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Abstract. We give an interpretation of the Ω deformed B-model that leads
naturally to the generalized holomorphic anomaly equations. Direct inte-
gration of the latter calculates topological amplitudes of four-dimensional
rigid N = 2 theories explicitly in general Ω-backgrounds in terms of mod-
ular forms. These amplitudes encode the refined BPS spectrum as well
as new gravitational couplings in the effective action of N = 2 super-
symmetric theories. The rigid N = 2 field theories we focus on are the
conformal rank one N = 2 Seiberg–Witten theories. The failure of holo-
morphicity is milder in the conformal cases, but fixing the holomorphic
ambiguity is only possible upon mass deformation. Our formalism applies
irrespectively of whether a Lagrangian formulation exists. In the class of
rigid N = 2 theories arising from compactifications on local Calabi–Yau
manifolds, we consider the theory of local P

2. We calculate motivic Don-
aldson–Thomas invariants for this geometry and make predictions for
generalized Gromov–Witten invariants at the orbifold point.

1. Introduction

Theories with N = 2 rigid supersymmetry provide examples in which non-per-
turbative properties of four-dimensional (4D) quantum theories can be studied
exactly. Their topological sector describes the exact low-energy gauge coupling,
the masses and the stability properties of BPS states. This data is encoded
geometrically, typically by a Seiberg–Witten curve Cg and the Seiberg–Witten
meromorphic differential λ [1,2], which makes it easily extractable and has led
to the discovery of many new phenomena, e.g. 4D QFTs with no Lagrangian
description. Irrespective of the existence of such a description, the geometrical
data of N = 2 rigid supersymmetric QFTs can be constructed from non-com-
pact Calabi–Yau manifolds M , where the role of λ is played by the Calabi–Yau
(n, 0)-form Ω. If Cg exists, it can be derived from M , and λ obtained from Ω.
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A non-compact CY manifold is a non-compact Kähler manifold, with a non-
vanishing holomorphic (n, 0)-form which is sufficiently regular at infinity. For
n = 3, this geometric engineering approach relates the topological sector of
the Type II string on M with the one of a 4D gauge theory. The genus one
sector determines the gauge coupling and the properties of the BPS spectrum,
while the moduli dependent coefficients of the higher genus expansion of the
topological string partition function compute exact gravitational couplings of
the 4D field theory.

Recently, much attention has been devoted to a refinement of the genus
expansion which takes the form

logZ(t,m, ε1, ε2) =
∞∑

n,g=0

(ε1 + ε2)n(ε1ε2)g−1F ( n
2 ,g)(t,m). (1.1)

This expression appeared first as an equivariant instanton partition function
of N = 2 SU(N) gauge theories in [3,4] and was generalized to arbitrary gauge
groups in [5,6]. The parameter t collectively denotes flat coordinates on the
vector multiplet moduli space, m the bare hypermultiplet masses, and ε1, ε2
are the equivariant rotation parameters acting on the 4D spacetime in the
so-called Ω-background [3,7]. Note that ε1, ε2 have mass dimension 1. Denot-
ing ε1ε2 = g2

s and s = (ε1+ε2)2, one can think of the Ω deformation as opening
up a new direction in the parameter space of the theory, parametrized by s.
We argue in this paper that this direction corresponds to insertion of a field
φ in the topological B-model. The generalization of the holomorphic anomaly
equations of [8] proposed in [9] follows from this interpretation. We develop
the direct integration approach [9–14] to the B-model further to explicitly
calculate (1.1) in terms of modular functions. The formalism applies to all
N = 2 rigid theories. We solve a selection of such theories, comprising both
non-conformal and conformal QFTs, including an example without an effec-
tive action description, as well as a topological string theory on a non-compact
Calabi–Yau manifold.

The spacetime interpretation of the amplitudes F (n,g) occurring in (1.1)
is that they compute gravitational couplings beyond the graviphoton-curvature
coupling captured by the conventional F (0,g) [15–17]. A fluxbrane realization
of the Ω-deformation has been given in [18].

In the A-model, (1.1) can be interpreted as a supersymmetric index which
counts refined BPS numbers for D2/D0 bound states on M associated to D2
branes with charge β ∈ Hcomp

2 (M,Z) labelled by the powers of et [19,20]. The
spacetime spin quantum numbers Spin(4) = SU(2)+ × SU(2)− are encoded
in the powers of ε± = 1

2 (ε1 ± ε2). Wall crossing properties of these invariants,
which are related to motivic Donaldson–Thomas invariants, have been studied
e.g. in [21,22]. Supersymmetry is not compatible with the ε+ rotation symme-
try unless it is twisted with an extra U(1)R-symmetry [3,7], which should be
realized as an isometry of M [23]. Since non-compact Calabi–Yau manifolds,
as opposed to compact ones, can have such an isometry, it is on these spaces
that the index can be defined. By relating the refined BPS numbers Nβ

j−j+ to
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modular functions, our formalism allows us to calculate them efficiently, see
Sect. 7.

Equation (1.1) has interesting limits. In the ε1 = −ε2 = igs limit, only the
F (0,g)’s contribute to (1.1), reproducing the ordinary genus expansion of the
topological string. The ε1 = 0, ε2 = � �= 0 limit collapses the genus expansion
to the g = 0 sector with, in the interpretation developed in this paper, n inser-
tions of a field φ. This is called the Nekrasov–Shatashvili limit. At ε1 = 0, the
4D super-Poincaré algebra is only partially broken and dimensional reduction
leads to a two dimensional theory with a two-dimensional (2D) super-Poincaré
algebra. Living at genus zero, W (t,m, �) = limε1→0 ε1 log(Z(t,m, ε1, ε2)) is
readily computed in the present formalism and calculates the twisted super-
potential of the 2D theory. It satisfies 1

2πi∂tiW (t,m, �) = ni with ni ∈ Z

and is identified with the Yang–Yang function of a quantum integrable system
[7,24,25]. Relations to non-commutative Riemann surfaces have been studied
in [23,26]. Properties of the NS limit will be investigated in this paper using
relations between modular functions to all orders in t in Sect. 6.

An explicit link between topological strings and matrix models was estab-
lished in [27]. Such matrix models possess deformations closely related to the
ε deformations studied here, taking the form Z = 1

N !(2π)N

∫
dNλ[D(λ)]−

ε1
ε2

e− 1
�

∑
i V (λi), e.g. with measure D(λ) =

∏
i<j(λi − λj)2 for the hermitian

case [28]. These refined N -matrix ensembles reduce to familiar ensembles in
certain limits: ε1 = − 1

2ε2 corresponds to the standard orthogonal ensemble,
and ε1 = −2ε2 to the symplectic ensemble [29]. While the remodelling descrip-
tion has not yet been extended to a refined version of the B-model (see [30]
for a discussion), the compatibility of the refined recursion and the generalized
holomorphic anomaly equations we will present and study in this paper has
already been established in the case of hyperelliptic curves y2 = p(x) when
the Seiberg–Witten differential is ydx [31]. Given matrix expressions for sums
over partitions, it is possible to write Nekrasov’s partition function as a matrix
integral [32]. Relations to integrable systems have been found [33].

As a final application of (1.1), we cite the Alday, Gaiotto, Tachikawa
correspondence [34] for SU(2) quivers, which relates gauge theory at (ε1, ε2)
to Liouville conformal field theory at central charge c = 1 + 6Q2, Q = b+ 1/b,
with parameter b =

√
ε1/ε2. 4D SU(N) quiver theories are expected to arise

as the worldvolume theory of N M5 branes on a Riemann surface Σg. It has
been argued that for such theories, a correspondence exists to 2D AN−1 Toda
theory [35]. However, in this 4D/2D correspondence, both sides are hard to
compute. Already in SU(3) quiver theories, the conformal theory with E6 fla-
vor symmetry [36] occurs as a building block in the pant decomposition of Σg,
just as the SU(2)Nf = 4 theories served as building blocks for SU(2) quiv-
ers [37]. The En conformal theories are associated by geometric engineering
to local del Pezzo surfaces. Since they do not admit a Lagrangian description,
they are currently inaccessible by any other means. We solve a two parameter
deformation of the E6-theory in Sect. 5.4.
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Regarding 4D gauge theories, the mass-deformed conformal theories are
the most interesting and challenging cases, and will therefore be the main
focus of the gauge theory portion of this paper. Gauge theories with funda-
mental matter become conformal when the number of flavors Nf equals twice
the rank of the gauge group. The asymptotically free theories with smaller
Nf can be reproduced from the conformal theory by taking multi-scaling lim-
its in which the masses and the inverse coupling are sent to infinity, holding
combinations of these quantities fixed; e.g. the τ → i∞,m4 → ∞ limit with
limτ→i∞,m4→∞ e2πiτm4 = Λ3 describes the flow from the conformal Nf =
4SU(2) Seiberg–Witten theory to the asymptotically free Nf = 3 theory, with
Λ3 the QCD scale of the latter. Deriving the Seiberg–Witten curves for the
mass-deformed conformal theories is more challenging than for the asymp-
totically free theories, as the curve depends on an additional dimensionless
parameter, the UV coupling. The definition of this coupling is ambiguous, and
we re-discuss the curves proposed in [2] with regard to this ambiguity. The
conformal limits of these theories at vanishing mass deformation prove to have
several peculiarities. Technically most far reaching is the fact that the gap
conditions, which are necessary boundary conditions to solve the holomorphic
anomaly equations by fixing the holomorphic ambiguity, rely on the non-con-
formal light spectrum at nodal singularities of the Seiberg–Witten curve, and
are trivial in the case of conformal theories. We are hence required to mass-
deform the conformal theories to apply our techniques of direct integration,
and then recover the conformal amplitudes in the massless limit. Interest-
ingly, this leads to different results for the N = 4 and Nf = 4 theory, even
though they have the same Seiberg–Witten curve and (up to a normaliza-
tion) differential. In the Nekrasov–Shatashvili limit, however, i.e. at genus 0,
the amplitudes of the two theories are related by a simple rescaling of the a
parameter.

While the UV parameters for the gauge-coupling as well as the mass
parameters depend on various choices, some of them have been unfortunate in
the literature as they unnecessarily break the underlying symmetries.

We find a systematics in the breaking of holomorphicity in the infrared,
summarized in Table 1.

Beside SU(2)N = 2 gauge theory with Nf = 4 massive flavors and D4

flavor symmetry, the more exotic theory with E6 flavor symmetry and the
N = 2∗ theory, we also study conformal limits of the massive Nf = 1, 2, 3
theories with A0, A1 and A2 flavor symmetry. We explain in general why the
leading power in the anholomorphic generator grows more slowly in the con-
formal as compared to the non-conformal theories. In this sense, the breaking
of holomorphicity is weaker in conformal theories.

2. The Holomorphic Anomaly Equations

In this section, we discuss and generalize the holomorphic anomaly equations,
which where first derived from the worldsheet point of view in [8]. They were
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Table 1. Breaking of holomorphicity (modularity) by the
almost holomorphic (quasimodular) generator X, for the
amplitudes F (n,g) of various physical theories

Ampl. n Theory Max. power anhol. Gen. Recursion

F (n,g) φ Ω−background: generic X3g+2n−3 (2.7)

F (n,g) φ Ω−background: conformal Xg+n−1 (2.7)→(3.5)

F (g) – Top. String: generic [11,12] X3g−3 BCOV

F (g) – Top. String: Enriques-CY [12] Xg−1
basis, X

2g−1
fibre BCOV

F (n,g) φb Top. String: ell. del Pezzo [38] Xn+g−1 (1.4) in [38]

F (n,0) φm m deform. N= 2* [39] Xn−1 (2.27) in [39]

F (g) – Hurwitz # on T 2, 2d QCD [40] X3g−3 Unknown
The insertions of the operator φ∗ are counted by n. In the case relevant for the

Ω-deformation, φ∗ is the operator φ discussed in Sect. 2.3. For the theory discussed in [38],
φb corresponds to the modulus of the base of the elliptic fibered del Pezzo. This is closely

related to the insertions of the mass operator φm treated in [39]

interpreted as describing the transformation of a wave function under sym-
plectic basis changes in H3(M,R) in [41], with the partition function Z =
eF playing the role of the wave function. The relation between the holomor-
phic anomaly and target space modularity was developed in [10,42] and led,
upon imposing suitable boundary conditions, to the direct integration method
[9,11,12,14].

2.1. The BCOV Holomorphic Anomaly Equations

Naively, BRST invariance guarantees that the topological string partition func-
tion is a holomorphic function on the moduli space of the theory. The argument
for the B-model is the following: the partition function is an integral over the
compactified moduli space Mg of genus g Riemann surfaces Σg,

F g(t) =
∫

Mg

〈
3g−3∏

k=1

βkβ̄k

〉

g

· [dm ∧ dm̄], (2.1)

where βk =
∫
Σg
G−μk, β̄k =

∫
Σg
Ḡ−μ̄k contain the worldsheet Beltrami differ-

entials μk ∈ H1(TΣg) with corresponding deformation coordinate mk and the
worldsheet supersymmetry generators G−, Ḡ−. The contraction of the mk, m̄k

with the genus g worldsheet correlator gives a real 6g−6 form on Mg. Deriva-
tives with regard to anti-holomorphic variables (on which the action underlying
the expectation value 〈·〉g depends) lead to the insertion of BRST trivial opera-
tors, thus suggesting the vanishing of the expectation value. As noted in [8,43],
this argument fails due to contributions from the boundary of moduli space:
BRST trivial operators correspond to exact forms, and the integral over these
receives contributions from the boundary of the integration domain.

Rather than being a nuisance, the holomorphic anomaly, as the anti-
holomorphic dependence of the partition function was christened in [43], gives
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rise to a recursion relation between the topological string amplitudes at differ-
ent genera,

∂̄ı̄iF
g =

1
2
C̄jkı̄

(
DjDkF

g−1 +
g−1∑

h=1

DjF
hDkF

g−h
)
, g > 1, (2.2)

where C̄ijı̄ = e2KGjj̄Gkk̄Cı̄j̄k̄ contains the Kähler potential K, the metric Gjj̄,
and the complex conjugate of the three-point function Cijk. The latter data
is determined at genus zero and related by special geometry. The recursion
begins with F 1, which satisfies its own holomorphic anomaly equation in terms
of special geometry data (see next section),

∂i∂̄j̄F
1 =

1
2
CijkC

jk
j̄

− χ− 1
24

Gij̄ . (2.3)

These equations, fortified with modularity and appropriate boundary con-
ditions, can be used to integrate the topological string partition function
[11,12,14,44]. The origin of the two terms on the right hand side of (2.2)
is easily recognizable: the worldsheet degenerates at the boundary of moduli
space. Pictorially, this corresponds to cycles of the Riemann surface pinching.
If the pinched cycle does not sever the Riemann surface in two, we are left
with a Riemann surface with genus reduced by 1. This is the origin of the
first term in (2.2). If, by contrast, the pinched surface becomes disconnected,
leaving two surface components of genus h and g − h, respectively, this gives
rise to the second set of terms in the above equation.

2.2. The Generalized Holomorphic Anomaly Equations

To obtain a similar sets of equations governing the behavior of the partition
function in an Ω-background, we would like to argue that in the expansion of
the free energy given in (1.1), upon setting s = (ε1 + ε2)2 and g2

s = ε1ε2,

F (s, t, gs) = logZ =
∞∑

n,g=0

s
n
2 g2g−2
s F ( n

2 ,g)(t), (2.4)

the power of s counts the number of insertions of an operator O in the genus
g amplitude F ( n

2 ,g)(t). For this interpretation to be possible, n ∈ 2Z must
hold. This condition also follows from the interpretation of the amplitudes as
generating functions for the BPS degeneracies Nβ

j−j+ , as a Schwinger loop cal-
culation (see (3.38) in Sect. 3.7) implies that F is even under simultaneous
sign flip of ε1 and ε2 [9]. Naively, n ∈ 2Z is incompatible with the Nekrasov
expansion for certain gauge theories with flavor. However, it was pointed out
in [19,45–48] that the masses m̂i in the Nekrasov expansion should be redefined
in terms of physical masses

m̂i = mi +
ε1 + ε2

2
. (2.5)
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This redefinition eliminates the odd terms in the expansion.1 Moreover, it
is the amplitudes F (n,g) defined upon shifting the masses that have natural
modular properties (natural in the sense that assigning complicated transfor-
mations to the masses is not necessary). The physical masses mi are also the
ones featuring in the AGT correspondence.

In [49], a different generalization of the holomorphic anomaly equations
referred to as extended holomorphic anomaly equations was proposed, which
does generate odd terms and reproduces the Nekrasov partition function in
terms of the m̂i. It involves the so-called Griffiths infinitesimal invariant which
appears in open topological string theory. However, since the latter has no easy
modular interpretation, it is not naturally incorporated in the direct inte-
gration formalism, which relies on almost holomorphic generators in the real
polarisation with a non-holomorphic modular completion in the holomorphic
polarisation [42].

Without a string theory definition of the partition function (1.1), one
cannot follow the same route as [8] to derive holomorphic anomaly equations
for the amplitudes F (n,g). Instead, in [9], a very simple generalization of the
holomorphic anomaly equations was conjectured, then checked by computing
the partition function of the topological string on local Calabi–Yau threefolds
as well of asymptotically free massless Seiberg–Witten gauge theories, which
arise in a field theory limit of compactifications on certain local Calabi–Yau
geometries [50]. These generalized holomorphic anomaly equations take the
form

∂̄īF
(n,g) =

1
2
C̄jk
ī

⎛

⎝DjDkF
(n,g−1) +

∑

m,h

′
DjF

(m,h)DkF
(n−m,g−h)

⎞

⎠,

n+ g > 1, (2.7)

where the prime denotes omission of (m,h) = (0, 0) and (m,h) = (n, g) in the
sum. The covariant derivatives will be explained in the next section. The first
term on the right hand side is set to zero if g = 0.

The Eq. (2.7) has passed checks in a variety of physical systems in the
existing literature: topological string theory on the non-compact Calabi–Yau
spaces O(−3) → P

2 and O(−2,−2) → P
1 × P

1 [9], matrix models with the
Eynard–Orantin recursion [31], and SU(2) Seiberg–Witten theory with Nf =
0, 2 [9,49]. In the upcoming sections, we will further extend this list, and pro-
vide various checks of our results. Here, assuming that the conjecture is correct,

1 More precisely, this is true for all F ( i
2 ,j) with odd i save F ( 1

2 ,0). For this latter case, the
instanton part vanishes for Nf = 1, 2, is a constant independent of the flat coordinate a for
Nf = 3, and for the Nf = 4 case we observe

F
( 1
2 ,0)

instanton =
1

2
log(1 − q)

4∑

i=1

mi. (2.6)

These expressions however do not enter the integration of the holomorphic anomaly equa-
tions.
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we would like to extract lessons regarding the form an underlying microscopic
worldsheet description of the Ω-background must take.

The generalized equations are reminiscent of the holomorphic anomaly
equations derived in [8] for correlators. Indeed, consider a genus g amplitude
with n field insertions

F (n,g)(t) =
∫

Mg

〈
On

3g−3∏

k=1

βkβ̄k

〉

g

· [dm ∧ dm̄]. (2.8)

To preserve conformal invariance, the operator O should take the form of a
2-form field integrated over the Riemann surface O =

∫
Σg
φ(2), where φ(2)

emerges as usual by the descent equations from a 0-form field φ(0). These
insertions must correspond to the appropriate vertex operators inducing the
Ω-background deformation from the worldsheet point of view. The arguments
underlying the holomorphic anomaly equations (2.2) can now be repeated with
Mg replaced by the moduli space of punctured Riemann surfaces, Mg,n. The
pinchings that disconnect the worldsheet must here be distinguished by how
the punctures are divided among the two resulting surface components. This
gives rise to the second sum on the right hand side of (2.7). Note that the
covariant derivatives are not modified, indicating that contact terms between
the operator φ(0) and the marginal moduli field operators φ(0)

i should not exist.
Other boundary components of Mg,n can contribute due to short distant sin-
gularities φ(0)(z)φ̄(0)

ı̄ (w) ∼ G0ı̄

|z−w|2 as z → w, where the index 0 in the two-point
correlator G labels the operator φ(0). As no such contributions arise in (2.7),
we must also require G0ı̄ = 0 as a condition on φ(0).

For the case g = 0, we conjecture

F (n+1,0) = 〈φ(0)(0)φ(0)(1)φ(0)(∞)On〉g=0. (2.9)

Note in particular that this identification implies that F (1,0) is holomorphic, as
the boundary of the moduli space M0,n is due solely to coincident punctures,
and 3 points can be fixed by SL(2,C) transformations to arbitrary values, as
indicated in (2.9).

2.3. The Local Limit and a Proposal for the Insertion φ

A hint towards the nature of the worldsheet insertion φ which induces the Ω-
background comes from the observation that this deformation requires taking
the local limit of the target space Calabi–Yau manifold.

The theory underlying the topological string is twisted N = 2 super-
conformal field theory coupled to topological gravity. Of all the operators
in this theory, U(1) charge conservation only permits non-vanishing corre-
lation functions involving the marginal fields of the matter sector and the first
gravitational descendant of the puncture operator, the dilaton, in the gravity
sector. The coordinate directions on moduli space, denoted by ti above, corre-
spond to the marginal fields. The dilaton plays an important structural role in
the topological string, via its contact terms with the marginal operators: The
holomorphic (3,0)-form Ω on a compact Calabi–Yau manifold M is a section
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of a line bundle L (called the vacuum line bundle in [8]) over the moduli space
M of complex structures on M . The cohomology class of the Kähler form K
on this moduli space is the Chern class of the line bundle, hence K = i

2π∂∂̄K
in terms of the Kähler potential K(t, t̄) = log i

∫
M

Ω ∧ Ω̄. The choice of section
induces a metric on the line bundle, with connection ∂K. The physical manifes-
tation of this geometric setup is that holomorphic coordinate transformations
on the line bundle L,

Ω → e−f(t)Ω, (2.10)

induce Kähler gauge transformations on the Kähler potential K,

K(t, t) → K(t, t̄) − f(t) − f̄(t̄). (2.11)

Insertions of operators inducing marginal deformations naively correspond to
taking derivatives with regard to the appropriate coordinates. Contact terms of
the operators amongst themselves however covariantize this derivative; acting
on a correlation function of k operators, one obtains the covariant derivative
on the bundle SymkT (1,0)M. Contact terms of the insertion with the dilaton
operator covariantize the derivative further, with regard to the connection ∂K
on L [8]. In total, one obtains

Dt = ∂t − (Γt)k − (2 − 2g)∂tK. (2.12)

In particular, this reasoning allows one to deduce that the topological string
amplitudes F g on compact Calabi–Yau manifolds are sections of the line bun-
dle L2−2g.

In the local limit of Calabi–Yau manifolds, the line bundle L becomes
flat. In this limit, the contact terms between the dilaton and the marginal
fields must hence vanish. The dilaton thus becomes a candidate for the field
φ. A question we have not addressed in this section is the implication of such
insertions for the physical string. The study of this question is under way [51].

The local Calabi–Yau setting may also offer some insight into the mass
shift (2.5). A general feature of the non-compact limit is that the holomor-
phic (3,0)-form Ω reduces to a meromorphic form λ with a distinguished
non-vanishing residue. This corresponds to the constant solution of the
Picard–Fuchs operator D (an example of such an operator can be found in
Sect. 7 in Eq. (7.3)), which we may normalize to

∫

γp

λ =
√
s. (2.13)

The 3-cycle of M which degenerates to γp ∈ H1(C1\{p},Z) is the T 3 of the
Strominger–Yau Zaslow construction, whose period corresponds to D0-brane
charge at the large-volume point in which the non-compact limit is taken. In
the geometric engineering limit with bare hypermultiplet masses, other resid-
ual

∫
γi
λ = mi appear as limits of A-cycles in a symplectic basis of H3(M,Z)

whose associated Kähler moduli ti become non-dynamical in the field theory
limit [50]. From this point of view, (2.5) is just a linear transformation on
H1(C1\{p, pi},Z). Since γp in (2.13) is singled out in the construction, one has
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a canonical choice of residue to identify with
√
s. In order for the action of

the symplectic monodromy group on H3(M,Z) to descend naturally to the
non-compact limit, the classes of A-cycles must descend to non-intersecting γp
and γi, respectively. Up to flavor symmetries, this defines the choice of physi-
cal masses in the B-model. Starting with a random choice from the geometric
point of view, redefinitions like (2.5) might be necessary in order to make the
underlying symplectic symmetries of the theory manifest.

Finally, as we will elucidate in Sect. 3.6, the prepotential of the Ω-unde-
formed N = 2∗ theory in the treatment of [52] exhibits close parallels to the
F (n,0) amplitudes studied in this paper. The deformation in [52] is that of
N = 4 theory by insertion of a mass operator φm, and the prepotential in an
expansion in the mass can be shown to satisfy the same holomorphic anomaly
equations as F (n,0), see Eq. (3.36). The similarity between the two theories
is what motivated in part the conjecture (2.13), in particular the square root
which mimics the relation between the residue ∼ m in the N = 2∗ theory, and
the expansion parameter m2 of [52].

2.4. The Wave Function Transformation of Z

Following the logic presented above, we can define higher point correlation
functions as

F
(n,g)
i1,...,im

=
∫

Mg

〈
On

m∏

l=1

Oil

3g−3∏

k=1

βkβ̄k

〉

g

· [dm ∧ dm̄]. (2.14)

In the following equations, we will assume that the non-compact limit has been
taken, such that the operator φ does not have contact terms with the chiral
operators φik . Insertions of φik hence still correspond to covariant differentia-
tion, also in the presence of φ insertions,

F
(n,g)
i1,...,im

= Di1 . . . DimF
(n,g). (2.15)

As the Kähler line bundle becomes trivial in the non-compact limit, the covari-
ant derivative is with regard to the bundle T (1,0)M and its symmetric powers.
The correlation functions satisfy a simple generalization of the holomorphic
anomaly equations of [8],

∂

∂t̄ı̄
F

(n,g)
i1,...,im

=
1
2
Cjkı̄

×

⎛

⎜⎜⎝F
(n,g−1)
i,j,i1,...,im

+
∑

g′+g′′=g
n′+n′′=n, m′+m′′=m

1
m′!m′′!

F
(n′,g′)
i,iσ(1),...,iσ(m′)

F
(n′′,g′′)
j,iσ(1),...,iσ(m′′)

⎞

⎟⎟⎠

− (2g − 2 +m− 1)
m∑

r=1

Gı̄irF
(n,g)
i1,...,ir−1ir+1...im

. (2.16)
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Note that in this sum (m′, g′) run from (0, 0) to (m, g) and for g′ = 0 or g′ = g
either n > 0 or m > 3. Defining

W (gs, s, x, t, t̄) =
∞∑

n,g=0

∞∑

m=0

g2g−2
s

1
m!
F

(n,g)
i1,...,im

xi1 . . . ximsn, (2.17)

the holomorphic anomaly equations for the F (n,g)
i1,...,in

can be summarized by a
heat kernel like equation for exp(W ),

Dheat exp(W )

=
[
∂

∂t̄ı̄
− g2

s

2
C̄jkı̄

∂2

∂xj∂xk
−Gı̄jx

j

(
gs

∂

∂gs
+ xk

∂

∂xk

)]
exp(W ) = 0. (2.18)

Applying the heat kernel operator to exp(W ), evaluating at x = 0, and invok-
ing (2.15) yields

Dheat exp(W )|x=0 =
[
∂

∂t̄ı̄
− g2

s

2
C̄jkı̄ DiDj

]
Ψ = 0. (2.19)

As observed in [41], this equation supplemented by the fact that Ψ = exp(F )
is a holomorphic function in t̄ı̄, considered as a new variable, independent from
the ti, is equivalent to the infinitesimal wave function transformation property
of Ψ = exp(F ). In fact, as explained in [41], the fact that Dheat defines a pro-
jectively flat connection on the simply connected space of base points can be
used to (projectively) identify all wave functions defined upon such a choice
of base point, thereby restoring background independence of the topological
string.

We will need the wave function transformation property to extract the
generalized orbifold Gromov–Witten invariants of local P

2 from our modular
expressions in Sect. 7.2.2. In particular, the arguments of [42] that the change
from real to holomorphic polarisation of the wave function corresponds to
the change from quasimodular to almost holomorphic functions extend to the
refined case, consistent with the modular invariant form of the F (n,g) in terms
of Ê2 in holomorphic polarisation.2 The holomorphic limit of the counting
function F in various regions of moduli space is obtained as follows. One uses
the wave function transformation to change to the symplectic basis appropri-
ate for the definition of local flat coordinates in terms of the global symplectic
basis of H1(Cg,Z). In the new local flat coordinates, one uses the wavefunction
transformation of Z again to change to the real polarisation in which F is a
holomorphic counting function.

2 This is not true for the results obtained with the holomorphic anomaly of [49] as it generally
breaks modular invariance.
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3. Integrating the Holomorphic Anomaly Equations

In this section, we will discuss the integration of the holomorphic anomaly
equations (2.7) for rigid N = 2 theories. The most familiar member of this
class are N = 2 Seiberg–Witten gauge theories. The data defining such a the-
ory with gauge group SU(r+1) is a family of Riemann surfaces Cr(u) of genus
r parametrized by u1, . . . , ur moduli and a meromorphic (1,0)-differential λ of
the third kind with the property dλ

dui
= ωi, i = 1, . . . , r, with {ωi} furnishing a

basis of the holomorphic 1-forms spanning H1(Cr).
For ease of exposition, we will use the gauge theory language in this

section. The formalism discussed applies however without modification to the
B-model description of the topological string on local Calabi–Yau geometries,
irrespectively of whether the geometry can be reduced to a Riemann surface
and the holomorphic (3,0)-form to a meromorphic differential.

We will mainly focus on the gauge group SU(2), and correspondingly on
local Calabi–Yau threefolds with genus 1 mirror curves, such as for example
the total spaces O(−KS) → S of the anticanonical line bundles over del Pezzo
surfaces S. The direct integration formalism extends also to the higher rank or
higher genus case, but concrete computations then require deriving and solving
Picard–Fuchs equations, a complication we circumvent in the rank one/genus
one case by using well-known general formulae for periods of elliptic curves.
Aside from N = 2 gauge theories [14,53] and topological string theory on non-
compact Calabi–Yau geometries [44], the original formalism has been applied
to matrix models with more than two cuts and polynomial potentials [54]. The
F (n,g) for the latter theories should also be covered by the formalism described
below.

3.1. Rigid Special Kähler Geometry

The Coulomb branch or vector multiplet moduli space of N = 2 supersymmet-
ric Yang–Mills theory is a Kähler manifold governed by rigid special geometry.
In particular, this implies that the Kähler metric on this space is derived from
a holomorphic function F (0,0) called the prepotential. This is the leading quan-
tity appearing in (1.1). From the topological string perspective, it is determined
from the genus zero sector of the theory. The vector multiplet moduli space is
coordinatized by the expectation value of the adjoint scalar field u = 1

2Tr(φ2)
sitting in the N = 2 vector multiplet. Locally, a flat coordinate t can be intro-
duced on this moduli space which plays a crucial role in describing the IR
physics.3 Geometrically, the flat t coordinate is determined in the neighbor-
hood of a singularity by the period of C1(u) with the most regular behavior

3 The connection vanishes in this coordinate in the holomorphic limit; more on this limit
below.
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at the singularity. The dual coordinate tD is geometrically the symplectically
dual period. In terms of the prepotential, it is given by4

tD = − c0

2πi

∂F (0,0)

∂t
with

{
c0 = 1 theory with fundamental matter,

c0 = 2 theory without fundamental matter.
(3.1)

The flat coordinate defined in the neighborhood of the singular point cor-
responding to weak coupling of the non-abelian gauge theory is called a by
Seiberg and Witten, and its dual aD.5 The gauge coupling and theta angle of
the gauge theory are conveniently combined into a complex gauge coupling τ ,

τ =
1
c0

(
θ

π
+

8πi
g2

)
. (3.2)

In terms of the local flat coordinate, the exact IR complex gauge coupling of
the theory is given by

τ = − c0
2πi

∂2F (0,0)

∂t2
=
∂tD
∂t

. (3.3)

The Kähler metric on the moduli space follows from the Kähler potential
Re (t̄∂tF (0,0)) via

Gtt̄ = 2∂t∂t̄Re (t̄∂tF (0,0)) =
4π
c0
τ2. (3.4)

The three-point function, which already made an appearance in the holomor-
phic anomaly equations in the previous section, is the third derivative of the
prepotential,

Cttt =
∂3F (0,0)

∂t3
= −2πi

c0

∂τ

∂t
. (3.5)

Note that it is this quantity, rather than the prepotential, which most readily
is computed from the topological string [8] as a three point correlator on a
sphere. As the moduli space of the three punctured sphere is a point (hence
has no boundary), the three point function and hence F (0,0) is a purely holo-
morphic section over the moduli space.

We take the existence of F (0,0) with the local Eqs. (3.3), (3.4), and (3.5)
as the definition of rigid special geometry. In addition, we have a symplectic
electric/magnetic charge lattice spanned locally by t and tD.

4 The different normalizations for theories with and without fundamental matter come about
due to the rescaling ne → 2ne in the presence of fundamentals, to avoid half integral charges,
see [1]. While the physics is of course invariant under the choice of normalization of ne, the
Seiberg–Witten curve depends sensitively on it, as the monodromy group does. The overall
normalization of the prepotential trickles down into the holomorphic anomaly equations, it
is coupled to the normalization of the central charge which enters the gap condition. In par-
ticular, changing the normalization of the prepotential by rescaling c0, c0 → k c0, requires
rescaling t in Eq. (3.51) by t → t√

k
.

5 We will distinguish strictly between the weak coupling periods (aD, a) and general periods
(tD, t) in this subsection. In the following subsections, to conform to existing literature, we
will generically use the letter a in our discussions of field theory and the letter t in the
context of string theory.
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3.2. The Family C1(u), its Periods, and its Degenerations

In N = 2 theories with fundamental matter of bare masses mi, the masses
of BPS states of electric, magnetic, and U(1) flavor charge (ne, nm, Si) follow
from the central charge formula6

Z = nea+ nmaD +
∑

i

Si
mi√

2
, (3.6)

by m = |Z|. The flat parameter t and its dual tD in the limit of vanishing
bare masses mi can be identified with the periods of the meromorphic 1-form
λ along an appropriately chosen7 symplectic basis (ΣA,ΣB) of H1(C1,Z),

t =
∫

ΣA

λ, tD =
∫

ΣB

λ. (3.7)

Upon considering mi �= 0, the bare masses appear linearly and with an integer
structure in the residua of the meromorphic form λ as Resλ = nimi

2πi
√

2
with

ni ∈ Z. The integrals (3.6) then no longer merely depend on the homology
class of the integration path.

The fundamental relation
dλ
du

= ω, (3.8)

with ω denoting the holomorphic 1-form of the curve, together with the special
geometry relation (3.3) determining the IR gauge coupling of the theory yields

τ =
dtD
dt

=
dtD
du

/
dt
du

=

∫
ΣB

ω
∫
ΣA

ω
. (3.9)

The ratio of two symplectically dual periods of the holomorphic 1-form ω of the
curve takes values in the upper half-plane, ensuring the positivity of the gauge
coupling by the above identification. This ratio determines the complex struc-
ture of the curve up to SL(2,Z) transformations. Note that unlike (tD, t),
the derivatives (dtD

du ,
dt
du ) do not pick up path dependence upon considering

mi �= 0.
The periods of the holomorphic 1-form on elliptic curves are readily cal-

culable starting from the Weierstrass form of the curve

y2 = 4x3 − g2(u)x− g3(u). (3.10)

We have indicated only the dependence on the global coordinate u of the mod-
uli space of the theory explicitly. In Seiberg–Witten theory, the curve depends
in addition on either the UV parameter quv = exp(2πiτuv) in conformal cases

6 Note that this formula is written in terms of (aD, a) rather than (tD, t), as the charges are
defined with regard to the weak coupling point. Due to monodromy, they are not uniquely
defined in the interior of moduli space.
7 A different choice of basis will generically be required in the neighborhood of each singular
point in moduli space in order to guarantee that the regular period t is the period along the
A cycle.
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or the renormalization scale Λ in asymptotically free cases, and potentially the
bare masses mi of the matter hypermultiplets in the theory. A quartic curve

y2 = a x4 + 4b x3 + 6c x2 + 4d x+ e (3.11)

can be brought to Weierstrass form via a variable redefinition [55], such that

g2 = ae− 4bd+ 3c2,

g3 = ace+ 2bcd− ad2 − b2e− c3.
(3.12)

Note that g2 and g3 are not absolute invariants of a curve; under a rescaling
of x by r, they scale as

g2 → r2g2, g3 → r3g3. (3.13)

For all ensuing computations involving g2 and g3, care must be taken to work
with a consistent normalization throughout.

As introduced above, a parameter τ equal to the ratio of two symplectical-
ly dual periods of the holomorphic 1-form ω completely specifies the complex
structure of an elliptic curve. Two such tau parameters related by an SL(2,Z)
transformation describe the same complex structure. A more easily accessible
quantity encoding the complex structure is the J-invariant of the curve. When
the latter is given in Weierstrass form (3.10), the J-invariant is computed via

J =
g2(u)3

Δ(u)
, (3.14)

where Δ is the discriminant of the curve,

Δ(u) = g2(u)3 − 27g3(u)2. (3.15)

Unlike g2 and g3, J is an absolute invariant of a curve. It is related to the tau
parameter via a quotient of Eisenstein series of weight 4 and 6,

J(τ) =
E4(τ)3

E4(τ)3 − E6(τ)2
. (3.16)

As the RHS is a quotient of modular forms of weight 12, J in fact descends
to a function on the SL(2,Z) orbits of τ . As such, it contains less information
than the gauge coupling of the theory.

At weak coupling, corresponding to τ → i∞, the J-invariant has the
expansion

j(τ) = 1728J(τ) =
1
q

+ 744 + 196884q + 21493760q2

+864299970q3 + O(q4), (3.17)

where we have introduced the quantity q = exp(2πi τ).
The moduli space of the theory is parametrized globally by the parame-

ter u. Locally, τ or t can serve as coordinates, but both undergo monodromy
upon circling points in moduli space at which the curve degenerates. As t as
well as its dual coordinate tD are periods of the Seiberg–Witten differential,
they satisfy the Picard–Fuchs differential equations. For Seiberg–Witten the-
ory with Nf = 1, 2, 3 massive flavors, these degree 3 differential equations
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can be found in [56,57]. However, it is more convenient to use the well-known
formulae for the periods of the holomorphic differential ω involving modular
forms and compute the relevant periods of λ by integration. At degeneration
points u0 in the moduli space at which J(u0) = ∞, i.e. Δ(u0) = 0, ω develops
a period with a logarithmic singularity, while the dual period is finite [55].
Such points hence exhibit monodromy of infinite order. Physically, this is an
indication that a particle in the spectrum of the theory is becoming massless.
The finite period is uniquely determined, and obeys the Eq. [58]

dt
du

= c1

√
g2(u)
g3(u)

E6(τ)
E4(τ)

= 3
1
4 c1

4

√
E4(τ)
g2(u)

. (3.18)

The form of this equation reflects a general fact about the periods of ellip-
tic curves: the normalized periods, which are the appropriate integrals over√

g3
g2
ω, are invariants of the curve, in that they only depend on its complex

structure, not its embedding in CP
2. One can derive a second order differen-

tial equation in J for these normalized periods [55] and obtain (3.18) as one
solution. To identify this solution as the constant period, it is enough to note
that it cannot develop a logarithmic singularity. We note furthermore that this
period is non-vanishing at the singular points u0 if we rule out singularities
for which not only Δ = 0, but also g2 = g3 = 0, as the zeros of the Eisenstein
series E4 and E6 in the fundamental domain are of unit norm (in particular,
for E4 and E6, they lie at τ = exp(2πi/6) and τ = i respectively), hence do
not lie in the SL(2,Z) orbit of τ = i∞, the values the effective coupling can
take at J = ∞. In integrating (3.18), we can hence arrange the integration
constant such that t ∼ (u−u0), consistent with the physical requirement that
a particle becomes massless at this point. At the weak coupling point u → ∞,
the physical boundary condition is8

a =

⎧
⎨

⎩

√
u
2 theory with fundamental matter,

√
2u theory without fundamental matter.

(3.19)

The two expressions for dt
du in (3.18) hence imply g2 ∼ u2, g3 ∼ u3 at u → ∞ as

a condition on the Seiberg–Witten curve for any SU(2) theory. The constant
c1, reflecting the normalization of λ, can be fixed by requiring the correct pro-
portionality constant between a and u at u → ∞. As pointed out above, care
must be taken to fix the normalization of g2 and g3, as these are not absolute
invariants of the curve.

An example for the period with logarithmic behavior for |J | > 1 and
arg(1 − J) < π is [58]

8 The factor of 2 between the two cases is the same as the one in Eq. (3.1).



Vol. 14 (2013) The Ω Deformed B-model for Rigid N = 2 Theories 441

dtD
du

= − 1
2πi

dt
du

(log(J) + 3 log(12)) + [(1 − J)J−1]
1
4w1(J−1) + n

dt
du
, (3.20)

where w1(x) is a holomorphic power series.9

3.3. The Amplitudes F (n,g) for g + n = 0
Relations (3.14), (3.16), and (3.18) are sufficient to determine the prepotential
of the theory at weak coupling as a function of a, up to two unphysical inte-
gration constants as follows: equating J in Eqs. (3.14) and (3.16), one obtains
τ as a function of the UV parameters of the theory. Substituting into (3.18)
and integrating yields the period t as a function of these parameters. Solving
this relation to obtain u(t) and plugging into τ , we can obtain the prepotential
by integrating twice with regard to t,

F (0,0) ∼
t∫
dt

t∫
dt τ. (3.21)

Note that generically, all of these steps will only be possible computationally
to a given order in quv or Λ.

3.4. The Amplitudes F (n,g) for g + n = 1
For the genus one case, F (0,1) follows from the genus one holomorphic anomaly
equation (2.3), while F (1,0), as we have argued above, should have no holo-
morphic anomaly,

F (0,1) = −1
2

log(Guū|Δ| 1
3 ), (3.22)

F (1,0) =
1
24

log(Δ). (3.23)

Here, Δ is the discriminant of the curve C1. The first expression comes from
integrating (2.3) using the simplification of rigid special Kähler geometry. Such
expressions first appeared in the context of local Calabi–Yau manifolds in [59].
A derivation from the point of view of gauge theory instantons can be found
in [5]. The exponent of Δ is fixed by the boundary condition (second line of
(3.49)) at single zeros of the discriminant Δ = (u− u0)Δ̂, using the fact that
the local coordinate goes like t ∼ (u − u0) + O((u − u0)2) at such points. In
the holomorphic limit, we get

F
(0,1)
hol = −1

2
log

(
da
du

)
− 1

12
log(Δ). (3.24)

The exponent of Δ in the second equation follows similarly from the boundary
condition (3.49).

9 The above expression at n = 0 is a period of ω linearly independent from dt
du

. We have

added the n-dependent term (with n to be determined) to justify calling this period the

dual period to dt
du

.
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3.5. The Amplitudes F (n,g) for g + n > 1 and Modularity

As u is a global coordinate on the moduli space of our theory, by definition,
physical quantities should be invariant under the monodromies that arise by
circling singularities in this moduli space (otherwise, the correct moduli space
would be a cover of the u-plane). The partition functions F (n,g) for n+ g > 1
(n + g = 0 and n + g = 1 are special cases, as it is their derivatives that
are physical) should hence be modular forms of weight 0 with regard to the
monodromy group Γ ⊂ SL(2,Z). u by definition must be invariant under
Γ as well.10 The naive assumption of holomorphicity is known to be invalid
(either by recourse to string theory or to path integral regularization argu-
ments [60,61]). We hence make the assumption that the F (n,g) are almost
holomorphic forms (see e.g. [62] for this concept) of the group Γ. These are
functions on the upper half plane that transform like modular forms, but are
polynomials in 1

τ2
with holomorphic coefficients. A prominent example is the

modular completion Ê2 of the quasi modular form E2 of weight 2,

Ê2(τ, τ̄) = E2(τ) − 3
πτ2

. (3.25)

In fact, it is not hard to show that the polynomial dependence on 1
τ2

can be
replaced by a polynomial dependence on Ê2, with coefficients that are holo-
morphic modular forms (see Prop. 20 in [62]).

The assumption that the F (n,g) are almost holomorphic forms is consis-
tent with the holomorphic anomaly equations. This can be seen as follows.

Note first that upon retaining only the constant piece with regard to the
variable 1

τ2
of an almost holomorphic form, all other terms can be reproduced

by modularity. Hence, the ring thus obtained, called the ring of quasimodular
holomorphic forms, is canonically isomorphic to the ring of almost holomorphic
modular forms [62]. In the presentation in which almost holomorphic forms are
written as polynomials in Ê2, this isomorphism is induced by mapping Ê2 to
E2. This map from almost holomorphic to quasimodular forms is referred to in
the physics literature as taking the holomorphic limit τ̄ → ∞ (the mnemonic
rooted in the occurrence of τ̄ in the denominator of 1

τ2
= 2i

τ−τ̄ ). In this limit,
the coordinate a is flat (the connection in this variable vanishes) and therefore
a convenient choice to express the holomorphic anomaly equations in. They
become [14]

24
∂F (n,g)

∂E2
= c0

⎛

⎝∂2F (n,g−1)

∂a2
+
∑

m,h

′ ∂F (m,h)

∂a

∂F (n−m,g−h)

∂a

⎞

⎠ . (3.26)

To study the general structure of the F (n,g), it proves convenient to intro-
duce the variable

X =
g3(u)
g2(u)

E2(τ)E4(τ)
E6(τ)

. (3.27)

10 There is a sense in which u is a weight 2 modular form in the conformal theories and their
mass deformations. We discuss this at length in Sect. 5.
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Rewriting (3.26) in terms of X and the global variable u, we obtain

24
∂F (n,g)

∂X
= c0

g2(u)
g3(u)

E6

E4

⎡

⎣
(

du
da

)2
∂2F (n,g−1)

∂u2
+

d2u

da2

∂F (n,g−1)

∂u

+
(

du
da

)2∑

m,h

′ ∂F (m,h)

∂u

∂F (n−m,g−h)

∂u

⎤

⎦ . (3.28)

A glance at (3.18) reveals the utility of introducing the variable X, particularly
since using the Ramanujan relations

q
dE2

dq
=
E2

2 − E4

12
, q

dE4

dq
=
E2E4 − E6

3
, q

dE6

dq
=
E2E6 − E2

4

2
,

(3.29)

and relations (3.16) and (3.18), one can show that

d2u

da2
=

1
Δ
g3(u)
g2(u)

E4

E6
p1(X), (3.30)

where pn(X) is an nth degree polynomial in X with coefficients that are poly-
nomials of derivatives of g2(u) and g3(u).

We are now in a position to discuss the modular properties of the
Eq. (3.28). By (3.18),

(
du
da

)2
is modular of weight -2 under the full modu-

lar group SL(2,Z) (note that du
da is modular only with regard to an index 2

subgroup), as is d2u
da2 by (3.30). The weights in the Eq. (3.28) thus add up to 0

correctly on both sides, demonstrating the consistency of our identification of
the amplitudes F (n,g) as almost holomorphic forms with this equation. From
this discussion, one might be tempted to conclude that the symmetry group of
the theory is the full modular group SL(2,Z). This is incorrect. The holomor-
phic anomaly equations as written in (3.28) depend on both UV parameters
(u, potentially bare masses, and the UV coupling τuv or the dimensional trans-
mutation scale Λ) and IR parameters (the effective coupling τ , the argument
of the Eisenstein series contained in X). To draw conclusions regarding the
symmetry group, one should re-express it fully in terms of IR parameters.
That this reduces the symmetry group to a subgroup of SL(2,Z) can be seen
explicitly e.g. in the massless asymptotically free cases of SU(2) gauge theory
with Nf < 4 flavors, in which u can be obtained explicitly as a function of
τ (see e.g. [14]) and proves to be modular only under the monodromy group
Γ ⊂ SL(2,Z).

Analogous calculations that led to (3.30) show that

dX
du

=
1
Δ
p2(X),

d2X

du2
=

1
Δ2

p3(X). (3.31)

Starting from the form of the genus 1 partition functions given above, an easy
induction argument shows (for k>0, k=0 will be taken up in Sect. 3.7) that
the partition functions take the form
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F (n,g) =
1

Δ2(g+n)−2(u)

3g+2n−3∑

k=0

Xkp
(n,g)
k (u), (3.32)

where p(n,g)
k (u) are polynomials in derivatives of g2(u) and g3(u). As presented

in (3.32), F (n,g) is a quasimodular holomorphic form. The map to the ring of
almost holomorphic modular forms is induced by

X �→ X̂ =
g3(u)
g2(u)

Ê2(τ)E4(τ)
E6(τ)

. (3.33)

Note that the leading power of E2 (and hence X) in F (n,g) can be obtained
from (3.26) by inspection: derivatives with regard to a acting on the Eisen-
stein series act via dτ

da
d
dτ . By the Ramanujan relations, and the fact that dτ

da is
holomorphic, each such derivative hence increases the power in E2 by 1. The
first term in the holomorphic anomaly equations then implies a contribution
3g to the leading power, and the second term a contribution −3. Taking into
account that F (1,0) has no holomorphic anomaly to fix the power in F (2,0)

then yields the final result 3g + 2n− 3.
The leading power of X can be lower in theories where the leading p(n,g)

k

vanish identically—this happens in the conformal cases studied in this paper,
massless Nf = 4 and N = 4. The above derivation fails as dτ

da = 0 in the
conformal cases. Likewise, the leading negative power of the discriminant can
be lower if all p(n,g)

k contain powers of the discriminant, as turns out to be the
case for mass deformed N = 4.

All coefficients p(n,g)
k (u) are fixed by the holomorphic anomaly equations

save p(n,g)
0 (u). This coefficient gives rise to a meromorphic term in F (n,g) anni-

hilated by the antiholomorphic derivative on the left hand side of the holomor-
phic anomaly equations, referred to as the holomorphic ambiguity. It can be
fixed by imposing appropriate boundary conditions on the partition functions:
finiteness of the holomorphic ambiguity at large u, and the gap conditions at
the singularities at Δ(u) = 0 in moduli space.

3.6. The Conformal Limit of the Holomorphic Anomaly Equations

The defining feature of the conformal limit is that the infrared gauge coupling
τ becomes independent of the scale a. Since the derivatives in (3.26) with
regard to a do not act on τ , the argument outlined in Sect. 3.5 is modified:
differentiating with regard to a no longer entails an increase in the power of
E2 (by two) on the RHS of (3.26). As a consequence, the highest power of
E2 ∼ X in F (n,g) grows as F (n,g) ∼ Eg+n−1

2 rather than exhibiting the generic
growth F (n,g) ∼ E3g+2n−3

2 , see Table 1. More precisely, in order to have (1.1)
dimensionless with ε1, ε2 of dimension one, the scale dependence of the F (n,g)

in the conformal limit can be extracted into an a-dependent prefactor,11

11 A similar argument leading to the correct prefactor proceeds via imposing the correct
modular weight.
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F (n,g) =

⎧
⎨

⎩

1
a2(n+g)−2

f(n,g)(τ)
n+g−1 if (n+ g) > 1,

−2 log(a)f (n,g)(τ) if (n+ g) = 1.
(3.34)

The functions f (n,g)(τ) carry neither scale nor a-dependence, but they can
have an interesting dependence on the gauge coupling. With the a-dependence
thus extracted, the holomorphic anomaly equations governing the conformal
theory becomes algebraic, taking the form

∂f (n,g)

∂Ê2

=
c0(n + g − 1)

6

((
n + g − 3

2

)
f (n,g−1) +

′∑

n′′+n′=n
g′+g′′=g

f (n′,g′)f (n′′,g′′)
)

.

(3.35)

These equations govern the gauge coupling dependence of the F (n,g) in the
massless limit of the N = 2∗ and the Nf = 4 theories discussed in Sects. 5.1.2
and 5.2.5. For the conformal theories at the simplest Argyres–Douglas points,
the equations also hold, but are less interesting as the infrared gauge coupling
at these points is fixed as well.

Considering only the genus 0 equations (the Nekrasov–Shatashvili limit),
we obtain

∂f (n,0)

∂Ê2

=
c0(n+ 1)

6

n−1∑

m=1

f (m,0)f (n−m,0). (3.36)

This is exactly the form of the holomorphic anomaly equations presented in [39]
for the mass deformation of F (0,0)(a,m) of the SU(2)N = 2∗ theory, with n
labeling the number of insertions of the mass operator φm. The analogous
equation for the Nf = 4 theory was derived in [63]. We will comment further
on this connection in Sect. 5.1.1, focussing on the N = 4 case. What is more,
Eqs. (3.36) are, up to a shift in the label k in F (k,0) by 1, the holomorphic
anomaly equations for the elliptically fibered T2 → S → P

1 del Pezzo surface
S discussed in [38]. k here labels the deformation φb with respect to the P

1

base modulus. These holomorphic anomaly equations are closely related to the
holomorphic anomaly for N = 4 rank n gauge theories on del Pezzo surfaces.
The anholomorphic generator here is the completion of a Mock modular rather
than just an almost holomorphic form [64,65].

3.7. BPS States and Fixing the Holomorphic Ambiguity

As we have reviewed above, the singularities of an elliptic curve lie at the zeros
of its discriminant. At each such point, a period of the Seiberg–Witten differen-
tial vanishes. The physical meaning of these singularities is that BPS particles
in the spectrum of the theory are becoming massless. This determines the
leading behavior of the F (n,g) at these points. As we shall demonstrate in this
subsection, imposing this leading behavior at each singular point as boundary
conditions is sufficient to fix the holomorphic ambiguity.
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3.7.1. The BPS Amplitudes. The BPS interpretation of the amplitude is
obtained by computing it via a Schwinger loop integral with BPS states run-
ning in the loop [19,66]. The latter are in a representation R = [j−, j+] of the
little group of the 5D Lorentz group SO(4) ∼ SU(2)+ × SU(2)− and have
a mass m related to their charge by the BPS formula. In the BPS-saturated
amplitude, the BPS states couple to insertions of the self- and anti-self-dual
part of a background graviphoton field strength G = ε1dx1 ∧dx2 + ε2dx3 ∧dx4

and two insertions of the background curvature 2-form R respectively. Passing
to spinor notation for the field G, one gets ε2− = −detGα,β and ε2+ = detGα̇,β̇ ,
with ε± = 1

2 (ε1±ε2). The anti-self-dual and self-dual parts of the field strength
couple to the left and right spin j− and j+ of the BPS particle respectively.
The Schwinger loop calculation for these amplitudes yields, with q± = e−2ε± ,

Fhol(ε±) = −
∞∫

ε

ds
s

TrR(−1)σ
3
++σ3

−e−smq
sσ3

−
− q

sσ3
+

+

4
(
sinh2

( sε−
2

)− sinh2
( sε+

2

)) . (3.37)

The importance of this formula for our purposes is that if something is known
about the BPS spectrum associated to a geometrical singularity at a special
point in the moduli space, one can read off the leading behavior of the F (n,g)

at this point. We discuss this first for large radius singularities in non-com-
pact Calabi–Yau spaces. Such points can be relevant also for field theory, if
embedded in a Type II string non-compact Calabi–Yau geometry. Then we
address the behavior at the conifold, which universally applies for the geomet-
ric description of field theories and for string theory on Calabi–Yau spaces.

At large radius in the A-model on non-compact Calabi–Yau spaces the
relevant BPS states are D-brane bound states with charge (Q6, Q4, Q2, Q0) =
(1, 0, β,m) where β ∈ H2(M,Z). A Poisson resummation over m gives rise to a
sum (over k in (3.38)) of delta functions against which the s integral in (3.37)
can be evaluated [66]. One can thus write a generating function for the mul-
tiplicity of BPS states Nβ

j−j+ ∈ Z+ of given charge β and spin representation
[j−, j+] as

Fhol(ε, t)

=
∞∑

2j−,2j+=0
k=1

∑

β∈H2(M,Z)

(−1)2(j−+j+)
Nβ

j−j+

k

∑j−
m−=−j−q

km−
−

2 sinh
(

kε1
2

)
∑j+

m+=−j+
q

km+
+

2 sinh
(

kε2
2

) e−k β·t

=
1

ε1ε2

∞∑

g=0

2g∑

m=0

ε2g−m
1 εm

2 Fm,g =

∞∑

n,g=0

(ε1 + ε2)
2n(ε1ε2)

g−1F (n,g)(t). (3.38)

The sum over m± is taken in integral increments both for j± integral and
half-integral.

It is sometimes convenient to change from the irreducible highest weight
representations

[
i
2

]
to a basis given by

In =
(

2[0] +
[
1
2

])⊗n
=
∑

i

((
2n
n− i

)(
2n

n− i− 2

))[
i

2

]
, (3.39)



Vol. 14 (2013) The Ω Deformed B-model for Rigid N = 2 Theories 447

because

TrIn(−1)2σ3e−2σ3s = (−1)n
(
2 sinh

s

2

)2n

. (3.40)

The multiplicity of BPS states in the In− ⊗ In+ basis also gives rise to integers
which we denote nβn−n+

. Unlike the Nβ
j−j+ , these exhibit alternating signs. The

nβn−n+
specialize to the index nβg = nβg,0, defined by

∞∑

g=0

nβg I
g =

∑

j+

Nβ
j−j+(−1)2j+(2j+ + 1) [j−] , (3.41)

which is usually calculated by the topological string and is invariant under
complex structure deformations. Formula (3.38) can easily be exponentiated
upon expanding the sinh(x). This yields the following expression for the par-
tition function [19],

Z =
∏

β

∞∏

2j±=0

j±∏

m±=−j±

∞∏

m1,m2=1

×
(
1 − q

m−
− q

m+
+ eε1(m1− 1

2 )eε2(m2− 1
2 )e−β·t

)(−1)2(j−+j+)+1Nβ
j−j+

. (3.42)

We note that no information about the large radius expansion of the
F (n,g)(t) is needed to fix the holomorphic ambiguity up to an additive con-
stant to F (n,g)(t). This constant is unphysical in the Seiberg–Witten cases and
depends on a regularization of the Euler number in the non-compact Calabi–
Yau cases. Up to this regularization, it is nevertheless possible to work it out
from the BPS sum (3.38).

Define the Bernoulli numbers by their generating function t/(et − 1) =∑∞
m=0Bm

tm

m! . Note that the Bm vanish for m odd, except B1 = − 1
2 . Dividing

the generating function by t and taking the derivative establishes

t2
(
2 sin

(
t
2

))2 =
∞∑

m=0

(−1)m−1 B2m

2m(2m− 2)!
t2m. (3.43)

The constant (i.e. β independent) term in the usual topological string ampli-
tudes F (0,g) is calculated from (3.38) by setting ε1 = −ε2 = igs. In this limit
the self-dual insertions decouple from (3.38) and the right (+) spins contrib-
ute with their multiplicity and a sign according to their spin statistic. The
evaluation of (3.38) then reduces to the calculation of [66]. Note that the con-
stant term comes exclusively from the D0 brane contribution which takes the
universal form [8] N0

0,0 = −χ(M)
2 . Using (3.43) with the argument scaled by

m, ζ(x) =
∑∞
m=1

1
mx , and the regularized values ζ(−n) = −Bn+1

n+1 , we obtain
the constant term of F (0,g) from (3.38),

〈1〉M(g),0 = (−1)g
χ(M)

2

∫

Mg

c3g−1 = (−1)g
χ(M)

2
|B2gB2g−2|

2g(2g − 2)(2g − 2)!
. (3.44)
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On the LHS, we have included the mathematical expression which yields
this contribution [8,67].

The constant term in F (n,g) comes about by noting a similar expansion
for

ε1ε2

4 sinh
(
ε1
2

)
sinh

(
ε2
2

) =
∞∑

g=0

g∑

m=0

B̂2gB̂2g−2mε
2g−2m
1 ε2m2 , (3.45)

with

B̂m =
(

1
2m−1

− 1
)
Bm
m!

. (3.46)

It follows that the constant part of Fm,g is

〈1〉Mm,g,0 =
χ(M)

2
B̂2g−mB̂mB2g−2

2g − 2
. (3.47)

The constant part 〈1〉M(n,g),0 in F (n,g) is obtained by changing the basis of the
symmetric polynomials in ε1, ε2 in the second line of (3.38). For example, one
has for the Nekrasov–Shatashvili limit

〈1〉M(n,0),0 =
χ(M)

2
B̂2nB2n−2

2n− 2
(3.48)

and as expected 〈1〉M(0,g),0 = 〈1〉M(g),0.
Using the gap condition at the conifold, which we discuss next, the

direct integration method gives a very efficient method for calculating the
Nβ

[j−,j+] ∈ Z, which are related to motivic Donaldson–Thomas invariants. We
demonstrate this in Sect. 7 for the simplest non-trivial local Calabi–Yau space
O(−3) → P

2.
A nodal singularity of Cr occurs at the conifold point in moduli space.

It corresponds to a cuspidal point in the fundamental region of the modular
group. Such a singularity arises due to a single dyon of charge (ne, nm, Si)
becoming massless at this point in moduli space. Geometrically, a period t =
nea + nmaD + Si

mi√
2
, whose local expansion can be obtained from (3.18), is

vanishing here. Expanding the Schwinger loop formula assuming a single dyon
of vanishing mass |t| in ε1, ε2, and 1

t gives us the leading behavior of each F (n,g)

near the conifold point from the corresponding coefficients of g2
s = (ε1ε2) and

s = (ε1 + ε2)2 [9]

F (s, λ, t) =

∞∫

0

ds
s

exp(−st)
4 sinh(sε1/2) sinh(sε2/2)

+ O(t0)

=
[
− 1

12
+

1
24

(ε1 + ε2)2(ε1ε2)−1

]
log(t)

+
1
ε1ε2

∞∑

g=0

(2g − 3)!
t2g−2

g∑

m=0

B̂2gB̂2g−2mε
2g−2m
1 ε2m2 + · · ·
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=
[
− 1

12
+

1
24
sg−2
s

]
log(t) +

[
− 1

240
g2
s +

7
1440

s− 7
5760

s2g−2
s

]
1
t2

+
[

1
1008

g4
s − 41

20160
sg2
s +

31
26880

s2 − 31
161280

s3g−2
s

]
1
t4

+ O(t0)

+ contributions to 2(g + n) − 2 > 4. (3.49)

Hence, e.g.,

F (0,2) = − 1
240

1
t2

+ O(t0),

F (1,1) =
7

1440
1
t2

+ O(t0), (3.50)

F (2,0) = − 7
5760

1
t2

+ O(t0).

The leading behavior of (3.49) is the same as that of the S1 compactification
of the c = 1 string,12 where the same integral appears [69].

We note that the coefficients of the leading singularities at the conifold,
N (n,g), diverge in arbitrary directions of large (n, g) exponentially at twice
the rate of the ones at infinity, cf. e.g. (3.44,3.48).13 This suggests that (1.1)
is an asymptotic, presumably Borel summable expansion everywhere in mod-
uli space. This is different for the conformal cases, where χ(M) = 0 and the
absence of conifold singularities could allow for much better convergence prop-
erties.

The fact that near singular points in moduli space, the relation

F (n,g) =
N (n,g)

t2(g+n)−2
+ O(t0) (3.51)

holds, i.e. the absence of subleading poles in the t expansion, is referred to as
the gap structure of the F (n,g) at these points [11,53]. We will discuss next
that this behavior is sufficient to fix the holomorphic ambiguity also for the
deformed models. For the undeformed models, this discussion was presented
in [44].

3.7.2. The Completeness of the Gap Boundary Condition. From (3.51) and
t ∼ u− u0 near a zero u0 of the discriminant Δ, we see that the holomorphic
ambiguity as a function of u can at worst have a pole of order 2(g + n) − 2 at
u0. When Δ ∼ u− u0, we can hence parameterize the ambiguity as

F
(n,g)
hol.amb. =

1
Δ(u)2(g+n)−2

p(u), (3.52)

with p(u) a holomorphic function of u. Demanding that the ambiguity be finite
in the limit u → ∞ implies that p(u) is in fact a polynomial in u of degree
(2(g + n) − 2) dΔ, where dΔ denotes the degree of the discriminant. There are
hence (2(g + n) − 2) dΔ coefficients to be fixed to determine p(u) (recall that
the constant term of F (n,g) is unphysical), and exactly this many boundary

12 As was noted for ε1 = −ε2 in [68].
13 In the NS and the topological string limit one has N(n,0) = (−1)n−1(2n − 3)!B̂2n and

N(0,g) = B2g/(2g(2g − 2)) respectively.
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conditions, (2(g + n) − 2) via the gap condition at each of the dΔ zeros of the
discriminant, at our disposal.

To proceed calculationally, one could determine the dΔ zeros of Δ, expand
the right hand side of (3.51) as well as F (n,g)′

+F
(n,g)
hol.amb. around each of these

zeros, with F (n,g)′
the solution of the holomorphic anomaly equations, set the

two equal and compare coefficients. Already the first step, determining the
zeros of the discriminant, is difficult in general.

Instead, we can multiply both sides by Δ(u)2(g+n)−2, set u = u0 +x, and
expand in x to order (2(g + n) − 2)dΔ − 1, arriving at an equation

∑

i

qi(u0)xi =
∑

i

ri(u0)xi, (3.53)

where qi(u) and ri(u) are rational functions of u. Note that this calculation
requires expressing τ in terms of UV quantities. This can be achieved by invert-
ing (3.14), invoking 1/J as an expansion parameter at the singular points.
Again, if we explicitly knew the roots of Δ, we would set u0 equal to these in
(3.53), and obtain a system of equations to determine the coefficients of p(u).
Lacking this information, we instead mod out both sides of the equation by
Δ(u0). For example, for qi(u) = fi(u)

gi(u) , this means that we solve the equation

fi(u) = ai(u)Δ(u) + bi(u)gi(u) (3.54)

for ai(u) and bi(u). This is always possible when gcd(Δ(u), gi(u)) = 1. We
write

bi(u) ≡ qi(u) mod Δ(u). (3.55)

Likewise, set

di(u) ≡ ri(u) mod Δ(u). (3.56)

As Δ(u0) = 0 by definition of u0, we finally arrive at the following polynomial
equation in both u0 and x,

∑

i

bi(u0)xi =
∑

i

di(u0)xi. (3.57)

Equating coefficients of u0 and x now allows us to solve for the coefficients
of p(u).

So far, we have assumed that a single particle becomes massless at each
singularity. In fact, as moduli are varied, singularities can merge. These higher
degeneracies of the Seiberg–Witten curve correspond to roots of the discrim-
inant with higher multiplicity, the order of the root indicating the number of
particles becoming massless (the N = 2∗ theory requires an exception to this
rule, as we discuss below). As long as these massless particles are mutually
local, this situation requires only a slight modifications of the above analysis:
to begin with, the boundary conditions (3.49) given by the Schwinger calcu-
lation at each multiple root u0,i must be multiplied by the degeneracy of this
root. Also, for each u0,i, the calculation leading to (3.57) must be performed
with a reduced discriminant Δi which satisfies Δi ∼ u− u0,i.
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4. Seiberg–Witten Theory: The Asymptotically Free Cases

4.1. Exact Results

The Seiberg–Witten curves for SU(2) Seiberg–Witten theory are families of
elliptic curves that can be parametrized as follows,

y2 = C(x)2 −G(x), (4.1)

where the functions C(x) and G(x) for different numbers of flavors are given
by

Nf = 0 : C(x) = x2 − u, G(x) = Λ4,

Nf = 1 : C(x) = x2 − u, G(x) = Λ3(x+m1),

Nf = 2 : C(x) = x2 − u+
Λ2

8
, G(x) = Λ2(x+m1)(x+m2),

Nf = 3 : C(x) = x2 − u+
Λ
4

(
x+

m1 +m2 +m3

2

)
,

G(x) = Λ(x+m1)(x+m2)(x+m3).

Here, mi are the bare mass parameters of the fundamental matter, and Λ
is the low energy strong coupling scale which enters the infrared physics via
dimensional transmutation for asymptotically free theories.

The g2(u) and g3(u) functions for the Seiberg–Witten curves given above
are easily computed using (3.11,3.12),

Nf = 0 : g2(u) =
4u2

3
− Λ4,

g3(u) =
1
27

(−8u3 + 9uΛ4),

Nf = 1 : g2(u) =
4u2

3
−m1Λ3,

g3(u) = −8u3

27
+

1
3
m1uΛ3 − Λ6

16
,

Nf = 2 : g2(u) =
4u2

3
− p2Λ2 +

Λ4

16
,

g3(u) = −8u3

27
+

1
3
p2uΛ2 − 1

16
p2
1Λ

4 +
1
24
uΛ4,

( p1 ≡ m1 +m2, p2 ≡ m1m2 )

Nf = 3 : g2(u) =
4u2

3
− 4u

3
Λ2

42
− 4p3

Λ
4

+ (p2
1 − 2p2)

Λ2

42
+

1
12

Λ4

44
,

g3(u) = −8u3

27
− 5

9
u2 Λ2

42
+

1
9
u

(
Λ4

44
+ (6p2

1 − 12p2)
Λ2

42
+ 12p3

Λ
4

)

− p2
1

12
Λ4

44
+
p2

6
Λ4

44
− p2

2

Λ2

42
+
p3

3
Λ3

43
+ 2p1p3

Λ2

42
− 1

216
Λ6

46

( p1 ≡ m1 +m2 +m3, p2 ≡ m1m2 +m1m3 +m2m3, p3 ≡ m1m2m3 ).
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Notice that g2(u) and g3(u) are polynomials of degree 2 and 3 respectively for
all of these theories, consistent with the requirement derived in Sect. 3.2. Δ
is a degree 2, 3, 4, 5 polynomial of u, respectively, for the cases Nf = 0, 1, 2, 3
(anticipating the upcoming section, the discriminant for the Nf = 4 will be of
degree 6 in u, likewise for N = 2∗).

By computing the J-invariant of the curve via (3.14) and comparing it
with (3.16) and the expansion (3.17), we can easily extract the asymptotic
behavior of q near the weak coupling, large modulus point u ∼ ∞ and the
singular points u ∼ u0, where u0 is a root of the discriminant, Δ(u0) = 0.
These are the loci where monopoles or dyons become massless. The asymp-
totic behavior near the large complex modulus point u ∼ ∞ is

q ∼ uNf −4 , q ∼ u0 for N = 2∗ (4.2)

thus reproducing the correct (weak coupling) behavior of the SU(2) gauge
coupling,

τ ∼ Nf − 4
2πi

log
u

Λ2
. (4.3)

Invoking the algorithm introduced in Sect. 3, we can now obtain the par-
tition function for n + g > 0 in closed form, in principle for arbitrary high
n + g. In practice, computing time poses an upper limit. We have computed
the Nf = 0, 1, 2, 3 case with general mass parameters up to g + n = 4, 4, 3, 2,
though these by no means represent a fixed upper bound. We note that the
case of Nf = 1 and ε1 + ε2 = 0 has been considered earlier in [14]. As an
example, we reproduce here the formulae for Nf = 1 at g + n = 2. For better
readability, we have set the dynamical scale to a constant, specifically Λ = 2

2
3

(this choice is to simplify comparison with Nekrasov’s results, see below; the
analogous choice for Nf = 2, 3 are Λ = 2,Λ = 4). The dynamical scale can be
recovered by dimensional analysis.

F (2,0) = − X

6Δ2
(6u2 − 4m2

1u − 9m1)
2

+
1

135Δ2
{36u5 + 312m2

1u
4 − 2m1(16m3

1 + 1593)u3

+ 108(28m3
1 + 45)u2 − 6m2

1(400m3
1 + 567)u + 27m1(184m3

1 − 189)},

(4.4)

F (1,1) =
3X2

Δ2
(3u − 4m2

1)(6u2 − 4m2
1u − 9m1)

+
2X

Δ2
{24u4−32m2

1u
3+16m4

1u
2−3(40m3

1+27)u+m2
1(64m3

1+189)}

+
2

135Δ2
{108u5−744m2

1u
4+14m1(16m3

1+243)u3−9(272m3
1+675)u2

+ 6m2
1(400m3

1 + 729)u − 6696m4
1 + 6561m1}, (4.5)
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F (0,2) = −45X3

2Δ2
(3u − 4m2

1)
2

− 3X2

4Δ2
{252u3 − 648m2

1u
2 + (352m4

1 + 54m1)u + 27(8m3
1 − 9)}

− X

6Δ2
{324u4 − 528m2

1u
3 + 4m1(76m3

1 − 27)u2 − 36(26m3
1 + 27)u

+ 3m2
1(128m3

1+729)}− 1

405Δ2
{684u5−3192m2

1u
4+2m1(656m3

1+4293)u3

− 378(8m3
1 + 45)u2 + 54m2

1(80m3
1 + 183)u + 27m1(729 − 664m3

1)}. (4.6)

The formulae become increasingly lengthy as the number of flavors increases.
We provide a sample formula for F (2,0) in the Nf = 2 case. Denoting symmet-
ric polynomials in the mass parameters as

p1 = m1 +m2, p2 = m1m2, (4.7)

the formula for F (2,0) in the case of Nf = 2 is

F
(2,0)
Nf=2 = − X

24Δ2
{16u3 − 12(p2

1 − 2p2)u2

+ (8p2
2 − 40p2 − 4)u+ 9(p2

1 − 2p2)(2p2 + 1)}
+

2
135Δ2

{32u7 + 108(p2
1 − 2p2)u6

+ 2(9p4
1 − 36p2p

2
1 − 4(68p2

2 + 233p2 + 77))u5

+ 3(p2
1 − 2p2)(52p2

2 + 676p2 + 1207)u4 + [−27(59p2 + 187)p4
1

+ 108p2(59p2+187)p2
1−2(8p4

2+2008p3
2 + 7824p2

2 + 1246p2 − 151)]u3

+
27
4

[360p6
1 − 2160p2p

4
1 + (224p3

2 + 4312p2
2 − 8p2 − 1)p2

1

+ 2p2(−224p3
2 − 1432p2

2 + 8p2 + 1)]u2 − 3
8
(4p2 − 1)[567(2p2 − 3)p4

1

− 2268p2(2p2 − 3)p2
1 + 4(200p4

2 + 2584p3
2 + 336p2

2 − 503p2 − 25)]u

− 27
16

[378(4p2 − 1)p6
1 − 2268p2(4p2 − 1)p4

1

+ (−1472p4
2 + 12032p3

2 − 2244p2
2 + 92p2 − 65)p2

1

+ 2p2(2p2 + 1)2(368p2
2 − 352p2 + 65)]}. (4.8)

4.2. Argyres–Douglas Points

One very interesting feature of the massive SU(2) cases is the existence of con-
formal points where mutually non-local dyons become simultaneously massless.
As specializations of the SU(2) models with Nf = 1, 2, 3, these conformal the-
ories exhibit U(1) effective gauge symmetry and A0, A1, A2 flavor symmetry.
The degeneration of the curves has been analysed in [70]. The corresponding
points in the moduli space are called Argyres–Douglas points. The general
decoupling of the scale at these points should imply the vanishing of the high-
est powers of X, cutting down the generic leading X3g+2n−3 power behavior
of the amplitude F (n,g) to the conformal leading Xg+n−1 power behavior of
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Table 1. This is easily checked for the various SU(2) Argyres–Douglas points.
The simplest one appears for Nf = 1 at m1 = 3

4Λ and u = 3
4Λ2. We can see

from (4.5,4.6) that the vanishing indeed occurs. Here, we follow the conventions
of [14], where more about the local expansion of F (0,g) around these points can
be found. We have performed similar checks for Nf = 2,m1 = m2 = ±Λ and
u = 1

6Λ2 and Nf = 3 at m1 = m2 = m3 = Λ and u = 1
32Λ2. The vanishing of

the

p
(n,g)
k = 0 for g + n− 1 < k ≤ 3g + 2n− 3 (4.9)

in (3.32) provides an increasing number of consistency checks on the prescrip-
tion for fixing the holomorphic ambiguity presented in Sect. 3.7.

4.3. Comparison with Nekrasov’s Formula at Weak Coupling

We can compare our results against the Nekrasov instanton counting formula
(A.2) which is valid at weak coupling. The latter is expressed in terms of the
flat coordinate a at the weak coupling point. The two relations (3.16, 3.18)
allow for the computation of the parameters q = e2πiτ and a in terms of
asymptotic power series expansions in the complex modulus u near the infin-
ity and monopole/dyon points, and vice versa. To perform the comparison,
we hence invoke (3.16) and (3.18) to extract asymptotic series around a ∼ ∞
from our formulae, while expanding the Nekrasov expressions in accord with
(1.1). Upon proper fixing of normalizations, the results match; explicitly, for
Nf = 0, 1, 2, 3, we have checked up to instanton number 5, 5, 3, 3. Predictions
for higher instanton number are easily extracted from our formulae.

Recall that one of the boundary conditions we impose when determining
the holomorphic ambiguity is that they be regular at large u. The explicit
evaluation of the Nekrasov functions at a given h = g + n shows that, in fact,
these vanish in this limit, scaling as a2−2h ∼ u1−h. Assuming that this scaling
holds for a given h, the holomorphic anomaly equations allow us to conclude
that the anholomorphic contributions (i.e. the coefficients of positive powers
of X) to all F (n,g) at g+n = h+1 also obey this scaling, hence implying that
the scaling holds separately for the anholomorphic contributions and the holo-
morphic ambiguity. Finding a physical rationale for the scaling ∼ u1−h at large
u (rather than extracting it as an experimental observation from Nekrasov’s
expressions) would hence provide over-determined boundary conditions on the
holomorphic ambiguity, and thus a consistency check on the computation.

5. Seiberg–Witten Theory: The Conformal Cases

In [2], the deformations of two conformal theories were discussed, SU(2) with
four massive fundamental flavors, and mass-deformed N = 4 theory, referred
to as N = 2∗. These theories require slightly different ideas compared to the
asymptotically free cases, as due to conformal invariance in the massless limit,
they depend on a massless coupling constant τuv rather than a dynamically
generated scale. The definition of the UV coupling is ambiguous. We will revisit
the curves proposed by Seiberg and Witten [2] in this section, paying special
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attention to this ambiguity. What is more, both conformal theories together
with their massive deformations are conjectured to exhibit an invariance with
regard to an SL(2,Z) action on the UV parameters of the theory [1,2]. The
direct integration method in contrast relies on the symmetry of the theory
under the monodromy group Γ ⊂ SL(2,Z) acting on the complex structure τ
of the curve, which corresponds to the effective coupling of the theory, hence an
IR parameter. We will establish the relation between these two group actions
in this section.

5.1. The SU(2) N = 4 Theory and its Deformation to N = 2∗

Coupling N = 2 SU(2) super Yang–Mills theory to a massless hypermultiplet
in the adjoint representations yields N = 4 SU(2) super Yang–Mills theory,
which is expected to be exactly conformal. To apply the holomorphic anomaly
equations to solve the theory in general Ω-backgrounds, we are required to
study the mass-deformed case to have recourse to the gap condition to fix the
holomorphic ambiguity. The Seiberg–Witten curve for this theory has been
identified in [2] as follows,

y2 =
(
x− e1u− 1

4
e21m

2

)(
x− e2u− 1

4
e22m

2

)(
x− e3u− 1

4
e23m

2

)
.

(5.1)

The ei form a modular vector of weight 2 and are sometimes referred to as
half-periods in the literature.14 Aside from the weight, the SL(2,Z) action on
the half-periods is via a homomorphism

φ : SL(2,Z) → S3 (5.4)

into the permutation group on three objects {s, v, c}. This map is given by the
mod 2 reduction of the SL(2,Z) matrices; one explicit realization is given by

(
0 1
1 0

)
: v ↔ s,

(
1 1
1 0

)
: v ↔ c,

(
1 0
1 1

)
: s ↔ c, (5.5)

14 The name stems from the fact that they can be expressed in terms of the Weierstrass
℘-function of periods ω1, ω2 as

e1 = ℘
(ω1

2

)
, e2 = ℘

(ω2

2

)
, e3 = ℘

(
ω1 + ω2

2

)
. (5.2)

They satisfy the relation e1 + e2 + e3 = 0, and can be expressed via θ-functions as follows:

e1 − e2 =

(
π

ω1

)2

θ4
3(0|τ),

e3 − e2 =

(
π

ω1

)2

θ4
2(0|τ), (5.3)

e1 − e3 =

(
π

ω1

)2

θ4
4(0|τ).

Note that of the three Eqs. (5.3), only two are independent due to the relation θ4
3(0|τ) =

θ4
2(0|τ) + θ4

4(0|τ). The convention chosen by [2] is ω1 = π, hence ω2 = πτ .
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with the following action on the half-periods,

Tv↔s : e1 ↔ e2,

Tv↔c : e2 ↔ e3, (5.6)
Ts↔c : e1 ↔ e3.

In the massless limit, the curve (5.1) is parametrized by its complex structure,
i.e. the argument τ of the half-periods coincides with the tau parameter of
the curve being parametrized by the Eq. (5.1). This is possible as the complex
structure for the massless curve is independent of u. To see this, note that a
shift of x and y removes the u-dependence of the curve all together, or simply
note the u-independence of the J-function for this curve. The u-independence
of the complex structure was a main justification for identifying the m = 0
limit of (5.1) with the Seiberg–Witten curve of the massless N = 4 theory, as
it implements the constancy of the effective coupling along the RG flow. The
deformation away from m = 0 breaks conformal invariance and yields a curve
whose J-function does depend on u, as well as on the mass parameter m and
the argument of the half-periods. If we wish to keep these parameters inde-
pendent (as we should, since the mass deformation breaks N = 4 to N = 2
supersymmetry, enough supersymmetry to forbid a potential for u), we can
hence no longer identify the argument of the half-periods with the complex
structure of the curve, and we shall henceforth denote the latter by τuv. We
therefore have two possible SL(2,Z) actions in the theory, one on τuv and one
on the τ parameter of the curve. We will refer to the former as SL(2,Z)uv in
this section. Let us examine the relation between these two actions.

Away from the massless limit, the curve as given in (5.1) is no longer
invariant under SL(2,Z)uv if one assumes that u and m are invariant, as the
half-periods, in addition to (5.6), also transform via a weight factor (cτuv+d)2.
To correct for this, it is often assumed that u also transforms as a weight 2
modular form [2,71,52]. We will here make this proposal more concrete. We
ask how τ transforms under SL(2,Z)uv. As the curve (5.1) is invariant under
this action (assuming the transformation of u), so must its complex struc-
ture be (we can verify this explicitly below after calculating the J-invariant),
hence τ must remain within its SL(2,Z) orbit under an action of SL(2,Z)uv
on (τuv, u). Given that in the massless limit, τ and τuv can be taken to coin-
cide, the discreteness of the group action makes it natural to require that τuv
and τ in fact transform identically under SL(2,Z)uv.15 Assuming this in turn
enables us to exhibit a weight 2 expression for u explicitly. To this end, let
us compute the J-invariant of the Seiberg–Witten curve. It proves possible
and computationally highly beneficial to replace the dependence on the five
parameters (u,m, e1, e2, e3) by the dependence on three parameter (ũ, m̃, q̃),

15 In fact, [52] invoke this property to derive the recursion relation for the prepotential in an
expansion in m2 which we juxtaposed with the generalized holomorphic anomaly equations
of the conformal theories at g = 0 in Sect. 3.6.
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given by

ũ = u+
1
2
e2m

2 , m̃2 = (e1 − e2)m2 , q̃ =
e3 − e2
e1 − e2

. (5.7)

Upon shifting x and rescaling both x and y, the curve (5.1) can be expressed
as

y2 = x

(
x+ ũ+

1
4
m̃2

)(
x+ ũq̃ +

1
4
q̃2m̃2

)
. (5.8)

The J-invariant of this curve coincides with that of (5.1), and is given by

J(τ)=
4
(
m̃4

(
1−q̃2 + q̃4

)
+4m̃2

(
2−q̃−q̃2 + 2q̃3

)
ũ+ 16

(
1 − q̃ + q̃2

)
ũ2
)3

27(−1 + q̃)2q̃2 (m̃2 + 4ũ)2 (m̃4q̃(1 + q̃) + 16ũ2 + 4m̃2(ũ+ 2q̃ũ))2
.

(5.9)

Equating this expression with the universal J-invariant (3.17) now yields
a sixth order equation for u. Of the six solutions, the one given by

u =
m2

4

×e1(τuv)2(e2(τ) − e3(τ)) + e2(τuv)2(e3(τ) − e1(τ)) + e3(τuv)2(e1(τ) − e2(τ))

e1(τuv)(e2(τ) − e3(τ)) + e2(τuv)(e3(τ) − e1(τ)) + e3(τuv)(e1(τ) − e2(τ))

(5.10)

is distinguished, in that it indeed transforms as a weight 2 modular form in
τuv under a simultaneous SL(2,Z)uv transformation of both τ and τuv.

Note that the monodromy group Γ of the theory is not the full modular
group SL(2,Z). Γ acts only on τ , not on τuv, and the explicit expression (5.10)
demonstrates that u is not invariant under this action.

5.1.1. Calculating the Amplitudes from the Curve. In the massless limit, the
J-invariant is independent of u (hence of a), therefore τ must be likewise, and
we obtain the prepotential by trivially performing two a integrations,

F (0,0) ∼
a∫
da

a∫
da τ =

1
2
a2 τ. (5.11)

As τ here is identified with the UV coupling τuv, we thus conclude that
instanton corrections are absent in this case. When we break N = 4 super-
symmetry by giving a mass to the adjoint scalar, the corresponding prepo-
tential does exhibit instanton contributions. To calculate these invoking in
particular (3.18), we must take care to correctly identify the Seiberg–Witten
differential. The rescaling of x and y that transforms (5.1) into (5.8) rescales
the Seiberg–Witten differential to

dλ
du

=
1√

e2 − e1

√
2

4π
dx
y
. (5.12)

Note that the factor 1√
e2−e1 is crucial for maintaining the symmetry (5.6) in

the amplitudes F (n,g).
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We can compute the instanton corrections to the effective coupling τ by
equating (3.14) and (3.16), and invoking (3.18) (with the constant c1 fixed by
the boundary condition a ∼ √

2u at u → ∞) to express u as a function of a.
The first few terms are reproduced here,

2πiτ = log q + 2 log
m2 + 2a2

2a2
+ 6

m4

a4
q +

3m4(24a4 + 80a2m2 + 35m4)
4a8

q2 +O(q3). (5.13)

The prepotential (5.11) is obtained by integrating twice with regard to a. The
instanton corrections agree with the ones computed in [52]. As was pointed
out in Sect. 3.6, the coefficients of the mass deformation of F (0,0)(a,m) satisfy
the same holomorphic anomaly equations as the F (n,0) in the conformal limit.
More precisely, defining

F (0,0)(a,m) =
1
2
a2τ +

m2

4πi
log

(
2a
m

)
− m2

4πi

∑

n=2

f̂n(τ)
n− 1

(m
2a

)2n

, (5.14)

the f̂n(τ) satisfy (3.36) with c0 = 1
2 . The first few read

f̂1 = 2, f̂2 =
E2

3
, f̂3 =

1
45
(
5E2

2 + E4

)
, f̂4 =

175E3
2 + 84E2E4 + 11E6

3780
.

(5.15)

Solving recursively for the amplitudes F (n,g) proceeds as before. Note
that the discriminant Δ of (5.1) is a perfect square given by the denominator
of (5.9). The one loop β-function for the mass deformed theory at a singu-
lar point comes from one hypermultiplet with mass m ∼ (u − u0) running
in the loop, where u0 is a simple root of the discriminant. This determines
the leading behavior F (1,0) ∼ 1

24 log(u − u0), F (0,1) ∼ − 1
12 log(u − u0) and

F (n,g) ∼ (u − u0)−2(g+n)+2. It follows that the formulae for the boundary
behavior (3.51) and in particular (3.22,3.23) apply after defining Δthere =

√
Δ.

This adjustment is necessary because in spite of the discriminant having a
double zero at u0, a single particle is becoming massless here. The boundary
behavior then fixes the ambiguity completely as discussed above.

To emphasize the symmetry properties of the amplitudes, we will express
them in the untilded variables u,m, e1, e2, e3, though our computation pro-
ceeded with the tilded variables. We can then express the F (n,g) as

F (n,g) =
1

Δ̃2(g+n)−2(u)

3g+2n−3∑

k=0

Y kp
(n,g)
k (u) , (5.16)

where

Y = (e2 − e1)X (5.17)

and Δ̃ denotes a reduced discriminant

Δ̃ =
(
m̃2 + 4ũ

) (
m̃2q̃ + 4ũ

) (
m̃2q̃ + m̃2 + 4ũ

)

= (4u− e1m
2)(4u− e2m

2)(4u− e3m
2).
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Both Y and Δ̃ are separately invariant under the permutations of the half-peri-
ods ei under the SL(2,Z)uv action as described above. Y is hence a modular
form of weight 4, Δ̃ is modular of weight 6.

As a sample, we reproduce our results for n+ g = 2:

p
(2,0)
0 =

37E4
3m10 − 11232E4

2m6u2 − 96E4

(
7E6m

8u+ 2376m2u4
)

116640

×−4E6m
4
(
13E6m

6 + 20736u3
)

116640
,

p
(2,0)
1 = −

(
E4m

4 − 144u2
)2

432
,

p
(1,1)
0 =

m2
(−E4

3m8 + 216E4
2m4u2 + 6E4

(
E6m

6u+ 1728u4
)

2430

× +E6m
2
(
E6m

6 + 2592u3
))

2430
,

p
(1,1)
1 =

1
108

(
5E4

2m8 + 288E4m
4u2 + 96E6m

6u+ 20736u4
)
, (5.18)

p
(1,1)
2 =

1
2
(
144m2u2 − E4m

6
)
,

p
(0,2)
0 =

m2
(
4E4

3m8 + 216E4
2m4u2 + 18E4

(
7E6m

6u− 5184u4
)

43740

× +E6m
2
(
E6m

6 − 14688u3
))

43740
,

p
(0,2)
1 = − 1

54
(
E4

2m8 + 144E4m
4u2 + 24E6m

6u
)
,

p
(0,2)
2 =

3
2
m2

(
E4m

4 − 144u2
)
,

p
(0,2)
3 = −45m4.

Note that the argument of the Eisenstein series E4 and E6 occurring in the
polynomials p(n,g)

i is the UV parameter τuv, whereas the argument of the Ei-
senstein series and half-periods hidden in the variable Y is the tau parameter
τ of the curve. One easily verifies that the weight factors under SL(2,Z)uv
transformations cancel in (5.16) for each k.

5.1.2. The Massless Limit of the N = 2∗ Theory. The massless limit is very
interesting as the theory becomes conformal and the qualitative dependence
of the amplitudes on the anholomorphic generator changes.

We can determine the F (n,g) for n + g = 1 from the massless limit of
(3.22) and (3.23),

F (1,0)(a) =
1
4

log(a) + a-independent terms,

F (0,1)(a) = 0 + a-independent terms.
(5.19)
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The latter equation expresses the fact that the gravitational anomaly cancels
for the N = 4 spectrum.

As we have emphasized throughout, the scaling of the highest power of
E2 ∼ X in F (n,g) with n+ g is modified in conformal theories, from F (n,g) ∼
E3g+2n−3

2 to F (n,g) ∼ Eg+n−1
2 , see Table 1. Explicitly in this example, this can

be seen from the m → 0 limit of (5.19). We immediately obtain the n+ g = 2
results from (5.19) and (3.34,3.35),

F (2,0) =
E2

3 · 26a2
, F (1,1) = − E2

3 · 24a2
, F (0,2) = 0, (5.20)

since there can be no holomorphic ambiguity, due to the absence of holomor-
phic weight 2 modular forms. For n + g > 2, the ambiguity must be fixed by
the gap condition for the mass-deformed case. We obtain up to g + n = 4

F (3,0) = − 1
29325a4

(
5E2

2 + 13E4

)
, F (2,1) =

1
28325a4

(
25E2

2 + 29E4

)
,

F (1,2) = − 1
263 · 5a4

(
5E2

2 + E4

)
, F (0,3) = 0, (5.21)

as well as

F (4,0) =
1

212345 · 7a6

(
175E3

2 + 1092E2E4 + 3323E6

)
,

F (3,1) = − 1
2934a6

(
11E3

2 +
2 · 3 · 47

5
E2E4 +

2231
5 · 7

E6

)
,

F (2,2) =
1

2834a6

(
25E3

2 +
3 · 151

5
E2E4 +

1199
5 · 7

E6

)
,

F (1,3) = − 1
2633a6

(
5E3

2 + 3E2E4 +
22

7
E6

)
, F (0,4) = 0.

(5.22)

The argument of the Eisenstein series here is the τ parameter of the Seiberg–
Witten curve, which in the N = 4 theory coincides with the UV coupling of
the theory.

The vanishing of F (0,g) = 0 for all g follows from the holomorphic anom-
aly equations in conjunction with the fact that the one-loop amplitude F (0,1)

has no a-dependence: F (0,2) = 0, as modularity rules out a holomorphic ambi-
guity of weight 2. More generally, assume that F (0,g′) = 0 holds for g′ < g. It
then follows easily from the holomorphic anomaly equations that F (0,g) van-
ishes as well, up to possibly the holomorphic ambiguity. To fix the ambiguity,
we must mass deform the theory. Upon mass deformation, we have p0,g

k ∼ ml

with l > 0 for k ≤ 1. One can argue that the gap condition then implies
p0,g
0 ∼ mp with p > 0. Therefore, the ambiguity vanishes in the massless limit

as well and we can conclude inductively that F (0,g) = 0 in the massless limit.
The amplitudes match Nekrasov’s expressions (A.3) in the massive case

after the shift m → m+ (ε1 + ε2)/2, followed by setting m = 0. The massless
limit from the point of view of (A.3) is hence m = (ε1 + ε2)/2.

5.1.3. Comparison with Nekrasov’s Formula at Weak Coupling. Matching our
results at weak coupling with Nekrasov’s requires rescaling various parameters.
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Specifically,

F (n,g)(s, g2
s , a,m) = F

(n,g)
Nekrasov

(
2s, 2g2

s ,
a√
2
,m

)
(5.23)

for n+g > 1. In addition to these rescalings, the cases n+g ≤ 1 require special
attention as it is the derivatives of these amplitudes with regard to a that is
physical. The a independent terms that are required to obtain a matching are
the following at n+ g = 0,

F
(0,0)
Nekrasov(a,m) = F (0,0)(

√
2a,m) + πiτuva

2 −m2 log

(
η(τuv)

q
1
24
uv

)
+ const.,

(5.24)

where const. indicates an m dependent constant.
At n+ g = 1, we must add simple q dependent terms to our general for-

mulae (3.22) and (3.23) to obtain a match with Nekrasov’s results as follows,

F
(1,0)
Nekrasov(a,m) = F (1,0)(

√
2a,m) + log

(
θ3(τuv)

q
1
48
uv

)
+ const. (5.25)

and

F
(0,1)
Nekrasov(a,m) = F (0,1)(

√
2a,m) − log

(
η(τuv)

q
1
12
uv

)
+ const. (5.26)

We have performed the check of (5.23) up to g + n = 4 and to inst-
anton number 3, and found agreement. Note that the recursion leading to
these expressions takes F (1,0), F (0,1) as obtained from (3.22) and (3.23) (with
Δthere =

√
Δ, as explained above) as its starting point, not (5.25) and (5.26).

5.2. The SU(2) Nf = 4 Theory

Motivated by the vanishing of the beta function, Seiberg and Witten argued
that the UV coupling of the massless SU(2) Nf = 4 theory receives neither
perturbative nor non-perturbative corrections, and should hence be identified
with the IR-coupling, as in the N = 4 case. Indeed, for the massless case,
they propose that the two theories share the same Seiberg–Witten curve (the
Seiberg–Witten differentials differing slightly in their normalization). Discrep-
ancies between this ansatz and explicit instanton computations were pointed
out soon after [1,2] appeared, e.g. in [72]. These were traced to a freedom in
defining the UV coupling and modulus u of the theory in [73,74].

In [12], by matching calculations in the field theory limit of the type IIA
string compactification on the Enriques Calabi–Yau to the results of Nekrasov
for amplitudes for massless Nf = 4 gauge theory, an exact functional rela-
tion q(τ) between the UV coupling q which serves as the instanton expansion
parameter and the effective coupling τ of the theory was conjectured,

q(τ) =
e3 − e2
e1 − e2

(τ) =
θ42(τ)
θ43(τ)

. (5.27)



462 M. Huang et al. Ann. Henri Poincaré

As realized in [37], this choice of UV coupling fits into a larger framework. For
a large class of quiver conformal gauge theories based on the Nf = 4 theory
as a building block, [37] identified parameters on the moduli space of mar-
ginal couplings with coordinates on Teichmüller spaces of punctured Riemann
surfaces. For the case of SU(2)Nf = 4 theory, the relevant surface is a 4-punc-
tured Riemann sphere, and the natural coordinate is a cross-ratio q of the
location of the punctures. Under conformal transformations, these punctures
are permuted, resulting in the following transformations of q,

q ,
1
q
,

1
1 − q

, 1 − q ,
q

q − 1
,
q − 1
q

. (5.28)

q(τ) as defined in (5.27) indeed transforms as (5.28) upon an SL(2,Z) action on
τ . Upon turning on masses, the argument τ in (5.27) is no longer the effective
IR coupling of the theory. When required for clarity, we therefore refer to it as
τaux in the following. In the next subsection, we review the curve proposed by
Seiberg and Witten for SU(2) SYM with Nf = 4 massive flavors, and discuss
its symmetry properties. This curve depends on τaux. Then, in Sect. 5.2.2, we
offer a rederivation of this curve as a function of q, taking the transformation
properties of q as a defining property of the UV coupling. The curve we thus
arrive at proves to be equivalent to the curve proposed by Seiberg and Witten.

5.2.1. The Curve of Seiberg and Witten. Seiberg and Witten propose the fol-
lowing curve to describe the massless Nf = 4 theory,

y2 = (x− ue1)(x− ue2)(x− ue3). (5.29)

As noted above, this coincides with the massless limit of the N = 2∗ curve
given in (5.1). The argument of the half-periods coincides with the complex
structure τ of the curve, and the SL(2,Z) action on this parameter, upon
invoking the modularity properties of the half-periods reviewed above, clearly
leaves the curve invariant.

To obtain the massive theory, Seiberg and Witten describe how to deform
the massless case such that the deformation parameters mi, the masses of the
fundamental matter, appear as the residues of the Seiberg–Witten differential,

Resλ =
4∑

i=1

nimi

2πi
√

2
, ni ∈ Z. (5.30)

They thus obtain the curve

y2 = W1W2W3 +A(W1T1(e2 − e3) +W2T2(e3 − e1)
+W3T3(e1 − e2)) −A2N, (5.31)

with

Wi = x− eiu− e2iR , A = (e1 − e2)(e2 − e3)(e3 − e1), (5.32)
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and

R =
1
2

∑

i

m2
i ,

T1,3 = ±1
2

∏

i

mi − 1
24

∑

i>j

m2
im

2
j +

1
48

∑

i

m4
i ,

T2 =
1
12

∑

i>j

m2
im

2
j − 1

24

∑

i

m4
i ,

N =
3
16

∑

i>j>k

m2
im

2
jm

2
k − 1

96

∑

i	=j
m2
im

4
j +

1
96

∑

i

m6
i .

(5.33)

The argument of the half-periods ei is τaux. Upon considering mi �= 0, it can
clearly no longer be identified with the complex structure of the curve, as this
depends in addition on the value of the masses mi, as well as on u. The fact
that the argument of the half-periods is equal to the effective coupling of the
theory only for vanishing masses is analogous to the N = 4 case studied above.
Unlike that case, the argument of the half-periods in the massive theory is not
identified with τuv. Rather, q = exp 2πiτuv in (5.27), with the argument τ in
that equation given by τ = τaux.

Note that upon setting m1 =m2 = 1
2m,m3 =m4 = 0, the Nf = 4 curve

(5.31) reduces to the N = 4 curve (5.1), hence both theories have the same
discriminant with double zeros. In the Nf = 4 case, two particles are becom-
ing massless at these singularities (which can be separated by breaking the
degeneracy in the bare masses). In the N = 4 theory, as pointed out above,
a single particle is becoming massless here. Therefore, the starting points of
the direct integration of the holomorphic anomaly equations, F (1,0) and F (0,1),
differ, explaining the difference of even the massless limit of the two theories.

SL(2,Z)uv (following the same nomenclature as in the N = 2∗ case)
acting on τaux is clearly no longer a symmetry of the curve. As Seiberg and
Witten point out, this is in accord with the physics of the Nf = 4 theory,
whose spectrum is not quite SL(2,Z) symmetric. The quarks (nm, ne) = (0, 1),
monopoles (nm, ne) = (1, 0), and dyons (ne, nm) = (1, 1), which lie in the same
SL(2,Z) orbit if one takes the tuple (nm, ne)T to transform in the fundamen-
tal, lie in different representations of the flavor group Spin(8); they transform
in the v, s, and c representation respectively (the spinor representations arise
by quantizing fermion zero modes of the quark fields in the monopole back-
ground).16 The representations of other stable dyons with coprime (nm, ne)
are determined by the reduction of the charges modulo 2. At best, one can
hence hope that SL(2,Z)uv combined with a permutation of the representa-
tions of Spin(8), SL(2,Z)�Aut(Spin(8)), be a symmetry of the theory (we drop
the subscript in the semi-direct product, as it is only the UV SL(2,Z) that
occurs thus). Permutations of the three fundamental representations v, s, c, of

16 The attentive reader will have noted that the SL(2, Z) action in question here is the IR
SL(2, Z) that acts on the complex structure τ of the curve, rather than on the UV parameter
τaux; the justification will be as in the N = 2∗ theory, as we discuss below.
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Spin(8) induce all outer automorphisms of the group, i.e. Aut(Spin(8)) ∼= S3.
The homomorphism SL(2,Z) → S3 required to define the semi-direct product
SL(2,Z) �S3 is the one given in (5.5), based on reduction mod 2. This action
on automorphisms of Spin(8) in fact induces a transformation of the masses
mi under S3. To see this, consider the central charge formula

Z = nea+ nmaD +
∑

i

Si
mi√

2
. (5.34)

The masses generically break the flavor symmetry down to U(1)4, with the
Si the corresponding U(1) flavor charges. Identifying these with the Cartan
generators Hi of the full flavor group Spin(8), we see that the mi must trans-
form inversely to Hi. The Cartan generators in turn transform inversely to
the dual basis ei(Hj) = δij , i, j = 1, . . . , 4 in which the weights of Spin(8)
can be expanded. The mi hence transform as the basis vectors ei. In terms of
this basis, the weights for the vector representation v are {±ei}, while for the
spinors representations, they are {1

2

∑
ηiei} with ηi = ±1 and

∏4
i=1 ηi = 1 for

the s and
∏4
i=1 ηi = −1 for the c representation. The transformations of order

2, two of which suffice to generate S3, act as follows on the masses [2],

Tv↔s : m′
1 =

1
2
(m1 +m2 +m3 +m4),

m′
2 =

1
2
(m1 +m2 −m3 −m4),

m′
3 =

1
2
(m1 −m2 +m3 −m4),

m′
4 =

1
2
(m1 −m2 −m3 +m4),

Tv↔c : m′
1 =

1
2
(m1 −m2 −m3 −m4),

m′
2 =

1
2
(−m1 +m2 −m3 −m4),

m′
3 =

1
2
(−m1 −m2 +m3 −m4),

m′
4 =

1
2
(−m1 −m2 −m3 +m4),

Ts↔c : m′
4 = −m4 and m′

j = mj for j = 1, . . . 3.

(5.35)

Indeed, the linear combinations of masses R, Ti, N were chosen by Seiberg and
Witten such that R and N are invariant under the action of triality group
on the masses (5.35), while the Ti are permuted in the same fashion as the
half-periods. The invariance of (5.31) under SL(2,Z)�S3 is thus manifest, up
to one concern. The half-periods are not merely permuted under the action
of SL(2,Z)uv, but also transform modularly with weight 2. To accommodate
this behavior, we must hence demand that u transform as a weight 2 modular
object as well, just as in the N = 4 case. With somewhat more work, an anal-
ogous expression to (5.10) should be derivable which transforms as a weight
two modular form upon SL(2,Z)�S3 action on the UV parameters combined
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with the induced action on the tau parameter of the curve. Following the same
logic as in the N = 2∗ case, we can argue that τ should transform in the same
manner as τaux under an action of SL(2,Z) �S3. This was indeed required by
the consistency of the above argument leading to the identification of the S3

factor in the symmetry group, as it is the SL(2,Z) transformation of τ which
acts directly on the spectrum by acting on the periods of λ. Motivated by the
AGT conjecture [75] present an analysis of the action of the triality group on
the solutions the Picard–Fuchs differential equations.

5.2.2. The Curve in Terms of the UV Coupling. The massless curve
We will parametrize our curve in terms of the UV coupling17

q = exp[2πiτuv] = exp
[
2πi

(
θ

2π
+ i

4π
g2

)

UV

]
, (5.36)

The normalization of τuv is chosen to yield the canonical form of the SYM
Lagrangian with θ multiplying the integer-valued instanton contribution

1
32π2

∫
F ∧ ∗F . Following [2], we choose the normalization of the IR coupling

such that the induced electric charge of a magnetic monopole of charge nm
is nmθir

π . This normalization convention introduces a relative factor of two
between τuv and τir at weak coupling, i.e. for q → 0, which is the point in
moduli space where the two can be compared directly,

τir = 2
1

2πi
log q + · · · . (5.37)

This implies a monodromy by T 2 acting on the periods of the holomorphic
1-form at weak coupling.

A curve with monodromy Tn around t = 0 can be brought into the form
(x − 1)(x2 − tn) [2], hence n can be read off from the order of vanishing of
the discriminant Δ = (1 − tn/2)(1 + tn/2)4tn at t = 0. A T 2 monodromy at
q = 0 hence implies Δ ∼ q2. Imposing weak-strong duality of q as defined in
(5.36) while maintaining the interpretation of q as a cross-ratio [37], we are led
to require the symmetry q → 1 − q, yielding Δ ∼ (1 − q)2q2.18 The simplest
polynomial with this discriminant is F (x) = x(x− 1)(x− q). We can now fix
the u dependence by requiring the relation a ∼ √

u at weak coupling, thus
arriving at

y2 = x(x− u)(x− uq). (5.38)

17 Contrary to previous sections, where we distinguished between UV and IR coupling by
introducing the notation quv and q respectively, we will speak of q and qir in this section,
in the interest of economizing subscripts.
18 Note that of the 6 forms (5.28) the cross-ratio takes under permutation of three elements,
given q as in (5.36), only 1 − q continues to correspond to real gauge coupling g, which is
why we only demand symmetry of the discriminant under the action q → 1 − q. We will
rediscover the full action of the permutation group S3 as a symmetry of the full theory.
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The g2 and g3 functions for this curve are

g2 =
1
12
(
q2 − q + 1

)
u2,

g3 =
1

432
(
2q3 − 3q2 − 3q + 2

)
u3,

(5.39)

yielding the J-invariant

J =
4(q2 − q + 1)3

27(q − 1)2q2
. (5.40)

In contrast to the curve (5.38), its J-invariant is invariant under the full action
of S3 on q.

Note that J is independent of u. Hence, q is a fixed function of the infra-
red coupling, the tau parameter of the curve. To obtain this function, we first
invert (3.16) around weak coupling,

2πiτ = − log J − 3 log 12 +
31
72J

+ · · · . (5.41)

Inserting the J-invariant (5.40) yields

qir =
q2

256
+

q3

256
+

29q4

8192
+ · · · , (5.42)

where we have defined qir = exp(2πiτ). As was first observed in [12], the
inverse function of this series is given by a quotient of Jacobi theta functions,

q =
θ2(qir)4

θ3(qir)4
. (5.43)

From (5.42), we see that to obtain (5.37) without a constant term, we should
rescale q → 16q. We opt for retaining the normalization of q which transforms
simply under S3.

Invoking the relations (5.3) between θ-functions and the half-periods, we
can rewrite (5.43) as

q(τ) =
e3 − e2
e1 − e2

(τ). (5.44)

It is then not hard to see that our curve (5.38) is intimately related to (5.29),
via a shift of x together with a rescaling of both x and y.

From (5.44), we easily conclude

Tv↔s : q �→ 1 − q,

Tv↔c : q �→ q

q − 1
, (5.45)

Ts↔c : q �→ 1
q
.

Note that unlike the behavior of the ei, the weight factors upon an SL(2,Z)
transformation cancel in the definition of q. The transformations (5.45) are
evidently not a symmetry of the curve (5.38). But as shifts and rescalings of x
and y, relating (5.29) to our curve, do not alter the J-invariant of a curve, the
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J-invariant of (5.38) must be invariant under (5.45), and one quickly checks
that this is the case.

Before concluding that SL(2,Z) is a symmetry of the theory, we must
specify the Seiberg–Witten differential λ and study its modular transforma-
tions. A natural guess for its defining equation would be

ω0 =
dλ0

du
=

√
2

8π
dx
y
. (5.46)

To determine the periods of λ0, it is easiest to use the relation between our
curve and (5.29). This yields

∫

ΣA

ω0 =

√
2/u
4

√
e1 − e2 ,

∫

ΣB

ω0 =

√
2/u
4

√
e1 − e2 τ, (5.47)

and hence

a0 =
∫

ΣA

λ0 =

√
2u(e1 − e2)

2
, aD,0 =

∫

ΣB

λ0 =

√
2u(e1 − e2)

2
τ. (5.48)

Note that the transformation of the vector (aD,0, a0)T is complicated due to
the factor of

√
e1 − e2. Canceling this factor, and taking into account that u

is to transform with weight 2, yields a vector under SL(2,Z), as expected. We
hence modify our proposal of the Seiberg–Witten differential as follows,

ω =
dλ
du

=
√

2
8π

dx
y

1√
e1 − e2

. (5.49)

Unlike the case of the curve given by Seiberg and Witten, (5.29), this is
the first instance in the present formulation in which the half-periods ei enter
explicitly, i.e. not in the form of a cross-ratio identified with q.

The choice (5.49) defining λ is in fact the one that follows from rewriting
the proposal of [2] in the variable q. Thus, the only difference between the
discussion in [2] and the current one turns out to be the identification of the
UV parameter.

The massive curve
We next wish to determine the deformation of the curve (5.38) in the pres-

ence of non-vanishing masses. One can easily follow the procedure outlined in
the last section of [2] based on identifying the masses with the residues of the
Seiberg–Witten differential.
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This procedure yields

y2 = x(x− u)(x− qu) − x2(1 − q)2
4∑

i=1

m̃2
i

−4x(1 − q)q

⎛

⎝2(1 + q)
4∏

i=1

m̃i + (1 − q)
∑

i<j

m̃2
i m̃

2
j

⎞

⎠

+16(1 − q)q2

⎛

⎝u
4∏

i=1

m̃i − (1 − q)
∑

i<j<k

m̃2
i m̃

2
jm̃

2
k

⎞

⎠ , (5.50)

with m̃i = 1
2mi

√
e1 − e2. The argument of the half-periods ei is obtained by

inverting (5.44) for a fixed parameter q. In contradistinction to the N = 2∗

case, it is this parameter rather than q that will play merely an auxiliary role
in the following.

As to be expected following our discussion above, this curve coincides
with that given by Seiberg and Witten, upon a redefinition of the
u-parameter,19

uSW = uus − 1
2
e2R. (5.51)

We should hence expect to find the same SL(2,Z) � S3 symmetry underlying
the curve (5.50). As an explicit check, taking into account the transformation
of u that follows from (5.51),

Tv↔s : u → u+
1
2
(e1 − e2)R, (5.52)

Tv↔c : u → u+
1
2
qR, (5.53)

Ts↔c : u → u , (5.54)

one can easily verify the invariance of the J-invariant of (5.50) under the
SL(2,Z) � S3 action given by (5.45), (5.54), and (5.35).

Note that not only the curve, but also the Seiberg–Witten differential λ
transform under SL(2,Z) � Spin(8).

5.2.3. Calculating the Amplitudes from the Curve. As the massless curves for
the N = 4 and the Nf = 4 theories are identical, we again obtain

F (0,0) ∼ 1
2
a2 τ (5.55)

for the massless theory, with τ the low energy effective coupling and a inde-
pendent of τ . Here, however, we do not conclude that instanton corrections
are absent, as unlike the N = 4 case, we have identified the UV coupling for

19 In fact, the choice of frame for the masses, different frames related by the transformations
(5.35) (while keeping all other parameters fixed), must also be adjusted between the two
curves. The definition of the Ti given in (5.33) is permuted with regard to the definition in
[2] to this end.
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the Nf = 4 theory not with τ , but with log q, with q given in (5.44). Inserting
the expansion (5.42) yields

F (0,0) ∼ 1
2
a2

(
log

q2

256
+ q +

13q2

32
+ O(q3)

)
. (5.56)

Deforming the theory by considering mi �= 0 breaks conformal invariance and
introduces u dependence into the J-invariant and thus into the effective cou-
pling. The computation of the prepotential then proceeds as usual via integra-
tion of the effective coupling obtained by equating equations (3.16) and (3.14)
and substituting u(a) as obtained from (3.18).20

The computation of the partition functions F (n,g) via the holomorphic
anomaly equations proceeds exactly as in the asymptotically free cases. The
only difficulty that arises is the excessive computation time due to the large
number of parameters for the massive Nf = 4 case. One can cut down on
computation time and solve the general problem by invoking the permutation
symmetry in the four mass parameters, as we describe in the next subsection.
To make the direct calculation feasible, one can consider special cases, such as
setting all masses equal, or some to zero. These cases are in fact non-generic,
in that the discriminant of the curve acquires multiple roots, requiring the
modifications in determining the holomorphic ambiguity described at the end
of Sect. 3.7.2. As a proof of principle, we here reproduce the partition function
F (1,1) for the case m1 �= 0,m2 = m3 = m4 = 0:

F (1,1) =
e1 − e2

Δ̃2

(
− 6X2

[
m̃6

1

(
q2 + 5q − 4

)
+ 2m̃4

1(5q + 2)u+ 24m̃2
1u

2
]

+ 2X
[
4m̃4

1

(
13q2 + 20q − 8

)
u2 + 4m̃6

1

(
2q3 + 9q2 − 10q + 4

)
u

+
1
2
m̃8

1

(
q4 + 8q3 + 10q2 − 40q + 24

)
+ 32m̃2

1(5q + 2)u3 + 192u4
]

− 1
270

m̃2
1

(
32m̃2

1

(
197q3 + 15q2 − 411q + 410

)
u3

+ 24m̃4
1

(
95q4 + 158q3 − 142q2 − 414q + 412

)
u2

+ 6m̃6
1

(
61q5 + 258q4 − 156q3 − 84q2 − 556q + 552

)
u

+ m̃8
1

(
22q6 + 183q5 + 204q4 − 628q3 + 252q2 − 420q + 416

)

+ 6528
(
q2 − q + 1

)
u4
))
,

with Δ̃ the reduced determinant

Δ̃ = (2u+ m̃2
1)(16u2 + 8qm̃2

1u+ (q2 + 4q − 4)m̃4
1). (5.57)

5.2.4. The Case of 4 Generic Mass Parameters. For the case of Nf = 4 with
generic mass parameters, it turns out to be computationally intensive to fix the
holomorphic ambiguity with the gap conditions directly. Instead, the symme-
tries of the theory in the mass parameters can be used to fix the holomorphic

20 In the context of D-brane instanton calculations as well as the AGT conjecture, the
expansion of the prepotential in masses is given to rather high order in [76].
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ambiguity by computing the anomaly for various one parameter mass defor-
mations. More precisely, one must fix the coefficients of the powers of the
following symmetric polynomials in the masses,

G2 =
4∑

i=1

m̃2
i , G4 =

4∏

i=1

m̃i, F4 =
∑

i<j

m̃2
i m̃

2
j , G6 =

∑

i<j<k

m̃2
i m̃

2
jm̃

2
k.

(5.58)

These are the polynomials that appear in the Seiberg–Witten curve (5.50)
parametrized in terms of the UV parameter q. Now consider the general form
of a higher genus amplitude as given in (3.32). Singularities of the theory on
the u-plane occur at zeros of the discriminant. The numerator p(n,g)

k (u, m̃, q)
must hence be a polynomial in u. We shall make the ansatz that it is also a
polynomial in the symmetric polynomials (5.58)21 and a rational function in q.
Keeping in mind that F (n,g) has mass dimension 2 − 2n− 2g and u has mass
dimension 2, dimensional analysis leads to the following ansatz

p
(n,g)
0 =

∑

2n+2i1+4(i2+i3)+6i4=22(n+g−1)

unGi12 G
i2
4 F

i3
4 F

i4
6 · dn,i1,i2,i3,i4(q),

(5.59)

where the dn,i1,i2,i3,i4(q) need to be determined by the gap condition.
For example, for (n = 0, g = 2), there are 45 unknown coefficients

d0,i1,i2,i3,i4 , so we need to compute the holomorphic ambiguity for at least
45 independent one mass parameter deformations of the conformal theory
to fix them. We can choose (m̃1, m̃2, m̃3, m̃4) = (0, 0, 0,m), (0, 0,m, n1m),
(0,m, n1m,n2m), (m,n1m,n2m,n3m), where n1, n2, n3 are positive integers
such that 1 ≤ n1 ≤ n2 ≤ n3 ≤ 5.

Using this method, we are able to fix the genus two amplitude for four
generic mass parameters, and successfully compare with Nekrasov’s results
at low instanton number. Let us reproduce here e.g. the coefficient of X3 in
F (0,2), whose vanishing is a necessary condition on the conformal points in
parameter space. To emphasize the symmetry properties of this expression, we
rewrite it in terms of the Seiberg–Witten parameters (5.33), and introduce the
variable Y = (e1 − e2)X, as in the N = 2∗ theory above. Y transforms with
weight 4 under the action of SL(2,Z)�Spin(8). We then obtain in the notation
of (5.16)

p
(0,2)
3 = 45q4(1 − q)4p2, (5.60)

with

p = 9
[(
e21 + e22 + e23

) (
e1T

2
1 + e2T

2
2 + e3T

2
3

)− 3e1e2e3
(
T 2

1 + T 2
2 + T 2

3

)]

+ 9
(
e21 + e22 + e23

)
Nu− 6u2 (e1T1 + e2T2 + e3T3)

+R
(
27e1e2e3N − 3u

(
e21T1 + e22T2 + e23T3

)
+ u3

)

21 We should mention that it is not obvious from the gap conditions why the p
(n,g)
k (u, m̃, q)

cannot be rational functions of the mass polynomials. Our polynomial ansatz however leads
to consistent expressions that coincide with Nekrasov’s results at weak coupling.



Vol. 14 (2013) The Ω Deformed B-model for Rigid N = 2 Theories 471

+
1
2
R2

(
e21 + e22 + e23

)
(e1T1 + e2T2 + e3T3)

− 1
2
R3

(
e21 + e22 + e23

)
u−R4e1e2e3.

p is clearly invariant under simultaneous permutation of the ei and Ti, and
thus transforms with weight 6 under SL(2,Z) � Spin(8). The discriminant
takes the form

Δ = q2(1 − q)2Δ̃, (5.61)

with Δ̃ of weight 12 under SL(2,Z) � Spin(8). As required by our analysis
above, the total weight thus vanishes. The expression for the discriminant
as well as for the other p(n,g)

k are too lengthy to reproduce here, but can be
supplied upon request.

5.2.5. The Massless Limit of the Nf = 4 Theory. As in the N = 4 case,
the massless limit of the Nf = 4 case is conformal, and again, we can write
down modular expressions for the partition functions solely in terms of the
IR parameters. As the massless curves for the N = 4 and Nf = 4 theories
coincide, one might have expected their partition functions, expressed in IR
parameters, to coincide as well. Interestingly, this turns out to not be the case
as far as the F (n,g 	=0) sector is concerned. As pointed out above, fixing the
holomorphic ambiguity requires mass deforming the two theories in different
ways. The massless limits of the mass deformed amplitudes do not coincide
in general. However, in the Nekrasov–Shatashvili limit, the amplitudes are
related by a rescaling,

F
(n,0)
N=4 (a,m = 0) =

1
2
F

(n,0)
Nf=4(2a,m = 0). (5.62)

The a-independence of the coupling τ in the conformal limit leads, just
as in the N = 4 case studied above, to a weaker anholomorphicity of the
amplitudes than in non-conformal theories, given by F (n,g) ∼ En+g−1

2 . These
conformal amplitudes obey the recursion relations (3.35), using (3.34) with
f(1, 0) = − 1

4 and f(1, 0) = 1
4 . They are exhibited below up to g + n = 4:

F (2,0) =
E2

253a2
, F (1,1) = − E2

233a2
, F (0,2) =

E2

25a2
, (5.63)

F (3,0) = − 1
28325a4

(5E2
2 + 13E4), F (2,1) =

1
26325a4

(10E2
2 + 17E4),

F (1,2) = − 1
28325a4

(95E2
2 + 94E4), F (0,3) =

1
273a4

(2E2
2 + E4),

(5.64)
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F (4,0) =
1

211345 · 7a6
(175E3

2 + 1092E2E4 + 3323E6),

F (3,1) = − 1
28345 · 7a6

(280E3
2 + 1533E2E4 + 2777E6),

F (2,2) =
1

210345 · 7a6
(5075E3

2 + 21084E2E4 + 22431E6),

F (1,3) = −11(70E3
2 + 189E2E4 + 131E6)

28335 · 7a6
,

F (0,4) =
11E3

2 + 16E2E4 + 7E6

2113a6
.

(5.65)

The F (0,g) expansions in E2, E4, E6 coincide up to a rescaling of a = μ√
2

with

the ones displayed in [12]. There, an expansion of F (0,g) in terms of modu-
lar forms was suggested by the gauge theory limit of type II string theory
on the Enriques Calabi–Yau space. In [12], the coefficients in front of the
modular forms, however, were fixed in general by comparing with Nekrasov’s
result. Here, we have calculated F (n,g) independently in the B-model, which
to all orders in n+ g yields a definite expansion in terms of modular forms. It
remains to prove to all orders in q that Nekrasov’s sum over partitions can be
rewritten in a modular way.

5.2.6. Comparison with Nekrasov’s Formula at Weak Coupling. To compare
our results with the weak coupling results of Nekrasov, we must express them
in the same basis for the masses, related to each other via the transformations
(5.35), in which Nekrasov’s partition functions are given. It turns out that the
two frames are related by the action of Tv↔s on the masses. At g + n �= 1, we
reproduce Nekrasov’s results via

F (n,g)(s, g2
s , a,m) = F

(n,g)
Nekrasov

(
2s, 2g2

s ,
√

2a, Tv↔sm
)
. (5.66)

Again, the amplitudes at n+ g ≤ 1 match up to a independent terms. Specif-
ically, at n+ g = 0,

2F (0,0)
Nekrasov(a,m) = F (0,0)

(
a√
2
, Tv↔sm

)
+ πiτuva

2

+
1
2

∑

i

m2
i log(θ3θ4) +

1
4

∑

i<j

mimj log(1 − quv) + const. ,

where const. indicates an m dependent constant. The argument of the θ-func-
tions is such that the relation (5.43) holds.

At g + n = 1, we obtain

F
(1,0)
Nekrasov(a,m) = F (1,0)

(
a√
2
, Tv↔sm

)
+

1
24

log
(1 − q)4

q2
(5.67)

and

F
(0,1)
Nekrasov(a,m) = F (0,1)

(
a√
2
, Tv↔sm

)
+

1
6

log(1 − q)q , (5.68)
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where F (1,0) and F (0,1) on the right hand side follow from (3.23) and (3.24)
with Δ the discriminant of the curve (5.50).

We have performed the check of (5.23) up to g + n = 2 and to instanton
number 3, and found agreement.

5.3. The SU(N) Nf = 2N Curves

In Sect. 5.2.2, we derived the Seiberg–Witten curve for the Nf = 4 SU(2) the-
ory by imposing strong-weak duality for the UV coupling. Our result proved
to coincide with that of Seiberg and Witten [2], requiring solely a different
identification of the UV coupling. In [77], a curve is presented for Nf = 2N
SU(N) theories for general N , derived using factorization arguments reduc-
ing the problem to the SU(2) curve of Seiberg and Witten. By performing
the same re-identification of the UV coupling, we hence expect this curve to
allow for the generalization of our results to higher N , and in particular to
reproduce, in the weak coupling limit, the corresponding results of Nekrasov.
In this section, we present the curve of [77] in terms of the UV parameter q
(see also [78]) and identify the parameter redefinitions required in the N = 2
case to relate to our results above.

The curve of [77] in a convenient normalization, and with the dependence
on the UV coupling q made explicit, is

y2 = (PN (x, u))2 − 4q
(1 + q)2

Nf∏

i=1

(
x+ m̃i − 2q

1 + q
μ

)
, (5.69)

with

PN = det(x− 〈Φ〉) = xN −
N−2∑

i=0

uN−ixi , μ =
1
Nf

Nf∑

i=1

m̃i. (5.70)

Φ is the scalar field in the N = 2 vector multiplet, such that the ui are sym-
metric polynomials in the diagonal elements of the VEV of this adjoint valued
field (recall that the potential of the N = 2 theory implies that this field can
be diagonalized by gauge transformations in a vacuum). The first term in this
curve is based on the pure SU(N) generalization (79) and (80) of [1], while
the mass dependent terms are fixed by requiring the correct residua of the
Seiberg–Witten differential. This is identified as

λ =
x− 2q

1+qμ

2πi
d

[
log

(
PN + y

PN − y

)]
, (5.71)

such that

dλ
dui

=
1

2πi
dPN
dui

dx
y

=
1

2πi
xN−idx

y
, (5.72)

and the residua of λ at its poles xi are

Resλ|xi
= ± m̃i

2πi
. (5.73)
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For the SU(2) case, a redefinition of masses via triality, given explicitly by
Tv↔s ◦ Ts↔c, together with a redefinition of the u parameter given by

uour curve = −4(q + 1)uhere + (1 + q)
4∑

i=1

m̃2
i − q

1 + q

4∑

i,j=1

m̃im̃j (5.74)

equates the J function of the curve (5.69) to that of (5.50). Notice that the
masses m̃i are those defined below (5.50), hence Tv↔s acts in addition to (5.35)
by multiplication by a factor i due to (5.6). As before, to ensure triality invari-
ance of the theory, we should modify the definition (5.71) of λ by a factor of

1√
e1−e2 .

5.4. Superconformal Field Theories with En Global Symmetry

At a singular point of the moduli space where the discriminant of the Seiberg–
Witten curve vanishes, a charged particle becomes massless. We may tune the
mass parameters in Seiberg–Witten theory to special values such that some
roots of the discriminant collide. If the massless particles at the colliding roots
are mutually local, then the gap condition at the degenerate root is still valid
and our method for solving the higher genus amplitudes applies. However, if
the massless particles at the colliding roots are mutually non-local, the gap con-
dition fails. To solve the model, we must then first deform by mass parameters
to split the degenerate root, then recover the original theory by considering
the limit of degenerate root of the mass deformed higher genus amplitudes.

It is expected that some non-trivial superconformal theories appear at
singular points with mutually non-local massless particles. These theories do
not have a local Lagrangian description in terms of proper physical degrees of
freedom. Some of these superconformal field theories were found in [70]. They
exhibit U(1) gauge symmetry and global A0, A1, A2,D4 symmetries, and can
be obtained by taking special values of mass parameters in SU(2) Seiberg–
Witten theory with fundamental matter. Since we can solve the higher genus
amplitudes for SU(2) Seiberg–Witten theory with generic mass parameters,
we can obtain the higher genus amplitudes for these superconformal theories
as well by taking the appropriate limits.

It turns out that there exist other U(1) superconformal theories that have
global E6, E7, E8 symmetries, and that cannot be obtained from conventional
Seiberg–Witten theories. The elliptic curves describing these theories without
mass deformations are [81,82]

E6 : y2 = x3 − ρ4,

E7 : y2 = x3 − 2ρ3x, (5.75)

E8 : y2 = x3 − 2ρ5,

where ρ is the expectation value of a scalar field that lives on a complex plane
identified with the moduli space of the theory. The Seiberg–Witten 1-form
λSW satisfies, as usual,

dλSW
dρ

∼ dx
y
. (5.76)
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The higher genus amplitudes of the theory can be computed as for the conven-
tional gauge theories above by integrating the holomorphic anomaly equations
and imposing the gap condition, provided that there are no common roots
between g2(ρ), g3(ρ) and the discriminant Δ(ρ). This should coincide with the
condition that the massless particles appearing at any root of the discrimi-
nant are mutually local. It is easy to see that the discriminants of the above
massless curves (5.75) have only one degenerate root at ρ = 0, which is also
the root of g2(ρ) or g3(ρ). To solve the theory, we should hence turn on mass
deformations that split this degenerate root.

The relevant mass deformations of the curves are described in [81,82]. It
is quite complicated to solve the model with all possible generic mass deforma-
tions. We shall here content ourselves with studying some simple deformations
sufficient for ensuring that Δ(ρ), g2(ρ), and g3(ρ) not have common roots. Let
us illustrate the idea for the E6 curve. In this case, the parameter ρ has mass
dimension 3. We consider the subgroup U(1) × SO(10) ⊂ E6 and deform by
two mass parameters T2 and T4 which are the degree 2 and 4 symmetric poly-
nomials of the masses mi, i = 1, . . . , 5, in the Cartan algebra of SO(10) as well
as the scale λ of the U(1) [81]. The deformed curve is

y2 = x3 −
(
ρ2
(
12λ2 + T2

)
+
T 2

4

3
+ 8λρT4

)
x−

(
ρ3
(
4λT2 − 16λ3 + ρ

)

+
1
3
ρ2T4

(
60λ2 + T2

)
+

2T 3
4

27
+

8
3
λρT 2

4

)
. (5.77)

When either λ = 0 or T2 = 0, g2(ρ) and g3(ρ) no longer have common roots,
and our methods apply. For example, for λ = 0 we can use the reduced dis-
criminant

Δ = ρ
(
27ρ4 − 4ρ2T 3

2 − T 2
2 T

2
4 + 18ρ2T2T4 + 4T 3

4

)
(5.78)

in (3.22) to set up the direct integration procedure. Setting also T4 = 0 for
notational simplicity, we obtain for n+ g = 222

p
(2,0)
0 = − 1

20
ρ6T 2

2

(
63ρ2 + 17T 3

2

)
, p

(2,0)
1 = −3

4
ρ4
(
T 3

2 − 9ρ2
)2
,

p
(1,1)
0 =

1
20
ρ6T 2

2

(
207ρ2 + 38T 3

2

)
, p

(1,1)
1 =

3
4
ρ4
(
243ρ4 + 4T 6

2 − 45ρ2T 3
2

)
,

p
(1,1)
2 =

27
8
ρ4T2

(
9ρ2 − T 3

2

)
, p

(0,2)
0 = − 1

20
ρ6T 2

2

(
96ρ2 + 19T 3

2

)
,

p
(0,2)
1 = −9

8
ρ4
(
108ρ4 + 2T 6

2 − 17ρ2T 3
2

)
, p

(0,2)
2 = −27

32
ρ4T2

(
63ρ2 − 2T 3

2

)
,

p
(0,2)
3 = −405

64
ρ4T 2

2 . (5.79)

These expressions obviously satisfy the consistency conditions for the con-
formal limit T2 = 0. It would be interesting to compare them against the

22 The T4 dependence on this slice as well as the results on the other subslice T2 = 0 have
been checked for consistency up to n + g = 5, and are available on request.
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W3-conformal field theory that arises in the AGT conjecture for SU(3)
quivers.

Let us discuss the expected behaviour of the theory at ρ ∼ ∞ further.
As in the Seiberg–Witten case, the elliptic parameter τ of the curve can be
obtained from the J-function of the curve. However, unlike the Seiberg–Witten
theories studied in previous sections, the ρ ∼ ∞ point does not correspond to
weak coupling τ ∼ i∞ where J(τ) ∼ ∞. Instead, at ρ ∼ ∞ we find for the E6

curve (5.77) at λ = 0

J(τ) ∼ ρ−2 ∼ 0. (5.80)

The coupling of the curve τ hence lies at a zero of J(τ), given by τ0 = e
πi
3 and

τ0 = e
2πi
3 . τ0 is a simple root of E4, not a root or pole of E2 and E6, and a

triple root of J(τ). The scaling behaviors near ρ ∼ ∞ are

J(τ) ∼ (τ − τ0)3 ∼ ρ−2 ∼ 0,

E4(τ) ∼ (τ − τ0) ∼ ρ− 2
3 .

(5.81)

The two periods of the curve Ω0 and Ω1 can be found by solving a Picard–
Fuchs differential equation for the differential dx

y , and as in the Seiberg–Witten
case, we find two linearly independent solutions

dΩ0

dρ
∼
√
g2
g3

E6

E4
,

dΩ1

dρ
∼ τ

√
g2
g3

E6

E4
. (5.82)

Both Ω0 and Ω1 have the scaling behavior Ω0,1 ∼ ρ
1
3 . We can take a linear

combination of two solutions with smaller scaling exponent of ρ at ρ ∼ ∞ as

dt
dρ

∼ (τ − τ0)

√
g2
g3

E6

E4
, (5.83)

such that the coordinate t ∼ ρ− 1
3 . From previous experience with the expansion

of topological string amplitudes around orbifold points in Calabi–Yau moduli
space, we expect that this parameter t should be the flat coordinate around
ρ ∼ ∞, hence the expansion of the higher genus amplitudes of the elliptic
curves in terms of t should give rise to interesting topological invariants.

Since no effective weak coupling local Lagrangian description at the
ρ ∼ ∞ point for elliptic curves with En global symmetry is known, we can-
not test our results by comparing their expansion around ρ ∼ ∞ with known
perturbative and instanton calculations. On the other hand, this challenge is
also an opportunity, as our method can provide previously unknown results
regarding these superconformal theories at ρ ∼ ∞. We will pursue this study
in a future publication [83].

5.5. The Ambiguity of the UV Coupling in the Light of Geometric Engineering

While the N = 4 and the Nf = 4 conformal theory have the same Seiberg–
Witten curve, we have identified two different bare coupling parameters for
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these theories above,23 the tau parameter or effective coupling of the theory
in the N = 4 case, and the logarithm of the modular function of the tau
parameter given by q in (5.43) for the Nf = 4 theory. The choice of the bare
parameters remains ambiguous [37,84]. In the case of N = 4 supersymmetry,
our identification can be justified by the non-renormalization of the coupling.
For the Nf = 4 theory, the space of marginal deformations more generally
of superconformal SU(2) quiver theories can be naturally identified with the
Teichmüller space of an n-punctured sphere [37], on which a natural choice of
coordinates is given by cross-ratios of the puncture coordinates. In the case
of Nf = 4, n = 4 and the transformation of the cross-ratio under SL(2,Z) is
that of q in (5.43). A final justification for these choices is the comparison to
Nekrasov’s results, and this indeed is how the expression for q was originally
divined in [12].

In this subsection, we wish to outline another perspective on resolving
this ambiguity. The N = 4 and the Nf = 4 theory can be obtained as different
limits of a string theory compactification on the Enriques Calabi–Yau. We will
argue that the A-model flat coordinate (corresponding to τ) is the appropriate
choice in the geometry yielding the N = 4 theory, while the B-model algebraic
coordinate (corresponding to q) is the appropriate choice in the Nf = 4 limit.

A slight modification of the algebraic coordinate, which can also be moti-
vated from the geometric engineering approach and was presented in [78],
allows us to rewrite our results derived above for the Nf = 4 theory to obtain
the corresponding amplitudes for the N = 2Nf = 4 gauge theory with gauge
group Sp(1).

5.5.1. The Enriques Calabi–Yau. The Enriques Calabi–Yau manifold ECY is
a K3 fibration over P

1, obtained as a Z2 quotient of K3 × T 2, with the Z2

involution acting by inversion on the coordinates of T 2 and via the Enriques
involution on the K3. Heterotic/type IIA duality, which identifies the heter-
otic string compactified on T 4 × T 2 with the type IIA string compactified on
K3 × T 2, survives the quotienting [85]. The Z2 involution acts on the five
summands of the Narain lattice of the heterotic string on T 4 × T 2,

Γ6,22 = [Γ1,1 ⊕ E8(−1)] ⊕ [Γ1,1 ⊕ E8(−1)] ⊕ Γ1,1
g ⊕ Γ1,1

s ⊕ Γ2,2, (5.84)

which is identified with the cohomology ring of K3 × T 2, via

|p1, p2, p3, p4, p5〉 �→ eπiδ·p4 |p2, p1,−p3, p4,−p5〉. (5.85)

In the IIA picture, Γ1,1
s = H0(K3,Z) ⊕ H4(K3,Z) and the Γ2,2

lattices encodes the cohomology of T 2 (see e.g. [12] for more detailed explana-
tions).

As usual in heterotic/Type IIA duality, the complexified Kähler param-
eter of the base P

1, tP1 , is identified with the heterotic dilaton S. In the gauge

23 In conformal theories, the nomenclature UV couplings is ill-advised. One can speak of
bare couplings, or of coordinates on the space of marginal deformations of theory. Both
nomenclatures emphasize the ambiguity in the choice of these parameters.
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theory limit, it becomes the complexified infrared gauge coupling

tP1 = τir =
θ

π
+

8πi
g2

. (5.86)

The ECY has Euler number zero and is self-mirror. Since there are no
worldsheet instanton contributions at genus zero, as proven in [86], its Kähler
moduli space MECY is a symmetric space. It factors into MT 2 × ME , where
the T 2 factor is MT 2 = SL(2,Z)\SL(2,R)/SO(2) and the Enriques factor
ME = Gr(Π(2),Γ2,10

E )/O(ΓE) is related to its total cohomology lattice

Γ2,10
E = Γ1,1

s ⊕ Γ1,1
g (2) ⊕ E8(−2), (5.87)

the invariant part of the K3 lattice under (5.85). Another consequence of the
absence of instantons is that the gauge field theory limits are conformal,24

which is reflected in the growth of the power of the anholomorophic generator
in the base, cf. Table 1.

Gauge group enhancement occurs when representatives in homology clas-
ses defined by the lattice vectors e with e2 = −2 shrink to zero size. In terms
of the moduli described by the symmetric space Gr(Π(2),Γ2,10

E ), this means
that the two plane Π(2) is rotated to be orthogonal to the e’s. Two principal
situations occur:

If the e’s are chosen in the lattice of 2-cycles Γ1,1
g (2)⊕E8(−2), an N = 4

theory with maximal gauge group SU(2)×E8 can be engineered [85]. Shrinking
2-cycles does not invalidate the geometric description of the compactification
manifold. One can hence remain in the type IIA picture and describe the
physics in terms of the flat coordinate (5.86).25

The second situation is that e ∈ Γ1,1
s . This choice can only lead to SU(2)

enhancement, with conformal matter spectrum Nf = 4, as argued in [85].
Since the volume of the whole K3 fibre collapses, it is now appropriate to use
the mirror type IIB picture and describe the physics in terms of the algebraic
mirror coordinates. In particular, the base P

1 of the ECY can be described as
the Z

2 quotient under y → −y of a hyperelliptic T 2,

y2 =
4∏

i=1

(x− fi). (5.88)

Non-redundant complex structure variables yielding the algebraic coordinate
for the base are given by cross-ratios (fi−fj)(fk−fl)

(fi−fl)(fk−fj)
. A choice of cross-ratio

q = θ42(τir)

θ43(τir)
was identified by [12] as the UV coupling with the correct weak

24 The gravitational β functions for the coupling between the self-dual curvature and the
graviphoton do not vanish, but seem even in generic directions to break the conformal sym-
metry less than normal, reflected in the slower than generic growth of the power of the
anholomorphic generator in the fiber direction as reproduced in Table 1. In the N = 4
(gauge) theories, these couplings vanish.
25 In the calculation of [12], the F (g) come from geometric reduction in which the reduction

vector is embedded in Γ1,1
s and becomes zero in the field theory limit.
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coupling behavior τir = 2
2πi log(q/24)+O(q).26 This is the relation that entered

into the AGT correspondence [34].

5.5.2. The Sp(1) Nf = 4 Instanton Sum. Above we referred to “Su(2) in-
stantons” as the result that is obtained by decoupling of the U(1) part inside
U(2), which is straightforward in the formalism of [3], see e.g. [12].

However instantons of the conformal Su(2) = Sp(1) theory were also
calculated directly by methods similar to [3] in [78]. This calculation is much
more involved and could be done only for low instanton numbers, but it was
concluded that relative to the “Su(2) instantons” the difference is due to a
simple change in the identification of the UV coupling. Relative to the Su(2)
case the relation between IR- and the UV couplings relevant for the Sp(1)
instantons is obtained by doubling both of them, i.e. q2Sp(1) = 16 θ

4
2(2τir)

θ43(2τir)
. Using

the doubling identities θ22(2τ) = 1
2 (θ23 −θ24), θ23(2τ) = 1

2 (θ23 +θ24) and the Jacobi
identity, this can be written as

qSU(2) =
qSp(1)

(1 + qSp(1)

4 )2
, (5.89)

with qSU2 given by (5.43). [78] also argue for this relation by demonstrating
that the SU(2) Seiberg–Witten curve that arises naturally from a brane con-
struction of the theory is the double cover of the corresponding Sp(1) curve,
with this identification of the parameters. Such relations between SW-curves
is also natural from the geometric engineering point of view, where SO and
Sp gauge groups are engineered by Z2 monodromy actions on the homology
of ALE fibres (non-compact limits of K3) when moving along closed curves in
the base.

The result of [78] in particular implies that our expressions in Sect. 5.2.5
reproduces the Sp(1) instantons sums in the conformal limit upon substi-
tuting (5.89). Hence, the amplitudes of the Sp(1) theory are determined by
the B-model approach, i.e. (2.2,2.3) and the boundary conditions described in
chapter 3.7.2.

6. The Nekrasov–Shatashvili Limit

In [24], Nekrasov and Shatashvili discuss the limit ε1 = 0, ε2 � 1 of the parti-
tion function (1.1), and they conjecture that the corresponding free energy in
the small ε2 expansion is a quantization of the Seiberg–Witten prepotential (in
a sense we make precise below), with ε2 playing the role of Planck constant �.
This so-called Nekrasov–Shatashvili limit has subsequently been studied in a
series of papers [23,87,88]. Independently, it was already considered previously
in the mathematics literature [6].27 [88] implement the conjecture in the case

26 The calculation of the F (g)(τir) can be performed in the field theory limit of Borcherds

reduction, in which the reduction vector is embedded into Γ1,1
g , up to low g. After using the

inverse mirror map in F (g)(τir), one reproduces Nekrasov’s results.
27 This paper establishes the equivalence of the Nekrasov partition function in the NS limit
with the spectrum of an associated Schrödinger operator with Toda potential and generalizes
the calculation from the partition function to correlators of surface operators.



480 M. Huang et al. Ann. Henri Poincaré

of pure SU(2) gauge theory to obtain differential equations for the amplitudes
F (n,0) in terms of u-derivative of the Seiberg–Witten periods. With the meth-
ods described in this paper, we are able to check these equations and thus the
conjecture of [24] exactly to a given order in n. We have performed this check
up to n = 2, as we present in this section.

The starting point of these considerations, as explained in more detail
in [88], is relating pure SU(2) Seiberg–Witten theory to the one-dimensional
sine-Gordon model

S =
∫ (

1
2
φ̇2 − γ cosφ

)
dt. (6.1)

The Schrödinger equation of this theory is the following,
(

−�
2

2
∂2

∂φ2
+ γ cosφ

)
Ψ(φ) = EΨ(φ). (6.2)

The connection to Seiberg–Witten theory arises by relating the eigenvalues E
to the periods of the Seiberg–Witten curve. Specifically, writing the eigenvec-
tor to eigenvalue E as

Ψ(E, φ) = exp

⎛

⎝ i

�

φ∫
P (E, φ)dφ

⎞

⎠ , (6.3)

the function P (E, φ) can be calculated in a WKB series expansion in small �.
One now introduces the quantized periods

ã =
∮

A

P (E, φ)dφ, ãD =
∮

B

P (E, φ)dφ , (6.4)

for appropriately chosen contours A and B. The exact eigenvalues of (6.2) are
obtained by solving the equation

ã = 2π�

(
n+

1
2

)
(6.5)

for E. To leading order in the WKB expansion,

P (E, φ) =
√

2(E − γ cosφ) + O(�), (6.6)

and one can show that the periods a and aD that follow from (6.4) to this
order coincide with the periods of pure SU(2) Seiberg–Witten gauge theory,
upon identifying the energy eigenvalue E with the modular parameter u of the
Seiberg–Witten theory, and the parameter γ with the energy scale Λ2, E = u
and γ = Λ2.28 The quantized prepotential is introduced in analogy to Seiberg–
Witten theory as

ãD =
∂F (ã|�)
∂ã

. (6.7)

28 One noteworthy aspect of this formal identification is that the energy spectrum of the
sine-Gordon equation is discrete, while the modular parameter u in Seiberg–Witten theory
is continuous.
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The conjecture of Nekrasov and Shatashvili is that in the WKB expansion,
the quantized prepotential coincides with the ε1 = 0 limit of (1.1), with ε2
identified with �,29

F (ã|�) =
∞∑

n=0

F (n,0)(ã)
(

�

2

)2n

. (6.8)

Denoting the periods (6.4) collectively as Π, and to leading order as Π(0),
one can derive a Picard–Fuchs equation for Π(0) by inspection of (6.6) [88]

[γ(∂2
E + ∂2

γ) + 2E∂E∂γ ]Π(0) = 0. (6.9)

In the conventions of [88], the period Π(0)
√
γ is a function of E

γ , implying the

relation ∂γ(Π(0)

γ ) = −E
γ ∂E(Π(0)

√
γ ), and thus

∂γΠ(0) =
Π(0)

2γ
− E

γ
∂EΠ(0),

∂E∂γΠ(0) = −∂EΠ(0)

2γ
− E

γ
∂2
EΠ(0), (6.10)

∂2
γΠ

(0) = −Π(0)

4γ2
+
E

γ2
∂EΠ(0) +

E2

γ2
∂2
EΠ(0).

Substituting these relations into (6.9) and expressing the result in
terms of Seiberg–Witten variables at Λ2 = 1, the Picard–Fuchs equation
becomes

4(1 − u2)∂2
uΠ

(0) = Π(0). (6.11)

This coincides with the Picard–Fuchs equation used in [53].
Plugging the ansatz (6.3) into the Schrödinger equation, one obtains an

iterative equation for computing the higher order terms of P (E, φ) in (6.6).
It turns out that odd power terms in � do not have a square root cut, and
hence yield vanishing contour integrals. As shown in [88], the non-vanishing
even order sub-leading terms of the periods (6.4) in the WKB expansion can
be computed by acting with certain differential operators on the leading order
period. One finds

Π(2) = −�
2γ

24
∂2
EγΠ

(0) =
�

2

24

(
1
2
∂uΠ(0) + u∂2

uΠ
(0)

)
, (6.12)

Π(4) =
�

4γ

1152

(
−2

5
E∂E + γ∂γ

)
∂2
E∂γΠ

(0)

=
�

4

23040

(
75∂2

uΠ
(0) + 120u∂3

uΠ
(0) + 28u2∂4

uΠ
(0)
)
. (6.13)

29 In fact, we identify ε2 = �

2
to match our conventions.
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The exact periods to sub-leading orders are therefore

ã = a+
�

2

24

(
1
2
∂ua+ u∂2

ua

)

+
�

4

23040
(75∂2

ua+ 120u∂3
ua+ 28u2∂4

ua) + O(�6),

(6.14)

ãD = aD +
�

2

24

(
1
2
∂uaD + u∂2

uaD

)

+
�

4

23040
(
75∂2

uaD + 120u∂3
uaD + 28u2∂4

uaD
)

+ O(�6).

These relations can now be used to eliminate the quantized periods in terms
of the classical periods and their derivatives. The definition of the quantized
prepotential (6.7), assuming the Nekrasov–Shatashvili conjecture (6.8), simply
reproduces at leading order the special geometry relation ∂aF

(0,0) = aD. At
order �

2, one obtains

∂F (1,0)(a)
∂a

=
2πiτ

3

(
1
2
∂a

∂u
+ u

∂2a

∂u2

)
+

1
6

(
1
2
∂aD
∂u

+ u
∂2aD
∂u2

)
, (6.15)

where we have used the formula ∂2F (0,0)(a)
∂a2 = −4πiτ . Similarly, the order �

4

equation is

∂F (2,0)(a)
∂a

= −1
6

(
1
2
∂ua+ u∂2

ua

)
∂2
aF

(1,0) +
πi

18
∂τ

∂a

(
1
2
∂ua+ u∂2

ua

)2

+
πiτ

360
(
75∂2

ua+ 120u∂3
ua+ 28u2∂4

ua
)

+
1

1440
(
75∂2

uaD + 120u∂3
uaD + 28u2∂4

uaD
)
. (6.16)

We can check the veracity of these relations explicitly. The periods and the u
parameter of pure SU(2) gauge theory can be expressed in terms of the IR
gauge coupling τ , see e.g. [53],

a =
E2(τ) + θ43(τ) + θ44(τ)

3θ22(τ)
,

u =
θ43(τ) + θ44(τ)

θ42(τ)
, (6.17)

aD = −4πiτa− 2∂au.

The formula for aD is derived by taking the derivative with respect to a of the
Matone relation F (0,0) − 1

2a
∂F (0,0)

∂a +u = 0. The formulae for F (1,0) and F (2,0),
determined by the methods described in this paper in [9], are

F (1,0) =
1
24

log(u2 − 1),

F (2,0) =
1

4320(u2 − 1)2

(
10u2E2(τ)

θ42(τ)
+ u3 − 75u

)
.

(6.18)
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Using these formulae together with derivative identities for the Jacobi theta
functions and Eisenstein series, we can easily check Eqs. (6.15) and (6.16) by
invoking theta function identities. For example, we can express both sides of
the order 2 relation (6.15) as follows,

∂F (1,0)(a)
∂a

=
2πiτ

3

(
1
2
∂a

∂u
+ u

∂2a

∂u2

)
+

1
6

(
1
2
∂aD
∂u

+ u
∂2aD
∂u2

)

= θ22(τ)
θ43(τ) + θ44(τ)
12θ43(τ)θ

4
4(τ)

. (6.19)

7. General Ω-Background for the O(−K) → P
2 Geometry

The formalism developed in Sect. 3 can readily be applied to non-compact
Calabi–Yau manifolds. Our aim is to calculate refined BPS invariants, mathe-
matically known as motivic Donaldson Thomas invariants, and further to pres-
ent refined orbifold invariants. We consider the simple yet non-trivial A-model
geometry O(−3) → P

2. The B-model geometry of the mirror curve has been
studied e.g. in [44] in the context of direct integration of the usual topological
string. Some consistency checks for the refined model have been performed
in [9] by comparing with the results of [19] at large radius. In [42,44,89], one
can find a more complete discussion of the properties of the periods at various
points. The mirror curve C0 can be determined by standard methods to be

H(x, y; z) = y2 + xy + y + zx3 = 0, (7.1)

with z the modulus of the geometry. The meromorphic differential can be
written as λ = log(y)dx

x . We notice that the parameters in this context are
such that z d

dzλ = ω + exact. From (7.1), it is straightforward to calculate30

g2 = 33(1 + 24z) and g3 = 33(1 + 36z + 216z2) and the J-invariant as

J =
1
q

+ 744 + 196884q + 21493760q2 +O
(
q3
)

= − (1 + 24z)3

1728z3(1 + 27z)
. (7.2)

The parametrization is related to the more symmetric cubic
∑3
i=1 x

3
i − 3ψ

∏3
i=1 xi = 0 in P

2 by z = 1−ψ3

27ψ3 . The Picard–Fuchs operator for the periods of
λ is

D = θ3 + 3z (3θ − 1) (3θ − 2) θ = Lθ, (7.3)

where θ = z d
dz and L is the Picard–Fuchs operator annihilating the holomor-

phic periods
∫
Σi
ω. The singular points of the theory are at z = 0, correspond-

ing to the large radius limit of the A-model, z = − 1
27 the conifold point, and

1/z = 0 the orbifold point. To obtain the prepotential F (0,0) in the conven-
tional A-model normalization, we must choose the constant relating it to the
tau parameter of the mirror curve as F (0,0) = − 1

9

∫
dt
∫

dt τ . Near z = 0, we
can express the result of this integration in terms of the mirror coordinate

30 We have chosen g2, g3 so that (3.18) gives the correct behavior at infinity, as determined
via the Picard–Fuchs equations, with c1 = 1.
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Q = et with z(Q) = Q + 6Q2 + 9Q3 + 56Q4 + O
(
Q5
)
, yielding the genus 0

instanton expansion

F (0,0) = − 1
18

log3(Q) + 3Q− 45Q2

8
+

244Q3

9
− 12333Q4

64
+ O(Q5). (7.4)

Rigid special geometry implies ∂3
t F

(0,0) = Czzz(∂tz)3 with Czzz = − 1
3

1
z3(1+27z) . The amplitudes for n+ g = 1 are

F (0,1) = −1
2

log
(
Gzz̄|z7Δ| 1

3

)
, F (1,0) =

1
24

log(z−1Δ) , (7.5)

in terms of Δ = (1 + 27z). The holomorphic limit of F (0,1) is F
(0,1)
hol =

− 1
2 log

(
dt
dz

) − 1
12 log(z7Δ). The recursion proceeds as described in Sect. 3.

The anholomorphic object defined in [9,44], the propagator S := 2
Czzz

∂F (0,1)(z)
∂z , is related to the one we use in this paper, X = g3Ê2E4

g2E6
, by

S =
z2

4
(9X − 1). (7.6)

For reference, we note that in the real polarization, i.e. in the holomorphic
limit near z = 0, limIm(τ)→∞X = 1

3 + 4Q+ 84Q3 +O
(
Q4
)
. In terms of X, we

obtain for g + n = 2

F (2,0) =
7χ(M)
138240

+
15X − 7776z2 + 288z − 5

7680Δ2
,

F (1,1) = −7χ(M)
34560

+
135X2 + 60X(54z − 1) − 3888z2 − 936z + 5

3840Δ2
, (7.7)

F (0,2) =
χ(M)
5760

+
2025X3 − 1485X2 + 375X + 2592z2 + 144z + 35

7680Δ2
.

7.1. Motivic Donaldson–Thomas Invariants

We solved the recursion described in Sect. 3 up to g + n = 84 in order to cal-
culate the BPS numbers up to d = 9, with d the multiplicity of the hyperplane
divisor H in P

2, β = dH. The BPS degeneracies Nβ
j−,j+ =: Nd

jl,jr
are extracted

using (3.38).31 Apart from their integrality and positivity, we note that the
highest spin representation occurs at

2jmax
l (d)=gmax(d)=

1
2
(d− 1)(d− 2) , 2jmax

r (d) = nmax(d) =
1
2
d(3 + d),

(7.8)

with multiplicity one, Nd
jmax
l (d),jmax

r (d) = 1. This is in perfect accord with the
analysis of [90] and a highly non-trivial test of the integrality structure encoded
in (3.38) and our method of fixing the holomorphic ambiguity. Further remark-
able properties, e.g.

Nd
jl,jr

= 0 if 2(jl + jr) + d mod 2 = 0, (7.9)

31 The [jl, jr] notation is used here to compare with [90].
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which implies that the cohomology of the moduli space of the D2/D0 is even
on the local P

2, or the fact that

Nd
jmax
l (d)− i

2 ,j
max
r (d)− j

2
(7.10)

is symmetric in i, j and independent of d for j + i < 2d− 4, will be discussed
in [91]. The refined vertex cannot calculate the refined amplitudes for the case
at hand directly. It can however calculate the invariants of the Hirzebruch sur-
face O(−K) → F1, which as a blow up of O(−K) → P

2 contains the results for
the latter geometry in the class H +F . Our results agree with those obtained
in this manner in [19] up to degree 5, aside from the multiplicity N5

1
2 ,

9
2

= 2,
which seems to be missing in [19] (Table 2).

7.2. Orbifold and Conifold Expansions

As explained in Sect. 2.4, the generalized holomorphic anomaly equations (2.2)
can be interpreted as guaranteeing the wave function transformation proper-
ties of the partition function Z = eF . We can therefore apply the formalism
described in [42] to define the holomorphic A-model expansion as counting
function of possible A-model invariants.

7.2.1. The Refined Theory Near the Conifold Point. As mentioned in Sect. 3.7,
F in the strict conifold limit is equivalent to a double scaling limit of the free
energy of the c = 1 string compactified on S1, where the flat coordinate

tc = δ +
11δ2

18
+

109δ3

243
+

9389δ4

26244
+O

(
δ5
)
, (7.11)

with δ = 1 + 27z playing the role of the cosmological constant Δ and ε1 =
1
βμ , ε2 = − 1

2βμR in the notation of [69]. The topological string specialization
corresponds to taking the self-dual radius R = 1

2 in units of α′. In real polari-
sation, the holomorphic limit of Sc is simpler than that of Xc and reads

Sc = −1
2

+
4tc
3

− 103t2c
54

+
317t3c
162

+O
(
t4c
)
. (7.12)

As (7.7) and (7.6) are global relations, we can obtain Xc from the expansion
(7.12) of Sc, and substitute this as well as z(δ(tc)) into the globally defined
Fn,g(X, z), yielding32

32 With a1 = 3 log(3)+1
2πi

, a0 = − π
3

− 1.678699904i = 1
i
√

3Γ( 1
3 )Γ( 2

3 )
G3 3

2 2

(
1
3

2
3 1

0 0 0

∣∣∣∣− 1

)
. The

constant c1,0 = 1
24

(πi + 3 log(3)) and c0,1 depends on a further regularization.
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Table 2. Non-vanishing BPS numbers Nd
jl,jr

of local
O(−3) → P

2

F (0,0)
c = c0,0 +

a0

3
tc +

(
a1

6
− 1

12

)
t2c + t2c

log(tc)
6

− t3c
324

+
t4c

69984
+O

(
t5c
)

F (1,0)
c = c1,0 +

log(tc)
24

+
7tc
432

+
t2c

46656
− 19t3c

314928
+

439t4c
50388480

+O
(
t5c
)
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F (0,1)
c = c0,1 − log(tc)

12
+

5tc
216

− t2c
23328

− 5t3c
157464

+
283t4c

75582720
+O

(
t5c
)

F (2,0)
c = − 7

1920t2c
+

1906 − 189χ
3732480

+
1169tc

12597120
− 61303t2c

3023308800

+
16153t3c

6122200320
+O

(
t4c
)

F (1,1)
c =

7
480t2c

− 974 + 189χ
933120

+
631tc

3149280
− 29897t2c

755827200

+
7247c3

1530550080
+O

(
t4c
)

F (0,2)
c = − 1

80t2c
+

9χ− 26
51840

+
tc

19440
− 3187t2c

377913600
+

239t3c
255091680

+O
(
t4c
)
.

(7.13)

The transformations of F (0,0)(tc) and F (0,g)(tc) have been worked out in [44].
It remains a challenge to calculate the coefficients of the finite expansion

from the correlations functions of the c = 1 string at arbitrary radius.

7.2.2. The Refined Theory Near the Orbifold Point. Near the orbifold point,
the predictions of orbifold Gromov–Witten theory made in [42] have subse-
quently been verified by mathematicians, see [92] for a review. One might
hope that the refined invariants that can be defined in the B-model also have
an interpretation in terms of the orbifold A-model. The flat coordinate to is
given by

to = 3w − w4

8
+

4w7

105
− 49w10

2700
+

245w13

23166
+O

(
w14

)
, (7.14)

where w = − (−1)
1
3

3z
1
3

. Furthermore, the propagator So at the orbifold point is
simpler than the variable X expanded around this point, and given by

So =
t5o

43740
− 7t8o

28343520
+

16039t11o
3535570684800

+O
(
t14o
)
. (7.15)

With these definitions, we extract the orbifold expansions up to n+ g = 2

F (0,0)
o =

t3o
3 · 3!

− t6o
336!

+
t9o

329!
− 1093 t12o

3612!
+

119401 t150
3715!

+O
(
to

18
)

F (1,0)
o =

log(3)
8

+
to

3

22333!
− 5to6

22346!
+

1319to9

22379!
− 114983to12

223812!
+O

(
to

15
)

F (0,1)
o =

to
6

356!
− 14to9

359!
+

13007to12

3812!
− 8354164t150

31015!
+O

(
to

18
)

F (2,0)
o =

7χ− 192
138240

+
to

3

23335 · 3!
− 79to6

24366!
+

29to9

22325 · 9!

−4656751to12

24385 · 12!
+O

(
to

15
)

(7.16)
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F (1,1)
o =

−7χ− 48
34560

− to
3

22345 · 3!
+

7to6

22356!
− 8933to9

22375 · 9!

+
1628851to12

22385 · 12!
+O

(
to

15
)

F (0,2)
o =

3χ− 8
17280

+
to

3

243105 · 3!
− 13to6

24366!
+

20693to9

243135 · 9!

−12803923to12

243145 · 12!
+O

(
to

15
)
.

Note that the F (0,0) coefficients are calculated independently in the A-model
in [93]. It would be interesting to calculate higher genus invariants for the
topological string and even more so to understand the Ω-deformation at the
orbifold in the A-model context or in a brane description.

8. Conclusion

In this paper, we gave evidence that the generalized holomorphic anomaly
equations (2.7) hold for all 4D rigid N = 2 theories for which the B-model
geometry is given by a non-compact Calabi–Yau geometry. The full extent of
the latter class is not known, but it is possible that they exhaust all rigid
N = 2 theories. It does include e.g. all non-compact toric Calabi–Yau man-
ifolds, the 3 dimensional orbifold singularities [94], and the canonical affine
hypersurface singularities classified in [95]. Many specific examples that have
been studied involve additional fibration structures like the singularities of
elliptic fibrations discussed in F-theory, as well as ADE singularities fibered
over P

1, familiar from the heterotic/type II dual [96] construction of gauge
theories. Within the class of toric singularities, many reproduce N = 2 gauge
theories with matter [50] on subslices in their moduli space, including in more
general cases a wide variety of quiver gauge theories [97] (arguably all with
special unitary gauge groups).

We showed that the boundary conditions given by the gap condition
suffice to fix the holomorphic ambiguity and therefore determine the refined
partition function if deformations exist that split all singularities into coni-
fold singularities. Our formalism makes strong use of the discrete automorphic
groups acting on the moduli space of the geometries and organizes the refined
partition functions in terms of generators of the latter. In a somewhat similar
context, relevant deformations of a conformal Landau-Ginzburg theory were
recently used to describe generating functions of higher genus Gromov–Witten
invariants on orbifolds of P

1 [98]. It should be straightforward to calculate the
refined invariants by (2.7).

Note that the amplitudes F (n,g) at genus 0—one can think of these as
pure s-deformations of a classical theory deformed along the (s, gs) plane—
can be solved independently by a specialization of the holomorphic anomaly
equations, together with the gap condition specialized to the genus 0 sector.
This subsector of the theory should have a universal meaning in the integrable
models related to the Nekrasov–Shatashvili limit. If one further restricts to
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the conformal cases, the pure s-deformation satisfies the same holomorphic
anomaly equations (3.36) as the mass deformations of F (0,0). This together
with the observation that unlike all other directions in deformation space, it
by (5.62) appears to only depend on the monodromy group in the conformal
limit suggests that this direction might be described by an isomonodromic
deformation of the geometry.

As a general feature in our study, we saw that the leading power in the an-
holomorphic generator grows more slowly in conformal than in non-conformal
theories. In this sense, the breaking of holomorphicity is weaker in conformal
theories, suggesting a relation between its breaking and the breaking of confor-
mal invariance. Note that the anholomorphicity of the amplitudes F (n,g) has
not yet found a satisfactory explanation in the literature from a purely field
theoretic vantage point. The 4D/2D correspondence implies that the holomor-
phic anomaly equations (2.7) govern 2D theories as well, and are perhaps easier
to understand in this context. In related works [60,61], such anholomorphici-
ties are seen to arise due to regularization prescriptions of the path integral.
The softer anholomorphicities we find for conformal theories, which tend to
have better convergence properties, are consistent with this finding.
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Appendix A. The Instanton Partition Function

The Nekrasov partition function is computed by localization of integrals over
the moduli space of instantons. It can be written as a sum over 2D Young
tableaux. A 2D Young tableau Y can be represented by a sequence of non-
negative non-increasing integers Y,1 ≥ Y,2 ≥ · · · ≥ 0, with the total number of
boxes |Y | ≡ ∑∞

i=0 Y,i finite. Denote

EY1,Y2
i,j (a) ≡ a+ ε1(Y T

1,j − i+ 1) − ε2(Y2,i − j) , (A.1)

where Y T is the transpose of the Young tableau, and ε1 and ε2 are the defor-
mation parameters of the Ω-background. For the SU(2) case, we have a single
period a which is the flat coordinate in the large modulus limit. The instanton
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part of the Nekrasov function can be written as sums over the boxes of Young
tableaux as follows,

Zinstanton(a, ε1, ε2) =
∑

Y1,Y2

λ|Y1|+|Y2|

×
∏

(i,j)∈Y1

∏Nf

k=1(a+ ε1(i− 1) + ε2(j − 1) + m̂k)

EY1,Y1
i,j (0)(ε− EY1,Y1

i,j (0))EY1,Y2
i,j (2a)(ε− EY1,Y2

i,j (2a))

×
∏

(i,j)∈Y2

∏Nf

k=1(−a+ ε1(i− 1) + ε2(j − 1) + m̂k)

EY2,Y2
i,j (0)(ε− EY2,Y2

i,j (0))EY2,Y1
i,j (−2a)(ε− EY2,Y1

i,j (−2a))
,

(A.2)

where ε = ε1 + ε2, and the m̂k’s are the mass parameters of massive flavors in
the fundamental representation, related to the masses mk that appear in the
Seiberg–Witten curve via the shift (2.5). The n-instanton contributions are
given by the sum over Young tableaux Y1 and Y2 whose total number of boxes
is n, |Y1| + |Y2| = n. The parameter λ keeps track of the instanton number.
It serves as the expansion parameter in the computation of the free energy
F = log(Z). In the asymptotically free cases of Nf = 1, 2, 3, the parameter
λ is a dimensionful parameter proportional to a power of the strong coupling
scale. For convenience, we can set it to a fixed numerical value; it can be recov-
ered easily by dimensional analysis. For conformal theories, it is dimensionless
and is related to the bare gauge coupling constant λ = q0 = e2πiτ0 .

We can also consider the case where there is one hypermultiplet of mass
m in the adjoint representation of the gauge group. In this case, the theory
is N = 4 supersymmetric if the adjoint matter is massless. The mass term
breaks the N = 4 supersymmetry to N = 2, yielding a theory referred to as
N = 2∗. The Nekrasov partition function in this case is

Zinstanton(a, ε1, ε2) =
∑

Y1,Y2

λ|Y1|+|Y2|

×
∏

(i,j)∈Y1

EY1,Y1
i,j (−m̂)(ε − EY1,Y1

i,j (m̂))EY1,Y2
i,j (2a − m̂)(ε − EY1,Y2

i,j (2a + m̂))

EY1,Y1
i,j (0)(ε − EY1,Y1

i,j (0))EY1,Y2
i,j (2a)(ε − EY1,Y2

i,j (2a))

×
∏

(i,j)∈Y2

EY2,Y2
i,j (−m̂)(ε − EY2,Y2

i,j (m̂))EY2,Y1
i,j (−2a − m̂)(ε − EY2,Y1

i,j (−2a + m̂))

EY2,Y2
i,j (0)(ε − EY2,Y2

i,j (0))EY2,Y1
i,j (−2a)(ε − EY2,Y1

i,j (−2a))
.

(A.3)

The perturbative part of the Nekrasov function Zpert = eFpert with mas-
sive fundamental flavors is computed via

Fpert = −γ(2a) − γ(−2a) +
Nf∑

i=1

[γ(a+ m̂i) + γ(−a+ m̂i)],

γ(x) ≡ d
ds

1
Γ(s)

∞∫

0

dt
ts−1e−tx

(e−ε1t − 1)(e−ε2t − 1)
|s=0,

(A.4)
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while in the case of adjoint matter of mass m, the perturbative part is

Fpert = −γ(2a) − γ(−2a) + γ(2a+ m̂) + γ(−2a+ m̂). (A.5)

The total Nekrasov partition function includes the perturbative and the
instanton parts Z = ZpertZinstanton.
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