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Spectral Networks
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Abstract. We introduce new geometric objects called spectral networks.
Spectral networks are networks of trajectories on Riemann surfaces obey-
ing certain local rules. Spectral networks arise naturally in four-dimen-
sional N = 2 theories coupled to surface defects, particularly the theories
of class S. In these theories, spectral networks provide a useful tool for
the computation of BPS degeneracies; the network directly determines
the degeneracies of solitons living on the surface defect, which in turn
determines the degeneracies for particles living in the 4d bulk. Spectral
networks also lead to a new map between flat GL(K, C) connections on a
two-dimensional surface C and flat abelian connections on an appropri-
ate branched cover Σ of C. This construction produces natural coordinate
systems on moduli spaces of flat GL(K, C) connections on C, which we
conjecture are cluster coordinate systems.

1. Introduction and Summary

In this paper, we study objects which we call spectral networks. A spectral
networkW is made up of walls drawn on a punctured real surface C. Figure 1
gives a picture of one.

Each wall carries some extra discrete data: a pair ij and (roughly) an
integer μ. The labels i and j are drawn from the set of sheets of a finite
branched covering Σ → C. The walls and their discrete data obey certain
local constraints; for example,
• each simple branch point of the covering Σ → C gives birth to three

walls;
• when an ij wall and a jk wall intersect, a new ik wall is born at their

intersection point.
In Sects. 2–8 of this paper, we study some particular spectral networks

which arise naturally in physics. In Sect. 9, we axiomatize the notion of spec-
tral network. In Sect. 10, we describe a more mathematical application, to
coordinate systems on moduli spaces of flat connections. Those sections are
mostly self-contained.
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Figure 1. A spectral network, drawn on the stereographic
projection of C = S2, with a single puncture at infinity. All
of the walls eventually asymptote to this puncture. The walls
are labeled by pairs ij, where i, j are sheets of a threefold cov-
ering Σ → C. The branch points of the covering are shown
as orange crosses. We have trivialized the covering over the
complement of some branch cuts, shown as wavy orange lines
(color figure online)

Here is how spectral networks arise in physics. Fix an N = 2 supersym-
metric theory T in d = 4 and a point u of the Coulomb branch. Also fix a
1/2-BPS surface defect Sz which has a 1-complex-dimensional space C of UV
parameters, and is massive in the IR, with finitely many vacua for any fixed z.
These data determine a 1-parameter family of spectral networksWϑ drawn on
C, labeled by phases ϑ ∈ R/2πZ. Namely, Wϑ is the locus of z ∈ C for which
the surface defect Sz carries a BPS soliton whose central charge Z is aligned
with −eiϑ. The discrete data μ on the walls keep track of the degeneracies of
these BPS solitons. The points of the finite cover Σ → C over z ∈ C are the
vacua of Sz. The data ij on the walls keep track of which vacua of Sz are being
interpolated by the solitons.

In this paper, for concreteness, we focus on a particular (large) class of
N = 2 theories, namely the theories of class S [1–3]. These are the theories
S[g, C,D], associated to a Lie algebra g (which we take to be g = AK−1), punc-
tured Riemann surface C, and a collection D of defects placed at the punctures
of C. They are obtained by a partially topologically twisted compactification
of the six-dimensional (2, 0) theory S[g]. A point u of the Coulomb branch here
means a tuple (φ2, . . . , φK), where each φr is a meromorphic r-differential on
C, with poles at the defects. In these theories, there is a canonical surface
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defect Sz whose parameter space is C. Moreover, in these theories, the cover-
ing Σ→ C can be identified with the Seiberg–Witten curve [4,5] and is given
concretely by (2) below.

The spectral networks Wϑ arising from theories of class S can be
described concretely. The walls of the network are solutions of differential
equations, given in (3) below. The full network is built up by a continuous
process: three walls are born from each branch point of the covering Σ and
flow according to (3); whenever two walls intersect, they can give birth to an
additional wall. This process is described in Sect. 5.4.

Here are some of the uses of the spectral networks Wϑ.

Framed BPS states. By letting the parameter z of a surface defect vary along
a path ℘ in C, one can define a supersymmetric interface L℘,ϑ [5]. Knowing
Wϑ and μ allows one to determine the complete spectrum of BPS states of
these interfaces, called “framed BPS states.” In fact, the framed BPS spectrum
turns out to be overdetermined, so much so that one can use its consistency
to compute μ.

Jumps of Wϑ and the 4d BPS spectrum. As the parameter ϑ is varied,Wϑ also
varies. There are some critical phases ϑc at which the topology ofWϑ suddenly
changes (in a precise sense explained in Sect. 6). These critical phases ϑc are the
phases of the central charges Zγ of BPS states in the d = 4 theory S[g, C,D].
Moreover, one can read off the degeneracies Ω(γ) of these BPS states from the
topology of Wϑ=ϑc

.
We find in this way that BPS states in S[g, C,D] correspond to certain

“finite webs” of strings on C, which appear inside the spectral network Wϑ at
the critical phase. Some pictures of finite webs appear in Fig. 2. The role of
finite webs in the BPS spectrum was already expected [3,6–8], but our anal-
ysis here gives a much more precise understanding of how to compute the
corresponding BPS degeneracies Ω(γ) than was previously available. It also
provides a geometric argument (if not quite a proof) that the degeneracies so
computed obey the wall-crossing formula of Kontsevich–Soibelman [9], as well
as its extension to include the coupling between 2d and 4d BPS states, given
in [5].

This story can be thought of as a broad generalization of parts of [3,5],
where we explained why the counts of finite webs obey the wall-crossing for-
mulas in the case K = 2. In fact, our approach here leads to a simpler and
more conceptual understanding even of that case.

The 4d BPS spectrum of N = 2 theories has been investigated by many
authors recently; see in particular [10,11]. One advantage of our approach
here via spectral networks is that, given a point u of the Coulomb branch, one
can determine any particular BPS degeneracy Ω(γ) at u just by drawing the
network Wϑ=arg Zγ

corresponding to u. The spectral network also gives more
precise information—not only the 4d BPS degeneracies Ω(γ) but also some
enhancements ω(γ, ·), which keep track of the interaction between the 4d BPS
state and the surface defects Sz.
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Moduli of flat connections. Suppose we compactify on S1 both the d = 4 theory
and the surface defects Sz. The ground states of Sz on S1 form a K-dimen-
sional vector space Ez; letting z vary we obtain a rank K vector bundle E over
C. Now take a path ℘ in C from z1 to z2. The vacuum expectation value 〈L℘,ϑ〉
of the corresponding interface wrapped on S1 is an isomorphism from Ez1 to
Ez2 . In other words, the bundle E is equipped with a natural connection [4],
which moreover is actually flat.1

On the other hand, we could also take the perspective of the IR (abe-
lian) theory. From that point of view, we would have surface defects labeled
by points on Σ rather than on C, with one-dimensional spaces of vacua, thus
forming a line bundle L over Σ. Considering interfaces between these surface
defects, we see that L too is naturally equipped with a flat connection.

Therefore, to each vacuum of the compactification of the d = 4 theory on
S1, we have assigned on the one hand a flat rank K connection over C, and
on the other hand a flat rank 1 connection over the covering Σ. This induces
a correspondence ΨWϑ

between the two types of connection, which turns out
to be (at least locally) an isomorphism of moduli spaces. Moreover, we can
compute ΨWϑ

concretely: the key is the framed BPS degeneracies mentioned
above, which (roughly) gives the coefficients in the expansion of a UV interface
L℘,ϑ in terms of IR interfaces. Upon taking expectation values, this becomes an
expansion of the vacuum expectation value 〈L℘,ϑ〉 in terms of “Darboux coor-
dinates” as described, e.g. in Sect. 5.8 of [5]. In particular, the correspondence
ΨWϑ

is determined by the spectral network Wϑ.

Cluster coordinate systems. Since the space of flat rank 1 connections over Σ
is a product of copies of C

×, another way to describe the last item is to say
that ΨWϑ

is a local coordinate system on the moduli space M of flat rank K
connections over C. The construction of ΨWϑ

from Wϑ can be generalized: it
uses only some general properties of Wϑ, which we abstract into a definition
of “spectral network”. Given any spectral networkW there is a corresponding
ΨW .

We conjecture that ΨW is a particularly nice coordinate system: it is a
cluster coordinate system, in the sense of [12]. Indeed, Fock and Goncharov
proved [13] that the spacesM we consider admit an atlas of cluster coordinate
systems.2 For K = 2, the cluster atlas consists precisely of the coordinate sys-
tems ΨW . For K > 2, Fock and Goncharov did not give a completely explicit
description of the atlas—rather they described some particular cluster coordi-
nate systems. The most general cluster coordinate system would be obtained
by beginning with one of these and performing some sequence of coordinate
transformations known as “mutations”; each mutation generates a new coordi-
nate system, and the cluster atlas is the set of all coordinate systems obtained

1 We are oversimplifying slightly here: the precise story, laid out in the main text, involves
a slight twisting of the notion of flat connection. This twisting does not modify the basic
picture and can safely be ignored at first.
2 This fact implies, e.g. that these spaces admit a natural quantization [12,14].
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in this way. We conjecture that our ΨW are coordinate systems in the cluster
atlas.3

How do the mutations arise in our story? Small deformations of the spec-
tral networkW leave the coordinate system ΨW invariant. However, there are
some natural “degenerations” of spectral networks which interpolate between
“inequivalent” W. We have already seen these degenerations in this introduc-
tion: they occur in the families Wϑ when the parameter ϑ is adjusted to a
critical phase ϑc. When such a degeneration occurs, ΨW jumps by an auto-
morphism K of the torus of flat rank 1 connections on Σ. This K is simply
determined by the degeneracies Ω(γ) read off from the degenerate network (see
(149) for its explicit form.) K has a form very similar to that of a cluster muta-
tion, and part of our conjecture is that for the simplest types of degenerations
it is indeed a mutation.

Very recently Goncharov has also defined some new geometric objects
which he calls spectral webs [15], and which correspond to coordinate systems
in the cluster atlas. Despite the similar nomenclature, this definition is different
from our definition of spectral networks. It should be interesting to compare
the two constructions.

WKB expansions and spectral networks as Stokes diagrams. One of the key
tools in [3] was the WKB approximation, applied to the ζ → 0 behavior of
families of flat SL(2,C) connections of the form

∇(ζ) = R
ϕ

ζ
+D +Rζϕ̄. (1)

Such families are associated with solutions of Hitchin’s equations [16] and nat-
urally arise in theories of class S.

Some aspects of the WKB approximation are difficult to generalize to
rank K > 2, and for a long time, this proved a stumbling block to giving
nontrivial illustrations of the general statements of [17,5] in the higher rank
case. As we briefly explain in Sect. 10.9, the spectral networks Wϑ in theories
of class S appear to be the key missing ingredient to solve this problem; they
provide a way of constructing a basis of ∇(ζ)-flat sections in each connected
component of the complement ofWϑ, with “good WKB asymptotics” as ζ → 0
in a half-plane Hϑ. Thus, the walls of the spectral networks Wϑ also have an
interpretation as Stokes curves. Similar statements have appeared before in the
mathematical literature, e.g. [18,19] and especially [20] which contains some
examples of spectral networks with K = 3.

Open problems

Our work in this paper leaves many directions unexplored or incompletely
explored. Here are a few:
1. We discuss the theories S[g, C,D] only for g of type A. There should be a

closely parallel story for g of typeD or E. Some parts of this story areeasy

3 Again, here we are glossing over some slight differences between our setup and that of
Fock–Goncharov, and ignoring some extra discrete “flag data” attached to the connections.
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to predict: the walls of the spectral networks will be labeled (locally) by
roots of g, and spectral networks will correspond to coordinate systems
on moduli spaces of g-connections over C. It would be desirable to work
out this picture in detail.

2. Even in the case of type A, our story is not quite complete. We take
the charges of BPS states to be valued in the lattice Γ = H1(Σ; Z), but
according to the more precise picture in [3,21], it is better to identify
the charge lattice as a certain subquotient of H1(Σ; Z). This is related
to the fact that our nonabelianization map ΨWϑ

most directly produces
connections with structure group GL(K,C), while the physically relevant
objects should really be connections with structure group SL(K,C), con-
sidered modulo some further discrete equivalences [21]. There are likely to
be some topological subtleties here which deserve careful consideration.

3. Many of the results of [3] for K = 2 are subsumed in the present paper
and extended to K > 2. However, there is one important piece of [3]
which we have not extended to K > 2. Namely, we gave a recipe for
computing an object called the “spectrum generator,” which completely
determines the whole 4d BPS spectrum of the theory at any point u. This
recipe uses only the combinatorics of a single spectral network Wϑ, for
a fixed generic ϑ. It would be desirable to extend it to the case K > 2,
and also to types D and E. One could further ask for an extension of the
spectrum generator to include the 2d spectrum.4

4. It would be desirable to generalize our discussion of BPS indices to include
information about the spins of the BPS states. This means taking y �= ±1
in the various indices defined below. Some aspects of the “motivic 2d–4d
wall-crossing formula” which governs these degeneracies were spelled out
in [5], but important details remain to be filled in.

5. In Sect. 10.7, we paint a heuristic picture of the “space of all spectral
networks,” which would be nice to spell out more precisely.

6. We conjecture in Sect. 10.8 that the coordinate systems ΨW on the space
M of flat connections are cluster coordinate systems. It would be very
interesting to prove this conjecture. It would be even more interesting
if it turned out that the ΨW actually exhaust the set of cluster coordi-
nate systems. This might be of some internal use for the study of cluster
varieties, e.g. for the positivity conjectures of [13].

7. In this paper, we always require that the curve C carries at least one
defect Dn. This restriction (which we also imposed in [3]) leads to some
simplifications. One reason for these simplifications is that the walls in
Wϑ are solutions of differential equations, and it seems that these equa-
tions generically imply that each wall is “attracted” asymptotically to
some defect. In particular, any open path ℘ on C meets Wϑ only finitely
many times.

This contrasts sharply with the case without defects: in that case,
a typical open path on ℘ may meet Wϑ infinitely many times. We are

4 In the case K = 2 this has been worked out by Pietro Longhi.
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hopeful that all of the constructions of this paper still make sense in that
setting, but there will be issues of convergence to consider.

Fortunately, some things can be said about the asymptotic behavior
of the walls even in the case without defects. For example, in the case
K = 2, the walls in Wϑ are horizontal trajectories of a holomorphic qua-
dratic differential e2iϑφ2, and the leading asymptotic behavior of a generic
such trajectory is classified by a virtual “limit cycle” in H1(C,R), with
deviations governed by certain Lyapunov exponents; see [22] for a very
useful review. One can hope that using these kinds of results (and their
to-be-developed generalizations for K > 2) will be possible to extend
everything in this paper to the case without defects.

8. In this paper, we mainly work at a generic point of the Coulomb branch,
where the gauge symmetry group in the IR is abelian. If the parameters
at the defects are adjusted carefully (or if there are no defects at all),
there may also be points where the unbroken gauge symmetry is nonab-
elian. The physics of this situation is much less explored than the fully
abelian case. Nevertheless, much of what we have said should have an
extension to this situation.

In particular, a spectral network W associated to a K-fold covering
Σ→ C should give not only a map ΨW between moduli of flat GL(1) con-
nections on Σ and moduli of flat GL(K) connections on C, but also more
generally a map ΨW,N between moduli of flat GL(N) connections on Σ
and moduli of flat GL(NK) connections on C.5 Our construction of ΨW
in Sect. 10 is set up in a way that should generalize directly to this set-
ting. We understand that similar constructions will appear in upcoming
work of Goncharov and Kontsevich.

9. In this paper, we encounter several tricky sign issues. One of these first
pops up as an ambiguity in the notion of “fermion number,” which leads
to an ambiguity in the sign of the 2d BPS degeneracies, and recurs many
times thereafter. We have found a scheme for fixing this sign ambiguity,
which we use systematically throughout the paper: very roughly speak-
ing, it amounts to considering paths on C and Σ weighted by signs which
keep track of the parity of the number of times the tangent direction
to the path winds around the circle. Our slavish implementation of this
scheme has various consequences, leading us, e.g., to consider twisted flat
connections on C and Σ in Sect. 10 rather than ordinary flat connections.
(Twisted connections on C also appeared in [13], and this was a useful clue
which helped us to find our sign prescription.) While this scheme leads
to a consistent picture both mathematically and physically, we cannot
say that we have really understood from physical first principles why it
works so well. It would be very good to have a better understanding of

5 One way of thinking about this is that the K-fold covering Σ could arise as a non-reduced

degeneration of an NK-fold covering, where the sheets coalesce in groups of N . Readers
who prefer to think in terms of M-theory fivebranes might say that we consider the theory
of NK fivebranes wrapped on C ⊂ T ∗C, and then move to a point of the Coulomb branch
represented by N fivebranes wrapped on Σ ⊂ T ∗C.
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how our sign rule arises from the physics of the six-dimensional theory
S[g].

10. In this paper, we consider spectral networks Wϑ associated to a phase ϑ
and a point u of the Coulomb branch. It is natural to ask whether every
spectral network W (modulo the natural notion of equivalence described
in Sect. 10.6) arises as Wϑ for some (u, ϑ). If the answer is “no,” can we
classify those spectral networks which do occur?

11. It is natural to ask whether the framed BPS degeneracies can be catego-
rified. We have done some work along these lines with E. Witten, and we
hope to return to it.

12. The networksWϑ we study on C are made up of “S-walls,” the loci where
framed 2d–4d BPS state degeneracies jump. They depend on a point u
of the Coulomb branch B, so really Wϑ = Wϑ(u) although we usually
do not write this dependence explicitly. On the other hand, very similar
networks Dϑ appear directly on B: they are made up of “K-walls,” the
loci where 4d framed BPS state degeneracies jump. Dϑ can be studied
by methods very similar to the methods we employ here for Wϑ. In par-
ticular, this gives another scheme for computing the pure 4d BPS state
degeneracies Ω(γ), parallel to what we do here for μ(a). (This has also
been pointed out by Kontsevich–Soibelman.) Networks very similar to Dϑ

have appeared previously in the mirror symmetry literature, e.g. [23–27].
The family of networksWϑ(u) on C and the single network Dϑ on B

can be unified into a network DWϑ on B×C. We believe that this is really
the most natural perspective, although we do not adopt it explicitly in
this paper.

13. We give a recipe for determining the BPS degeneracies Ω(γ) from a degen-
erate spectral network, and work out several examples, but not many. It
would be interesting to use spectral networks to study the spectrum of
concrete theories, beyond the few examples we consider in Sect. 8. One
obvious possibility would be to consider the standard SU(K) gauge theo-
ries coupled to fundamental hypermultiplets. Even the BPS spectrum of
the pure SU(3) theory has been the source of some controversy; in this
paper, we study it at strong coupling but do not analyze the more intri-
cate weak-coupling spectrum. It would be interesting to compare results
obtained from spectral networks with those in [28–31].

14. In the degenerate spectral networks, we do examine and we do not work
out any example where the resulting |Ω(γ)| > 2, which would suggest
the possibility of higher spin states in the BPS spectrum. It would be
interesting to find a degenerate spectral network which gives such higher
spin states.

15. In this paper, we have made some significant progress in the determina-
tion of BPS spectra for a large class of N = 2 field theories. We hope
that these techniques can shed light on some broader questions of general
interest, such as to what extent the BPS spectrum uniquely determines
a theory, and whether one can always engineer a theory to produce a
desired (consistent) BPS spectrum.
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Finally, we mention that in a companion paper [32], we apply the tech-
niques of this paper to make a more direct connection to the work of Fock and
Goncharov on higher Teichmüller theory [13]. We also find a formula for the
spectrum generator for a special class of spectral networks, valid for all K ≥ 2;
this gives an implicit determination of the BPS spectrum in the corresponding
theories.

2. A Brief Review of Theories of Class S

In [1–3], a large and interesting class of N = 2, d = 4 theories was stud-
ied. These theories, which we call “theories of class S,” can be constructed by
compactification and twisting of N = (2, 0), d = 6 theories. Here, we quickly
review the basic features of this construction.

Fix a compact Riemann surface C, with s punctures at points s1, . . . , ss.
Also fix a Lie algebra g of ADE type. In this paper, we will focus on the
case g = AK−1. We consider the N = (2, 0) theory S[g] compactified on C,
and partially twisted as described in [3]. S[g] admits half-BPS codimension-2
defects; we put one such defect Dn at each puncture sn.

The main statements of this paper will be independent of the choice of
which type of defect we put at each puncture, but it is useful to have an exam-
ple in mind to fix ideas. There is a class of regular defects labeled by Young
diagrams with K boxes [2,3]. In particular, we can consider a full regular
defect, corresponding to the Young diagram with a single row. Each full defect
admits a natural mass deformation depending on K complex parameters m(i)

n ,
with

∑K
i=1m

(i)
n = 0, which we are free to fix arbitrarily.

In any case, whatever collection D of defects we choose, the compactifi-
cation procedure yields an N = 2, d = 4 theory S[g, C,D]. This theory is our
main object of study.

The Coulomb branch of S[g, C,D] consists of tuples (φ2, . . . , φK), where
φr is an r-differential on C (i.e. a section of K⊗r

C ), which is holomorphic away
from the punctures sn, and has some prescribed singular behavior at the sn.
For example, if we choose Dn to be a full defect, then the prescription is
that for each r, φr has a pole of order r at sn, with residue determined by
a combination of the parameters m(i)

n [2,3]. Having fixed (φ2, . . . , φK), the
Seiberg–Witten curve is given by

Σ =

{

λ : λK +
K∑

r=2

φrλ
K−r = 0

}

⊂ T ∗C. (2)

Σ is a K-fold branched cover of C. Since Σ sits inside T ∗C, it carries a canon-
ical 1-form, the restriction of the Liouville 1-form, which by slight abuse of
notation we will also call λ.

In this paper, it will be crucial to introduce a half-BPS surface defect into
S[g, C,D]. There is a canonical such defect Sz [4,5,33], depending only on a
point z ∈ C (and on a representation of g, but since we choose g = AK−1 we
can just take the fundamental representation.) When z is generic, the defect
Sz has K distinct massive vacua, which corresponds to the K solutions of (2)
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at z; locally, we may denote these by z(1), . . . , z(K). From the point of view
of the d = 6 theory S[g], Sz is obtained by inserting a surface defect at the
point z.

3. Geometric Description of BPS States

3.1. 4d BPS States

Now we recall the geometric description of BPS states in S[g, C,D].
All such BPS states arise from BPS strings of the six-dimensional S[g],

which are extended along C and hence look like point particles in the remain-
ing 3 + 1 dimensions. Roughly there are

(
K
2

)
distinct kinds of BPS string, but

the topological twisting and compactification makes the story slightly trickier,
as we now recall.

An oriented segment of string passing through a point z ∈ C is labeled
by the choice of a pair of distinct sheets of the K-fold covering Σ → C, i.e.
two solutions λ(i), λ(j)(i �= j) of the degree-K polynomial equation (2), in
a neighborhood of z. To keep track of this discrete label, we use the term
“ij-string” rather than just “string.” Reversing orientation exchanges ij-
strings and ji-strings.

The N = 2 central charge Z of an ij-string is obtained by integrating the
complex 1-form 1

π (λ(i) − λ(j)) along the string. The mass M of an ij-string is
obtained by integrating the real density 1

π |λ(i) − λ(j)|.
When is such a string BPS? Introduce a local coordinate on C by w(ij) =∫

λ(i)−λ(j), and then define an ij-trajectory with phase ϑ to be a straight line
in the w(ij)-coordinate, with inclination ϑ, i.e. a line along which

Im(e−iϑẇ(ij)) = 0. (3)

An ij-trajectory is naturally oriented: the positive direction is the direction in
which Re(e−iϑw(ij)) increases. Reversing orientation of an ij-trajectory gives
a ji-trajectory. An ij-string is BPS if and only if it is stretched along an ij-
trajectory with some phase ϑ; we call such a string a “BPS string of phase
ϑ.” We see at once that for BPS strings |Z| = M as expected. The phase ϑ
determines which supercharges the BPS string preserves.

An ij-string can end in two ways. First, it can end on an (ij)-branch
point, i.e. a point where λ(i) − λ(j) = 0.6 Second, it can end on a junction
where an ij-string, jk-string and ki-string meet (all oriented into the junc-
tion.) In the latter case, for the combined web of strings to be BPS, all three
strings must be BPS strings with the same phase ϑ.

BPS states in S[g, C,D] arise from webs of BPS strings, such that all
strings in the web have finite total central charge. This condition means that
the strings are either have closed loops or have both ends on branch points or
junctions. We call these finite webs.

Some possible topologies for finite webs are shown in Fig. 2.

6 We use the notation (ij) for the branch points but ij for the trajectories; the (ij) is meant
to denote the transposition associated to the branch point, which exchanges sheet i and
sheet j of the covering Σ → C. In particular (ij) = (ji).
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Figure 2. Some possible topologies for finite webs of BPS
strings. An orange cross with label (ij) denotes an (ij)-branch
point. Wherever a string with label ij appears, it could equally
well have been represented by a string with label ji and the
opposite orientation (color figure online)

The charges of the BPS states are determined by the topology of the
webs, in the following way. An ij-string stretched along an oriented path p
on C can be lifted in a canonical way to pΣ, a union of oriented curves on Σ:
namely, pΣ is the union of the lift p(i) of p to the ith sheet and the lift −p(j) of
−p(p with reversed orientation) to the jth sheet. Letting p run over the strings
in a finite web N , the union of the pΣ is a closed 1-cycle NΣ on Σ. NΣ has
a homology class [NΣ] ∈ Γ := H1(Σ; Z). This [NΣ] is the charge of the BPS
state.7

The central charge of a finite web N is the sum of the central charges of
the strings in N ; this gives a simple result which depends only on γ = [NΣ],

Zγ =
1
π

∮

γ

λ. (4)

To determine the BPS spectrum of the theory, in particular, the second
helicity supertrace Ω(γ), one should in principle proceed by quantizing the
zero modes of each finite web. This would give some definite formula for the
contribution of each finite web to Ω(γ). In practice, such a quantization has not
been completely carried out, and we will not do it here either.8 Rather, we will

7 The precise charge lattice of the theory S[g, C, D] is actually a subquotient of H1(Σ; Z),
as explained in [3]. Nevertheless, in this paper, we consider Γ = H1(Σ; Z) for simplicity.
8 In [3] we used wall-crossing to determine Ω(γ) in the case K = 2, reproducing earlier

results of [6]. That case is particularly simple since there are only two possible topologies
for finite webs: one can either have a single string connecting two branch points or a single
closed loop. These topologies contribute Ω(γ) = +1 and Ω(γ) = −2, respectively. We will
reproduce this result yet again in Sect. 5.7 below.
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Figure 3. Some possible topologies for finite open webs of
BPS strings, representing BPS solitons on the surface defect
Sz. Each finite open web includes one string that ends on
the point z ∈ C. An orange cross with label (ij) denotes an
(ij)-branch point (color figure online)

explain a more indirect route, which determines Ω(γ) using the interactions
between 2d and 4d BPS states.

One could also ask about extending Ω(γ) to an object which keeps track
of the spins of the BPS multiplets appearing. Such “refined BPS degeneracies”
and “protected spin characters” have been considered in the N = 2 context
e.g. in [9,34–36,21]. We will not consider that extension in this paper.

3.2. Solitons

In the presence of the canonical surface defect Sz, there is a second kind of
BPS state in the story: we can consider BPS particles which are bound to the
defect and interpolate between distinct vacua. We call these particles solitons.

As described in [5], BPS solitons are also realized geometrically in terms
of finite webs of strings. The main difference is that now we consider webs in
which one of the strings ends on the point z, which we call finite open webs.
See Fig. 3.

Let N denotes a finite open web. As for the pure 4d case, the charge of
the corresponding BPS soliton is determined by the topology of the web as
follows. Let NΣ denotes the union of the lifts of all strings in N to Σ. Suppose
the string of N ending on z is an ij-string oriented out of z. Let z(i) and z(j)

be the preimages of z on the ith and jth sheets of Σ. NΣ is a 1-chain with
boundary:

∂NΣ = z(j) − z(i). (5)

We let Γij(z, z) denotes the set of relative homology classes on Σ obeying (5),
and

Γ(z, z) = ∪i,jΓij(z, z). (6)

Thus, the charges [NΣ] of BPS solitons on Sz are elements of Γ(z, z), and in
fact of the smaller set ∪i,j,i �=jΓij(z, z).
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The central charges of BPS solitons are given by a formula analogous to
(4): for any ā ∈ Γ(z, z) we have9

Zā =
1
π

∫

ā

λ. (7)

There is a BPS index μ(ā) ∈ Z which counts 2d–4d BPS states of charge ā,
defined as a trace over the Hilbert space of 1-particle BPS states [37,38],

μ(ā) = TrH1,BPS
Sz,ā

F eiπF , (8)

where F is a fermion number operator. In principle, μ(ā) could be determined
by quantizing the zero modes of the BPS strings. In practice, as with Ω(γ),
we will take a more indirect route in this paper.

We hasten to warn the reader that there are two important subtleties in
the definition (8). The first subtlety is addressed in Sect. 3.5: to define F prop-
erly, we will need to keep track of slightly more information about the 2d–4d
BPS states, by extending the charge ā to a new “charge” denoted a. It will
turn out that μ really depends on a, not on ā. The second subtlety is that the
space of 1-particle BPS states is only well defined when the parameters are not
on a wall of marginal stability. At these walls, μ(a) can jump. In particular, if
ā ∈ Γ(z, z), then generically, if we move z holding all other parameters fixed,
and apply the natural parallel transport to the relative homology cycle ā, μ(a)
remains constant. However, there are walls on C across which μ(a) jumps, and
in this case, we will need to define limits μ±(a) as z approaches the wall from
either side. This will be important in Sect. 6.

3.3. Framed 2d–4d BPS States

Our approach to the BPS spectrum will involve an auxiliary device, the framed
BPS states. These were introduced in the pure 4d context in [21], and in the
2d–4d context in [5]. Our interest in this paper is in the 2d–4d version.

Consider a pair of points z1, z2 in C, and a path ℘ in C from z1 to z2.
Also fix a parameter ϑ ∈ R. These data determine a pair of surface defects Sz1

and Sz2 in S[g, C,D] along with a supersymmetric interface L℘,ϑ between the
two surface defects. The interface L℘,ϑ preserves 2 out of the 4 supercharges
preserved by the surface defects; which 2 supercharges are preserved is deter-
mined by the parameter eiϑ, as explained in [5].10 It is generally believed that
the defect L℘,ϑ does not depend on the precise path ℘ but only on its homot-
opy class. In the present paper, we will take this as an assumption, and will
find a very consistent picture (although of course the quantities we study are
somewhat protected by supersymmetry); see e.g. [39] for some related discus-
sion. Indeed, we will find that the constraint of homotopy invariance is very
strong.

9 In [5] we denoted elements of Γij(z, z) by γij , but we are now deprecating that notation

in favor of ā. See Appendix C for a summary of conventions.
10 The parameter which was called ζ in [5] is here given by ζ = eiϑ.
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Figure 4. Two surface defects connected by an interface.
(This picture lives in the three-dimensional space where the
field theory S[g, C,D] is defined; we have factored out the
time direction.)

Now we study the 4d theory S[g, C,D] with the defects Sz1 and Sz2

inserted on two half-lines {x1 = 0, x2 = 0, x3 > 0} and {x1 = 0, x2 = 0, x3 < 0}
respectively, separated by the interface L℘,ϑ (see Fig. 4).

We then define (2d–4d) framed BPS states to be states of the 1-particle
Hilbert space H1

L℘,ϑ
of this combined system which are fully supersymmetric,

i.e. preserve the 2 supercharges present in the system.
The 2d–4d framed BPS states should be thought of as different “vacuum

states” of the interface L℘,ϑ. To make this statement sharp, however, we need
to impose a constraint. We say ϑ is generic if there is no charge γ ∈ Γ with
e−iϑZγ ∈ R−. We say the pair (℘, ϑ) is generic if ϑ is generic and also there is
no charge ā ∈ Γ(z1, z1) or ā ∈ Γ(z2, z2) with e−iϑZā ∈ R−, where z1, z2 are the
initial and final points of ℘. When the pair (℘, ϑ) is generic, the 2d–4d framed
BPS states are indeed localized near the interface, in the sense that they do
not mix with the continua of unframed 2d–4d or 4d BPS states.

The classification of 2d–4d framed BPS states by charges is similar to
that for the 2d–4d unframed BPS states in Sect. 3.2. Instead of paths on Σ
between two lifts z(i), z(j) of a single point z, now we consider paths on Σ from
a lift z(i)

1 of z1 to a lift z(j)
2 of z2. We let Γij(z1, z2) denotes the set of relative

homology classes represented by such paths, and Γ(z1, z2) = ∪i,jΓij(z1, z2).11

There is a “framed BPS index” Ω(L℘,ϑ, ā; y) counting 2d–4d framed BPS
states with charge ā ∈ Γij(z1, z2). It was defined in Sect. 4.4 of [5]:12

Ω(L℘,ϑ, ā; y) = TrH1,BPS
L℘,ϑ

,ā eiπF (−y)J . (9)

In this paper, we will concentrate on the indices at y = 1, which will be denoted
by Ω

′
(L℘,ϑ, ā). We leave the generalization of our story to arbitrary y as an

important open problem.

11 In [5], we denoted elements of Γ(z1, z2) by γij′ , but we are now deprecating that notation

in favor of ā. See Appendix C for a summary of conventions.
12 As in [5], F denotes a generator of u(1)V of the 2d (2, 2) supersymmetry algebra preserved
by L℘,ϑ, and J = 2J12 + 2I12 is a linear combination of rotation and su(2)R generators

of the 4d N = 2 supersymmetry. There is a subtlety here which we address in Sect. 3.5: to
define F properly we will need to keep track of slightly more information about the 2d–4d
framed BPS states, by extending the charge ā to a new “charge” denoted a. It will turn out
that Ω really depends on a, not ā.



Vol. 14 (2013) Spectral Networks 1657

Framed 2d–4d BPS states admit a geometric description somewhat simi-
lar to those given above for unframed 2d–4d BPS states. We will not describe
it explicitly here.13

3.4. Enhanced Degeneracies

In the presence of a surface defect Sz, there is an important enhancement to
the 4d BPS degeneracies Ω(γ) [5]: they are replaced by numbers ω(γ, ā) ∈ Z

for any γ ∈ Γ and ā ∈ Γ(z1, z2). ω is “linear” in its second argument, i.e. it
obeys

ω(γ, ā+ b̄) = ω(γ, ā) + ω(γ, b̄) (10)

when ā+ b̄ is defined (that is, when the end of ā coincides with the start of b̄).
Moreover, ω obeys

ω(γ, ā+ γ′)− ω(γ, ā) = Ω(γ)〈γ, γ′〉 (11)

for γ′ ∈ Γ. In particular, this equation is sufficient to determine Ω if we know
ω. (More precisely, it determines Ω(γ) for all γ not in the kernel of 〈·, ·〉, i.e.
all γ which are not pure flavor charges.)

The ω(γ, ā) are a bit subtle to interpret directly in terms of traces over
Hilbert spaces. In [5], the most general interpretation we found was in terms
of a Hilbert space of “halo states” (analogues of the ones studied by Frederik
Denef14), which induces 2d–4d wallcrossing. The individual states in this
Hilbert space may be interpreted either as 4d particles carrying charge γ or
as 2d particles living on the surface defect and carrying the same charge. This
fact will become relevant in one of our concrete examples, in Sect. 8.3.

3.5. A Problem of Signs

We must now confront a pesky but important detail.
There is an ambiguity in (9): the generators F and J are well defined

only up to c-number shifts. As a result, the index Ω
′
(L℘,ϑ, ā) suffers from some

potential ambiguity (which even depends on ℘). We can partially fix this ambi-
guity by requiring that Ω

′
(L℘,ϑ, ā) is real, but this still leaves the possibility of

an integer shift of F or J . Such a shift would reverse the sign of Ω
′
(L℘,ϑ, ā).

Therefore, a priori, we would expect that we need some additional data in
order to fix Ω

′
(L℘,ϑ, ā) uniquely. A similar ambiguity afflicts the 2d–4d BPS

degeneracies μ(ā): the definition (8) depends on the choice of generator F , and
changing this choice can change μ(ā) by a sign.

There is no difficulty in fixing these ambiguities locally in any particular
corner of parameter space. In this paper, though, we will mainly be concerned
with phenomena which occur when parameters are varied, sometimes over long
distances in parameter space. It is, therefore, desirable to have a global way
of fixing these sign ambiguities, which is consistent with all of the physical
constraints, and ideally one that does not depend on any arbitrary choices.

13 In the case K = 2 (i.e. g = A1) we did explain the relevant objects in [21], where we
called them “millipedes.”
14 See [21,40–42] for a description of the halo approach to wall-crossing.
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Figure 5. Two tangent directions at z determined by a finite
web N : z̃1 points “into” the finite web while z̃2 points “away”

We have found such a rule, which we now describe. It would be desirable to
give a first-principles derivation of this rule from the physics of the (2, 0) theory
S[g] in six dimensions.

It will be useful to keep track of a bit more information about the finite
webs N representing 2d–4d BPS states. For any real surface S, let S̃ denote
the circle bundle of tangent directions to S. For z ∈ S we will let z̃ denote a
lift of z to S̃, that is, a choice of tangent direction at z. Any smooth path ℘
on S carries a natural tangent direction field and hence has a canonical lift
to a path ℘̃ on S̃; we will use this lift often. There is a distinguished class
H ∈ H1(Σ̃; Z), represented by a path which winds once around a fiber of Σ̃
(the choice of fiber does not matter).

By smoothing out the junctions slightly, we can deform NΣ into a finite
union of smooth paths on Σ, which thus has a canonical lift to a path NΣ̃ on
Σ̃. Let z̃1 and z̃2 denote the tangent directions to C at z shown in Fig. 5. Let
z̃
(i)
1 be the lift of z̃1 to the ith sheet of Σ̃, and similarly define z̃(j)

2 . The path
NΣ̃ then has

∂NΣ̃ = z̃
(j)
2 − z̃

(i)
1 . (12)

Let Γ̃(z̃1, z̃2) denote the set of relative homology classes on Σ̃ obeying (12),
modulo shifts by the class 2H. There is an exact sequence

0→ Z/2Z→ Γ̃(z̃1, z̃2)→ Γ(z1, z2)→ 0. (13)

The relative homology class [NΣ̃] ∈ Γ̃(z̃1, z̃2) thus keeps track of one extra
Z/2Z worth of information beyond that in [NΣ] ∈ Γ(z, z). There can be differ-
ent open finite BPS webs N carrying the same charge [NΣ] but with different
lifts [NΣ̃]; see Fig. 6 for an example.

Now we can explain our proposal for how the sign of μ behaves. Given
a charge ā ∈ Γ(z, z), μ(ā) is not well defined (although it is well defined up
to sign). In order to make it well defined, we propose that we must choose a
class a ∈ Γ̃(z̃1, z̃2) which projects to ā in (13). Having done so, there should be
a way of fixing the ambiguity of F to obtain a well-defined BPS degeneracy,
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Figure 6. Two open finite BPS webs N on the same patch
of C, drawn displaced from one another for clarity. These two
webs carry the same charge [NΣ] but have different lifts [NΣ̃].
Informally, one can say that the lifts of these two webs “differ
by one unit of winding”

which we call μ(a). Two choices a, a′ differ by a winding number w(a, a′); the
corresponding μ should obey

μ(a)/μ(a′) = (−1)w(a,a′). (14)

(Of course, knowing |μ(a)| for all a and knowing (14) is still not enough by
itself to determine μ. Later in this paper we will fix one more convention, in
(23), after which we will be able to calculate μ(a) for all a.)

A similar discussion applies to Ω
′
(L℘,ϑ, ā), but with the extra complica-

tion that now we have to discuss both the dependence on the path ℘ and on
the charge ā. First suppose we fix the path ℘ from z1 to z2, with initial tangent
vector z̃1 and final tangent vector z̃2. Then, we propose that the situation is
strictly parallel to our discussion of μ above: the degeneracies Ω

′
(L℘,ϑ, ā) are

not well defined (although they are well defined up to sign), and what is really
defined is an integer Ω

′
(L℘,ϑ, a), where a ∈ Γ̃(z̃1, z̃2) is a lift of ā ∈ Γ(z1, z2).

The dependence on the choice of lift is given by

Ω
′
(L℘,ϑ, a)/Ω

′
(L℘,ϑ, a

′) = (−1)w(a,a′). (15)

Now let us also consider the dependence on ℘. Recall from Sect. 3.3 that
the line defect L℘,ϑ depends only on the homotopy class of the path ℘. Never-
theless, the prescription for fixing the sign of Ω

′
(L℘,ϑ, a) can depend on more

information than just the homotopy class. We propose that the sign actually
depends on the homotopy class of the lift of ℘ from C to the bundle of tangent
directions C̃. For two paths ℘, ℘′ whose lifts to C̃ have the same initial and
final endpoints, there is a mod-2 winding number w(℘, ℘′) (defined similarly
to the winding number we considered above for paths on Σ). We propose that
for such paths we have

Ω
′
(L℘,ϑ, a)/Ω

′
(L℘′,ϑ, a) = (−1)w(℘,℘′). (16)

We summarize this proposal by saying that the framed 2d–4d BPS degenera-
cies of the interface L℘,ϑ are not quite homotopy invariants of ℘, but rather
are “twisted homotopy invariants” of ℘.
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4. Basics of Framed 2d–4d Indices

In this section, we study the basic properties of the indices Ω
′
(L℘,ϑ, a) count-

ing framed 2d–4d BPS states. We will organize these indices into a natural
generating function F (℘, ϑ) which is the main player in this paper.

Throughout this section we assume (℘, ϑ) is generic, in the sense
explained in Sect. 3.3.

4.1. Generating Functions of Framed 2d–4d Indices

The fundamental properties of Ω
′
(L℘,ϑ, a) are most elegantly expressed in

terms of a formal generating function F (℘, ϑ).
The idea is to introduce a formal variableXā for each charge ā ∈ Γ(z1, z2),

and then define F (℘, ϑ) =
∑

ā∈Γ(z1,z2)
Ω

′
(L℘,ϑ, ā)Xā. As we have noted in

Sect. 3.5, though, we need to take some care here to deal with sign ambi-
guities. Therefore, more precisely, we introduce formal variables Xa for each
a ∈ Γ̃(z̃1, z̃2), subject to the relation that if a and a′ project to the same class
ā ∈ Γ(z1, z2) then we have

Xa/Xa′ = (−1)w(a,a′). (17)

We then choose one representative a ∈ Γ̃(z̃1, z̃2) for each ā ∈ Γ(z1, z2), and
define

F (℘, ϑ) :=
∑

ā∈Γ(z1,z2)

Ω
′
(L℘,ϑ, a)Xa. (18)

F (℘, ϑ) is independent of our choices of representatives a, thanks to (15), (17).

4.2. Formal Products and Composition

Suppose a and b are the relative homology classes of two open paths on Σ̃.
If the end of a coincides with the start of b, we let a + b denote the relative
homology class of the concatenation of a and b. Then we introduce a product
law on our formal variables:

XaXb =

{
Xa+b if the end of a is the start of b,
0 otherwise.

(19)

We can now state one of the key properties of the generating functions
F (℘, ϑ): if ℘ and ℘′ are paths on C which can be concatenated to make a
smooth path ℘℘′ (with the end of ℘ attached to the start of ℘′), and if both
(℘, ϑ) and (℘′, ϑ) are generic, then

F (℘, ϑ)F (℘′, ϑ) = F (℘℘′, ϑ). (20)

Here is the physical reason for (20). We consider three surface defects
Sz1 , Sz2 , Sz3 , connected by two interfaces L℘,ϑ and L℘′,ϑ, as shown in Fig. 7.
The Hilbert space H of framed BPS states in this situation should be inde-
pendent of the separation between the interfaces. For large separations, since
the framed BPS states are localized near the interfaces, H is a tensor product
between a space of framed BPS states for the interface ℘ and one for the inter-
face ℘′. On the other hand, by considering the limit of zero separation, we see
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Figure 7. Three surface defects connected by two interfaces.
(This picture lives in the three-dimensional space where the
field theory S[g, C,D] is defined; we have factored out the
time direction)

that H is the space of framed BPS states for the interface ℘℘′. Equating these
two descriptions of H gives (20).

(One could wonder whether there should be a ± sign on the right side
of (20); this amounts to asking whether our rules for fixing the signs of
F (℘, ϑ), F (℘′, ϑ) and F (℘℘′, ϑ) are compatible with one another. Fortunately,
it will follow from our explicit rules below that there is no sign needed.)

4.3. The Spectral Network Wϑ

Our next aim is to explain how F (℘, ϑ) can actually be computed. As it turns
out, the answer depends crucially on how ℘ meets a certain codimension-1
locus Wϑ ⊂ C, which we call a spectral network.

We say that a point z ∈ C supports those charges ā ∈ Γ(z, z) for which
Zā(z)/eiϑ ∈ R−. Define Wϑ to be the set of z ∈ C such that z supports some
ā ∈ Γ(z, z) with μ(a) �= 0 (for either lift a of ā).

Wϑ is a codimension-1 network on C, the union of segments which we
call S-walls. The S-walls can end at branch points or at special points which
we call joints, and can also asymptote to the punctures of C. We will assume
that along any S-wall, a generic point supports exactly one charge ā.

There are two ways in which this genericity could be violated. One is
for ϑ to be non-generic: in that case, some S-walls will support both a charge
ā ∈ Γij(z, z) and a charge b̄ ∈ Γji(z, z). This phenomenon is crucial for our
story and will be analyzed in Sect. 6. For now, however, we are assuming
ϑ generic, so we explicitly exclude this possibility. The second way in which
genericity could be violated is less common: it might happen accidentally that
e.g. λi − λj = λk − λl on a whole patch of C. In this case a single wall could
support both a charge ā ∈ Γij(z, z) and b̄ ∈ Γkl(z, z). If i, j, k, l are all dis-
tinct, all our discussion in this section has a straightforward extension to that
case; if they are not all distinct the situation is more subtle. In any case, from
now on we assume that a generic point along an S-wall supports exactly one
charge ā.

In this case, all points of any single S-wall support “the same” charge
ā, in the sense that if z, z′ are generic points on a common wall, the natural
parallel transport along the wall takes the charge ā ∈ Γ(z, z) supported at z
into the charge ā′ ∈ Γ(z′, z′) supported at z′. If we choose a charge a ∈ Γ̃(z̃, z̃)
lifting ā as discussed in Sect. 3.5, then the parallel transport also takes a to
an a′ ∈ Γ̃(z̃′, z̃′) lifting ā′.
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Now recall the soliton degeneracies μ(a) ∈ Z, which are defined for any
a ∈ Γ̃(z̃, z̃), so long as z ∈ C does not lie on a wall of marginal stability.15 μ(a)
does not depend on the parameter ϑ, and its definition does not involve the
spectral network Wϑ. In our computation of F (℘, ϑ) below, though, we will
find that the μ(a) which are really important are the ones where ā ∈ Γ(z, z)
is supported at z—or said otherwise, we will be mainly interested in evaluat-
ing μ(a) along the S-walls supporting ā. We will also find below that μ(a) is
constant along each S-wall supporting ā; with this in mind we immediately
simplify our notation by letting μ(a, p) denote the constant value of μ(a) along
a wall p supporting ā.

4.4. Computing F (℘, ϑ)
Now we can describe how F (℘, ϑ) is computed. The recipe we will summarize
here follows from the 2d–4d wall-crossing formula of [5].

The simplest situation occurs when ℘ does not crossWϑ anywhere. Define

D(℘) =
K∑

i=1

X℘(i) , (21)

where the ℘(i) are the canonical lifts of ℘ to the K sheets of Σ̃. Then if
℘ ∩Wϑ = ∅ we have simply

F (℘, ϑ) = D(℘). (22)

In other words, interfaces corresponding to short enough paths ℘ on C just
support K framed BPS states, one for each vacuum of the surface operator.

The more interesting question is how to compute F (℘) if ℘ does cross
Wϑ. Because of the composition property (20), it is enough to answer this
question in the case where ℘ crosses Wϑ exactly once.

So suppose ℘ crossesWϑ at a point z supporting a charge ā ∈ Γij(z, z). In
this case, ℘ is divided into two subpaths ℘+ and ℘−, which we deform slightly
to obtain ℘′

+ and ℘′
− as shown in Fig. 8.

Then, we have16

F (℘, ϑ) = D(℘) +D(℘′
+)(μ(a)Xa)D(℘′

−). (23)

The second term is the interesting one: it says that when ℘ crossesWϑ, F (℘, ϑ)
includes paths which are segments of lifts of ℘ combined with “detours” along
the lifts of BPS solitons. (The point of our deformation from ℘± to ℘′

± here
was to arrange that the second term makes sense, i.e. that D(℘′

+) and D(℘′
−)

can be concatenated with the soliton charge a.)
For later convenience, we introduce a second notation for (23). Let z̃

denote the tangent vector to ℘ at z. Let t1 be the shortest arc running from z̃

15 To reduce potential confusion we emphasize that the walls of marginal stability are not
the same thing as the S-walls.
16 The factor μ(a)Xa appearing in (23) is independent of the choice of lift a of ā, because
of (14), (17).
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Figure 8. A path ℘ crossing an S-wall is locally divided into
two pieces ℘±. We deform ℘± slightly to paths ℘′

±, so that
the final tangent vector of ℘′

+ and the initial tangent vector of
℘′

− point along the S-wall, in opposite directions. The paths
℘′

± are shown slightly displaced from the wall for clarity

to the initial point of a, in the fiber of Σ̃ over z. Similarly, let t2 be the shortest
arc running from the final point of a to z̃, in the fiber of Σ̃ over z; and define

az̃ = t1 + a+ t2. (24)

Note that t1, t2 are well-defined because the intersection of ℘ and Wϑ is
assumed to be transverse. With this definition (23) can be rewritten as

F (℘, ϑ) = D(℘+)(1 + μ(a)Xaz̃
)D(℘−). (25)

The formula (25) can be interpreted as a kind of wall-crossing formula for
the framed 2d–4d BPS spectrum: it implies that when an endpoint of the path
℘ is moved across an S-wall, F (℘, ϑ) jumps by multiplication with a factor
(1 + μ(a)Xaz̃

). This is the way that this formula appeared in [5].

5. The Spectral Network Wϑ at Fixed ϑ

In Sect. 4, we have given a recipe for computing the generating functions
F (℘, ϑ). The recipe depends on the data of the spectral network Wϑ and the
framed 2d–4d BPS degeneracies μ(·, p) along each wall p of Wϑ. To make this
recipe explicit, then, we need to be able to determineWϑ and μ. In this section
we explain how this can be done.

Throughout this section, we continue to assume that ϑ is generic, in the
sense explained in Sect. 3.3.

5.1. Walls as Trajectories

Suppose the S-wall p supports the charge ā ∈ Γij (by which we mean more
precisely that every point z ∈ p supports a charge ā(z) ∈ Γij(z, z)). Then,
e−iϑZā is real everywhere along p. In particular, since dZā = 1

π (λ(j) − λ(i)),
this means that p is an ij-trajectory with phase ϑ, in the sense of (3).

Therefore, the walls inWϑ obey differential equations, and in fact exactly
the same equations which are obeyed by the BPS strings which make up both
the 2d and the 4d BPS states. This is not a coincidence, as we will see below.
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Figure 9. The local picture around a joint where exactly two
S-walls meet. We also show two paths ℘, ℘′ on C which are
related to one another by regular homotopy across the joint

By virtue of being an ij-trajectory, p is naturally oriented. As we move
along p in the positive direction, the BPS mass |Zā| = −e−iϑZā increases.

5.2. Joints and Wall-Crossing for μ

Define a joint to be a point z ∈ C where at least two S-walls intersect. A joint
thus supports at least two charges, say ā ∈ Γij(z, z) and b̄ ∈ Γkl(z, z).

The simplest situation arises if the joint z supports only these two
charges, so exactly two S-walls meet there. This can only occur if i �= l and
j �= k. In that case, the local picture around z is as shown in Fig. 9.

Now let us consider what happens to the soliton degeneracies μ as we
move across a joint. As it turns out, we can answer this question completely
by considering the defect operators attached to the paths ℘, ℘′ on C shown in
Fig. 9. The requirement of homotopy invariance says that

F (℘, ϑ) = F (℘′, ϑ). (26)

To understand what this really means, let us evaluate both sides using the
rules of Sect. 4.4, and then deform all the resulting paths on Σ̃ so that they
run directly into the joint z, with a common tangent vector z̃ at z. Then we
obtain

D(℘+)(1 + μ(a, p)Xaz̃
)(1 + μ(b, q)Xbz̃

)D(℘−)
= D(℘+)(1 + μ(b, q′)Xbz̃

)(1 + μ(a, p′)Xaz̃
)D(℘−). (27)

The paths az̃ and bz̃ are not composable in either direction (since az̃ runs from
z̃(i) to z̃(j) while bz̃ runs from z̃(k) to z̃(l)), so we have Xaz̃

Xbz̃
= Xbz̃

Xaz̃
= 0.

Considering the terms linear in Xaz̃
and Xbz̃

in (27) then gives

μ(a, p) = μ(a, p′), (28)
μ(b, q) = μ(b, q′). (29)

In short, when an S-wall of type ij and an S-wall of type kl meet transversely,
they cross without any changes in μ.

A more interesting situation arises when an S-wall of type ij and an
S-wall of type jk meet transversely. Suppose the two walls support charges
ā ∈ Γij(z, z) and b̄ ∈ Γjk(z, z). (Note that in this case we must have i �= k;
otherwise the two walls would obey the same differential equation, and it would
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Figure 10. The local picture around a generic collision
between three S-walls

be impossible for them to intersect transversely.) In this case, the joint z sup-
ports both ā and b̄, which are composable since z(j) is both the end of ā and
the start of b̄. Hence the joint also supports a third charge c̄ = ā+ b̄ ∈ Γik(z, z),
and so there could be a third S-wall meeting z. When μ is generic enough, the
picture is as shown in Fig. 10.17

The condition

F (℘, ϑ) = F (℘′, ϑ) (30)

becomes

D(℘+)(1 + μ(a, p)Xaz̃
)(1 + μ(c, q)Xcz̃

)(1 + μ(b, r)Xbz̃
)D(℘−)

= D(℘+)(1 + μ(b, r′)Xbz̃
)(1 + μ(c, q′)Xcz̃

)(1 + μ(a, p′)Xaz̃
)D(℘−). (31)

Using Xaz̃
Xbz̃

= (−1)w(az̃+bz̃,cz̃)Xcz̃
and Xbz̃

Xaz̃
= 0, (31) implies

μ(a, p′) = μ(a, p), (32)
μ(b, r′) = μ(b, r), (33)

μ(c, q′) = μ(c, q) + (−1)w(az̃+bz̃,cz̃)μ(a, p)μ(b, r). (34)

The result (34) says that the number of solitons carrying charge c̄ changes
as we move the modulus z of the surface defect Sz across the joint. This
reflects the phenomenon of decay/formation of bound states between solitons
of charges ā and b̄. Indeed (34) is the same wall-crossing formula which was
discovered in [38] in the context of pure 2d theories, and was reinterpreted in
the 2d–4d context in [5]. Our derivation of it here, using consistency of the
framed 2d–4d BPS spectrum, is essentially the same as the one given in [5].

There are a few important special cases which deserve separate discus-
sion. One arises when μ(c, q) = 0, so that we actually have only two S-walls
intersecting, of types ij and jk. In this case, the situation is as shown in
Fig. 11: the wall q′ is born from the joint, and (34) reduces to μ(c, q′) =
(−1)w(az̃+bz̃,cz̃)μ(a, p)μ(b, r).

The reverse situation is also allowed: if (34) gives μ(c, q′) = 0, then the
wall q “dies” at the joint, as shown in Fig. 12.

17 One might think that there is a second, inequivalent possibility: one could have exchanged
the ij and jk labels in Fig. 10. This gives a new picture, which is not related to Fig. 10 by
a rotation, but is related to Fig. 10 by an orientation-reversing map. Fortunately, our rules
for computing F (℘, ϑ) do not use the orientation of C. So our analysis is fully general.
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Figure 11. A collision between S-walls, at which a new
S-wall is born

Figure 12. A collision between S-walls, at which an S-wall dies

So far we have described some local properties of Wϑ and μ. In the next
few sections, we describe a recipe for explicitly constructing them.

5.3. The Mass Filtration; Wϑ[Λ] and μ[Λ] for Small Λ
We begin with the observation that Wϑ carries a useful filtration. Namely, for
any Λ > 0 (with dimensions of mass), we can define a new object Wϑ[Λ] by
truncating all the S-walls: for a wall w supporting a charge ā, Wϑ[Λ] includes
only the portion of w with |Zā| < Λ. Therefore,

Wϑ[Λ] ⊂ Wϑ[Λ′] for Λ ≤ Λ′ (35)

and

Wϑ = lim
Λ→∞

Wϑ[Λ]. (36)

We also define a truncated version μ[Λ] of the soliton degeneracies μ: μ[Λ](a)
is defined only for charges a with |Zā| < Λ, and for such charges it agrees with
μ(a).

For small enough Λ, we can describe Wϑ[Λ] and μ[Λ] simply and explic-
itly. The reason is that charges ā ∈ Γ(z, z) with |Zā| < Λ are represented by
very short paths on Σ between distinct lifts z(i) and z(j) of z. The only way
to get such a short path is for z to be close to an (ij) branch point b: then if
we take ā ∈ Γ(z, z) to be a path running from z(i) to the ramification point
over b and returning to z(j), we indeed have |Zā| → 0 as z → b. We could also
have considered the charge −ā ∈ Γ(z, z), corresponding to a path running in
the opposite direction. These two charges are exchanged by the monodromy
when z goes once around b. They are the only charges which become massless
at b.

Therefore, to determine Wϑ[Λ] for Λ small, we just have to describe the
S-walls supporting these light charges. Letting z be a local coordinate with
z = 0 at b, we have Zā ∼ z3/2 and Z−ā ∼ −z3/2 (the square-root branch cut
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Figure 13. The 3S-walls emerging from a branch point.
Because the two relevant sheets of the covering Σ → C are
exchanged by monodromy around the branch point, we can-
not assign labels to the trajectories globally; instead we have
chosen a branch cut and a labeling of the sheets i and j on
the complement of the cut. We also label the cut with the
transposition (ij) which relates the sheets on the two sides of
the cut

Figure 14. A finite open web N(z) consisting of a single
short ij-trajectory, with one end on the (ij)-branch point b
and one end on z. This finite open web represents a light BPS
soliton on the surface defect Sz

arises from the monodromy ā → −ā noted above.) It follows that there are
3S-walls emerging from the branch point, as shown in Fig. 13.

If z lies on one of these three S-walls near b, then there is a light 2d–4d
BPS soliton on the surface defect Sz, with central charge in R−eiϑ.18 This BPS
soliton is represented by a short finite open web N(z), consisting of a single
BPS string connecting z to b, as illustrated in Fig. 14. In accordance with the
general rules of Sect. 3.2, the charge ā of this BPS state is ā = [N(z)Σ], where
N(z)Σ is the lift of N(z) to Σ, i.e. a short path on Σ running from z(i) to the
ramification point over b and then back to z(j).

As we have mentioned in Sect. 3.5, however, to fix the sign of the BPS
degeneracy for this soliton, we need to choose a lift from the charge ā to a
class a. Suppose we make the most obvious choice, namely the one determined
by the web N(z): a = [N(z)Σ̃]. Let p denote the S-wall on which z sits. Then
finally μ(a, p) is a well-defined integer, and it is meaningful to ask what it

18 In a sense it would be better to refer to these light states simply as “2d” solitons rather

than “2d–4d,” since their existence does not depend much on the coupling to the 4d theory.

Indeed, the existence of these light states can be deduced from a universal computation

involving the simplest nontrivial Landau–Ginzburg model. See Section 8.1 of [5] for further
discussion.
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is. We have a single isolated 2d–4d BPS web here, so it should contribute
just a single state; the only question is whether we will have μ(a, p) = +1 or
μ(a, p) = −1. We claim that the correct answer is

μ(a, p) = +1. (37)

Indeed, this is forced on us by the requirement of homotopy invariance, which
we discuss in Sect. 5.6 below.

5.4. Wϑ[Λ] and μ[Λ] for General Λ
We have determined Wϑ[Λ] and μ[Λ] for small Λ. Now we can ask how Wϑ[Λ]
and μ[Λ] evolve as Λ increases. Using the properties of Wϑ and μ we have
already determined, it is straightforward to deduce the answer.

The three S-walls emerging from each branch point b flow according to
the differential equation (3), for a distance determined by the cutoff Λ. When
we increase Λ enough, it might happen that an S-wall of type ij intersects
another S-wall of type jk. At this point a new S-wall of type ik is born, as
shown in Fig. 11. The soliton degeneracy μ on this new wall is determined
by the soliton degeneracies on its parents, as in (34).19 This new “secondary”
S-wall, in turn, also evolves according to (3). As Λ increases the secondary
walls can intersect with other S-walls and give birth to yet more progeny, and
so on. In Fig. 15, we give an illustration of the growth of Wϑ[Λ] with Λ in one
particular theory S[g, C,D].

We may also have intersections where three S-walls meet at a point, as in
Fig. 10. (The reader might feel that this phenomenon should not occur gener-
ically; indeed, three arbitrary trajectories of types ij, jk, ik would be unlikely
to intersect at a single point, but the S-walls are not arbitrary trajectories.
We include an example in Fig. 16.)

There is one more complicated phenomenon which one can imagine: what
would happen if an S-wall of type ij ran directly into an (ij) branch point?
In this case, it would not be immediately clear how to continue the network
Wϑ[Λ] and the BPS degeneracies μ[Λ]. This puzzling-looking situation cannot
occur when ϑ is generic. It does occur for non-generic ϑ, and this fact plays a
crucial role in the considerations of Sect. 6 below.

We have now given a recipe for constructing Wϑ[Λ] and μ[Λ] for any
Λ > 0 and generic ϑ. Wϑ[Λ] consists of a finite number of S-walls for any
Λ. Taking the limit Λ → ∞, we obtain the full Wϑ and μ. So we have now
managed to determine all of the soliton degeneracies of the theory (including
their tricky signs) using only the constraint of homotopy invariance!

More precisely, so far we have fixed some ϑ and determined all μ(a, p)—
i.e. we determined μ(a) when the parameter z of the surface defect lies on an
S-wall supporting the charge a. This is not what one would usually mean by
“determining the soliton degeneracies”: what one would usually mean is that
we fix some z once and for all, and then compute all μ(a) for a ∈ Γ̃(z̃, z̃).

19 Note that if two S-walls carrying charges ā ∈ Γij , b̄ ∈ Γjk meet at a joint z ∈ C, the
joint is visible in Wϑ[Λ] beginning at Λ = Max(|Zā(z)|, |Zb̄(z)|), but the S-wall born from

the joint does not appear until Λ = |Zā(z)| + |Zb̄(z)|.
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Figure 15. SampleWϑ[Λ] in the theory S[A2,CP
1,D] where

the Dn are 3 full defects (blue dots at z = −1, 0, 1). We choose
ϑ = π/4, φ2 = 2

(z−1)2 + 2
(z+1)2 −

4
z2 , φ3 = 1−3(z−1)+6(z−1)2

(z−1)3 +
1+3(z+1)+6(z+1)2

(z+1)3 − 2+12z2

z3 . The plots shown are at Λ =
1, 2, 5, 12, 20,∞. At Λ = 0 three S-walls are born at each
of the 6 branch points (orange crosses); at larger values of Λ,
additional S-walls are born at intersections. As Λ → ∞ all
S-walls asymptotically approach the defects. Some S-walls
are cut off by the boundary of the plot; the visible range is a
square with side length 2.6. See [43] for an animated version
of this figure (color figure online)

The point is that, for any a ∈ Γ̃(z̃, z̃), there is some ϑ for which z does lie on
an S-wall supporting a: namely, ϑ = arg−Zā. So for each a we can draw the
corresponding network Wϑ=arg −Zā

and use it to compute μ(a).

5.5. Wϑ Near Full Defects

On a close look at Fig. 15, one notices that as Λ → ∞, all of the S-walls in
W[Λ] asymptotically approach the full defects Dn.

To understand this concretely, let us consider the general behavior of ij-
trajectories around a full defect. In a local coordinate z where the defect is at
z = 0, we have

λ(i) = m(i) dz
z

+ · · · (38)
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Figure 16. A portion of a sampleWϑ, exhibiting an intersec-
tion between three S-walls, marked by a yellow dot. The region
in the blue box is blown up at right. The S-walls which appear
somewhere in the genealogy of the three intersecting S-walls
are shown in black; other S-walls are shown in gray. There
are six branch points (orange crosses). This example arises
in the theory S[A3, C = CP

1,D] with φ2 = −10z dz2, φ3 =
4dz3, φ4 = 9z2 dz4. We took ϑ = 1.841, but we emphasize
that this triple intersection persists for nearby ϑ as well (color
figure online)

where · · · denotes regular terms. ij-trajectories near z = 0 thus behave asymp-
totically like

z(t) = z0 exp(ξ(ij)t), (39)

where we defined

ξ(ij) =
eiϑ

m(i) −m(j)
. (40)

As t → ∞, we have z(t) → 0 if and only if Re ξ(ij) < 0. This suggests a
natural ordering on the sheets in a neighborhood of z = 0: we say that i < j
if Re e−iϑm(i) < Re e−iϑm(j). ij-trajectories near z = 0 asymptote to z = 0 if
and only if i < j in this ordering.

In the coordinate z, these infalling trajectories asymptotically approach
logarithmic spirals. Passing to the covering coordinate w = log z, the ij-tra-
jectories are straight lines,

w(t) = w0 + ξ(ij)t. (41)

Now suppose we have an infalling asymptotic S-wall of type ij and another of
type jk (so i < j < k.) Assuming arg ξ(ij) �= arg ξ(jk), these two walls intersect
at infinitely many points as they spiral into z = 0. Each intersection gives
birth to a new S-wall of type ik, which also spirals into z = 0. This new S-wall
can in turn intersect other inspiraling S-walls and give birth to yet more prog-
eny. The strict ordering of the sheets ensures that the progeny cannot commit
incest with one another. Nevertheless, for K > 2 there are an infinite number
of joints accumulating at the full defect. See Fig. 17 for an illustration.
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Figure 17. S-walls falling into a full defect, shown in the
covering coordinate w = log z. There is a single ij wall and a
single jk wall. We have i < j < k in the ordering described in
the text. Each intersection between these two walls generates
a new ik wall. There are infinitely many such intersections,
accumulating at the defect, which generate infinitely many ik
walls

Similar (but more involved) remarks should apply for more general types
of defect.

Based on computer experimentation, we expect that the behavior
observed in Fig. 15 is indeed generic: whenever there is a defect with suffi-
ciently generic mass parameters, and ϑ is generic, all S-walls in Wϑ should
asymptotically approach punctures. In the case K = 2, this follows directly
from known mathematical results on the trajectories of quadratic differentials
[44] (see [3] for an account of this.) For K > 2, the analogous foundational
results are not yet available as far as we know. It would be very desirable to
work this out.

5.6. Homotopy Invariance

Now let us consider a key consistency check of our story so far. We have claimed
on general physical grounds that F (℘, ϑ) should be a homotopy invariant of
℘, or more precisely a twisted homotopy invariant as described in Sect. 3.5.
On the other hand, we have also given a recipe which completely determines
F (℘, ϑ). So we can ask whether this recipe indeed obeys the necessary twisted
homotopy invariance.

To check this twisted homotopy invariance, it is enough to check the
invariance under a few elementary moves, which we now consider in turn.
This is the first place where the tricky minus signs mentioned in Sect. 3.5 play
a decisive role.

First, consider a pair of paths ℘ and ℘′, neither of which meets any
S-walls, and which are not only homotopic but related by a regular homotopy,
i.e. a homotopy through immersions. In this case, the constraint of twisted
homotopy invariance requires that

F (℘, ϑ) = F (℘′, ϑ). (42)

But since neither path meets any S-walls, this reduces to

D(℘) = D(℘′), (43)

which is indeed true: the regular homotopy of ℘ to ℘′ lifts to a regular homot-
opy of each ℘(i) to ℘′(i).
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Figure 18. A pair of paths that are homotopic but differ by
a unit of winding

Figure 19. Two open paths ℘, ℘′ which differ by a homotopy
across an S-wall

Next, consider the pair of paths in Fig. 18. In this case the constraint of
twisted homotopy invariance requires that

F (℘, ϑ) = −F (℘′, ϑ). (44)

But neither of these paths meets any S-walls, so this reduces to

D(℘) = −D(℘′), (45)

which indeed follows by lifting the homotopy of ℘ to ℘′ to homotopies of ℘(i)

to ℘′(i) and using (17). We stress that this is a non-regular homotopy, which
accounts for the sign change.

Next, consider two paths ℘, ℘′ which differ by homotopy across an S-wall
as shown in Fig. 19. The constraint of twisted homotopy invariance says

F (℘, ϑ) = F (℘′, ϑ). (46)

Let ā be the charge supported on the S-wall in the figure. The two intersec-
tions z± between ℘′ and the wall divide ℘′ into ℘′

+℘
′
0℘

′
−; let z̃± be the tangent

vectors to ℘′ at the intersection points. Then evaluating both sides directly,
letting a be the charge supported along the wall, and using the fact that μ(a)
is constant along the wall, (46) becomes

D(℘) = D(℘′
+)(1 + μ(a)Xaz̃+

)D(℘′
0)(1 + μ(a)Xaz̃− )D(℘′

−)

= D(℘′) + μ(a) · D(℘′
+)
(
Xaz̃+

D(℘′
0) +D(℘′

0)Xaz̃−

)
D(℘′

−)

+μ(a)2D(℘′
+)Xaz̃+

D(℘′
0)Xaz̃−D(℘′

−). (47)

The two soliton paths az̃+ and az̃− are both of type ij, soXaz̃+
D(℘′

0)Xaz̃− = 0.
Using the definition (24), one can check that the two terms in the parentheses
correspond to paths which differ by one unit of winding; according to the rule
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Figure 20. Two paths which differ by homotopy across a
branch point

(17), these two terms thus differ by a minus sign, and so cancel one another.
Thus (47) reduces to

D(℘) = D(℘′) (48)

which is indeed true since the obvious homotopy of ℘ into ℘′ also gives
homotopies between each ℘(i) and ℘′(i). Note that this would not have worked
out without using the fact that μ(a) is constant along the wall: indeed this
shows that homotopy invariance requires μ(a) to be constant along walls, thus
making good on a promise we made in Sect. 4.3.

Next, consider two paths ℘, ℘′ which differ by homotopy across a joint,
as in Fig. 9 or Fig. 10. We have already verified in Sect. 5.2 that in this case
F (℘, ϑ) = F (℘′, ϑ): indeed we used this constraint as part of our system for
determining μ.

Finally we reach the most interesting case. Consider two paths ℘, ℘′

which differ by homotopy across a branch point, as shown in Fig. 20. The
constraint of twisted homotopy invariance says

F (℘, ϑ) = F (℘′, ϑ). (49)

Evaluating both sides of (49), we obtain the explicit sums of paths shown in
Fig. 21. Naively we see K + 3 terms in F (℘, ϑ) and K + 1 in F (℘′, ϑ). The
last two terms in F (℘, ϑ), running from sheet j to sheet j, are of the form
Xa +Xa′ , where a, a′ both project to the same charge ā, but differ by one unit
of winding. These two terms thus cancel one another thanks to our sign rule
(17). The other K + 1 terms precisely match the K + 1 terms in F (℘′, ϑ).

So the constraint (49) is indeed satisfied.
As an aside, note that this last constraint would not have worked out if

there were no S-walls emerging from the branch point: in other words, homoto-
py invariance of the framed 2d–4d BPS spectrum really requires that spectrum
to undergo wall-crossing. This is closely analogous to the considerations of
monodromy invariance that led Seiberg and Witten to discover wall-crossing
in the pure 4d BPS spectrum [45]. The constraint of monodromy invariance
also would not have worked out if we had taken μ = −1 instead of μ = +1 in
(37).

5.7. K = 2 Theories and Ideal Triangulations

In the special case K = 2, Wϑ is enormously simplified: transverse intersec-
tions of S-walls as discussed in Sect. 5.2 require at least three distinct sheets
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Figure 21. The explicit sums of paths which occur in (49).
In the equations shown in the figure, we represent the for-
mal variable Xa by an explicit picture of a smooth path on
Σ, whose canonical lift to Σ̃ represents the relative homology
class a. The labels next to path segments show which sheet
of the covering Σ→ C the segments are on. We have labeled
the sheets in the same way as we did in Fig. 13

i, j, k, and there is no room for this if K = 2. Therefore, in this case, there are
no joints where new S-walls could be born, and soWϑ consists simply of three
S-walls emerging from each branch point. Assuming that the parameters ma

at the punctures Dn are generic enough, each of these S-walls asymptotes to
one of the punctures Dn.

When K = 2, then, the dual to the network Wϑ is an ideal triangulation
T (Wϑ) of C (determined up to isotopy) (see Fig. 22). Combinatorially speak-
ing, the ideal triangulation T (Wϑ) and the spectral network Wϑ contain the
same information.

It has been natural to wonder what is the appropriate higher-K gener-
alization of the notion of ideal triangulation. In Sect. 9, we propose a general
definition of “spectral network” which we believe is the right answer to this
question. TheWϑ which we have been discussing so far are examples of spectral
networks.

6. Varying ϑ

In Sect. 5, we held ϑ fixed and studied the generating functions F (℘, ϑ). In this
section, we consider what happens when ϑ is allowed to vary. In so doing, we
will uncover new phenomena, associated with the 4d BPS states in the theory
S[g, C,D].

F (℘, ϑ) is piecewise constant as a function of ϑ ∈ R: if the pair (℘, ϑ) is
generic and δϑ small enough, F (℘, ϑ) = F (℘, ϑ+ δϑ). However, F (℘, ϑ) jumps
at some special values ϑ = ϑc. These special values arise for two distinct
reasons, to be described in the next two sections.
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Figure 22. A portion of a spectral networkWϑ with K = 2,
and one face in the corresponding ideal triangulation T (Wϑ)
up to isotopy (green dashed lines). Each wall of Wϑ begins
on a branch point (orange cross) and asymptotes to a defect
(blue dot); these defects are also the vertices of T (Wϑ). Each
branch point is contained in a unique face of T (Wϑ) (color
figure online)

At the special values, we define for convenience20

F (℘, ϑ±
c ) = lim

ϑ→ϑ±
c

F (℘, ϑ) (50)

(think of ϑ±
c as representing ϑc ± ε for ε → 0+.) What we will explain in the

rest of this section is how to determine the relation between F (℘, ϑ+
c ) and

F (℘, ϑ−
c ), and how to extract from this relation the 4d BPS degeneracies.

6.1. Endpoints Crossing S-Walls

First, there are “simple” jumps which occur when an S-wall moves across
one of the endpoints of ℘. Namely, F (℘, ϑ) jumps whenever there is some
ā ∈ Γ(z1, z1) or ā ∈ Γ(z2, z2) with e−iϑcZā ∈ R− and μ(ā) �= 0. If ā ∈ Γ(z1, z1)
and ℘ intersects the S-wall for ϑc + ε then the jump is of the form

F (℘, ϑ+
c ) = (1 + μ(a)Xaz̃1

)F (℘, ϑ−
c ). (51)

Similarly, if ā ∈ Γ(z2, z2) and ℘ intersects the S-wall for ϑc + ε then the jump
is of the form

F (℘, ϑ+
c ) = F (℘, ϑ−

c )(1 + μ(a)Xaz̃2
). (52)

The jumps (51) and (52) are easily deduced from our rule (25) for computing
F (℘, ϑ) in Sect. 4.4.

20 The meaning of the limit (50) is easy to understand if there are no other special val-
ues ϑ′

c in some neighborhood of ϑc. However, it does sometimes happen that the spe-
cial values accumulate. In that case, we have to explain what kind of limit we mean in
(50). One possibility would be to fix some R > 0 and work with a “Z-adic” norm where

‖∑ caXa‖ =
∑|ca|e−R|Zā|. We expect that in this norm the limit (50) indeed exists. At

any rate, in what follows we work formally, assuming that the limits make sense.
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Figure 23. The behavior of ij-trajectories approaching a
branch point of type (ij)

These equations can be compared to (2.27) of [5]. The signs appear dif-
ferent because in [5] there is a cocycle σ which was undetermined in that
section.

6.2. K-walls and The Degenerate Spectral Networks Wϑc

There is also a second more interesting kind of jump which can occur at a
critical phase ϑ = ϑc. In contrast to the previous case, these jumps do not
arise because of a change in the interaction between Wϑ and ℘. Rather, they
arise because of a topology change in Wϑ itself.

The claim that a topology change in Wϑ could occur as we continuously
vary ϑ might at first seem strange. After all, we have given a recipe for Wϑ in
Sect. 5, ϑ enters this recipe only through the differential equation (3), and this
equation evidently depends continuously on ϑ. The point is that the solutions
of (3) can nevertheless exhibit discontinuous behavior, because of the phe-
nomenon of bifurcation near the branch points: ij- or ji-trajectories coming
close to an (ij) branch point can veer off in one of two directions, as indicated
in Fig. 23. This figure can be considered to depict either a foliation of C by
ij-trajectories at fixed ϑ or the evolution of an S-wall in Wϑ as ϑ varies. From
the latter viewpoint, it follows that the critical phases ϑc are those at which
some S-wall of type ij or ji runs directly into a branch point of type (ij). We
call the ϑc where this occurs K-walls. A simple example is shown in Fig. 24.

To describe the relation between F (℘, ϑ+
c ) and F (℘, ϑ−

c ), it is convenient
to work directly with the limiting spectral networkWϑc

. This limiting network
has some features not seen for the generic Wϑ. In particular, several (possi-
bly infinitely many) S-walls, supporting different charges, might coalesce into
a single segment as ϑ → ϑc; hence a wall p of Wϑc

might support several
distinct charges. Moreover, the S-walls coalescing onto p might not all be ori-
ented in the same direction; in this case, we call p a two-way street.21 Again
see Fig. 24 for an example: the saddle connection in the middle of the figure

21 We now have two metaphors for the segments in a spectral network. They are walls

because they are the loci where framed 2d–4d BPS degeneracies jump. On the other hand

we will find that the metaphor of streets is also very useful when tracking the solitons.
Rather than insisting on one term, we will use them as synonyms. We feel no inclination to
go to wall-street.
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Figure 24. The simplest way in which Wϑ can jump at a
K-wall. As ϑ → ϑc, two S-walls merge into a single two-way
street running between two branch points. The two-way street
supports two distinct charges ā, b̄

Figure 25. A path ℘ crossing a pair of nearly coincident
S-walls, which coalesce into a two-way street at ϑ = ϑc

is a two-way street. Indeed, Wϑc
always contains at least one two-way street,

since we get a two-way street whenever an S-wall runs into a branch point.
Now let us consider a path ℘ which crosses a two-way street p. A repre-

sentative picture of the situation when ϑ is near ϑc is indicated in Fig. 25.22

We define BPS soliton degeneracies μ±(a, p) along the walls of Wϑc
by taking

limits of μ(a, p) as ϑ → ϑ±
c . Applying the rules of Sect. 4.4 and taking the

limit ϑ→ ϑ±
c , we obtain formulas for F (℘, ϑ±

c ):

F (℘, ϑ−
c ) = D(℘+)

⎛

⎝1 +
∑

b̄∈Γs
ij

μ−(b)Xbz̃

⎞

⎠

⎛

⎝1 +
∑

ā∈Γs
ji

μ−(a)Xaz̃

⎞

⎠D(℘−), (53)

F (℘, ϑ+
c ) = D(℘+)

⎛

⎝1 +
∑

ā∈Γs
ji

μ+(a)Xaz̃

⎞

⎠

⎛

⎝1 +
∑

b̄∈Γs
ij

μ+(b)Xbz̃

⎞

⎠D(℘−). (54)

Here Γs
ij ⊂ Γij(z, z) denotes the set of charges supported along the two-way

street.
Note that the order in these products really matters, since Xaz̃

and Xbz̃

do not commute. A convenient way to think about this is to regard the limiting
network Wϑc

as equipped with a bit of extra structure: each two-way street
is resolved into two infinitesimally separated and oppositely oriented “lanes”.

22 In general the picture might be a bit more complicated than Fig. 25, because there might
be several walls of type ij and/or of type ji which all coalesce at ϑ = ϑc. An example
appears in Fig. 27 below.
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For ϑ−
c the division of lanes is according to the American rule (drive on the

right), while for ϑ+
c it is according to the British rule (drive on the left). We

can determine F (℘, ϑ±
c ) completely from Wϑc

and μ±, using either (53) or
(54) as appropriate.

6.3. The Jump of F (℘, ϑ) at a K-wall

The jump of F (℘, ϑ) at ϑc is given by a certain universal substitution K acting
on the formal variables Xa:

F (℘, ϑ+
c ) = K

(
F (℘, ϑ−

c )
)
. (55)

K is determined by the degenerate spectral network Wϑc
. In this section, we

describe what K is, deferring the proof of (55) to Sect. 6.6.
We are going to combine the soliton degeneracies on any two-way street p

into a new generating function Q(p). Unlike the generating functions F (℘, ϑ)
we have considered before, Q(p) is written in terms of formal variables Xγ̃

with γ̃ ∈ Γ̃, where Γ̃ = H1(Σ̃; Z) modulo shifts by 2H (cf. the definition of
Γ̃(z̃1, z̃2) in Sect. 3.5). So these formal variables are associated to closed paths,
rather than the open ones we have encountered up to now. We extend our
multiplication rules,

Xγ̃Xa = Xγ̃+a, Xγ̃Xγ̃′ = Xγ̃+γ̃′ (56)

(where the + denotes the obvious action of Γ̃ on Γ̃(z̃1, z̃2) or on Γ̃). We also
extend our sign rules by imposing

XH = −1, (57)

so the two Xγ̃ corresponding to different lifts of a single γ ∈ Γ differ only by
a sign.

One can build closed paths from open ones: given a ∈ Γ̃ii(z̃, z̃), there is
a corresponding cl(a) ∈ Γ̃ which is obtained just by forgetting the basepoint
z̃(i). Using this, we define

Q(p) = 1 +
∑

ā∈Γs
ij , b̄∈Γs

ji

μ−(a, p)μ−(b, p)Xcl(a+b). (58)

(We will see later that we would have gotten the same Q(p) if we had used
μ+ instead of μ− on the right.) Q(p) is a power series in the variables Xγ̃ , of
a constrained sort: every γ that occurs is a sum ā+ b̄ of charges supported at
z, and hence has e−iϑcZγ ∈ R−.

Now we make a new genericity assumption. Let Γc ⊂ Γ be the set of all
γ ∈ Γ with e−iϑcZγ ∈ R−; we assume that Γc is generated by a single element
γ0. (This condition holds automatically if our chosen u = (φ2, . . . , φK) is not
on a wall of marginal stability in the Coulomb branch.) Q(p) is then a power
series in a single variable: choosing a lift γ̃0, each Xcl(a+b) = ±Xn

γ̃0
for some

n > 0.
Our next aim is to extract the BPS degeneracies by rewriting this power

series as a product, (60) below.
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For each γ ∈ Γ we can define a preferred lift γ̃ by the following rule:23

represent γ as a union of smooth closed curves cm on Σ; then γ̃ is the sum of
the canonical lifts of the cm to Σ̃, shifted by

(∑
m≤n δmn + #(cm ∩ cn)

)
H (of

course since we work modulo 2H, all that matters here is whether this sum is
odd or even.) One can check directly that γ̃ so defined is independent of the
choice of how we represent γ as a union of cm (this requirement is what forced
us to add the tricky-looking shift.) Moreover, with this definition one has

Xγ̃+γ̃′ = (−1)〈γ,γ′〉X
γ̃+γ′ . (59)

We are ready to factorize Q(p): there exist exponents αγ(p) ∈ Z such
that

Q(p) =
∏

γ∈Γc

(1−Xγ̃)αγ(p). (60)

(Indeed, the equations determining the αγ(p) from Q(p) are upper-triangular
and hence can be solved.) Then, for any γ ∈ Γc, define a 1-chain L(γ) on Σ by

L(γ) =
∑

p

αγ(p) pΣ, (61)

where p runs over the walls in Wϑc
, and pΣ is the oriented 1-chain obtained

by lifting p as in Sect. 3.1.
It is a crucial fact (proven in Sect. 6.6 below) that L(γ) so defined is actu-

ally a 1-cycle. This allows us to define24 an intersection number 〈c̄, L(γ)〉 for
any c̄ ∈ Γ(z1, z2). Moreover, e−iϑc

∫
pΣ
λ ∈ R−, so e−iϑcZ[L(γ)] ∈ R; under our

genericity assumption this implies that the homology class [L(γ)] is a multiple
of γ (though not necessarily a positive multiple). This fact will be useful below.

Finally we can define our universal substitution K:

K(Xa) =
∏

γ∈Γc

(1−Xγ̃)〈ā,L(γ)〉Xa. (62)

6.4. 4d BPS Degeneracies

According to the analysis of [21,5], the jump K of the framed 2d–4d degen-
eracies captures the degeneracies of 4d BPS particles.25 Since we have now
given a formula for K, it follows that we can use it to determine the 4d BPS
degeneracies. Comparing our formula (62) to those of [5,21], we find that the

23 In the first preprint version of this paper we proposed a different lifting rule based on the
principle that the product (60) should be finite. More recently, in studying more complicated
examples, it has turned out that sometimes this finiteness is violated [46]. For completeness,
we have back-ported the corrected rule from [46] to here.
24 Different representatives of the class c̄ differ by addition of 1-boundaries, and the 1-cycle
L(γ) has zero intersection with any 1-boundary; this would not have worked if L(γ) were
merely a 1-chain.
25 This is possible because the jump occurs when framed 2d–4d BPS bound states
form/decay by binding/releasing 4d BPS particles.
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enhanced BPS degeneracies reviewed in Sect. 3.4 are given here by26

ω(γ, ā) = 〈L(γ), ā〉. (63)

This result contains much more information than the ordinary 4d BPS
degeneracies: it knows not only the total number of 4d BPS states but also
some local information about where they sit on C, as measured by their inter-
action with surface defects. Nevertheless, it is also interesting to see how we
can recover simpler invariants: using (63) and (11), we find that the 4d BPS
degeneracy is

Ω(γ) = [L(γ)]/γ. (64)

In examples below, we will illustrate how this formula determines Ω(γ) in
various concrete situations.

6.5. Wall-Crossing Formula

In Sect. 2.3 of [5], we wrote a 2d–4d wall-crossing formula which should be
obeyed by the degeneracies μ and ω in any coupled 2d–4d system. We have
given an explicit description of μ and ω in the theories we are now considering.
Therefore, it is natural to ask whether one can show directly that the μ and
ω defined here indeed obey this formula. In a sense, our definition of ω above
was engineered so that this will be true. We will not be able to give a complete
proof here, but let us at least explain the idea.

The basic strategy of proof was already explained in [5], as follows. Let
u = (φ2, . . . , φK) denote a point of the Coulomb branch. Let ℘ denote a path
in C which both begins and ends at some point z. As we vary the basepoint z,
we can likewise deform the path ℘ (in a unique way up to homotopy), giving
a family of paths ℘(z). Now let z, ϑ and u vary along small contractible loops
z(t), ϑ(t), u(t)(0 ≤ t ≤ 1) in parameter space, with z(0) = z, and consider the
corresponding generating functions F (℘(z(t)), ϑ(t), u(t)),27 which we denote
simply as F (℘, t).

Since t is a closed contractible loop we have

F (℘, t = 0) = F (℘, t = 1). (65)

On the other hand, as t varies, F (℘, t) jumps at various critical tc. These jumps
occur either when z(t) crosses an S-wall inWϑ(t) or when ϑ(t) crosses a K-wall.

26 More precisely, (62) should be compared with (2.30) of [5], except for the detail that in this
paper we are working with framed protected spin characters at y = 1 rather than y = −1.
The needed modification for y = 1 has not quite appeared anywhere before, although in
(3.26) of [21] we did give the jump of the framed degeneracies (without surface defects)
at y = 1. We also noted there (in Sect. 6.4) that under the assumption that there are no
“exotic BPS states,” the jump becomes somewhat simpler (because then all of the factors
(−1)m appearing in (3.26) are the same). Strictly speaking then, (62) should be compared
with the most obvious combination of (2.30) of [5] and (3.26) of [21], taking into account
this simplification. A final detail: in (2.30) of [5] there appeared an undetermined ±1-valued
cocycle σ; in (62) this sign is encoded in the choice of lift γ̃ of γ.
27 Up until now we have usually represented these generating functions as F (℘, ϑ), holding
u fixed and implicit; but to recover the usual statement of the wall-crossing formula we have
to let u vary.
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At each critical tc, the jump of F (℘, t) is given by an explicit transformation
J(tc) of the formal variables Xa. Writing the total jump as J =

∏
tc
J(tc)

(with the product taken in order of increasing tc), (65) thus says

J[F (℘, t = 0)] = F (℘, t = 0). (66)

Now, the statement of the 2d–4d wall-crossing formula is that J is the
identity, or more concretely,

J[Xa] = Xa for every a ∈ Γ(z, z). (67)

The most direct way to obtain (67) from (66) would be to show that any
Xa for a ∈ Γ(z, z) can be obtained as a linear combination of the F (℘, t = 0)
for various paths ℘ from z to z. We have not proven this, and indeed (as one
sees by considering simple examples) it cannot literally be true except under
some restrictions on the type of surface defects Dn we allow; in general, we
expect to have to extend the set of allowed ℘ to include some paths which run
into the surface defects, as we did in [21].

Even after extending the set of allowed ℘ appropriately, it does not appear
to be straightforward to show that any Xa can be obtained as a linear com-
bination of the F (℘, t = 0). We believe this is an interesting and important
question (related to conjectures of Fock–Goncharov on the relation between
universally positive Laurent polynomials and tropical points; we discussed the
K = 2 case of this connection in [21].) However, we can also propose an alter-
native “poor man’s” approach to proving (67). The idea is that even if we
cannot show that we can express Xa literally as a function of the F (℘, t = 0),
we can at least do so up to at most a finite ambiguity. More precisely, we claim
that the group G of automorphisms obeying the equation (66) is finite. This
point will be explained in Sect. 10.5 below. Assuming it for now, we conclude
in particular that J is of finite order. But the automorphisms J(tc) are all
“upper triangular”, in the sense that each J(tc) is of the form 1 +X where all
of the X belong to a common pronilpotent group. It follows that J is also of
this form; but then J cannot have finite order without being the identity.

6.6. Proof of the K-wall Formula

Here, we provide the proofs omitted in Sect. 6.3.
First let us explain why L(γ) as defined in (61) is indeed a 1-cycle, i.e.

has no boundary. For any two-way street p, the boundary of pΣ lies over the
boundary of p. More precisely, a boundary point of p may be either a branch
point or a joint; pΣ has no boundary over a branch point, but does have a
boundary over a joint. So we need to check that L(γ) has no boundary over a
joint. To establish this we consider Fig. 26.

Let z denote the joint in the figure. The coefficient of z(i) in ∂L(γ) is
αγ(p1) + αγ(p2)− αγ(p3)− αγ(p4), and we would like to show that this van-
ishes. Consider the open paths ℘ and ℘′. The constraint of twisted homotopy
invariance says that F (℘, ϑ−

c ) = F (℘′, ϑ−
c ). In particular, we can look at the

pieces on both sides which involve paths which both begin and end on sheet i:

F (℘, ϑ−
c )ii = F (℘′, ϑ−

c )ii. (68)
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Figure 26. A joint where two-way streets meet. Each two-
way street is shown slightly “resolved”, as explained at the end
of Sect. 6.2. The resolution here is the “American resolution,”
as appropriate since we are considering the limit ϑ→ ϑ−

c

Directly computing the two sides of (68) we obtain

Q(p1)Q(p2) = Q(p3)Q(p4). (69)

This amounts to

αγ(p1) + αγ(p2) = αγ(p3) + αγ(p4), (70)

which is what we wanted to show.
Now let us explain why the jump formula (55) is true. We will show that

the following hold both for F(℘) = F (℘, ϑ+
c ) and F(℘) = K (F (℘, ϑ−

c )):

P1. F(℘) is a twisted homotopy invariant of ℘ (in the sense explained in
Sect. 3.5).

P2. If ℘ does not meet Wϑc
, then

F(℘) = D(℘). (71)

P3. If ℘ and ℘′ have endpoints off Wϑc
, F obeys the composition law

F(℘)F(℘′) = F(℘℘′). (72)
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P4. If ℘ crosses Wϑc
exactly once at a point z on a one-way street p, then

F(℘) is of the form

F(℘) = D(℘+)

⎛

⎝1 +
∑

ā∈Γs
ij

μ(a)Xaz̃

⎞

⎠D(℘−), (73)

for some μ(a) ∈ Z.
P5. If ℘ crosses Wϑc

exactly once at a point z on a two-way street p, and the
intersection between ℘ and p is positive (with respect to the orientation
of p as a ji trajectory and the underlying orientation of C as a complex
curve), then F(℘) is of the form

F(℘) = D(℘+)

⎛

⎝1 +
∑

ā∈Γs
ji

μ(a)Xaz̃

⎞

⎠

⎛

⎝1 +
∑

b̄∈Γs
ij

μ(b)Xbz̃

⎞

⎠D(℘−) (74)

for some μ(a) ∈ Z and μ(b) ∈ Z.

For F(℘) = F (℘, ϑ+
c ), these properties follow directly from what we have

already said; the most nontrivial one is P5, which is (54). To prove them for
F(℘) = K(F (℘, ϑ−

c )) is slightly harder. P1–3 are true of F (℘, ϑ−
c ) and clearly

preserved by K. P4 is also true of F (℘, ϑ−
c ), but we have to show it is preserved

by K: this follows simply from the fact that K just multiplies each term by a
function of the Xγ̃ , which indeed preserves the form (73). P5 is the only really
nontrivial one. We begin with the formula (53) for F (℘, ϑ−

c ), and need to show
that the action of K transforms it into the form (74). Expanding out (53) we
find various classes of terms:

F (℘, ϑ−
c )ii = ℘

(i)
+

⎛

⎝1 +
∑

ā,b̄

μ−(a)μ−(b)XbXa

⎞

⎠℘
(i)
− = Q(p)℘(i), (75)

F (℘, ϑ−
c )ij = ℘

(i)
+

(
∑

b̄

μ−(b)Xb

)

℘
(j)
− , (76)

F (℘, ϑ−
c )ji = ℘

(j)
+

(
∑

ā

μ−(a)Xa

)

℘
(i)
− , (77)

F (℘, ϑ−
c )jj = ℘(j), (78)

F (℘, ϑ−
c )kk = ℘(k) for k /∈ {i, j}. (79)

Within each class, the terms in the sum over ā, b̄ differ only by multiplication
by factors Xγ̃ . Since L(γ) is a multiple of γ, it follows that 〈γ, L(γ)〉 = 0.
Hence the action of K on each class of terms is independent of the particular
term. We consider them in turn. For the ii terms, K acts by multiplication
by
∏

γ∈Γc
(1 +Xγ̃)〈℘(i),L(γ)〉, but using (61) we see that 〈℘(i), L(γ)〉 = −αγ(p)

(since p is the only edge of W crossed by ℘) and hence this reduces to mul-
tiplication by Q(p)−1. On the jj terms, K similarly acts by multiplication by
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Q(p). On the ij terms, the action of K is more complicated; it is multipli-
cation by a new function H =

∏
γ∈Γc

(1 + Xγ̃)〈℘(i)
+ +b̄+℘

(j)
− ,L(γ)〉. But we have

〈℘(i)
+ + b̄+ ℘

(j)
− , L(γ)〉 = −〈℘(j)

+ + ā+ ℘
(i)
− , L(γ)〉 as one readily sees using the

facts that cl(ā+ b̄) is proportional to L(γ) and 〈℘(i), L(γ)〉 = −〈℘(j), L(γ)〉. It
follows that the action of K on the ji terms is multiplication by H−1. These
facts together are sufficient to imply the desired P5.28

Finally we must explain why these properties actually determine F(℘).
As a warm-up, suppose that there are only one-way streets. In that case we
have shown in Sects. 4 and 5 above that the properties P1–P4 are sufficient
to determine all of the μ(a), and hence also to fix F(℘). The same kind of
argument can be made in the presence of two-way streets; the only new com-
plication is that the local structure around joints and branch points is more
complicated. Nevertheless, a direct computation using only the fact that F(℘)
obey P1-P5 determines the μ(a) appearing there for all charges a oriented out
of a joint, in terms of the μ(a) for charges a oriented into the same joint. (The
resulting explicit formulae are recorded in Appendix A, e.g. (163).) Inductively
we can thus determine the 2d–4d degeneracies μ(a) everywhere on Wϑc

, just
as we did in the (generic) case with only one-way streets. Having done so the
F(℘) are also determined by P1–P5. This completes the proof.

7. Examples of K-walls

In this section, we illustrate the general discussion of Sect. 6 with some exam-
ples.

7.1. Saddle Connections

The simplest possibility has already appeared in Fig. 24 above. It involves two
S-walls, colliding along a two-way street p running between two branch points.
We call such a two-way street a “saddle connection,” following the standard
terminology for trajectories of quadratic differentials (which is literally what
we are considering here in the case K = 2).

The two S-walls support charges ā and b̄, with natural lifts a, b, and we
have

μ−(a) = 1, μ−(b) = 1, (80)

with all other μ−(·) vanishing. In this case, (58) reads

Q(p) = 1 +Xcl(a+b). (81)

If we let γ = cl(ā+ b̄), the preferred lift is γ̃ = cl(a+ b) +H; we thus have

Q(p) = 1−Xγ̃ . (82)

28 Incidentally, they also imply that F(℘)jj = Q(p); this and the fact F(℘) = F (℘, ϑ+
c )

(which we are in the process of showing) together prove our remark under (58).
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This can indeed be decomposed according to (60), taking αγ(p) = 1, and
αnγ(p) = 0 for n �= 1. We thus obtain the simple result

L(γ) = pΣ (83)

and L(nγ) = 0 for n �= 1. As we have seen above, this result completely
determines the wall-crossing at this K-wall, through the formula (62).

In particular, we have [L(γ)] = γ, so the 4d BPS degeneracy is

Ω(γ) = 1. (84)

We have thus found that a saddle connection represents a BPS hypermulti-
plet. This recovers a result of [6,3] for the case K = 2, and extends it to
arbitrary K.

7.2. Closed Loops

A more interesting possibility is shown in Fig. 27. This case involves an S-wall
which winds around a cylinder in C many times, more and more tightly as
ϑ→ ϑc. In this case, two two-way streets appear simultaneously at ϑ = ϑc; let
p denote one of them. p begins and ends at the same branch point, and the
soliton degeneracies are a bit more interesting than the previous case: there are
infinitely many nonvanishing μ−(·), coming from the infinite set of windings
of the S-wall around the cylinder, which have all coalesced onto p. Explicitly

μ−(a) = 1, μ−(b+ n(a+ b)) = 1 for all n ≥ 0, (85)

with all other μ−(·) vanishing. Hence by (58),

Q(p) = 1 +Xcl(a+b) +Xcl(2(a+b)) + · · · (86)

= (1−Xcl(a+b))−1. (87)

Define γ = cl(ā + b̄). The preferred lift of γ is γ̃ = cl(a + b), so we have
Q(p) = (1−Xγ̃)−1, which means αγ(p) = −1. Now, to compute L(γ) we must
sum the contributions from both two-way streets—call them p1 and p2—so we
obtain

L(γ) = −p1
Σ − p2

Σ. (88)

Both p1
Σ and p2

Σ are in the homology class γ, so [L(γ)] = −2γ, or

Ω(γ) = −2. (89)

Thus we have recovered the result of [6,3]: this pair of closed trajectories rep-
resents a BPS vectormultiplet.

In [3], we derived the result Ω(γ) = −2 in this situation (in the special
case K = 2), by a rather delicate analysis of the jumps of the vacuum expec-
tation values of line defects associated to closed paths. This analysis gave the
right answer but depended on the assumption that at ϑ = ϑc the third trajec-
tory emerging from the branch points in Fig. 27 ends on a puncture. As Ivan
Smith pointed out to us, this assumption can be violated for higher genus C:
the cylinder of closed trajectories could be dividing C into two pieces, one of
which contains no puncture. Our present analysis using line defects associated
to open paths is much simpler and is free of such extra assumptions.
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Figure 27. A more complicated way in which S-walls can
collide head-on. At ϑ < ϑc, the S-wall supporting charge a
winds once clockwise around the cylinder and then disap-
pears toward the bottom, while the S-wall supporting charge
b winds many times counterclockwise around the cylinder and
eventually disappears toward the top. In the figure, for clarity
we truncate the latter S-wall after it has wound around a few
times. At the critical ϑ = ϑc, all of the windings of the S-wall
supporting charge b coalesce onto a single closed trajectory.
At ϑ > ϑc these two S-walls exchange roles

Incidentally, from the point of view of the theory S[g, C,D], these two
closed trajectories would not seem to be the whole story. Indeed, these two
ij-trajectories are actually the two ends of a one-parameter family of closed
ij-trajectories, which sweep out a cylinder on C. Any member of this family
is a BPS string. So physically speaking, we should regard this Ω(γ) = −2 as
giving the contribution from this whole one-parameter family, not just from
the two ends of the family. From our current point of view, though the ends
play a privileged role, in that they are S-walls, while the trajectories in the
interior of the cylinder are not.

Finally, although we have hidden it up to this point, the behavior of the
networks Wϑ as ϑ→ ϑc is actually rather complicated. In Fig. 27, at ϑ < ϑc,
we see two S-walls which wind many times around the cylinder. There we
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Figure 28. Another picture of the S-walls on the cylinder
for ϑ near the critical phase ϑc. Here we do not truncate the
walls, and we distinguish different walls by giving them dif-
ferent colors

truncated them at some finite distance in order not to make the figure too
confusing. In Fig. 28, we show the full S-walls at some particular ϑ < ϑc.
Note that the two winding S-walls thread past one another many times before
they escape the cylinder. As we vary ϑ slightly, the angle at which they are
threaded changes, and there are infinitely many critical phases ϑn at which
they actually collide head-to-head. The critical phases ϑn accumulate at the
value ϑc. At each of these critical phases we have a saddle connection and the
network Wϑ jumps, just as we discussed in Sect. 7.1.

We analyzed this limiting process rather closely in [3]; but we emphasize
that in our current analysis, if all we want to know is the BPS degeneracy Ω(γ)
which appears exactly at the critical phase ϑc, it is not necessary to study this
infinite sequence of jumps.

7.3. Three-String Webs

When we go beyond K = 2, we encounter many new and varied phenomena.
The simplest new possibility is shown in Fig. 29. Near the critical phase

ϑ = ϑc, we see three pairs of S-walls nearly colliding head-on. Each pair con-
sists of one “primary” S-wall, born at a branch point, and one “secondary”
S-wall, born at the intersection between two primary walls. At the critical
phase ϑ = ϑc each such pair of walls collides along a two-way street p. Each
of the three two-way streets p supports a different pair of two 2d–4d charges,
with all three pairs summing to γ = cl(ā+ b̄+ c̄).

We would like to compute the 1-cycle L(γ). Let us focus attention on the
two-way street p supporting the 2d–4d charges ā and b̄+ c̄. At ϑ < ϑc, the S-
wall supporting charge ā is emerging directly from a branch point, and thus has
a natural lift a with μ(a) = 1. The S-wall supporting b̄+ c̄, on the other hand,
is emerging from a joint where walls supporting b̄ and c̄ intersect. These two
walls in turn emerge from branch points, so at the joint μ−(b) = 1, μ−(c) = 1.
It follows from (34) that the emerging wall has μ−(b + c) = 1. Since these
are the only two S-walls which collide along p, all other μ−(·) vanish along p.
Plugging into (58) we obtain

Q(p) = 1 +Xcl(a+b+c) (90)

and hence, letting γ = cl(ā + b̄ + c̄) with preferred lift γ̃ = cl(a + b + c) +H,
for suitable a, b, c, we find αγ(p) = 1. The same result holds for the other two
two-way streets pn, so L(p) is the sum:
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Figure 29. A new way in which S-walls can collide, which
appears only in theories with K > 2. The picture shows a
patch of C containing three branch points. Wϑ involves both
“primary” S-walls born from the branch points (supporting
charges a, b, c) and “secondary” S-walls born from intersec-
tions between primary S-walls (supporting charges a+ b, b+
c, a+ c.) At the critical phase ϑ = ϑc, primary and secondary
walls collide head-on, along a locus which forms a three-string
finite web

L(γ) = p1
Σ + p2

Σ + p3
Σ. (91)

In other words, letting N denote the finite web made up of the three two-way
streets pn, we have

L(γ) = NΣ. (92)

Moreover, [NΣ] = γ, so the 4d BPS degeneracy here is

Ω(γ) = 1. (93)

Therefore, we have found that the finite web N , made up of three strings which
meet at a junction, corresponds to a BPS hypermultiplet.

7.4. The Setting Sun

Next we briefly consider a more complicated example, in which several overlap-
ping finite webs appear simultaneously. Unlike the previous examples, we just
draw the degenerate network of interest, and not the nondegenerate ones at
nearby phases (which would be terribly cluttered in this example). See Fig. 30.

Label the three two-way streets in this figure as p1, p2, p3 from top to
bottom. Using the rules of Appendix A, we can directly compute the soliton
degeneracies μ(·, ·) on all the streets in the figure. The nonzero degeneracies
on p1, p2, p3 come out to

μ(b, p1) = 1, μ(c+ a+ n(b+ c+ a), p1) = 1 for n ≥ 0, (94)
μ(c, p2) = 1, μ(a+ b, p2) = 1, (95)

μ(a+ n(b+ c+ a), p3) = 1 for n ≥ 0, μ(b+ c, p3) = 1. (96)
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Figure 30. The “setting sun”: a picture which could occur
as part of a degenerate spectral network at some ϑ = ϑc. We
show the two-way streets slightly resolved, with the “Ameri-
can resolution”, which would occur in the limit ϑ→ ϑ−

c . Each
street supports the charges indicated as well as their shifts by
positive multiples of γ = cl(ā+ b̄+ c̄)

(All other streets turn out to be one-way, as anticipated in Fig. 30, and so do
not contribute to L below.) Define γ = cl(ā+ b̄+ c̄), and let γ̃ be its preferred
lift. Plugging into (58) and keeping careful track of windings, we find

Q(p1) = Q(p3) = (1−Xγ̃)−1, (97)

Q(p2) = 1−Xγ̃ . (98)

This gives

L(γ) = −p1
Σ − p3

Σ + p2
Σ. (99)

This class is homologically trivial, [L(γ)] = 0. (It could hardly be otherwise,
since the projection of L(γ) to C lies in a contractible region containing no
branch points, which means L(γ) itself lies in the disjoint union of three con-
tractible open sets on Σ.) Therefore, in particular, this degenerate network
does not contribute to the 4d BPS spectrum:

Ω(γ) = 0. (100)

Nevertheless the enhanced degeneracies ω(γ, ·) are certainly not zero in this
example: they are given as usual by (63).

How should we understand the result (100)? First note that there is a
1-parameter family of finite BPS webs here, parameterized by an interval, as
indicated in Fig. 31. The two ends of the family are built from the S-walls
appearing in the degenerate network Wϑc

, while the other finite webs involve
a “bubble” made out of BPS strings which are not S-walls. This is the same
phenomenon we had in Sect. 7.2 above, where we considered a cylinder swept
out by BPS strings; the boundaries of the cylinder were S-walls, but the generic
BPS strings inside the cylinder were not.

In the present case, one end of the family (at left) looks like the “three-
string web” we encountered in Sect. 7.3 above. If this three-string web occurred
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Figure 31. Three finite webs, belonging to a 1-parameter
family of finite webs parameterized by an interval: as we move
along the interval, the “bubble” in the middle of the web
expands from zero size (left) to a finite maximum size (right)

in isolation it would give rise to a BPS hypermultiplet, with Ω(γ) = +1. How-
ever, when it sits in this 1-parameter family its contribution cannot be evalu-
ated in isolation: rather we must quantize the whole family at once. What we
have seen is that the contribution to Ω(γ) from this family vanishes.

8. Some BPS Spectra

In this section, we finally show how the spectral networks Wϑ can be used to
determine the 4d BPS spectrum in some simple examples of theories S[g =
AK−1, C,D].

A first comment is that all of the examples described in Sect. 9 of [3] are
also examples of the structures considered here: more precisely they are exam-
ples of the case K = 2, where (as explained in Sect. 5.7) studying the spectral
networks Wϑ is equivalent to studying some special ideal triangulations of C.
We therefore regard those examples as incorporated here by reference, and
move on to the really new phenomena.

8.1. The Pentagon Theory Revisited

The fist new example, we consider is obtained by taking K = 3 and C = CP
1,

with a single defect at z =∞, imposing the boundary conditions that φ2 has
a pole of order 4 and φ3 one of order 8. These conditions imply that after
rescaling and shifting the coordinate z, one can put φ2 and φ3 in the form

φ2 = 3Λ2 dz2, φ3 = (z2 + u) dz3. (101)

Here, Λ is a parameter and u parameterizes the 1-dimensional Coulomb branch
B. For any particular u, we have a corresponding 3-fold cover of C (Seiberg–
Witten curve) given by (2),

Σ = {λ3 + (3Λ2 dz2)λ+ (z2 + u) dz3 = 0} ⊂ T ∗C, (102)

or if we write more concretely λ = xdz,

Σ = {x3 + 3Λ2x+ z2 + u = 0}. (103)

We can now study the BPS spectrum, by scanning through the spectral
networksWϑ as ϑ varies between 0 and π and looking for critical phases where
the topology of Wϑ jumps.
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Figure 32. The network Wϑ when u = 0, at the phases
ϑ = πn/10, with 1 ≤ n ≤ 10; the first row begins with n =
1 and the second with n = 6. We indicate the labelings of
the S-walls in the n = 1 figure: all walls in each indicated
group carry the same label (e.g. there are three walls carrying
the label 13 exiting the figure to the north.) The two critical
phases at which a K-wall occurs are indicated by blue lines;
one is between n = 2 and n = 3, the other between n = 7 and
n = 8. See [43] for an animated version of this figure (color
figure online)

For example, suppose u = 0. In this case, Wϑ jumps 2 times as we vary
the phase, as we show in Fig. 32. Both of these jumps are of the type we
discussed in Sect. 7.1: at the critical phase there is a saddle connection, i.e.
an ij-trajectory running between two (ij) branch points. We depict these two
saddle connections in Fig. 33. Following the recipe of Sect. 6.3, we see that
they correspond to closed loops L1, L2 on Σ (just obtained by lifting the sad-
dle connections to Σ) with corresponding charges γ1 = [L1], γ2 = [L2], and
the 4d BPS degeneracies are

Ω(γ1) = 1, Ω(γ2) = 1. (104)

(We also have Ω(−γ1) = Ω(−γ2) = 1; these other two BPS multiplets would
be encountered in varying ϑ between π and 2π. The networkWϑ+π is obtained
from Wϑ just by transposing the labels ij on all walls, so we do not need to
draw new figures for this range of phases.) The intersection pairing between
these charges is 〈γ2, γ1〉 = 1; this reflects the fact that the two saddle con-
nections cross at a single point, at which they have a single sheet in common
(sheet 2 in the notation of Fig. 33.)

On the other hand, suppose we take u/Λ = 5. In this case, the picture
looks somewhat different: Wϑ jumps times times as we vary ϑ from 0 to π,
as shown in Fig. 34. These three jumps correspond to three finite webs as
indicated in Fig. 35.

Again following Sect. 6.3, we find that all three of these lift to closed
loops on Σ, now with corresponding charges γ2, γ1 + γ2 and γ1 in order, and
we have
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Figure 33. The two saddle connections which appear at the
critical phases, when u = 0. They could equally well have
been represented by segments with the opposite orientation
and the labels ij transposed

Figure 34. The network Wϑ when u = 4 and Λ = 1,
at the phases ϑ = πn/200, with (reading from left to
right and top to bottom) n = 1, 23, 45, 68, 82, 90, 97, 103,
110, 118, 132, 155, 177, 199. The three critical phases at which
a K-wall occurs are indicated by blue lines. See [43] for an
animated version of this figure

Ω(γ1) = 1, Ω(γ2) = 1, Ω(γ1 + γ2) = 1 (105)

(along with Ω(−γ1) = Ω(−γ2) = Ω(−γ1 − γ2) = 1, as before).
So the 4d BPS spectrum changes as we vary u. Of course, this is not unex-

pected: it is the wall-crossing phenomenon, and occurs exactly as predicted by
the wall-crossing formula [9,3,17,40]. At large |u| the two BPS multiplets of
charges γ1 and γ2 form a bound multiplet of charge γ1 + γ2.
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Figure 35. The two saddle connections and one more com-
plicated finite web which appear at the critical phases, when
u = 4 and Λ = 1. Each segment could equally well be replaced
by one with the opposite orientation and the labels ij trans-
posed

The BPS spectrum here (two hypermultiplets with symplectic product
1 at small |u|, three hypermultiplets at large |u|) might look familiar to the
reader: it is just the same structure one meets in the first nontrivial Argyres–
Douglas theory. Wall-crossing in Argyres–Douglas theories was first studied in
[47]; we also studied this particular theory in Section 9.4.4 of [3]. There we
took K = 2 and φ2 = z3− 3Λ2z+ u, thus obtaining the Seiberg–Witten curve

Σ = {λ2 + (z3 − 3Λ2z + u)dz2 = 0}, (106)

or writing λ = xdz,

Σ = {x2 + z3 − 3Λ2z + u = 0}. (107)

Now comes the point: the change of variables x→ −z, z → x transforms this
into (103)! This change of variables does not quite preserve λ, but it takes
λ→ λ− d(xz), so as far as the periods of λ over closed cycles are concerned,
these two Seiberg–Witten curves are fully equivalent. This constitutes strong
evidence that the two 4d theories S[A1, C,D] and S[A2, C,D

′] which we have
considered are actually the same. These two descriptions of the theory however
privilege different classes of surface defect, one with K = 2 vacua and one with
K = 3. Moreover they lead to rather different-looking representations of the
BPS states: in the K = 2 picture, all three BPS hypermultiplets at large u
are represented by saddle connections, quite unlike the situation depicted in
Fig. 35. We regard the fact that the BPS degeneracies nevertheless agree as a
useful consistency check of our story.

This “duality” between two different descriptions of the same theory is an
example of a more general phenomenon. There is a class of theories discussed
in [48], labeled by pairs (G,G′) of Dynkin diagrams, and the theory with dia-
gram (G,G′) is the same as the one with diagram (G′, G). The example we
considered here is the case of (A1, A2).

8.2. The Pure SU(3) Theory at Strong Coupling

For our next example, we take again K = 3 and C = CP
1, but this time with

defects both at z = 0 and z = ∞, with each defect imposing the boundary
conditions that φ2 has a pole of order at most 2 and φ3 one of order 4. These
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Figure 36. Left the spectral network Wϑ in a neighborhood
of a pair of nearby branch points of types (ij) and (jk); right
the limit where the branch points coalesce to form a branch
point of type (ijk). This situation occurs in the pure SU(3)
theory as u2 → 0

conditions imply that after rescaling the coordinate z, one can put φ2 and φ3

in the form

φ2 = −3u2

(
dz
z

)2

, φ3 =
(

Λ
z

+ u3 + Λz
)(

dz
z

)3

. (108)

This corresponds to the pure SU(3) theory [3]. Here Λ is a parameter (the
dynamical scale) and (u3, u2) parameterize the Coulomb branch. In this paper
will not attempt a complete study of the BPS spectrum in this theory: we just
describe what happens at the locus where u3 = 0 and |u2| � |Λ|

2
3 . This locus

is in the “strongly coupled” region of the theory.
We could proceed immediately to the pictures of Wϑ as ϑ varies, but to

calibrate our expectations, it is useful to make some preliminary exploration.
At a generic point (u3, u2), the Seiberg–Witten curve Σ is a threefold covering
of C with 4 simple branch points. If u2 = 0 then the 4 branch points coa-
lesce in pairs. Each pair consists of an (ij) and a (jk) branch point, which at
u2 = 0 coalesce to a single branch point, with cyclic monodromy (ijk). There
is nothing singular about this situation from the point of view of the IR four-
dimensional physics (in contrast with the case where two (ij) branch points
coalesce, in which case the mass of a BPS hypermultiplet goes to zero.) For
small u2 and generic ϑ, we can work out (and verify by computer calculation)
what the spectral network Wϑ around such a pair looks like: see Fig. 36. Tak-
ing the limit u2 → 0 we find that the branch points with monodromy (ijk)
emit 8 walls. As ϑ is increased continuously through an angle π/3, these 8
walls rotate by one unit counterclockwise.

Now fixing u3 = 0 and u2 small (or even u2 = 0) we can draw Wϑ as ϑ
varies from 0 to π. In fact, the picture has a further approximate symmetry
under a shift ϑ �→ ϑ+ π

3 (which becomes exact at u2 = 0), so we only need to
look at the variation over some range of length π

3 . We show this variation in
Fig. 37.
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Figure 37. The evolution of Wϑ from ϑ = π
30 to ϑ = 11π

30 ,
at u3 = 0 and very small u2. Each figure is drawn on a flat-
tened-out cylinder, so the left and right sides should be iden-
tified. Note that the last figure looks essentially identical to
the first. There are two critical phases ϑc in this range, very
close together, marked by the two blue lines. See [43] for an
animated version of this figure

We find two critical phases ϑc very close together. At each critical phase
a BPS hypermultiplet appears, represented by a two-way street connecting the
two pairs of branch points. (One of these is evident in the figure; the other
is harder to spot since it exits the right side and re-appears on the left.) As
ϑ varies from 0 to π this picture is repeated twice more, giving 2 more BPS
states each time. Thus altogether we find that the strong-coupling spectrum
of the SU(3) theory consists of 6 distinct BPS hypermultiplets (or 12 if we
include the antiparticles). This agrees with the recent result of [10,11] where
the same spectrum is obtained using quiver representations.

8.3. The Theory of 9 Free Hypermultiplets

Next let us consider K = 3 and C = CP
1, with three defects, two “full” (at

z = ±1) and one “simple” (at z = 0). This means that at z = ±1 we impose
the condition that φ2 has a pole of order 2 and φ3 one of order 3, while at
z = 0 we require that the discriminant Δ = 27φ2

3 − 4φ3
2 has a pole of order 4.

Concretely this means we take

φ2 =
−3m2 + az + bz2

z2(z + 1)2(z − 1)2
dz2, φ3 =

2m3 − amz − cz2 + dz3

z3(z + 1)3(z − 1)3
dz3. (109)

Here m,a, b, c, d are complex parameters, related to the flavor masses which
will appear below.

According to [2], the corresponding theory S[A2, C,D] is a theory of 9
free hypermultiplets, transforming in the (3,3,+1) of an SU(3)×SU(3)×U(1)
flavor symmetry. The mass parameter for the U(1) flavor symmetry is m, while
those for the two SU(3) are the residues r(i)1 , r

(i)
−1 of λ(i) at 1, −1 respectively

(these are some functions of m,a, b, c, d). As a test of this statement (and of our
whole picture) one can choose some arbitrary values for a, b, c, d, m and study
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Figure 38. The cutoff spectral networks Wϑ[Λ] where Λeiϑ

runs over the 9 values 1
2Zγ(i,j), and we have fixed parameters

such that |m| � |r(i)±1|. In each network, we see a pair of S-
walls meeting head-to-head, thus combining into a single path,
highlighted in red; this corresponds to a BPS hypermultiplet
with central charge Zγ(i,j)

the BPS spectrum. We should expect to find 9 BPS multiplets, corresponding
to the quanta of the elementary hypermultiplet fields, carrying charges γ(i, j)
for 1 ≤ i, j ≤ 3. The expected central charges of these BPS multiplets are
determined by the flavor mass parameters:

Zγ(i,j) = 2i(−m+ r
(i)
1 + r

(j)
−1). (110)

We found it simplest to study the spectrum in the regime where |m| �
|r(i)±1|. In this regime the 4 branch points coalesce into two pairs, each pair
sitting very close to one of the two full punctures. For several chosen values of
parameters in this regime, we indeed found 9 BPS multiplets with exactly the
predicted central charges. See Fig. 38 for an example.

In addition, we found 6 extra BPS multiplets, 3 associated to each of the
2 full punctures, with central charges

Zγ±1(i,j) = 2i(r(i)±1 − r
(j)
±1) (i > j). (111)

(Taking i < j in this formula gives the central charges for the corresponding
antiparticles.) In the regime we are considering, these multiplets are repre-
sented by small loops around the punctures. They might at first seem unex-
pected, but they have a natural explanation: they do not represent 4d particles
at all but rather 2d particles living on the surface defect Sz. Indeed, as we
emphasized in [5], the quantity ω(γ, a) in general must be interpreted as a
sum of contributions from 4d particles carrying charge γ and 2d particles car-
rying the same charge. The phenomenon that a closed loop around a puncture
represents a 2d particle carrying flavor charge also arose there, in the context
of the CP

1 sigma model.
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9. General Spectral Networks and Path Lifting

As we have remarked in Sect. 5.7, in the theories S[A1, C,D], each spectral
network Wϑ corresponds naturally to an ideal triangulation of C. Ideal trian-
gulations are rather flexible objects and one might study them without regard
for whether they arise from any Wϑ. In an analogous way, we now generalize
the Wϑ we have worked with thus far to some purely topological objects W,
which we will refer to as spectral networks.

A spectral network W is associated to a branched cover Σ→ C. In con-
trast to the case of W = Wϑ constructed in Sect. 5, now we do not require
that Σ ⊂ T ∗C. In particular, we do not have the canonical 1-form λ on Σ
anymore. In consequence, the S-walls making up a spectral network are not
solutions to any differential equation; rather, locally they are arbitrary paths.
We thus gain some flexibility in the S-walls, but at the same time we lose
some topological data which were previously induced by the 1-form λ (Seiberg–
Witten differential). We will build substitutes for those data explicitly into our
definition of “spectral network.”

9.1. General Spectral Networks

Let C be an oriented real surface with a (perhaps empty) boundary. Each con-
nected component of the boundary is a copy of S1; on each such component fix
a (nonempty) set of marked points. Also fix a (perhaps empty) set of marked
points in the interior of C. We refer to the interior marked points as punctures
and we refer to all the marked points as singular points (although they are not
singularities of C) and denote them as sn. We require that there is at least
one singular point.

Let Σ → C be a K-fold branched covering which is unramified over the
boundaries and the singular points. Let C ′ be C minus the branch points.
For simplicity we assume the branch points are all simple, so the monodromy
around each branch point just exchanges two sheets of Σ. (This condition can
likely be relaxed at the price of a more cumbersome definition.)

A spectral network subordinate to the covering Σ is a collection

W = (o(sn), {zμ}, {pc}) (112)

where the symbols refer to the following data.
D1. For each singular point sn, o(sn) is a partially ordered subset of the set

of sheets of Σ over a neighborhood of sn. o(sn) must contain at least two
elements, and if sn is a puncture, o(sn) must contain all of the sheets
over a neighborhood of sn.

D2. {zμ} is a locally finite collection of points on C ′, called joints.
D3. {pc} is a finite or countable collection of closed segments (i.e. images

of embeddings of [0, 1] into C), called walls or streets (depending which
metaphor is more useful in a given context, cf. footnote 21). For each ori-
entation o of the street pc, pc is labeled with an ordered pair of distinct
sheets of the covering Σ→ C over pc. Reversing the orientation reverses
this ordered pair of sheets. So pc comes with two labels which we could
write as (o, ij) and (−o, ji).



1698 D. Gaiotto et al. Ann. Henri Poincaré

The data must satisfy the following conditions.

C1. The segments pc cannot cross one another (but they are allowed to have
common tangents). Each pc must begin on a branch point or a joint,
and must end on a joint or a singular point. Any compact subset of C ′

intersects only finitely many segments.
C2. Around each branch point b there is a neighborhood where W looks like

Fig. 13. That is, each branch point of type (ij) is an endpoint of three
streets which carry labels (o, ij) or (o, ji), and the streets encountered
consecutively traveling around a loop around b have oppositely ordered
sheets.

C3. Around each joint zμ there is a neighborhood where W looks like Fig. 9,
Fig. 10, or Fig. 11.

C4. If a segment with label ij ends at a singular point sn, then i and j lie
in the ordered subset o(sn), and with respect to the ordering of o(sn) we
have i < j.

Our definition of “spectral network” is somewhat provisional. With an
eye toward the future let us mention one natural generalization: we could
have relaxed the requirement that there is at least one singular point sn, and
allowed the segments to be infinite in one direction. This generalization would
be needed if we want our definition to encompass the networks Wϑ in theo-
ries S[g, C] where the set of defects is actually empty. The resulting spectral
networks would be expected to look much more complicated—e.g. the streets
may well be dense on C. Nevertheless, as we described in the introduction, we
think that it should be possible to extend everything described in this paper
to this case.

9.2. Canonical Examples: the Wϑ

TheWϑ discussed in previous sections, which arose naturally from the physics
of theories of class S, are essentially examples of spectral networks.

The data D2 and D3 above appeared in Sect. 5. The datum D1 is deter-
mined by the behavior of the λ(i) near sn. We will not describe it explicitly
here, except in the basic case where sn is a full defect: in that case o(sn) con-
sists of all the sheets, ordered by Re (e−iϑm(i)). As we saw in Sect. 5.5, the
Wϑ indeed obey our condition C4 with this ordering.

We say Wϑ are “essentially” spectral networks because of two technical
points:

1. In the networks Wϑ as we defined them, it is possible for a wall to “die”
at a joint, as indicated in Fig. 12. In contrast, our present definition of
spectral network we do not allow this: the walls always continue through
joints.

This difference arises because in Wϑ we included a wall p only if it
supports a charge a with μ(a, p) �= 0. We could have dropped the require-
ment μ(a, p) �= 0, thus including some additional “invisible” walls. This
would not have changed anything in previous sections, except to make
the notation a bit more cumbersome.
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Figure 39. The American (left) and British (right) resolu-
tions of a street

2. Wϑ can fail to be a spectral network because it has a wall which is not
of type ij or ji but accidentally runs into a branch point of type (ij). It
would be possible to extend the definition of spectral network to include
this situation, but for simplicity we have avoided it.

9.3. Soliton Content

To a spectral network, we can associate some additional data having to do
with solitons, which we now define.

A soliton s(z), where z ∈ pc, is an immersion of [0, 1] into Σ, which begins
and ends on preimages of z, and such that its projection to C lies in the spec-
tral network W (or more precisely in a very small neighborhood of W; this
correction is necessary because at joints we smooth out the sharp corners.) If
pc carries the label (o, ij), then we say s(z) is compatible with o if it begins
on z(i) and ends on z(j), and the projection of s(z) to C begins with orienta-
tion −o and ends with orientation o. The soliton content is, for each street pc

and each point z ∈ pc, a pair of sets of solitons So
c (z), S−o

c (z), such that the
solitons in So

c (z) are compatible with o and those in S−o
c (z) are compatible

with −o.
The soliton sets must satisfy some rules, which we will refer to as soli-

tonic traffic rules. Actually the rules come in two variants: either American
or British. In order to state the rules we introduce a resolution of the streets
of the spectral network, regarding each street as resolved into two oriented
“lanes” infinitesimally displaced from one another, either in the “American”
or the “British” fashion. See Fig. 39.

Note that this definition uses the orientation of C. The American and
British traffic rules are thus related to one another by a reflection in the plane.
In what follows we show the British rules only; to get the American rules
simply requires a little reflection.

ST1. As z moves continuously along a street pc, the soliton sets S±o
c (z) evolve

continuously, by the natural parallel transport; in other words, the soli-
ton sets do not “jump.” With this in mind, we abuse notation by writing
the soliton sets simply as S±o

c , suppressing the trivial z dependence.
ST2. Let b be a branch point. The network W then looks like Fig. 40 in the

vicinity of b. There are three streets pc emerging from b. We denote the
set of orientations of each street by {in, out}. For each c, define the light
soliton sc as follows: if pc carries the label (out, ij), then sc(z) begins on
z(i), travels along p

(i)
c back to the ramification point on Σ covering b,

and returns along p(j)
c to z(j). Then, the soliton sets are related by

Sout
1 = S in

3 ∪ {s1}, Sout
2 = S in

1 ∪ {s2}, Sout
3 = S in

2 ∪ {s3}. (113)
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Figure 40. A spectral network in the vicinity of a branch point

(In this equation, the solitons are understood to be evolved continuously
from one street to the other. Since there is a branch point at b, this
continuous evolution depends on which path we follow to go from one
street to the next; we follow the short path, i.e. we go around an arc of
length 2π/3, not 4π/3.)

ST3. In a sufficiently small neighborhood of a joint of the “four-way junc-
tion” type shown in Fig. 9 (where ij and kl walls meet), the soliton sets
vary continuously, i.e. the outgoing soliton sets are equal to the incoming
ones. In a sufficiently small neighborhood of a joint of the “six-way junc-
tion” type (where ij, jk and ki walls meet), the outgoing soliton sets
are determined by the incoming ones according to the rules shown in
Figs. 41, 42. (A motivation for this peculiar-looking rule is explained in
Appendix A.)

Importantly, for any spectral network W, the solitonic traffic rules
(including the choice of American or British) uniquely determine the soliton
content. To prove this claim, one can consider a discrete version of the mass
filtration of the spectral networks Wϑ: just define the length of a soliton to be
the number of walls in its projection to C, and construct the soliton content
by induction on length using the solitonic traffic rules.

It is convenient to distinguish two different possibilities for the soliton
content. Consider the two soliton sets So

c , S−o
c on a street pc. If both are non-

empty, we refer to pc as a two-way street. If exactly one is empty, pc is a
one-way street, and in that case we write Sc for the single nonempty soliton
set. (It never happens that both are empty.) If there are no two-way streets
we say that W is a nondegenerate spectral network; otherwise we say it is
degenerate.

If W is nondegenerate, the solitonic traffic rules simplify considerably, to
the following. Consider the joint of Fig. 10. We continue the ij and jk soliton
sets continuously through the joint. For the ik wall, after passing through the
joint we add to the set of ik solitons all new solitons of the following descrip-
tion: the new soliton begins at z(i), projects on C to the path going back to the
joint, then follows one of the the ij solitons from sheet i to sheet j above the
joint, then follows one of the jk solitons from sheet j to sheet k above the joint,
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Figure 41. The rule for constructing outgoing solitons from
a six-way junction, with the British resolution. We show six
allowed types of junction, one in each “Weyl chamber” around
the joint. The most general outgoing soliton is constructed
by a diagrammatic prescription as follows. We fix any set of
incoming solitons; for each one we draw an incoming line on
the diagram, coming in along the appropriate direction, and
on the left side of the median. We then combine these incom-
ing solitons with junctions of the allowed types, to make a
single outgoing line. Every diagram so obtained determines
an outgoing soliton in a natural way, by concatenation of the
incoming solitons

then returns on sheet k on the trajectory projecting to the ik wall ending at
z(k). In particular, these simplified rules do not depend on whether we started
out with American or British traffic rules (as we should expect since we are
considering the case where there are no two-way streets.)

So for nondegenerate spectral networks, the soliton content is unique,
while for degenerate ones there are two possible soliton contents, one following
American traffic rules and one British.

In previous sections, we considered integers μ(p, a) attached to the spec-
tral networks Wϑ. These integers are determined by the soliton content of
Wϑ—indeed they are simply counts of the solitons with appropriate signs:
μ(pc, a)Xa =

∑
ν∈Sc

X[s̃ν ]. So the soliton content is a slight extension of the
μ(p, a) to keep track of the actual solitons, not only their number. This exten-
sion will actually not be used for anything in this paper (all of our constructions
really depend only on μ) but we believe it may be useful in the future.
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Figure 42. Some examples of diagrams representing outgo-
ing solitons. Incoming solitons are represented by black lines,
the outgoing path by a red line. (The first example is excep-
tional in that the incoming line is the same as the outgoing
one.) (color figure online)

9.4. Path Lifting

In Sects. 4–5, we studied at great length the generating functions F (℘, ϑ) of
framed 2d–4d BPS degeneracies. Let us set aside the physical meaning of these
functions for a moment and just think of them as some interesting mathemati-
cal objects. We found in Sect. 4.4 that F (℘, ϑ) could be completely constructed
from the datum of the spectral network Wϑ together with its soliton content.
One of the main motivations of our definition of spectral network is that,
given any spectral network, we can make a very similar construction. In this
section, we describe that construction. For notational convenience, we consider
only the case of a nondegenerate spectral network, but what we write has an
obvious extension to the degenerate case.

We will be rather brief since everything is parallel to what we did in
Sect. 4.4. However, we slightly modify Sect. 4.4, in two respects. First, with
an eye toward future applications, instead of homology classes of open paths
on Σ̃, we will keep track of homotopy classes. This turns out to be no more
difficult. We will generally denote the homotopy objects with a bold letter to
distinguish them from their homology cousins. Second, instead of considering
smooth paths ℘ in C and using their canonical lift to C̃, it will be convenient
to work with arbitrary paths ℘̃ on C̃ from the beginning. This will involve
lifting many objects from C to C̃ or from Σ to Σ̃; we always use a tilde to
denote the lifted objects.

For any homotopy class a of open paths on Σ̃, we introduce a correspond-
ing formal variable Xa, subject to the relation that if a and a′ project to the
same homotopy class on Σ then we have
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Xa/Xa′ = (−1)w(a,a′). (114)

Now, given a spectral network W, let W̃ be the preimage of W on C̃. Given a
path ℘̃ on C̃ whose endpoints are not on W̃, we are going to define a formal
sum of these variables, with integer coefficients:

F(℘̃,W) =
∑

a

Ω
′
(℘̃,W,a)Xa. (115)

(In Sect. 4.1, we met a similar expansion for which the coefficients Ω
′

were
interpreted as framed 2d–4d BPS degeneracies. In the more general setting of
this section, we do not know what the physical interpretation of Ω

′
should be.)

The assignment F(·,W) will obey two important properties:

• For two concatenatable paths ℘̃, ℘̃′ on C̃,

F(℘̃℘̃′,W) = F(℘̃,W)F(℘̃′,W). (116)

• If ℘̃ and ℘̃′ are two paths on C̃ which project to the same homotopy class
on C,

F(℘̃,W) = (−1)w(℘̃,℘̃′)F(℘̃′,W). (117)

(In particular, if ℘̃ and ℘̃′ are homotopic, then F(℘̃,W) = F(℘̃′,W).)

Given any path ℘̃ on C̃ ′ we first define

D(℘̃) =
K∑

i=1

X℘̃(i) . (118)

where ℘̃(i) is the open path given by lifting the initial point of ℘̃ to the ith
sheet and then using the canonical connection on Σ̃→ C̃ to lift the path. For
any ℘̃ which does not cross W̃ we have simply

F(℘̃, W̃) = D(℘̃). (119)

For any ℘̃ which crosses W̃ exactly once at a wall pc, we have

F(℘̃, W̃) = D(℘̃+)

(

1 +
∑

ν∈Sc

Xa(ν,℘̃)

)

D(℘̃−), (120)

where a(ν, ℘̃) is a particular lift of the soliton sν to Σ̃, described in the next
paragraph.

Let ℘ be the projection of ℘̃ to C. Let z be the point of intersection
between ℘ and W. Let z̃ be the point of ℘̃ lying over z, dividing ℘̃ into ℘̃+℘̃−.
Let o+ be a tangent vector at z oriented along W, and o− a tangent vector at
z oriented oppositely to W. Let A+ be some path from z̃ to o+ in the circle
fiber C̃z, and A− a path from o− to z̃ in C̃z. The concatenation A = A− +A+

is thus a path from o− to its antipode o+ in C̃z; we fix our choices of A±
so that A is homotopic to a simple arc which covers half of C̃z, and this arc
includes the tangent vector ℘′(z). Each soliton sν(z) has a canonical lift to a
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smooth path s̃ν(z) on Σ̃ from o
(i)
+ to o(j)− . The path a(ν, ℘̃) on Σ̃ from z̃(i) to

z̃(j) is defined by

a(ν, ℘̃) = A
(i)
+ + s̃ν(z) +A

(j)
− . (121)

Finally, to define F(℘̃,W) for an arbitrary path ℘̃ on C̃ whose endpoints
are not on W̃, we perturb ℘̃ slightly so that its intersections with W̃ are all
transverse, break it into pieces which meet W̃ at most once, and use (119),
(120) and the composition property (116).

Our construction makes the composition property (116) manifest. The
same arguments given in Sect. 5.6 apply to our current construction and show
the twisted homotopy invariance (117).

The path-lifting rule F will be put to some mathematical use in Sect. 10
below. As mentioned in Sect. 1, we are hopeful that it will also have some
interesting physical applications, as well as connections to upcoming work of
Goncharov and Kontsevich.

10. Coordinates for Moduli of Flat Connections

In this last section, we discuss a mathematical application of spectral networks.
Given a spectral network W subordinate to a K-fold covering Σ→ C, we will
construct a map

ΨW :M(Σ,GL(1);m)→MF (C,GL(K);m) (122)

whereM(Σ,GL(1);m) is a moduli space of twisted flat GL(1)-connections ∇ab

on Σ and MF (C,GL(K);m) is a moduli space of twisted flat GL(K)-connec-
tions ∇ on C, decorated by some “flag data” as we explain below. This map
is a local symplectomorphism, and conjecturally 1–1 onto its image.

Roughly speaking, ∇ = ΨW(∇ab) is obtained by a two-step process. We
first push forward the GL(1) connection ∇ab from Σ to C. This gives a flat
GL(K) connection on the complement of the branch locus in C, which is every-
where diagonal. This connection however cannot be extended over the branch
points, because it has monodromy around them. To deal with this problem,
we cut C into pieces along the network W, and then reglue the connection
with a nontrivial (and non-diagonal) transition function, controlled by the
soliton content of W. This process eliminates the monodromy around branch
points, while not introducing unwanted monodromy anywhere else. We call
this construction “nonabelianization.”

The space M(Σ,GL(1);m) is a torsor for (C×)2gΣ̄ , where Σ̄ is the clo-
sure of Σ, so another way to read ΨW is as a local coordinate system on
MF (C,GL(K);m). These coordinate systems are closely related to the “clus-
ter coordinates” introduced by Fock and Goncharov [13]. In the case K = 2, it
is straightforward to see that our coordinates in fact coincide with the cluster
coordinates. In the case K > 2, a fully explicit description of the most general
cluster coordinate system is not available in the literature; we conjecture that
the ΨW actually give the most general cluster coordinates, thus filling this
gap.
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One point in favor of this conjecture is that when W is of a special form,
ΨW yields a coordinate system which was explicitly described by Fock and
Goncharov; this will be described in [32].

Although we are emphasizing its mathematical content in this section,
this construction also has a natural physical meaning, which appears most
clearly when the theory is compactified from four to three dimensions on S1.
Indeed, the expansion (127) of the parallel transport of ∇ as a linear combi-
nation of parallel transports Xa(∇ab) is precisely the “Darboux expansion” of
the vacuum expectation value of the supersymmetric interface associated with
℘̃. This point of view was described at length in [5].

10.1. Nonabelianization

We now explain how, given a nondegenerate spectral network W subordinate
to a covering Σ → C, and given also a twisted flat rank 1 connection over Σ,
we construct a corresponding twisted flat rank K connection over C.

By a twisted flat rank K connection over a real surface S we mean a pair
of a complex rank K vector bundle on S̃ and a flat connection therein, such
that the holonomy around each fiber of S̃ is −1. This is a very small modifi-
cation of the usual notion of a rank K connection over S. In particular, given
a spin structure on S, there is a canonical isomorphism between the moduli
space of twisted flat connections and that of ordinary connections.29 Never-
theless, this slight twisting is important in the construction we are about to
describe.

Now suppose given a rank 1 twisted flat connection (L,∇ab) over Σ.
Recall that C ′ denotes C minus the branch points of the covering Σ→ C. Let
π : Σ̃→ C̃ ′ be the projection. Then define the complex rank K vector bundle

E = π∗(L). (123)

The fiber of E at any z̃ ∈ C̃ ′ is simply

Ez̃ =
⊕

i

Lz̃(i) . (124)

Given the flat rank 1 connection ∇ab on L, there is a canonical “push-
forward” flat connection π∗(∇ab) on E. But the reader should beware that
π∗(∇ab) is not the connection we are trying to construct. Indeed, while π∗(∇ab)
is flat on C̃ ′, it has nontrivial holonomy around any small loop �b in C̃ ′ linking
the fiber over a branch point b; this monodromy is induced by the permuta-
tion of sheets attached to b. It follows that π∗(∇ab) cannot be extended to
a flat connection over C̃, since on C̃ the loop �b would be contractible. Our
construction will modify (E, π∗(∇ab)) in a way which eliminates this holonomy.

The key is the path-lifting rule F defined in Sect. 9.4. Let C ′
W := C ′ \W.

Given any path ℘̃ from z̃1 ∈ C̃ ′
W to z̃2 ∈ C̃ ′

W we have built a formal sum of

29 To obtain this isomorphism we use the fact that a spin structure is the same thing as
a fiberwise double covering of S̃; then given a twisted flat connection, pulling back to this
double cover gives a new flat connection with holonomy +1 around the fibers, which then
descends to a flat connection over S.
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paths on Σ̃, given by (115):

F(℘̃,W) =
∑

a

Ω
′
(℘̃,W,a)Xa. (125)

Each a in the sum (125) is a homotopy class of paths on Σ̃ from z̃
(i)
1 to z̃(j)

2

for some i, j. Let

Xa(∇ab) ∈ Hom(L
z̃
(i)
1
,L

z̃
(j)
2

) (126)

denote the parallel transport of ∇ab along any path in the class a. The fact
that ∇ab is a flat connection implies that Xa(∇ab) depends only on the class
a and not on the particular path, and the fact that ∇ab has holonomy −1
around the fibers of Σ̃ implies that Xa(∇ab) obeys the relation (114). Hence
the map Xa → Xa(∇ab) is well defined.

We now define a new operator F(℘̃,W,∇ab) just by replacing Xa →
Xa(∇ab) in (125):

F(℘̃,W,∇ab) :=
∑

a

Ω
′
(℘̃,W,a)Xa(∇ab) ∈ Hom(Ez̃1 , Ez̃2). (127)

F(℘̃,W,∇ab) has precisely the formal properties one would expect if it were the
parallel transport operator in some flat vector bundle: it is homotopy invari-
ant and behaves properly under composition. The key to our construction is
that indeed F(℘̃,W,∇ab) is the parallel transport operator from z̃1 to z̃2 for
a twisted rank K flat connection (Ê,∇) over C. (Ê,∇) will be constructed in
an essentially tautological way to make this sentence true.

The most direct way of building (Ê,∇) is to construct its sheaf F of flat
sections, as follows. For any open set U ⊂ C̃, F(U) consists of all sections ψ of
E over U ∩ C̃ ′

W such that for any path ℘̃ ⊂ U with endpoints z̃1, z̃2 ∈ C̃ ′
W , we

have

ψ(z̃1)F(℘̃,W,∇ab) = ψ(z̃2). (128)

(Note that the parallel transport acts from the right, in accordance with
Appendix C.) Any ψ ∈ F(U) is obviously determined by its value at a single
z̃0 ∈ U ∩ C̃ ′

W . Conversely, if U is contractible, then any chosen ψ(z̃0) ∈ Ez̃0 can
be extended to ψ ∈ F(U) (to prove this one uses the invariance of F(℘̃,W,∇ab)
under homotopies of ℘̃ and the composition law (116).) Therefore, F is a locally
constant sheaf of K-dimensional vector spaces. Giving such a sheaf is equiv-
alent to giving a rank K vector bundle with connection; this is our desired
(Ê,∇).

It will be useful in what follows to have a more concrete description of
(Ê,∇). The stalk of F at any z̃ ∈ C̃ ′

W is just Ez̃, so on C̃ ′
W we have a canon-

ical isomorphism Ê � E. Moreover, for paths ℘̃ ⊂ C̃ ′
W we have F(℘̃,W) =

D(℘̃), from which it follows that F(℘̃,W,∇ab) is just the parallel transport of
π∗(∇ab). So on C̃ ′

W we have simply (Ê,∇) � (E, π∗∇ab). Now, C̃ ′
W is divided

into various connected components Uα, separated from one another by the lifts
of walls of W, which are topologically cylinders in C̃. We want to know how
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to patch together the bundle Ê across these cylinders. Given a wall pc whose
lift p̃c separates components Uα and Uβ , we define a section of End(E)|p̃c

by

T α,β
c (z̃) = 1 +

∑

ν∈Sc(z)

Xa(ν,℘̃)(∇ab) (129)

where ℘̃ denotes a short path which crosses from z̃1 ∈ Uα to z̃2 ∈ Uβ , and we
take the limit as z̃1 and z̃2 approach the common point z̃ of p̃c. Recall here
that Sc(z) is the soliton set of W at z (W is nondegenerate, so only one of the
soliton sets is nonempty.) The bundle Ê can be realized by extending E to the
closure of each component and then gluing along the boundary cylinders:

Ê =

(
⊔

α

E|Ūα

)

/ ∼ (130)

where the equivalence relation ∼ identifies (ψ, z̃) ∈ E|Ūα
with (T α,β

c ψ, z̃) ∈
E|Ūβ

whenever z̃ lies on the cylinder p̃c.

10.2. Singularities and Flags

The twisted flat connection (Ê,∇) produced by our nonabelianization con-
struction carries a bit of extra structure which will be important in what
follows. In this section, we briefly describe it.

Let us consider (Ê,∇) in a neighborhood U ⊂ C̃ of one of the singular
points sn. On U we can trivialize the covering Σ̃ → C̃ and hence there is a
decomposition into line bundles (cf. (124)),

E =
⊕

i

L(i), (131)

preserved by the connection π∗∇ab. We do not generally have such a decom-
position for Ê, because the gluing transformations T α,β

c mix the different L(i).
Still, the T α,β

c do preserve some structure, as follows. Recall that the walls pc

of W which end at sn carry labels ij which obey a constraint: both i and j
must belong to o(sn) and we must have i < j. Using (129), it then follows that
all the T α,β

c are “upper triangular”: for i /∈ o(sn) they preserve L(i), and for
i ∈ o(sn) they preserve the subspace

F (i) =
⊕

j≥i

L(j). (132)

Therefore, we find that Ê decomposes over U as

Ê =

⎛

⎝
⊕

i/∈o(sn)

L(i)

⎞

⎠⊕ Êsn
(133)

where each L(i) is ∇-invariant, and Êsn
has rank |o(sn)| and carries various

∇-invariant subbundles F (i). The ranks of these subbundles and of their inter-
sections are determined by the structure of the partial ordering in o(sn).

In the simplest case, o(sn) is a totally ordered set containing all K sheets.
In that case we may as well identify the labels with integers 1 ≤ i ≤ K, and
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write the ordering as 1 < 2 < · · · < K. Then the extra structure just discussed
is simply a ∇-invariant filtration of Ê,

0 = F (K) ⊂ F (K−1) ⊂ F (K−2) ⊂ · · · ⊂ F (0) = Ê, (134)

where F (i) has dimensionK−i. If the monodromy of∇ around sn is diagonaliz-
able with all eigenvalues distinct, then there exist K! such invariant filtrations,
and our construction picks one out of those K!.

What we have found is that our construction naturally produces not just
(Ê,∇), but a bit of extra structure around each sn, namely the decomposition
(133) and the subbundles F (i). We refer to this extra structure as flag data.

10.3. The Nonabelianization Map

Given a nondegenerate spectral network W subordinate to a covering Σ→ C,
we have defined a nonabelianization operation which takes a twisted flat rank
1 connection over Σ to a twisted flat rank K connection over C with flag data.
In this section, we discuss the corresponding map ΨW between moduli spaces
of twisted flat connections. For simplicity, we take the case where C only has
punctures, not boundaries, and restrict attention to W for which each o(sn)
is a total ordering of the set of all sheets.30

Let us first describe the relevant moduli space of rank 1 connections ∇ab.
The covering surface Σ has punctures s

(i)
n , preimages of the sn on C. Fix a com-

plex line bundle L over Σ̃; we will consider flat connections on L with fixed
holonomy around the punctures. Namely, fix parameters m

(i)
n ∈ R/Z, with

m
(i)
n �= m

(j)
n for i �= j. Let �n(i) be a small counterclockwise loop around s

(i)
n ,

and �̃n(i) its canonical lift to Σ̃. We require that the holonomy of ∇ab around
�̃
s
(i)
n

is exp(2πim(i)
n ). As usual, we consider connections ∇ab only up to gauge

equivalence; our gauge group is the group of smooth maps Σ̄→ C
×, where Σ̄ is

the closure of Σ. LetM(Σ,GL(1);m) be the resulting moduli space of twisted
rank 1 flat connections. M(Σ,GL(1);m) is a torsor for H1(Σ̄,C×) � (C×)2g,
where g is the genus of Σ̄.

Next, what can we say about the rank K flat connections ∇ we obtain
by nonabelianization? Fix a small clockwise loop �n around sn, and let �̃n
be its canonical lift to C̃. The holonomy of ∇ around �n is the product of
several factors: the holonomy of ∇ab along the pieces of �n running between
walls of W, and the transformations Tp attached to the walls. With respect
to the decomposition (131), the former are diagonal matrices whose prod-
uct is diag{exp[2πim(i)

n ]}, while the latter are unipotent upper triangular.
Their product is thus an upper-triangular matrix, with diagonal elements
exp[2πim(i)

n ]. Since we have assumed these values distinct, it follows that the
monodromy of∇ around �̃n is semisimple, with eigenvalues exp[2πim(i)

n ]. So, let

30 Our discussion can be generalized to include marked points on boundaries; in that case the

relevant moduli spaces are spaces of connections with irregular singularities, on the surface
obtained by shrinking each boundary component of C to a point. In the special case K = 2
this was discussed in [3]. Examples with irregular singularities and K > 2 are discussed in
[32].
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M(C,GL(K);m) denote the moduli space of twisted rank K flat connections
on C (with fixed topology of the principal bundle), such that the monodromy
around �̃n is conjugate to

diag{exp[2πim(1)
n ], . . . , exp[2πim(K)

n ]}. (135)

As we have noted, nonabelianization produces not only a twisted flat con-
nection over C, but a twisted flat connection over C equipped with flag data.
Thus we also define an extended moduli space MF (C,GL(K);m), consisting
of elements of M(C,GL(K);m) with flag data. MF (C,GL(K);m) is a finite
cover of M(C,GL(K);m), as explained at the end of Sect. 10.2. Nonabelian-
ization gives a map

ΨW :M(Σ,GL(1);m)→MF (C,GL(K);m). (136)

One simple property of ΨW is worth noting at once. Given a spectral
network W, let W∗ be obtained by reversing the labels on all walls and the
orderings at all punctures. Then we have

ΨW∗(L,∇ab) = ΨW(L∗, (∇ab)∗)∗. (137)

This fact may be of some practical use: the reason is that W∗
ϑ = Wϑ+π, and

determining the relation between ΨWϑ
and ΨWϑ+π

is equivalent to determining
the “spectrum generator” which captures the full BPS spectrum.

For the rest of this section, we will study ΨW as defined above. How-
ever, we must note that in the physical applications the actual moduli
space M of the physical theory S[g, C,D] compactified on S1 is not quite
M(C,GL(K);m); it is more closely related to the space of SL(K) connections
(but even this is a slight oversimplification, see [21]). We expect that there is a
variant of our nonabelianization map for which the codomain is precisely M.
The domain of this variant map should not be quite M(Σ,GL(1);m); rather
it should be a space of twisted rank 1 connections on Σ subject to some addi-
tional constraints and/or carrying some additional structure. This is related
to the fact that the IR charge lattice of S[g, C,D] is not H1(Σ; Z), but rather
an appropriate subquotient of it [3]. (See [49,50] for a careful discussion of
subtle issues of this sort that arise in abelianization of Higgs bundles for a
general group G; we expect that, as far as these topological issues are con-
cerned, the story for moduli of twisted flat connections will be similar.) We
leave the proper extension of our construction to account for these variations
as an open problem. It is related to open problem 2 of Sect. 1.

10.4. Holomorphic Symplectic Structures

In this section, we explain one of the important properties of ΨW : both its
domain and codomain are holomorphic symplectic, and ΨW is a holomorphic
symplectic map,

Ψ∗
W(�C) = �Σ. (138)

We begin withM(Σ,GL(1);m). The easiest way to understand its holo-
morphic symplectic form is to recall that on the space of untwisted connections
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there is a standard such form [51,52]. This form, formally speaking, is obtained
by symplectic quotient from

�Σ =
∫

Σ

δα ∧ δα (139)

where α denotes the abelian connection 1-form.31 Using a choice of spin struc-
ture on Σ to relate twisted and untwisted connections we can transfer this
holomorphic symplectic structure to M(Σ,GL(1);m); by abuse of notation,
we denote that structure also as �Σ.

Similarly,MF (C,GL(K);m) has symplectic form obtained by symplectic
quotient from

�C =
∫

C

Tr δA ∧ δA (140)

with A the nonabelian connection 1-form. Again we use a spin structure on C
to pass between twisted and untwisted connections.

To see why (138) is true, first consider variations δα which have support
away from the spectral network W. In this case the corresponding variation
of A is simply δA = π∗δα. It follows easily that for such variations we have
�Σ(δα, δα′) = �C(δA, δA′). If δα has support intersecting W then the situa-
tion is slightly more involved: there is a distribution-valued contribution to δA
supported on W. By a gauge transformation δα → δα + dχ we may assume
however that δα vanishes in neighborhoods of joints. Therefore, it is enough
to consider what happens in a patch intersecting only a single wall pc of W.
Taking local coordinates (x, y) on C where pc is the locus y = 0, one finds the
form

δA = π∗δα+ s(x)δ(y)dy, (141)

where in the decomposition (131) s(x) is off-diagonal and π∗δα diagonal. One
thus has Tr(s(x)dy ∧ π∗δα′) = 0, so the last term in (141) does not contribute
to �; we get once again �Σ(δα, δα′) = �C(δA, δA′).

10.5. Dimension Counts

Now let us compare the dimensions of the moduli spaces related by ΨW .
First, we considerM(C,GL(K);m). This space can be represented as the

space of GL(K,C) matrices A1, . . . , AgC
, B1, . . . , BgC

, C1, . . . , Cs, subject to
some relations: first, the eigenvalues of the Cn are fixed; second, we impose

∏

i

[Ai, Bi]
∏

n

Cn = 1; (142)

third, we divide out by overall conjugation. The condition on the eigenvalues
of the Cn eliminates Ks degrees of freedom. The equation (142) imposes only
K2− 1 independent conditions: if

∏
n detCn �= 1 there are no solutions, but if

31 Here and below, we use the freedom to fix a gauge so that we consider only variations δα
which vanish near the punctures. This makes the integral (139) convergent, despite the fact
that the connections we consider are singular.
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∏
n detCn = 1, while there are solutions, the determinant equation is redun-

dant. Similarly, the center of the gauge group acts trivially, so the quotient by
the gauge group reduces the dimension by K2 − 1. Altogether we get

dimCM(C,GL(K);m) = (2gC + s)K2 −Ks− 2(K2 − 1). (143)

On the other hand, using the Riemann-Hurwitz relation

dimCM(Σ,GL(1);m) = 2gΣ = K(2gC − 2) +B + 2, (144)

where B is the branching number (which is simply the number of branch
points, since we assume all branch points are simple.) It follows that

dimCM(C,GL(K);m)− dimCM(Σ,GL(1);m)
= (K2 −K)(2gC + s− 2)−B. (145)

Since ΨW is symplectic it is in particular locally injective, so the quantity
in (145) must be nonnegative. We thus get a topological restriction on the
branching number of a branched cover Σ→ C of degree K admitting a spec-
tral network:

B ≤ (K2 −K)(2gC + s− 2). (146)

If this bound is saturated, ΨW is a local symplectomorphism. Note that this
does happen for the spectral curves (2), to which the spectral networks Wϑ

are subordinate.
Equation (146) is a purely topological statement. It says that there can-

not be too many branch points in a spectral network. It would be interesting
to give a more direct topological proof of this assertion.

In the case, where (146) is saturated and ΨW is a covering map, we have
constructed not only a local isomorphism betweenM(C) andM(Σ), but also a
local identification between (π∗L, π∗∇ab) and (Ê,∇). We can use this to tie up
a loose end from Sect. 6.5. Letting (L,∇) vary we get a universal bundle π∗(L)
overM(Σ)×C. Restricting this to some point z̃ ∈ C̃ gives a line bundle over
M(Σ), which we call π∗(L)z̃. Similarly we have a universal bundle Êz̃ over C.32

Now let A(Σ) be the algebra of global rational sections of End(π∗(L)z̃) (i.e. the
algebra of sections over the generic point), and similarly A(C) the algebra of
global rational sections of End(Êz̃). A(Σ) is a central simple algebra of degree
K over R(M(Σ)), the field of rational functions onM(Σ), and similarly A(C)
is a central simple algebra of degree K over R(M(C)). Our nonabelianization
construction gives an embedding of A(C) in A(Σ) and a compatible embedding
of R(M(C)) in R(M(Σ)). Now, we have just shown that this embedding real-
izesM(Σ) as a cover ofM(C). It follows that R(M(Σ)) is a finite extension
of R(M(C)) (since it is an extension and the two have the same dimension,
hence the same transcendence degree over C, and are both finitely generated).
Thus, the group Aut(R(M(Σ)) : R(M(C))) is finite. But now it follows by
dimension counting that Aut(A(Σ) : A(C)) is also finite.

32 Actually this universal bundle does not quite exist owing to subtleties involving the center
of GL(K); but its bundle of endomorphisms does exist, which is all we will use below.
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10.6. Equivalence of Spectral Networks

Given a nondegenerate spectral networkW we have constructed a correspond-
ing nonabelianization map ΨW . It is natural to ask how this map depends
on W.

We can get some intuition by remembering previous results about the
case K = 2. In that case, as already mentioned in Sect. 5.7, W determines an
ideal triangulation T (W) of C up to isotopy. T (W) does not change if we vary
W by an isotopy (while holding Σ fixed). Moreover, the map ΨW in this case
only depends on T (W). So we find that ΨW is an isotopy invariant of W.

We now extend this discussion to general K. We begin by defining a
notion of equivalence between nondegenerate spectral networks. Our experi-
ence from the case K = 2 suggests that equivalence should at least include
isotopy. In fact, for K > 2 it will be natural to allow even some moves which
are not isotopies. Given two nondegenerate spectral networks W and W ′, an
equivalence between W and W ′ is a one-parameter family of path-lifting rules
F(·, t) to coverings Σ(t), such that:
E1. F(·, 0) = F(·,W) and F(·, 1) = F(·,W ′).
E2. For any point z̃ on C̃ and pair 0 ≤ t1 ≤ t2 ≤ 1, there exists a formal sum

of paths R(z̃, t1, t2), such that for any path ℘ from z̃1 to z̃2 we have

F(℘, t2) = R(z̃1, t1, t2)F(℘, t1)R(z̃2, t1, t2)−1. (147)

The point of this definition is that if W and W ′ are connected by an equiva-
lence then we have

ΨW = ΨW′ . (148)

(The meaning of the equal signs in (147), (148) has to be clarified in case the
coverings Σ(t) vary with t: in this case we identify the different coverings using
the “Gauss-Manin” parallel transport induced by the family {Σ(t)}.)

One natural way of getting an equivalence is to consider a 1-parameter
family of nondegenerate spectral networks W(t) and take F(·, t) = F(·,W(t)).
Then R(z̃, t1, t2) is a product, with one factor of the form (1+

∑
ν∈Sc(t)

Xa(ν))
for each t with t1 ≤ t ≤ t2 such that z lies on an S-wall pc(t) in W(t).

Here are some examples of equivalences:
M1. An isotopy. This is a one-parameter family of spectral networks W(t)

subordinate to coverings Σ(t), such that the Σ(t) vary continuously in
the obvious sense (in particular the branch points move continuously),
each wall pc varies by isotopy, and the joints zμ move continuously. The
combinatorics of W(t) do not change during an isotopy.

M2. A crossing at a defect. This is a familyW(t) which implements a move as
illustrated in Fig. 43. Here the combinatorics of the network do change
at the critical value t = tc. Nevertheless the family gives an equivalence.

M3. A bubble. This is a family W(t) which implements a move as illustrated
in Fig. 44.

M4. A traversal of a branch point. This is a family W(t) which implements a
move as illustrated in Fig. 45. The memberW(tc) strictly speaking is not
quite a spectral network according to our definition, because of the extra
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Figure 43. Crossing at a defect: an equivalence which relates
two non-isotopic spectral networks

Figure 44. Bubble: an equivalence which relates two non-
isotopic spectral networks

Figure 45. Branch point traversal: an equivalence which
relates two non-isotopic spectral networks

kj lines passing through the branch point; nevertheless one can define
F(·, tc) by a straightforward extension of our rules, and after so doing,
E1, E2 above are obeyed.
All of these equivalences really occur in practice, e.g. in families Wϑ as ϑ

varies. We emphasize that these equivalences are not the jumps of Wϑ which
we studied in Sect. 6.2: those jumps generally connect spectral networks which
are inequivalent in our sense.

10.7. A Picture of the Set of All Spectral Networks

Fix a curve C and singularities sn and orderings o(sn). Exploration of some
examples leads to a rough conjecture about the set X = X(C, sn, o(sn)) of all
spectral networks with these data fixed.

There should be a natural topology on X, such that X is decomposed
into connected cells, separated by codimension-1 loci where the spectral net-
works become degenerate. (Ideally the cells should even be contractible, but
this might require extending our definition of spectral network to allow more
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non-generic phenomena which occur in codimension greater than 1, e.g. allow-
ing several joints to coalesce.) Moving around in a single cell corresponds to
varying W by equivalences in the sense of Sect. 10.6. Crossing one of the
boundaries between cells corresponds to one of the more interesting “K-wall”
jumps that occur when the network degenerates, which we discussed in Sect. 6.

We leave it as an interesting open problem to formulate this picture on
a more rigorous and precise basis.

10.8. Coordinate Systems and a Cluster Conjecture

Let us consider a spectral network W for which (146) is saturated. In this
case, as we have noted, ΨW is at least locally one-to-one. Thus the holonomies
Ỹγ̃ of ∇ab = Ψ−1

W (∇), where γ̃ runs over a basis of H1(Σ̃; Z), provide local
coordinates on MF (C,GL(K);m).

It is natural to ask whether ΨW might be even globally one-to-one, so
that it would give global coordinates on its whole image UW . We conjecture
that this is indeed the case.33 At least in the case K = 2, this conjecture is
true: in this case the coordinate system in question is essentially the Fock-
Goncharov coordinate system [13,3]. Some further special cases in which the
conjecture is true will be treated in [32].

As we noted above, if W and W ′ are equivalent nondegenerate spectral
networks then ΨW and ΨW′ are related by parallel transport, in the sense
explained under (147). Thus, we can roughly say that ΨW is constant as W
varies within one of the cells of X. If W and W ′ are in neighboring cells,
then the story is more interesting: taking a path W(t) from W to W ′, there
is a critical t = tc where W(t) becomes a degenerate spectral network. At
this moment ΨW(t) jumps discontinuously. This jump should be determined
by the arguments of Sect. 6.3. Indeed, by the same formulas we used there
(and assuming the same conjectures we assumed there), the degenerate net-
work W(tc) determines integers Ω(γ) and distinguished lifts γ̃, for γ lying in
a semilattice Γc ⊂ H1(Σ(tc); Z) with a single generator. Using these data we
define a (birational) automorphism K ofM(Σ(tc),GL(1);m), by its action on
the holonomies Ỹγ̃ of ∇ab around 1-cycles γ̃:

K(Ỹγ̃) = Ỹγ̃

∏

γ′∈Γc

(1 + Ỹγ̃′)〈γ,γ′〉Ω(γ′). (149)

When t crosses tc, the map ΨW(t) jumps by composition with K, so

ΨW(∇ab) = ΨW′(K±1(∇ab)) (150)

(where the sign ±1 is determined by which direction we cross the cell boundary,
and we must bear in mind the comment under (148).)

33 This is the moment where it is important that we use the moduli space MF (C, GL(K); m)
with flag data rather than just M(C, GL(K); m). If we used M(C, GL(K); m), then ΨW
would be only finite-to-one.
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Finally, we conjecture that the coordinate systems we have defined are
actually cluster coordinates.34 The spacesM(C) which we are considering are
indeed cluster varieties, as shown by Fock–Goncharov in [13]. However, rel-
atively few of the cluster coordinate systems on M(C) have been described
explicitly. We believe that for each W, the coordinate system induced by ΨW
should be an element of the cluster atlas. So in particular, we conjecture that
there is an algorithm which determines from aW a finite set of charges γn

W ∈ Γ.
The γn

W should be the elements of a cluster seed, with exchange matrix given
by the intersection pairings: εnm = 〈γn, γm〉. Informally speaking, the γn

W
should be the charges of finite webs which can appear inside of W when W
degenerates; said otherwise, the γn

W label faces of the boundary of the cell
in X containing W. Finally, the K-transformation (149), in the simplest case
where there is only a single Ω(γ) = 1 contributing, should be identified with
the action of a mutation on cluster variables.

This conjecture is true when K = 2, and in [32], we will give some addi-
tional evidence for it in some special cases with K > 2. In general, though, we
do not know how to prove it, or even how to read off the γn

W from W.
It is natural to wonder further whether spectral networks might give all

of the coordinate systems in the cluster atlas on M.

10.9. WKB Asymptotics

So far in this section, we have been considering the map ΨW associated to an
arbitrary spectral network W. These maps have especially interesting asymp-
totic properties if we choose W to be the particular network Wϑ which we
studied in the rest of the paper. In this section, we briefly explain this point.
(We will gloss over the role of the twisting in this section, and use spin struc-
tures to pass freely between twisted and untwisted connections.)

Equip C with a complex structure. Suppose given a GL(K) Higgs bundle
over C, i.e. a triple (V, ∂̄, ϕ) where V is a complex vector bundle of rank K, ∂̄
a holomorphic structure on V , and ϕ a meromorphic End(V )-valued 1-form,
with poles at the punctures on C. Let Σ be the spectral cover determined
by ϕ,

Σ = {det(ϕ− λ) = 0} ⊂ T ∗C. (151)

Now assume that Σ is smooth (this is the case for generic ϕ.) Then we have a
corresponding spectral line bundle over Σ,

L = ker(ϕ− λ), (152)

and the Higgs bundle (V, ∂̄, ϕ) is the pushforward of (L, λ).35

34 It was noted in [9,21] that the K-transformations which appeared there could be viewed
as cluster transformations in an appropriate sense; see also [10,38,48,53,54] for further dis-
cussion of the relation of cluster varieties to four-dimensional N = 2 theory.
35 The passage from (V, ∂̄, ϕ) to L is often called abelianization and has been exploited heav-

ily in the study of “nonabelian theta functions”; see e.g. [55] where it was introduced, and
[50] for a very precise description of the abelianization map in the more general setting of an
arbitrary Lie group G. Abelianization for Higgs bundles is simpler than for flat connections
in one important respect: for Higgsbundles the monodromy around branch points causes no
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Now, given a Higgs bundle there is a corresponding solution of Hitchin’s
equations [16,56–59]. In [5] we proposed a new method for constructing that
solution. The key ingredient is a set of integral equations written in Sect. 5.6
of [5]. The equations are determined by the data of:
• the Higgs bundle (V, ∂̄, ϕ),
• the BPS degeneracies μ and ω, which (as we have explained in Sects. 4,

5, 6) are computed from the spectral networks Wϑ determined by Σ,
• a real parameter R > 0.

These equations are expected to have a unique solution for large enough
R (constructed e.g. by iteration). The solution produces a family of flat con-
nections ∇(ζ) in V , together with a family of flat connections ∇ab(ζ) in L,
and a family of isomorphisms

g(ζ) : ΨWϑ=arg ζ
(L,∇ab(ζ))→ (V,∇(ζ)). (153)

The integral equations give some control over the analytic structure and
ζ → 0,∞ asymptotic behavior of g(ζ) and ∇ab(ζ). From this we deduce that
the family ∇(ζ) is of the form

∇(ζ) = Rζ−1ϕ+D +Rζϕ̄, (154)

where D is a connection in V , unitary with respect to some Hermitian metric
h in V (“harmonic metric”), and ϕ̄ is the adjoint of ϕ in the metric h. The fact
that ∇(ζ) is flat for all ζ ∈ C

× is equivalent to the statement that (V, ϕ,D, ϕ̄)
constitute a solution of Hitchin’s equations on C. (The natural conjecture is
that it is the unique such solution corresponding to the given Higgs bundle
(V, ∂̄, ϕ)). So the integral equations are a machine for producing solutions to
Hitchin’s equations.

In addition, the integral equations give some more interesting asymp-
totic information. This information is most naturally formulated in terms of
the objects

Ya(ζ) = Xa(∇ab(ζ)) ∈ Hom(Vz̃1 , Vz̃2). (155)

If we think of Ya(ζ) as a function of z̃2 then it is flat with respect to the
connection ∇(ζ), except when z2 meets the networkWϑ=arg ζ : when z2 crosses
the S-walls, Ya(ζ) jumps discontinuously. Analogous remarks hold for the
dependence of Ya on z̃1. From the integral equations we learn that the ζ → 0
asymptotics of Ya(ζ) are given by

Ya(ζ) ∼ exp
[

π
R

ζ
Zā

]

. (156)

Indeed, we can say something a bit stronger: suppose that we define a new
section Yϑ

a (ζ) by analytic continuation of Ya(ζ) from the locus arg ζ = ϑ. In
this case, we have the asymptotics

Footnote 35 continued
problem and no spectral network is needed. There is thus only one abelianization map for
Higgs bundles, in contrast to the various ΨW we found in this paper for flat connections.
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Yϑ
a (ζ) ∼ exp

[

π
R

ζ
Zā

]

, (157)

so long as ζ → 0 while remaining in the half-plane Hϑ centered on the ray
arg ζ = ϑ. This is rather sharp asymptotic information about the flat sections
of the family of flat connections ∇(ζ).

Our way of describing this asymptotic information is perhaps a bit unfa-
miliar, so let us relate it to something better known: the WKB analysis of
1-parameter families of differential equations. The flatness equation ∇(ζ)s = 0
takes the general form

[

ζ
d
dz

+ (Rϕ+ ζ(· · · ))
]

s = 0. (158)

The WKB analysis of this equation involves studying formal solutions of the
form

s
(i)
fo (ζ) = exp

[
1
ζ

∞∑

n=0

S(i)
n ζn

] ∞∑

n=0

T (i)
n ζn (159)

where each S(i)
n is a function and T (i)

n is a section of V . One important difficulty
in the WKB method is that these solutions really are only formal: the series
(159) typically has zero radius of convergence. So one should interpret (159)
as an asymptotic series. It is then natural to ask, are there actual ∇(ζ)-flat
sections s(i)(ζ) which have these asymptotics?

Our discussion in this section provides the answer: such sections do indeed
exist, in the following sense. Fix a phase ϑ, a basepoint z̃1 ∈ C̃ ′

Wϑ
, and basis

vectors e(i) ∈ L(i)
z̃1

. Then letting ℘̃ be a path in C̃ ′
Wϑ

from z̃1 to z̃, we can define

s(i)(ζ) = e(i)Yϑ
℘̃(i)(ζ). (160)

s(i)(ζ) is a solution of ∇(ζ)s(i)(ζ) = 0, and (157) implies that s(i) indeed has
an asymptotic expansion of the form (159), as ζ → 0 in the half-plane Hϑ. So,
in each connected component of C̃ ′

Wϑ
, we have a basis of ∇(ζ)-flat sections

which have the asymptotics predicted by WKB, as ζ → 0 in Hϑ. As we move
from one component of C̃ ′

Wϑ
to another, these bases change. Thus, the walls

of Wϑ have an interpretation as Stokes lines.
Finally, we should say that some of the structures which appeared in this

paper have appeared before in the WKB literature (although we arrived at
them independently.) In the case K = 2, our constructions here and in [3]
seem to be closely related to a line of development pursued by Voros and oth-
ers (e.g. [60,61,19,18]). For K > 2, the phenomenon that new Stokes lines can
be born at intersections between old ones was apparently first noticed in [62],
and has been followed up in a few works since then; we note in particular the
reference [20], which contains examples of Stokes diagrams in the case K = 3
which look identical to our Wϑ. What we have here called joints are there
called virtual turning points. There are also results of Simpson on asymptotics
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of monodromy which seem likely to be related to ours, e.g. [63,64]. We have
not understood the precise relation.
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Appendix A. Joint Rules for Two-Way Streets

In this appendix, we describe the rules governing the behavior of the solitons
near a rather general kind of joint, where we have solitons oriented into the
joint on up to six distinct trajectories. This kind of joint does not occur in a
nondegenerate spectral network, but it can occur for a degenerate one. In the
language of Sect. 5, this means that this kind of joint does not occur in Wϑ at
generic values of ϑ, but it can occur for non-generic ϑ. For generic values of ϑ,
the simpler rules of Sect. 5 suffice.

A.1. Rules for Soliton degeneracies

We consider six two-way streets pn entering a joint as in Fig. 46. It is conve-
nient to summarize the soliton spectrum by defining generating functions for
the soliton degeneracies on these six streets:

νn =
∑

ā

μ(a, pn)Xa, τn =
∑

b̄

μ(b, pn+3)Xb, (161)

where in νn the sum runs over all ingoing charges ā supported on pn (i.e.
charges for which |Zā| increases as we go into the joint), in τn the sum runs
over all outgoing charges b̄ supported on pn+3, and n is always taken mod 6.
Applying the constraint of homotopy invariance to artfully chosen paths one
shows

τ1 = ν1 + ν6τ2, τ2 = ν2 + τ3ν1, τ3 = ν3 + ν2τ4, (162)
τ4 = ν4 + τ5ν3, τ5 = ν5 + ν4τ6, τ6 = ν6 + τ1ν5.

(These equations have a symmetry under a cyclic shift of the index by 1 com-
bined with reversing order of all products, corresponding to the symmetry of
Fig. 46 under a rotation by π/3 combined with reversing the order of the labels
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Figure 46. The British resolution of a joint with two-way
streets. Incoming soliton degeneracies are described by gener-
ating functions νn, n = 1, . . . , 6. Outgoing soliton degenera-
cies are described by generating functions τn, n = 1, . . . , 6

on all lines.) Using (162) repeatedly we obtain the outgoing degeneracy τ1 in
terms of the incoming degeneracies νi,

τ1 = ν1 + ν6ν2 + ν6ν3ν1 + ν6ν2ν4ν1 + ν6ν2ν5ν3ν1 + ν6ν2ν4ν6ν3ν1

+ν6ν2ν4ν1ν5ν3ν1 + ν6ν2ν4ν6ν2ν5ν3ν1 + ν6ν2ν4ν6ν3ν1ν5ν3ν1 + · · ·
=
ν1 + ν6ν2 + ν6ν3ν1 + ν6ν2ν4ν1 + ν6ν2ν5ν3ν1 + ν6ν2ν4ν6ν3ν1

1−−−−−→ν6ν2ν4 ⊗←−−−−ν5ν3ν1
. (163)

The arrows indicate that the the denominator is to be expanded as a geometric
series and then ordered so that factors (ν6ν2ν4) are to be multiplied succes-
sively on the left and the factors (ν5ν3ν1) are to be multiplied successively on
the right.

Note that if we put ν3 = ν4 = ν5 = 0, so that we have only three incoming
streets, then we find that τ3 = τ4 = τ5 = 0, and

τ2 = ν2, τ1 = ν1 + ν6ν2, τ6 = ν6. (164)

This reproduces the rules for one-way streets which we obtained in Sect. 5.2,
as expected.

For the record, the analog of (162) with the American resolution is

τ1 = ν1 + τ6ν2, τ2 = ν2 + ν3τ1, τ3 = ν3 + τ2ν4, (165)
τ4 = ν4 + ν5τ3, τ5 = ν5 + τ4ν6, τ6 = ν6 + ν1τ5,

which leads to

τ1 =
1

1−−−−−→ν1ν5ν3 ⊗←−−−−ν4ν6ν2
(ν1 + ν6ν2 + ν1ν5ν2

+ν1ν4ν6ν2 + ν1ν5ν3ν6ν2 + ν1ν5ν2ν4ν6ν2). (166)
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For a branch point with two-way streets, we also have new rules. As
explained in Sect. 5.3 each of the three streets pi emerging from the branch
point carries a charge āi with a natural lift ai, and μ(ai, pi) = 1. What changes
in the two-way case is that there may also be other charges supported on
these streets. Nevertheless, the outgoing degeneracies τn are fully determined
in terms of the incoming ones νn: the general statement is

τn = Xan
+ νn. (167)

(To make sense of this equation, we have to say something about how we
continue from one street to another, since τn and νn are defined on different
streets. Unlike the case of the joint above, we cannot simply continue from
both streets to the branch point, because there is monodromy there; we have
to specify which way we go around the branch point. We follow the short path
around, traversing an angle 2π/3 rather than 4π/3.) If we take all νn = 0 then
we simply recover

τn = Xan
(168)

which we found in Sect. 5.3.

A.2. Joint Rules for Soliton Sets

In the last subsection, we discussed the rules for the soliton degeneracies μ at a
joint. These rules can be determined by the constraint of homotopy invariance.
However, the strange-looking series (163) seems to be crying out for some more
geometric interpretation. Here we provide one. As a bonus, this interpretation
also motivates a natural set of rules for soliton sets (not only soliton degen-
eracies); these rules were included in Sect. 9.3 as part of our definition of the
soliton content of a general spectral network.

We consider a joint of the type shown in Fig. 46 which arises in some spec-
tral network Wϑc

. In this picture, by assumption, each of the three S-walls
supports charges oriented in both directions, e.g. the vertically oriented wall
supports charges ā ∈ Γjk and ā′ ∈ Γkj . Concatenating these two gives a closed
cycle, cl(ā+ ā′) ∈ Γ, with e−iϑcZcl(ā+ā′) ∈ R−. Now, if the situation is generic
enough, the semilattice of γ ∈ Γ with the property e−iϑcZγ ∈ R− is generated
by a single element; let us assume we are in that situation, and let γ denote the
generator. Then without loss of generality the charges supported on the vertical
wall can be parameterized as {ā, ā+ γ, ā+ 2γ, . . . } ∪ {ā′, ā′ + γ, ā′ + 2γ, . . . },
where cl(ā + ā′) = γ. Similarly for the other two walls, we replace ā with
b̄ ∈ Γji and c̄ ∈ Γik, and ā′ with b̄′ ∈ Γij and c̄′ ∈ Γki. Both cl(ā+ b̄+ c̄) and
cl(ā′ + b̄′ + c̄′) are positive multiples of γ, from which it follows that one of
them is γ and the other is 2γ. Again without loss of generality, let us assume
cl(ā+ b̄+ c̄) = γ (Fig. 47).

Now, suppose we perturb ϑ away from ϑc slightly, in the positive direc-
tion. After the perturbation, these charges are no longer all supported on three
walls: rather, each of the three breaks into an infinite set of walls, each sup-
porting a single charge. We thus obtain a further “resolution” of the spectral
network in a small neighborhood of the joint, pictured in Fig. 48.
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Figure 47. Three two-way streets around a branch point

Figure 48. The further resolution of the joint of Fig. 46,
replacing each two-way street by infinitely many parallel one-
way ones. (For clarity we only indicate five one-way streets in
each direction.) Note that there is a vertical “highway divider”
separating the kj and jk walls, and similarly for the other
two pairs. Accordingly, the plane is separated into 6 regions,
resembling the Weyl chambers of su(3)

Following the soliton lines in this picture, we arrive at a natural inter-
pretation of the solitonic traffic rule illustrated in Figures 41, 42. Indeed, the
“highway divides” pictured in Fig. 48 partition a neighborhood of the joint
into six chambers, and in each chamber there is a unique way in which two
solitons can merge to produce a third.
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Now we are ready to explain the series (163). The first few terms corre-
spond to the pictures in Fig. 42. For example, the first term ν1 corresponds
to a single soliton which just travels through the vicinity of the joint unmo-
lested, while the second term ν2ν6 corresponds to a pair of incoming solitons
which merge to produce an outgoing soliton. To continue the series we build up
longer and longer soliton trajectories by concatenating successive mergings. At
each step this amounts to replacing a factor νn by a pair of factors νn+1νn−1

or νn−1νn+1, alternating between these possibilities. Each factor successively
replaced is (again alternately) one of the two factors inserted at the previous
step. Thus, we begin with ν1 and then replace ν1 → ν6ν2; then in the product
ν6ν2 we replace ν2 → ν3ν1; then in the product ν3ν1 we replace ν3 → ν2ν4; then
in the product ν2ν4 we replace ν4 → ν5ν3; and so on. We recognize the seventh
term as (ν6ν2ν4)ν1(ν5ν3ν1), and then the process repeats itself beginning with
the factor ν1 in the middle.

Appendix B. A Categorical Approach

In this appendix, we introduce some categorical constructions which allow us
to summarize some of the main results of the paper in a language which, we
hope, some of our mathematically inclined readers will find congenial.

We begin in Sects. B.1 to B.3 with a number of definitions. Then in
Sect. B.4, we state a theorem regarding the “formal parallel transport,” or
“path-lifting,” and its homotopy properties. Finally, in Sect. B.5, we indicate
how one can work with paths on C and Σ, rather than on C̃ and Σ̃, at the
price of introducing some tricky signs in the multiplication laws.

B.1. The Ring of a Category

To any category C we may associate a ring R(C). As an abelian group, R(C)
is the free group on the space of morphisms:

R(C) =
⊕

f∈Mor(C)

Z · �f . (169)

The ring structure in R(C) is defined by

�f1 · �f2 :=

{
0 if f1 and f2 are not composable,
�f1f2 if f1 and f2 are composable.

(170)

Any functor F : C → D induces a canonical ring homomorphism F : R(C) →
R(D).

More generally, we could define a twisted version of R(C) by writing

�f1 · �f2 =

{
0 if f1 and f2 are not composable,
b(f1, f2)�f1f2 if f1 and f2 are composable,

(171)

where b(f1, f2) is Z2-valued. Associativity requires that b is a cocycle. A change
of basis changes it by a coboundary. We denote the cohomology class of b by
σ and the corresponding twisted ring (up to isomorphism) by R(C, σ).
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B.2. Categories of Paths

Let X be any topological space. By a path in X we mean a continuous map
℘ : [T1, T2] → X for some interval [T1, T2] ⊂ R. We define the path groupoid
P(X) as follows: the objects of P(X) are points of X, and the morphism
space P(X)(x1, x2) is the set of all paths from x1 to x2, with the obvious
composition.

By taking a quotient on the morphism spaces in P(X) we can reduce
to the fundamental groupoid π≤1(X). This is the groupoid whose objects are
points of X and morphism spaces π≤1(X)(x1, x2) are homotopy classes of
paths from x1 to x2.

In Sects. B.4 and B.5, we will also make use of a further “quotient” of the
fundamental groupoid, which we call the first homology groupoid and denote
H≤1(X). It is a groupoid whose objects are again points of X. The morphism
space between two points x1, x2 in X, denoted H≤1(x1, x2), is defined as fol-
lows. First let C1(x1, x2) be the set of all 1-chains c in X with ∂c = x2 − x1.
Note that if x1 = x2 these are simply 1-cycles. In general C1(x1, x2) is a torsor
for the group of 1-cycles. We identify

H≤1(x1, x2) := C1(x1, x2)/ ∼ (172)

where c1 ∼ c2 if c1−c2 is a 1-boundary. The morphism space H≤1(X)(x1, x2) is
an affine subspace of the relative homology H1(X, {x1, x2}; Z), and is a torsor
for H1(X; Z). Composition of morphisms is induced by addition of chains. The
automorphism group of any object is canonically H1(X; Z). Note that there
are natural functors P(X)→ π≤1(X)→ H≤1(X).

B.3. The Winding Ideal

Let π : X̃ → X be a circle bundle. There is an exact sequence

π1(S1) ι→ π1(X̃) π∗→ π1(X)→ π0(S1). (173)

Choosing the standard generator L of π1(S1), let W be the group generated
by ι(L). Then (173) induces an exact sequence

1→W → π1(X̃) π∗→ π1(X)→ 1. (174)

So any class [℘] ∈ π1(X̃) with π∗([℘]) = 1 has a natural W -valued “winding”
w([℘]).

In the case where X = S is a surface and X̃ = S̃ is its bundle of tangent
directions, W is either Z (if X is punctured) or Z/χ(X)Z (if X is unpunc-
tured). In either case, there is a unique nontrivial map W → Z/2Z. Applying
this map to w([℘]) we obtain a Z2-valued “winding” which by abuse of nota-
tion we also call w([℘]). Given a pair of classes [℘1], [℘2] ∈ π≤1(X̃)(x1, x2) with
π∗([℘1℘

−1
2 ]) = 1, we define the “relative winding” w([℘1], [℘2]) = w([℘1℘

−1
2 ]).

Now let the winding ideal I ⊂ R(π≤1(X̃)) be the ideal generated by [℘1] −
(−1)w(℘1,℘2)[℘2] for all pairs [℘1], [℘2] ∈ π≤1(X̃)(x1, x2) such that π∗([℘1 ◦
℘−1

2 ]) = 1. This construction also descends to homology, giving an ideal I ⊂
R(H≤1(X̃)).
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B.4. Formal Parallel Transport For the Path Groupoid

Now let Σ→ C be a K-fold branched cover of an oriented surface with at least
one puncture, and let W be a spectral network subordinate to that cover, as
defined in Sect. 9.1. The construction of Sect. 9.4 defines a notion of formal
parallel transport, or path lifting, along paths in C ′′, where C ′′ is C with all
joints of W and branch points of Σ→ C removed. The formal parallel trans-
port is a ring homomorphism

F(·,W) : R(P(C̃ ′′)off)→ R(P(Σ̃)). (175)

Here C̃ ′′ and Σ̃ denote the circle bundles of tangent directions as usual, and
P(C̃ ′′)off is the subcategory whose objects do not lie on W̃.

The formal parallel transport is closely related to flat connections, as
we saw in Sect. 10.1. The hallmark of a flat connection is that its parallel
transport depends only on the homotopy class of the path. In order to see the
homotopy invariance we must project R(P(Σ̃))→ R(π≤1(Σ̃))→ R(π≤1(Σ̃))/I:
after doing so, and only after doing so, F(℘,W) depends only on the homot-
opy class of ℘ in C̃ ′′. Moreover, a check of several special cases (equivalent to
the computations of Sect. 5.6) shows that in fact F(℘,W) only depends on
the homotopy class in C̃. In establishing this, it is crucial that we divide the
codomain by the winding ideal I, which enables various homotopically distinct
paths in F(℘,W) to cancel one another. Hence one can summarize the result
of Sect. 5.6 as

Theorem: F(·,W) descends to a homomorphism

R(π≤1(C̃)off)→ R(π≤1(Σ̃))/I. (176)

Moreover, the homomorphism (176) actually factors through a homomor-
phism

R(π≤1(C̃)off)/I → R(π≤1(Σ̃))/I. (177)

Passing from homotopy to homology in the codomain we obtain a map:

F (·,W) : R(π≤1(C̃)off)/I → R(H≤1(Σ̃))/I. (178)

Expanding F ([℘],W) on a Z-basis Xa for R(H≤1(Σ̃))/I, where a runs over
Γ̃(z̃1, z̃2), the coefficients are the degeneracies Ω

′
(L℘, a).

B.5. Cocycles

We would now like to relate the formalism of this paper to the formalism using
the Xγij′ used in our previous paper [5]. The essential problem here is one of
signs. In this section, we explain how one can construct a twisted ring, which
allows us to work directly with paths on C and Σ, at the cost of introduc-
ing some subtle cocycles in the multiplication rules. The precise statement is
equation (186) below. What we actually prove is the closely related statement
(184), but to pass to (186), we rely on a conjecture stated below (185).

In order to define the framed 2d–4d degeneracies in terms of paths on C
rather than on C̃, we will need a way of lifting from C to C̃. To do this, we intro-
duce I(C), the immersion category of C. The objects are points on C together
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with tangent directions, i.e. points of C̃, and the morphisms are immersions
of intervals [T1, T2] into C. Note that there is no identity morphism so this
“category” is a category without identity morphisms, i.e., a semicategory. We
can view it as a subsemicategory of P(C̃). If we mod out by regular homotopy
(i.e. homotopy through immersions), we obtain a semicategory πReg

≤1 (C). We
also have an obvious functor πReg

≤1 (C)→ P(C̃), hence a ring homomorphism

Lift : R(πReg
≤1 (C))→ R(π≤1(C̃)). (179)

Composing with the projection R(π≤1(C̃))→ R(π≤1(C̃))/I we get

R(πReg
≤1 (C))→ R(π≤1(C̃))/I. (180)

Recall that the objects of πReg
≤1 (C) are points of C̃. Thus, a point z ∈ C with

tangent vector corresponds to a point z̃ ∈ C̃. A little closed loop beginning at
z̃ and wrapping around the fiber of C̃ over z maps to to −1z̃.

The statement we are aiming for, (186) below, concerns homotopy
classes of paths, rather than regular homotopy classes. Therefore, the first
step is to find a homomorphism R(π≤1(C))→ R(πReg

≤1 (C)). We could attempt
to find such a homomorphism by choosing, for each homotopy class, an immer-
sion in the same homotopy class. In general this will not produce anything like
a homomorphism into R(πReg

≤1 (C)). First of all, composable paths in π≤1(C)
will, in general, not map to composable immersions in πReg

≤1 (C). Thus, the first
thing we should do is choose a nowhere-zero vector field on C and, for each
homotopy class in π≤1(C), choose an immersion whose initial and final tan-
gent vectors match the tangent vector at a point. However, even once we have
done this, if we lift two composable homotopy classes [℘̄1] and [℘̄2] to regular
homotopy classes of immersions [ι1] and [ι2] there is no guarantee that the lift
[ι12] of [℘̄1 ◦ ℘̄2] is the same as [ι1 ◦ ι2]. That is,

[ι12] �= [ι1 ◦ ι2] := [ι1] · [ι2] (181)

so we still do not get a homomorphism. However, if we compose our non-
canonical non-homomorphism with the map to the quotient (180) then we will
get a homomorphism from a twisted ring:

R(π≤1(C), σ)→ Lift
(
R(πReg

≤1 (C))
)
/I (182)

The cocycle in question is

σ([℘1], [℘2]) = (−1)w[ι1◦ι2◦ι−1,a
12 ] (183)

where ι−1,a
12 is the anti-lift of the inverse immersion ι−1

12 . (Given an immersion,
we can lift it in the usual way, but then we can compose with the antipo-
dal map in the fiber. Call that the anti-lift. Given an immersion ℘̄ in C with
canonical lift ℘ in C̃, ℘−1 is the antilift of ℘̄−1.) It would be nice to have a
more conceptual and invariant description of this cocycle.

Now let us reconsider the framed 2d–4d BPS degeneracies. We can com-
pose the map (182) with the formal monodromy and finally project to the
homology groupoid to get a homomorphism of the form
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F̄ : R(π≤1(C), σ)→ R(H≤1(Σ̃))/I (184)

The whole discussion above for the curve C can be repeated for Σ to
construct a map

R(H≤1(Σ), σir)→ R(H≤1(Σ̃))/I (185)

where the cocycle σir is analogous to that appearing in (184). It is natural to
conjecture that (184) in fact factors through a homomorphism

F̄ : R(π≤1(C), σuv)→ R(H≤1(Σ), σir) (186)

where σuv is the cocycle (183) appearing in (184). This would be a gauge-
invariant formulation of the 2d–4d degeneracies directly involving paths on C
and Σ.

Appendix C. Convention Convention

We summarize here some conventions used in this and our preceding papers.
1. Homology classes on the IR (Seiberg–Witten) curve Σ are denoted in

this paper by ā ∈ Γij′(z, z′). In our previous paper [5], they were denoted
by γij′ . They are represented by paths oriented from z(i) to z′(j′). Thus,
∂γij′ = z′(j′)− z(i). The sum γij′ +γj′k′′ ∈ Γik′′ is thus oriented from z(i)

to z′′(k′′). Note that the + is not commutative: the sum in the opposite
order γj′k′′ + γij′ in general does not make sense.

2. Oriented open paths on the UV curve C are generally denoted by ℘, and
often the initial point is z1 and the final point is z2. If ℘′ is another such
path, with initial and final points z′

1 and z′
2, respectively, and z2 = z′

1 and
moreover the canonical lifts of ℘ and ℘′ to C̃ can be concatenated, then
we denote by ℘℘′ the composed path, which goes from z1 to z′

2. Note the
“later” path is written to the right.

3. Zγ = 1
π

∮
γ
λ is the central charge of a 4d state, Zā = 1

π

∫
ā
λ is the central

charge of a 2d soliton for ā ∈ Γij(z, z), i �= j, and the same expression
is also the central charge of a framed 2d–4d state with ā ∈ Γ(z1, z2). If
ā ∈ Γij(z1, z2) we can regard Zā as a function on Ui × Uj , where Ui is
a sufficiently small open region around z(i)

1 and Uj is a sufficiently small
open region around z(j)

2 . In this case dZā = 1
π (λ(j) − λ(i)).

4. For an ordered pair (i, j) of sheets, BPS walls of type ij are defined
by e−iϑZγij

< 0 with μ(γij) �= 0. Therefore, they are oriented on C so
that e−iϑ〈λ(i) − λ(j), ∂t〉 > 0, where ∂t is a tangent vector to the wall
in the direction of the orientation. Note that this implies that the inte-
gral e−iϑ

∫ z(t)
λ(i)−λ(j) = −e−iϑ

∫
γij
λ increases as z(t) moves along the

direction of the orientation of the wall.
5. The mass of a soliton with charge ā ∈ Γij(z, z) is M(z) = − e−iϑ

π

∫
ā
λ.

6. Lifting to the circle bundle of directions in the tangent bundle is denoted
by a tilde. Thus Σ̃ is the circle bundle of tangent directions over Σ, and
so forth.
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7. F (℘, ϑ), F(℘,W) and F(℘̃,W,∇ab) all compose in the same way we com-
pose paths in item 2 above: F (℘, ·)F (℘′, ·) = F (℘℘′, ·).

8. The parallel transport F(℘̃,W,∇ab) ∈ Hom(Ez̃1 , Ez̃2) if ℘ goes from z1 to
z2. In [5] Ê was denoted by V, Li was denoted by Vi, and F (℘,Wϑ,∇ab)
was denoted 〈L℘〉 and expanded in Yγij′ ∈ Hom(Li,Lj′). (The conven-
tions of Sect. 5 of [5] are opposite to those of Sect. 7–9 of [5]; we use the
conventions of Sect. 7–9.)

9. We compose linear transformations on the right so that the composition
of linear operators T1 ∈ Hom(V1, V2) and T2 ∈ Hom(V2, V3) is writ-
ten T1T2 ∈ Hom(V1, V3). The parallel transport of a section s(z) from
z1 to z2 by the connection ∇ = ΨW(∇ab) is thus given by s(z2) =
s(z1)F(℘̃,W,∇ab). This differs from the more usual convention and in
particular differs from [5]. In a local trivialization we can write this as

s(z2) = s(z1)Pexp

⎛

⎝−
z2∫

z1

A

⎞

⎠ (187)

where A is the gl(K,C)-valued 1-form representing ∇.
10. In [5], equations (5.31) and (5.32), we introduced flat sections Yγij′ (z, z′)

of the vector bundle Ê∗⊗ Ê on C×C obtained by projection and parallel
transport. For a homology class a ∈ Γ(z̃, z̃′) connecting z̃(i) and z̃′(j′) we
define Ya to be parallel transport with respect to ∇ab along a from z̃(i)

to z̃′(j′). The two notions coincide for z, z′ away from S-walls if we make
use of the isomorphism (131). From either point of view we have, in local
coordinates

∂zYγij′ −AzYγij′ = 0,

∂z′Yγij′ + Yγij′Az′ = 0. (188)

11. The map between solutions (ϕ,A) of Hitchin equations and flat connec-
tions A (used in [17,3,21,5] although not in this paper) is A = R

ζ ϕ+A+
Rζϕ.

12. The WKB asymptotics of flat sections are formally given by

Yγij
∼ exp

πR

ζ
Zγij

+ · · · (189)

This implies that if ζ lies in the half-plane Hϑ, then Yγij
(z) is exponen-

tially small as ζ → 0 when z lies on a wall of type ij supporting the
charge γij .
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