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Oscillatory Singularities in Bianchi Models
with Magnetic Fields
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Abstract. An idea which has been around in general relativity for more
than 40 years is that in the approach to a big bang singularity solutions of
the Einstein equations can be approximated by the Kasner map, which
describes a succession of Kasner epochs. This is already a highly non-
trivial statement in the spatially homogeneous case. There the Einstein
equations reduce to ordinary differential equations and it becomes a state-
ment that the solutions of the Einstein equations can be approximated
by heteroclinic chains of the corresponding dynamical system. For a long
time, progress on proving a statement of this kind rigorously was very
slow but recently there has been new progress in this area, particularly
in the case of the vacuum Einstein equations. In this paper we generalize
some of these results to cases where the Einstein equations are coupled
to matter fields, focussing on the example of a dynamical system arising
from the Einstein–Maxwell equations with symmetry of Bianchi type VI0.
It turns out that this requires new techniques since certain eigenvalues
are in a less favourable configuration than in the vacuum case. The dif-
ficulties which arise in that case are overcome by using the fact that the
dynamical system of interest is of geometrical origin and thus has useful
invariant manifolds.

1. Introduction

The fundamental equations of general relativity are the Einstein equations,
possibly coupled to other equations describing the dynamics of the matter
which generates the gravitational field. With a suitable choice of physical units
the equations are

Rαβ − 1
2
Rgαβ = Tαβ . (1.1)

The unknowns in these equations are the spacetime metric gαβ and the matter
fields. Rαβ is the Ricci tensor of the Lorentzian metric gαβ and R its trace.
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Tαβ is the energy-momentum tensor. In this paper we are mainly concerned
with the Einstein vacuum equations, where Tαβ = 0, and the Einstein–Max-
well equations. In the latter case, the source of the gravitational field is an
electromagnetic field Fαβ and the energy-momentum tensor is given by

Tαβ = Fα
γFβγ − 1

4
(F γδFγδ)gαβ . (1.2)

The electromagnetic field tensor is antisymmetric (Fαβ = −Fβα) and satisfies
the source-free Maxwell equations

∇αFαβ = 0, ∇αFβγ + ∇γFαβ + ∇βFγα = 0. (1.3)

It is well known that solutions of the Einstein equations generally develop
singularities. In particular, there are solutions relevant to cosmology in which
the singularity corresponds to the big bang. Belinskii, Khalatnikov and Lifshitz
(hereafter abbreviated to BKL) developed a heuristic picture of the singular-
ities in cosmological solutions of the Einstein equations. In this context they
introduced a map of the circle to itself which we refer to as the Kasner map.
It will be defined precisely below. They suggested that it provides a model
for oscillations of the geometry in the approach to the singularity. For the
original work see [2] and [3]. A modern discussion of these ideas can be found
in [4]. An important idea in the BKL work is that spatially inhomogeneous
solutions of the Einstein equations can be approximated by spatially homo-
geneous solutions near the singularity. Since from a mathematical point of
view the dynamics of spatially homogeneous solutions is still far from being
understood, it is natural at the present time to concentrate on understanding
classes of spatially homogeneous solutions. This is the strategy we adopt in
what follows.

A long-standing question in mathematical cosmology is to relate the
Kasner map to the dynamics of actual solutions of the Einstein equations,
possibly with matter. An important recent advance in this field is the paper
[7] where a relation of this kind was established in a special case. These results
concern solutions of the vacuum Einstein equations of Bianchi types VIII and
IX. They complement earlier results of Ringström [10,11] by providing a more
detailed description of the dynamics of the approach to the singularity in
certain cases. The work of Ringström on vacuum spacetimes was preceded
by results of Weaver [15] on solutions of the Einstein–Maxwell equations of
Bianchi type VI0 using a dynamical system introduced in [6]. In what follows
we extend the results of [7] to this case of the Einstein–Maxwell equations.
There is other recent work on this question in the vacuum case [1,8], but these
papers use very different techniques from those which we will apply to the
Einstein–Maxwell case and for this reason they will not be discussed further
here.

In the next section the necessary background and the fundamental equa-
tions needed in the paper are introduced. The most important similarities and
differences between the models with magnetic fields considered in what follows
and the vacuum models which had previously been analysed are explained. The
third section contains the main theorem and an exposition of the strategy of
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its proof. The central result is the existence of unstable manifolds of codimen-
sion one for some heteroclinic chains. To prove this it is necessary to obtain
estimates for a solution during its passages close to the Kasner circle and for
its behaviour between passages. This is done in Sects. 4 and 5, respectively.
A central idea of the paper and one which is a major step beyond what was
achieved in the vacuum case is the use of a specially constructed Riemann-
ian metric to measure the distance between the heteroclinic chains and the
approximating smooth solutions. The last section discusses future extensions
of this research and interesting open problems.

2. The Basic Set-Up

Spatially homogeneous spacetimes are those solutions of the Einstein-matter
equations where there is an action of a Lie group G by isometries of gαβ with
three-dimensional spacelike orbits which leaves the matter fields invariant. The
cases where the isotropy group is discrete can be classified according to the
Lie algebra of G. It is common in general relativity to use the terminology
due to Bianchi, who introduced types I to IX. It is also common to distinguish
between two subsets of these types known as Class A and Class B. In what
follows we will only be concerned with Class A models. More information on
this subject can be found in [13] or [9].

The analyses of vacuum spacetimes mentioned above are based on the
well-known Wainwright–Hsu system [14]. This is a system of ordinary differ-
ential equations for five variables (Σ+,Σ−, N1, N2, N3) which are subject to
one constraint. It includes all the Bianchi models of Class A (i.e. types I, II,
VI0, VII0,VIII and IX). The system is defined on a smooth hypersurface in
R

5. An analogous system for Bianchi spacetimes of type VI0 with a magnetic
field was introduced in [6]. It is also defined on a smooth hypersurface in R

5

and it includes solutions of types I and II with a magnetic field. The variables
are called Σ+,Σ−, N+, N−,H. The first two variables can be identified with
the variables of the same name in the vacuum case since they have the same
geometrical meaning in both cases. The variables N+ and N− correspond in
a similar way to certain linear combinations of N2 and N3. More specifically,
N+ = 3

2 (N2 + N3) and N− =
√

3
2 (N2 − N3). The variable H corresponds to

the magnetic field.
The dynamical system is

Σ′
+ = −2N2

−(1 + Σ+) +
3
2
H2(2 − Σ+),

Σ′
− = −

(
2N2

− +
3
2
H2

)
Σ− − 2N+N−,

N ′
+ =

(
2Σ+(1 + Σ+) + 2Σ2

− +
3
2
H2

)
N+ + 6Σ−N−, (2.1)

N ′
− =

(
2Σ+(1 + Σ+) + 2Σ2

− +
3
2
H2

)
N− + 2Σ−N+,

H ′ = −(Σ+(2 − Σ+) − Σ2
− + N2

−)H.
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The prime denotes a derivative with respect to a time variable τ which tends
to −∞ as the singularity is approached. These equations are taken from [15].
They arise as a special case of the equations for models with a magnetic field
and a perfect fluid derived in [6] by setting the fluid density to zero. (Here
a magnetic field means an electromagnetic field satisfying the condition that
Fαβnβ = 0, where nα is the unit normal vector to the group orbits.) Solutions
are considered which satisfy the condition

Σ2
+ + Σ2

− + N2
− +

3
2
H2 = 1. (2.2)

This condition follows from the Einstein equations and is preserved by the evo-
lution equations for (Σ+,Σ−, N+, N−,H) just defined. The inequalities N− >
0, N2

+ < 3N2
− and H > 0 are assumed. These are also preserved by the evo-

lution and define the region which corresponds to Bianchi type VI0 solutions
with non-zero magnetic field. Setting H = 0 while maintaining the other two
inequalities gives a representation of the vacuum solutions of Bianchi type VI0.
Setting N+ = ±√

3N− gives two different representations of solutions of type
II with a magnetic field. Setting other combinations to zero leads to vacuum
solutions of type II, solutions of type I with a magnetic field, and vacuum solu-
tions of type I (the Kasner solutions). Note the invariant subspaces {N2 = 0}
and {N3 = 0} which also appear in the Bianchi system with perfect fluid. In
fact the invariant subspaces {N2 = 0}, {N3 = 0}, {H = 0} will play a crucial
role in our analysis, see (3.4).

The circle defined by Σ2
++Σ2

− = 1 consists of stationary points. Each one
of them corresponds to a Kasner solution and so this set is called the Kasner
circle. There are three families of heteroclinic orbits between points on the
Kasner circle whose projections to the (Σ+,Σ−)-plane are straight lines. Two
of these families correspond to vacuum solutions of Bianchi type II and occur
in both the vacuum case and the case with magnetic field. In the vacuum case
there is a third family related to these two by symmetries of the system. In
the case where a magnetic field is included, the two sets of Bianchi type II
vacuum solutions are complemented by a family of Bianchi type I solutions
with magnetic field. The projections of the latter to the (Σ+,Σ−)-plane are
identical to those of the third family of Bianchi type II solutions in the vac-
uum case. There is thus a natural correspondence between heteroclinic chains
consisting of Bianchi type II solutions in the vacuum case and heteroclinic
chains in the case with a magnetic field which include orbits corresponding
to both solutions of the vacuum Einstein equations of Bianchi type II and
solutions of the Einstein–Maxwell equations of Bianchi type I. In the vacuum
case there is a heteroclinic cycle consisting of three orbits and it is the central
example considered in [7]. The projections of the orbits making up this cycle
to the (Σ+,Σ−)-plane are related by rotations by multiples of 2π

3 . By what has
already been said, there is a corresponding heteroclinic cycle in the system of
[6]. See also Fig. 1. The Kasner solutions can be written in the explicit form

− dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2. (2.3)
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Figure 1. Kasner circle and period 3 cycle; Bianchi type II
vacuum families to corners 2,3 (in black), Bianchi type I fam-
ily with magnetic field to corner 1 (in blue); Kasner intervals
Ki bounded by Taub points Ti of tangencies and antipodal
points Qi (colour figure online)

With a suitable choice of ordering the Kasner exponents p1, p2, p3 are related
to the variables Σ+ and Σ− by

p1 =
1
3
(1 − 2Σ+),

p2 =
1
3
(1 + Σ+ +

√
3Σ−), (2.4)

p3 =
1
3
(1 + Σ+ −

√
3Σ−).

The eigenvalues of the linearisation of the Wainwright–Hsu system at a
Kasner solution are (6p1, 6p2, 6p3) ([14], p. 1425). For the system describing
solutions of the Einstein–Maxwell equations of Bianchi type VI0 introduced
in [6] the eigenvalues are (3p1, 6p2, 6p3) ([6], (4.1)). The Taub points of the
Kasner circle are defined by the condition that the Kasner exponents are
(1, 0, 0) or a permutation thereof. All points of the Kasner circle other than
the Taub points have a one-dimensional stable manifold. For p1 < 0 the stable
manifold is defined by a solution with non-vanishing magnetic field and the
corresponding eigenvalue is 3p1 < 0. For p2 < 0 or p3 < 0 the stable manifold
is defined by a vacuum solution.
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In order to have an overview of the relative sizes of the different eigen-
values it is useful to introduce the Kasner parameter u ∈ [1,∞] which is defined
implicitly by the relation (cf. [4])

p1p2p3 =
−u2(1 + u)2

(1 + u + u2)3
. (2.5)

Then the Kasner exponents arranged in ascending order are given by

p̃1 =
−u

1 + u + u2
,

p̃2 =
1 + u

1 + u + u2
, (2.6)

p̃3 =
u(1 + u)

1 + u + u2
.

Note that p̃2 ≥ −p̃1 with equality only when u = ∞. On the other hand
p̃2
2 ≤ −p̃1 and p̃3

2 ≥ −p̃1. The Kasner map is defined by u �→ u − 1 for u ≥ 2
and u �→ (u−1)−1 for u ≤ 2. The central example in [7] is a set of heteroclinic
orbits which form a cycle of order three. In fact the value of u corresponding
to that example is invariant under the Kasner map. It solves the equation
u2 − u − 1 = 0 and is the golden ratio 1

2 (1 +
√

5). The values of the Kasner
exponents at the vertex of this cycle where p1 < p2 < p3 are

p1 =
1
4
(1 −

√
5),

p2 =
1
2
, (2.7)

p3 =
1
4
(1 +

√
5).

For each value of the Kasner parameter u in the interval (1,∞) there are
six points on the Kasner circle where u takes that value. Removing the Taub
points Ti and their antipodal points Qi from the Kasner circle leaves a union
of six intervals Ki, 1 ≤ i ≤ 6. They will be numbered as follows: Let K1 be
the region where p1 < 0 and p2 > p3. Then number the others consecutively
while moving anticlockwise along the Kasner circle, see Fig. 1.

In order to assess the stability of a heteroclinic cycle it is important
to examine the eigenvalues of the linearisation of the system at the verti-
ces. In both the vacuum case and the case with magnetic field there is one
negative eigenvalue −μ1 and two positive eigenvalues μ2, μ3. Without loss
of generality the labelling can be chosen so that μ2 ≤ μ3. Then from what
has been stated above it can be seen that in the vacuum case the inequal-
ities μ1 < μ2 < μ3 hold at any point of the Kasner circle except Ti and
Qi. Call this the first linearisation condition. That this is true is one of the
most important hypotheses of the main theorem of [7]. On the other hand this
condition can fail in the case with magnetic field. It fails precisely when the
Kasner exponent p1 is intermediate in size between p2 and p3, i.e. when the
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point of the Kasner circle lies in the one of the sets K2 and K5. For then the
eigenvalue 3p1 is smaller in magnitude than that of the negative eigenvalue,
while the other positive eigenvalue is not. Then we have the situation that
μ2 < μ1 < μ3. The situation that the eigenvalue 3p1 does not correspond
to the eigendirection tangent to the heteroclinic orbit incoming towards the
past is covered by the theorems in this paper. Call this the second linearisa-
tion condition. What is common to the first and second linearisation condi-
tions is that the eigenvalue corresponding to the heteroclinic orbit incoming
towards the past is larger in modulus than that corresponding to the hetero-
clinic orbit outgoing towards the past. In the example of the 3-cycle at least
one of the two linearisation conditions just introduced holds at each of the
vertices. See Fig. 1, the second eigenvalue condition holds in the intervals K2

and K5, whereas the first eigenvalue condition holds in the remaining inter-
vals.

The linearisation conditions are not in themselves enough to make the
theorems in this paper work. Additional geometrical information is required.
This is the existence of a certain invariant manifold. It is tangent to the space
spanned by the vectors tangent to the stable manifold and the centre mani-
fold and the eigenvector corresponding to the largest eigenvalue. For a general
dynamical system there is no reason why a manifold of this kind should exist.
In the example of a Bianchi model of type VI0 with magnetic field a manifold
of this kind is defined by the vacuum solutions of type VI0 or the solutions of
type II with magnetic field.

Note that multiplying the last equation in (2.1) by H shows that
(2.1) can be rewritten as a smooth dynamical system in the variables
Σ+, Σ−, N+, N−, H2. Call this the transformed system. From a physical
point of view this corresponds to replacing the one independent component
of the Maxwell field in this situation by the one independent component of
the energy-momentum tensor as a basic variable. In the transformed sys-
tem the problematic eigenvalue 3p1 is replaced by the value 6p1 familiar
from the vacuum case. Thus in the context of the latter system the sta-
bility of the heteroclinic cycle can be analysed using the techniques of [7].
We have nevertheless chosen to present our discussion in terms of the orig-
inal system (2.1) for the following reasons. The proofs of Sects. 3, 4 and
5 are formulated in a general setting which is intended to be applicable
to a variety of Einstein-matter systems. It is to be expected that for most
homogeneous spacetimes with matter the possibility of simplification by a
clever change of variables will not be available. Usually, the matter fields
and their equations of motion contain more information than can be encoded
in the energy-momentum tensor alone. The example of the system (2.1) is
convenient for illustrating how the new techniques developed in what fol-
lows can be applied to a dynamical system arising in general relativity. The
role of the invariant manifolds highlights the special properties of this type
of system among more general dynamical systems containing heteroclinic
chains.

1049Vol. 14 (2013)



S. Liebscher et al. Ann. Henri Poincaré

3. Main Result and Sketch of Proof

We shall prove the following result on the dynamics of the Bianchi model of
type VI0 (2.1, 2.2) with magnetic field:

Theorem 3.1. The period 3 heteroclinic cycle given by (2.7) possesses a local
codimension-one unstable manifold. In other words, system (2.1, 2.2) admits
a codimension-one manifold, locally close to the heteroclinic cycle, of initial
conditions whose backward trajectories converge to the heteroclinic cycle. The
manifold is locally Lipschitz continuous in the open complement of the bound-
aries N1 = 0, N2 = 0, H = 0. It is Lipschitz continuous in every closed cone
intersecting these boundaries only in the heteroclinic cycle.

As pointed out at the end of the last section, passing to the transformed
system would allow this result to be proved using the techniques of [7]. This
can even be used to show that the invariant manifold is globally Lipschitz.
Here the theorem will be proved using the original system since this illustrates
the use of new techniques of wider applicability. The proof will only use certain
properties of the particular structure of the Bianchi system (2.1) and can be
sketched as follows:

Step 1: local passage, Sect. 4. In a neighbourhood of the equilibria of the het-
eroclinic cycle, i.e. close to the Kasner circle, the Bianchi system (2.1, 2.2)
with reversed time direction can be smoothly transformed to a vector field

ẋ = f(x), x = (xu, xss, xs, xc) ∈ R × R × R
N × R,

that satisfies the following properties:

Conditions 3.2. (loc-i) There is a straight line of equilibria,

f(0, 0, 0, xc) ≡ 0. (3.1)

(loc-ii). The heteroclinic orbits of the original system correspond to the xss-
and xu-axes.

(loc-iii). The linearisation at the origin has the almost diagonal form

Df(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μu

−μss

−μs1

. . .
−μsN

∗ ∗ ∗ · · · ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)

with μu, μss, μs1, . . . , μsN > 0.
(loc-iv). The eigenvalue corresponding to the incoming direction is stronger

than the eigenvalue corresponding to the outgoing direction,

μu/μss < 1. (3.3)

(loc-v). The codimension-one subspaces

{xu = 0}, {xss = 0}, {xs1 = 0}, . . . , {xsN = 0} (3.4)

are invariant under the flow.
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Note that, for the model (2.1, 2.2), we have N = 1. However, the gener-
alization N > 1 is needed for applications discussed at the end of this section
and in Sect. 6.

The last two properties are the most crucial for the proof. The invari-
ance of the codimension-one subspaces is non-generic for systems admitting
(loc-i)–(loc-iv) and is a very strong constraint on the system.

Under the above assumptions the local passage map, Ψloc : Σin → Σout,
from an in-section Σin = {xss = ε} to an out-section Σout = {xu = ε},
for sufficiently small ε, is a Lipschitz-continuous map with arbitrarily little
change of the xc-component and arbitrarily strong contraction transverse to
the xc-component. Unfortunately, this only holds true with respect to a non-
Euclidean metric and represents one of the main difficulties of our investiga-
tion. Indeed, for μs1 < μu even a linear vector field f never gives rise to a
Lipschitz-continuous map Ψloc with respect to the Euclidean metric. The case
μu < μss, μs1, . . . μsN, on the other hand, does yield a Lipschitz-continuous
map Ψloc and has been treated in [7].

Step 2: global excursion, Sect. 5. Close to the heteroclinic chain, by smooth
dependence on initial conditions, the trajectories follow the heteroclinic orbit
from the out-section of a local passage to the in-section of the next local pas-
sage. This map, Ψglob

k : Σout
k → Σin

k+1, is a uniformly bounded diffeomorphism.
In particular, any deformation imposed by Ψglob in directions transverse to xc

will turn out to be dominated by the strong contraction of the local passage
map Ψloc. In xc-direction, however, we gain an expansion given by the Kasner
map. Thus, the global excursion Ψglob

k : Σout
k → Σin

k+1 given by the Bianchi
system (2.1, 2.2) with reversed time direction satisfies

Conditions 3.3. (glob-i). Ψglob
k maps the origin of Σout

k to the origin of Σin
k+1

and (local neighbourhoods of 0 of) the invariant subspaces {xss = 0},
{xs1 = 0}, . . . , {xsN = 0} onto {xu = 0}, {xs1 = 0}, . . . , {xsN = 0} (in
arbitrary order).

(glob-ii). Ψglob
k is a C2 Diffeomorphism. The bounds ‖DΨglob

k ‖, ‖D2Ψglob
k ‖,

‖D(Ψglob
k )−1‖, ‖D2(Ψglob

k )−1‖ < M are independent of k.
(glob-iii). It uniformly expands in xc-direction at the boundary. In other

words, Ψglob
k : {xout

ss = 0, xout
s = 0} → {xin

u = 0, xin
s = 0} is Lipschitz

continuous, and its inverse (Ψglob
k |{xout

ss =0,xout
s =0})−1 has Lipschitz constant

less than L < 1, independent of k.

Step 3: graph transform, Sect. 5. Combining local passage and global excur-
sion yields maps from each in-section to the next, Ψ = Ψglob

k ◦ Ψloc
k : Σin

k →
Σin

k+1, with uniform cone conditions. A standard graph-transform technique
now yields the claimed invariant manifold as a fixed point in the space of
Lipschitz-continuous graphs xk

c = xk
c (xk

u, xk
s ) in Σin

k . For completeness of pre-
sentation, we will give the necessary arguments in Sect. 5.
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In fact, steps 1–3 prove a much more general theorem than 3.1, that is

Theorem 3.4. Let a C4 vector field and a chain of heteroclinic orbits hk(t),

lim
t→∞ hk−1(t) = pk = lim

t→−∞ hk(t), k ∈ N,

be given. Assume that locally near pk assumptions (loc-i)–(loc-v) hold and that
along each hk assumptions (glob-i)–(glob-iii) hold, with constants α,L,M inde-
pendent of k.

Then there exists a local codimension-one stable manifold to the hetero-
clinic chain, i.e. a codimension-one manifold of initial conditions following the
heteroclinic chain and converging to it.

The heteroclinic chain itself is contained in the boundary of this mani-
fold. The manifold is locally Lipschitz continuous in the open complement of the
invariant subspaces (loc-v). The manifold is uniformly Lipschitz continuous in
every closed cone intersecting the invariant subspaces only in the heteroclinic
chain itself.

This theorem covers not only the period 3 cycle of the Bianchi VI0 system
with magnetic field. In fact, it applies to every heteroclinic chain in the Bianchi
VI0 system with magnetic field that does not accumulate at any Taub point
(required for uniformity of bounds) and such that the chain does not contain
heteroclinic orbits of the magnetic family to points in the domain K2 ∪K5. See
also Fig. 1. It also applies to every heteroclinic chain of the Bianchi A (VIII
and IX) system without magnetic field but with ideal fluid as investigated in
[7], as long as it does not accumulate at any Taub point. The proof given
here completes the arguments sketched in the discussion section of [7] and
relaxes the constraint on the matter model required there. All matter models
that yield positive eigenvalues of the linearisation at the Kasner circle in the
non-vacuum direction are included, due to the relaxed eigenvalue condition. In
particular, as discussed in more detail in Sect. 6, it includes perfect fluids with
equations of state which could not be treated by the methods of [7] and for
which no method of reduction to that case is known. It is possible to remove
the need to exclude the subset K2 ∪K5 of the Kasner circle using the modified
system. This follows from results sketched in [7] and proved in detail in Sect. 5.

4. Local Passage Near a Line of Equilibria

In this section we study the passage of trajectories under a general flow near a
line of equilibria with eigenvalue constraint (3.3) and invariant subspaces (3.4)
consistent with the Kasner circle in the Bianchi VI0 system with magnetic
field. We will collect estimates on expansion and contraction rates to estab-
lish Lipschitz properties of the local map between sections to a reference orbit
given by the passage near the line of equilibria, see Theorem 4.8 at the end of
this section. Compared with [7] (Section 3), we assume the relaxed eigenvalue
condition (3.3) without any constraint on μs1, . . . , μsN. This requires the use
of a non-Euclidean metric (4.21, 4.22).
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Figure 2. Local passage Ψloc : Σin → Σout

Consider a Ck vector field, k ≥ 4,

ẋ = f(x), x = (xu, xss, xs, xc) ∈ R × R × R
N × R, (4.1)

that satisfies Conditions 3.2 in a neighbourhood of the origin. Due to the
invariant subspaces (3.4), the form of the linearisation (3.2) holds locally all
along the line of equilibria,

Df(0, 0, 0, xc) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μu(xc)
−μss(xc)

−μs1(xc)

. . .
−μsN(xc)

∗ ∗ ∗ · · · ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2)

The stable and unstable manifolds as well as the strong stable foliation of
the stable manifold are Ck and can be flattened, see e.g. [12] (Theorem 5.8). By
a Ck change of coordinates the stable/strong stable/unstable manifolds to the
equilibria locally coincide with the respective eigenspaces. In particular, and
in addition to (3.4), the following stable and unstable fibres become invariant:

W u(xc) = {xss = 0, xs = 0, xc fixed},
W s(xc) = {xu = 0, xc fixed}.

(4.3)

Note that in the Bianchi system, W u(xc) coincides with the outgoing hetero-
clinic orbit attached to the equilibrium (0, 0, 0, xc).

Due to (4.3), the linearisation becomes diagonal,

Df(0, 0, 0, xc) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μu(xc)
−μss(xc)

−μs1(xc)

. . .
−μsN(xc)

0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)
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Our aim is to study a local map from an in-section Σin = {xss = ε} to
an out-section Σout = {xu = ε} for xs, xc ≈ 0, see Fig. 2. This corresponds to
the passage near the Kasner circle in the Bianchi system in backwards time
direction. (We reversed the time direction to obtain a well-defined local map.)

We rescale the system to

ẋ = A(xc)x + εg(x), (4.5)

with ε arbitrarily fixed and g at least quadratic in (xu, xss, xs). Due to the
invariant subspaces (3.4) and (4.3), the vector field takes the form

ẋu = μu(xc)xu + εgu(x)xu,

ẋss = −μss(xc)xss + εgss(x)xss,

ẋs� = −μs�(xc)xs� + εgs�(x)xs�, � = 1, . . . N, (4.6)

ẋc = ε

(
gcss(x)xss +

N∑
�=1

gcs�(x)xs�

)
xu,

with Ck−1-functions gu, gss, gs�, vanishing along the line of equilibria, and
Ck−2-functions gcss, gcs�. In particular,

|gu(x)|, |gss(x)|, |gs1(x)|, . . . , |gsN(x)|<C max(|xu|, |xss|, |xs1|, . . . , |xsN|),
|gcss(x)|, |gcs1(x)|, . . . , |gcsN(x)|<C, (4.7)

for some constant C > 0 independent of ε and x ∈ U , where U is some local
neighbourhood of the origin. Similarly, all derivatives of gu, gss, gs�, gcss, gcs�

are bounded by C for x ∈ U . We choose

U = (−2, 2)N+3. (4.8)

All further estimates will use this rescaled system (4.5) with flattened invariant
manifolds (4.3) in the local neighbourhood U . They will be valid for all ε < ε0

and suitably chosen ε0. In the original system (4.1), ε0 bounds the size of the
neighbourhood of the origin in which this local analysis is valid.

Proposition 4.1. Let

μu := μu(0), −μss := −μss(0), −μs� := −μs�(0), � = 1, . . . , N,

be the eigenvalues of (4.4) at the origin. Then for all 0 < α < 1 there exists
an ε0 > 0 such that for all ε < ε0 in (4.5) and x ∈ U

α ≤ μu(xc)
μu

,
μss(xc)

μss
,
μs1(xc)

μs1
, . . . ,

μsN(xc)
μsN

≤ α−1. (4.9)

Proof. Due to the invariant subspaces (3.4, 4.3), the linearisation of the system
at equilibria close to the origin remains diagonal, and the eigenvalues depend
differentiably on xc, For the rescaled system (4.5) with small ε0 this provides
bounds in U : Indeed, there exists a constant C > 0 independent of ε0, ε, such
that ∣∣∣∣ d

dxc
μu(xc)

∣∣∣∣ ,
∣∣∣∣ d
dxc

μss(xc)
∣∣∣∣ ,
∣∣∣∣ d
dxc

μs�(xc)
∣∣∣∣ < εC. (4.10)

�
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The scalar function θ(x) := μu (μu(xc) + εgu(x))−1 is, therefore, Ck−1

and close to 1. The vector field

x′ = θ(x)f(x) =
μu

μu(xc) + εgu(x)
f(x)

has the same trajectories as the original vector field and all previous consid-
erations remain valid. Thus we can assume, without loss of generality, that
θ(x) ≡ 1 in U , i.e.

μu(xc) ≡ μu, gu(x) ≡ 0. (4.11)

At this step we have made use of the fact that the origin possesses exactly one
unstable eigenvalue. The vector field to consider then has the form

ẋu = μuxu

ẋss = −μss(xc)xss + εgss(x)xss,

ẋs� = −μs�(xc)xs� + εgs�(x)xs�, � = 1, . . . N, (4.12)

ẋc = ε

(
gcss(x)xss +

N∑
�=1

gcs�(x)xs�

)
xu.

Lemma 4.2. For all 0 < α < 1 there exists an ε0 > 0 such that for all ε <
ε0, x(0) ∈ U and t ≥ 0, as long as x(t) remains in U under the flow to the
vector field (4.12), we can estimate

xu(t) = exp(μut)xu(0), (4.13)

xss(t) ∈
[
exp

(
− 1

α
μsst

)
, exp (−αμsst)

]
xss(0), (4.14)

xs�(t) ∈
[
exp

(
− 1

α
μs�t

)
, exp (−αμs�t)

]
xs�(0), (4.15)

� = 1, . . . , N,

|xc(t) − xc(0)| ≤ 2εC

α

(
1

μss − μu
|xu(0)| +

N∑
�=1

1
μs�

|xs�(0)|
)

. (4.16)

Here, C is the uniform (in x and ε) bound from (4.7).

Proof. The unstable component (4.13) is given directly by the vector field.
The estimates of the stable components (4.14, 4.15) follow from the vector
field and the uniform bounds (4.9, 4.7). Indeed for arbitrary 0 < α̃ < 1 and
ε < ε0 small enough, we have

ẋss ∈
[
− 1

α̃
μss − εC,−α̃μss + εC

]
xss.

Thus for arbitrary 0 < α < 1 we find suitable α < α̃ < 1 and ε0 small enough
such that

ẋss ∈
[
− 1

α
μss,−αμss

]
xss.
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Integration yields the claim. Bounds on xs� are obtained analogously. The cen-
tre component (4.16) is then estimated by plugging (4.13, 4.14, 4.15) into the
vector field (4.12) and integrating

|xc(t) − xc(0)|

= ε

∣∣∣∣∣
∫ t

0

gcss(x(s))xss(s)xu(s) +
N∑

�=1

gcs�(x(s))xs�(s)xu(s) ds

∣∣∣∣∣
≤ εC

∫ t

0

exp(μu − α̃μss)|xss(0)xu(0)| +
N∑

�=1

exp(−α̃μs�)|xs�(0)xu(s)|ds

≤ 2εC

∫ t

0

exp(μu − α̃μss)|xu(0)| +
N∑

�=1

exp(−α̃μs�)|xs�(0)|ds

≤ 2εC

∫ t

0

exp(−α(μss − μu))|xu(0)| +
N∑

�=1

exp(−αμs�)|xs�(0)|ds

The last inequality needs a slight adjustment of α̃ � α and uses the eigenvalue
condition (3.3). Indeed, for all 0 < α < 1, we find a suitable 0 < α̃ < 1 with
0 < α(μss − μu) < α̃μss − μu. �

The local map

(xin
u , xin

s , xin
c ) �−→ (xout

ss , xout
s , xout

c ) = Ψloc(xin
u , xin

s , xin
c ) (4.17)

is given by the first intersection of the solution of (4.12) to the initial value
(xin

u , xin
ss = 1, xin

s , xin
c ) with the out-section {xu = 1}. See Fig. 2. The local map

Ψloc is well defined on the in-section

Σin = { (xin
u , xin

ss , x
in
s , xin

c ) |xin
ss =1, 0<xin

u <1, ‖xin
s ‖<1, |xin

c |<1 }, (4.18)

see Lemma 4.3 below. The singular points in the intersection of the stable
manifold of the equilibrium line with the in-section are mapped to the respec-
tive points in the intersection of the unstable manifold of the equilibrium line
with the out-section:

Ψloc(xin
u = 0, xin

s , xin
c ) = (xout

ss , xout
s , xout

c ) := (0, 0, xin
c ). (4.19)

Note that there is no drift in xc at the boundary due to the invariant fibres
(4.3).

Lemma 4.3. There exists an ε0 > 0 such that for all ε < ε0 and x(0) = xin in
the in-section Σin, see (4.18), the trajectory x(t) under the flow to the vector
field (4.12) remains in U as long as |xu| ≤ 1, i.e. all along the passage defining
the local map Ψloc. The passage time tloc is given by

tloc =
1
μu

ln
1

|xin
u | . (4.20)

Proof. We choose ε0 smaller than 1
2(N+1)C α min{μss − μu, μs1, . . . , μsN}), see

Lemma 4.2. Then trajectories starting in Σin cannot leave U unless xu becomes
larger than 1, see (4.14, 4.15, 4.16). Furthermore, (4.13) ensures that xu must
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grow beyond 1. Thus every trajectory starting in Σin intersects the out-section
Σout = {xu = 1} before leaving U . Setting xu(tloc) = 1 in (4.13) determines
the passage time tloc. �

Corollary 4.4. The local map Ψloc (4.17, 4.19), i.e. the local passage on the
closed in-section Σin including the singular boundary {xin

u = 0}, is continuous.
For all 0 < α < 1 there exists an ε0 > 0 such that for all ε < ε0 the following
estimates hold:

|xout
c − xin

c | ≤ εC
(|xin

u | + |xin
s1| + · · · + |xin

sN|) ,

|xout
ss | ≤ |xin

u |αμss/μu−1|xin
u |,

|xout
s� | ≤ |xin

u |αμs�/μu |xin
s�|, � = 1, . . . , N,

with C independent of ε and xin.
Thus the drift along the line of equilibria is arbitrarily small and the dis-

tance from the orbit to the union of the stable and unstable manifolds shrinks
arbitrarily fast, close to the critical orbit.

Proof. The estimates follow directly from Lemma 4.2 applied to the local pas-
sage time given by Lemma 4.3. They also establish continuity of the local map
Ψloc at the singular boundary {xin

u = 0}. Note 0 < xin
u < 1 on the in-section.

Note further that αμss/μu − 1 > 0 for α chosen close enough to 1. �

Unfortunately, there is no hope to obtain Lipschitz estimates for the local
map Ψloc with respect to the standard metric. Even for g = 0, the linear vector
field (4.5) yields a non-Lipschitz local passage, for μs� < μu.

To obtain Lipschitz bounds for the local map Ψloc, we have to introduce
a non-Euclidean metric on the in- and out-sections. We define the Riemannian
metrics

ds2
∗ =

‖xu,s‖2
2

x2
u

dx2
u +

N∑
�=1

‖xu,s‖2
2

x2
s�

dx2
s� + dx2

c (4.21)

on the in-section Σin and

ds2
∗ =

‖xss,s‖2
2

x2
ss

dx2
ss +

N∑
�=1

‖xss,s‖2
2

x2
s�

dx2
s� + dx2

c (4.22)

on the out-section Σout. We denoted the Euclidean norms

‖xu,s‖2
2 = ‖(xu, xs)‖2

2 = x2
u +

N∑
�=1

x2
s�,

‖xss,s‖2
2 = ‖(xss, xs)‖2

2 = x2
ss +

N∑
�=1

x2
s�.

The distance in Σin, Σout is then given by the length of the shortest con-
necting paths and denoted by dist∗. On fibres {xc fixed} we define the metric
analogously.
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Let us discuss the new metric in the cone xu,s = (xu, xs) ∈ [0,∞)N+1 in
Σin, ignoring the xc-direction that remains unchanged. The metric becomes
singular along the invariant boundaries {xu = 0}, {xs� = 0}, see (3.4). Inside
the open cone (0,∞)N+1, the new metric ds∗ is locally equivalent to the
Euclidean metric ds,

ds2 ≤ ds2
∗ ≤ (N + 1)

max{|xu|, |xs1|, . . . , |xsN|}
min{|xu|, |xs1|, . . . , |xsN|} ds2, (4.23)

and thus induces the same topology. The origin can be included. In fact the
distance of any point to the origin is bounded by

‖xu,s‖2 ≤ dist∗(0, xu,s) ≤ (N + 1)3/2‖xu,s‖2. (4.24)

(The upper bound can easily be obtained by connecting the origin to xu,s with
a piecewise linear path along the space diagonals with respect to suitable coor-
dinate directions.) Every curve in the open cone hitting the boundary away
from the origin has infinite length.

In particular, the new metric is uniformly equivalent to the Euclidean
metric in any closed cone that has finite, nonzero angle to the boundaries, i.e.

{ (xu,s, xc) | ‖xu,s‖2 ≥ cmax{|xu|, |xs1|, . . . , |xsN|} }, c > 1.

Thus Lipschitz estimates with respect to the new metric carry over to the
Euclidean metric.

We denote the in- and out-sections without the singular boundaries but
with the origin by

Σin
∗ := Σin ∩ ((0,∞)N+1 ∪ {0}) × R)

= { (xu,s, xc) ∈ Σin |xu,s = 0 or xuxs1 · · · xsN �= 0 },

Σout
∗ := Σout ∩ ((0,∞)N+1 ∪ {0}) × R) (4.25)

= { (xss,s, xc) ∈ Σout |xss,s = 0 or xssxs1 · · · xsN �= 0 }.

Corollary 4.4 yields Lipschitz continuity of the local passage Ψloc at the
origin with respect to the Euclidean metric, and by (4.24) also with respect
to the new metrics (4.21, 4.22). To obtain Lipschitz estimates away from the
invariant boundaries with respect to the new metric, we consider the linear-
isation of the vector field (4.12) along a trajectory x(t) from the in- to the
out-section to obtain bounds on DΨloc.

We start with a tangent vector δin = (δin
u , δin

ss = 0, δin
s , δin

c ) of unit length
with respect to the metric (4.21) at a point xin = (xin

u,s, x
in
c ) ∈ Σin,

1 = ‖δin‖2
∗ =

‖xin
u,s‖2

2

|xin
u |2 |δin

u |2 +
N∑

�=1

‖xin
u,s‖2

2

|xin
s�|2

|δin
s� |2 + |δin

c |2. (4.26)

First, we project δin along the vector field f into the hyperplane {δu = 0},
as this remains invariant under the linearised flow and corresponds to the
out-section. The projected vector

δ(0) = δin − δin
u

μuxin
u

f(xin) (4.27)
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thus represents our initial condition to the linearised flow

δ̇ss = (−μss(xc) + εgss(x) + ε(∂xssgss(x))xss) δss

+ ε
N∑

�=1

(∂xs�
gss(x))xssδs� + (−μ′

ss(xc) + ε(∂xcgss(x))) xssδc,

δ̇s� = (−μs�(xc) + εgs�(x) + ε(∂xs�
gs�(x))xs�) δs�

+ ε(∂xssgs�(x))xs�δss + ε
∑
�̃�=�

(∂xs�̃
gs�(x))xs�δs�̃

+ (−μ′
s�(xc) + ε(∂xcgs�(x))) xs�δc,

δ̇c = ε

(
∂xcgcss(x)xssxu +

N∑
�=1

∂xcgcs�(x)xs�xu

)
δc

+ ε

(
gcss(x)xu + ∂xssgcss(x)xssxu +

N∑
�=1

∂xssgcs�(x)xs�xu

)
δss

+ ε

N∑
�=1

⎛
⎝∂xs�

gcss(x)xssxu + gcs�(x)xu +
N∑

�̃=1

∂xs�
gcs�̃(x)xs�̃xu

⎞
⎠ δs�.

(4.28)

Here we already dropped the u-component.

Lemma 4.5. Let a unit tangent vector δin to xin = (xin
u,s, x

in
c ) ∈ Σin with respect

to the metric (4.21) be given. The projection δ(0) of δin along the vector field
(4.12) into the plane {δu = 0} is estimated by

|δss(0)| ≤ C‖xin
u,s‖−1

2 ,

|δs�(0)| ≤ C‖xin
u,s‖−1

2 |xin
s�|,

|δc(0) − δin
c | ≤ εC,

with a constant C independent of xin, δin, and ε < ε0, provided ε0 is chosen
small enough.

Proof. Apply (4.27) to (4.26) and use the bounds (4.7) on the nonlinear terms
of the vector field (4.12).

Indeed, we find

δ(0) = δin − δin
u

μuxin
u

f(xin)

=

⎛
⎜⎜⎜⎜⎜⎝

δin
u

δin
ss = 0

δin
s�

δin
c

⎞
⎟⎟⎟⎟⎟⎠

− δin
u

μuxin
u

⎛
⎜⎜⎜⎜⎜⎜⎝

μuxin
u(−μss(xin

c ) + εgss(xin)
)

1(−μs�(xin
c ) + εgs�(xin)

)
xin

s�

ε
(
gcss(xin) 1 +

∑N
�=1(x

in)xin
s�

)
xin

u

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Immediately, we have δin
u (0) = 0. For the other components we again use

the uniform bounds (4.7) on the nonlinearity g, the bounds (4.9) on the eigen-
values and the bounds (4.26) on the components of δin. We obtain for arbitrary
0 < α < 1, if ε < ε0 is chosen small enough:

|δss(0)| ≤ |δin
u |

μu|xin
u |

1
α

μss ≤ μss

αμu

1
‖xin

u,s‖2
,

for the component transverse to the in-section,

|δs�(0)| ≤ |δin
s� | +

|δin
u |

μu|xin
u |

1
α

μs�|xin
s�| ≤

(
1 +

μs�

αμu

) |xin
s�|

‖xin
u,s‖2

,

for each of the remaining N stable components, and

|δc(0) − δin
c | ≤ |δin

u |
μu|xin

u |εC(N + 1)|xin
u | ≤ ε

N + 1
μu

C
|xin

u |
‖xin

u,s‖2
≤ ε

N + 1
μu

C,

for the centre component. An obvious choice of a new constant C yields all
claimed estimates. �

Lemma 4.6. For all 0 < α < 1 there exists an ε0 > 0 such that for all ε < ε0,
the linearised flow (4.28) can be estimated:

|δss|′ ≤ −αμss|δss| + εC|xss|
(

|δc| +
N∑

�=1

|δs�|
)

,

|δs�|′ ≤ −αμs�|δs�| + εC|xs�|
⎛
⎝|δc| + |δss| +

∑
�̃ �=�

|δs�̃|
⎞
⎠ ,

|δ̇c| ≤ εC

(
|xss| +

N∑
�=1

|xs�|
)

|xu||δc| + εC|xu|
(

|δss| +
N∑

�=1

|δs�|
)

.

Here C is a constant independent of xin, δin and ε < ε0.

Proof. Use the bounds (4.7) on the nonlinear terms of the vector field (4.12)
and the bounds (4.10) on the derivatives of the eigenvalues. Note that x ∈
U = [−2, 2]N+3. This immediately yields the claimed estimates. �

Lemma 4.7. For all 0 < α < 1 there exists an ε0 > 0 such that for all ε < ε0

the following statement holds: Let a trajectory x(t) of local passage, x(0) =
xin ∈ Σin

∗ , xin
u,s �= 0 be given. Let a unit tangent vector δin to xin ∈ Σin with

respect to the metric (4.21) and its projection δ(0) be given. Then the evolution
of δ under the linearised flow is estimated by

|δss(t)| ≤ exp(−α2μsst)C‖xin
u,s‖−1

2 ,

|δs�(t)| ≤ exp(−α2μs�t)C‖xin
u,s‖−1

2 |xin
s�|,

|δc(t) − δin
c | ≤ εC,

all along the local passage, t ∈ [0, tloc]. The constant C is independent of
xin, δin, t, and ε < ε0.

1060



Oscillatory Singularities in Bianchi Models

Proof. Assume

|δss(τ)| ≤ 2C‖xin
u,s‖−1

2 , |δs�(τ)| ≤ 2C, |δc(τ)| ≤ 2, (4.29)

on τ ∈ [0, t]. This assumption holds for small t due the estimates of the initial
values in Lemma 4.5. The constant C is taken from the lemma.

Then the estimates of lemmata 4.6 and 4.2 yield

|δss(τ)|′ ≤ −αμss|δss(τ)| + εC exp(−αμssτ) (2 + 2NC)

≤ −αμss|δss(τ)| + εC̃ exp(−αμssτ),

|δs�(τ)|′ ≤ −αμs�|δs�(τ)| + εC exp(−αμs�τ)|xin
s�|
(
2 + 2C‖xin

u,s‖−1
2 + 2(N − 1)C

)
≤ −αμs�|δs�(τ)| + εC̃ exp(−αμs�τ)‖xin

u,s‖−1
2 |xin

s�|.

The last inequality uses ‖xin
u,s‖2 <

√
N . The new constant is bounded by

C̃ ≤ (2 + 2NC)
√

NC.
Then we can integrate1 the above estimates to obtain

|δss(t)| ≤ exp(−αμsst)(|δss(0)| + εC̃t)

|δs�(t)| ≤ exp(−αμs�t)(|δs�(0)| + εC̃t‖xin
u,s‖−1

2 |xin
s�|)

For small enough ε0, this yields

|δss(t)| ≤ exp(−α2μsst)(|δss(0)| + 1)

≤ exp(−α2μsst)(C‖xin
u,s‖−1

2 + 1)

≤ exp(−α2μsst)(C + 1)‖xin
u,s‖−1

2 ,

|δs�(t)| ≤ exp(−α2μs�t)(|δs�(0)| + ‖xin
u,s‖−1

2 |xin
s�|)

≤ exp(−α2μs�t)(C + 1)‖xin
u,s‖−1

2 |xin
s�|

In particular, assumptions (4.29) and the first two claims hold as long as
|δc(τ)| ≤ 2, if the original constant was chosen larger than 1.

We use the new estimates of δss, δs�, the assumption on δc and the bound
on the trajectory given by Lemma 4.2 to estimate the centre component:

|δ̇c(τ)| ≤ εC

(
|xss| +

N∑
�=1

|xs�|
)

|xu||δc| + εC|xu|
(

|δss| +
N∑

�=1

|δs�|
)

≤ 2εC

(
|xss| +

N∑
�=1

|xs�|
)

|xu|

+ εC(C + 1)‖xin
u,s‖−1

2 |xu|
(

exp(−α2μssτ) +
N∑

�=1

exp(−α2μs�τ)|xin
s�|
)

1 This can also be seen as a Gronwall estimate for exp(αμsst)δss(t) and exp(αμs�t)δs�(t).
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≤ 2εC

(
exp(−(αμss − μu)τ)|xin

u | +
N∑

�=1

exp(−αμs�τ)|xin
s�|
)

+ εC(C + 1)‖xin
u,s‖−1

2

(
exp(−(α2μss − μu)τ)|xin

u |

+
N∑

�=1

exp(−α2μs�τ)|xin
s�|
)

≤ εC̃

(
exp(−(α2μss − μu)τ) +

N∑
�=1

exp(−α2μs�τ)

)
,

with new constant C̃ < C(C +3). Thus |δ̇c(τ)| decays exponentially for α close
enough to 1. Integration yields

∫ t

0

|δ̇c(τ)| ≤ εĈ,

with Ĉ < C̃((α2μss − μu)−1 +
∑N

�=1(α
2μs�)−1). If ε0 is chosen small enough,

this shows that the assumption (4.29) indeed holds all along the passage and
the claimed estimates are valid. �

Theorem 4.8 (local Lipschitz map). The local passage Ψloc : Σin
∗ → Σout

∗ is
Lipschitz continuous with respect to the metrics (4.21, 4.22).

There exist β > 0, ε0 > 0 and C > 0 such that for all ε < ε0 the following
estimates hold for all xin, x̃in with 0 ≤ x̃in

u ≤ xin
u :

dist∗(x̃out
ss,s, x

out
ss,s) ≤ |xin

u |βC dist∗(x̃in, xin),

|(x̃out
c − xout

c ) − (x̃in
c − xin

c )| ≤ εC dist∗(x̃in, xin).

The domain Σin
∗ , as defined in (4.25), is given by the local section without

the invariant singular boundaries but including the line (0, xc) representing the
cap of heteroclinic orbits.

The drift in the centre direction can be made arbitrarily small by choos-
ing a sufficiently small local neighbourhood. The contraction in the transverse
directions is arbitrarily strong by restricting the in-section to the part close to
the primary object, i.e. the stable manifold of the origin.

Proof. This is a corollary of Lemma 4.7 by applying the passage time (4.20)
and the metric (4.22). Extension to the line (0, xc) is given by Corollary 4.4.

Indeed, in the out-section, the estimates of Lemma 4.7, read

|δout
ss | = |δss(tloc)| ≤ |xin

u |α2μss/μuC‖xin
u,s‖−1

2 ,

|δout
s� | = |δs�(tloc)| ≤ |xin

u |α2μs�/μuC‖xin
u,s‖−1

2 |xin
s�|,

|δout
c − δin

c | = |δc(tloc) − δin
c | ≤ εC.
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With respect to the modified metric (4.22) we find using the estimates of
Lemma 4.2:(‖xout

ss,s‖2

|xout
ss | |δout

ss |
)2

≤
(

1 +
N∑

�=1

|xin
u |2(αμs�/μu−μss/αμu)|xin

s�|2
)

|δout
ss |2

≤ C
|xin

u |2ξ +
∑N

�=1 |xin
u |2(ξ+αμs�/μu−μss/αμu)|xin

s�|2
|xin

u |2 +
∑N

�=1 |xin
s�|2

|xin
u |2(α2μss/μu−ξ)

≤ |xin
u |2βC.

In the second inequality, we introduced a parameter ξ. The last inequality then
needs

0 < α2μss/μu − ξ =: β,

1 ≤ ξ,

0 ≤ ξ + αμs�/μu − μss/αμu, � = 1, . . . , N.

For α close to 1, a suitable ξ exists. In fact we can obtain arbitrary

0 < β < min
{

μss

μu
− 1,

μs�

μu
(� = 1, . . . , N)

}
.

Similarly we find for 1 ≤ � ≤ N ,(‖xout
ss,s‖2

|xout
s� | |δout

s� |
)2

≤
⎛
⎝|xin

u |2(αμss/μu−μs�/αμu) +
N∑

�̃=1

|xin
u |2(αμs�̃/μu−μs�/αμu)|xin

s�̃
|2
⎞
⎠ |δout

s� |2
|xin

s�|2

≤ C

(
|xin

u |2(ξ+αμss/μu−μs�/αμu)

+
∑N

�̃=1 |xin
u |2(ξ+αμs�̃/μu−μs�/αμu)|xin

s�̃
|2
)

|xin
u |2 +

∑N
�̃=1 |xin

s�̃
|2

|xin
u |2(α2μs�/μu−ξ)

≤ |xin
u |2β̃C.

This time we need for the last inequality

0 < α2μs�/μu − ξ =: β̃,

1 ≤ ξ + αμss/μu − μs�/αμu,

0 ≤ ξ + αμs�̃/μu − μs�/αμu, �̃ = 1, . . . , N.

Again, for α close to 1, a suitable ξ exists. In fact, we can again obtain arbitrary

0 < β̃ < min{μss/μu − 1, μs�/μu }.

Now, take a geodesic curve in Σin which connects x̃in, xin and defines
dist∗(x̃in, xin). The image of this curve under the passage Ψloc provides an
upper bound on dist∗(x̃out, xout). In both sections the xc-component can be
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separated. Therefore, the above estimates on the evolution of the tangent vec-
tors immediately yield the claims of the theorem. �

Remark 4.9. In Theorem 4.8, the constant C only depends on the C1 bounds
on the nonlinear part of the vector field and the derivatives of the eigenvalues
of the linearisation along the line of equilibria. The exponent β only depends
on the spectral gaps. In fact, it can be taken arbitrarily in the interval

0 < β < min{μss/μu − 1, μs�/μu },

by choosing ε0 small enough.

The last remark provides uniform Lipschitz estimates for the local pas-
sages near the Kasner circle in Bianchi models, provided they keep a uniform
distance from the Taub points at which the spectral gap shrinks to zero.

5. Return Map and Graph Transform

In this section, we define a global excursion map for trajectories near a primary
heteroclinic orbit to the Kasner circle, that is from the out-section of a local
passage to the in-section of another local passage, both local passages as dis-
cussed in the previous section. Combining local passage and global excursion
we obtain a return map from one in-section to the next,

Ψk := Ψglob
k ◦ Ψloc

k : Σin
k −→ Σin

k+1, (5.1)

see Fig. 3. The given heteroclinic orbit corresponds to a fixed origin of this
map.

We prove uniform Lipschitz- and cone properties of the return map, inde-
pendently of the given heteroclinic orbit, as long as the orbit keeps a uniform
distance from the Taub points. In fact, we prove uniform Lipschitz- and cone
properties of the return map under the conditions 3.3 on the global excursion.

This yields a sequence of return maps, with uniform estimates, to every
sequence of heteroclinic orbits to the Kasner circle that does not accumulate
to any Taub point and satisfies the local conditions 3.2 at every equilibrium.

Figure 3. The return map Ψk := Ψglob
k ◦ Ψloc

k
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Due to their cone properties, the return maps induce a contracting map
on a suitable space of sequences of Lipschitz curves. The fixed point provided
by the contraction mapping theorem then yields the stable manifold of the
heteroclinic sequence as claimed in Theorems 3.1, 3.4.

Take a sequence pk, k ∈ N of equilibria on the Kasner circle, not
accumulating at any Taub point and connected by heteroclinic orbits
hk(t), limt→∞ hk−1(t) = pk = limt→−∞ hk(t), as in Theorem 3.4. Assume that
the local conditions 3.2 hold uniformly at all pk, in particular this includes uni-
form bounds supk∈N μu(pk)/μss(pk) < 1 and infk∈N μs�(pk) > 0. In the Bianchi
VI0 system (2.1) with magnetic field, these conditions are satisfied exactly for
a chain of heteroclinic orbits not accumulating at Taub points and not con-
taining heteroclinic orbits of the magnetic family to equilibria in the intervals
K2, K5, see Fig. 1. In particular, the conditions hold for the period 3 cycle.

The previous section then applies to all pk and the coefficients ε0, β, C
of the local estimates of Theorem 4.8 can be taken independent of k, see
Remark 4.9.

Note the order of fixing the rescaling parameters: First ε0 resp. ε is fixed
small enough to yield our estimates of the local passages Ψloc

k with small Lips-
chitz constants, in particular εC � 1 in Theorem 4.8. This amounts to a choice
of the sections Σin(pk) and Σout(pk) in the original (unscaled) coordinates and
also fixes the global excursion maps Ψglob

k .
Due to the non-Euclidean metric used in Theorem 4.8, we have to restrict

our local passage map to Ψloc
k : Σin

k → Σout
k by

Σin
k = Σin

∗ (pk)

= { (xu,s, xc) ∈ Σin(pk) |xu,s = 0 or xuxs1 · · · xsN �= 0 },

Σout
k = Σout

∗ (pk) (5.2)

= { (xss,s, xc) ∈ Σout(pk) |xss,s = 0 or xssxs1 · · · xsN �= 0 },

see (4.25). Then a sufficiently small upper bound for xin
u is chosen, i.e. Ψloc

k

are restricted to smaller sections

Σ̃in
k = {x ∈ Σin

k | 0 ≤ xu ≤ δ, 0 ≤ xs� ≤ δ, |xc| ≤ δ }
= ((0, δ]N+1 ∪ {0}) × [−δ, δ]. (5.3)

This makes the contraction of the local passage as strong as we like without
changing Ψloc

k , Ψglob
k . It also ensures that trajectories of interest stay close to

the Kasner caps of heteroclinic orbits, and therefore the global excursions Ψglob
k

on the domain of interest are as close to the Kasner map as we like. It also
ensures that all non-singular trajectories in these domains indeed return to the
following in-sections Σin

k+1.
The global conditions 3.3 hold accordingly: the invariant subspaces,

(glob-i), are those of the Bianchi system; the uniform bound, (glob-ii), is fixed
by choice of a uniform size ε0 of all local neighbourhoods; expansion, (glob-iii),
is given by the Kasner map. Uniform expansion again needs a uniform distance
from the Taub points.
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The following lemma relates the global excursions to the new metric used
for the local estimates.

Lemma 5.1. Let the global conditions 3.3 be satisfied for the sequence Ψglob
k :

Σout
k → Σin

k+1 of global excursions. Then condition (glob − ii) also holds with
respect to the new metrics (4.21, 4.22).

Proof. Due to the invariant subspaces, (glob-iii), the linearisation DΨglob
k are

diagonal at the origin and close to diagonal in the neighbourhoods of interest.
Moreover, the transverse components of Ψglob

k have the form

[Ψglob
k (x)]∗ = [Ψ̃glob

k (x)]∗x∗, ∗ = ss, s1, . . . , sN,

with smooth Ψ̃glob
k . Now note the definitions (4.21, 4.22) of the new metric.

The bounds (glob-ii), on first and second derivatives of Ψglob
k , yield uniform

bounds on Ψ̃glob
k and their first derivatives. Thus, the ratio of the coefficients

of the metric at an arbitrary x ∈ Σout
k to the coefficients at Ψglob

k (x) ∈ Σin
k+1

is between ‖(Ψ̃glob
k )−1‖−1‖Ψ̃glob

k ‖−1 and ‖(Ψ̃glob
k )−1‖‖Ψ̃glob

k ‖, that is between
M−2 and M2, for a uniform constant M . This immediately yields new uniform
bounds on the derivatives of Ψglob with respect to the new metric. �

Now we can proceed along the lines of [7] (Sect. 4) to establish the exis-
tence of stable manifolds by a graph-transform approach.

Lemma 5.2. Assume Conditions 3.2 on the local passages and Conditions 3.3
on the global excursions.

Then the return maps (5.1) are Lipschitz continuous with respect to the
metric (4.21). Furthermore, there exist ε > 0, δ > 0, 0 < σ < 1, Ku,s > 1, and
Kc > (1 − σ2)−1 > 1, such that the following cone conditions hold for

Ψk = Ψglob
k ◦ Ψloc

k : Σ̃in
k → Σin

k+1.

Here Σin
k are the in-sections (5.2) corresponding to the choice of ε, and

Σ̃in
k are suitable subsets of the form (5.3).

The cones are defined for x ∈ Σ̃in (omitting the index k) as

Cc
x = {x̃ ∈ Σ̃in |dist∗(x̃u,s, xu,s) ≤ σ|x̃c − xc|},

Cu,s
x = {x̃ ∈ Σ̃in | |x̃c − xc| ≤ σdist∗(x̃u,s − xu,s)}.

(5.4)

The cone conditions are
(i) Invariance: Ψ(Cc

x) ∩ Σ̃in ⊂ (int Cc
Ψx) ∪ {Ψx} and Ψ−1(Cu,s

Ψx) ∩ Σ̃in ⊂
(int Cu,s

x ) ∪ {x};
(ii) Contraction & Expansion: For all x̃ ∈ Cc

x, in the centre cone, we have
expansion in the centre direction: |(Ψx̃)c − (Ψx)c| ≥ Kc|x̃c − xc|, and
for all Ψx̃ ∈ Cu,s

Ψx, in the transverse cone, we have contraction in the
transverse directions: dist∗(x̃u,s, xu,s) ≥ Ku,sdist∗((Ψx̃)u,s, (Ψx)u,s).

They hold for all, x, x̃,Ψx,Ψx̃ ∈ Σ̃in. See also Fig. 4.
The coefficients σ, δ only depend on ε0 and the uniform expansion

(glob-iii), that is the distance to the Taub point in the Bianchi system.
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Figure 4. Cone properties of the return map Ψ

Proof. Lipschitz continuity of the return map Ψk follows directly from Lips-
chitz continuity of the local passage Ψloc

k , see Theorem 4.8, as the global excur-
sion Ψglob

k is smooth. To simplify notation, we drop the index k from now on.
All estimates will be uniform in k.

The cone conditions require the expansion in xc-direction given by (glob-
iii), corresponding to the expansion along the Kasner circle induced by the
Kasner map of the Bianchi system. In fact, (glob-iii) states that we have

Ψglob(xout
ss = 0, xout

s = 0, xout
c ) = (xin

u = 0, xin
s = 0,Φ(xout

c )), (5.5)

with Lipschitz continuous Φ,Φ−1. The Lipschitz constant of Φ−1 is less than
L < 1 independent of k. Note again the invariant boundaries, (loc-v), (glob-i).
Therefore we can write, as in the proof of Lemma 5.1,

Ψglob(xss, xs, xc) = (0, 0,Φ(xc)) + Ψ̃glob(xss, xs, xc)xss,s,

with a smooth matrix Ψ̃glob(xss, xs, xc) and vector xss,s = (xss, xs).
Consider now two points x̃, x ∈ Σout. Choose geodesic paths γ1 from 0

to xss,s and γ2 from xss,s to x̃ss,s, both with respect to the new metric (4.22).
Then

dist∗(Ψglob(x̃),Ψglob(x)) ≤ |Φ(x̃c) − Φ(xc)|

+
∫ dist∗(0,xss,s)

0

d
ds

dist∗(Ψglob(γ1(s), x̃c),Ψglob(γ1(s), xc)) ds

+
∫ dist∗(x̃ss,s,xss,s)

0

d
ds

dist∗(Ψglob(γ2(s), x̃c),Ψglob(x)) ds

≤ |Φ(x̃c) − Φ(xc)|

+
∫ dist∗(0,xss,s)

0

d
ds

∫ x̃c

xc

d
dt

dist∗(Ψglob(γ1(s), t),Ψglob(γ1(s), xc)) dt ds

+
∫ dist∗(x̃ss,s,xss,s)

0

d
ds

dist∗(Ψglob(γ2(s), x̃c),Ψglob(x)) ds,
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and we obtain the following Lipschitz estimate:

dist∗(Ψglob(x̃) − (0, 0,Φ(x̃c)),Ψglob(x) − (0, 0,Φ(xc)))

≤ C̃glob (dist∗(0, xss,s)|x̃c − xc| + dist∗(x̃ss,s, xss,s))

≤ Cglob (‖xss,s‖|x̃c − xc| + dist∗(x̃ss,s, xss,s))

with Cglob only depending on the uniform bounds on ‖DΨglob‖, ‖D2Ψglob‖
with respect to the new metric provided by Lemma 5.1. The last inequality
used the trivial upper bound (4.24) on the distance from the origin in the new
metric.

Using Ψloc(x̃) and Ψloc(x) instead of x̃ and x we get a similar estimate
for the return map Ψ(x) = Ψglob(Ψloc(x)):

dist∗(Ψ(x̃) − (0, 0,Φ(Ψloc(x̃)c)),Ψ(x) − (0, 0,Φ(Ψloc(x)c)))

≤ Cglob
(‖Ψloc(x)ss,s‖|Ψloc(x̃)c − Ψloc(x)c|
+ dist∗(Ψloc(x̃)ss,s,Ψloc(x)ss,s)

)
≤ Cglob

(|xu|β‖x‖(1 + εC)dist∗(x̃, x) + |xu|βCdist∗(x̃, x)
)

≤ Creturn|xu|βdist∗(x̃, x). (5.6)

The second last inequality uses the estimates of the local passage of Corol-
lary 4.4 and Theorem 4.8 for the choice (w.l.o.g.) 0 ≤ x̃u ≤ xu. Note that the
estimates of Theorem 4.8 are used in the form

|Ψloc(x̃)c − Ψloc(x)c| ≤ εCdist∗(x̃, x) + |x̃c − xc|
≤ (εC + 1)dist∗(x̃, x),

dist∗(Ψloc(x̃)ss,s,Ψloc(x)ss,s) ≤ |xu|βCdist∗(x̃, x).

The constant Creturn is uniform in x, x̃ in the in-section and the omitted num-
ber k of the section along the heteroclinic chain. Because 0 < β < min{μss/μu−
1, μs�/μu}, we have an arbitrarily strong contraction for xu < δ, if we choose
δ small enough.

The map Φ given by (5.5), i.e. the Kasner map in the original Bianchi
system, is expanding, see condition (glob-iii):

|Φ(a) − Φ(b)| ≥ L−1|a − b|,

for some uniform constant L < 1.
Now choose Kc with 1 < Kc < L−1, and σ with 0 < σ < 1 such that

Kc(1 − σ2) > 1. (The last relation is needed to obtain a contraction in Theo-
rem 5.3.)

Consider the cone in centre direction with opening ϑ > 0, i.e. assume
dist∗(x̃u,s, xu,s) ≤ ϑ|x̃c − xc|. Then (5.6) using the local Lipschitz estimate of
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Theorem 4.8 yields

|(Ψ(x̃) − Ψ(x))c|
≥ |Φ(Ψloc(x̃)c) − Φ(Ψloc(x)c)| − Creturn|xu|βdist∗(x̃, x)

≥ L−1|Ψloc(x̃)c − Ψloc(x)c| − Creturn|xu|βdist∗(x̃, x)

≥ L−1|x̃c − xc| − L−1εCdist∗(x̃, x) − Creturn|xu|βdist∗(x̃, x)

≥ (L−1 − (L−1εC + Creturn|xu|β) (1 + ϑ)
) |x̃c − xc|. (5.7)

For ε and δ chosen small enough, using |xu| ≤ δ, we can achieve

Kc < L−1 − (L−1εC + Creturn|xu|β) (1 + 1/σ),

yielding the expansion not only in the cone Cc
x, with ϑ = σ < 1, but also

outside the cone Cu,s
x , with ϑ = 1/σ.

Furthermore, using again (5.6), we see the invariance of the cones. Indeed,
assume again dist∗(x̃u,s, xu,s) ≤ ϑ|x̃c − xc|; then we have

dist∗(Ψ(x̃)u,s,Ψ(x)u,s) ≤ Creturn|xu|βdist∗(x̃, x)

≤ Creturn|xu|β(1 + ϑ)|x̃c − xc|
≤ Creturn|xu|β(1 + ϑ)K−1

c |Ψ(x̃)c − Ψ(x)c|.
The last inequality uses the expansion in xc; thus it is valid for ϑ ≤ 1/σ. We
choose δ small enough such that Creturn|xu|βK−1

c < σ/(1 + σ). Due to the
monotone increase of ϑ/(1 + ϑ) we also have Creturn|xu|βK−1

c < ϑ/(1 + ϑ) for
all ϑ ≥ σ. Thus we obtain the cone invariance

dist∗(Ψ(x̃)u,s,Ψ(x)u,s) ≤ ϑ|Ψ(x̃)c − Ψ(x)c| (5.8)

for all σ ≤ ϑ ≤ 1/σ.
The choice ϑ = σ yields (forward) invariance of the cone Cc

x, and the
choice ϑ = 1/σ yields (backward) invariance of the cone Cu,s

Ψx. Note that the
cone invariances are in fact strict as claimed in the lemma. The above estimates
are strict inequalities for x �= x̃.

Now consider the cone in transverse direction, that is Ψ(x̃) ∈ Cu,s
Ψx, which

amounts to |Ψ(x̃)c −Ψ(x)c| ≤ σdist∗(Ψ(x̃)u,s,Ψ(x)u,s). We have already estab-
lished invariance. Thus |x̃c − xc| ≤ σ‖x̃u,s − xu,s‖ and estimate (5.6) yields

dist∗(Ψ(x̃)u,s,Ψ(x)u,s) ≤ Creturn|xu|βdist∗(x̃, x)

≤ Creturn|xu|β(1 + σ)dist∗(x̃u,s, xu,s).

This is the claimed contraction, K−1
u,s = Creturnδβ(1 + σ) < 1, for δ small

enough. �

Theorem 5.3. Assume Conditions 3.2 on the local passages and Conditions 3.3
on the global excursions.

The (local) stable set of the origin under the sequence of return maps Ψk

is given by

W loc
k = {(xk

u, xk
s�, x

k
c ) |xk

c = xk
c (xk

u, xk
s�)}.
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The functions xk
c are Lipschitz continuous with respect to the metric (4.21).

Furthermore, xk
c (0) = 0 and Ψ(W loc

k ) ⊂ W loc
k+1.

Proof. The idea of the proof is to define a graph transformation on the space
of sequences of Lipschitz-continuous graphs {xu,s �→ xc = ζk(xu,s)) | k ∈ N} by
the inverse return maps Ψ−1

k . The uniform cone invariance provided by the pre-
vious lemma will ensure that the Lipschitz property of the graphs is preserved.
Due to the expansion/contraction conditions of the previous lemma, the graph
transformation turns out to be a contraction on the space of sequences of Lips-
chitz-continuous graphs. The fixed point of this contraction then yields the
claim.

To make this idea precise, consider the Banach space of Lipschitz-contin-
uous functions

X = {ζ : (0, δ]1+N ∪ {0} → [−δ, δ], xu,s = (xu, xs) �→ xc = ζ(xu,s)

such that Lip(ζ) ≤ σ and ζ(0) = 0}
with sup-norm. The parameters δ, σ < 1 correspond to those of Lemma 5.2.
Lipschitz continuity is considered with respect to the metric dist∗ given by
(4.21). Consider also the space of sequences

XN = { (ζk)k∈N | ζk ∈ X }
with sup-norm.

Define maps Gk : X → X as graph(Gkζk+1) := Ψ−1
k graph(ζk+1), i.e. as

the transformations of the graphs of the functions in X. More precisely,

Gkζ
((

Ψ−1
k (xu,s, ζ(xu,s))

)
u,s

)
:=
(
Ψ−1

k (xu,s, ζ(xu,s))
)
c
, for xu,s �= 0,

Gζ(0) := 0.

The first equation implicitly assumes that (xu,s, ζ(xu,s)) has a pre-image under
Ψ and that it lies in the domain. The second equation just gives the pre-image
of the origin under Ψ. Note the restriction to non-negative xu, xs1, . . . , xsN

consistent with the invariant boundaries (loc-v), (glob-i).
We will prove the following claims, uniformly in the index k, (which is

dropped from now on to simplify notation):
(i) domain of definition: for all ζ ∈ X and xu,s ∈ (0, δ]N+1 there exists

x̃u,s ∈ (0, δ]N+1, such that
(
Ψ−1(x̃u,s, ζ(x̃u,s))

)
u,s

= xu,s.
(ii) well-definedness: for all ζ ∈ X and xu,s, x̃u,s ∈ (0, δ]N+1 the follow-

ing holds: If
(
Ψ−1(xu,s, ζ(xu,s))

)
u,s

=
(
Ψ−1(x̃u,s, ζ(x̃u,s))

)
u,s

∈ (0, δ]N+1,
then already xu,s = x̃u,s.

Conditions (i) and (ii) yield a well-defined function Gζ with (Gζ)(0) = 0 for
every ζ ∈ X.
(iii) Lipschitz property: for all ζ ∈ X the function Gζ is again Lipschitz con-

tinuous with Lipschitz constant Lip(Gζ) ≤ σ. Note that the Lipschitz
property is again considered with respect to the metric dist∗.

(iv) contraction: The exists a constant 0 < κ < 1 such that for all ζ, ζ̃ ∈ X

the estimate ‖Gζ̃ − Gζ‖sup ≤ κ‖ζ̃ − ζ‖sup holds.
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Conditions (i)–(iii) prove that the graph transformation G indeed maps Lips-
chitz continuous functions in X to Lipschitz continuous functions in X, with
respect to the metric dist∗. Condition (iv) provides a contraction. Uniformity
of bounds yield a contraction on the space XN of sequences. If all four condi-
tions hold, then by contraction-mapping theorem there is a unique fixed point,
i.e. a sequence of Lipschitz continuous function ζ∗

k ∈ X with Gkζ∗
k+1 = ζ∗

k .
Its graphs form a forward invariant set under Ψ composed of local man-

ifold. It is also the stable set of the origin due to the cone conditions of
Lemma 5.2. This yields the claim of the theorem. Therefore it remains to
prove (i)–(iv):

(i) Let ζ ∈ X and xu,s ∈ (0, δ]N+1 be given. The straight line {xu,s}× [−δ, δ]
is contained in the cone Cc

(xu,s,0)
. We use Lemma 5.2: Ψ(xu,s, 0) ∈ Σ̃in

by invariance and contraction of the cone Cu,s
0 . Thus, by invariance and

Expansion of Cc
(xu,s,0)

, the image of the straight line {xu,s}× [−δ, δ] under
Ψ contains a curve in Cc

Ψ(xu,s,0)
connecting the extremal planes {xc =

±δ}. By the intermediate value theorem this curve must intersect the
graph of ζ.

(ii) Let ζ ∈ X and xu,s, x̃u,s ∈ (0, δ]N+1 be given with

(
Ψ−1(xu,s, ζ(xu,s))

)
u,s

=
(
Ψ−1(x̃u,s, ζ(x̃u,s))

)
u,s

∈ (0, δ]N+1.

Then Ψ−1(x̃u,s, ζ(x̃u,s)) ∈ Cc
Ψ−1(xu,s,ζ(xu,s))

, and by cone invariance we
obtain (x̃u,s, ζ(x̃u,s)) ∈ Cc

(xu,s,ζ(xu,s))
. The Lipschitz bound on ζ ∈ X on

the other hand implies (x̃u,s, ζ(x̃u,s)) ∈ Cu,s
(xu,s,ζ(xu,s))

; thus (x̃u,s, ζ(x̃u,s)) =
(xu,s, ζ(xu,s)).

(iii) Again, the Lipschitz bound on ζ ∈ X translates to (x̃u,s, ζ(x̃u,s)) ∈
Cu,s

(xu,s,ζ(xu,s))
for all x, x̃. Cone invariance and Lemma 5.2, immediately

yield the Lipschitz bound on Gζ.
(iv) The origin is fixed by construction; thus we only have to estimate the

distance of the nonsingular part. Let ζ, ζ̃ ∈ X and xu,s, x̃u,s ∈ (0, δ]N+1

be given with (Ψ−1(xu,s, ζ(xu,s)))u,s = (Ψ−1(x̃u,s, ζ̃(x̃u,s)))u,s ∈ (0, δ]N+1.

Again, this implies Ψ−1(x̃u,s, ζ̃(x̃u,s)) ∈ Cc
Ψ−1(xu,s,ζ(xu,s))

, and by cone

invariance we have (x̃u,s, ζ̃(x̃u,s)) ∈ Cc
(xu,s,ζ(xu,s))

. Thus we can estimate

|ζ̃(x̃u,s) − ζ(xu,s)| ≤ ‖ζ̃ − ζ‖sup + σdist∗(x̃u,s, xu,s)

≤ ‖ζ̃ − ζ‖sup + σ2|ζ̃(x̃u,s) − ζ(xu,s)|

The first inequality uses the Lipschitz bound on ζ ∈ X, whereas the second
one uses the aforementioned cone Cc

(xu,s,ζ(xu,s))
. We obtain

|ζ̃(x̃u,s) − ζ(xu,s)| ≤ 1
1 − σ2

‖ζ̃ − ζ‖sup.
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On the other hand, the expansion of Cc
Ψ−1(xu,s,ζ(xu,s))

under Ψ yields
∣∣∣(Gζ̃ − Gζ)

((
Ψ−1(xu,s, ζ(xu,s))

)
u,s

)∣∣∣
=
∣∣∣(Ψ−1(xu,s, ζ(xu,s))

)
c
−
(
Ψ−1(x̃u,s, ζ̃(x̃u,s))

)
c

∣∣∣
≤ 1

Kc

∣∣∣ζ(xu,s) − ζ̃(x̃u,s)
∣∣∣

≤ 1
Kc(1 − σ2)

‖ζ̃ − ζ‖sup.

Lemma 5.2 provides constants Kc, σ with Kc(1 − σ2) > 1. Therefore, the last
estimates yield the claimed contraction, κ = 1/(Kc(1 − σ2)), and this finishes
the proof. �

With Theorem 5.3 we have finally proved the main Theorems 3.1, 3.4 as
formulated in Sect. 3.

6. Discussion and Outlook

Unfortunately, the metric used to obtain the contraction in the proof of the
main theorem of this paper is singular on the invariant subspaces. The proof
gives no information on the way in which the manifolds constructed approach
these boundaries. The only exception is the heteroclinic cycle itself. The cap of
heteroclinic orbits corresponds to the line {0, xc} and the new metric is regular
there. In fact, the manifold is nicely attached to the given heteroclinic chain.
Moreover, in the proof of Theorem 5.3 we could restrict to very small neigh-
bourhoods of the primary heteroclinic chain, i.e. δ → 0. Then we can choose
arbitrarily small Lipschitz bounds on the functions considered, i.e. σ → 0.
Thus the manifolds constructed are tangent to the fibre {xc = constant} at
the heteroclinic chain.

For completeness the following subtlety should be mentioned. The set of
points in the domain of definition of the dynamical system corresponding to
Bianchi type IX vacuum solutions or Bianchi type VI0 solutions with mag-
netic field is an open subset bounded by invariant manifolds and it lies on only
one side of these manifolds. The fact that the global excursion map has its
image on the correct side of these manifolds is not mentioned in the analytical
treatment above. Nevertheless, it follows immediately from the nature of the
underlying geometrical problem.

Up to this point vacuum models of type IX were replaced by Einstein–
Maxwell models of type VI0 and one non-vanishing magnetic field component.
Now some generalizations will be mentioned. In [7] some results were obtained
for type IX solutions with perfect fluids having a linear equation of state
p = (γ − 1)ρ. Restrictions had to be imposed on the value of γ. The tech-
niques developed in this paper allow these results to be generalized to cases
where these restrictions are relaxed. The four-dimensional dynamical system
is replaced by a five-dimensional one and at each Kasner point there is an
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additional eigenvalue 3(2 − γ). This situation can be treated for all γ < 2. In
particular, the method applies for all values of γ in the physical range [1, 2]
except for the case γ = 2 where the dynamics is known to be very different.
Bianchi type VI0 solutions with a perfect fluid and a magnetic field can be
treated in a very similar way. The additional eigenvalue arising from the fluid
is the same as in the case without magnetic field [6].

It is possible to formulate the Bianchi type II models with a magnetic
field as a five-dimensional dynamical system [5]. In this approach the mag-
netic field has only one non-zero component in the frame used but the metric
has a non-zero off-diagonal component in that frame. The eigenvalues of the
linearisation about a Kasner solution are given by

3p1, 6p2, 3(p3 − p1). (6.1)

An important qualitative difference to the model of type VI0 is that for some
regions of the Kasner circle the stable manifold of the Kasner solution is two-
dimensional. Thus in general the results of this paper do not apply to hetero-
clinic chains for the Bianchi type II model with magnetic field. In a similar
way, it is possible to formulate the type I models with a magnetic field as a
five-dimensional dynamical system with only one component of the magnetic
field being non-zero [5]. In this case all the off-diagonal metric components are
non-zero in general. Again it happens that the stable manifold can be two-
dimensional. Note that it has been shown in [6] that it is not possible to have
solutions of the Einstein–Maxwell equations of Bianchi type VIII or IX with
a non-vanishing pure magnetic field.

Up to now there is no generalization of the results of [7] to oscillatory
models of Bianchi class B. In fact it would be very interesting to have such
results for Bianchi type VI− 1

9
where oscillatory solutions are expected to exist.

One obstacle is the existence of stable manifolds of dimension greater than one
as in the examples with magnetic field above. Another is that invariant man-
ifolds of the type which played such an important role in the proofs of this
paper do not appear to exist for models of Bianchi class B.

In the case of Bianchi type IX vacuum models it has been proved that
the α-limit set of each solution belongs to the union of points of type I and
type II [11]. Interestingly, it is not known if the corresponding statement holds
for the superficially similar type VIII. This contrasts with the fact that the
results for type IX in [7] extend almost without change to type VIII. It is
easy to formulate an analogue of the result of [11] for solutions of type VI0
with magnetic field and it would be interesting to investigate whether it holds,
especially since this might throw some new light on the unsolved Bianchi VIII
problem.

To sum up, it is clear that the above complex of problems represents a
promising opportunity to learn about the related questions of the BKL con-
jecture, the dynamics of Bianchi models near the initial singularity and the
stability of heteroclinic cycles in more general dynamical systems.
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