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Existence of Wave Operators
with Time-Dependent Modifiers
for the Schrödinger Equations
with Long-Range Potentials
on Scattering Manifolds

Shinichiro Itozaki

Abstract. We construct time-dependent wave operators for Schrödinger
equations with long-range potentials on a manifold M with asymptoti-
cally conic structure. We use the two space scattering theory formalism,
and a reference operator on a space of the form R×∂M , where ∂M is the
boundary of M at infinity. We construct exact solutions to the Hamilton–
Jacobi equation on the reference system R × ∂M and prove the existence
of the modified wave operators.

1. Introduction

In this paper, we show the existence of wave operators for the Schödinger equa-
tions with long-range potentials on scattering manifolds, which have asymptot-
ically conic structure at infinity (see Melrose [16] about scattering manifolds).
We employ the formulation of Ito–Nakamura [13], which uses the two-space
scattering framework of Kato [14]. Following Hörmander [10] and Dereziński
and Gérard [4], we construct exact solutions to the Hamilton–Jacobi equation
on the reference system and show the existence of the modified two-space wave
operators using the stationary phase method.

Let M be an n-dimensional smooth non-compact manifold such that M
is decomposed to MC ∪M∞, where MC is relatively compact, and M∞ is dif-
feomorphic to R+ ×∂M with a compact manifold ∂M . We fix an identification
map:
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ι : M∞ −→ R+ × ∂M � (r, θ).

We suppose Mc ∩M∞ ⊂ (0, 1/2) × ∂M under this identification. We also sup-
pose that ∂M is equipped with a measure H(θ)dθ where H(θ) is a smooth
positive density.

Let {φλ : Uλ → R
n−1}, Uλ ⊂ ∂M , be a local coordinate system of ∂M .

We set {φ̃λ : R+ × Uλ → R × R
n−1} to be a local coordinate system of

M∞ ∼= R+ × ∂M , and we denote (r, θ) ∈ R × R
n−1 to represent a point in

M∞. We suppose G(x) is a smooth positive density on M such that

G(x)dx = rn−1H(θ)drdθ on
(

1
2
,∞
)

× ∂M ⊂ M∞,

and we set

H = L2(M,G(x)dx).

Let P0 be a formally self-adjoint second-order elliptic operator on H of the
form

P0 = −1
2
G−1(∂r, ∂θ/r)G

(
1 + a1 a2

ta2 a3

)(
∂r

∂θ/r

)
on M̃∞ = (1,∞) × ∂M

where a1, a2, and a3 are real-valued smooth tensors.

Assumption 1. For any l ∈ Z+, α ∈ Z
n−1
+ and j = 1, 2, 3, there is Cl,α such

that

|∂l
r∂

α
θ aj(r, θ)| ≤ Cl,αr

−μj−l

on M̃∞, where μj ≥ 0. Note that we use the coordinate system in M∞
described above.

We will construct a time-dependent scattering theory for P0 + V on H
where V is a potential.

Definition 2. Let μs > 0. A finite rank differential operator V S of the form
V S =

∑
l,α V

S
l,α(r, θ)∂l

r∂
α
θ on M∞ is said to be a short-range perturbation of

μS type if for every l, α the coefficient V S
l,α is a L2

loc tensor and satisfies∫
R+×Uλ

|V S
l,α(x)|2〈r〉−MG(x)dx < ∞

for some M , and almost every (ρ0, θ0) ∈ R × ∂M has a neighborhood ωρ0,θ0

such that

∞∫
1

⎛
⎜⎝

∫
(ρ,θ)∈ωρ0,θ0

|V S
l,α(tρ, θ)|2dρH(θ)dθ

⎞
⎟⎠

1/2

tμS |α|dt < ∞.

Let μL > 0. V L is called a long-range smooth potential if V L is a real-
valued C∞ function with support in M̃∞ and satisfies for any indices j, α,

|Dj
rD

α
θ V

L(r, θ)| ≤ Cj,αr
−μL−j .
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A differential operator V on M is called an admissible long-range per-
turbation of P0 if V is of the form V = V S + V L where V S is a short-range
perturbation of μS type and V L is a long-range smooth potential and

ε = μ1 = μ2 = μL > 0, μ3 = 0, μS = 1 − ε.

Example 1. If V S = V S(r, θ) is a multiplication operator and |V S(r, θ)| ≤
Cr−1−η, η > 0, then V S satisfies the aforementioned short-range condition.

If V S =
∑

|α|=1 V
S
α ∂

α
θ and |V S

α (r, θ)| ≤ Cr−1−μS−η, η > 0, then V S sat-
isfies the aforementioned short-range condition. As the order of the derivative
with respect to θ-variable increases, we need more rapid decay conditions on
the coefficients.

Remark 2. If V S is a smooth function, then P0 + V is essentially self-adjoint.
More generally, if V S is at most second-order differential operator with “small”
smooth coefficients, then V S is P0-bounded with relative bound less than one,
and P0 + V is essentially self-adjoint. In this paper, we assume that P0 + V
is essentially self-adjoint on suitable domains (see Theorem 3) and do not
investigate the conditions of self-adjointness.

Remark 3. If we assume ∂M is equipped with a positive (2, 0)-tensor h =
(hjk(θ)), for some ε > 0,

|∂l
r∂

α
θ (a3(r, θ) − h(θ))| ≤ Cl,αr

−ε−l,

and V S = 0, then P0 + V has a self-adjoint extension H and corresponds
(via a unitary equivalence) to the Laplacian on Riemannian manifolds with
asymptotically conic structure. Since ε > 0, our model includes the scattering
metric of long-range type described in [12]. Thus our results are generalizations
of [13].

We prepare a reference system as follows:

Mf = R × ∂M, Hf = L2(Mf ,H(θ)drdθ), Pf = −1
2
∂2

∂r2
on Mf

Note that Pf is essentially self-adjoint on C∞
0 (Mf ), and we denote the unique

self-adjoint extension by the same symbol. Let j(r) ∈ C∞(R) be a real-valued
function such that j(r) = 1 if r ≥ 1 and j(r) = 0 if r ≤ 1/2. We define the
identification operator J : Hf → H by

(Ju)(r, θ) = r−(n−1)/2j(r)u(r, θ) if (r, θ) ∈ M∞

and Ju(x) = 0 if x /∈ M∞, where u ∈ Hf . We denote the Fourier transform
with respect to r-variable by F :

Fu(ρ, θ) = û(ρ) =

∞∫
−∞

e−irρu(r, θ)dr, for u ∈ C∞
0 (Mf ).

We decompose the reference Hilbert space Hf as Hf = H +
f ⊕ H −

f , where
H ±

f are defined by
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H +
f = {u ∈ H |supp(Fu) ⊂ [0,∞) × ∂M},

H −
f = {u ∈ H |supp(Fu) ⊂ (−∞, 0] × ∂M}.

We use the following notation throughout the paper: For x ∈ M , we write

〈x〉 = 〈r〉 =

{
1 + rj(r) for x ∈ M∞,
1 for x ∈ Mc.

We state our main theorem.

Theorem 3. Suppose V = V L +V S is an admissible long-range perturbation of
P0, V is symmetric on JF−1C∞

0 (Mf ), and P0 + V has a self-adjoint exten-
sion H. Let S(t, ρ, θ) be a solution to the Hamilton–Jacobi equation which is
constructed in Theorem 13. Then the modified wave operators

Ω± = s-lim
t→±∞ eitHJe−iS(t,Dr,θ)

exist, and are partial isometries from H ±
f into H intertwining H and Pf :

eisHΩ± = Ω±eisPf .

We refer Reed and Simon [20], Dereziński and Gérard [4], and Yafaev [22]
for general concepts of wave operators and scattering theory for Schödinger
equations. We here briefly review the history of wave operators. The concept of
wave operator was introduced by Møller [17]. The existence of wave operators
has long been studied (see Cook [2] and Kuroda [15]) for short-range potentials,
which decay faster than the Coulomb potential. For the Coulomb potential, it
was proved by Dollard [5,6] that the wave operators do not exist unless the
definition is modified. Dollard introduced the concept of the modified wave
operators s-limt→±∞ eitHe−iS(t,Dx). Buslaev–Mateev [1] showed the existence
of modified wave operators using stationary phase method and by employing an
approximate solution to the Hamilton–Jacobi equation as a modifier function
S(t, ξ). Hörmander [10] constructed exact solutions to the Hamilton–Jacobi
equation (see also [11] vol. IV).

The spectral properties of Laplace operators on a class of non-compact
manifolds were studied by Froese et al. [8,9], and Donnelly [7] using the Mourre
theory (see, the original paper Mourre [18], and Perry et al. [19]). In early
1990s, Melrose introduced a new framework of scattering theory on a class
of Riemannian manifolds with metrics called scattering metrics (see [16] and
references therein) and showed that the absolute scattering matrix, which is
defined through the asymptotic expansion of generalized eigenfunctions, is a
Fourier integral operator. Vasy [21] studied Laplace operators on such mani-
folds with long-range potentials of Coulomb-type decay (|V (r, θ)| ≤ Cr−1).

Ito and Nakamura [13] studied a time-dependent scattering theory for
Schrödinger operators on scattering manifolds. They used the two-space scat-
tering framework of Kato [14] with a simple reference operator D2

r/2 on a space
of the form R×∂M , where ∂M is the boundary of the scattering manifold M .
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We employ the formulation of Ito and Nakamura [13] and consider gen-
eral long-range metric perturbations and potential perturbations. We assume
that the scalar potential decay as |V (r, θ)| ≤ Cr−ε, ε > 0.

We make some remarks along with the outline of the proof. The time-
dependent modifier function S(t, ρ, θ) is not uniquely determined. Our choice is
a solution to the Hamilton–Jacobi equation on the reference manifold R×∂M
with the long-range potential V L:

h

(
∂S

∂ρ
, θ, ρ,−∂S

∂θ

)
=
∂S

∂t
,

h(r, θ, ρ, ω) =
1
2
ρ2 +

1
2
a1ρ

2 +
1
r
aj
2ρωj +

1
r2
ajk
3 ωjωk + V L,

(1)

for large t and for every ρ in any fixed compact set of R\{0}, where h is the cor-
responding classical Hamiltonian. We choose ρ and θ as variables of S because
ρ and θ components of the classical trajectories have limits as t goes to infinity.
The time-dependent modifier e−S(t,Dr,θ) is a Fourier multiplier in r-variable for
each θ and we only need to consider the 1-dimensional Fourier transform with
respect to r-variable. We construct solutions to the Hamilton–Jacobi equation
mainly following Dereziński and Gérard [4].

In Sect. 2.1, we consider the boundary value problem for Newton equa-
tions on R × ∂M with time-dependent slowly-decaying forces, which decay
in time (Definition 4). In Theorem 5, we construct solutions and show several
estimates. We use an integral equation and Banach’s contraction mapping the-
orem (Proposition 7, refer Dereziński [3] and Sect. 1.5 of [4]). In the definition
of slowly decaying forces (Definition 4) and the function spaces (Definition
6), we assume different decaying rates on different variables r, θ, ρ, and ω.
These are efficiently used to show Proposition 7. We observe that the classical
trajectories will stay in outgoing (incoming ) regions as t → +∞(−∞).

In Sect. 2.2, we consider Newton equations with time-independent long-
range forces which decay in space (Definition 8) in appropriate outgoing
(incoming) regions. By inserting time-dependent cut-off functions, we intro-
duce an effective time-dependent force and reduce the time-independent prob-
lem to the time-dependent one (Theorem 9). Our model (the Hamiltonian
flow induced by the classical Hamiltonian) turns out to fit into this framework
(Lemma 11). These tricks are also used in [4] for Hamiltonians with long-range
potentials on Euclidean spaces.

Finally, in Sect. 2.3, in Theorem 13 we construct exact solutions to the
Hamilton–Jacobi equation, using the classical trajectories with their depen-
dence on initial data. Here we use the idea by Hörmander [10], see also
Sect. 2.7 of [4]. We show that these solutions with their derivatives satisfy
“good estimates”, which are used to show the existence of the modifiers. Once
we obtain a suitable modifier S(t, ρ, θ), we can show the existence of modified
wave operators through stationary phase method (Sect. 3).

Using the Cook–Kuroda method (see Cook [2], and Kuroda [15]) and
1-dimensional Fourier transform, we deduce the proof of the main theorem to
estimates of the integral (Proposition 14):
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∫ [
h(r, θ, ρ,−∂S

∂θ
(t, ρ, θ)) − h

(
∂S

∂ρ
(t, ρ, θ), θ, ρ,−∂S

∂θ
(t, ρ, θ)

)]

· eirρ−iS(t,ρ,θ)û(ρ, θ)dρ.

In Sect. 3, we apply the stationary phase method (Lemma 16, we refer
Hörmander [11, Sect. 7.7]). In the asymptotic expansion of the above integral,
the terms in which h is not differentiated vanish since the equation r = ∂S/∂ρ
holds at the stationary points. To show the uniformly boundedness of constants
which appear in the asymptotic expansions of the integral, we construct diffe-
omorphisms in small neighborhoods of the stationary points which transform
the phase function into quadratic forms there (Lemma 15). In the constructions
of these diffeomorphisms, we use the estimates on the modifier function S.

In summary, we extended the time-dependent methods in [4] of quantum
scattering in Euclidean spaces to the case of long-range scattering metric with
long-range potential with the help of a simple reference system proposed in
[13]. We expect that many of other methods in Euclidean scattering can also
be applied to scattering on non-compact manifolds.

Notations. We use the following notation throughout the paper: Let t ∈ R and
s be a parameter. We write f(t, s) ∈ g(s)O(〈t〉−m) if f(t, s) ≤ Cg(s)〈t〉−m

uniformly for t and s. We write f(t, s) ∈ O(〈t〉−∞) if f = 0. We denote
f(t, s) ∈ g(s)o(t0) if limt→∞ f(t, s)/g(s) = 0.

2. Classical Mechanics

In this section, we study classical trajectories and solutions to the Hamilton–
Jacobi equation.

2.1. Classical Trajectories with Slowly Decaying Time-Dependent Force

Let (r, θ, ρ, ω) ∈ T ∗(R × R
n−1) and consider the Newton’s equation:

(ṙ, θ̇, ρ̇, ω̇)(t) = (ρ+ Fr, Fθ, Fρ, Fω)(t, (r, θ, ρ, ω)(t)) (2)

where

F = F (t, r, θ, ρ, ω) = (Fr, Fθ, Fρ, Fω)(t, r, θ, ρ, ω)

is a time-dependent force. Let ε > 0 and ε̃ = 1
2ε.

Definition 4. A time-dependent force F is said to be slowly decaying if F
satisfies

sup
(r,ρ,θ,ω)∈T ∗(R×Rn−1)

|∂l
r∂

α
θ ∂

k
ρ∂

β
ω(F∗)(t)|∈O(〈t〉−n∗(l,α,k,β)), ∗={r, θ, ρ, ω} (3)

where

nr(l, α, k, β) = m(l, α, k + 1, β), nθ(l, α, k, β) = m(l, α, k, β + ei),
nρ(l, α, k, β) = m(l + 1, α, k, β), nω(l, α, k, β) = m(l, α+ ei, k, β),
m(l, α, 0, 0) = l + ε, m(l, α, 1, 0) = l + ε, m(l, α, 2, 0) = l + ε, (4)
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m(l, α, 0, ei) = l + 1 + ε̃, m(l, α, 1, ei) = l + 1 + ε, m(l, α, 0, ei + ej) = l + 2,
m(l, α, k, β) = +∞, if k + |β| ≥ 3,

i, j = 1, . . . , n − 1, and ei = (0, . . . , 1, 0, . . . , 0) ∈ Z
n−1
+ is the canonical unit

vector, i.e., every component of ei is 0 except ith component.

In the next theorem, we show the unique existence of trajectories for the
dynamics (2) where the boundary conditions are the initial position and the
final momentum.

Theorem 5. Assume that F is a time-dependent slowly decaying force in the
sense of Definition 4. Then there exists T such that if T ≤ t1 < t2 ≤ ∞ (we
allow t2 to be ∞) and (ri, θf , ρf , ωi) ∈ T ∗(R × R

n−1), there exists a unique
trajectory

[t1, t2] � s �→ (r̃, θ̃, ρ̃, ω̃)(s, t1, t2, ri, θf , ρf , ωi)

satisfying

∂s(r̃, θ̃, ρ̃, ω̃)(s, t1, t2, ri, θf , ρf , ωi)

= (ρ+ Fr, Fθ, Fρ, Fω)(s, (r̃, θ̃, ρ̃, ω̃)(s, t1, t2, ri, θf , ρf , ωi)),
(r̃, ω̃)(t1, t1, t2, ri, θf , ρf , ωi)=(ri, ωi),

(θ̃, ρ̃)(t2, t1, t2, ri, θf , ρf , ωi)=(θf , ρf ).

We set r(s), θ(s), ρ(s), ω(s) by

r(s) = r̃(s) − ri − (s− t1)ρf , θ(s) = θ̃(s) − θf ,

ρ(s) = ρ̃(s) − ρf , ω(s) = ω̃(s) − ωi.

Moreover, the solution satisfies the following estimates uniformly for T ≤ t1 ≤
s ≤ t2 ≤ ∞, (ri, θf , ρf , ωi) ∈ T ∗(R × R

n−1):

|r(s)| ∈ o(s0)|s− t1|, |θ(s)| ∈ O(s−ε̃),
|ρ(s)| ∈ O(s−ε̃), |ω(s)| ∈ o(s0)|s− t1|1−ε̃,

(5)
⎛
⎜⎜⎝
∂ri
r(s) ∂θf

r(s) ∂ρf
r(s) ∂ωi

r(s)
∂ri
θ(s) ∂θf

θ(s) ∂ρf
θ(s) ∂ωi

θ(s)
∂ri
ρ(s) ∂θf

ρ(s) ∂ρf
ρ(s) ∂ωi

ρ(s)
∂ri
ω(s) ∂θf

ω(s) ∂ρf
ω(s) ∂ωi

ω(s)

⎞
⎟⎟⎠

∈

⎛
⎜⎜⎝

o(s0)|s− t1|
O(1)

O(s−ε̃)
o(s0)|s− t1|1−ε̃

⎞
⎟⎟⎠⊗ (t−1−ε̃

1 , t−ε̃
1 , t−ε̃

1 , t−1
1 ), (6)

∂l
ri
∂α

θ ∂
k
ρ∂

β
ω

⎛
⎜⎜⎝
r
θ
ρ
ω

⎞
⎟⎟⎠ ∈

⎛
⎜⎜⎝

o(s0)|s− t1|
O(1)

O(s−ε̃)
o(s0)|s− t1|1−ε̃

⎞
⎟⎟⎠ · t−l−|β|

1 . (7)

Here ⊗ is an outer product and (6) means, for example, ∂ri
r(s) ∈ o(s0)|s −

t1|t−1−ε̃
1 and ∂θf

θ(s) ∈ O(1)t−ε̃
1 . Estimates such as fT,t1,t2(s) ∈ o(s0) mean
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sup |fT,t1,t2(s)| → 0 as s → ∞ where supremum is taken over T, t1, and t2
satisfying T ≤ t1 ≤ s ≤ t2 ≤ ∞.

A straightforward computation shows that (r, θ, ρ, ω)(s) satisfies the fol-
lowing integral equation:
(r, θ, ρ, ω)(s) = (Pr, Pθ, Pρ, Pω)(r, θ, ρ, ω)(s)

:=

⎛
⎜⎜⎜⎝

∫ s
t1

(
ρ(u) + Fr(u, ri + (u − t1)ρf + r(u), θf + θ(u), ρf + ρ(u), ωi + ω(u))

)
du

− ∫ t2
s

(
Fθ(u, ri + (u − t1)ρf + r(u), θf + θ(u), ρf + ρ(u), ωi + ω(u))

)
du

− ∫ t2
s

(
Fρ(u, ri + (u − t1)ρf + r(u), θf + θ(u), ρf + ρ(u), ωi + ω(u))

)
du∫ s

t1

(
Fω(u, ri + (u − t1)ρf + r(u), θf + θ(u), ρf + ρ(u), ωi + ω(u))

)
du

⎞
⎟⎟⎟⎠
(8)

where the map P = (Pr, Pθ, Pρ, Pω) depends on the parameters t1, t2, ri, θf ,
ρf , ωi. We will apply the fixed point theorem to solve (8). We define the Banach
space on which the map P is defined as follows:

Definition 6. For m ≥ 0, we define

Zm
T :=

{
z ∈ C([T,∞)) : sup

|z(t)|
|t− T |m < ∞

}
,

Zm
T,∞ :=

{
z ∈ Zm

T : lim
t→∞

|z(t)|
|t− T |m = 0

}
.

For m < 0, we define

Zm
T :=

{
z ∈ C([T,∞)) : sup

|z(t)|
〈t〉m

< ∞
}
.

We define

Z1,0,−ε̃,1−ε̃
t1 := {(r, θ, ρ, ω) ∈ Z1

t1,∞ × Z0
t1 × Z−ε̃

t1 × Z1−ε̃
t1,∞}.

Then we have the following proposition:

Proposition 7. For large enough T > 0, the map P is a contraction map on
Z1,0,−ε̃,1−ε̃

t1 for any T ≤ t1 ≤ t2 ≤ ∞, (ri, θf , ρf , ωi) ∈ T ∗(R × R
n−1). Indeed,

for some constant c which does not depend on t1, t2, (ri, θf , ρf , ωi) but on T ,
we have

‖∇xP (x)‖B(Z1,0,−ε̃,1−ε̃
t1 ) < c < 1. (9)

Proof. We first note that P is well defined as a map of Z1,0,−ε̃,1−ε̃
t1 into itself.

Indeed, for example, if x = (r, θ, ρ, ω) ∈ Z1,0,−ε̃,1−ε̃
t1 ,

|Pr(x)(s)|

≤
s∫

t1

|(ρ(u) + Fr(u, ri+(s−t1)ρf + r(u), θf +θ(u), ρf + ρ(u), ωi + ω(u))
)|du

≤
s∫

t1

|C〈u〉−ε̃ + C〈u〉−ε|du,

which implies Pr(x)(s) ∈ Z1
t1,∞. Others are similar to prove.
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Now we check that P is a contraction on Z1,0,−ε̃,1−ε̃
t1 . It suffices to show

(9) for some constant c which does not depend on t1, t2, (ri, θf , ρf , ωi) but on
T . Let v ∈ Z1

t1,∞. Then

|s− t1|−1(∇rPr(x)v)(s) ≤ |s− t1|−1

s∫
t1

‖∇rFr(u, ·)‖∞|u− t1|‖v‖Z1
t1,∞du

≤ ‖v‖Z1
t1,∞

s∫
t1

|s− t1|−1|u− t1|〈u〉−1−εdu.

If we let T → ∞, the right-hand side goes to zero uniformly for T ≤ t1 ≤ t2 ≤
∞. Moreover, the right-hand side goes to zero as s → ∞. Hence taking T large
enough, we may assure that

‖∇rPr‖B(Z1
t1,∞) < c < 1

for some constant c for any T ≤ t1 ≤ t2 ≤ ∞ and for any (ri, θf , ρf , ωi) ∈
T ∗(R×R

n−1). In a similar way, we can show that for some large enough T , (9)
holds for any T ≤ t1 ≤ t2 ≤ ∞ and for any (ri, θf , ρf , ωi) ∈ T ∗(R×R

n−1). �

Proof of Theorem 5. The fixed point theorem together with Proposition 7
implies that there exists a unique solution (r, θ, ρ, ω)(s) ∈ Z1,0,−ε̃,1−ε̃

t1 for
the integral equation (8) for each T ≤ t1 < t2 ≤ ∞ and (ri, θf , ρf , ωi) ∈
T ∗(R × R

n−1) if T is large enough. (r, θ, ρ, ω)(s) ∈ Z1,0,−ε̃,1−ε̃
t1 directly

means (5).
Let us now prove (6). We use the identity

(I − ∇xP (x))∂γ(x) = hγ = (hγ
r , h

γ
θ , h

γ
ρ , h

γ
ω)

:=

⎛
⎜⎜⎜⎜⎜⎝

∫ s

t1
(∇Fr)(u, y)∂γ(y − x)du

− ∫ t2
s

(∇Fθ)(u, y)∂γ(y − x)du

− ∫ t2
s

(∇Fρ)(u, y)∂γ(y − x)du∫ s

t1
(∇Fω)(u, y)∂γ(y − x)du

⎞
⎟⎟⎟⎟⎟⎠

(10)

where ∂γ = ∂ri
, ∂θf

, ∂ρf
, or ∂ωi

, x = (r, θ, ρ, ω) is the solution of (8), and
y = (ri + (u − t1)ρf + r(u), θf + θ(u), ρf + ρ(u), ωi + ω(u)). By a straight
computation we have

(h∂ri , h∂θi , h∂ρi , h∂ωi ) ∈ (〈t1〉−1−ε̃, 〈t1〉−ε̃, 〈t1〉−ε̃, 〈t1〉−1)Z1,0,−ε̃,1−ε̃
t1 .

(9) implies that I − ∇xP (x) is invertible on Z1,0,−ε̃,1−ε̃
t1 . Using (10), we get

(∂ri
x, ∂θf

x, ∂ρf
x, ∂ωi

x) ∈ Z1,0,−ε̃,1−ε̃
t1 ,

and

‖(∂ri
x, ∂θf

x, ∂ρf
x, ∂ωi

x)‖Z1,0,−ε̃,1−ε̃
t1

∈ O(〈t1〉−1−ε̃, 〈t1〉−ε̃, 〈t1〉−ε̃, 〈t1〉−1),

which implies (6).
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Now we prove (7) by an induction. Assume that ∂γ = ∂l
ri
∂α

θ ∂
k
ρ∂

β
ω ,

l + |α| + k + |β| = n ≥ 2, and (7) is true for l + |α| + k + |β| ≤ n − 1.
We use the identity

(I − ∇xP (x))∂γ(x) = hγ = (hγ
r , h

γ
θ , h

γ
ρ , h

γ
ω)

:=

⎛
⎜⎜⎜⎜⎜⎝

∫ s

t1

∑
q≥2(∇qFr)(u, y)∂γ1(y)∂γ2(y) · · · ∂γq (y)du

− ∫ t2
s

∑
q≥2(∇qFθ)(u, y)∂γ1(y)∂γ2(y) · · · ∂γq (y)du

− ∫ t2
s

∑
q≥2(∇qFρ)(u, y)∂γ1(y)∂γ2(y) · · · ∂γq (y)du∫ s

t1

∑
q≥2(∇qFω)(u, y)∂γ1(y)∂γ2(y) · · · ∂γq (y)du

⎞
⎟⎟⎟⎟⎟⎠

(11)

where the sum is taken over γ =
∑q

p=1 γp, q ≥ 2. The induction hypothesis
with a straight computation shows that

(hγ) ∈ (〈t1〉−l−|β|)Z1,0,−ε̃,1−ε̃
t1 .

Thus we have

‖∂γx‖Z1,0,−ε̃,1−ε̃
t1

∈ (〈t1〉−l−|β|),

which implies (7). �

2.2. Classical Trajectories with Long-Range Time-Independent Force

We denote the outgoing region by Γ +,ε̃
R,U,J,Q:

Γ +,ε̃
R,U,J,Q := {(r, θ, ρ, ω) ∈ T ∗(R × R

n−1) : r > R, θ ∈ U, ρ ∈ J, |ω| ≤ Qr1−ε̃}
for R > 0, U ⊂ R

n−1, J ⊂ R, Q > 0.
We now consider the dynamics with time-independent long-range forces.

Definition 8. A time-independent force F is said to be a long-range force if it
satisfies

sup
(r,θ,ρ,ω)∈Γ +,ε̃

R,U,J,Q

|∂l
r∂

α
θ ∂

k
ρ∂

β
ω(Fr, Fθ, Fρ, Fω)(r, θ, ρ, ω)|∈O(〈R〉−nr,θ,ρ,ω(l,α,k,β))

(12)

for any R > 0, U � R
n−1, J � (0,∞), Q > 0.

As in Theorem 5, we show the unique existence of trajectories for the
dynamics where the boundary conditions are the initial position and the final
momentum.

Theorem 9. Assume that F is a time-independent long-range force in the sense
of Definition 8. Then for any open U � Ũ � R

n−1, open J � J̃ � (0,∞), and
Q > 0, there exists R > 0 such that for any t ≥ 0 and for any (ri, θf , ρf , ωi) ∈
Γ +,ε̃

R,U,J,Q, there exists a unique trajectory

[0, t] � s �→ (r̃, θ̃, ρ̃, ω̃)(s, t, ri, θf , ρf , ωi)
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satisfying

∂s(r̃, θ̃, ρ̃, ω̃)(s, t, ri, θf , ρf , ωi)=(ρ+Fr, Fθ, Fρ, Fω)((r̃, θ̃, ρ̃, ω̃)(s, t, ri, θf , ρf , ωi))

(13)

(r̃, ω̃)(0, t, ri, θf , ρf , ωi) = (ri, ωi), (θ̃, ρ̃)(t, t, ri, θf , ρf , ωi) = (θf , ρf ),

and the estimates
|r(s)| ∈ o((s+ 〈ri〉)0)|s|, |θ(s)| ∈ O((s+ 〈ri〉)−ε̃),

|ρ(s)| ∈ O((s+ 〈ri〉)−ε̃), |ω(s)| ∈ o((s+ 〈ri〉)0)|s|1−ε̃,
(14)

and

θ̃(s, t, ri, θf , ρf , ωi) ∈ Ũ , ρ̃(s, t, ri, θf , ρf , ωi) ∈ J̃

where

r(s) = r̃(s) − ri − sρf , θ(s) = θ̃(s) − θf

ρ(s) = ρ̃(s) − ρf , ω(s) = ω̃(s) − ωi.

Moreover, the solution satisfies the following estimates uniformly for 0 ≤ s ≤
t ≤ ∞, (ri, θf , ρf , ωi) ∈ Γ +,ε̃

R,U,J,Q:⎛
⎜⎜⎝
∂ri
r(s) ∂θf

r(s) ∂ρf
r(s) ∂ωi

r(s)
∂ri
θ(s) ∂θf

θ(s) ∂ρf
θ(s) ∂ωi

θ(s)
∂ri
ρ(s) ∂θf

ρ(s) ∂ρf
ρ(s) ∂ωi

ρ(s)
∂ri
ω(s) ∂θf

ω(s) ∂ρf
ω(s) ∂ωi

ω(s)

⎞
⎟⎟⎠

∈

⎛
⎜⎜⎝

o((s+ 〈ri〉)0)|s|
O(1)

O((s+ 〈ri〉)−ε̃)
o((s+ 〈ri〉)0)|s|1−ε̃

⎞
⎟⎟⎠⊗ (〈ri〉−1−ε̃, 〈ri〉−ε̃, 〈ri〉−ε̃, 〈ri〉−1),

∂l
ri
∂α

θ ∂
k
ρ∂

β
ω

⎛
⎜⎜⎝
r
θ
ρ
ω

⎞
⎟⎟⎠ ∈

⎛
⎜⎜⎝

o((s+ 〈ri〉)0)|s|
O(1)

O((s+ 〈ri〉)−ε̃)
o((s+ 〈ri〉)0)|s|1−ε̃

⎞
⎟⎟⎠ · 〈ri〉−l−|β|.

Proof. There exists C0 such that if ρ ∈ J and r, s > 0, then

|r + sρ| ≥ C0(|s| + r). (15)

We fix constants ε0, Q̃, ε1 such that

0 < ε0 < C0, Q̃ ≥ 2Q
C1−ε̃

0

, 0 < ε1 <
1
2
Q̃(C0 − ε0)1−ε̃,

and introduce cut-off functions Ir, Iθ, Iρ, Iω as follows: We take Ir ∈ C∞(0,∞)
such that Ir = 1 on a neighborhood of {r; r > C0 − ε0}, Iθ ∈ C∞

0 (Rn−1) such
that Iθ = 1 on Ũ , Iρ ∈ C∞

0 (0,∞) such that Iρ = 1 on J̃ , and Iω ∈ C∞
0 (Rn−1)

such that Iω = 1 on a neighborhood of {ω : |ω| < Q̃}. Using these cut-off
functions, we define the effective time-dependent force Fe by

Fe(t, r, θ, ρ, ω) = Ir

(r
t

)
Iθ(θ)Iρ(ρ)Iω

( ω

r1−ε̃

)
F (r, θ, ρ, ω).
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It follows from (12) that Fe(t, r, θ, ρ, ω) is a slowly decaying force in the sense
of Definition 4. Therefore, we can find T such that the boundary value problem
considered in Theorem 5 possesses a unique solution for any T ≤ t1 ≤ t2 and
any ri, θf , ρf , ωi. Let us denote this solution by

(r̃e, θ̃e, ρ̃e, ω̃e)(s, t1, t2, ri, θf , ρf , ωi).

By enlarging T if needed, we can guarantee that

|r̃e(s, t1, t2, ri, θf , ρf , ωi) − ri − (s− t1)ρf | ≤ ε0|s− t1|, (16)

|θ̃e(s, t1, t2, ri, θf , ρf , ωi) − θf | ≤ dist(U, ŨC)

|ρ̃e(s, t1, t2, ri, θf , ρf , ωi) − ρf | ≤ dist(J, J̃C)

|ω̃e(s, t1, t2, ri, θf , ρf , ωi) − ωi| ≤ ε1|s− t1|1−ε̃. (17)

We claim that if R = T (C0 − ε0)/C0 and (ri, θf , ρf , ωi) ∈ Γ +,ε̃
R,U,J,Q, then

we can solve our boundary problem by setting

(r̃, θ̃, ρ̃, ω̃)(s, t, ri, θf , ρf , ωi) :=(r̃e, θ̃e, ρ̃e, ω̃e)(r+s, r, r + t, ri, θf , ρf , ωi) (18)

where r = |ri|C0/(C0 − ε). Indeed, from (15), (16), and (17) we see that

|r̃e(r + s, r, r + t, ri, θf , ρf , ωi)| ≥ (C0 − ε0)|s+ r|,
θ̃e(r + s, r, r + t, ri, θf , ρf , ωi) ∈ Ũ ,

ρ̃e(r + s, r, r + t, ri, θf , ρf , ωi) ∈ J̃ ,

and

|ω̃e(r + s, r, r + t, ri, θf , ρf , ωi)| ≤ ε1|s|1−ε̃ + ωi ≤ ε1|s|1−ε̃ +Qr1−ε̃
i

≤ ε1|s|1−ε̃ +Q
(C0 − ε0

C0

)1−ε̃
r1−ε̃ ≤ Q̃(C0 − ε0)1−ε̃|s+ r|1−ε̃

≤ Q̃|r̃e(r + s, r, r + t, ri, θf , ρf , ωi)|1−ε̃.

Hence we have

Fe(r + s, (r̃e, θ̃e, ρ̃e, ω̃e)(r + s, r, r + t, ri, θf , ρf , ωi))

= F ((r̃e, θ̃e, ρ̃e, ω̃e)(r + s, r, r + t, ri, θf , ρf , ωi)).

Therefore, the function (18) solves the boundary problem (13) with the initial
time-independent force.

The estimates on (r̃, θ̃, ρ̃, ω̃)(s, t, ri, θf , ρf , ωi) are obtained directly from
those of Theorem 5 using the identity (18) and replacing s, t1, t2 there by
s+ 〈ri〉, 〈ri〉, t+ 〈ri〉.

Finally, the uniqueness of the solution follows from the fact that any solu-
tion of (13) with (14) is also a solution of the problem considered in Theorem 5
for the force Fe(t, r, θ, ρ, ω) if time t is large enough. �

Now we solve the dynamics with initial conditions.

Theorem 10. Assume F is a time-independent long-range force in the sense of
Definition 8. Then for any open U � Ũ � R

n−1, open J � J̃ � (0,∞), and
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Q > 0, there exists R > 0 such that for any (r0, θ0, ρ0, ω0) ∈ Γ +,ε̃
R,U,J,Q, there

exists a unique trajectory

[0,∞) � s �→ (r̃, θ̃, ρ̃, ω̃)(s, r0, θ0, ρ0, ω0)

satisfying

∂s(r̃, θ̃, ρ̃, ω̃)(s, r0, θ0, ρ0, ω0) = (ρ+ Fr, Fθ, Fρ, Fω)((r̃, θ̃, ρ̃, ω̃)(s, r0, θ0, ρ0, ω0)),

(r̃, θ̃, ρ̃, ω̃)(0, r0, θ0, ρ0, ω0) = (r0, θ0, ρ0, ω0).

Set

r(s) = r̃(s) − r0 − sρ0, θ(s) = θ̃(s) − θ0,

ρ(s) = ρ̃(s) − ρ0, ω(s) = ω̃(s) − ω0.

Moreover, the solution satisfies the following estimates uniformly for 0 ≤ s ≤
t ≤ ∞, (r0, θ0, ρ0, ω0) ∈ Γ +,ε̃

R,U,J,Q:

θ̃(s, r0, θ0, ρ0, ω0) ∈ Ũ , ρ̃(s, r0, θ0, ρ0, ω0) ∈ J̃ ,

|r(s)| ∈ o((s+ 〈r0〉)0)|s|, |θ(s)| ∈ O((〈r0〉)−ε̃),

|ρ(s)| ∈ O((〈r0〉)−ε̃), |ω(s)| ∈ o((s+ 〈r0〉)0)|s|1−ε̃,⎛
⎜⎜⎝
∂r0r(s) ∂θ0r(s) ∂ρ0r(s) ∂ω0r(s)
∂r0θ(s) ∂θ0θ(s) ∂ρ0θ(s) ∂ω0θ(s)
∂r0ρ(s) ∂θ0ρ(s) ∂ρ0ρ(s) ∂ω0ρ(s)
∂r0ω(s) ∂θ0ω(s) ∂ρ0ω(s) ∂ω0ω(s)

⎞
⎟⎟⎠

∈

⎛
⎜⎜⎝

o((s+ 〈r0〉)0)|s|
O(1)

O((s+ 〈r0)〉−ε̃)
o((s+ 〈r0〉)0)|s|1−ε̃

⎞
⎟⎟⎠⊗ (〈r0〉−1−ε̃, 〈r0〉−ε̃, 〈r0〉−ε̃, 〈r0〉−1),

∂l
r0
∂α

θ0
∂k

ρ0
∂β

ω0

⎛
⎜⎜⎝
r
θ
ρ
ω

⎞
⎟⎟⎠ ∈

⎛
⎜⎜⎝

o((s+ 〈r0〉)0)|s− t1|
O(1)

(〈r0〉)−ε̃

o((s+ 〈r0〉)0)|s− t1|1−ε̃

⎞
⎟⎟⎠ · 〈r0〉−l−|β|.

Proof. Let (r̄, θ̄, ρ̄, ω̄) be the solutions in Theorem 9 with t = ∞:

[0,∞] � s �→ (r̄, θ̄, ρ̄, ω̄)(s,∞, ri, θf , ρf , ωi),
∂s(r̄, θ̄, ρ̄, ω̄)(s,∞, ri, θf , ρf , ωi)

= (ρ+ Fr, Fθ, Fρ, Fω)((r̄, θ̄, ρ̄, ω̄)(s,∞, ri, θf , ρf , ωi)),
(r̄, ω̄)(0,∞, ri, θf , ρf , ωi)=(ri, ωi), (θ̄, ρ̄)(∞,∞, ri, θf , ρf , ωi)=(θf , ρf ).

Set

(r0, θ0, ρ0, ω0)(ri, θf , ρf , ωi) := (r̄, θ̄, ρ̄, ω̄)(0,∞, ri, θf , ρf , ωi).

It is clear that

(r0, ω0)(ri, θf , ρf , ωi) = (ri, ωi).
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Theorem 9 assures the following estimates:

|θ0(ri, θf , ρf , ωi) − θf | ∈ O(〈ri〉−ε̃), |ρ0(ri, θf , ρf , ωi) − ρf | ∈ O(〈ri〉−ε̃),

(
∂ri

(θ0 − θf ) ∂θf
(θ0 − θf ) ∂ρf

(θ0 − θf ) ∂ωi
(θ0 − θf )

∂ri
(ρ0 − ρf ) ∂θf

(ρ0 − ρf ) ∂ρf
(ρ0 − ρf ) ∂ωi

(ρ0 − ρf )

)

∈
(

O(1)
(〈ri〉)−ε̃

)
⊗ (〈r1〉−1−ε̃, 〈r1〉−ε̃, 〈r1〉−ε̃, 〈r1〉−1). (19)

By taking R large enough, we can assure that the map (r0, θ0, ρ0, ω0)(ri, θf ,
ρf , ωi) is injective. Let (ri, θi, ρi, ωi)(r0, θ0, ρ0, ω0) be the inverse function. We
will show that

(r̃, θ̃, ρ̃, ω̃)(s, r0, θ0, ρ0, ω0) := (r̄, θ̄, ρ̄, ω̄)(s,∞, (ri, θf , ρf , ωi)(r0, θ0, ρ0, ω0))

gives the desired function. (19) implies(
∂r0(θf − θ0) ∂θ0(θf − θ0) ∂ρ0(θf − θ0) ∂ω0(θf − θ0)
∂r0(ρf − ρ0) ∂θ0(ρf − ρ0) ∂ρ0(ρf − ρ0) ∂ω0(ρf − ρ0)

)

∈
(

O(1)
(〈r0〉)−ε̃

)
⊗ (〈r1〉−1−ε̃, 〈r1〉−ε̃, 〈r1〉−ε̃, 〈r1〉−1). (20)

Moreover, it is easy to see that

∂l
r0
∂α

θ0
∂k

ρ0
∂β

ω0

(
θf − θ0
ρf − ρ0

)
∈
(

O(〈r0〉−l−|β|)
O(〈r0〉−l−|β|−ε̃)

)
. (21)

(20) and (21) shows the desired estimates. �

2.3. Solutions to the Hamilton–Jacobi Equation

We state a lemma which relates the hamiltonian h with the time-independent
force F .

Lemma 11. Let

h(r, θ, ρ, ω) =
1
2
ρ2 + h̃(r, θ, ρ, ω)

h̃(r, θ, ρ, ω) =
1
2
a1(r, θ)ρ2 +

1
r
aj
2(r, θ)ρωj +

1
2r2

ajk
3 (r, θ)ωjωk + V L(r, θ).

Assume

|∂l
r∂

α
θ aj(r, θ)| ≤ Cl,αr

−μj−l, |Dj
rD

α
θ V

L(r, θ)| ≤ Cjr
−μL−j ,

with

μ1 = μ2 = μL = ε > 0, μ3 = 0.

Then for any U � R
n−1, J � R, and Q > 0,

sup
(r,θ,ρ,ω)∈Γ +,ε̃

R,U,J,Q

|∂l
r∂

α
θ ∂

k
ρ∂

β
ω(h̃)(r, θ, ρ, ω)| ∈ O(〈R〉−m(l,α,k,β)). (22)

This immediately implies that setting

(Fr, Fθ, Fρ, Fω) = (∂ρh̃, ∂ωh̃,−∂rh̃,−∂θh̃), (23)

we have (12), i.e., h defines a long-range time-independent force via (23).
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Combining Theorem 10 and Lemma 11, we obtain solutions to the Ham-
ilton–Jacobi equation:

Theorem 12. Let h, h̃ be as in Lemma 11. For any Ũ � U � R
n−1, J̃ � J �

(0,∞), Cj,α > 0, there exists T > 0 satisfying the following conditions: if a
smooth function ψ(ρ, θ) defined on J × U satisfies∣∣∣∣∂j

ρ∂
α
θ

(
ψ(ρ, θ) − 1

2
sρ2

)∣∣∣∣ ≤ Cj,α〈s〉1−ε̃ (24)

for some s > T , then there exists a unique function S(t, ρ, θ) defined on a
region Θ ⊂ (0,∞) × (0,∞) × R

n−1 (which will be defined in the proof), with
Θ ⊃ (0,∞) × J̃ × Ũ , which satisfies the Hamilton–Jacobi equation:

(∂tS)(t, ρ, θ) = h((∂ρS)(t, ρ, θ), θ, ρ,−(∂θS)(t, ρ, θ))

with the initial value

S(0, ρ, θ) = ψ(ρ, θ).

Moreover, the function S satisfies the following estimates:∣∣∣∣∂j
ρ∂

α
θ

(
S(t, ρ, θ) − 1

2
tρ2

)∣∣∣∣ ≤ C̃j,α〈t〉1−ε. (25)

Proof. We fix Ũ � U � R
n−1, J̃ � J � (0,∞), and Cj,α > 0. Theorem 10

implies that there is a sufficiently large R > 0 such that there exists a unique
trajectory

[0,∞) � t �→ (r̃, θ̃, ρ̃, ω̃)(t, r0, θ0, ρ0, ω0)

of the Hamilton equations with initial value problem:

∂t(r̃, θ̃, ρ̃, ω̃)(t, r0, θ0, ρ0, ω0) = (ρ+ Fr, Fθ, Fρ, Fω)((r̃, θ̃, ρ̃, ω̃)(t, r0, θ0, ρ0, ω0)),

(r̃, θ̃, ρ̃, ω̃)(0, r0, θ0, ρ0, ω0) = (r0, θ0, ρ0, ω0),

for any (r0, θ0, ρ0, ω0) ∈ Γ +,ε̃
R,U,J,Q. We take T0 > 0 large enough such that for

any ψ(ρ, θ) satisfying (24) with some s > T0,

{((∂ρψ)(ρ0, θ0), θ0, ρ0,−(∂θψ)(ρ0, θ0)) : (θ0, ρ0) ∈ U × J} ⊂ Γ +,ε̃
R,U,J,Q.

Fix such ψ(ρ, θ) we set

(r, θ, ρ, ω)(t; ρ0, θ0) := (r̃, θ̃, ρ̃, ω̃)(t, (∂ρψ)(ρ0, θ0), θ0, ρ0,−(∂θψ)(ρ0, θ0)).

We consider the map

(ρ0, θ0) �→ (ρ, θ)(t; ρ0, θ0) (26)

and its first derivatives. We set Θ := {(t, (ρ, θ)(t; ρ0, θ0))|(ρ0, θ0) ∈ J ×U}. By
a straight computation, we obtain∣∣∣∂(ρ, θ)(t, ρ0, θ0)

∂(ρ0, θ0)
−
(

1 0
0 1

) ∣∣∣ ≤ C〈s〉−ε̃,

where C depends on Cj,α but does not depend on the choice of ψ as long as
ψ satisfies (24) for some s > T0. Indeed, using |∂ψ(ρ, θ)(ρ0, θ0)| ≥ C〈s〉,
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∂ρ0ρ(t; ρ0, θ0)
= ∂ρ0 [ρ̃(t, (∂ρψ)(ρ0, θ0), θ0, ρ0,−(∂θψ)(ρ0, θ0))]

= (∂r0 ρ̃)(t) · (∂2
ρψ) + (∂ρ0 ρ̃)(t) − (∂ω0 ρ̃)(t) · (∂ρ∂θψ)

= O(〈s〉−1−ε · 〈s〉) + (1 + O(〈s〉−ε)) + O(〈s〉−1−ε̃ · 〈s〉1−ε̃)
= 1 + O(〈s〉−ε),

∂θ0ρ(t; ρ0, θ0)
= ∂θ0 [ρ̃(t, (∂ρψ)(ρ0, θ0), θ0, ρ0,−(∂θψ)(ρ0, θ0))]
= (∂r0 ρ̃)(t) · (∂ρ∂θψ) + (∂θ0 ρ̃)(t) − (∂ω0 ρ̃)(t) · (∂θ∂θψ)

= O(〈s〉−1−ε · 〈s〉1−ε̃) + O(〈s〉−ε) + O(〈s〉−1−ε̃ · 〈s〉1−ε̃)
= O(〈s〉−ε),

∂ρ0θ(t; ρ0, θ0)

= ∂ρ0 [θ̃(t, (∂ρψ)(ρ0, θ0), θ0, ρ0,−(∂θψ)(ρ0, θ0))]

= (∂r0 θ̃)(t) · (∂2
ρψ) + (∂ρ0 θ̃)(t) − (∂ω0 θ̃)(t) · (∂ρ∂θψ)

= O(〈s〉−1−ε̃ · 〈s〉) + O(〈s〉−ε̃) + O(〈s〉−1 · 〈s〉1−ε̃)

= O(〈s〉−ε̃),
∂θ0θ(t; ρ0, θ0)

= ∂θ0 [θ̃(t, (∂ρψ)(ρ0, θ0), θ0, ρ0,−(∂θψ)(ρ0, θ0))]

= (∂r0 θ̃)(t) · (∂ρ∂θψ) + (∂θ0 θ̃)(t) − (∂ω0 θ̃)(t) · (∂θ∂θψ)

= O(〈s〉−1−ε̃ · 〈s〉1−ε̃) + (1 + O(〈s〉−ε̃)) + O(〈s〉−1 · 〈s〉1−ε̃)

= 1 + O(〈s〉−ε̃).

We fix a large enough T > 0 so that for any s > T we have∣∣∣∣∂(ρ, θ)(t, ρ0, θ0)
∂(ρ0, θ0)

−
(

1 0
0 1

)∣∣∣∣� 1.

Now (26) becomes an injective map for every t > 0. We denote its inverse by

(ρ, θ) �→ (ρ0, θ0)(t; ρ, θ).

Let

Q(t; ρ0, θ0) = ψ(ρ0, θ0) +

t∫
0

[h((r, θ, ρ, ω)(u; ρ0ω0)

+〈r(t; ρ0, θ0), (∂uρ)(u; ρ, θ)〉 − 〈ω(t; ρ0, θ0), (∂uθ)(u; ρ, θ)〉]du.
Then the function

S(t, ρ, θ) = Q(t; (ρ0, θ0)(t; ρ, θ))

defined on Θ is the desired solution to the Hamilton–Jacobi equation (see, for
example, [4] Appendix A.3). Moreover,

(∂ρS)(t, ρ, θ) = r(t; ρ0(t, ρ, θ), θ0(t, ρ, θ)),
−(∂θS)(t, ρ, θ) = ω(t; ρ0(t, ρ, θ), θ0(t, ρ, θ)).
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The derivatives of S(t, ρ, θ)

∂j
ρ∂

α
θ ∂t

(
S(t, ρ, θ) − 1

2
tρ2

)
= ∂j

ρ∂
α
θ h̃(∂ρS(t, ρ, θ), θ, ρ,−∂θS(t, ρ, θ))

is a summation of the terms of the type

(∂l
r∂

β
θ ∂

k
ρ∂

γ
ωh̃)(∂ρS(t, ρ, θ), θ, ρ,−∂θ(t, ρ, θ))

×
l∏

i=1

∂ki
ρ ∂

βi

θ (∂ρS)(t, ρ, θ) ×
n−1∏
d=1

γd∏
j=1

∂
kd,j
ρ ∂

βd,j

θ (−∂θd
S)(t, ρ, θ)),

which belongs to O(〈t〉−m(l,β,k,γ)+l+(1−ε̃)|γ|) ⊂ O(〈t〉−ε). This shows (25). �

Finally, we extend S(t, ρ, θ) to a globally defined function on R×(0,∞)×
∂M which satisfies the same kind of estimates locally.

Theorem 13. Let h, h̃ be as in Lemma 11 defined on T ∗
R × T ∗∂M . Then

there exists a function S(t, ρ, θ) defined on T ∗
R × T ∗∂M such that for every

J � R\{0}, there exists T > 0 such that the Hamilton–Jacobi equation:

(∂tS)(t, ρ, θ) = h((∂ρS)(ρ, θ), θ, ρ,−(∂θS)(ρ, θ)) (27)

is satisfied for t > |T |, ρ ∈ J , and θ ∈ ∂M . Moreover, the function S satisfies
the following estimates:∣∣∣∣∂j

ρ∂
α
θ

(
S(t, ρ, θ) − 1

2
tρ2

)∣∣∣∣ ≤ C̃j,α〈t〉1−ε. (28)

Proof. First note that since ∂M is compact and the Hamilton–Jacobi equation
is defined in a coordinate invariant manner, we can extend U in Theorem 12
to ∂M . It is sufficient to consider the case J � (0,∞) and t > T , since we can
extend the function S in a C∞-fashion.

Take a sequence of open sets in (0,∞) such that

J0 � J1 � J2 � J3 � . . . ,

∞⋃
n=0

Jn = (0,∞).

First we solve the Cauchy problem for the Hamilton–Jacobi equation with
initial data

S(t, ρ, θ) =
1
2
tρ2 when ρ ∈ J1, t = T1 > 0

for a large enough T1 by Theorem 12 with U replaced by ∂M . We denote the
solution by S1. We can assume that S1 is defined on (T1,∞) × J0 × ∂M . S1

also satisfies (25) for ρ ∈ J1 and t ≥ T1.
Next we take χ1 ∈ C∞

0 (J1) equal to 1 in a neighborhood of J0 (the closure
of J0). We solve the Cauchy Problem with initial data

S(t, ρ, θ) = χ1S1 + (1 − χ1)
t

2
ρ2 when ρ ∈ J2, t = T2.

By taking T2 > T1 large enough, the right-hand side satisfies the conditions
for T2 in Theorem 12. So we can solve the Cauchy Problem for such T2. We
denote the solution by S2.
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Repeating this procedure, we obtain a sequence Sn of functions and a
sequence T1 < T2 < . . . such that Sn is defined on Jn × [Tn,∞) × ∂M ,

Sn+1 = Sm for m ≥ n+ 1 on Jn × [Tm,∞) × ∂M,

and satisfies (25). Thus by extending in a C∞ fashion, we can construct a C∞

function S which satisfies (27), and (25) for large enough t and ρ in any fixed
compact subset of (0,∞). �

3. Proof of Theorem 3

In this section, we give the proof of Theorem 3. First we give the outline of
the proof.

Outline of the Proof. We consider the t → +∞ case. By the density argument,
it is sufficient to show the existence of the norm limit

lim
t→∞ eitHJe−iS(t,Dr,θ)u

for all û ∈ C∞
0 ((R\{0}) × Uλ) for all λ. For such u, we have

1
i
e−itH ∂

∂t
[eitHJe−iS(t,Dr,θ)u] =

[
HJ − J

∂S

∂t
(t,Dr, θ)

]
e−iS(t,Dr,θ)u.

By the Cook–Kuroda method we only need to show that∥∥∥∥
[
HJ − J

∂S

∂t
(t,Dr, θ)

]
e−iS(t,Dr,θ)u

∥∥∥∥
H

∈ L1
t (1,∞).

We decompose[
HJ − J

∂S

∂t
(t,Dr, θ)

]

= [P0J − JP̃0] + VSJ + [V LJ − JV L] + J

[
P̃0 + V L(r) − ∂S

∂t
(t,Dr, θ)

]
.

Here we set

P̃0 = −1
2
j(r)H(θ)−1(∂r, ∂θ/r)H(θ)

(
1 + a1 a2

ta2 a3

)(
∂r

∂θ/r

)
j(r),

which is a symmetric operator on Hf . The first three terms are essentially
short-range terms. It is easy to check

‖[P0J − JP̃0] + VSJ + [V LJ − JV L]e−iS(t,Dr,θ)u‖H ∈ L1
t (1,∞). (29)

We examine the last term:

[P̃0 + V L(r) − (∂tS)(t,Dr, θ)]e−iS(t,Dr,θ)u

= h(r, θ,Dr,−∂S

∂θ
(t,Dr, θ))e−iS(t,Dr,θ)u

−h((∂ρS)(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ))e−iS(t,Dr,θ)u
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+
(1
r
aj
2Dr +

1
2r2

ajk
3

∂S

∂θk
(t,Dr, θ)

)
e−iS(t,Dr,θ))(∂θju)

− 1
2r2

ajk
3 e−iS(t,Dr,θ))(∂θj∂θku)

+ [short range terms].

Here we use pseudo-differential operators under the right-quantization: for a
function f(r, ρ) of r and ρ, we set

(f(r,Dr)u)(r) =
1
2π

∫
R

eirρf(r, ρ)û(ρ)dρ

where û(ρ) = (Fu)(ρ) is the Fourier transform of u with respect to the
r-variable. We apply the stationary phase method to the first two terms. Then
the first terms which appear in the asymptotic expansion will vanish since the
relation

(∂ρS)(t, ρ, θ) = r

gives the stationary point with respect to the ρ-variable. Therefore, we obtain

‖[P̃0 + V L(r) − (∂tS)(t,Dr, θ)]e−iS(t,Dr,θ)u‖Hf
∈ L1

t (1,∞). (30)

We give a detailed proof of (29) and (30) in the remaining of this section. �

First we consider the long-range term (30). The next proposition is our
key estimate.

Proposition 14. Assume the assumptions of Theorem 3. Suppose u satisfies
û ∈ C∞

0 ((R\{0}) ×Uλ) and J ×U is a neighborhood of supp û. Then we have∣∣∣∣
[
h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ)) − h̃

(
∂S

∂ρ
(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]

· e−iS(t,Dr,θ)u(r, θ)
∣∣∣ ≤ Ct−

1
2 −1−ε (31)

for ( r
t , θ) ∈ J × U � (0,∞) × ∂M , and∣∣∣∣
[
h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ)) − h̃

(
∂S

∂ρ
(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]

· e−iS(t,Dr,θ)u(r, θ)
∣∣∣ ≤ CN (1 + |r| + |t|)−N (32)

for any N and for ( r
t , θ) /∈ J × U .

Proof of (30). We fix a neighborhood J×U of supp û which appears in Prop-
osition 14. Then

∞∫
1

∥∥∥J[h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ)

)
− h̃
(∂S
∂ρ

(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]

×e−iS(t,Dr,θ)u
∥∥∥

H
dt
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=

∞∫
1

( ∫
R+×∂M

∣∣∣j(r)
[
h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ))

−h̃
(
∂S

∂ρ
(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]
e−iS(t,Dr,θ)u(r, θ)

∣∣∣2drH(θ)dθ
) 1

2
dt

≤
∞∫
1

( ∫
r
t
∈J

|j(r)[h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ))

−h̃
(
∂S

∂ρ
(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)
]e−iS(t,Dr,θ)u(r, θ)|2drH(θ)dθ

) 1
2

+
( ∫

r
t

/∈J

|j(r)
[
h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ))

−h̃
(∂S
∂ρ

(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]
e−iS(t,Dr,θ)u(r, θ)|2drH(θ)dθ

) 1
2
dt.

By (31), the first term is finite:
∞∫
1

( ∫
r
t ∈J

∣∣∣j(r)[h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ)

)

−h̃
(∂S
∂ρ

(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]

×e−iS(t,Dr,θ)u(r, θ)
∣∣∣2drH(θ)dθ

) 1
2
dt

≤
∞∫
1

( ∫
R∈J

|Ct− 1
2 −1−ε|2tdR

) 1
2
dt ≤ C

∞∫
1

t−1−εdt < ∞.

By (32), the second term is also finite:
∞∫
1

( ∫
r
t /∈J

∣∣∣j(r)[h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ)

)

−h̃
(∂S
∂ρ

(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]

×e−iS(t,Dr,θ)u(r, θ)
∣∣∣2drH(θ)dθ

) 1
2
dt

≤
∞∫
1

( ∫
r
t /∈J

C(1 + |r| + |t|)−Ndr
) 1

2
dt < ∞

Therefore,∥∥∥J[V L(r,Dr, θ) − V L
(∂W
∂ρ

(Dr, θ, t),Dr, θ
)]

e−iW (Dr,θ,t)u
∥∥∥

H
∈ L1

t (1,∞).

�
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In order to prove Proposition 14, we prepare a lemma.

Lemma 15. Let S(t, ρ, θ) satisfy the properties listed in Theorem 13. Set

fr,θ,t(ρ) :=
1
t
(rρ− S(t, ρ, θ)).

For ρ in any fixed compact subset of R\{0} and for large enough |t|, there
exists a function Ξθ,t(r) which gives the critical point of fr,θ,t(ρ):

∂ρfr,θ,t(ρ) = 0 ⇐⇒ ρ = Ξθ,t(r).

Set Ωd := (−d, d). Then there exist 0 < d̃ < d and a function φr,θ,t ∈
C∞(Ωd; R) such that Ω2d̃ � φr,θ,t(Ωd). Setting

ψr,θ,t(y) := Ξθ,t(r) + φr,θ,t(y),
(fr,θ,t ◦ ψr,θ,t)(y) = fr,θ,t(Ξθ,t(r)) + 〈Ar,θ,ty, y〉/2,

where

Ar,θ,t = (∂2
ρfr,θ,t)(Ξθ,t(r)),

we have

|∂k
yψr,θ,t(0)| ≤ Ct−ε (k ≥ 2), ∂yψr,θ,t(0) = 1. (33)

Proof. We only consider the t > 0 and ρ > 0 case. First we prove that Ξθ,t(r)
is well defined. Compute

0 = ∂ρfr,θ,t(ρ) =
1
t

[
r − ∂S

∂ρ
(t, ρ, θ)

]

We note that by (28), ∣∣∣1
t

∂2S

∂ρ2
(t, ρ, θ) − 1

∣∣∣ ≤ Ct−ε.

This implies that 1
t

∂S
∂ρ is monotonously increasing with respect to ρ for large

enough t. Thus there is a unique inverse function Ξθ,t(r) such that

(∂ρfr,θ,t)(Ξθ,t(r)) = 0

for large enough t and r
t ∈ J , a fixed compact subset of (0,∞).

Now we construct φr,θ,t and ψr,θ,t. We set

Ar,θ,t := f ′′
r,θ,t(Ξθ,t(r)) = −1

t

∂2S

∂ρ2
(t,Ξθ,t(r), θ).

Then (28) implies that

|Ar,θ,t + 1| ≤ Ct−ε.

Hence we have Ar,θ,t → −1 uniformly for r/t ∈ J . If we set

gr,θ,t(ρ) := frθ,t(Ξθ,t(r) + ρ),

then

g′
r,θ,t(0) := f ′

rθ,t(Ξθ,t(r)) = 0, g′′
r,θ,t(0) := f ′′

rθ,t(Ξθ,t(r)) = Ar,θ,t,

gr,θ,t(ρ) − gr,θ,t(0) = 〈Br,θ,t(ρ)ρ, ρ〉/2,
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where

Br,θ,t(ρ) := 2

1∫
0

gr,θ,t(sρ)(1 − s)ds, Br,θ,t(0) = Ar,θ,t

by Taylor’s formula. Now we compute

|Br,θ,t(ρ) −Ar,θ,t| = |Br,θ,t(ρ) −Br,θ,t(0)|

= 2
∣∣∣

1∫
0

(g′′
r,θ,t(sρ) − g′′

r,θ,t(0))(1 − s)ds
∣∣∣

≤ 2 sup
0≤s≤1

|g′′
r,θ,t(sρ) − g′′

r,θ,t(0)|

≤ 2 sup
0≤s≤1

∣∣∣1
t

∂2S

∂ρ2
(t,Ξθ,t(r) + sρ, θ) − 1

t

∂2S

∂ρ2
(t,Ξθ,t(r), θ)

∣∣∣
≤ Ct−ε → 0

as t → ∞, uniformly for r
t , ρ ∈ J by (28). Hence by taking t sufficiently large,

we may assume
∣∣Br,θ,t(ρ)
Ar,θ,t(ρ) − 1

∣∣ < 1/2 is uniformly very small. For such t, r
t ,and

ρ, we set

Xr,θ,t(ρ) :=

√
Br,θ,t(ρ)
Ar,θ,t

· ρ.

Then we have

gr,θ,t(ρ) − gr,θ,t(0) = 〈Ar,θ,tXr,θ,t(ρ),Xr,θ,t(ρ)〉/2.
Now we compute

(∂ρXt,θ,t)(ρ) =

(√
Br,θ,t(ρ)
Ar,θ,t

)′

· ρ+

√
Br,θ,t(ρ)
Ar,θ,t

· 1

=
1√
Ar,θ,t

2
√
Br,θ,t(ρ) ·B′

r,θ,t(ρ) · ρ+

√
Br,θ,t(ρ)
Ar,θ,t

· 1,

(∂ρBr,θ,t)(ρ) = 2

1∫
0

g′′′
r,θ,t(sρ)s(1 − s)ds,

|g′′′
r,θ,t(sρ)| = | − 1

t
(∂3

ρS)(t,Ξθ,t(r) + sρ, θ)| ≤ Ct−ε,

|∂ρXr,θ,t(ρ) − 1| ≤ Ct−ε.

Hence for small enough d0 > 0 and for |ρ| ≤ d0, we have |∂ρXr,θ,t(ρ) − 1|
arbitrary small for all large enough t, and Xr,θ,t : Ωd0 → Xr,θ,t(Ωd0) is a C∞-
diffeomorphism. We can pick d > 0 such that, Ωd ⊂ Xr,θ,t(Ωd0) for all r, θ,
large enough t, r

t ∈ J . Let φr,θ,t be the inverse map of Xr,θ,t with domain Ωd.
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Then we can also pick d̃ > 0 such that Ωd̃ ⊂ φr,θ,t(Ωd) for all r, θ, large enough
t, r

t ∈ J . We note that

gr,θ,t ◦ φr,θ,t(y) − gr,θ,t(0) = 〈Ar,θ,tXr,θ,t ◦ φr,θ,t(y),Xr,θ,t ◦ φr,θ,t(y)〉/2.
= 〈Ar,θ,ty, y〉/2.

We set

ψr,θ,t(y) = φr,θ,t(y) + Ξθ,t(r).

Then we have

fr,θ,t ◦ ψr,θ,t(y) = fr,θ,t(Ξθ,t(r)) + 〈Ar,θ,ty, y〉/2.
Last, we prove the estimates (33). For k ≥ 1,

|∂k
ρBr,θ,t(ρ)| = 2

∣∣∣
1∫

0

g2+k
r,θ,t(sρ)s

k(1 − s)ds
∣∣∣ ≤ 2 sup |g2+k

r,θ,t(sρ)|

≤ 2 sup
∣∣∣∣1t ∂2+k

ρ S(t,Ξθ,t(r) + sρ, θ)
∣∣∣∣ ≤ Ct−ε

by (28). We also have

|∂k
ρ

√
Br,θ,t(ρ)| ≤ Ct−ε.

Therefore,

|∂k
ρXr,θ,t(ρ)| ≤ Ct−ε (k ≥ 2), |∂ρXr,θ,t(0) − 1| = Ct−ε,

and we have

|∂k
yψr,θ,t(y)| = |∂k

yφr,θ,t(y)| ≤ Ct−ε (k ≥ 2),

|∂yψr,θ,t(0) − 1| = |∂yφr,θ,t(0) − 1| ≤ Ct−ε.

Then we complete the proof of Lemma 15. �

We quote a lemma from Hörmander [11]:

Lemma 16. Let A be a symmetric non-degenerate matrix with ImA ≥ 0. Then
we have for every integer k > 0 and integer s > n/2∫

u(x)eiω〈Ax,x〉dx − (det(ωA/2πi))−1/2Tk(ω)|

≤ Ck(‖A−1‖/ω)n/2+k
∑

|α|≤2k+s

‖Dαu‖L2 , u ∈ S (Rn),

Tk(ω) =
k−1∑
j=0

(2iω)−j〈A−1D,D〉ju(0)/j!.

Proof. See Lemma 7.3.3. of Hörmander [11] volume I. �
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Proof of Proposition 14. First we prove (31) for r
t ∈ J . We fix χ ∈ C∞

0 (R)
such that χ(x) = 1 if |x| ≤ 1

2 , and χ(x) = 0 if |x| ≥ 1. We split u into two
terms depending on r, θ, and t:

ûc
r,θ,t(ρ, θ) = û(ρ, θ)χ

(ρ− Ξθ,t(r)
d̃

)
,

ûd
r,θ,t(ρ, θ) = û(ρ, θ)

[
1 − χ

(ρ− Ξθ,t(r)
d̃

)]

where we use notations defined in Lemma 15. The support of ûc
r,θ,t is close to

the critical point of rρ − S(t, ρ, θ), while that of ûd
r,θ,t is apart from it. Note

that

suppûc
r,θ,t ⊂ Ξθ,t(r) + Ωd̃ ⊂ Ran(ψr,θ,t).

By a change of variables we have

h̃
(∂S
∂ρ

(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)
e−iS(t,Dr,θ)uc

r,θ,t(r, θ)

=
1

2π

∫
R

h̃
(∂S
∂ρ

(t, ρ, θ), θ, ρ,−∂S

∂θ
(t, ρ, θ)

)
eirρ−iS(t,ρ,θ)ûc

r,θ,t(ρ, θ)dρ

=
1

2π

∫
Ωd

h̃
(∂S
∂ρ

(t, ψr,θ,t(y), θ), θ, ψr,θ,t(y),−∂S

∂θ
(t, ψr,θ,t(y), θ)

)
ûc

r,θ,t(ψr,θ,t(y), θ)

·Jr,θ,t(y)e
itfr,θ,t(Ξθ,t(r))eit〈Ar,θ,ty,y〉/2dy

where Jr,θ,t(y) = |ψ′
r,θ,t(y)| is the Jacobian. Since

∣∣∣Dj
ρh̃
(∂S
∂ρ

(t, ρ, θ), θ, ρ,−∂S

∂θ
(t, ρ, θ)

)∣∣∣ ≤ Ct−ε,

we have

∣∣∣Dj
yh̃
(∂S
∂ρ

(t, ψr,θ,t(y), θ), θ, ψr,θ,t(y),−∂S

∂θ
(t, ψr,θ,t(y), θ)

)∣∣∣ ≤ Ct−ε,

∣∣∣h̃(r, θ, ψr,θ,t(y),−∂S

∂θ
(t, ψr,θ,t(y), θ))

∣∣∣ ≤ Ct−ε,

|Dj
yû

c
r,θ,t(ψr,θ,t(y), θ)| ≤ C,

|Dj
yJr,θ,t(y)| ≤ C,

for y ∈ Ωd, r
t ∈ J . Now we apply the stationary phase method (Lemma 16) to

the integral. In the asymptotic expansion of
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[
h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ)) − h̃

(∂S
∂ρ

(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]

·e−iS(t,Dr,θ)uc
r,θ,t(r, θ)

=
1
2π

∫
Ωd

[
h̃(r, θ, ψr,θ,t(y),−∂S

∂θ
(t, ψr,θ,t(y), θ))

−h̃
(∂S
∂ρ

(t, ψr,θ,t(y), θ), θ, ψr,θ,t(y),−∂S

∂θ
(t, ψr,θ,t(y), θ)

)]

·ûc
r,θ,t(ψr,θ,t(y), θ) · Jr,θ,t(y)eitfr,θ,t(Ξθ,t(r))eit〈Ar,θ,ty,y〉/2dy,

the terms in which h̃ is not differentiated will vanish since

∂S

∂ρ
(t, ψr,θ,t(0), θ) = r.

Especially, in the first step of the asymptotic expansion, we need to estimate
only the remainder terms. Therefore, we have

∣∣∣[h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ)

)
− h̃
(∂S
∂ρ

(t,Dr, θ), θ,Dr,−∂S

∂θ
(t,Dr, θ)

)]

· e−iS(t,Dr,θ)uc
r,θ,t(r, θ)

∣∣∣
≤ Ct−

1
2 −1
∑

|k|≤3

sup
∥∥∥Dk

y

[
h̃(r, θ, ψr,θ,t(y),−∂S

∂θ
(t, ψr,θ,t(y), θ))

−h̃
(∂S
∂ρ

(t, ψr,θ,t(y), θ), θ, ψr,θ,t(y),−∂S

∂θ
(t, ψr,θ,t(y), θ)

)]

·ûc
r,θ,t(ψr,θ,t(y), θ) · Jr,θ,t(y)

∥∥∥
L2

≤ Ct−
1
2 −1−ε.

We now consider ud
r,θ,t term.

h̃(r, θ,Dr,−∂S

∂θ
(t,Dr, θ))e−iS(t,Dr,θ)ud

r,θ,t(r, θ)

=
1
2π

( Ξθ,t(r)− 1
2 d̃∫

−∞
+

∞∫

Ξθ,t(r)+
1
2 d̃

)

h̃
(∂S
∂ρ

(t, ρ, θ), θ, ρ,−∂S

∂θ
(t, ρ, θ)

)
eirρ−iS(t,ρ,θ)ûd

r,θ,t(ρ, θ)dρ

We consider integration over ≥ Ξθ,t(r) + 1
2 d̃ only (the other part is similar to

prove). (28) implies

∂ρfr,θ,t(ρ) ≤ −C < 0,

|∂j
ρfr,θ,t(ρ)| ≤ Ct−ε, j ≥ 2
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in this region. Let y �→ hr,θ,t(y) be the inverse of ρ �→ fr,θ,t(ρ). Then

|∂yhr,θ,t(y)| ≤ C,

|∂j
yhr,θ,t(y)| ≤ Ct−ε, j ≥ 2.

By a change of the variables we obtain
∣∣∣

∞∫

Ξθ,t(r)+ 1
2 d̃

h̃
(∂S
∂ρ

(t, ρ, θ), θ, ρ,−∂S

∂θ
(t, ρ, θ)

)
eitfr,θ,t(ρ)ûd

r,θ,t(ρ, θ)dρ
∣∣∣

=
∣∣∣
∫

eityh̃
(∂S
∂ρ

(t, hr,θ,t(y), θ), θ, hr,θ,t(y),−∂S

∂θ
(t, hr,θ,t(y), θ)

)
ûd

r,θ,t(hr,θ,t(y), θ)

·|h′
r,θ,t(y)|dy

∣∣∣
≤ Ct−N .

We can show the same kind of estimations for h̃(r, θ,Dr,−∂S
∂θ (t,Dr, θ))

e−iS(t,Dr,θ)ud
r,θ,t(r, θ). We have ended the proof of (31).

Now we show (32). (28) implies that there exists J̃ such that 1
t

∂S
∂ρ ∈ J̃ � J

for large enough t. Thus the absolute value of the derivative of ρ �→ (rρ −
S(t, ρ, θ))/(|r|+|t|) is bounded below for r

t /∈ J , large enough t, and ρ ∈ suppû.
Thus we can apply the non-stationary phase method and obtain (32). �

Proof of (29), partial isometry, and intertwining property. First we consider
the short-range terms. On M̃0,

P0J − JP̃0 + V LJ − JV L = O(r− n−1
2 r−1−ε)∂r∂θ +O(r− n−1

2 r−2)∂2
θ

+
∑

j

O(r− n−1
2 r−1−ε)∂j

r .

These terms can be treated as a short-range perturbation of (1−ε) = μS type.
Hence on M̃0, P0J − JP̃0 + V LJ − JV L + V SJ is a finite sum of terms of the
form vj,α(r, θ)r− n−1

2 Dj
r∂

α
θ where vj,α satisfy∫

R+×Uλ

|vS
j,α(x)|2〈x〉−MG(x)dx < ∞,

∞∫
1

( ∫
(ρ,θ)∈J×U

|vS
j,α(tρ, θ)|2dρdθ

)1/2

t(1−ε)|α|dt < ∞,

for some neighborhood J × U of almost every (ρ0, θ0) ∈ R × ∂M . We assume
supp û ⊂ J × U .

We consider the differential operators with respect to θ-variable. ∂θ

e−iS(t,Dr,θ) yields (∂θS)(t,Dr, θ) terms which increase as t1−ε. Hence, as in
the long-range case, the inequalities (28) implies

|Dj
r∂

α
θ e−iS(t,Dr,θ)u(r, θ)| =

1
2π

∣∣∣
∫
R

∂α
θ [ei(rρ−S(t,ρ,θ))ρj û(ρ, θ)]dρ

∣∣∣
≤ Ct−

1
2+|α|(1−ε) (34)
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for ( r
t , θ) ∈ J × U , and

|∂j
r∂

α
θ e−iS(t,Dr,θ)u(r, θ)| ≤ CN (1 + |r| + |t|)−N (35)

for any N for ( r
t , θ) /∈ J × U . Thus we obtain for such vj,α

‖vj,α(r, θ)r− n−1
2 Dj

r∂
α
θ e−iS(t,Dr,θ)u‖H ∈ L1

t (1,∞),

which proves

‖([P0J − JP̃0] + V SJ + [V LJ − JV L]
)
e−iS(t,Dr,θ)u‖H ∈ L1

t (1,∞).

We have proved the existence of the modified wave operators.
(31), (32), (34), and (35) also show that W± are partial isometries from

Hf into H .
The intertwining property follows from

s-lim
t→∞(e−iS(t+s,Dr,θ) − e−iS(Dr,θ,t)e−isPf ) = 0 (36)

which can be proved using (28) and the dominated convergence theorem. The
proof of the theorem is complete. �
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[4] Dereziński, J., Gérard, C.: Scattering Theory of Classical and Quantum N-Par-
ticle Systems. Springer, Berlin (1997)

[5] Dollard, J.D.: Asymptotic convergence and the Coulomb interaction. J. Math.
Phys. 5, 729–738 (1964)

[6] Dollard, J.D.: Quantum mechanical scattering theory for short-range and Cou-
lomb interactions. Rocky Mt. J. Math. 1, 5–88 (1971)

[7] Donnelly, H.: Spectral of Laplacian on asymptotically Euclidean spaces. Michi-
gan J. Math. 46, 101–111 (1999)

[8] Froese, R., Hislop, P.: Spectral analysis of second-order elliptic operators on
noncompact manifolds. Duke J. Math. 58(1), 103–129 (1989)

[9] Froese, R., Hislop, P., Perry, P.: A Mourre estimate and related bounds for
hyperbolic manifolds. J. Funct. Anal. 98, 292–310 (1991)
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