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Non-Existence of Toroidal Cohomogeneity-1
Near-Horizon Geometries

Jan Holland

Abstract. We prove that D ≥ 5 dimensional stationary, non-static near-
horizon geometries with (D−3) commuting rotational symmetries subject
to the vacuum Einstein equations including a cosmological constant can-
not have toroidal horizon topology. In D = 4 dimensions, the same result
is obtained under the assumption of a non-negative cosmological constant.

1. Introduction

Extremal black holes, i.e. those with a degenerate Killing horizon (or equiva-
lently vanishing surface gravity), have received increasing attention in recent
years due to their special mathematical properties. Despite the fact that they
are not believed to be physically realised in nature, extremal black holes have
proven to be an interesting subject of study in the context of string theory,
where it was possible to derive the Bekenstein–Hawking entropy formula [1],
as well as in supergravity theories in the presence of supersymmetries, where
black holes are automatically extremal [2].

A particularly useful concept in the study of horizon properties of ex-
tremal black holes is their near-horizon geometry. As suggested by the name,
the idea is to restrict attention to the immediate vicinity of the horizon and
neglect any information on the remaining spacetime by performing a scaling
process. This procedure strongly increases the tractability of many problems,
but still recovers valuable physical information, e.g. in the context of the Kerr-
CFT correspondence [3–5]. Rigorous definitions of the near-horizon limit can
be found in [6,7].

Recently, near-horizon geometries of solutions to the vacuum Einstein
equations with cosmological constant Λ possessing an Abelian cohomogene-
ity-1 symmetry have been classified in [8] (in 4 dimensions with Λ ≤ 0 and
in 5 dimensions with Λ = 0) and in [9] (in arbitrary dimension with Λ =
0). Here, cohomogeneity-1 means that additional rotational symmetries are
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assumed, such that the metric components only depend on a single parameter
nontrivially1, and Abelian of course means that these symmetries commute.
It should be mentioned that there are also known examples of cohomogeneity-
1 near-horizon geometries with non-Abelian symmetry, such as Myers–Perry
with subsets of coinciding angular momenta, which are not covered by these
classifications. Just as the works [8,9], we will focus on the Abelian case within
the present paper.

Certain results in the papers [8,9] relied crucially on the horizon topology,
which is restricted to the cases [10,11]

H ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S3 × TD−5

S2 × TD−4

L(p, q) × TD−5

TD−2,

(1.1)

where D is the spacetime dimension, H a horizon cross section, i.e. a compact
(D − 2)-dimensional manifold with U(1)D−3 action, Sn the n-sphere, Tn the
n-torus and L(p, q) Lens spaces. It turns out that the last case, i.e. toroidal
horizon topology, is somewhat special, both from a physical and purely mathe-
matical viewpoint. This type of solution could not be classified by the methods
of [8,9] and was therefore excluded by hand, motivated by the fact that such a
near-horizon geometry could not arise as the scaling limit of a physical black
hole spacetime due to the topological censorship theorem [12–14]. In this paper,
we prove that a near-horizon metric with toroidal horizon topology admitting
the mentioned symmetries and satisfying the vacuum Einstein equations with
cosmological constant not only cannot arise as the mentioned scaling limit,
but in fact does not exist. This closes a gap in the existing literature showing
that the classification of [9] actually covers all possible solutions of the type
considered.

Notation. In the following, we use letters from the beginning of the roman
alphabet, a, b = 1, . . . , (D − 2), as indices attached to quantities on the hori-
zon cross section H and letters from the middle of the roman alphabet, i, j =
1, . . . , (D − 3), as indices for quantities on an orbit generated by U(1)D−3 on
H.

2. Theorem and Proof

Our general setting is as follows (see [9] for more details): we consider metrics
of Gaussian null form [15]

g = 2dv(du+ u2αdv + uβadya) + γabdyadyb (2.1)

on a D-dimensional manifold M , where K = ∂/∂v and X = u∂/∂u − v∂/∂v
are Killing vector fields and the function α, one form β = βadya and symmet-
ric tensor γab depend on neither u nor v. γ is actually a smooth metric on a

1 In a D-dimensional spacetime this requires (D − 3) additional commuting Killing vector

fields
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compact manifold H located at u = v = 0 (the horizon cross section), and α
and β can be viewed as fields on H. This is the general form of the near-hori-
zon geometry obtained by introducing Gaussian null coordinates and taking
the “near-horizon limit”, but it is not assumed that our metric arises from this
procedure. In addition to K and X, we assume (D − 3) commuting Killing
fields ψ1, . . . , ψD−3 tangent to H, generating the symmetry group U(1)D−3

and also commuting with K and X. Due to this increased isometry group,
our metric functions can only depend nontrivially on one single variable, so
that this type of metric may be called “cohomogeneity-one”. For non-toroidal
topology of H, these solutions to the vacuum Einstein equations (with vanish-
ing cosmological constant) have been classified by [9]. Following their analysis
we will soon observe differences, and eventually a contradiction, in the toroidal
case. Thus, the main result of this paper is the following:

Theorem 1. Any smooth, stationary, non-static near-horizon geometry possess-
ing an Abelian cohomogeneity-one isometry and satisfying the vacuum Einstein
equations with cosmological constant in D ≥ 5 spacetime dimensions cannot
have toroidal horizon topology H ∼= TD−2.

Proof. We proceed in two steps: first, we adapt the construction of suitable
near-horizon coordinates given in [9] to the case of toroidal horizon topology,
which essentially only affects the coordinate x and the 1-form β (to be intro-
duced below). The main difference to the non-toroidal case lies in the fact that
here the orbit space Ĥ = H/U(1)D−3 is a circle, instead of a closed interval,
and that the Gram matrix

fij = γ(ψi, ψj) (2.2)

is non-singular on all of H [11]. In the second step, we will impose the vacuum
Einstein equations on the resulting metric and show, assuming non-staticity
and smoothness, that these cannot be fulfilled, proving our assertion.

Construction of Coordinates

We are going to define coordinates on H adapted to our problem and express
γ in terms of these. To begin with, consider the 1-form

Σ = ∗γ(ψ̃1 ∧ · · · ∧ ψ̃D−3) (2.3)

on H, where ∗γ denotes the Hodge dual with respect to the metric γ and
where ψ̃i are the 1-forms obtained from the vector fields ψi by lowering the
index with γ. The fact that the ψi are commuting Killing fields implies that
Σ is closed and Lie-derived by all ψi. It can therefore be viewed as a closed
1-form on the orbit space Ĥ = H/U(1)(D−3), which as mentioned above is just
a circle, TD−2/U(1)(D−3) = S1, in the case at hand. Now, consider the vector
field ξa = γabΣb/det f , which is well-defined because det f cannot vanish. It
is easy to see that ξ is orthogonal to the rotational Killing vector fields, i.e.
γ(ξ, ψi) = 0. Thus, ξ is normal to the orbits generated by the ψi, and we also
have the relations [ξ, ψi] = 0 and [ψi, ψj ] = 0. By Frobenius’ theorem, we can



410 J. Holland Ann. Henri Poincaré

therefore introduce local coordinates (x, ϕ1, . . . , ϕD−3) on H with ϕi ∈ [0, 2π]
such that

(ξ)a =
(
∂

∂x

)a

(2.4)

(ψi)a =
(

∂

∂ϕi

)a

. (2.5)

In these coordinates, our metric takes the form

γ =
1

det f
dx2 + fijdϕidϕj (2.6)

and dx = Σ, showing that dx (but not x itself) is globally defined. The geo-
metric significance of the coordinate x is that it locally labels the orbits, i.e. it
can be alternatively viewed as a local coordinate on Ĥ ∼= S1. It is defined up
to the period P =

∫

Ĥ
Σ, which cannot be equal to zero due to the fact that Σ

is nowhere vanishing. The coordinates ϕi are local coordinates on each given
orbit.2 The periodicity of x constitutes the first difference to the considerations
of [9].

Next consider the 1-form β, which we can decompose as β = βx(x)dx+
βi(x)dϕi on H. As for any generic 1-form, we can further decompose βxdx
into an exact- and a non-exact contribution:

βx(x)dx = dλ+
A

det f
dx. (2.8)

Here, λ is a smooth function on H that is Lie-derived by the ψi, or alterna-
tively a function on Ĥ ∼= S1. Further, A is a constant, which follows from
co-closedness of the non-exact part in the Hodge decomposition of β (i.e. from
∇a(β − dλ)a = 0, see [8] for more details). Integrating the equation over H
gives

∫

S1

(

βx(x) − A

det f

)

dx = 0 (2.9)

which we may take as the definition of A. Here, we encounter the second major
difference to the derivation in [9]: whereas in the non-toroidal case, it was pos-
sible to argue A = 0 using the vanishing of the Gram determinant det f at the
end points of the interval H/U(1)D−3, we do not know this yet in the present
case. Thus, our expression for β will look slightly different [compare Eq. (2.8)
of [9]].

β = dλ+
A

det f
dx+ eλkidϕi (2.10)

2 Thus, on H we have the identifications

(x, ϕ1, . . . , ϕD−3) = (x + P, ϕ1 + α1, . . . , ϕD−3 + αD−3) (2.7)

where αi are the angles that are obtained by starting from a given point labeled by ϕi = 0
on some orbit and following the integral curve of ξ until we come back to this orbit.
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where we have defined

ki = e−λψi · β. (2.11)

The remaining two coordinates can be chosen as in [9], so we keep v, define
r := ueλ and our metric takes the form

g = e−λ[2dvdr +Br2dv2] +
dx2

det f
+ fij(dϕi + rkidv)(dϕj + rkjdv)

+
2re−λA

det f
dvdx (2.12)

where B = (2αe−λ − eλkik
i). Note that this metric differs from the one given

in Eq. (2.11) of [9] only by the last term.

Employing Einstein’s Equations

Having set up our coordinate system, we would like to impose the vacuum Ein-
stein equations including a cosmological constant Λ ∈ R. For a general metric
of the form Eq. (2.1), these can be expressed as the following set of equations
on H (see e.g. [8])

Rab =
1
2
βaβb − ∇(aβb) + Λγab (2.13)

2α =
1
2
βaβ

a − 1
2
∇aβ

a + Λ (2.14)

where Rab and ∇a are the Ricci tensor and Levi-Civita connection associated
to the horizon metric γ. Our strategy now follows three basic steps:

1. Show ki = const. using the xi-component of the Ricci tensor.
2. Show B = const. using the contracted Bianchi identity for Rab.
3. Derive a contradiction to our assumption of non-staticity from the ij-

component of the Ricci tensor.

To begin with, we obtain from the xi-component of Eq. (2.13)

∂xk
i =

A

det f
ki ⇒ ki = Ki exp

⎛

⎝

x∫

0

A

det f
dx′

⎞

⎠ (2.15)

with some constants Ki ∈ R. However, due to the toroidal horizon topology,
x is a periodic coordinate as argued above, so ki(x) = ki(x+P ). This implies
A = 0 or Ki = 0 for all i, since otherwise ki would be strictly monotonous in
x (the integrand A

det f always has the same sign). The latter just corresponds
to a static solution [8,9], so it will not be considered here. Therefore,

A = 0 ⇒ ki = const (2.16)

and ki 
= 0 for some i. Hence, as the last term in Eq. (2.12) vanishes, our metric
takes precisely the same form as in the non-toroidal case. Following [8], it is
next possible to deduce that B = const from the contracted Bianchi identity
for Rab. As the equations are exactly the same as in the mentioned paper, the
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explicit computations are not repeated here. Finally, taking the ij-component
of Eq. (2.13) we get3

Rij = −1
2
[(det f)(fij)′′ + (det f)′(fij)′ − (det f)(fik)′fkl(flj)′]

=
1
2
kikje

2λ − 1
2
(det f)(fij)′λ′ + Λfij (2.17)

where (. . .)′ denotes the derivative with respect to x. Raising one index by
contraction with f ij , multiplying with e−λ and rearranging some terms, this
equation can be seen to simplify to

[
(det f)f jk(fik)′e−λ

]′
= −kik

jeλ − 2δ j
i Λe−λ, (2.18)

where δ j
i is the Kronecker-delta. From this equation, we want to derive a con-

tradiction to our assumption of non-staticity, mainly using the following basic
properties of periodic functions:4

1. The product of two periodic functions with period P is again periodic with
period P .

2. The derivative of a periodic function with respect to the periodic coordi-
nate is again periodic.

3. The x-derivative of a periodic function in x cannot have the same sign for
all x, which implies that it has to vanish for some x.

It follows from items 1 and 2 that the left hand side of Eq. (2.18) is the deriv-
ative of a periodic function in x. Therefore, by item 3, the right hand side has
to be a periodic function of alternating sign, and thus has to be vanishing for
some x. Let us have a look at the off-diagonal entries, i.e. i 
= j. Vanishing of
the right hand side then implies kj = 0 or ki(x) = fij(x)kj = 0 for some x.
The latter in turn would yield det f = 0 for this value of x and is thus not an
admissible solution. It follows that all the constants ki have to vanish, which,
however, leads us back to the static case. Hence, no stationary solutions of the
type considered exist, and the proof is finished. �

Remark. The above reasoning actually does not work in D = 4 dimensions,
since in that case there are no off-diagonal entries of Rij . However, taking
a look at the component R11, it is easy to see that the right hand side of
Eq. (2.18) is strictly negative for Λ ≥ 0. Thus, the theorem carries over to the
four-dimensional case with non-negative cosmological constant.

Theorem 2. There cannot be any smooth, stationary, non-static cohomoge-
neity-one near-horizon geometry with topology H ∼= T 2 satisfying the vacuum
Einstein equations with non-negative cosmological constant in D = 4 spacetime
dimensions.

3 See Eqs. (25) and (29) in [8]. Note however that we use slightly different coordinates,
which means that their derivatives with respect to ρ are replaced by x-derivatives in our
case using ∂ρ =

√
det f∂x.

4 We are also assuming our functions to be smooth.
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3. Conclusions

We have ruled out the possibility of toroidal stationary, non-static near-hori-
zon geometries with (D− 3) commuting rotational symmetries and subject to
the vacuum Einstein equations with cosmological constant, mainly using the
fact that the orbit space H/U(1)(D−3) now is a circle instead of an interval.
This gives rise to a periodic coordinate x and, as we have shown, no periodic
smooth solutions in x obeying our assumptions exist. Our theorem closes a
gap in the existing literature, proving e.g. that the classification in [9] includes
all possible near-horizon geometries of the type considered, instead of just the
physically relevant ones.

Possible extensions of our results could include matter fields, like e.g.
Einstein–Maxwell theory or supergravity models. It might also be of interest
to remove the restriction on the sign of Λ in our Theorem 2.
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