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Wilson Loops in 5d N = 1 SCFTs
and AdS/CFT

Benjamin Assel, John Estes and Masahito Yamazaki

Abstract. We consider 1
2
-BPS circular Wilson loops in a class of 5d super-

conformal field theories on S5. The large N limit of the vacuum expecta-
tion values of Wilson loops are computed both by localization in the field
theory and by evaluating the fundamental string and D4-brane actions
in the dual massive IIA supergravity background. We find agreement in
the leading large N limit for a rather general class of representations,
including fundamental, anti-symmetric and symmetric representations.
For single-node theories the match is straightforward, while for quiver
theories, the Wilson loop can be in different representations for each node.
We highlight the two special cases when the Wilson loop is in either in all
symmetric or all anti-symmetric representations. In the anti-symmetric
case, we find that the vacuum expectation value factorizes into distinct
contributions from each quiver node. In the dual supergravity descrip-
tion, this corresponds to probe D4-branes wrapping internal S3 cycles.
The story is more complicated in the symmetric case and the vacuum
expectation value does not exhibit factorization.

1. Introduction

Wilson loops are important gauge-invariant observables in gauge theories,
and provide valuable dynamical information of the system. Since the pioneer-
ing works of [1,2], they have been studied extensively in the context of the
AdS/CFT correspondence.

In this paper, we consider Wilson loops in a class of 5d N = 1 supercon-
formal field theories (SCFTs) and their holographic duals. There are very few
quantitative statements on such Wilson loops in the literature (see however
[3] where the holography of non-BPS Wilson loops in 5d maximally super-
symmetric SYM are considered). Part of the reasons for this is that 5d gauge
theories are non-renormalizable. There is a danger that infinitely many irrele-
vant operators could potentially contribute near the strongly coupled UV fixed
point, hence invalidating the computation from the effective Lagrangian. The
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goal of this paper is to overcome this difficulty, by first computing the vac-
uum expectation value of the Wilson loops in the effective theory at strong
coupling using localization techniques and then comparing to the dual super-
gravity description, which provides a definition of the strongly coupled UV
fixed point.

We consider a class of 5d N = 1 SCFTs discovered in [4] (see also [5,6])
and generalized recently to quiver theories in [7]. The original SCFT arises
as the UV fixed point of a 5d N = 1 supersymmetric gauge theory with
a Yang–Mills vector multiplet for a USp(2N) gauge group, Nf < 8 hyper-
multiplets transforming in the fundamental representation and one hypermul-
tiplet transforming in the antisymmetric representation. The more general
SCFTs arise as UV fixed points of quiver-type gauge theories labeled with
an integer n. The gauge group is G = USp(2N) × SU(2N)p for n = 2p + 1
and G = USp(2N) × SU(2N)p−1 × USp(2N) or SU(2N)p for n = 2p. The
matter content is given by a bifundamental hypermultiplet in each pair of
adjacent gauge groups, one antisymmetric hypermultiplet in each external
SU(2N) (gauge factor at the beginning or the end of the line quiver pic-
ture) and Na

f fundamental hypermultiplets in the ath gauge group factor,
with Nf =

∑
aN

a
f < 8.

These theories are dual to warped AdS6 × S4/Zn compactifications in
massive type IIA supergravity [7,8] (for massive IIA supergravity see [9] and
[10] for recent T-dual type IIB backgrounds), and are engineered from type
I’ string theory on R

4,1 × C
2/Zn × R with N D4-branes, Nf D8-branes and

one O8−-plane. These 5d N = 1 theories are specified by the choice of N,Nf 1

and n.2 The existence of the fixed point requires Nf < 8 [6]; this is a neces-
sary condition for the inverse square effective gauge coupling constant to stay
positive everywhere on the Coulomb branch of the moduli space. In this case,
the moduli space is smooth and we could take the strong coupling limit where
the bare gauge coupling constant goes to infinity. One can then argue, without
proof, for the existence of the UV fixed point at the intersection (origin) of the
Coulomb and Higgs branches.

We consider these 5d SCFTs on the Euclidean S5.3 We compute the
vacuum expectation value (VEV) of the 1

2 -BPS circular Wilson line operator,
placed on the great circle of S5:

〈WR〉 =
1

dimR

〈
TrR P exp

∫

(iAμẋμ + σ|ẋ|)
〉
, (1.1)

1 The dual geometry proposed in [7] and the matrix model computations of [11] depend
only on the total Nf =

∑
a N

a
f , however, our computations will show that the Wilson loops

in quiver theories do depend on the individual N
(a)
f . This subtlety is not reflected in the

gravity description in the literature. We will comment more about this later in the text.
2 When n is even, there is an extra twofold choice, corresponding to a compactification with
or without vector structure. However, as we will see the two choices give identical Wilson
loop VEVs in the leading large N limit.
3 More details for 5d N ≥ 1 theories on S5, including explicit Lagrangians, can be found in
[12–15].
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where Aμ is the gauge field, σ is the scalar in the 5d vector multiplet, P a
path-ordered product, and R a representation of the gauge group.

We compute the VEV of this Wilson loop in a general representation
represented by a Young diagram, both in gauge theory and gravity in the
large N limit.4 The expression is simpler when we consider

(1) fundamental representation
(2) kth antisymmetric representation Ak, i.e., the anti-symmetric part of the

kth tensor product of the fundamental representation
(3) kth symmetric representation Sk, i.e., the symmetric part of the kth

tensor product of the fundamental representation

of the gauge groups.
For the case n = 1, we find a complete agreement in the leading large N

limit, with the VEVs given as:

〈Wfund〉 ∼ exp

[

6π

√
N

2(8 −Nf )

]

, (1.2)

〈WAk
〉 = 〈WA2N−k

〉 ∼ exp

[

4π

√
N3

2(8−Nf )

(

1−
∣
∣
∣
∣1− k

N

∣
∣
∣
∣

3/2
)]

, (1.3)

〈WSk
〉 ∼ exp

[

9π

√
N3

2(8 −Nf )

((

1 +
4k
9N

)3/2

− 1

)]

. (1.4)

As expected, we find that for anti-symmetric representations k is bounded,
while k can take arbitrary values for symmetric representations. Additionally,
Ak is a reducible representation and in the leading large N limit, where k scales
withN , only the largest irreducible representation gives the leading expression.
In the case k is held fixed in the large N limit, all of the expressions reduce to
a product of fundamental Wilson loops.

We also discuss more general representations. A representation of
USp(2N) is specified by a Young diagram with at most N rows. When we
have a Wilson line in the representation specified by a partition (k1, . . . , km),
with m held fixed in the large N limit, we find

〈W(k1,...,km)〉 ∼ exp

[

9π

√
N3

2(8 −Nf )

m∑

i=1

((

1 +
4ki
9N

)3/2

− 1

)]

. (1.5)

Similarly, when we have a Wilson line in the representation specified by a dual
partition (l1, . . . , lm), again with m held fixed in the large N limit, we find

〈W(l1,...,lm)T 〉 ∼ exp

[

4π

√
N3

2(8 −Nf )

m∑

i=1

(

1 −
∣
∣
∣
∣1 − li

N

∣
∣
∣
∣

3/2
)]

. (1.6)

4 For similar computations for 1
2
-BPS circular Wilson loops in 4d N = 4 theories, see

[16–18].
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In both cases this leads to factorized expressions in the leading large N limit:

〈W(k1,...,km)〉 =
∏

i

〈WSki
〉, 〈W(l1,...,lm)T 〉 =

∏

i

〈WAli
〉. (1.7)

Note that when the ki or li are taken to be finite in the large N limit, both
expressions reduce to a product of fundamental representations, 〈Wfund〉, at
leading order. In particular, this is consistent with self-dual partitions. The
cases where m also scales with N require the back-reaction of the D4-branes
to be taken into account, along the lines of [19,20].

For n > 1, the expressions generalize as follows. When the Wilson loop
is in the fundamental representation of a single node we have

〈Wfund〉 ∼ exp

[

6π

√
nN

2(8 −Nf )

]

. (1.8)

The answer does not depend on the choice of the gauge group (node of the
quiver) the Wilson loops is turned on. For arbitrary configurations of anti-
symmetric representations, we find that the result factorizes into contributions
from each node in the quiver

〈WAk1 ,Ak2 ,...,Akq
〉 = exp

[

4π

√
nN

2(8 −Nf )
N

q∑

a=1

(

1 −
∣
∣
∣
∣1 − ka

N

∣
∣
∣
∣

3/2
)]

, (1.9)

where the Wilson loop is in the kath anti-symmetric representation for the ath
gauge group factor and q is the total number of gauge group factors (equal to
[n/2] or [n/2] + 1 depending on the case). In contrast, for arbitrary configura-
tions of symmetric representations, we find that the result does not factorize.
We consider the special case that the flavors are distributed uniformly among
the gauge groups and the Wilson loop is in the kith symmetric representation
for each gauge group satisfying the constraint that

ka
N

+
9
4
ca are independent of a,

where ca is defined to be 1 (or 2) when the ath gauge group is USp(2N)5 (or
SU(2N)). We then find

〈WSk1 ,...,Skq
〉 = exp

[
9π

√
2(8 −Nf )

n
3
2N

3
2

[(

1 +
4ktot

9nN

) 3
2

− 1

]]

, (1.10)

where we have introduced ktot =
∑q
i=1 ki. The qualitative difference between

symmetric and anti-symmetric representations arises in the matrix model from
the fact that anti-symmetric representations do not deform the background
eigenvalue distribution, while the symmetric representations do. In the sym-
metric case, this creates interactions among the eigenvalues and the problem
becomes much more involved, except in the case where all of the parameters
are distributed symmetrically.

5 By USp(2N) we mean the compact real form of Sp(2N).
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On the gravity side, the representations mentioned above, respectively,
correspond to
(1) fundamental strings
(2) D4-branes with k units of electric flux, wrapping AdS2 and an internal

S3

(3) D4-branes with k units of electric flux, wrapping AdS2 and the space-time
S3.

The latter two are the analogues of giant gravitons and dual giant gravitons.
Wilson loops in more general representations correspond to multiple such D4-
branes. For the case n > 1, the internal space has p independent 3-cycles along
with their Hodge dual 3-cycles. The general anti-symmetric representations
labeled by Ak1 , Ak2 , . . . , Akq

correspond to q D4-branes, where the ath D4-
brane has ka units of electric flux and wraps the ath 3-cycle. In the symmetric
case, we expect fractional D4-branes, i.e., D6-branes wrapping space-time S3

cycles and internal blown-up 2-cycles. The gravity description of these branes
are subtle since these cycles are of vanishing size, and possibly requires one
to take into account discrete holonomies of the B-field on these cycles. When
there are symmetries among the different eigenvalues, as discussed above, then
we have a simpler picture, where there is a single D4-brane wrapping the space-
time S3 cycle, with ktot units of electric flux. This explains the formula (1.10).

The paper is organized as follows. In Sect. 2, we discuss the derivation of
the CFT results. Section 3 contains the dual supergravity description. We con-
clude with comments and open problems in Sect. 4. We also include appendices
on technical material.

2. Gauge Theory Computations

Let us first discuss the supersymmetry preserved by the Wilson loops defined
in (1.1). In the conventions of [13], the SUSY variation, which is used for
localization, is given by δAμ = iεIJξIΓμλJ , δσ = −εIJξIλJ , where I, J = 1, 2
are SU(2) R-symmetry indices and ξI , λI are SU(2) Majorana spinors. The
SUSY variation of (1.1) vanishes if

εIJξI (Γmeμmẋμ + |ẋ|) = 0. (2.1)

When the Wilson loop wraps a great circle in S5, (2.1) is a projector equation
on ξI and projects out half of the supersymmetries, with 8 supersymmetries
remaining.6

In addition to the fermionic supersymmetries, the Wilson loop also pre-
serves the SU(2)R � Sp(2)R R-symmetry and breaks the space-time symme-
try to SO(1, 2)×SO(4), where the SO(1, 2) is the conformal group associated

6 To see this explicitly, we write the metric on the S5 as ds2
S5 =

[∑4
j=1

(∏j−1
k=1 sin2 βk

)
dβ2

j

]
+

(∏4
k=1 sin2 βk

)
dφ2 defining t ≡ ∏4

i=1 sin β0
i and taking the loop to be a great circle para-

metrized by φ with β0
i = constant (i = 1, . . . , 4), we have |ẋ| = t and (2.1) reduces to

εIJξI t (Γ5 ± 1) = 0. We have used the frame ei =
∏

j<i (sinβj) dβi (i = 1, . . . , 5) with

β5 ≡ φ, with the other components vanishing.
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with translations in φ and the SO(4) is the remaining unbroken rotation group
which leaves invariant the point where the Wilson loop resides in the transverse
space. These symmetries fit nicely into the supergroupD(2, 1; 2)×SU(2) which
has exactly 8 supersymmetries and is a subgroup of F (4) (see Table 2.7 in [21]).
The specific real forms we are interested in are F (4; 2) for Minkowski signature
and F (4; 3) for Euclidean signature with subgroupD(2, 1; 2; 1)×SU(2) for both
cases.7 Additionally, we note that in the non-orbifold case, the Wilson loops
also preserves an extra SU(2)M symmetry, under which the anti-symmetric
hypermultiplet transforms as a doublet. Thus the full symmetry preserved by
the half-BPS Wilson loops we consider in this paper is

D(2, 1; 2) × SU(2) × SU(2)M
⊃ SO(1, 2) × SO(4)space-time × SU(2)M × SU(2)R. (2.2)

The orbifold action will break the SU(2)M symmetry, however, the Wilson
line will remain neutral under this broken symmetry.8

Let us now move on to the S5 partition function. The perturbative parti-
tion function ZS5 of 5d N = 1 Yang–Mills theory coupled to matter hypermul-
tiplets on the 5-sphere S5 with radius r has been computed in [14,15] (see also
[12,13] for earlier works), building on the localization techniques developed in
[23,24] for 4d and 3d supersymmetric gauge theories. By perturbative we mean
that the computation does not take into account the instanton contribution to
ZS5 .9 The result is that the partition function ZS5 reduces to an integration
over the Cartan subalgebra of the gauge group, divided by the order of the
Weyl group |W|:

ZS5 =
1

|W|
∫

Cartan

dσ
(
. . .
)
. (2.3)

The integrand (the dots in 2.3) is a product of several contributions. The vector
multiplet gives a factor

e
− 4π3r

g2
Y M

TrF (σ2)
detAdj

(
sinh(πσ) e

1
2 f(iσ)

)
, (2.4)

a hypermultiplet in a representation R of the gauge group gives a factor

detR
(
cosh(πσ)

1
4 e− 1

4 f( 1
2 −iσ)− 1

4 f( 1
2+iσ)

)
, (2.5)

a Chern–Simons term with level k contributes a factor

e
πk
3 TrF (σ3). (2.6)

7 There is a discrepancy between Table 3.75 in [21] and [22]. The real forms F (4; 2) and
F (4; 3) are listed as having SL(2, R) subgroups in [21] while in [22], they are shown to have
SU(2) subgroups.
8 It is interesting to ask if we could consider a two-parameter deformation of the Wilson
line which preserves the same supersymmetry, but charged under SU(2)M symmetry and
SO(3) ⊂ SO(4)space-time symmetry, which are not contained in the D(2, 1; 2) ⊂ F (4).
9 See [15,25] for the instanton part.
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Here, gYM is the gauge coupling and TrR and detR are the trace and the deter-
minant in the representation R. The indices F and Adj refer to fundamental
and adjoint representations, respectively, and the function f(x) is defined by

f(x)=
iπx3

3
+x2 log(1−e2iπx)+ ix

π
Li2(e−2iπx)+

1
2π2

Li3(e−2iπx)− ζ(3)
2π2

.

(2.7)

We can also incorporate a 1
2 -BPS Wilson loop along the great circle of S5,

in the representation R of the gauge group. In the localization computation of
the partition function [14,15], the saddle point equations imply A = 0 and σ
constant,10 and hence the Wilson loop operator (1.1) reduces to an insertion
of the following exponential factor to the integrand of the matrix integral:

TrR
(
e2πσ

)
. (2.8)

The S5 partition function depends on the value of the gauge coupling
constant gYM, which induces a relevant deformation of the UV fixed point. To
discuss the UV fixed point, we consider the limit where such a deformation is
completely turned off:

g2
YM � r. (2.9)

Moreover, for the comparison with gravity we take the large N limit

N � 1, (2.10)

where N is the dimension of the Cartan subalgebra (number of integration
variables). In these limits the contributions from instantons and the contribu-

tion from the Yang–Mills kinetic term e
− 4π3r

g2
YM

TrF (σ2)
are subleading [11], and

hence will be neglected in the rest of the computations.11

After taking into account these considerations, we simplify the matrix
integral as

ZS5 =
1

|W|
∫

Cartan

dσ e−F (σ), (2.11)

where in the large |σ| limit we have

F (σ) = TrAdjFV (σ) +
∑

j

TrRj
FH(σ), (2.12)

with

FV (σ) =
π

6
|σ|3 − π|σ|, FH(σ) = −π

6
|σ|3 − π

8
|σ|. (2.13)

10 There are other saddle points with non-trivial profile of gauge fields, however, these
correspond to instanton contributions which does not change the leading large N analysis
in this paper.
11 Note that we are not taking the ’t Hooft limit; there will be no dependence on gYM for
the rest of the paper and we concentrate on the N dependence.
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2.1. Fundamental Representation

Let us first consider the theory with n = 1. This theory is 5d N = 1USp(2N)
gauge theory with, in addition to the vector multiplet, Nf hypermultiplets in
the fundamental representation and one hypermultiplet in the antisymmetric
representation. In this case the matrix integral is over N real parameters σj
(j = 1, . . . , N), parametrizing the Cartan as {σ1, . . . , σN ,−σ1,−σN}.

The weights of the fundamental representation of USp(2N) can be taken
to be ±ei, the ei forming a basis of unit vectors for R

N , the antisymmetric rep-
resentation then has weights ei± ej with i �= j, and the adjoint representation
has weights ei ± ej with i �= j as well as ±2ei.

We will evaluate the matrix integral in the saddle point approximation,
where, as we will justify later, the saddle point value of the eigenvalues is of
order O(N1/2). This means that in our large N approximation we can take
the large |σj | limit inside the function F (σ), and we have

F (σ)=
∑

i�=j

(
FV (σi−σj)+FV (σi+σj)+FH(σi−σj)+FH(σi+σj)

)

+
∑

j

(
FV (2σj)+FV (−2σj)+Nf FH(σj)+Nf FH(−σj)

)
. (2.14)

The Weyl group of USp(2N) is given by W = SN � Z
N
2 , and hence |W| =

N !2N .
The large N limit of the free energy FS5 = − log |ZS5 | in the saddle point

approximation of matrix models is given in [11]:

FS5 = − 9
√

2π
5
√

8 −Nf
N5/2 + O(N5/2). (2.15)

We will comment on the holographic computation of this formula in Sect. 3.4.
Here we study the fundamental 1

2 -BPS Wilson loop Wfund, whose VEV
in the limit r

g2Y M

 1 is given by

〈Wfund〉 =
1
ZS5

1
|W|

∫

dNσ
1

2N

⎡

⎣
N∑

j=1

(e2πσj + e−2πσj )

⎤

⎦ e−F (σ)

=
1
ZS5

1
|W|

∫

dNσ
1
N

⎡

⎣
N∑

j=1

e2πσj

⎤

⎦ e−F (σ). (2.16)

We are looking for the saddle point of this integral in the large N limit. We
will assume as in [11] that the saddle point is given by σ�j = Nαxj with the
saddle point variables xj of order O(N0). We also assume that the variables
xj at the saddle point condense into a continuous distribution, ρ(x), which is
smooth on an interval of finite length L and zero outside the interval. These
assumptions will be justified in the computation that follows.
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We can then replace the N variables by a continuous variable x with
density ρ(x):

ρ(x) =
1
N

N∑

j=1

δ(x− xi),
∫

dx ρ(x) = 1. (2.17)

In this limit the Wilson loop expectation value becomes

〈Wfund〉 =
1
ZS5

1
|W|

∫

Dρ

[∫

dx ρ(x) e2πN
αx

]

e−F [ρ,μ],

F [ρ, μ] = −9π
8
N2+α

∫

dxdy ρ(x)ρ(y)(|x− y| + |x+ y|)

+
π(8 −Nf )

3
N1+3α

∫

dx ρ(x)|x|3 + μ
(
1 −
∫

dx ρ(x)
)
. (2.18)

where we have added a Lagrange multiplier μ to impose the constraint∫
dx ρ(x) = 1. We have

∫
dx ρ(x)e2πN

αx ∼ O(e2πN
αL), which in the sad-

dle point approximation is subleading compared with other contributions in
F [ρ, μ]. The Wilson loop therefore does not affect the saddle point equations.

The saddle point equation reduces to

0=
δF [ρ]
δρ(x)

=−9π
4
N2+α

∫

dy ρ(y)(|x−y|+|x+y|)+ π(8−Nf )
3

N1+3α|x|3−μ.
(2.19)

Non-trivial solutions are obtained when the two terms are of the same order,
namely when α = 1

2 ; only in this case the mutual repulsion among the eigenval-
ues balances the attraction from the cubic potential, giving continuous eigen-
value distributions as assumed previously. In this case the two first terms in
F [ρ, μ] are both of order N5/2, which justifies a posteriori the assumption that
the Wilson loop factor does not affect the saddle point equation.

It is easy to realize that F [ρ] only depends on the even part of ρ (=
1
2 [ρ(x) + ρ(−x)]). So the integration over ρ can be reduced to the integration
over even ρ up to a factor coming out of the integration measure, which does
not affect the Wilson loop computation (because of the normalization of the
Wilson loop). Differentiating twice the equation (2.19) with respect to x, and
assuming an even distribution ρ, we get

ρ(x) =
|x|
x2

0

for − x0 < x < x0, x2
0 :=

9
2(8 −Nf )

, (2.20)

which satisfies the normalization condition (2.17). Plugging this back into the
expression (2.18) we get at leading order in N :

〈Wfund〉 =
exp(2πx0N

1/2)
2πx0N1/2

=

√
2(8 −Nf )
6πN1/2

exp

(
6πN1/2

√
2(8 −Nf )

)

, (2.21)
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which is the advertised result (1.2). It is rather simple to understand the
leading contribution: the Wilson loop contribution e2πσ is maximized when
the eigenvalues σ take the maximal possible value, which is N1/2x0.

2.2. Anti-Symmetric Representations

Let us next consider the kth anti-symmetric representation Ak of the USp(2N)
gauge group. The Wilson loop in representationAk is given in the matrix model
by

〈WAk
〉 =

1
ZS5

1
|W|

(
2N
k

)−1

×
∫

dNσ
∑

1≤j1<j2<···<jk≤2N

e2π(σ
′
j1

+σ′
j2

+···+σ′
jk

) e−F (σ),

where σ′
j = σj and σ′

N+j = −σj for j = 1, . . . , N .
In the sum σ′

j1
+ σ′

j2
+ · · · + σ′

jk
it is possible that some terms cancel

each other. In particular, this expression is invariant under exchanging k with
2N −k, so that 〈WAk

〉 = 〈WA2N−k
〉. Hence, we need only consider 1 ≤ k ≤ N .

Let us first consider the k-plets (j1, . . . , jk) (with k ≤ N) such that there
is no cancellation in σ′

j1
+ σ′

j2
+ · · · + σ′

jk
(which means all σj are different).

These terms contribute a factor
(
2N
k

)−1
Ik with

Ik =
1
ZS5

1
|W|

×
∫

dNσ
∑

ε1,...,εk=±1

∑

1≤j1<···<jk≤N
e2π(ε1σj1+ε2σj2+···+εkσjk) e−F (σ).

The symmetry of F implies that all terms in the sum over ε1, . . . , εk produce
the same contribution, so that

Ik =
1
ZS5

1
|W|2

k

(
N

k

)∫

dNσ e2π(σ1+σ2+···+σk) e−F (σ) (2.22)

Again we assume that the saddle point eigenvalues are distributed along an
interval of length of order Nα with σ�j = Nαxj .

We can again argue that the Wilson loop does not modify the saddle
point (2.20) in the large N limit; the Wilson loop operator contributes at
most a term of order N1+α to the saddle point equation and this is again
subleading compared to the term coming from F (Nαxj) with α = 1

2 . However,
this does not mean that the answer is k times the fundamental representation.
This is because we need to choose k distinct eigenvalues σ1, . . . , σk from the
eigenvalue distribution, and therefore we cannot always take the maximal value
σj = N1/2x0 when k is large.

The dominant contribution to the integral (2.22) comes from configu-
rations when the first k eigenvalues cover an interval [x0 cos θk, x0] at the
right end of the saddle point distribution ρ so that the factor e2π(σ1+σ2+···+σk)

attains maximum. Here, the angle θk ∈ [0, π/2] is chosen such that we indeed
have k eigenvalues in the interval:
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Figure 1. Insertion of a Wilson line in anti-symmetric rep-
resentation shifts part of the eigenvalues by a constant, or
equivalently an excitation of a “hole” in the eigenvalues

k = 2N

x0∫

x0 cos θk

ρ(x) dx = N sin2 θk. (2.23)

Intuitively, the Wilson line operator corresponds to a constant electric flux for
k of the eigenvalues, hence shifting the k eigenvalues and creating a “hole” in
the eigenvalue distribution (cf. [16]), see Fig. 1.

The maximal value for the ith eigenvalue σi is N1/2x0 cos θi, and hence
contributes e2πN

1/2x0 cos θi to the integral. We then evaluate (2.22) by summing
over these contributions:

Ik = 2k
(
N

k

)

exp

(
k∑

i=1

2πx0 cos θiN1/2

)

� 2k
(
N

k

)

exp

⎛

⎝

θk∫

0

dθk
∂k

∂θk
2πx0 cos θiN1/2

⎞

⎠ .

This gives

Ik = 2k
(
N

k

)

exp
[
4π
3
x0N

3/2
(
1 − cos3 θk

)
]

= 2k
(
N

k

)

exp

[
4π
3
x0N

3/2

(

1 −
(

1 − k

N

)3/2
)]

, (2.24)

where the prefactor 2k
(
N
k

)
gives only a subleading correction of order N to the

exponent.
Now we consider the terms in the sum over j1, . . . jk such that two σ′

j

cancel. These terms will contribute a factor
(
2N
k

)−1
(N − k+ 2)Ik−2. From the

previous explanation it follows that this contribution is suppressed, as com-
pared to the contribution

(
2N
k

)−1
Ik, by a factor of order e−2(2πN1/2x0 cos θk).12

Similarly, all the other terms left in the sum over j1, . . . , jk are also subleading.

12 When k → N we have cos θk → 0 and the contribution is not suppressed, however, it
leads to the same contribution as Ik and the sum over all the contributions reduce to the
same leading term in the exponent.
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Thus the leading contribution in the large N limit is
(
2N
k

)−1
Ik. Explicitly we

have

log 〈WAk
〉 =

4π
3
x0N

3/2

[

1 −
∣
∣
∣
∣1 − k

N

∣
∣
∣
∣

3/2
]

, (2.25)

which coincides with (1.3).13 This expression is valid for 1 ≤ k ≤ 2N , ensuring
〈WAk

〉 = 〈WA2N−k
〉. As a consistency check, when k 
 N we have

log 〈WAk
〉 ∼ k

(
2πN1/2x0

)
, (2.26)

which could be interpreted as the k times the fundamental string contribution
(2.21). Of course, this follows directly from the derivation presented above.

As explained in Appendix A, the anti-symmetric representation Ak
defined in introduction is a reducible representation, and in particular (when
1 ≤ k ≤ N) contains the irreducible representation defined by the Young
diagram with a single column with k boxes. The arguments similar to those
already explained in this subsection shows that the contributions from other
irreducible representations are exponentially suppressed, and the leading con-
tribution comes from this irreducible representation.

2.3. Symmetric Representations

Let us move onto the case of kth symmetric representation Sk of USp(2N).
We have

〈WSk
〉 =

1
ZS5

1
|W|

(
2N + k − 1

k

)−1

×
∫

dNσ
∑

1≤j1≤j2≤···≤jk≤2N

e2π(σ
′
j1

+σ′
j2

+···+σ′
jk

) e−F (σ). (2.27)

In the sum σ′
j1

+ σ′
j2

+ · · · + σ′
jk

some of the terms could cancel out from the
expression; however, these give only exponentially suppressed contributions,
by the reason already explained in the case of anti-symmetric representations.
If we neglect these contributions we have

1
ZS5

1
|W|

(
2N + k − 1

k

)−1

2k

×
∫

dNσ
∑

1≤j1≤j2≤···≤jk≤N
e2π(σj1+σj2+···+σjk) e−F (σ).

The summation here still contains several different terms. If we denote the
partition of k by μ = (μ1, . . . , μl),

∑
μi = k,14 then

∑

1≤j1≤j2≤···≤jk≤2N

e2π(σj1+σj2+···+σjk) =
∑

μ

(
e2π

∑
i μiσi + cyclic

)
. (2.28)

13 The subleading correction is of order N when k and N are of the same order.
14 Readers should not confuse this partition with a partition specifying a representation of
USp(2N). Rather, it actually corresponds to a symplectic semi-standard Young tableaux

in the language of Appendix A. Here, we have avoided use of such terminologies for the
minimality of the explanation.
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Figure 2. Insertion of a Wilson line in symmetric represen-
tation corresponds to exciting one of the eigenvalues to a large
value, or equivalently an excitation of a “particle” in the Fermi
sea

This contains many different contributions. For example, the contribution from
the partition μ = (1, . . . , 1) is the same as that from the anti-symmetric rep-
resentation (2.26), except for the overall factor of

(
2N+k−1

k

)−1
:

〈WSk
〉
∣
∣
∣
μ=(1,...,1)

=
(

2N + k − 1
k

)−1(2N
k

)

〈WAk
〉. (2.29)

This is not the only contribution, however. On the other extreme, there
is a contribution from μ = (k), i.e.,

〈WSk
〉
∣
∣
∣
μ=(k)

=
1
ZS5

1
|W|

(
2N + k − 1

k

)−1

2kN
∫

dNσ e2πkσ1 e−F (σ).

(2.30)

This is the contribution from the “large winding Wilson loop”.
Let us evaluate this contribution. We can replace all the σi by the con-

tinuum distribution determined by (2.20), except for σ1. Since there is a the
factor of k multiplying σ1 and since k can be large, the Wilson line does affect
the saddle point for σ1. This happens when k is of order N or larger; the lead-
ing contribution of free energy is of order N5/2, however they cancel out when
we compute the Wilson loops (due to the normalization factor ZS5), and the
subleading contribution of order N3/2 becomes comparable with the Wilson
loop contribution of order kN1/2, when k is of order N . Intuitively, the eigen-
value σ1 moves inside the effective potential created by the other background
eigenvalues, and can be regarded as a “particle” in the eigenvalue distribution
(Fig. 2).

We now have

(
2N + k − 1

k

)−1

2kN
∫

dσ1 exp [−Feff(σ1; k)]∫
dσ1 exp [−Feff(σ1; k = 0)]

, (2.31)
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with

Feff(σ1; k) = −2πkσ1 + 2 [FV (2σ1) +NfFH(σ1)]

+2N
∫

dy ρ(y)
[
FV

(
σ1 −N

1
2 y
)

+ FV

(
σ1 +N

1
2 y
)

+FH
(
σ1 −N

1
2 y
)

+ FV

(
σ1 +N

1
2 y
)]
, (2.32)

where the factors 2 comes is due to the property FV,H(−σ) = FV,H(σ). We will
evaluate the integral (2.31) by the saddle point approximation with respect to
x1 := x−1

0 N−1/2σ1. We assume that the saddle point is given by x1,∗ > 1.
This will be justified a posteriori by the result of our computation. Under this
assumption we have

Feff(x1; k) � πx0N
3/2

[

−x1

(

2
k

N
+

9
2

)

+
3
2
x3

1

]

, (2.33)

where we used
∫

dy ρ(y)
[
FV

(
σ1 −N

1
2 y
)

+ FV

(
σ1 +N

1
2 y
)]

= 2
[
π

6

(
N

1
2x0

)3
(

x3
1 +

3
2
x1

)

− π
(
N

1
2x0

)
x1

]

,

∫

dy ρ(y)
[
FH

(
σ1 −N

1
2 y
)

+ FH

(
σ1 +N

1
2 y
)]

= 2
[

−π

6

(
N

1
2x0

)3
(

x3
1 +

3
2
x1

)

− π

8

(
N

1
2x0

)
x1

]

.

(2.34)

This is extremized by

x1,∗ =

√
4k
9N

+ 1, (2.35)

which justifies our previous assumption. Note that the eigenvalue σ1,∗ =
N1/2x0x1,∗ is outside the range occupied by other eigenvalues (Fig. 2).

At the saddle point we have the contribution to the free energy

log〈WSk
〉
∣
∣
∣
μ=(k)

= − (Feff(σ1,∗; k) − Feff(σ1,∗; k = 0))

=
9π

√
2(8 −Nf )

N3/2

[(

1 +
4k
9N

)3/2

− 1

]

. (2.36)

In general, there are many contributions from various different choices
of μ, and we need to take all of them into account. For example, when k is
small all of them has the same leading contribution, with μ = (1, . . . , 1) having
the largest subleading correction due to the largest multiplicity

(
N
k

)
. However,

when k is large, of order N or larger, we can verify from the expressions above
that the contribution from μ = (k) dominates.
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Some readers might worry about contributions from other μ, say μ =
(k− 1, 1). However when k is large this is suppressed by an exponential factor
(cf. [26]):15

exp

[

− ∂

∂k

9π
√

2(8 −Nf )
N

3
2

[(

1 +
4k
9N

) 3
2

− 1

]]

= exp

[

− 6π
√

2(8 −Nf )
N

1
2

√

1 +
4k
9N

]

. (2.37)

Similarly, we can check that contributions from other μ are likewise exponen-
tially suppressed.

Therefore, we finally have

log〈WSk
〉 = log〈WSk

〉
∣
∣
∣
μ=(k)

=
9π

√
2(8 −Nf )

N3/2

[(

1 +
4k
9N

)3/2

− 1

]

,

(2.38)

as claimed in (1.4). Let us note that

log〈WSk
〉

log〈Wfund〉 =
3N
2

[(

1 +
4k
9N

)3/2

− 1

]

. (2.39)

For k 
 N , this reduces to
log〈WSk

〉
log〈Wfund〉 = k, (2.40)

as expected.

2.4. General Representations

We can consider more general representations (see Appendix A for represen-
tation theory of USp(2N)). An irreducible representation of USp(2N) can
be labeled by a Young diagram with at most N rows. We can label the
representation by a partition k = (k1, . . . , km), or its dual (transpose) by
kT =: l = (l1, . . . , lk1). The main question we want to answer is when does
the Wilson line expectation value factorize into a product of symmetric or
anti-symmetric contributions?

The Wilson line operator in representation R corresponds to an insertion
of

sp(k1,...,km)

(
e2πσ1 , . . . , e2πσN

)
, (2.41)

where spk is the symplectic character for representation, introduced in Appen-
dix A.

Let us first consider the representation described by k = (k1, . . . , km).
We assume that m is a finite number which stays constant when N grows
large. However, there are no restrictions on the size of the ka’s, and they
can grow with some power of N . The symplectic character spλ(x) is a sum of

15 The presence of this factor ensures that our Wilson loop is not simply the multiple wound
string, but a loop in the symmetric representation.
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Figure 3. Wilson lines in general representations can be
described either as the excitation of several non-interacting
particles above the Fermi sea (left) or the excitation of non-
interacting holes (right). The two descriptions correspond to
a Young diagram and its dual, i.e., taking the transpose could
be thought as a Bogoliubov-like transformation

terms labeled by symplectic semistandard Young tableaux (A.3). By arguments
similar to the previous subsections, we can argue that the leading contribution
comes from the tableaux

1 1 1 1 1 • • 1
2 2 2 2 • • 2
3 3 • • 3
• •
• •
mm .

This corresponds to an insertion of

e2π
∑

a kaσa

into the integrand of the matrix model. Again, there are multiplicities associ-
ated to this factor which do not alter the leading contribution and hence will be
neglected for the rest of the computation. When all the ka are large (of order
N or larger), this factor excites N eigenvalues σ1, . . . , σm out of the Fermi
sea and we can then write down the effective matrix model for σ1, . . . , σm.
Note that interactions among σas are subleading of order N

1
2 , hence at this

order the eigenvalues behave independently; the excitations from the Fermi
sea behave as non-interacting particles in the leading order (Fig. 3). Within
these approximations, the Wilson line evaluates to

log 〈W(k1,...,km)〉 =
9π

√
2(8 −Nf )

N3/2
m∑

a=1

[(

1 +
4ka
9N

)3/2

− 1

]

. (2.42)

We can also consider a similar situation, where this time the transpose
of the Young diagram, l := kT takes the form l = (l1, . . . , lm) with m a finite
number. Note that we have la ≤ N , however, la can still be of order N . In the
symplectic character spλ(x), the leading contribution in this case comes from
the tableaux
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1 1 1 • • 1
2 2 2 • • lm
3 3 •
4 • •
5 • l3
• l2
•
l1 .

From the ath column, there is a contribution of the form
∑

j1<j2<···<jla
e2π(σj1+σj2+···+σjla

),

which contributes a leading contribution which coincides with that from the
lath anti-symmetric representation Ala . Summing up these contributions over
a, we find

log 〈W(l1,...,lm)T 〉 =
4π

2
√

8 −Nf
N3/2

m∑

a=1

[(

1 − ka
N

)2/3

− 1

]

. (2.43)

This again takes a factorized form, and has an interpretation as excitation
of non-interacting holes inside the Fermi sea (Fig. 3). Note that factorization
breaks down in the subleading order since the multiplicity of the leading con-
tribution, which contributes to the subleading correction, is affected by the
presence of the neighboring columns.

We thus find that for a general representation, the Wilson line expectation
value factorizes into either symmetric or anti-symmetric contributions only
when either the ki or m, but not both, scale with some power of N .

In the gravity dual discussed in the next section, the two descriptions,
particles or holes, correspond to16

(1) multiple D4-branes wrapping AdS2 and space-time S3,
(2) multiple D4-branes wrapping AdS2 and internal S3.

Such an identification of a Wilson line with multiple D4-branes naturally
matches the factorization found above in gauge theories. However, we should
keep in mind that the factorization is far from trivial; the factorization holds
only for limited representations and there are subleading corrections which
lift the factorization. In the dual gravitational theory, this can be understood
as a break down of the probe approximation. Here, the CFT analysis gives a
quantitative prediction for when the probe approximation breaks down. Addi-
tionally, the factorization does not hold for the quiver theories discussed in
the next subsection.

16 The related discussion for circular Wilson loops for 4d N = 4 theory can be found in
[18], where combinatorial formulas, Giambelli’s formula and Jacobi–Trudi formula, played
crucial roles. Analogous formulas are known for symplectic groups.
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(a)

(b)

(c)

Figure 4. Description of the different 5d N = 1 quiver
gauge theories, without mention of the fundamental hyper-
multiplets. The nodes symbolize either SU(2N) or USp(2N)
vector multiplets. Solid lines between two nodes symbolize
bifundamental hypermultiplets and a box with an A denotes a
hypermultiplet transforming in the antisymmetric representa-
tion of the node to which it is linked. a n = 2p+1 case. There
are pSU(2N) nodes. b n = 2p with vector structure. There
are p − 1SU(2N) nodes in total. c n = 2p without vector
structure. There are pSU(2N) nodes in total

2.5. Quiver Theories

In [11], more general quiver-type gauge theories were considered depending
on an integer n. The gauge group is G = USp(2N) × SU(2N)p for n =
2p+ 1 and G = USp(2N) × SU(2N)p−1 × USp(2N) or SU(2N)p for n = 2p.
The matter content is given by a bifundamental hypermultiplet in each pair
of adjacent gauge groups, one antisymmetric hypermultiplet in each external
SU(2N) (gauge factor at the beginning or the end of the line quiver picture)
and Na

f fundamental hypermultiplets in the ath gauge group factor, with Nf =
∑
aN

a
f . The quiver gauge theories are summarized in Fig. 4.
The saddle point of the corresponding matrix model has been analyzed

in [11]. They assume that all the eigenvalues scale as Nα, just as in n = 1.
The integrand of the matrix model contain terms of order N2+3α, which is
extremized by the ansatz

σ
′(a)
i = σ′

i (a = 1, . . . , p),

σ′
i = −σ′

N+i (i = 1, . . . , N, a = 1, . . . , p).
(2.44)

However, the extremal value of N2+3α term vanishes under (2.44), and we
need to discuss subleading terms, which are given by
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F [ρ] = −9π
8
nN2+α

∫

dxdy ρ(x)ρ(y)(|x− y| + |x+ y|)

+
π(8 −Nf )

3
N1+3α

∫

dx ρ(x)|x|3, (2.45)

which is identical to the leading free energy for the USp(2N) theory, up to a
factor of n. This means that we again have α = 1/2, and that at the saddle
point the matrix model is the same as the matrix model of USp(2N)n gauge
group without bifundamentals [11].17

We can compute the VEV of Wilson loops in these theories. For the ath
gauge group (either USp(2N) or SU(2N)) we could turn on a Wilson line in
representation Ra, and compute its expectation values 〈WR1,R2,...,Rq

〉. Here,
we take Ra to be either a anti-symmetric representation Aka

or a symmetric
representation Ska

, and q is the total number of gauge groups, i.e., q = p+ 1
for n = 2p+ 1 and q = p or q = p+ 1 for n = 2p.

The computation is straightforward as long as the saddle point is unaf-
fected. This is the case, for example, when there is a Wilson line on a single
gauge group, which gives (1.2)–(1.4). Similarly, when all the representation are
anti-symmetric we have the leading contribution

〈WAk1 ,Ak2 ,...,Akq
〉 = exp

[

4π

√
nN

2(8 −Nf )
N

q∑

a=1

(

1 −
∣
∣
∣
∣1 − ka

N

∣
∣
∣
∣

3/2
)]

.

(2.46)

The result (2.46) is simply a product of contributions from the Wilson loops
located at each gauge node. We will come back to the holographic interpreta-
tion of this result later.

The case with symmetric representations, however, is more subtle. Let us
consider 〈WSk1 ,Sk2 ,...,Skq

〉, for example. By the same logic as in Sect. 2.3, we
find that the dominant contribution is from the large winding Wilson loops.
This means that the matrix model reduces to an integral over the eigenvalues
σ

(a)
1 , while all other eigenvalues can be replaced by the smooth eigenvalue

distribution. The resulting effective matrix model is similar to (2.31); however,
this time σ(a)

1 with different values of a interacts among themselves, and a
careful analysis is required. In other words, for the n > 1 case there are several
different species of particle-like excitations above the Fermi sea, and there are
non-trivial interactions between them (Fig. 5).

Since the general case is notationally involved, let us first study the sim-
plest non-trivial case of n = 2 with gauge groups USp(2N) × USp(2N). We
parametrize the Cartan of the two gauge groups by ρi, σi with i = 1, . . . , N .

17 In the discussion above we have assumed that n is small. However, it is also possible to take
n large, for example n = n′Nβ with n′ finite. In this case, the leading contribution is of order
nN7/2, which vanish under (2.44). However, in the next order (2.45) gives α = (1 + β)/2,

and hence the free energy scales as O(nN5/2) = O(N(5+3β)/2).



608 B. Assel et al. Ann. Henri Poincaré

Figure 5. Wilson lines in symmetric representations for the
quiver theories (n > 1) can be described by excitations of
interacting particles above the Fermi sea. The size of the Fermi
sea scales as

√
n. There are several different types of particle

species, corresponding to different nodes of the quiver. In this
figure the different particle species are represented by different
types of dots

In this case, the integrand of the matrix model is e−F [ρ,σ] with

F [ρ, σ] =
∑

i�=j
[FV (ρi + ρj) + FV (ρi − ρj) + FV (σi + σj) + FV (σi − σj)]

+2
∑

i

[FV (2ρi) + FV (2σi)] + 2
∑

i,j

[FH(ρi + σj) + FH(ρi − σj)]

+2
∑

i

[
N

(1)
f FH(ρi) +N

(2)
f FH(σi)

]
. (2.47)

The leading contribution to the symmetric Wilson loop 〈WSk,Sl
〉 comes from

large winding modes, contributing e2π(kρ1+lσ2) to the matrix model. This is
justified by arguments similar to the n = 1 case. By replacing ρi, σi, (i ≥ 2)
with smooth eigenvalue distribution, we have an effective matrix model

〈WSk,Sl
〉 =

∫
dσ1 exp [−Feff(ρ1, σ1; k, l)]∫
dσ1 exp [−Feff(ρ1, σ1; 0, 0)]

, (2.48)

where we neglected the multiplicity factors which does not affect the leading
behavior, and defined

Feff(ρ1, σ1; k, l) = −2πkρ1 − 2πlσ1 + 2 [FH(ρ1 + σ1) + FH(ρ1 − σ1)]

+2 [FV (2ρ1) + FV (2σ1)] + 2
[
N

(1)
f FH(ρ1) +N

(2)
f FH(σ1)

]

+2N
∫

dy ρ(y)
(
FV

(
ρ1 +N

1
2 y
)

+ FV

(
ρ1 −N

1
2 y
)

+FV
(
σ1 +N

1
2 y
)

+ FV

(
σ1 −N

1
2 y
))
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+2N
∫

dy ρ(y)
(
FH(ρ1 +N

1
2 y) + FH

(
ρ1 −N

1
2 y
)

+FH
(
σ1 +N

1
2 y
)

+ FH

(
σ1 −N

1
2 y
))

. (2.49)

This contains terms of order kN
1
2 and N

3
2 and lower; terms of order N

5
2 cancel

between FV and FH . Dropping terms of order N
1
2 , we obtain

Feff(x1, x2; k, l) = πx0N
3
2

[

− x1

(

2
k

N
+

9
2

)

− x2

(

2
l

N
+

9
2

)

+
1
3
x2

0

(
8 −N

(1)
f

)
x3

1 +
1
3
x2

0

(
8 −N

(2)
f

)
x3

2

−1
3
x2

0

(|x1 + x2|3 + |x1 − x2|3
)
]

, (2.50)

where we defined x1 = N−1/2x−1
0 σ1, x2 = N−1/2x−1

0 ρ1 and we assumed
x1, x2 > 0.

Carrying the same analysis for arbitrary even n = 2p with symmetric
representation orders (k1, k2, . . . , kp+1) (still considering the case with vector
structure) leads to the generalization of (2.50)

Feff(xa; ka) = πx0N
3
2

[
p+1∑

a=1

(
− xa

(

2
ka
N

+
9
2
ca

)

+
1
3
x2

0

(
8 −N

(a)
f

)
x3
a

)

−
p∑

a=1

1
3
x2

0

(
|xa − xa+1|3 + |xa + xa+1|3

)
]

, (2.51)

where ca = 1 (ca = 2) when the ath gauge group is USp(2N) (SU(2N)).
Let us here assume that flavors are distributed evenly, i.e., N (a)

f are the
same for all a. Let us moreover assume that ka/N + (9/4)ca are the same for
all a; when ka � N this simplify means that ka’s are the same for all a. Then
by symmetry considerations it is easy to see that there are saddle points at
the locus xa = x1 for all a. This ansatz kills almost all the cubic terms and we
are left with

Feff(x1; ka) = πx0N
3
2

[

− x1

(

2
∑p+1
a=1 ka
N

+
9
2
n

)

+
1
3
x2

0

(

8 −
p+1∑

a=1

N
(a)
f

)

x3
1

]

,

(2.52)

where we used the relation
∑p+1
a=1 ca = n. With ktot :=

∑p+1
a=1 ka, Nf =

∑p+1
a=1N

(a)
f and the rescaling x1 = n1/2x̃1, we obtain

Feff(x̃1; ktot) = πx0n
3
2N

3
2

[

−x̃1

(

2
ktot

nN
+

9
2

)

+
3
2
x̃3

1

]

. (2.53)

This brings us back to the non-orbifold case (2.33) with a n3/2 prefactor and
the replacement k → ktot/n.
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We thus obtain in the end

〈WS1,...,Sq
〉 = exp

[
9π

√
2(8 −Nf )

n
3
2N

3
2

[(

1 +
4ktot

9nN

) 3
2

− 1

]]

. (2.54)

As we will see in Sect. 3.3, this result matches with the holographic computa-
tion.

The same analysis can be done for odd n and even n without vector
structure and it leads, under the same assumptions, to the same result (2.54).

The more general cases, when the ka/N + (9/4)ca are different and the
numbers of flavor N (a)

f in each node are different, are more involved. The xa at
the saddle point are no longer equal. In this case, a match with gravity compu-
tations would require a more complete description of the type IIA background,
for example, by including discrete holonomies of the B-field on the 2-cycles of
the geometry and restoring the dependence on the N (a)

f parameters.

3. Holographic Computations

In this section, we reproduce the same results from the holographic computa-
tion in the dual massive IIA supergravity background [7,8] (see also [27] for
uniqueness). First we review the solution. The metric is given by

ds2 =
L2

(sinα)
1
3

[

ds2AdS6
+

4
9

(
dα2 + cos2 α ds2S3/Zn

)]

, (3.1)

where α ranges as α ∈ (0, π/2]. The orbifold is realized by writing the S3

metric as

ds2S3/Zn
=

1
4
[
dθ21 + sin2 θ1dθ22 + (dθ3 − cos θ1dθ2)2

]
, (3.2)

and taking the angles to range as θ1 ∈ [0, π), θ2 ∈ [0, 2π) and θ3 ∈ [0, 4π/n).
The AdS radius L is related to the integer parameters n,N,Nf by

L4

l4s
=

18π2nN

8 −Nf
. (3.3)

The dilaton φ, and Roman’s mass F0, are given by

e−2φ =
3(8 −Nf )

3
2 (nN)

1
2

2
3
2π

sin
5
3 α, F(0) =

8 −Nf
2πls

. (3.4)

Note that the dilaton diverges at α = 0. Near this region the curvature also
diverges, and the supergravity approximation breaks down.

There is also a 6-form flux corresponding to the presence of D4-branes

F(6) = −45πnNL2l3s ωAdS6 , (3.5)

where ωAdS6 is the unit volume form on AdS6. The number of D4-branes this
flux corresponds to can be computed as follows. First, we compute F(4) = ∗F(6)

F(4) = 45πnNl3s

(
2
3

)4 (
sin

1
3 α cos3 α

)
dα ∧ ωS3/Zn

, (3.6)



Vol. 15 (2014) Wilson Loops in 5d N = 1 SCFTs and AdS/CFT 611

where ωS3/Zn
= (sin(θ1)/8)dθ1 ∧ dθ2 ∧ dθ3. Integrating to get the charge, we

have

QD4 =
1

2κ2

∫

F(4) = T4N, (3.7)

where we have used 2κ2 = (2π)7l8s and the D4-brane tension is T4 =
1/[(2π)4l5s ]. To help with computations, we introduce the notations

e−2φ0 :=
3(8 −Nf )

3
2 (nN)

1
2

2
3
2π

, Q4 := 45πnNl3s

(
2
3

)4

, Q6 := −45πnNL2l3s .

(3.8)

This solution preserves 16 supersymmetries. As discussed in Appendix C,
the ten-dimensional supersymmetry parameter can be decomposed into a basis
of Killing spinors as follows

ε =
∑

η=±
χ̃(2)
η ⊗ χ̃(3)

η ⊗ ζ̃η,−η ⊗ ζ+,+ ⊗ χ
(3)
+ , (3.9)

where χ̃(2)
η is a Killing spinor on AdS2, χ̃

(3)
η is a Killing spinor on S3 and χ(3)

+

is a Killing spinor on S3. The remaining components ζη,−η and ζ+,+ satisfy
the projection conditions

ζ+,+ =
[
cos(α)σ2 + sin(α)σ1

]
ζ+,+,

ζ̃η,−η = η
[
iσ2 sinh(x) + σ1 cosh(x)

]
ζ̃η,−η.

(3.10)

Additionally, each Killing spinor and ζη,−η and ζ+,+ satisfy reality conditions.
Note that the combination χ

(6)
+ =

∑
η=± χ̃

(2)
η ⊗ χ̃

(3)
η ⊗ ζ̃η,−η yields a Killing

spinor on AdS6. Counting degrees of freedom, we have 8 × 2 = 16 parameters.
The 2 comes from χ

(3)
+ while the 8 comes from χ

(6)
+ .

The gravitational dual of the Wilson loop (1.1) in the fundamental rep-
resentation is the fundamental string [1,2]. However, when we consider gen-
eral anti-symmetric or symmetric representations, the fundamental string is
replaced by D-branes (for the similar case of D3-branes see [16,18,28]). There
are two possibilities:

(1) D4-branes wrapping AdS2 and an internal S3,
(2) D4-branes wrapping AdS2 and the space-time S3.

Roughly, they respectively correspond to anti-symmetric and symmetric repre-
sentations. To be more precise, they should be dual to irreducible representa-
tions. For USp(2N) groups the anti-symmetric representations are reducible,
as discussed in Appendix A, and the D4-branes are dual to the largest irre-
ducible component of the anti-symmetric representations. The corresponding
flat space brane configuration is given in Table 1.
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Table 1. Supersymmetric brane configurations

0 1 2 3 4 5 6 7 8 9

O8−/D8 X X X X X X X X X
D4 X X X X X
F1 X X
D4antisymm X X X X X
D4symm X X X X X

The two types of D4-branes, D4symm and D4antisymm, preserve the same 1
2
-BPS

supersymmetry as preserved by the fundamental string

This identification can be motivated as follows. First, these two D4-branes
are the only branes which preserve the same 1

2 -BPS supersymmetry as pre-
served by the fundamental string (Table 1).18 Secondly, if we consider funda-
mental strings stretched between the background stack of branes and the stack
of D4-branes in case (1), we find the number of Dirichlet–Neumann directions
is 8. This means the zero energy ground state of such strings is in the R sector
in the NSR formalism. This behaves as a fermion and hence anti-symmetrizes
the Chan–Paton indices, so that the fundamental strings are naturally anti-
symmetrized. Similarly, for case (2) the ground state is in the NS sector, and
correspondingly we end up with symmetric representations.

Let us comment more on the orbifold case n > 1. The orbifold Zn does not
have a fixed point on S3/Zn, however, it does have a fixed point on the 4d space
spanned by α, θ1, θ2, θ3. Locally near α = π

2 , we have an orbifold singularity of
the form C

2/Zn. Correspondingly, the geometry contains additional 2-cycles
associated to the twisted sectors. The (probe) D-branes wrapping different
2-cycles will correspond to Wilson loops in representations of different gauge
nodes in the quiver theory.

As detailed in [7] the various 2-cycles can be seen in the resolved geome-
try where the Zn orbifold is blown up to a n-centered ALE space. The orbifold
corresponds to the limit when all centers merge to the same point. More pre-
cisely in our IIA geometry, there are n− 1 vanishing 2-cycles Σi wrapping the
coordinates θ1, θ2 at the orbifold singularity α = π/2 and n− 1 dual 2-cycles
Σ̃i wrapping the coordinates α, θ3 (Fig. 6). However, not all of these cycles
are independent; the orientifold projection maps the ith twisted sector with
the (n − i)th twisted sector, this implies that the Σi (Σ̃i) should be iden-
tify with Σn−i(Σ̃n−i). The branes wrapping these cycles have the following
interpretation.

Wilson loops in (the largest irreducible component of) the anti-symmetric
representations of one of the quiver nodes are dual to D4-branes wrapping
an AdS2 × S̃3

i , with the 3-sphere S̃3
i = S̃1

i × S2, where S2 is the 2-sphere

18 In general, the branes impose projections on the supersymmetry parameters. For each

brane we introduce, there is a quantity δi which imposes the constraint δiε = ε. Generically
the δi are traceless matrices with eigenvalues ±1. In order for the projection operators to
be compatible, the δi must commute. The explicit δi for the above branes are given by
δO8−/D8 = Γ9Γ�, δD4 = δD4symm = Γ56789Γ�, δD4antisymm = Γ12349Γ�.
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Figure 6. Vanishing 2-cycles Σi at the pole of the semi-S4

and dual 2-cycles Σ̃i (1 ≤ i ≤ n− 1) spanned by coordinates
α and θ1 (S1 transverse to the picture)

parametrized by θ1, θ2 and S̃1
i is the circle in Σ̃i parametrized by θ3 (Fig. 7).

To support this picture, we match the number of D4-brane embeddings to
the number of Wilson loops as follows. When n is odd, there are [n/2] such
additional S̃3

i cycles. The D4-branes wrapping these cycles correspond to anti-
symmetric representations of the SU(2N) gauge groups, while the D4-brane
wrapping the original cycle corresponds to a representation of USp(2N). When
n is even, there is a cycle which is mapped into itself under the orientifold
projection. There are then two cases to consider. In either case, there are
[n/2] − 1 S̃3

i cycles which the D4-branes can wrap yielding anti-symmetric
representations of SU(2N) gauge groups. In the case with vector structure,
the D4-branes wrapping the remaining S̃3

[n/2] cycle and the original cycle yield
representations of the two remaining USp(2N) gauge groups. Finally in the
case without vector structure, the D4-branes wrapping the remaining S̃3

[n/2]

cycle and the original cycle must combine to yield representations of SU(2N).
For Wilson loops in symmetric representations of one of the gauge factors,

the holographic dual is a D4-brane wrapping the space-time AdS2 × S3 and
sitting at the point α = π/2 in internal space (Fig. 7). To obtain such a
configuration, we can either have a true D4-brane sitting at α = π/2 or D6-
branes with the same space-time embedding wrapped on the vanishing two-
cycle Σi at α = π/2.19

When we have Wilson loops in non-trivial representations for several
gauge groups, we might expect the dual to be described by several D-branes
wrapping distinct cycles. For anti-symmetric representations, we have several
D4-branes parallel to each other at different values of α (see Fig. 8), and this

19 This is analogous to the fractional D4-branes that are D6-branes wrapped on Σi and
which increase the rank of the corresponding gauge factor in the quiver theory. However, to
determine the gravity duals of quivers with factors of different ranks, one should take into
account the backreaction of the fractional D4-branes.
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Figure 7. D4-branes embeddings in the internal space for
symmetric and antisymmetric cases. The D4antisymm-brane
wraps the fibered S2 (θ1, θ2) in red and the S1 (θ3) trans-
verse to the picture

Figure 8. General antisymmetric representations for Wilson
loops correspond to having D4-branes of different type (wrap-
ping different cycles) at different positions in internal space.
Note that each line wraps a different S̃1

i cycle

picture is naturally realized in the CFT result (1.9). For symmetric represen-
tations, we have seen that the factorization does not hold. This unexpected
result could be related to the fact that the D4-branes corresponding to symmet-
ric representations are really fractional D6-branes wrapping different 2-cycles
whose size is vanishing in the orbifold limit. In this case, there are additional
contributions one might have to take into account, for example, from discrete
holonomies of the B-field on these 2-cycles. Additionally, one needs to be able
to account for the N (i)

f dependence appearing in the quiver gauge theories.
In the rest of this section, we compute the worldsheet action of the single

fundamental string and the world-volume actions of D4-branes in the anti-
symmetric and symmetric embeddings. We find perfect agreement with the
matrix model computations of the previous section. For completeness, we also
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evaluate the IIA action on the supergravity solution and match it with the
free energy computation on the 5-sphere.

3.1. Fundamental Representation

The Wilson loops preserve the bosonic symmetry SO(1, 2)×SO(4)×SU(2)R×
SU(2)M , when n = 1 (Sect. 2). We will therefore choose coordinates on AdS6,
which make this symmetry manifest

ds2AdS6
= cosh2(x)ds2AdS2

+ sinh2(x)ds2S3 + dx2, (3.11)

where for the symmetric spaces, we choose the coordinates (see Appendix B)

ds2AdS2
=

1
sinh2 ρ

(dρ2 − dψ2),

ds2S3 = dφ2
1 + sin2(φ1)dφ2

2 + sin2(φ1) sin2(φ2)dφ2
3.

(3.12)

When n > 1, the Wilson loops are not charged under the broken SU(2)M sym-
metry and the brane embeddings for the n = 1 case map, in straightforward
way, to brane embeddings in the n > 1 case. In the following we will allow for
general values of n.

We first consider a fundamental string with world-volume coordinates
ξi with i = 0, 1. We take the fundamental string to wrap the AdS2 slice. In
order to preserve the SO(4) × SU(2)R × SU(2)M symmetry, the string must
sit at locations where the two S3s vanish, namely at x = 0 and α = π/2. One
can check that this choice is in fact an extremum of the Nambu-Goto action.
Denoting the induced metric as Gij , the on-shell action is given by

SF1 =− 1
2πl2s

∫

dξi
√

−det(Gij)=− 3
√

2nN
2
√

8−Nf

∫

dρdψ
1

sinh2(ρ)
. (3.13)

This answer is divergent even after taking ψ to be compact. To get a finite
answer, we compute the Legendre transformed action.20 The reason for the
Legendre transform is that the dual of a supersymmetric Wilson loop is a
fundamental string which satisfies Dirichlet boundary conditions parallel to the
boundary and Neumann boundary conditions perpendicular to the boundary
[29]. For our simple string, we take ξ0 = ψ and keep ξ1 arbitrary. The profile
of the string is then given by z = ξ1 and the Legendre transformed action is
given by

AF1 = SF1 −
∫

dψ
(

z
∂SF1

∂(∂ξ1z)

) ∣∣
∣
∣
∣
z=0

=
3
√

2nN
2
√

8 −Nf
(2πRψ), (3.14)

where we have taken the ψ direction to be compact with periodicity ψ =
ψ+2πRψ. Going to the Euclidean, we set Rψ = 1, as discussed in Appendix B.
We then arrive at the advertised result (1.2) for n = 1 and (1.8) for n > 1.

Next, we check the supersymmetry of the embedding. The projection
corresponding to the fundamental string is given by

20 Alternatively, one can use holographic renormalization, including counter-terms, to arrive
at the same result.
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ε = ±Γ01Γ�ε = ±Γ23456789ε, (3.15)

where one chooses a definite sign. Using our conventions given in Appendix C
we have

Γ23456789 = 14 ⊗ σ1 ⊗ σ1 ⊗ 12. (3.16)

This is compatible with the projections (3.10) on ζ+,+ and ζ̃η,−η provided
x = 0, α = π/2 and η = ±1, where the sign choice is correlated with the
choice in (3.15). The restriction of η to a definite sign reduces the number of
supersymmetries by half.

3.2. Anti-Symmetric Representations

We consider a D4-brane with world-volume coordinates ξi with i = 0, . . . , 4.
We take the D4-brane to wrap the internal S3 and the AdS2 slice. In this case
we can make the identification

ξ0 = ψ, ξ1 = ρ, ξ2 = θ1, ξ3 = θ2, ξ4 = θ3. (3.17)

We take a world-volume flux proportional to the AdS2 volume

F = qL2 cosh2(x)

sin
1
3 (α) sinh2(ρ)

dρ ∧ dψ, (3.18)

where q is an arbitrary coefficient, which can depend on both α and x. It will
be necessary to have an explicit expression for C(3)

C(3) = Q4
3
40

sin
1
3 (α)[7 sin(α) + sin(3α)]ωS3/Zn

−Q4
18
40
ωS3/Zn

. (3.19)

Note that the choice of C(3) is not unique and in particular one can make large
gauge transformations which are proportional to the unit volume form on the
S3/Zn. However, we note that the S3/Zn is a vanishing cycle at α = 0. In
order for C(3) to be regular, we should then require C(3) to vanish at α = 0,
which then fixes the gauge freedom as above.

In order to preserve the symmetry of the space-time S3, the D4-brane
must sit at x = 0. It is then consistent to take the remaining embedding
coordinates, namely α, to be constant. One can check that this satisfies the
general equations derived in [30]. Introducing the induced metric Gij and the
pullback of C(3) as Ĉ(3), the D4-brane action is given by

SD4 = −T4

∫

d5ξ e−φ
√

−det(Gij + Fij) + T4

∫

F ∧ Ĉ(3)

= −T4vol(S3/Zn)
∫

dρdψe−φ0
L5

sinh2(ρ)

(

1 − sinh4(ρ) sin
2
3 (α)

L4
(Fρψ)2

) 1
2

×
(

2 cos(α)
3

)3

−T4vol(S3/Zn)
∫

dρdψFρψQ4

[
3
40

sin
1
3 (α) (7 sin(α) + sin(3α)) − 18

40

]

.

(3.20)
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We take dψ ∧ dρ ∧ ωS3/Zn
to be positive, which accounts for the sign in the

second term. Minimizing the above action for α with fixed F and then plugging
in the expression for F yields an equation which determines α

− 81q
√

1 − q2Q4 cos(α) sin(α)+8e−φ0L3
[
q2(1 − 10 sin2(α))+9 sin2(α)

]
= 0.
(3.21)

Of course the above procedure is not necessarily consistent and we have checked
that this equation can also be obtained using the general equations derived in
[30]. Plugging in the explicit expressions for Q4, φ0 and L leads to

(9 − 10q2) sin2(α) + q(q − 5
√

1 − q2) sin(2α) = 0. (3.22)

This can be solved to give q in terms of α. There are two solutions:

q = ± sin(α), q = ±9

√
1 − cos(2α)

82 − 80 cos(2α)
. (3.23)

The first solution is compatible with supersymmetry while the second is not.
We therefore consider only the first solution. The quantization condition of
the fundamental string charge is given in (E.7)

NF1 =N−N sin
1
3 (α)
6

(

sin(3α)+7 sin(α)− 4q
√

1−q2 cos3(α)

)

, (3.24)

with NF1 the number of fundamental strings dissolved into the D4-brane. After
plugging in the expression for q, we obtain an expression giving NF1 in terms
of α

NF1 = N −N sin
4
3 (α). (3.25)

Note this solution satisfies NF1 = 0 when α = π/2 and NF1 = N when α = 0.
This is consistent with the matching of these D4-brane embeddings to anti-
symmetric representations.

Computing the on-shell action, we find

SD4 = −T4

∫

d5ξ e−φ
√

−det(Gij + Fij) + T4

∫

F ∧ Ĉ(3) − NF1

2πl2s

∫

F

=
2N
3

[

1 −
(

1 − NF1

N

) 3
2
]

SF1. (3.26)

The last term in the first line is a boundary term resulting from the coupling
of the world-volume gauge field to the boundary of the open string. As a
consistency check we remark that in the limit of small NF1 the position of the
D4-brane goes to α = π/2 where the internal S3 vanishes and we recover the
fundamental string wrapped on AdS2, sitting at (x, α) = (0, π/2) as expected.

Surprisingly the result agrees with the gauge computation when NF1 →
N (k → N). In this limit the position of the D4-brane is pushed to α = 0
where the orientifold sits and we might have expected that the supergravity
background gets corrected in this region. The reason why the holographic com-
putation remains valid in this region is unclear and deserves more attention.
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For n = 1, (3.26) gives the advertised result for anti-symmetric repre-
sentations (1.3). The result for more general representations, (1.6), can be
interpreted as the sum over contributions from multiple D4-branes, with one
D4-brane for each la in the representation sitting at the position αa, as deter-
mined by the value of la. Similarly, the result (1.9) for anti-symmetric repre-
sentations for Wilson loops in quiver theories (n > 1) is obtained simply by
adding contributions of multiple D4-brane actions, with each D4-brane sitting
at a position αa in the internal space determined by the order ka of the rep-
resentation in the node a (Fig. 8). However, the important difference between
the two is that in the latter case the D4-branes are distinct in the sense that
they wrap different S̃1

i -cycles, as discussed at the beginning of this section.
If we consider general representations for quiver theories, we have in general
several D4-branes, sitting at different positions and on different cycles.

We now check the supersymmetry of this embedding. The projection
matrix (D.2) reduces to

Γ =
1

√
1 − q2

Γ23456 − q
√

1 − q2
Γ789

= − 1
√

1 − q2

(
12 ⊗ 12 ⊗ σ1 ⊗ σ2 ⊗ 12

)

− q
√

1 − q2

(
12 ⊗ 12 ⊗ 12 ⊗ iσ3 ⊗ 12

)
. (3.27)

At x = 0, the project condition (3.10) on ζ̃η,−η reduces to σ1ζ̃η,−η = ηζ̃η,−η.
The constraint ε = Γε then reduces to

ζ+,+ = η
(
qσ1 −

√
1 − q2σ2

)
ζ+,+. (3.28)

This is compatible with (3.10) for η = −1, provided we take q = − sin(α). One
can easily check that taking the second solution in (3.23) yields a projection on
ζ+,+ which is incompatible with (3.10) and thus breaks all supersymmetries.

3.3. Symmetric Representations

We consider a D4-brane with world-volume coordinates ξi with i = 0, . . . , 4.
We take the D4-brane to wrap the space-time S3 and the AdS2 slice. In this
case we can make the identification

ξ0 = ψ, ξ1 = ρ, ξ2 = φ1, ξ3 = φ2, ξ4 = φ3. (3.29)

We again take a world-volume flux proportional to the AdS2 volume

F = qL2 cosh2(x)

sin
1
3 (α) sinh2(ρ)

dρ ∧ dψ. (3.30)

We will need the 5-from gauge potential. In the coordinates (3.11), C(5) is
given by

C(5) = Z
Q6

sinh2(ρ)

[
cosh3(x)

30
(3 cosh(2x) − 7) +

4
30

]

× sin2(φ1) sin(φ2)dρ ∧ dψ ∧ dφ1 ∧ dφ2 ∧ dφ3. (3.31)



Vol. 15 (2014) Wilson Loops in 5d N = 1 SCFTs and AdS/CFT 619

As before, we have the freedom to make large gauge transformations, which
are proportional to the unit volume forms on the AdS2 and S3. Since the S3

vanishes at x = 0, we require C(5) to vanish there as well, which fixes this
gauge choice.

In order for the D4-brane to preserve the remaining SO(4) symmetry of
the internal S3, it must sit at α = π/2. With this requirement, we can then
again take the remaining embedding coordinates to be constant. Again, one
can check that this satisfies the general equations derived in [30]. Introducing
the induced metric Gij and the pullback of C(5) as Ĉ(5), the D4-brane action
is given by

SD4 = −T4

∫

d5ξ e−φ
√

−det(Gij + Fij) + T4

∫

Ĉ(5)

= −T4vol(S3)
∫

dρdψ e−φ0
L5

sinh2(ρ)
cosh2(x) sinh3(x)

×
(

1 − sinh4(ρ)
L4 cosh4(x)

(Fρψ)2
) 1

2

−T4vol(S3)
∫

dρdψ
Q6

sinh2(ρ)

[
cosh3(x)

30
(3 cosh(2x) − 7) +

4
30

]

.

(3.32)

Minimizing the above action for x with fixed F and then plugging in the
expression for F yields an equation which determines x

L5
(
1 − 6q2 cosh2(x) + 5 cosh(2x)

)
+ eφ0

√
1 − q2Q6 sinh(2x) = 0. (3.33)

Again, this equation can also be obtained using the general equations derived
in [30]. Plugging in the explicit expressions for Q6, φ0 and L leads to

− 1 + 3q2 + (3q2 − 5) cosh(2x) + 5
√

1 − q2 sinh(2x) = 0. (3.34)

This can be solved to give q in terms of x. There are two solutions

q = ± 1
cosh(x)

, q = ±
√

13 + 5 cosh(2x)
9 + 9 cosh(2x)

. (3.35)

As we will see, the first solution is compatible with supersymmetry while the
second is not. The quantization condition is given in Appendix (E.9)

NF1 =
9
4
nN

q
√

1 − q2
sinh3(x), (3.36)

with NF1 the number of fundamental strings dissolved into the D4-brane. After
plugging in for x, we obtain an expression giving NF1 in terms of x

N
(1)
F1 = nN

9
4

sinh2(x). (3.37)

Note that in this case, N (1)
F1 is unbounded as x → ∞ while it goes to zero for

x → 0. This is consistent with the matching of these D4-brane embeddings to
symmetric representations. Computing the on-shell action gives
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SD4 = −T4

∫

d5ξ e−φ
√

−det(Gij + Fij) + T4

∫

Ĉ(5) − NF1

2πl2s

∫

F

=
3nN

2

[(

1 +
4
9
NF1

nN

) 3
2

− 1

]

SF1. (3.38)

Again here we remark that in the limit of small NF1 the position of the D4-
brane goes to x = 0 where the space-time S3 vanishes and we recover the
fundamental string wrapped on AdS2, sitting at (x, α) = (0, π/2) as expected.

The result (3.38) gives the advertised result for symmetric representations
(1.4), for n = 1, and (1.10), for n > 1, after we identify NF1 = ktot. In the
latter case, the fractional D6-branes wrapping different cycles recombine into
a D4-brane, whose fundamental string charge is the sum of that of all the
D6-branes.

We now check the supersymmetry of this embedding. The projection
matrix (D.2) reduces to

Γ = − 1
√

1 − q2
Γ56789 − q

√
1 − q2

Γ234

=
1

√
1 − q2

(
12 ⊗ 12 ⊗ σ3 ⊗ 12 ⊗ 12

)− q
√

1 − q2

(
12 ⊗ 12 ⊗ iσ2 ⊗ σ1 ⊗ 12

)
.

(3.39)

At α = π/2, the projection condition (3.10) on ζ+,+ reduces to σ1ζ+,+ = ζ+,+.
The constraint ε = Γε then reduces to

ζ̃η,−η =
1
q
σ1ζ̃η,−η +

√
1 − q2

q
iσ2ζ̃η,−η. (3.40)

This is compatible with (3.10), provided we take q = η/ cosh(x). One can
easily check that taking the second solution in (3.23) yields a projection on
ζ+,+ which is incompatible with (3.10) and thus breaks all supersymmetries.
Since the solution picks a specific sign choice for η, the D4-brane preserves half
of the supersymmetries.

3.4. Free Energy

In [11], the authors computed the free energy on the gravity side using holo-
graphic entanglement entropy and obtained

FCFT = − 9
√

2
5
√

8 −Nf
π n3/2N5/2 + O(N5/2). (3.41)

To complete the picture we reproduce their result by a direct computation of
the gravity action, regularized appropriately. We follow the same method as
in [31]. First we truncate the IIA supergravity background to pure gravity on
AdS6 and then regularize the AdS6 infinite volume by holographic renormal-
ization techniques [32–34]. This is a consistent truncation since we can replace
AdS6 space with any space which obeys the same Einstein equations.

In this computation, we are using the supergravity background described
in the last subsection. This background contains both an orbifold singularity
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at α = 0 and an orientifold singularity at α = π/2. Therefore, the supergravity
description breaks down in these regions and so a priori our computation might
miss an important contribution. Nevertheless, we assume the correction to our
result is subdominant in the large N limit and the match with the gauge theory
computation will justify a posteriori this assumption.

The effective action after the reduction reads

Seff = − 1
2κ2

0

L8

∫

S4/Zn

e−2φ0

(4
9

)2

(sinα)4/3(cosα)3

×
∫

AdS6

√
g(6) (R(6) − 2Λ(6)), (3.42)

where the subscript (6) shows that the metric, Ricci scalar and the cosmological
constant are 6-dimensional, and we have Λ(6) = −10.21 Since we want to
evaluate the on-shell action, we take R(6) = 3Λ(6) = −30. We therefore have

Seff = − L2

8π5l2s
n2N2 (−10) vol(AdS6) vol4, (3.43)

The factor vol4 is a volume factor of the internal space, with the AdS warp
factor taken into account:

vol4 =
vol(S3)
n

∫

dα (sinα)1/3(cosα)3 =
9π2

10n
. (3.44)

where we used vol(S3) = 2π2. The regularized volume of AdS6 is given by22

vol(AdS6) = − 8
15
π3. (3.45)

Combining these results and (3.3), we can verify that (3.43) reproduces (3.41).
This result matches both with the gauge theory and the holographic entan-
glement entropy computations, providing a non-trivial check of the concerned
holographic dualities.

4. Discussion

In this paper, we have computed the large N limit of the VEVs of Wilson loops
for a class of 5d N = 1 SCFTs, both in field theory and in the dual massive IIA
supergravity background. It is non-trivial and surprising that we can extract
exact quantitative results about non-renormalizable gauge theories, and we

21 For AdSD space-times we have R = 2D
D−2

Λ and Λ = − (D−1)(D−2)
2

.
22 The volume of AdS6 is regularized by holographic renormalization techniques, see [34,
Section 5] for a pedagogical introduction. The gravity action contains the bulk action plus
the Gibbons–Hawking surface term. To regularize this action one needs to add (universal)
covariant boundary counter-terms making the action finite. We can extract the volume of
pure AdS from the renormalized gravity action. In our problem we choose Poincaré patch
for the Euclidean AdS6 so that the conformal boundary is S5; in the language of [33] the
coordinates are given by formula (8) with n = 5, k = 1. Then the action can be computed
using formulas (63)–(65) of [33], where σk,n = σ1,5 = π3 is the volume of the unit 5-sphere.
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hope that our computation will serve as a prototypical example for a deeper
understanding of more general classes of non-renormalizable theories.

For quiver theories, we have found that a complete analysis would
require more information coming from the holographic background. Espe-
cially the dependence on the flavors of the different nodes is absent from
the current gravity description. We suspect that it could be recovered by
including discrete holonomies of the B-field on the 2-cycles of the orbifold
background or perhaps by appropriate couplings of the D-brane world-volume
theories to the Roman’s mass F0. A related issue is to consider the generaliza-
tion to backgrounds describing quiver theories with nodes of different ranks.
This would correspond on the gravity side to having fractional D4-branes
(D6-branes wrapped on vanishing 2-cycles). For this purpose, it would be useful
to construct fully backreacted geometries (cf. [19,20,35]). Further investiga-
tions in this direction would certainly improve our understanding of AdS/CFT
for quiver theories/orbifold backgrounds.

There are a number of generalizations we can consider. We can consider
defects of other dimensionality, such as surface operators, or place the theory
on 5-manifolds other than S5 (cf. [36,37]). We could also try to extend the
analysis to 5d N = 1USp(2N) theories with Nf = 8, or to 5d N = 2 theories.
This will lead to quantitative understanding of 6d (1, 0) theory or 6d (2, 0)
theory on S5 × S1, and the Wilson surfaces therein.
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Appendix A. Representation of USp(2N)

In this Appendix we summarize representation theory of the Lie algebra
USp(2N) needed for the main text, especially in Sect. 2.4 (see for example
[38]). The representation is similar to the case of U(N) gauge groups, but
there are important differences.

An irreducible representation of USp(2N) is specified by a Young diagram
with at most N rows. This is expressed as a partition μ = (μ1, μ2, . . . , μN ),
satisfying μ1 ≥ μ2 ≥ . . . μN ≥ 0, where μi denotes the number of boxes of the
ith row. For simplicity we often drop from the notation those μi’s which are
equal to zero. For example, μ = (7, 5, 3, 2, 1) represents
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.

We can also represent this by the dual partition ν = μT . In the example above,
we have ν = (5, 4, 3, 2, 2, 1, 1).

In the body of this paper we discussed kth symmetric and anti-symmetric
representations, obtained by symmetrizing (or anti-symmetrizing) the kth
power of the fundamental representation. For kth symmetric representation
Sk is an irreducible representation, and is described by the Young diagram of
the form (shown for k = 7),

.

However, the kth anti-symmetric representation Ak is not irreducible, and
decomposes into several irreducible components. The component with the
largest dimension is described by

.

For the computation of Wilson loops we need a character of the represen-
tation μ. This is given by the “symplectic character” spμ(x) = spμ(x1, . . . , xN ),
defined by

spμ(x) :=
deti,j

(
x
μj+n−j+1
i − x

−(μj+n−j+1)
i

)

deti,j
(
xn−j+1
i − x

−(n−j+1)
i

) . (A.1)

This is a generalization of the standard Schur function for U(N) groups, and is
invariant under the action of the Weyl group W, generated by (1) permutations
of xi’s and (2) inversions xi → x−1

i for some i.
For our purposes, it is sometimes useful to use another expression for

spμ(x), given by the “symplectic semistandard Young tableaux” [39]. This is
defined by a filling of the Young diagram μ with the letters 1 < 1̄ < 2 < 2̄ <
· · · < n < n̄ such that:
(1) the entries are weakly increasing along rows and strictly increasing down

the columns,
(2) all entries in row i are larger than or equal to i.

Given such a tableaux T , we can define its weight w(T ) by

w(T ) =
∏

i

xi
#(i)−#(̄i). (A.2)

Then we have

spλ(x) =
∑

T : shapeλ

w(T ). (A.3)
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For example, let us consider USp(4). When we have μ = (2) = , there
are 10 symplectic semistandard Young tableaux

1 1 , 1 2 , 2 2 , 1 1 , 2 2 , 1 2 , 1 2 , 1 1 , 1 2 , 2 2 ,

giving

sp (x) = x2
1 + x1x2 + x2

2 + 2 +
x1

x2
+
x2

x1
+

1
x2

1

+
1

x1x2
+

1
x2

2

. (A.4)

This gives dim = 10, which is consistent with fact that is the symmetric
part of ⊗ .

Similarly, when we have μ = (1, 1) = , there are 5 symplectic semistan-
dard Young tableaux

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
2 ,

giving

sp (x) = x1x2 +
x1

x2
+
x2

x1
+

1
x1x2

+ 1. (A.5)

This gives dim = 5. This is smaller by one than the dimension of the anti-
symmetric part of ⊗ . In fact, anti-symmetric part of ⊗ decomposes

into and a singlet.

Appendix B. AdS2 × S3 Slicing of AdS6

In this section, we discuss an AdS2 slicing of AdS6 suitable for our problem.
To do so, we embed AdS6 into 7-dimensional flat space, more precisely R

2,5.
The AdS6 surface is described by the equation

−X2
−1 −X2

0 +X2
1 +X2

2 +X2
3 +X2

4 +X2
5 = −L2, (B.1)

where the Xi are flat coordinates on R2,5.
We first solve the constraint as follows

X−1 = L coth(λ), X0 = L
sin(ϕ1) sinh(ϕ2)

sinh(λ)
,

X1 = L
sin(ϕ1) cosh(ϕ2)

sinh(λ)
, Xi = L

cos(ϕ1)
sinh(λ)

X̂i, i = 2, 3, 4, 5, (B.2)

where X̂i describes a unit S3. This leads to the induced metric

ds2 =
L2

sinh2(λ)

(
dλ2 + dϕ2

1 − sin2(ϕ1)dϕ2
2 + cos(ϕ1)2ds2S3

)
. (B.3)

Upon analytically continuing ϕ2 → iϕ2 this leads to the Euclidean metric

ds2E =
L2

sinh2(λ)

(
dλ2 + ds2S5

)
. (B.4)
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We will be interested in a Wilson loop which wraps a great circle in S5. This
can be taken to be a string worldsheet whose boundary sits at ϕ1 = π/2 and
wraps ϕ2.

For computations, this metric is not the most efficient and it will be
convenient to work with an AdS2 ×S3 slicing of AdS6. This can be introduced
by solving the constraints as

X−1 = L coth(ρ) cosh(x), X0 = L
sinh(ψ)
sinh(ρ)

cosh(x),

X1 = L
cosh(ψ)
sinh(ρ)

cosh(x), Xi = L sinh(x)X̂i, i = 2, 3, 4, 5, (B.5)

where X̂i again describes a unit S3. The induced metric is now given by

ds2 = L2

(
cosh2(x)
sinh2(ρ)

(dρ2 − dψ2) + sinh2(x)ds2S3 + dx2

)

. (B.6)

The two coordinate systems are related by first identifying the two S3s and
then taking

coth(λ) = coth(ρ) cosh(x), cot(ϕ1) = sinh(ρ) tanh(x), ϕ2 = ψ. (B.7)

Reaching the boundary by taking ρ = 0 and x finite maps to the surface
with ϕ1 = π/2. Thus taking the string to wrap ρ and ψ gives a string whose
boundary is the great circle described above. Going to the Euclidean by taking
ψ → iψ, we see that ψ has periodicity 2π.

Appendix C. Supersymmetry of the Background

First we need to work out the supersymmetry of the background. The metric
(3.1) is in string frame, in Einstein frame (gE = e−φ/2gs) it becomes

ds2E = L2e−φ0/2(sinα)
1
12

[

ds2AdS6
+

4
9

(
dα2 + cos2 αds2S3/Zn

)]

. (C.1)

It will be convenient to introduce the frames

em = Le−φ0/4(sinα)
1
24 êm, m = 0, . . . , 5,

e6 =
2
3
Le−φ0/4(sinα)

1
24 dα,

ei =
2
3
Le−φ0/4(sinα)

1
24 cos(α)êi, 1 = 7, 8, 9,

(C.2)

where êm are unit frames on AdS6 and êi are unit frames on S3/Zn. We use
M to collectively denote the frame indices so that M = 0, . . . , 9.
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In IIA supergravity, the spinor satisfies a reality condition ε∗ = Bε. The
BPS equations in string frame, after setting B(2) = 0, are given by [9]23

δλ =
[

(DMφ)ΓM+
5
4
F(0)e

5
4φ+

1
96
e

φ
4
(
FMNPQΓMNPQ

)
]

ε = 0, (C.3)

δψM =

[

DM− 1
32
F(0)e

5
4φΓM+

1
128

e
φ
4

2
FNPQR

(

ΓMNPQR− 20
3
δM

NΓPQR
)]

ε = 0.

Plugging in the solution summarized in Sect. 3, the dilatino equation reduces
to the projection condition

ε =
[
cos(α)Γ6 − sin(α)Γ6789

]
ε. (C.4)

To reduce the gravitino equation, we introduce the Γ matrices as

Γm = γm ⊗ σ1 ⊗ 12, Γ6 = 18 ⊗ σ2 ⊗ 12, Γi = 18 ⊗ σ3 ⊗ γi, (C.5)

where γm satisfy {γm, γn} = 2ηmn and γi satisfy {γi, γj} = 2δij . Introduce
γ� = iγ012345 and B(6) and B(3) by

(γm)∗ = B(6)γ
mB−1

(6), (γi)∗ = −B(3)γ
iB−1

(3), (C.6)

and so that they satisfy B∗
(6)B(6) = −18 and B∗

(3)B(3) = −12. In terms of
these quantities, we can write B as B = B(6) ⊗σ1 ⊗B(3) and we have (ΓM )∗ =
BΓMB−1. Next we introduce Killing spinors χ(6)

η1 and χ(3)
η2 on AdS6 and S3/Zn,

respectively, which satisfy the equations
(
êμm∇̂μ − η1

2
γm

)
χ(6)
η1 = 0,

(
êμi ∇̂μ − i

η2
2
γi

)
χ(3)
η2 = 0.

(C.7)

Using the symmetries of the above equations, we impose the conditions
γ�χ

(6)
η1 = χ

(6)
−η1 , χ

(6)∗
η1 = B(6)χ

(6)
η1 and χ

(3)∗
η2 = B(3)χ

(3)
η2 . We next decompose

ε in the above basis of Killing spinors

ε =
∑

η1,η2

χ(6)
η1 ⊗ ζη1,η2 ⊗ χ(3)

η2 . (C.8)

The reality condition reduces to

ζ∗ = σ1ζ, (C.9)

23 We have changed conventions as follows. We have inverted the sign of the dilaton and
rescaled it by a factor of 2,m is identified with F(0) and all of the fluxes have been rescaled

by a factor of 2, we have also redefined λ and ψ by multiplicative constants.
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and we can express the covariant derivatives of ε along the symmetric spaces
as

Dmε = −
∑

η1,η2

η1
2

eφ0/4

L sin
1
24 (α)

ΓmΓ6789
(
χ(6)
η1 ⊗ ζη1,η2 ⊗ χ(3)

η2

)

+
1
2
(em · ωn6)Γn6ε, (C.10)

Diε = −
∑

η1,η2

η2
2

3
2

eφ0/4

L cos(α) sin
1
24 (α)

ΓiΓ789
(
χ(6)
η1 ⊗ ζη1,η2 ⊗ χ(3)

η2

)

+
1
2
(ei · ωj6)Γj6ε,

where ωMN is the spin-connection defined by deM + ωMNe
N = 0 with

ωm6 =
eφ0/4

16L
cos(α)

sin
25
24 (α)

em, ωi6 =
3eφ0/4

2L sin
1
24 (α)

(
cos(α)

24 sin(α)
− sin(α)

cos(α)

)

ei.

(C.11)

The gravitino equation along AdS6 reduces to

ε = −16
∑

η1,η2

η1 sin(α)Γ6789
(
χ(6)
η1 ⊗ ζη1,η2 ⊗ χ(3)

η2

)

+ cos(α)Γ6ε+ 15 sin(α)Γ6789ε. (C.12)

This reduces to the dilatino equation provided ζ−,η2 = 0. The gravitino equa-
tion along S3/Zn reduces to

ε = −24
∑

η1,η2

η2 tan(α)Γ789
(
χ(6)
η1 ⊗ ζη1,η2 ⊗ χ(3)

η2

)

+25 cos(α)Γ6ε− 24
cos(α)

Γ6ε− 25 sin(α)Γ6789ε. (C.13)

This reduces to the dilatino equation provided ζη1,− = 0 and ζ+,+ is the only
surviving component. Since χ(6)

+ has 8 real degrees of freedom and χ
(3)
+ has 2

real degrees of freedom, we conclude that there are 16 real supersymmetries.
It will be convenient to further decompose AdS6 into AdS2 × S3 slices

using the coordinates given in (3.11). We denote the directions along AdS2

as m1 = 0, 1 and the directions along S3 as m2 = 2, 3, 4. Introducing Killing
spinors χ̃(2)

η3 and χ̃(3)
η4 on AdS2 and S3, respectively, we can write χ(6)

+ as

χ
(6)
+ =

∑

η3,η4

χ̃(2)
η3 ⊗ χ̃(3)

η4 ⊗ ζ̃η3,η4 . (C.14)

As before, we can impose reality conditions on χ̃(2)
η3 and χ̃(3)

η4 . The reality condi-
tion on χ(6)

+ then leads to a reality condition on ζ̃η3,η4 . We write the γ matrices
as

γm1 = γ̃m1 ⊗ 12 ⊗ σ1, γm2 = 12 ⊗ γ̃m2 ⊗ σ2, γ5 = 12 ⊗ 12 ⊗ σ3,

(C.15)
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where the γ̃m1 satisfy {γ̃m1 , γ̃n1} = 2ηm1n1 and γ̃m2 satisfy {γ̃m2 , γ̃n2} =
2δm2n2 . Proceeding similarly as before, we arrive at the projections

ζ̃η3,η4 = η3
(
iσ2 sinh(x) + σ1 cosh(x)

)
ζ̃η3,η4 ,

ζ̃η3,η4 = −η4
(
iσ2 sinh(x) + σ1 cosh(x)

)
ζ̃η3,η4 .

(C.16)

The first equation comes from the Killing spinor equation along AdS2, while
the second equation comes from the Killing spinor equation along S3. The
compatibility of these two equations sets ζ̃+,+ = ζ̃−,− = 0. This leaves 8 real
degrees of freedom for χ(6)

+ as expected.

Appendix D. Supersymmetry Conditions

The conditions for supersymmetry of the probe Dp-brane are derived in [40].
We summarize the results here in the conventions of [30]. A probe Dp-brane
embedding preserves supersymmetries which are consistent with the projection

ε = Γε, (D.1)

where the matrix Γ is defined by the following equation

dp+1ξ Γ = − 1
√−det(Gij + Fij)

eF ∧X|vol. (D.2)

The quantity X is a sum of world-volume Γ-matrices:

X =
⊕

n

(
1

(2n+ 1)!
dξi2n+1 ∧ · · · ∧ dξi1Γi1...i2n+1

)

(Γ�)n+1, (D.3)

where the Γi are pullbacks of space-time Γ-matrices so that Γi1...in =
∂i1X

m1 . . . ∂inX
mnΓm1...mn

and the chirality matrix is given by Γ� =
Γ0123456789.

Appendix E. Quantization of World-Volume Flux

Here, we follow closely [16] and [30]. The Dp-brane action including the cou-
pling of the world-volume gauge field to the boundary of a stack of NF1 fun-
damental strings is given by

SDp = −Tp
∫

dp+1ξ e−φ
√

−det(Gij + Fij) + Tp

∫

eF ∧ Ĉ +NF1

∫

∂F1

ds ·A,

(E.1)

where Gij is the pullback of the space-time metric, in string frame, Ĉ is the
pullback of the RR-forms and F = (2πl2s)F + B̂(2), where B̂(2) is the pullback
of the NSNS two-form and F is a world volume flux with F = dA. Note that
Ĉ(p) is really defined as the gauge potential of the pullback of F(p+1) so that
d̂Ĉ(p) = F̂(p+1).
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We shall restrict to the case where B(2) = 0. It is convenient to introduce
the matrix

Mij = (∂iXM∂jX
ngMN + Fij), (E.2)

where XM are coordinates on the space-time. We also define the inverse matrix
M ij , with upper indices, and the anti-symmetric part θij = (M ij − M ji)/2.
Varying with respect to the world-volume gauge field yields the equation

∂i

(
e−φ√−Mθij

)
− εji2...ip+1

∑

n≥0

1
n!(2!)n(p− 2n)!

(Fn)i2...i2n+1Fi2n+2...ip+1

=
1

2πl2s

NF1

Tp
j
(F1)
j , (E.3)

where j(F1)
i is the fundamental-string current.24 Introducing a flat metric and

treating e−φ√−Mθ as a two-form, this equation can be re-expressed as

d ∗
(
e−φ√−Mθ

)
−
∑

n≥0

1
n!
d
[
(Fn) ∧ C(p−1−2n)

]
= −(−1)p

NF1

2πl2sTp
∗ j(F1),

(E.4)

where we have used the fact dF = 0 when B(2) = 0. Integrating the above
equation over a p-volume Vp which is orthogonal to the boundary of the fun-
damental string, we have

∫

Mp−1

⎡

⎣∗
(
e−φ√−Mθ

)
−
∑

n≥0

1
n!

(Fn) ∧ Ĉ(p−1−2n)

⎤

⎦ =
NF1

2πl2sTp
, (E.5)

where Mp−1 is a p − 1-dimensional closed surface which encircles the funda-
mental string.

For the D4-brane of Sect. 3.2, which wraps the internal S3, the above
expression reduces to

∫

S3/Zn

[
∗
(
e−φ√−Mθ

)
− C(3)

]
=

NF1

2πl2sT4
(E.6)

evaluated at an arbitrary value of ρ and ψ. Plugging in the explicit quantities
and solving for NF1 gives

NF1 = N −N
sin

1
3 (α)
6

(

sin(3α) + 7 sin(α) − 4q
√

1 − q2
cos3(α)

)

. (E.7)

For the D4-brane of Sect. 3.3, which wraps the space-time S3, the above expres-
sion reduces to

∫

S3

[
∗
(
e−φ√−Mθ

)]
=

NF1

2πl2sT4
, (E.8)

24 Note that the extra factor of 1/(2πl2s) comes from restoring the factors of 2πl2s in [30].
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evaluated at an arbitrary value of ρ and ψ. Plugging in the explicit quantities
and solving for NF1 gives

NF1 =
9
4
nN

q
√

1 − q2
sinh3(x). (E.9)
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