
κ

〉 � (1−√
c2)2, thus φ′ �= 0. �
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Theorem 5.3 (ground states). For every p > 0, there exists e0 > 0 such that,
for all p ∈ Bp, the ground state energy E∞(p) is an exactly fourfold degenerate
eigenvalue of H̃∞(p) and the corresponding eigenprojection satisfies

lim
j→∞

Π̃∞
j (p) = Π̃∞(p).

In particular, E∞(0) is a fourfold degenerate eigenvalue of H∞(0).

Proof. According to Lemma A.3(iii) H̃∞
j → H̃∞ in norm resolvent sense and

E∞ = limj→∞Ej = inf Spec[H̃∞]. By the definition of Q in (5.1) this implies
Q = limj→∞(H̃∞

j − Ej + 1)−1Π̃∞
j = (H̃∞ − E∞ + 1)−1Q, which shows that

Ran(Q) ⊂ dom(H̃∞) and H̃∞Q = E∞Q.
Suppose φ is some normalized ground state eigenvector of H̃∞ contained

in the range of Q⊥. By Proposition 5.1 and (5.1) we then obtain the contra-
diction 0 = 〈φ |Qφ 〉 = limj→∞ ‖Π̃∞

j φ‖2 > 0. Therefore, Q = Π̃∞. �

6. Absence of Ground States at Non-Zero Momenta

While the Hamiltonians H̃∞(p) possess ground state eigenvectors, for small e,
the original Hamiltonians H∞(p) do not, unless p is equal to zero. The latter
assertion is proved in the present section. To this end we frequently use the
abbreviation

Rj(p,k) := (Hj(p − k) −Ej(p) + |k|)−1.

Recall also the abbreviation (2.20) for the resolvent of the fiber Dirac operator
and the very last remark in Sect. 2.2. The starting point is the following lemma
proved in Appendix D:

Lemma 6.1. Let p ∈ R
3, j ∈ N ∪ {∞}, and e > 0, and assume that φj ≡ φj(p)

is a ground state eigenvector of Hj ≡ Hj(p). Then the following representation
is valid, for almost every k ∈ Aj:

a(k)φj + eGj(k) · Rj(p,k)∇Hj φj

= −e

∫

R

Rj(p,k)Rj(p − k, iy)α · kRj(p, iy)α · Gj(k)Rj(p, iy)φj
y dy
iπ

.

(6.1)

It immediately implies

Corollary 6.2. Let p ∈ R
3, j ∈ N0, e > 0, and let φj be a normalized ground

state eigenvector of Hj. Then, for almost every k ∈ Aj,

∥∥a(k)φj + eRj(p,k)Gj(k) · ∇Hj φj

∥∥ � c e
1ρj�|k|<κ

|k|1/2
. (6.2)

Proof. Follows from (2.16), |k|Rj(p,k) = O(1), and ‖Rj(iy)‖ � (1 + y2)−1/2.
�
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Together with Corollary 4.5 this implies the following analog of an esti-
mate stated in [10, Proposition 5.1] (with an improved exponent on the RHS,
in fact):

Proposition 6.3. Let p > 0. Then there exist c, e0 > 0 such that, for all p ∈
Bp, e ∈ (0, e0], j ∈ N0, every normalized ground state eigenvector, φj, of Hj,
and almost every k ∈ Aj,

∥∥∥a(k)φj + e
Gj(k) · ∇Ej

|k| − k · ∇Ej
φj

∥∥∥ � c e
1ρj�|k|<κ

|k|1/2
. (6.3)

Proof. On account of (2.44), (4.1), and Corollary 4.5 we have

‖Rj(p,k)Π⊥
j ∇Hj φj‖ � c ‖R⊥

j ∇Hj φj‖ � cL
(1)
j � c′. (6.4)

(Here and below all derivatives are evaluated at p.) On account of (6.2) and
|Gj(k)| � c1ρj�|k|<κ |k|−1/2 it thus remains to treat Rj(p,k)Πj ∇Hj φj =
∇Ej Rj(p,k)φj . For this we again write Rj(|k|) = (Hj(p) − Ej(p) + |k|)−1.
Then the second resolvent formula implies

Rj(p,k)φj = Rj(|k|)φj + Rj(p,k) {Hj(p) −Hj(p − k)}Rj(|k|)φj

= |k|−1 φj + |k|−1 Rj(p,k) {k · ∇Hj + O(|k|2)}φj . (6.5)

Writing ∇Hj φj = ∇Ej φj +Π⊥
j ∇Hj φj and solving (6.5) for Rj(p,k)φj yields

Rj(p,k)φj =
1

|k| − k · ∇Ej

(
φj + Rj(p,k) {Π⊥

j k · ∇Hj + O(|k|2)}φj

)
.

Here Rj(p,k) {Π⊥
j k · ∇Hj + O(|k|2)}φj = O(|k|) by (6.4). �

Recall that ∇Ej(0) = 0, for all j ∈ N0, so that the coherent factor in the
formula (6.3) vanishes at p = 0. As an immediate corollary we observe that the
expectation value of the number operator, Nf , in a state belonging to the range
of Π∞(0) = Π̃∞(0) = 1{E∞(0)}(H∞(0)) is finite. Recall also Π̃∞

j (0) → Π∞(0)
in norm, as j → ∞.

Corollary 6.4. There exist c, e0 > 0 such that Ran(Π∞(0)) ⊂ dom(N
1/2

f ) and
‖N 1/2

f Π∞(0)‖ � c e, for all e ∈ (0, e0].

Proof. Let φ ∈ dom(N
1/2

f ) and ψ ∈ H both be normalized. Then, by (6.3),

|〈N 1/2

f φ |Π∞(0)ψ 〉|2 �
∣∣ lim

j→∞
〈φ |N 1/2

f Π̃∞
j (0)ψ 〉

∣∣2

� sup
j∈N

∫

R3×Z2

∥∥a(k) Π̃∞
j (0)ψ

∥∥2dk � c e

∫

|k|<κ

d3k

|k| ,

which implies the assertion, since N
1/2

f is self-adjoint. �
In an essentially traditional fashion we next infer the absence of ground

states of H∞(p),p �= 0, from Proposition 6.3; compare, e.g., [18,33].

Theorem 6.5. Given p > 0 we find e0 > 0 such that, for all p ∈ Bp\{0}, and
e ∈ (0, e0], the ground state energy E∞(p) is not an eigenvalue of H∞(p).
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Proof. We write H = H∞, E = E∞. Suppose that φ ∈ dom(H) is normalized
and H(p)φ = E(p)φ. To get a contradiction we exploit that ∇E(p) �= 0 which
follows from the strict convexity of E on Bp and ∇E(0) = 0.

Let φj := Πj ⊗ PΩ∞
j
φ. Borrowing an idea from [18] we pick some η ∈

dom(N
1/2

f ), ‖η‖ = 1. Furthermore, let gr := 1{r�|k|<κ}G · ∇E/(|k| − k · ∇E),
for r ∈ (0, κ). Then ‖gr‖2 = c1 ln(κ/r) with some c1 ∈ (0,∞) because 0 <

|∇E| < 1. Finally, let g(j)
ρj := 1{ρj�|k|<κ}G · ∇Ej/(|k| − k · ∇Ej). By virtue of

(6.3) we then have

‖gr‖
∥∥(Nf + 1)1/2η

∥∥

�
∣∣〈 a†(gr) η

∣∣φj

〉∣∣ =
∣∣∣

∫

R3×Z2

gr(k)
〈
η
∣∣ a(k)φj

〉
dk
∣∣∣

� e |〈 gr | g(j)
ρj

〉〈 η |φj 〉| − c e

∫

r�|k|<κ

|ε(k) · ∇E|
1 − k̊ · ∇E

dk
|k|2 ,

for every j ∈ N. By Corollary 5.2 {φj}j∈N converges weakly to some non-zero
vector φ′ along some subsequence. We fix η such that 〈 η |φ′ 〉 > 0. Since also
∇Ej → ∇E, thus 〈 gr | g(j)

ρj 〉 → ‖gr‖2, j → ∞, we arrive at c
1/2

1 ln(κ/r)1/2‖(Nf+
1)1/2η‖ � e c1 ln(κ/r) 〈 η |φ′ 〉− c′e (κ− r). For sufficiently small r ∈ (0, κ), this
gives a contradiction. �

7. Coherent Infra-red Representations

To complete the proofs of our main theorems it only remains to show disjoint-
ness of two distinct representations πp and πq, defined consistently in Sect. 2.6
by

πr

(
X ⊗ 1F∞

j

)
= Wj(r)XWj(r)∗ ⊗ 1F∞

j
, X ∈ B(Hj), r ∈ Bp.

This is done in the following corollary. Notice that the strict convexity of E is
the crucial ingredient of the proof:

Corollary 7.1. Let p, q ∈ Bp,p �= q. Then the representations πp and πq of A
are unitarily inequivalent and, thus, disjoint as they are irreducible.

Proof. Step 1. Let m ∈ N. We claim that

lim
j→∞

〈
Ωj

m

∣∣W j
m(p)W j

m(q)∗Ωj
m

〉
= 0. (7.1)

(Recall the notation (2.47)). In fact, we have

〈Ωj
m |W j

m(p)W j
m(q)∗Ωj

m 〉 =
j−1∏

�=m

〈
Ω�+1

�

∣∣e−ieω̄(h(�)
p,q) Ω�+1

�

〉
=

j−1∏

�=m

e− e2
2 ‖h(�)

p,q‖2
,

where

h(�)
p,q := f �+1

� (p) − f �+1
� (q) =

G�+1
� · ∇E�(p)

ω − k · ∇E�(p)
− G�+1

� · ∇E�(q)
ω − k · ∇E�(q)

.
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By strict convexity of E on Bp we have |∇E�(p) − ∇E�(q)| � c > 0, for all
sufficiently large � ∈ N. Hence, it is elementary to check that

∑∞
�=m ‖h(�)

p,q‖2 =
∞, which implies (7.1).

Step 2. Suppose for contradiction there exists a unitary T ∈ B(H ) such that

πp(X) = T ∗ πq(X)T, (7.2)

for all X ∈ A. We consider the expectation of the previous identity in the state
η ⊗ Ω, where η ∈ C

4 is normalized and Ω is the vacuum in F . Choosing

Xj = 1Hm
⊗ {W j

m(q)∗ PΩj
m
W j

m(q)} ⊗ 1F∞
j

the expectation of both sides in (7.2) then reads
〈
η ⊗ Ω

∣∣πp(Xj) η ⊗ Ω
〉

=
∣∣〈Ωj

m

∣∣W j
m(p)W j

m(q)∗Ωj
m

〉∣∣2,
〈 η ⊗ Ω |T ∗ πq(Xj)T η ⊗ Ω 〉 =

〈
T (η ⊗ Ω)

∣∣ (1Hm
⊗ PΩj

m
⊗ 1F∞

j
)T (η ⊗ Ω)

〉
.

According to Step 1 we obtain

lim
j→∞

〈
η ⊗ Ω

∣∣πp(Xj) η ⊗ Ω
〉

= 0,

lim
j→∞

〈 η ⊗ Ω |T ∗ πq(Xj)T η ⊗ Ω 〉 =
〈
T (η ⊗ Ω)

∣∣ (1Hm
⊗ PΩ∞

m
)T (η ⊗ Ω)

〉
.

(7.3)

Passing to the limit m → ∞ in the second line of (7.3) we arrive at

lim
m→∞

〈
T (η ⊗ Ω)

∣∣ (1Hm
⊗ PΩ∞

m
)T (η ⊗ Ω)

〉
= ‖T (η ⊗ Ω)‖2 = 1.

Under assumption (7.2) we arrive at the contradiction ‖T (η ⊗ Ω)‖2 = 0. �
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Appendix A. Self-Adjointness and Relative Bounds

A.1. Fiber Dirac Operators

In this subsection we derive estimates on fiber Dirac operators and we prove
their self-adjointness. We employ the notation and general assumptions of
Sect. 2.7.

Lemma A.1. Dj
m(p) and Dj

m(p)2 are essentially self-adjoint on Cj, for all
p ∈ R

3 and m, j ∈ N0 ∪ {∞},m � j.
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Proof. Assume that ψ = (ψ(0), . . . , ψ(�), 0, 0, . . . ) ∈ Cj and that ψ(n) ∈
L2

s [(R
3 × Z2)n,C4] is supported in ([−R,R]3 × Z2)n, for every n = 1, . . . , �,

and some � ∈ N and R > κ. A trivial estimate using γm := e‖α · (ϕ(gm) −
e cm) (N (j)

f + 1)−1/2‖ < ∞ shows that

‖Dj
m(p)ψ‖ � C(m,R,p)(�+ 1) ‖ψ‖, C(m,R,p) := |p| +R+ γm. (A.1)

Furthermore, we observe that (Dj
m(p)ψ)(n) is still supported in ([−R,

R]3 × Z2)n, for every n ∈ N, and (Dj
m(p)ψ)(n) = 0, for n = � + 2, � + 3, . . . .

Applying (A.1) repeatedly we conclude, for φ ∈ Cj , such that φ(n) is supported
in ([−R,R]3 × Z2)n, for every n ∈ N, and φ(n) = 0, for n = �+ 1, �+ 2, . . . ,

∥∥Dj
m(p)νs φ

∥∥ � C(m,R,p)νs (�+ νs)!
�!

‖φ‖, ν ∈ {1, 2}.

Since (�+νs)!
(νs)! �! =

(
� + νs

�

)
< 2�+νs this implies

∞∑

s=0

tνs

(νs)!

∥∥Dj
m(p)νs φ

∥∥ < ∞, ν ∈ {1, 2},

for all 0 < t < 2−ν/C(m,R,p). Consequently, every φ ∈ Cj is an analytic
vector for Dj

m(p) and a semi-analytic vector for Dj
m(p)2, which implies the

assertion; see [32, Theorems X.39 and X.40]. �

Lemma A.2. For ν > 0, we find ρ ∈ (0,∞) and Yν(y),Υν ∈ L (Hj) with

Rj
m(iy) (H(j)

f + ρ)−ν = (H(j)
f + ρ)−ν Rj

m(iy)Yν(y), ‖Yν(y)‖ � 2, (A.2)

Sj
m (H(j)

f + ρ)−ν = (H(j)
f + ρ)−ν (Sj

m + Υν), ‖Υν‖ � 1, (A.3)

for y ∈ R. In particular, Rj
m(iy) and Sj

m map dom((H(j)
f )ν) into itself. Fur-

thermore, the following resolvent identity is valid, for all λ > 0:
(
Rj

m(iy) − Rj(iy)
)
(H(m,j)

f + λ)−1/2

= Rj(iy)α · (eϕ(gj
m) − e2 cjm) (H(m,j)

f + λ)−1/2Rj
m(iy).

In particular, the following useful estimate holds true:
∣∣〈φ

∣∣ (Rj(iy) − Rj
m(iy)) (H(m,j)

f + ρm)−1/2ψ
〉∣∣

� c e ρ
1/2
m ‖Rj(−iy)φ‖ ‖Rj

m(iy)ψ‖ � c e ρ
1/2
m (1 + y2)−1, (A.4)

for all normalized φ, ψ ∈ Hj

Proof. We put Θ := H
(j)
f + ρ and recall from [26, Lemma 3.2] and [27,

Lemma 3.1] that, for every ν ∈ R, [α · ϕ(gj
m)Θ−ν ] Θν , defined a priori on

Cj , extends to a bounded operator on Hj , henceforth denoted by Tν , and
‖Tν‖ � C(ν, κ)/ρ1/2, for all ν > 0. We choose ρ so large that ‖Tν‖ � 1/2. For
φ ∈ Cj ,

Rj
m(iy)Θ−ν(Dj

m − iy)φ

= Rj
m(iy) (Dj

m − iy)Θ−ν φ+ Rj
m(iy) [Θ−ν ,α · ϕ(gj

m)]φ

=
(
1 − Rj

m(iy)Tν

)
Θ−νRj

m(iy) (Dj
m − iy)φ.
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Since Dj
m is essentially self-adjoint on Cj we know that (Dj

m − iy)Cj is dense
in Hj , whence

Rj
m(iy)Θ−ν =

(
1 − Rj

m(iy)Tν

)
Θ−νRj

m(iy).

As ‖Rj
m(iy)Tν‖ � 1/2(1 + y2)1/2 we may define Xν(y) := (1 − Rj

m(iy)Tν)−1,
so that Xν(y)Rj

m(iy)Θ−ν = Θ−νRj
m(iy). Thus, we get (A.2) with Yν(y) :=

Xν(y)∗ = 1 + Zν(y), where ‖Zν(y)‖ � 1/(1 + y2)1/2. Computing the strongly
convergent principal value of (A.2) and, using the definition of Sj

m in (2.57),
we also obtain (A.3). Next, we verify the asserted resolvent identity first on
the domain of H(j)

f by applying Dj − iy on both sides and using that Rj
m(iy)

and (H(m,j)
f + λ)−1/2 commute. �

A.2. Bounds on Hamiltonians

The next lemma applies in particular to the families of operators

{Hj
m(p)}m�j , {Ȟj+1

j (p)}j , and {H̃j
m(p)}m�j .

We will use the notation and assumptions for generalized operators intro-
duced in Sect. 2.7.

Lemma A.3. Assume that the estimates in (2.60) hold true. Then there exists
c > 0 such that, for all p ∈ R

3 in (2.56), m, j ∈ N0 ∪ {∞},m < j, δ > 0, and
e ∈ (0, 1], the following holds:

(i) The Hamiltonians Kj and Kj
m are self-adjoint on dom(H(j)

f ) and essen-
tially self-adjoint on Cj.

(ii) For all ψ ∈ dom(H(j)
f ),

‖(Kj −Kj
m)ψ‖ � c e ρ

1/2
m

∥∥|Dj
m|1/4(H(m,j)

f + ρm)1/2 ψ
∥∥

� δ e ρ
1/2
m ‖Kj

m ψ‖ + c e ρ
1/2
m ‖ψ‖/δ3, (A.5)

‖|Dj
� |ψ‖, ‖H(j)

f ψ‖ � c′ ‖Kj
m ψ‖, 0 � � � j. (A.6)

(iii) K∞
m → K∞ in the norm resolvent sense, as m → ∞.

(iv) The form domain of both Kj and Kj
m is Q(H(j)

f ) and the following form
bounds hold true on Q(H(j)

f ):

± (Kj −Kj
m) � δ e ρm |Dj | + c e (H(m,j)

f + ρm)/δ, (A.7)

±(Kj −Kj
m) � δ e ρm |Dj

m| + c e (δ−1 + δ2) (H(m,j)
f + ρm). (A.8)

Proof. First, we derive the relative bounds of (ii) and (iv) on the dense domain
Cj : We may write, for η, ψ ∈ Cj ,

〈 η | (Kj −Kj
m)ψ 〉 = e〈 Sj η |α · (ϕ(gj

m) − e cj
m)ψ 〉 + 〈 η | (Sj − Sj

m)Dj
m ψ 〉

+e〈 η | (ϕ(hj
m) + e bjm)ψ 〉

= e〈α · (ϕ(gj
m) − e cj

m) η | Sj
m ψ 〉 + 〈Dj η | (Sj − Sj

m)ψ 〉
+e〈 η | (ϕ(hj

m) + e bjm)ψ 〉.
In order to treat the difference of the sign functions let (r, s) be either (1, 0)
or (0, 1), and let ε,κ ∈ (0, 1), ε + κ = 1, and η, ψ ∈ Cj . Then a successive
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application of (2.57), (A.4), and ‖ |Dj
m|νRj

m(iy)‖ � (1+y2)−(1−ν)/2, ν ∈ [0, 1),
permits to get
∣∣〈 (Dj)r η

∣∣ (Sj − Sj
m) (H(m,j)

f + ρm)−1/2(Dj
m)sψ

〉∣∣

=
∣∣∣ lim

τ→∞

τ∫

−τ

〈
(Dj)r η

∣∣ (Rj(iy) − Rj
m(iy)) (H(m,j)

f + ρm)−1/2(Dj
m)sψ

〉 dy
π

∣∣∣

�
∫

R

∥∥ |Dj |rκRj(−iy) |Dj |rεη
∥∥ c e ρ

1/2
m

∥∥ |Dj
m|sκRj

m(iy) |Dj
m|sεψ

∥∥ dy
π

� c(ε) e ρ
1/2
m

∥∥ |Dj |rε η
∥∥∥∥ |Dj

m|sε ψ
∥∥. (A.9)

Choosing (r, s) = (0, 1), ε := 1/4, and using (2.8), (2.60), |Dj
m| � 1, and the

fact that Dj
m and (H(m,j)

f + ρm)−1/2 commute on Cj , we obtain

‖(Kj −Kj
m)ψ‖ = sup

‖η‖=1

∣∣〈 η
∣∣ (Kj −Kj

m)ψ
〉∣∣

� e ‖α · (ϕ(gj
m) − e cj

m)ψ‖ + sup
‖η‖=1

∣∣〈 η
∣∣ (Sj − Sj

m)Dj
m ψ

〉∣∣

+ e ‖(ϕ(hj
m) + e bjm)ψ‖

� c e ρ
1/2
m

∥∥ |Dj
m|1/4(H(m,j)

f + ρm)1/2ψ
∥∥

� c e ρ
1/2
m

∥∥ |Dj
m|1/2ψ

∥∥1/2 ∥∥(H(m,j)
f + ρm)ψ

∥∥1/2

� c e ρ
1/2
m ‖(Kj

m)1/2ψ‖1/2 ‖Kj
m ψ‖1/2

� c e ρ
1/2
m ‖ψ‖1/4 ‖Kj

m ψ‖3/4. (A.10)

In the penultimate step we applied |Dj
m| � Kj

m to the left norm and used
that |Dj

m| + H
(m)
f + e (ϕ(hm) + e bm) � 0 and H

(m,j)
f commute on Cj and

H
(m)
f + H

(m,j)
f = H

(j)
f to bound the right one. By Young’s inequality this

implies (A.5), for all ψ ∈ Cj . To prove (A.7) we choose (r, s) = (1, 0), ε := 1/2
in (A.9) and obtain
∣∣〈 η | (Kj −Kj

m) η 〉
∣∣ � e‖α · (ϕ(gj

m) − e cj
m) η‖ ‖η‖ +

∣∣〈Djη | (Sj − Sj
m) η 〉

∣∣

+ e‖(ϕ(hj
m) + e bjm) η‖ ‖η‖

� c e ρ
1/2
m

∥∥ |Dj |1/2η
∥∥ ‖(H(m,j)

f + ρm)1/2 η‖,

which holds, for all δ > 0 and η ∈ Cj . Setting hj
m = 0 and bjm = 0 for the

moment we see that (A.7) with 1/δ = 2eρm implies |Dj | � c (|Dj
m| +H

(m,j)
f ),

from which we finally infer (A.8) (for non-zero hj
m and bjm).

By (A.5) we have

‖(Kj
m −Kj

0)ψ‖ � ε‖Kj
0 ψ‖ + c ‖ψ‖, ‖Kj

m ψ‖ � c′‖Kj
0 ψ‖,

for ψ ∈ Cj . Since Kj
0 = ((p − p(j)

f )2 + 1)1/2 +H
(j)
f is obviously self-adjoint on

dom(H(j)
f ) and essentially self-adjoint on Cj this proves Part (i) by virtue of

the Kato-Rellich theorem. We also conclude that (A.5) extends to every ψ ∈
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dom(H(j)
f ). Since ‖H(j)

f ψ‖ � ‖Kj
0 ψ‖ and ‖ |Dj

� |ψ‖ � c′(‖Kj
� ψ‖ + ‖H(j)

f ψ‖)
we further obtain (A.6).

(iii): Choosing j = ∞ we readily infer from (A.5) and the second resolvent
identity that ‖(K∞

m − i)−1 − (K∞ − i)−1‖ � c e ρ
1/2
m → 0, as m → ∞. �

Remark A.4. We can use the arguments of the above proof to compare Hamil-
tonians Hj

m with the same scale parameters but for different fibers, say p and
p + h. For instance, choose Kj

m = Hj
m(p),Dj

m = Dj
m(p), etc., and replace

(
Kj(p),Sj(p),Dj(p),Rj(p, iy),H

(m,j)
f + ρm

)

�−→
(
Hj

m(p + h), Sj
m(p + h),Dj

m(p + h), Rj(p + h, iy),1
)
.

In accordance, replace eϕ(gj
m) − e2cj

m by h, set hj
m = bjm = 0, and replace

e ρ
1/2

j by |h|. Then we immediately obtain by inspection of the blocks (A.9)
and (A.10) of the above proof that

∥∥(Hj
m(p + h) −Hj

m(p))ψ
∥∥ � c|h|

∥∥|Dj
m(p)|1/4ψ

∥∥,

and thus by monotonicity
∥∥(Hj

m(p + h) −Hj
m(p))ψ

∥∥ � c|h| ‖Hj
m(p)1/4ψ‖, (A.11)

for all p,h ∈ R,m, j ∈ N0 ∪ {∞},m � j, and ψ ∈ dom(H(j)
f ).

Appendix B. Analyticity and Hellmann–Feynman Formulas

Lemma B.1. For all m, j ∈ N0 and e ∈ (0, 1], the following holds true:

(1) {Hj
m(p)}p∈R3 extends to an analytic family of type A indexed by the set

{z ∈ C
3 : |Im z| < 1}.

(2) For p,h ∈ R
3, we know that ∂hH

j
m(p) is bounded relative to Hj

m(p)1/4.
All higher derivatives of Hj

m are bounded uniformly in p ∈ R
3,m, and j.

(3) For p,h ∈ R
3 and � ∈ N, we have

∥∥(∂�
hHj − ∂�

hH
j
m)(H(m,j)

f + ρm)−1/2
∥∥ � c(�) e ρ

1/2
m |h|�. (B.1)

(4) Let p, e0 > 0 and assume that Ej
m is an isolated eigenvalue of constant,

finite multiplicity of Hj
m on the ball Bp, for all e ∈ (0, e0]. For all h ∈ R

3,
we then have

∂hE
j
m = Tr{Πj

m (∂hH
j
m)Πj

m}/4,
∂2

hE
j
m = Tr{Πj

m(∂2
hH

j
m)Πj

m}/4 − ‖((Rj
m)⊥)1/2 (∂hH

j
m)Πj

m‖2
HS/2.

(B.2)

(5) For every p > 0, we find c, e0 > 0 such that, for all p ∈ Bp, e ∈ (0, e0],
� = 1, 2, and h ∈ R

3, we have
∥∥(Uj∂

�
hHj+1U

∗
j − ∂�

hH
j+1
j

)
(H(j,j+1)

f + ρj)−1/2
∥∥ � c e ρ

1/2

j |h|�. (B.3)
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Proof. (1)&(2): Representing the absolute values by means of (2.58) and using
a Neumann series expansion we deduce that

Hj
m(p + h) = Hj

m(p) + s-lim
τ→∞

τ∫

−τ

(
Rj

m(p + h, iy) −Rj
m(p, iy)

) iy dy
π

=
∞∑

�=0

1
�!
∂�

hH
j
m(p), on dom(H(j)

f ), |h| < 1, (B.4)

where we define (again dropping all p’s so that Rj
m(iy) ≡ Rj

m(p, iy))

∂hH
j
m ψ := lim

τ→∞

τ∫

−τ

Rj
m(iy)α · hRj

m(iy)ψ
y dy
iπ

, ψ ∈ dom(H(j)
f ), (B.5)

∂�
hH

j
m := (−1)�+1�!

∫

R

Rj
m(iy) {α · hRj

m(iy)}� y dy
iπ

∈ B(Hj), (B.6)

where � � 2. In fact, since ‖α·hRj
m(iy)‖ � |h|(1+y2)−1/2 the integrals in (B.6)

are absolutely convergent and one easily verifies ‖∂�
hH

j
m‖ � 2�!|h|�/π(� − 1),

for � ∈ N, � � 2. So, indeed, the part
∑∞

2 ... of the series in (B.4) converges
in B(Hj), if |h| < 1. It is then clear that the limit in (B.5) exists. Combining
(A.11) with (B.4) we further infer that the closure of the symmetric operator
∂hH

j
m—henceforth again denoted by the same symbol—is defined on a domain

containing the domain of |Dj
m|1/4 and ‖∂hH

j
m |Dj

m|−1/4‖ � c|h|+O(|h|2); thus

‖∂hH
j
m (Hj

m)−1/4‖ � ‖∂hH
j
m |Dj

m|−1/4‖ � c|h|. (B.7)

The first-order term in the series (B.4) is, therefore, an infinitesimal perturba-
tion of the self-adjoint zeroth-order term Hj

m and, as all higher-order terms are
bounded, we conclude that the series (B.4) defines an extension of {Hj

m(p)}
to an analytic family of type A defined on {z ∈ C

3 : |Im z| < 1}.
(3): We represent the difference of the �-th derivatives by means of (B.5)

or (B.6) and rearrange the integrands in a telescopic sum of terms which
are proportional to (Rj α · h)n(Rj − Rj

m) (α · hRj
m)�−n, n = 0, . . . , �. Then

we multiply the telescopic sum from the right by (H(m,j)
f + ρm)−1/2, observe

that (α · hRj
m)�−n and (H(m,j)

f + ρm)−1/2 commute, and estimate all terms
by ‖Rb

a‖ � 1/(1 + y2)1/2 and (A.4). Each summand in the telescopic sum is
absolutely integrable. (For � = 1, we start with ψ ∈ dom(H(j)

f ) and extend
(∂hHj − ∂hH

j
m)(H(m,j)

f + ρm)−1/2 to all of Hj by continuity, preserving the
same symbol for the extension).

(4): By the additional assumption we know that Ej
m and Πj

m depend
analytically on p [21]. Then, by differentiating 〈Hj

m φ |Πj
mψ 〉 = Ej

m 〈φ |Πj
m ψ 〉

we obtain the following Leibniz formula, for all φ ∈ dom(H(j)
f ), ψ ∈ Hj , μ ∈ N,

and h ∈ R
3,

μ∑

ν=0

(
μ
ν

)
〈 ∂ν

hH
j
m φ | ∂μ−ν

h Πj
m ψ 〉 =

μ∑

ν=0

(
μ
ν

)
(∂ν

hE
j
m) 〈φ | ∂μ−ν

h Πj
m ψ 〉. (B.8)
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In view of dom(∂ν
hH

j
m) ⊃ dom(H(j)

f ) = dom(Hj
m) ⊃ Ran(Πj

m) we infer from
(B.8) by induction on μ that ∂μ

hΠj
m : Hj → dom(Hj

m) = dom(H(j)
f ) and, in

particular,

(∂hH
j
m − ∂hE

j
m)Πj

m = −(Hj
m − Ej

m) ∂hΠj
m,

(∂2
hH

j
m)Πj

m = −2(∂hH
j
m − ∂hE

j
m) ∂hΠj

m (B.9)

+(∂2
hE

j
m)Πj

m − (Hj
m − Ej

m) ∂2
hΠj

m.

We deduce from the first line in (B.10) that

(Πj
m)⊥∂hΠj

m = −(Rj
m)⊥(∂hH

j
m)Πj

m,

(∂hE
j
m)Πj

m = Πj
m (∂hH

j
m)Πj

m.
(B.10)

Multiplying the second line in (B.10) by Πj
m and using (B.10) and Tr{Πj

m} = 4
we arrive at (B.2).

(5): The proof is similar to that of (3). In fact, by definition we have
the relation Řj+1(iy) = Uj Rj+1(iy)U∗

j which implies the following analogs of
(B.5) and (B.6):

Uj ∂hHj+1 U
∗
j ψ = lim

τ→∞

τ∫

−τ

Řj+1(iy)α · h Řj+1(iy)ψ
y dy
iπ

,

Uj ∂
2
hHj+1 U

∗
j = 2

∫

R

Řj+1(iy) {α · h Řj+1(iy)}2 iy dy
π

,

where ψ ∈ dom(H(j+1)
f ). As before we employ (B.5) and (B.6) themselves to

represent derivatives of Hj+1
j . Let

Δj(y) := Řj+1(iy) −Rj+1
j (iy). (B.11)

Then a brief computation using (2.37) and Lemma A.2 yields

(Ďj+1 − iy)Δj(y) = α · {e2 čj − eϕ(F j+1
j )}Rj+1

j (iy) (B.12)

on dom(H(j+1)
f ). Applying (2.34) and Lemma A.2 we conclude that

∥∥Δj(y)(H
(j,j+1)
f + ρj)−1/2

∥∥ � c e ρ
1/2

j (1 + y2)−1. (B.13)

Now, we follow literally the steps described in the proof of Part (3) using
(B.13) as an analog (in fact special case) of (A.4) to arrive at (B.3). �

Appendix C. Comparison of Hj+1
j and Ȟj+1

C.1. Proof of Lemma 4.1

The proof Lemma 4.1 uses heavily cancellations which follow from (2.35).
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Proof. Let ϑ ∈ dom(H(j)
f ). Using the abbreviation (B.11) we have

I := {|Ďj+1| − |Dj+1
j |}ϑ⊗ Ωj+1

j = lim
τ→∞

τ∫

−τ

Δj(y)(ϑ⊗ Ωj+1
j )

iy dy
π

. (C.1)

In view of (B.12) we further have

Δj(y)(ϑ⊗ Ωj+1
j ) = Řj+1(iy)α (Rj(iy)ϑ) ⊗ {e2čj Ωj+1

j − e |F j+1
j 〉}. (C.2)

We recall that |čj |, ‖F j+1
j ‖ � c ρj , ‖Rb

a(iy)‖ � (1+y2)−1/2, and observe that the

resolvent Rj+1
j (iy) leaves the subspaces Xn ≡ X

(j,j+1)
n , n = 0, 1, . . . , defined

in (2.26), invariant. Moreover, the restriction of the field operator ϕ(F j+1
j ) is

bounded as a map from X0 ⊕ X1 to X0 ⊕ X1 ⊕ X2, with norm � c ‖F j+1
j ‖ �

c′ρj . Taking all these remarks into account we infer from (B.12) that

‖Δj(y)�X0⊕X1‖ � c e ρj (1 + y2)−1. (C.3)

Rearranging (C.2) using Rj+1
j (ψ ⊗ Ωj+1

j ) = (Rjψ) ⊗ Ωj+1
j we further obtain

Δj(y)(ϑ⊗ Ωj+1
j ) =

(
Rj(iy)αRj(iy)ϑ

)
⊗ {e2čj Ωj+1

j } − V +W,

V := Rj+1
j (iy)α (Rj(iy)ϑ) ⊗ |eF j+1

j 〉,
W := Δj(y)α (Rj(iy)ϑ) ⊗ {e2čj Ωj+1

j − e |F j+1
j 〉}.

(C.4)

We represent V ∈ X1 as V = {V (k)} ∈ L2[Aj+1
j ,Hj ] with

V (k) = eF j+1
j (k)Rj(p − k, iy)αRj(p, iy)ϑ, a.e. k ∈ Aj+1

j .

Since |k| � ρj , for k ∈ Aj+1
j , the resolvent identity implies Rj(p − k, iy) =

Rj(p, iy) + O(ρj (1 + y2)−1), and together with ‖F j+1
j ‖ � c ρj this gives

V =
(
Rj(iy)αRj(iy)ϑ

)
⊗ |eF j+1

j 〉 + O
(
e ρ2

j (1 + y2)−3/2 ‖ϑ‖
)
.

The inequality (C.3) applied to the third member on the RHS of (C.4) yields

‖W‖ � c e ρj(1 + y2)−1‖Rj(iy)ϑ‖ {e2|čj | + e‖F j+1
j ‖}

� c′e2ρ2
j (1 + y2)−3/2 ‖ϑ‖.

Altogether, employing the formula (B.5) for the derivative of Hj and using∫
R
dy/(1 + y2) < ∞, we see that the term in (C.1) can be written as

I = (∇Hj ϑ) ⊗ {e |F j+1
j 〉 − e2čj Ωj+1

j } + O
(
e ρ2

j ‖ϑ‖
)
.

But we have (Ȟj+1 −Hj+1
j )(ϑ⊗ Ωj+1

j ) = I + II with

II := (Ȟ(j+1)
f −H

(j+1)
f )(ϑ⊗ Ωj+1

j ) = eϑ⊗ {e‖ω1/2f j+1
j ‖2Ωj+1

j − |ω f j+1
j 〉}.

Applying these formulas for every ϑ ∈ Ran(Πj) ⊂ dom(H(j)
f ) we arrive at

(Ȟj+1 −Hj+1
j )Πj+1

j =e∇Hj Πj ⊗ |F j+1
j 〉〈Ωj+1

j | − eΠj ⊗ |ωf j+1
j 〉〈Ωj+1

j |
+
(
e2 〈 f j+1

j |ω f j+1
j 〉 − e2 čj · ∇Hj

)
Πj+1

j + O(e ρ2
j ),

and we conclude by means of (2.35) and ∇Hj Πj = ∇Ej Πj +Π⊥
j ∇Hj Πj . �
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C.2. Proof of Lemma 4.2

In this subsection we give the proof of a Lemma in which the resolvents of
Ȟj+1 and Hj+1

j are compared. We use the notation

Rj(p,k) := (Hj(p − k) −Ej(p) + |k|)−1.

in the proof. This operator occurs in the direct integral representation of
Rj+1

j (p) restricted to X
(j,j+1)
1 ,

Rj+1
j (p)�

X
(j,j+1)
1

=

⊕∫

Aj+1
j

Rj(p,k)dk.

We recall that the resolvents Rj+1
j , Řj+1, and Ř⊥

j+1 are defined in (2.24),
(2.39), and (2.40), respectively. The resolvents Rj and R⊥

j are introduced in
and below Eq. (2.25).

Proof. (1): On account of (3.17) and |k| � ρj+1 = ρj/2 we have

rj(p,k) := Ej(p − k) − Ej(p) + |k| � ρj/4. (C.5)

Hence, Ej(p) − |k| belongs to the resolvent set of both Hj(p − k) and Hj(p)
and (A.11) together with the second resolvent identity implies
∥∥(Rj(p,k) − Rj(p, |k|)

)
Ψ
∥∥ � c|k|

∥∥Hj(p − k)1/4Rj(p,k)
∥∥∥∥Rj(p, |k|)Ψ

∥∥,

for all Ψ ∈ Hj . Here |k| � ρj and, by the spectral calculus, the first norm
on the RHS is not greater than Ej(p − k)1/4

/
rj(p,k) � c(p)/ρj . Choosing

Ψ := Π⊥
j ψ we obtain (4.1) since, of course, ‖Rj(p, |k|)Π⊥

j ψ‖ � ‖R⊥
j (p)ψ‖.

(2): We may apply Lemma A.3 with Kj+1
j = Hj+1

j and Kj+1 = Ȟj+1.
Indeed, let t � 0, ε > 0, and z := t + iε. Then δj = O(e ρj), |Ej − Ej+1| =
O(e ρj), the first inequality in (A.5), and |Dj+1

j | � 1 imply

N (1)
z :=

∥∥Π̌⊥
j+1

(
Řj+1(z + δj) − Rj+1

j (z)
)
(Πj+1

j )⊥ψ
∥∥

� c e ρ
1/2

j ‖Π̌⊥
j+1Řj+1(z + δj)‖

·
∥∥ |Dj+1

j |1/2(H(j,j+1)
f + ρj)

1/2(Πj+1
j )⊥Rj+1

j (z)ψ
∥∥.

Here, (3.17) and (3.21) permit to get

‖Řj+1(z + δj) Π̌⊥
j+1‖ � (gapj+1 + δj + t)−1 � c (ρj + t)−1,

uniformly in ε > 0 and small e > 0. Moreover, (H(j,j+1)
f + ρj)

1/2 commutes
strongly with (Πj+1

j )⊥ and Rj+1
j (z). Since also |Dj+1

j | � (Hj+1
j − Ej) + Ej

and Ej � c(p) on Bp we deduce that

θ := lim
ε↘0

∥∥ |Dj+1
j |1/2(H(j,j+1)

f + ρj)
1/2(Πj+1

j )⊥Rj+1
j (z)ψ

∥∥

�
∥∥(H(j,j+1)

f + ρj)
1/2
(
(Rj+1

j )⊥)1/2
ψ
∥∥+ c

∥∥(H(j,j+1)
f + ρj)

1/2(Rj+1
j )⊥ ψ

∥∥.
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Next, we use that ψ and, hence, ((Rj+1
j )⊥)s ψ, belong to X

(j,j+1)
0 ⊕ X

(j,j+1)
1

and that η ∈ X
(j,j+1)
0 ⊕ X

(j,j+1)
1 entails ‖(H(j,j+1)

f + ρj)
1/2η‖ � (2ρj)

1/2‖η‖.
Taking this observation into account we obtain

θ � c ρ
1/2

j

(
‖((Rj+1

j )⊥)1/2ψ‖ + ‖(Rj+1
j )⊥ ψ‖

)
� c′ρ

1/2

j

(
‖ψ‖ + ‖(Rj+1

j )⊥ ψ‖
)
.

Altogether we arrive at

lim
ε↘0

N
(1)
t+iε � c e ρj(ρj + t)−1

(
‖ψ‖ + ‖(Rj+1

j )⊥ ψ‖
)
,

for every ψ ∈ X
(j,j+1)
0 ⊕ X

(j,j+1)
1 . For t = 0, this is (4.2) with s = 1, which

immediately implies (4.3).
Let N (1/2)

0 denote the LHS of (4.2) with s = 1/2. We have Ř⊥
j+1(δj)

1/2 =∫∞
0

Ř⊥
j+1(t+ δj) t−

1/2dt/π and an analogous representation of the square root
of (Rj+1

j )⊥. Therefore,

N
(1/2)
0 �

∞∫

0

N
(1)
t

dt
πt1/2

� c e

∞∫

0

ρj

ρj + t

dt
πt1/2

(
‖ψ‖ + ‖(Rj+1

j )⊥ ψ‖
)
,

which is (4.2) with s = 1/2, as the integral on the RHS equals ρ
1/2

j . �

Appendix D. A Formula for a(k) φj

In this section we derive the formula for a(k)φj stated in Lemma 6.1 where φj

is a ground state eigenvector of Hj . We will frequently use the abbreviation

Rj(p,k) := (Hj(p − k) −Ej(p) + |k|)−1.

Proof of Lemma 6.1. Let f ∈ C∞
0 [{|k| � ρj}], q ∈ R

3\{0}, and μ ∈ Z2. More-
over, let

f̃(k) := f(k) δλ,μ, k = (k, λ) ∈ R
3 × Z2.

We fix p ∈ R
3 and the scale parameter j ∈ N ∪ {∞}, and abbreviate D :=

Dj(p),Dq := Dj(p − q), R(iy) := (D − iy)−1, Rq(iy) := (Dq − iy)−1.
Finally, we recall that m denotes multiplication with k.
On the dense domain dom((H(j)

f )3/2) we then have the operator identities

[H(j)
f , a†(f̃), ] = a†(ω f̃), [p(j)

f , a†(f̃)] = a†(m f̃), (D.1)

and, hence,

Da†(f̃) − a†(f̃)Dq = α ·
{
e〈G | f̃ 〉 − a†((m − q) f̃)

}
.

Thanks to Lemma A.2 we know that Rq(iy) maps dom((H(j)
f )3/2) into itself.

On that domain we thus have

a†(f̃)Rq(iy) −R(iy)a†(f̃) = R(iy)α ·
{
e〈G | f̃ 〉 − a†((m − q)f̃)

}
Rq(iy).
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Since φj ∈ dom(H(j)
f ), the previous relation implies, for all η′ ∈ Cj ,

Δ(q, f̃ , η′) := 〈 |Dq| η′ | a(f̃)φj 〉 − 〈 a†(f̃) η′ | |D|φj 〉

= lim
τ→∞

τ∫

−τ

〈
R(iy)α · a†((m − q)f̃)Rq(iy) η′ ∣∣φj

〉 iy dy
π

− e〈G | f̃ 〉 · lim
τ→∞

τ∫

−τ

〈
R(iy)αRq(iy) η′ ∣∣φj

〉 iy dy
π

,

where we used the representation (2.58) of the absolute value. In the integral
appearing in the second line we now write Rq(iy) y/i = 1 − Dq Rq(iy) and
apply the formula (2.57) for the sign function S := sgn(D). In the third line
we expand the right resolvent as Rq = R + Rα · qRq and apply the formula
(B.5) for the derivative of the Hamiltonian. Proceeding in the way we arrive
at

Δ(q, f̃ , η′) =
〈
Sα · a†((m − q) f̃) η′ ∣∣φj

〉
− J(q, f̃ , η′)

− e〈 f̃ |G 〉 ·
{
〈 η′ |∇Hj φj 〉 + I(q, η′)

}
.

Here and below ∇Hj is evaluated at p and

I(q, η′) :=
∫

R

〈
R(iy)αR(iy) (α · p)Rq(iy) η′ ∣∣φj

〉 iy dy
π

,

J(q, f̃ , η′) :=
∫

R

〈
Rq(iy)Dq η

′ ∣∣α · a((m − q)f̃)R(−iy)φj

〉 dy
π
.

By means of (A.2) it is easy to see that the latter integral is absolutely
convergent. In fact, let ρ > 1 be sufficiently large and set Θ := H

(j)
f + ρ

and Bq := α · a((m − q) f̃)Θ−1/2. Then (A.2) shows that the composition
F (y) := Θ1/2R(−iy)Θ−1/2 is well defined on Hj and ‖F (y)‖ � c (1 + y2)−1/2.
Moreover, ‖Bq‖ � c‖(1 + 1/ω)1/2(m − q) f̃‖ by a standard estimate. From the
representation

J(q, f̃ , η′) =
∫

R

〈
{Dq Rq(iy) |Dq|−1/2} |Dq|1/2 η′ ∣∣Bq F (y)Θ1/2φj

〉 dy
π
,

where the operator in curly brackets satisfies ‖{· · · }‖ � c (1 + y2)−1/4; we may
thus read off that the map Cj � η′ �→ J(q, f̃ , η′) is continuous when Cj is
equipped with the form norm of Hq := Hj(p − q). Since Cj is a form core for
Hq we may hence extend the definition of J(q, f̃ , η′) to all η′ ∈ Q(Hq).

We further find by means of (D.1) and a virial type argument
〈
(Hq − Ej(p) + |q|) η′ ∣∣ a(f̃)φj

〉

=
〈
Hqη

′ ∣∣ a(f̃)φj

〉
−
〈
a†(f̃) η′ ∣∣Hj(p)φj

〉
+ |q| 〈 η′ | a(f̃)φj 〉

= Δ(q, f̃ , η′) +
〈
η′ ∣∣ a((|q| − ω)f̃)φj

〉
. (D.2)
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Since φj ∈ dom(H(j)
f ) we know that a(f̃)φj ∈ Q(H(j)

f ) and, according to
Lemma A.3(iv), the form domain of Hq is Q(H(j)

f ). Taking this and the above
remarks on J(q, f̃ , η′) into account we conclude that the first and the last
line of (D.2) are continuous in η′ w.r.t. the form norm of Hq. Approximating
Rq η := Rj(p, q) η, where η ∈ Hj is arbitrary, by some sequence in Cj , which
is convergent w.r.t. the form norm of Hp; we thus obtain

〈
η
∣∣ a(f̃)φj

〉
= Δ(q, f̃ ,Rq η) +

〈
η
∣∣Rq a((|q| − ω)f̃)φj

〉
. (D.3)

Now, let f̃q,ε(k) := hε(k − q) δλ, μ, hε(k) := h(k/ε)/ε3, for tiny ε > 0, where
h ∈ C∞

0 [{|k| � 1}, [0,∞)] satisfies
∫

R3 h = 1. In the next step we insert
the peak function fq,ε into (D.3), multiply the resulting expressions with g ∈
C∞

0 [R3\{0}], and integrate with respect to q. Proceeding in this way we arrive
at

∫

R3

g(q)
〈
η
∣∣ a(f̃q,ε)φj

〉
d3q =

5∑

�=1

C�(ε), (D.4)

with (in C3(ε) we have S φj ∈ dom(a((m − q)f̃q,ε)) because of (A.3))

C1(ε) := −e

∫

R3

g(q) 〈 f̃q,ε |G 〉〈 η |Rq ∇Hj φj 〉d3q,

C2(ε) :=
∫

R3

g(q)
〈
η
∣∣Rq a((|q| − ω)f̃q,ε)φj

〉
d3q,

C3(ε) :=
∫

R3

g(q)
〈
η
∣∣Rq α · a((m − q)f̃q,ε)S φj

〉
d3q,

C4(ε) := −e

∫

R3

g(q) 〈 f̃q,ε |G 〉 · I
(
q,Rq η

)
d3q,

C5(ε) :=
∫

R3

g(q)J
(
q, f̃q,ε,Rq η

)
d3q.

It is straightforward to see that the LHS of (D.4) converges to 〈 η | a(g)φj 〉,
as ε > 0 tends to zero. Furthermore, |〈 η |Rq ∇Hj φj 〉| � c ‖η‖/|q| � c′‖η‖ on
the support of g by (B.7), and |I(q,Rq η)| � c|q| ‖Rq‖ ‖η‖ � c ‖η‖. Hence,
q �→ g(q) 〈 η |Rq ∇Hj φj 〉 and q �→ g(q) I(q,Rq η) belong to L2[R3,C3]. Since
also 〈 f̃q,ε |G 〉 = (hε ∗ G)(q, μ) δλ,μ and hε ∗ G → G(·, μ)δλ,μ in L2[R3,C3] we
conclude that

lim
ε↘0

C1(ε) = −e

∫

R3

g(q)Gj(q, μ) · 〈 η |Rq ∇Hj φj 〉d3q, (D.5)
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lim
ε↘0

C4(ε) = e

∫

R

∫

R3

g(k)
〈
R(iy) (α · Gj(k, μ))R(iy) (α · k)Rk(iy)

× Rk η
∣∣φj

〉
d3k

y dy
iπ

. (D.6)

Next, we show that C5(ε) goes to zero: we have supp(g) ⊂ {r � |q| � 1/r}, for
some r > 0, and we shall always assume that 0 < ε � r/2. Then q ∈ supp(g)
and hε(k − q) �= 0 implies 1/|q| � 1/r and 1 � 2|k|/r. By Fubini’s theorem
we thus have

C5(ε) �
∫

R

∫

R3

∫

R3

|g(q)|hε(k − q) |k − q| |〈α {Dq Rq(iy)Rq} η |

× a(k, μ)Θ−1/2 F (y)Θ1/2φj 〉|d3k d3q
dy
π
.

In the previous expression we have |k − q| � ε if hε(k − q) �= 0. Furthermore,

‖{· · · }‖ � ‖Dq Rq(iy) |Dq|−1/2‖ ‖|Dq|1/2Rq‖ � c (1 + y2)−1/4/r.

We estimate the remaining factors of the integrand by Young’s inequality,
|〈u | v ∗w 〉| � c ‖u‖2‖v‖1‖w‖2, applied to the d3kd3q-integration. In this way
we obtain

|C5(ε)| � c ε

r
‖hε‖1 ‖g‖2 ‖η‖

·
∫

R

{
(2/r)

∫

|k|�r/2

|k|
∥∥a(k, μ)Θ−1/2F (y)Θ1/2φj

∥∥2d3k

}1/2 dy
(1 + y2)1/4

.

Here, the integral
∫

|k|�r/2
. . . d3k is not greater than

‖(H(j)
f )1/2Θ−1/2F (y)Θ1/2φj‖2 � ‖F (y)‖2 ‖H1/2

j φj‖2 � c (1 + y2)−1.

Since also ‖hε‖1 = 1 we conclude that C5(ε) → 0, as ε ↘ 0.
Obviously, C2 and C3 can also be treated by means of Young’s inequality

and we easily verify that limε↘0 C2(ε) = limε↘0 C3(ε) = 0, again using that
||q| − |k|| � |k − q| � ε, when hε(k − q) �= 0. For C3 we actually find

C3(ε) � c (ε/r) ‖g‖2 ‖hε‖1 ‖η‖ (2/r)1/2 ‖(H(j)
f )1/2 S φj‖, 0 < ε � r/2,

where last norm ‖(H(j)
f )1/2 S φj‖ is well defined and bounded because of (A.3)

and φj ∈ dom(H(j)
f ).

Putting everything together we see that 〈 η | a(gμ)φj 〉 is equal to the
sum of terms on the RHS of (D.5) and (D.6). As this holds true, for every
gμ(k) = g(k) · δμ,λ with g ∈ C∞

0 [R3 \ {0}], we conclude that

〈
η
∣∣ a(k, μ) φj

〉
= −e Gj(k, μ) · 〈 η | Rk(|k|) ∇Hj φj 〉

+ e

∫

R

〈
R(iy) (α · Gj(k, μ)) R(iy) (α · k) Rk(iy) Rk η

∣∣φj

〉 y dy

iπ
,
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for all k ∈ R
3 \ Nη, where Nη is some η-dependent zero set. Applying this

results to all η in some countable dense domain in H we obtain (6.1). �
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[15] Fröhlich, J.: Existence of dressed one electron states in a class of persistent
models. Fortschritte Phys. 22, 159–198 (1974)
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8000 Århus C, Denmark
e-mail: matte@math.lmu.de

Communicated by Jan Derezinski.

Received: April 23, 2012.

Accepted: April 26, 2013.


	The Mass Shell in the Semi-Relativistic Pauli--Fierz Model
	Abstract
	1. Introduction and Main Results
	1.1. The General Framework
	1.2. The Model and Main Results
	1.3. Organization of the Paper

	2. Definitions, Notation, and Outlines
	2.1. Scales, Fock Spaces, and Second Quantization
	2.2. Doubled Hilbert Spaces and Dirac Operators
	2.3. The Hamiltonians Hmj and Hmj, Ground State Energies, and Spectral Gaps
	Remarks on Sect. 3

	2.4. The Partially Dressing Transformed Hamiltonians checkHj.
	Outline of Sect. 4.2

	2.5. The Fully Dressing Transformed Hamiltonians boldsymboltildemathcalHmj
	2.6. Coherent IR Representations
	2.7. Generalized Operators

	3. First Results on the Mass Shell and Spectral Gaps
	3.1. The Spectrum at the Initial Scale
	3.2. A Priori Bounds on the Mass Shell
	3.3. The Spectral Gap

	4. Regularity of the Mass Shell
	4.1. Preparatory Lemmas
	4.2. Proof of boldsymbolC2-regularity

	5. Existence and Multiplicity of Ground States
	6. Absence of Ground States at Non-Zero Momenta
	7. Coherent Infra-red Representations
	Acknowledgements
	Appendix A. Self-Adjointness and Relative Bounds
	A.1. Fiber Dirac Operators
	A.2. Bounds on Hamiltonians

	Appendix B. Analyticity and Hellmann--Feynman Formulas
	Appendix C. Comparison of boldsymbolHjj+1 and boldsymbolcheckHj+1
	C.1. Proof of Lemma 4.1
	C.2. Proof of Lemma 4.2

	Appendix D. A Formula for boldsymbola(k)phij
	References


