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The Spectral Shift Function
and the Friedel Sum Rule
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Abstract. We study the relationship between the spectral shift function
and the excess charge in potential scattering theory. Although these quan-
tities are closely related to each other, they have been often formulated
in different settings so far. Here, we first give an alternative construction
of the spectral shift function, and then we prove that the spectral shift
function thus constructed yields the Friedel sum rule.

1. Introduction

In physical systems, universal nature often reflects the global, geometrical
(topological) structure of the system. For example, Gauss’s law in classical
electromagnetism is a consequence of the geometrical structure of the three-
dimensional Euclidean space. It states that the flux Φ of the electric field E
through any closed surface Σ is proportional to the total charge Q enclosed by
the surface Σ:

Φ =
∫

Σ

E · da = CQ

with a constant C.
In this paper, we study an analog to Gauss’s law in scattering theory in

quantum mechanics. Let us consider a metal with a single impurity at zero
temperature. The impurity potential scatters the conduction electrons, and
changes their charge distribution. For a fixed Fermi energy EF, the “excess
charge” Z(EF) due to the impurity is defined to be the difference between the
total numbers of levels in the Fermi sea with and without the impurity. Then,
the excess charge Z(EF) equals the total phase shifts θ(EF) of the scattering
matrix S(EF) for the impurity potential:

θ(EF) :=
1

2πi
log detS(EF) = Z(EF). (1)

This is known as the Friedel sum rule [3–6] in solid state physics [14].
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Since the excess charge Z(EF) is formally written in terms of the trace
of the difference between the spectral projection operators with and without
the impurity potential, it is closely related to the spectral shift function (SSF)
which was initiated by Lifshitz [17], and then rigorously defined by Krein [16].
We briefly describe the previous construction of the SSF. Let H and H0 be a
pair of self-adjoint operators. Then the SSF ξ(·) is defined as a function on R

satisfying the following property: If f ∈ C∞
0 (R), then

Tr [f(H) − f(H0)] = −
∫

f ′(λ)ξ(λ)dλ.

Here, we note that this formula fixes ξ(·) up to an additive constant. The SSF
is known to exist1 if, for example, (H + i)−m − (H0 + i)−m is a trace class
operator with some m > 0.

Formally, the SSF is written

ξ(λ) = Tr [EH(λ) − EH0(λ)] , (2)

where EA(·) denotes the spectral projection of a self-adjoint operator A. (This
formal expression (2) is nothing but the excess charge!) It is well-known, how-
ever, EH(λ)−EH0(λ) is not necessarily in the trace class, even when the above
assumption is satisfied [15,16].

As is well known, there are two standard constructions of the SSF.2 The
first one is due to Krein who defines the SSF as a locally L1 function on R.
This construction requires relatively weak assumptions, and the definition is
global in λ. However, the existence of ξ(λ) for a fixed λ ∈ R is not obvious in
this construction. The other construction is to compute the difference of the
spectral functions. Namely, under certain conditions, one can define

ξ′(λ) = Tr
[
E′

H(λ) − E′
H0

(λ)
]

for λ in a “regular” energy region. This method is widely used in the semiclas-
sical and microlocal study of the SSF.3 The advantage of this method is that
one can study the behavior of ξ(λ) in detail locally in λ. On the other hand,
ξ(λ) is not defined globally in λ, and the method requires slightly stronger
assumptions on the perturbation.

We also remark that the behavior of finite-volume spectral shift functions
for a large volume is studied in refs. [7–10,13,21,22]. In particular, under a
certain condition, a sequence of finite-volume spectral shift functions is shown
to converge to the SSF in the infinite-volume limit [7–10].

We propose another construction of the spectral shift function, ξ(λ) =
ξ(λ;H,H0), for a pair of Hamiltonians, H = −� + V and H0 = −�, on
L2(Rn). We assume that the potential V satisfies

|V (x)| ≤ C〈x〉−α, x ∈ R
n (3)

1 See, e.g., Birman–Yafaev [2] or Yafaev [23,24].
2 See also Pushnitski [19] and references therein for a more sophisticated representation of
the SSF.
3 See Robert [21] and references therein.
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with some α > n+3 and some C > 0, where we have written 〈x〉 :=
√

1 + |x|2.
The idea for our construction is to show the existence of the boundary value
of the perturbation determinant directly using the stationary scattering the-
ory. This is a variation of Krein’s construction, but we can prove that ξ(λ) is
defined for each λ ∈ (0,∞) and continuous in the same region.

As an application, we consider the Friedel sum rule. We first define the
finite-volume excess charge ZR(λ) due to the impurity potential V by

ZR(λ) := Tr [ϑR(EH(λ) − EH0(λ))ϑR] ,

where ϑR(x) = ϑ(x/R) is a cutoff function with a large R and with ϑ ∈
C∞

0 (Rn) satisfying ϑ = 1 in a neighborhood of x = 0. Then we can prove

Z(λ) := lim
R→∞

ZR(λ) = ξ(λ) for λ ∈ (0,∞).

Namely, the excess charge Z(·) in the infinite-volume limit is equal to the SSF
ξ(·). On the other hand, the total phase shift θ(·) for the scattering matrix
S(·) is equal to ξ(·) from the Birman–Krein formula. From these, we obtain
that the Friedel sum rule (1) holds for EF ∈ (0,∞) in arbitrary dimensions.

The present paper is organized as follows: in Sect. 2, we first describe our
method to construct the SSF in three or lower dimensions, and then extend it
to higher dimensions. In Sect. 3, we prove that the SSF is equal to the excess
charge.

2. Construction of the Spectral Shift Function

We construct the SSF for potential scattering theory. First, we describe our
abstract scheme for the construction, and then prove the existence of the SSF.
Consider a pair of Hamiltonians,

H = H0 + V, H0 = −� on L2(Rn).

We suppose the potential V satisfies the bound (3) with α > n + 3. We may
allow V to have some singularities, but assume that it is bounded for simplicity.
By the invariance principle, we construct ξ(λ) as

ξ(λ;H,H0) = −ξ((λ + M)−�; (H + M)−�, (H0 + M)−�)

with some integer � > 0 and a sufficiently large M > 0, where ξ(λ;A,A0)
denotes the SSF for a pair A and A0. Here, we choose M so that both A and
A0 are bounded. We recall the SSF is defined as

ξ(λ;A,A0) = − lim
z→λ+i0

1
π

Im log ΔA/A0(z),

where ΔA/A0(z) denotes the perturbation determinant defined by

ΔA/A0(z) = det
[
(A − z)(A0 − z)−1

]
for z ∈ C\(σ(A) ∪ σ(A0)).

It is easy to see that ΔA/A0(z) is well-defined if A−A0 is trace class, and that
it is analytic in z. Moreover,

Δ−1
A/A0

(z)Δ′
A/A0

(z) = −Tr
[
(A − z)−1 − (A0 − z)−1

]
,
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and ξ(λ;A,A0) = 0 if λ > sup(σ(A) ∪ σ(A0)) [or if λ < inf(σ(A) ∪ σ(A0))].
Hence, we have an expression of the SSF:

ξ(λ;A,A0) = lim
z→λ+i0

1
π

Im
∫

γz

Tr
[
(A − w)−1 − (A0 − w)−1

]
dw, (4)

where γz denotes a contour in C+ := {z ∈ C | Im z > 0} such that γz(0) =
k > sup(σ(A) ∪ σ(A0)) and γz(1) = z. Note that this expression is consistent
with the formal formula (2) by virtue of Stone formula.

2.1. Dimensions n ≤ 3
First, we prove the existence of ξ(·) in dimensions n ≤ 3. In the next section,
we treat the case in dimensions n ≥ 4. In this section, we set � = 1, namely,

A = (H + M)−1, A0 = (H0 + M)−1 (5)

with a sufficiently large (fixed) M > 0 so that both A and A0 are bounded.
Then it is well-known that A−A0 ∈ I1, where Ip denotes the pth trace ideal.4

Hence, ΔA/A0(z) is well-defined, and the above definition applies. Now the key
estimate of our construction is the following: we denote

μ(z) = (z + M)−� = (z + M)−1.

Proposition 1. Let λ ∈ (0,∞). Then

lim
z→λ+i0

Tr
[
(A − μ(z))−1 − (A0 − μ(z))−1

]

exists, and the limit is continuous in λ in (0,∞).

Remark. We do not prove (or claim) (A−μ(λ+i0))−1−(A0−μ(λ+i0))−1 ∈ I1.
We only prove the existence of the limit of the trace.

Now combining Proposition 1 with the formula (4), we obtain an alter-
native proof of the following result on the SSF:5

Corollary 2. The SSF ξ(λ) exists for λ ∈ (0,∞), and ξ(·) is continuous in
(0,∞).

Throughout the present paper, we fix β so that

3/2 < β < (α − n)/2, (6)

and we define

W := 〈x〉β(A − A0)〈x〉β . (7)

Proof of Proposition 1. In the present case, we have

W = −〈x〉β(H + M)−1V (H0 + M)−1〈x〉β

from (5). Therefore, from the assumption (3) on the potential V and the above
condition (6) for β, we get W ∈ I1 by using the standard commutator compu-
tations.

4 See, e.g., [20], vol. 3, Appendix 2 to Section XI.3 for the criterion for the trace ideal.
5 For the cases n = 2, 3, see, e.g., [24], Theorem 9.1.14.
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On the other hand, for z /∈ σ(H) ∪ σ(H0), we have

(A − μ(z))−1 − (A0 − μ(z))−1 = −(A − μ(z))−1(A − A0)(A0 − μ(z))−1 ∈ I1.

Combining this, the definition (7) of W and the above result W ∈ I1, we
obtain

Tr
[
(A − μ(z))−1 − (A0 − μ(z))−1

]
= −Tr

[
(A − μ(z))−1〈x〉−βW 〈x〉−β(A0 − μ(z))−1

]
= −Tr

[
W 〈x〉−β(A0 − μ(z))−1(A − μ(z))−1〈x〉−β

]
. (8)

Now in order to complete the proof, it suffices to show the following lemma. �

Lemma 3. For λ ∈ (0,∞),

lim
z→λ+i0

〈x〉−β(A0 − μ(z))−1(A − μ(z))−1〈x〉−β

exists in B(L2(Rn)), and the limit is continuous in λ in (0,∞).

Proof. At first we note that there are no positive eigenvalues6 under our
assumption. Hence, λ is not an eigenvalue. We have

A0 − μ(z) = (H0 + M)−1 − (z + M)−1 = −(z + M)−1(H0 − z)(H0 + M)−1

and hence

(A0 − μ(z))−1 = −(z + M)(H0 + M)(H0 − z)−1

= −(z + M) − (z + M)2(H0 − z)−1.

Similarly, we have

(A − μ(z))−1 = −(z + M) − (z + M)2(H − z)−1

= −(z + M) − (z + M)2(H0 − z)−1

+(z + M)2(H0 − z)−1V (H − z)−1.

Thus, we have

(A0 − μ(z))−1(A − μ(z))−1

= a0(z) + a1(z)(H0 − z)−1 + a2(z)(H0 − z)−2

+a3(z)(H0 − z)−1V (H − z)−1 + a4(z)(H0 − z)−2V (H − z)−1,

where aj(z) are polynomials in z. Recall β > 3/2 in the condition (6) for β.
Since

〈x〉−γ(H0 − z)−1〈x〉−γ , 〈x〉−β(H0 − z)−2〈x〉−β , and 〈x〉−γ(H − z)−1〈x〉−γ

(with γ > 1/2) are bounded and continuous7 in a complex neighborhood of λ
in C+, we conclude the assertion. �

6 See [12] or [20], vol. 4, Theorem XIII.58.
7 See Agmon [1] or Reed–Simon [20], vol. 4, Section XIII.8.
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2.2. Dimensions n ≥ 4
If n ≥ 4, we set

A = (H + M)−�, A0 = (H0 + M)−�

with � ∈ Z such that n/2 − 1 < � ≤ n/2. Then we have

A − A0 = −
�∑

j=1

(H + M)−jV (H0 + M)−�−1+j

= −
�∑

j=1

(H0 + M)−jV (H0 + M)−�−1+j

+
�∑

j=1

j∑
k=1

(H + M)−kV (H0 + M)−j−1+kV (H0 + M)−�−1+j

= · · · .

Iterating this procedure �-times, and using the fact8 V (H0 + M)−j ∈ Ip for
p > n/(2j), we learn that A − A0 ∈ I1. Then the main part of the proof of
Proposition 1 can be modified accordingly.

In order to modify the proof of Lemma 3, we use

A0 − μ(z) = −
�∑

j=1

(z + M)−j(H0 − z)(H0 + M)−�−1+j

= −(H0 − z)(H0 + M)−1L0(z),

where μ(z) = (z + M)−�, and we have written

L0(z) =
�∑

j=1

(z + M)−j(H0 + M)−�+j .

Since 
(z + M) > M if z ∼ λ > 0, L0(z) is invertible. In consequence, we
obtain

(A0 − μ(z))−1 = −L−1
0 (z)(H0 + M)(H0 − z)−1

= −L−1
0 (z)

[
1 + (z + M)(H0 − z)−1

]
.

We also write

L(z) =
�∑

j=1

(z + M)−j(H + M)−�+j .

Then we have

(A0 − μ(z))−1(A − μ(z))−1

= L−1
0 (z)

{
a0(z) + a1(z)(H0 − z)−1 + a2(z)(H0 − z)−2

+a3(z)(H0 − z)−1V (H − z)−1 + a4(z)(H0 − z)−2V (H − z)−1
}
L−1(z)

8 See Footnote 4.
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with some polynomials aj(z) in z. Moreover, using the standard weight esti-
mates,

〈x〉γ(H0 + M)−1〈x〉−γ , 〈x〉γ(H + M)−1〈x〉−γ ∈ B(L2(Rn)),

we can carry out the same argument as in the proof of Lemma 3. Consequently,
we have:

Proposition 4. Let λ ∈ (0,∞). Then

lim
z→λ+i0

Tr
[
(A − μ(z))−1 − (A0 − μ(z))−1

]

exists, and the limit is continuous in λ in (0,∞). Moreover, the SSF ξ(λ)
exists for λ ∈ (0,∞), and ξ(·) is continuous in (0,∞).

3. The Friedel Sum Rule

In solid state physics [14], the difference of the number of the states given
by the right-hand side of (2) has been often called the excess charge. In this
section, we define the excess charge, and show that it is equivalent to the SSF.
Besides, the SSF is equal to the total phase shift θ(λ) which is given by

e2πiθ(λ) = det S(λ), λ > 0,

where S(λ) is the scattering matrix. By the invariance principle and the Bir-
man–Krein formula [2], we have

θ(λ) = ξ(λ;H,H0) = −ξ(μ(λ);A,A0)

with θ(λ) = 0 for λ < σ(H). Therefore, the excess charge is equal to the total
phase shift. This is nothing but the Friedel sum rule.

To begin with, we introduce a cutoff function ϑR(x) = ϑ(x/R) with a
large R > 0 and with ϑ ∈ C∞

0 (Rn) satisfying ϑ = 1 in a neighborhood of
x = 0. Then the excess charge is defined by

Z(λ) := lim
R→∞

Tr [ϑR(EH(λ) − EH0(λ))ϑR] ,

where EA(λ) denotes the spectral projection: χ
(−∞,λ](A). We want to show

that the above limit exists, and that it is equivalent to the SSF under certain
assumptions.

We denote

ZR(λ) = Tr [ϑR(EH(λ) − EH0(λ))ϑR]

for λ > 0. Using the notation of Sect. 2, we recall that

EH(λ) = 1 − EA(μ(λ)) = − lim
z→μ(λ)+i0

Im
1
π

∫

γz

(A − w)−1dw
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in the strong sense. We have

ϑR(EH(λ) − EH0(λ))ϑR

= − lim
z→μ(λ)+i0

Im
1
π

∫

γz

ϑR

[
(A − w)−1 − (A0 − w)−1

]
ϑRdw

= lim
z→μ(λ)+i0

Im
1
π

∫

γz

[
ϑR(A − w)−1〈x〉−βW 〈x〉−β(A0 − w)−1ϑR

]
dw

in the same way as in the proof of Proposition 1. The integrand [· · · ] in the
right-hand side of the second equality is of the trace class, and is continu-
ous in w up to the boundary. Actually, W ∈ I1 as we proved in the preced-
ing section, and we also have, in the same way, that ϑR(A − w)−1〈x〉−β and
〈x〉−β(A0 − w)−1ϑR have norm limits as w → μ(λ) + i0. Thus we learn that

ZR(λ) = Im
1
π

∫

γμ(λ)

Tr
[
ϑR(A − w)−1〈x〉−βW 〈x〉−β(A0 − w)−1ϑR

]
dw.

In particular, this implies the existence of ZR(λ). We show

Theorem 5. Let λ ∈ (0,∞). Then

lim
R→∞

ZR(λ) = ξ(λ;H,H0).

Proof. From (4), (8) and the above representation of ZR(λ), we have

ZR(λ) − ξ(λ;H,H0)
= ZR(λ) + ξ(μ(λ);A,A0)

= Im
1
π

∫

γμ(λ)

Tr
[
W 〈x〉−β(A0 − w)−1(ϑ 2

R − 1)(A − w)−1〈x〉−β
]
dw.

Therefore, it suffices to show∥∥〈x〉−β(A0 − w)−1(1 − ϑ 2
R )(A − w)−1〈x〉−β

∥∥ → 0 as R → ∞
uniformly in w ∈ γμ(λ). If w is away from σ(A) ∪ σ(A0), then∥∥〈x〉−β(A0 − w)−1(1 − ϑ 2

R )(A − w)−1〈x〉−β
∥∥

=
∥∥〈x〉−β(A0 − w)−1〈x〉β(〈x〉−β(1 − ϑ 2

R ))(A − w)−1〈x〉−β
∥∥

≤ ∥∥〈x〉−β(A0 − w)−1〈x〉β
∥∥ · ‖〈x〉−β(1 − ϑ 2

R )‖ · ∥∥(A − w)−1
∥∥ = O(R−β)

locally uniformly in w. Thus, it suffices to consider the case w ∼ μ(λ) ± i0.
As well as in Sect. 2.2, we have

〈x〉−β(A0 − μ(z))−1(1 − ϑ2
R)(A − μ(z))−1〈x〉−β

=
(〈x〉−βL0(z)−1〈x〉β

) × 〈x〉−β
[
1 + (z + M)(H0 − z)−1

]
(1 − ϑ2

R)

×[
1 + (z + M)(H − z)−1

]〈x〉−β × (〈x〉βL(z)−1〈x〉−β
)
.

Therefore, it is enough to show∥∥〈x〉−β(H0 − z)−1(1 − ϑ 2
R )(H − z)−1〈x〉−β

∥∥ → 0 as R → ∞
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if z ∼ λ ± i0 in C± = {z | ± Im z ≥ 0}. Since

〈x〉−β(H0 − z)−1(1 − ϑ 2
R )(H − z)−1〈x〉−β

= 〈x〉−β(H0 − z)−1(1 − ϑ 2
R )(H0 − z)−1〈x〉−β

−〈x〉−β(H0 − z)−1(1 − ϑ 2
R )(H0 − z)−1V (H − z)−1〈x〉−β ,

Theorem 5 now follows from the next lemma. �

Lemma 6. There exist U: a neighborhood of λ ± i0 in C±, ε > 0 and C > 0
such that ∥∥〈x〉−β(H0 − z)−1(1 − ϑ 2

R )(H0 − z)−1〈x〉−β
∥∥ ≤ CR−ε

for β > 3/2 and z ∈ U.

Proof. We consider the case λ + i0 only. The other case is similar. It is easy
to observe that it suffices to show∥∥〈x〉−β(H0 − z)−1(1 − ϑ 2

R )η(H0)(H0 − z)−1〈x〉−β
∥∥ ≤ CR−ε,

where η ∈ C∞
0 ((0,∞)) such that η = 1 in a neighborhood of λ. In order to show

this, we use a Mourre-type microlocal resolvent estimate of Isozaki–Kitada [11].
See also [18]. We apply their result with H = H0. Let ρ± ∈ C∞([−1, 1]) such
that

ρ+(t) + ρ−(t) = 1; ρ±(t) = 0 if ± t < −1
2
.

We also set δ and ε so that
1
2

< δ < β − 1; 0 < ε < δ − 1
2
.

We write

p±(x, ξ) = Rε〈x〉−ε
{
1 − [ϑR(x)]2

}
ρ±(x̂ · ξ̂)η(|ξ|2),

where x̂ = x/|x|. We quantize p± by the usual Kohn–Nirenberg pseudodiffer-
ential operator calculus:

P±f(x) = p±(x,Dx)f(x) = (2π)−n/2

∫
p±(x, ξ)eix·ξ f̂(ξ)dξ.

Then we have

(1 − ϑ 2
R )η(H0) = R−ε〈x〉ε(P+ + P−),

and p−(x, ξ) satisfies the assumptions of Theorem 1 (or Theorem 1.2) of [11],
uniformly in R > 1, and we obtain∥∥〈x〉δP−(H0 − z)−1〈x〉−β

∥∥ ≤ C for z ∼ λ, z ∈ C+.

Similarly, we can apply the same argument to (〈x〉εP+〈x〉−ε)∗ instead of P−.
In fact, (〈x〉εP+〈x〉−ε)∗ is also a pseudodifferential operator, and its symbol
can be computed by asymptotic expansions, up to an error of O(〈x〉−∞). Let
p̃+(x, ξ) be the symbol of (〈x〉εP+〈x〉−ε)∗. Then it has the same support prop-
erty with p+(x, ξ). In particular, we can show

p̃+(x, ξ) = p+(x, ξ) + i(∂x · ∂ξ)p+(x, ξ) − i∂ξp+(x, ξ) · (εx/〈x〉2) + O(〈x〉−2).
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Thus we obtain∥∥〈x〉−β(H0 − z)−1〈x〉εP+〈x〉δ−ε
∥∥ ≤ C for z ∼ λ, z ∈ C+,

as well. Combining these, we have∥∥〈x〉−β(H0 − z)−1(1 − ϑ 2
R )η(H0)(H0 − z)−1〈x〉−β

∥∥
= R−ε

∥∥〈x〉−β(H0 − z)−1〈x〉ε(P+ + P−)(H0 − z)−1〈x〉−β
∥∥

≤ R−ε
{∥∥〈x〉−β(H0 − z)−1〈x〉−(δ−ε)

∥∥ · ∥∥〈x〉δP−(H0 − z)−1〈x〉−β
∥∥

+
∥∥〈x〉−β(H0 − z)−1〈x〉εP+〈x〉δ−ε

∥∥ · ∥∥〈x〉−(δ−ε)(H0 − z)−1〈x〉−β
∥∥}

≤ CR−ε

for z ∼ λ, z ∈ C+. �
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