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(In)Finite Extent of Stationary Perfect
Fluids in Newtonian Theory

Patryk Mach and Walter Simon

Abstract. For stationary, barotropic fluids in Newtonian gravity we give
simple criteria on the equation of state and the “law of motion” which
guarantee finite or infinite extent of the fluid region (providing a priori
estimates for the corresponding stationary Newton–Euler system). Under
more restrictive conditions, we can also exclude the presence of “hollow”
configurations. Our main result, which does not assume axial symmetry,
uses the virial theorem as the key ingredient and generalises a known
result in the static case. In the axially symmetric case stronger results
are obtained and examples are discussed.

1. Introduction

This work deals with a priori estimates of solutions of the stationary Newton–
Euler system of equations. For definiteness the latter includes a barotropic
equation of state (EOS) ρg = ρg(p) relating the matter density and the pres-
sure, and a “law of motion” (LOM) specifying the velocity �U(xi) or the cen-
trifugal potential φc = φc(xk) as a function of position. This system can be
used to model stars or galaxies, provided the perfect fluid is a viable model
for the corresponding multi-particle system consisting of molecules or stars,
respectively. The equations have been studied accordingly, from mathematical
as well as from physical viewpoints, see e.g. [1–4]. Key problems are existence,
uniqueness, (axial) symmetry, stability and parametrization of the solutions,
where uniqueness may be understood modulo global parameters, like mass
and angular momentum. Other useful parametrizations are the pressure or
the density at the centre or at the axis, depending on the symmetry, or, as we
shall see below, the sum of the gravitational potential φg and the centrifugal
potential φc on the surface, called ΦS.

In the present work we assume a connected fluid region and focus on
investigating the problem if the Newton–Euler system admits (only) solutions
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of finite or infinite extent (i.e., compact support of the density function). In
fact this question can be regarded as a special case of the problem of obtaining
a formula for ΦS or a bound thereon, for which we give results as well. Nor-
mally finite extent of solutions is a prerequisite for the physical significance
of a model. This always applies to models for single stars. However, for the
polytropic EOS

p =
1

n+ 1
ρ

− 1
n

o ρ
n+1

n
g , ρo = const. > 0 (1)

with index n = 5, all static configurations are infinitely extended. They are
known as “Plummer’s model” for non-rotating globular clusters of stars (see
e.g., [4]).

In the static case, systematic treatments of the finiteness problem, which
do not rest on the assumption of spherical symmetry, can be found in [5–7];
for stronger results in spherical symmetry, cf. [8]. Formally, the task consists
of determining if the surface value ΦS of the gravitational potential φg agrees
with its value at infinity, which we set to zero. Physically, the key ingredient is
the continuum form of the virial theorem, and mathematically it is a modified
Pohozaev–Rellich identity. Moreover, since ρg ≥ 0, the maximum principle is
available as well. In [5,7] the functional

F (p) = ρ

p∫

0

dp′

ρg(p′)
− 6p (2)

was identified as the crucial quantity in the sense that F ≤ 0 for all p guar-
antees finiteness of the solutions unless F ≡ 0, which characterises the poly-
tropes of index 5. Moreover, F ≥ 0 for all p but F �≡ 0 implies that there are
no solutions with finite mass. If F changes sign, the analysis of the spherically
symmetric Newton–Euler system is much more involved and uses dynamical
system techniques (see e.g., [9]).

In the stationary case, results on finiteness of which we are aware are
basically amendments to theorems on existence (cf. the classic paper [10], the
recent account [11] and the references therein). All these results require axial
symmetry and conditions on the EOS which are in many respects more restric-
tive than ours. In contrast, the present paper ignores the problem of existence,
which means that we are interested in “a priori” estimates. On the other hand,
some of our results do not require axial symmetry, which does not hold in gen-
eral for stationary perfect fluids (cf. Sect. 3 below) and we use appropriately
adapted conditions on the EOS and the LOM. Formally, we compare now the
value of the “effective potential” φ = φg + φc at infinity (where we can again
set it to zero unless it diverges) and at the surface (ΦS), and the main techni-
cal tool is still the virial theorem. The quantity characterising rotation which
arises in our analysis is

D = xi ∂

∂xi
φc +

1
2
φc, (3)
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where xi denote Cartesian coordinates. Finiteness of the solution is guaran-
teed provided D and F have the same sign everywhere but do not both vanish
identically. Under the additional requirement that Δφc ≥ 0 the case with D
and F being non-negative can be excluded by the maximum principle, again
unless both F and D vanish everywhere. This latter case leads to a particular
LOM for the n = 5 polytrope, which will be analyzed separately.

For polytropes with index n which rotate according to a “power law”
�U ∝ r−m∂/∂ϕ, where r is the distance from an axis and m ∈ R, our con-
ditions F ≤ 0 and D ≤ 0 enforcing finiteness read n ≤ 5 and m ≥ 5/4,
respectively. In particular, a polytropic fluid with n ≤ 5 whose layers rotate
at or near their Kepler orbits (m � 3/2) must be finite. This is somewhat
counter-intuitive for the following reason: For such a fluid the gravitational
attraction between its “layers” will be balanced locally only by the centrifugal
force and not by pressure, whence the fluid should behave like “dust”. How-
ever, there is no obvious reason as to why Keplerian orbits of dust (-particles)
should not extend to infinity. Of course this “paradox” must disappear upon
properly taking into account the gravitational interaction between the dust
particles or fluid layers. However, this reminds of heuristic arguments trying
to estimate the amount of dark matter necessary to stabilise galaxies and to
explain the observed rotation law m ≈ 1. Recent analyses of the dark matter
problem by different methods (see e.g., [12] and [13]) indicate that for this
purpose much less dark matter is needed than previous approximations sug-
gested. In resolving this issue Vlasov–Poisson theory should play a key role
and also establish a connection to the phenomena in fluid mechanics described
here (see e.g., [14]).

While we believe that our results are new, they are rather elementary,
and the axially symmetric ones might well be contained in the vast astro-
nomical, physical, and mathematical literature on rotating fluids since Euler’s
and Newton’s time. On the other hand, our exposition is motivated by and
partially adapted to the corresponding relativistic problem. In fact for static
perfect fluids in general relativity the quantity F (p) in (2) can be replaced by

G(p) = ρ

⎡
⎣exp

⎛
⎝

p∫

0

dp′

ρg(p′) + p

⎞
⎠ − 1

⎤
⎦ − 6p (4)

to obtain analogous conclusions regarding finiteness and infiniteness as in the
Newtonian case [5,7]. However, since the known relativistic virial theorems
[15,16] are not suitable for the present purpose the methods are different, and
generalizations to the stationary case are not straightforward. We intend to
present relativistic analogues of some of the results given below elsewhere.

2. Assumptions and Basic Results

This section is divided into five subsections. In Sect. 2.1 we give some basic
definitions and continue in Sect. 2.2 with writing the Newton–Euler system in
a form suitable for our purposes. Section 2.3 contains a discussion of the EOS
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ρg = ρg(p) and the relationships ρg(φ) and p(φ). (The symbols are defined
in the introduction). The space-time dependence of the gravitational variables
ρg, φg and the rotational variables ρc, φc will be discussed in Sects. 2.4 and
2.5, respectively, and the latter section also contains the key Lemma 2.5.2 on
(in)finiteness.

We denote Cartesian coordinates by either xi (i = 1, 2, 3) or x, y and z.
R =

√
x2 + x2 + z2, ϑ and ϕ are spherical polar coordinates, and r =

√
x2 + y2

and ϕ are cylindrical polar coordinates. The volume element on R3 is denoted
by dν.

2.1. Finiteness Versus Infiniteness

The vacuum and the fluid regions V and F are by definition 3-dimensional,
open sets where ρg = 0 and ρg �= 0, respectively. This means that all points
v ∈ V and f ∈ F have open 3-neighbourhoods in V and F . We take F to be
connected but possibly with non-trivial topology; in particular, V and B = ∂F
may be disconnected. The boundary B is required to be a C1 submanifold with
F lying only on one side of ∂F . In other words, ρg only vanishes in vacuum
and possibly at the boundary, but not on sets of dimension less than three
“inside the region occupied by the fluid”. The reason for this requirement is
to avoid trouble with integrating Euler’s equation (9). We also note that the
boundary can be characterized by vanishing pressure, cf. Sect. 2.3.

The following definition introduces a shorthand for our main issue.

Definition 2.1. The fluid region F is called finite if it stays within a compact
subset of R3, and infinite otherwise.

In particular, fluids which extend to infinity in at least one direction
are called infinite. In the axially symmetric case dealt with in Sect. 3 we will
distinguish between (in)finite extent in axial and equatorial directions.

2.2. The Newton–Euler System

We denote by �U the velocity of the fluid and by I the integral

I =

p∫

0

dp′

ρg(p′)
(5)

(the specific enthalpy), whose existence is assumed for finite p; this is satisfied
in particular for polytropes ρg(p) ∝ pa when a < 1. Further restrictions on the
EOS are discussed in Sect. 2.3. The stationary Newton–Euler system can be
written as follows

ρg = ρg(p), (6)
Δφg = 4πρg, (7)

∇(ρg
�U) = 0, (8)

−(�U.∇)�U = ∇φg +
∇p
ρg

= ∇(φg + I). (9)



Vol. 14 (2013) (In)Finite Extent of Stationary Perfect Fluids 163

In terms of the centrifugal potential φc defined up to a constant (which
will be specified in Sect. 2.5) by

(�U.∇)�U = ∇φc, (10)

(9) yields the “Bernoulli” equation

φg + φc + I(p) = ΦS, (11)

where ΦS is a constant. We also introduce a “centrifugal charge density”

ρc =
1
4π

div[(�U.∇)�U ], (12)

in terms of which Eq. (9) yields

Δφc = 4πρc. (13)

Remark. 1. The existence theorems in the axially symmetric case show that
the motion of the fluid has to be specified somehow in the Newton–Euler
system. A simple way of doing so is to prescribe the velocity in terms of
position �U = �U(xi) or to prescribe the centrifugal potential φc(xi) which
we do below (without restriction to axial symmetry). An alternative is
to specify the angular momentum per unit mass (see e.g. [10]).

2. The above definitions of �U, φc and ρc, and the equations containing them,
are understood to hold only in F . It will however be convenient to extend
these quantities, and some relations between them, to V. In Sect. 2.5 we
will discuss four alternative extensions which will be used in the following
sections.

3. In the work focusing on existence, the aim is to specify only the EOS
and the velocity or the specific angular momentum as functions in space,
and to get information on the spatial behaviour of all variables. In this
respect the present work has the same scope, although existence is not
the issue here. However, except for crucial conditions on the EOS and
the LOM, we will in the sequel also have to make differentiability and
falloff requirements for the space-time dependence of our functions.

2.3. The Equation of State and the Effective Potential

The “effective potential” is defined by φ = φg + φc; its gradient is called
“effective gravity” in Sect. 3.2.1 of [3].

Our first Lemma serves mainly to list the assumptions on the equation of
state required later. The proof is an easy consequence of the Bernoulli equa-
tion (11).

Lemma 2.3.1. We assume that ρg(p) is piecewise continuous, 0 ≤ ρg(p) < ∞,
and that the integral I exists for finite p. Then in F the effective potential φ(p)
is C0, piecewise C1, and strictly monotonic; the same applies to the inverse
p = p(φ − ΦS) = p(φ), and the density ρg is also a C0 and piecewise C1

function of φ that satisfies ρg = dp(φ)/dφ.

Remark. The Lemma implies that the surface p = 0 is an equipotential sur-
face of φ, and φ(p = 0) takes the value ΦS. If we allowed for disconnected fluid
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regions, a consistent definition of φ on R3 (cf. Sect. 2.5) would imply different
constants ΦS on each component in general.

The next Lemma (which is known, see e.g., [17]) contains a stronger
assumption on the EOS in a neighbourhood of p = 0, which will also be made
in Proposition 4.2.

Lemma 2.3.2. In addition to the requirements of Lemma 2.3.1, we assume that
ρg(p) is C0 in [0, δ) and C1 in (0, δ) for some δ > 0. Then limp→0 p/ρg(p) = 0.

Proof. The result is obvious if ρg(0) �= 0. If ρg(0) = 0 we first note that near
p = 0 the inverse p = p(ρg) exists, and dp/dρg ≥ 0. We can thus replace the
assertion by limρ→0 p(ρg)/ρg = 0 (dropping the subscript g on ρg when the
latter is a sub- or superscript itself). We obtain

∞ > lim
ε→0

p∫

ε

dp′

ρg(p′)
= lim

ε→0

ρg(p)∫

ρ(ε)

dp′

dρ′
g

dρ′
g

ρ′
g

≥ lim
ε→0

⎧⎪⎨
⎪⎩

[
inf

[ρg(ε), ρg(p)]

dp(ρg)
dρg

] ρ(p)∫

ρ(ε)

dρ′
g

ρ′
g

⎫⎪⎬
⎪⎭

≥ lim
ρ→0

dp(ρg)
dρg

lim
ε→0

ρ(p)∫

ρ(ε)

dρ′
g

ρ′
g

= lim
ρ→0

dp(ρg)
dρg

.∞. (14)

Hence 0 = limρ→0 dp(ρg)/dρg = limρ→0 p(ρg)/ρg by de l’Hospital’s rule. �

2.4. The Gravitational Variables

We work in the weighted Sobolev spaces W k,p
δ (1 ≤ p ∈ R, δ ∈ R, k ∈ N0),

based on the weighted Lebesgue norms

||u||k,p,δ =
k∑
0

||Dju||p,δ−j , ||u||p,δ =

⎛
⎝

∫

R3

|u|pσ−δp−3 dν

⎞
⎠

1/p

(15)

for measurable functions u ∈ Lp
loc(R

3), where σ = (1+R2)1/2. This is Bartnik’s
index convention, cf. [19], see also remark 2 below.

We always require that the fluid has finite mass m =
∫
R3 ρg dν. The

following Lemma is standard; we use [18,19] for the inversion of the Laplacian
in (7), and the strong maximum principle, Thm. 9.6 of [20].

Lemma 2.4. Let ρg ∈ W 0,2
−3−α, 0 < α < 1. Then there is a unique solution

φg ∈ W 2,2
loc of (7) with ψg = φg −m/σ ∈ W 2,2

−1−α. Moreover, φg ≤ 0.

Remarks. 1. Weighted Sobolev spaces have the important property that
a rather slow falloff of the density function in one or two directions
is admitted as long as it is compensated by sufficiently fast falloff in
the other direction(s). In particular, an axially symmetric disk of finite
thickness with a measurable density function ρg ∈ W 0,2 = L2 and falloff
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ρg = O(1/r2+ε), ε > 0, satisfies the requirement of Lemma 2.4 and of the
subsequent results.

2. With the conventions of Bartnik [19] used above, the index β for f ∈ W k,p
β

is related to the growth of f at infinity; in particular f = o(Rβ) provided
kp > 3 (throughout the paper, falloff conditions are always understood
for large r or R). In fact for the function ψg introduced in Lemma 2.4
it follows that ψg = o(R−1−ε). However, getting the corresponding fall-
off for the derivatives, namely ∇iψg = o(R−2−ε) would require p > 3.
While such first derivatives do occur in Theorem 4.2 below, less precise
information on their falloff, which follows from p = 2, will suffice.

2.5. The Rotational Variables

As already mentioned in the introduction, the strategy of our finiteness argu-
ment is to compare the value of the effective potential φ = φg+φc at the surface
with its value at infinity. On the other hand, integrating Euler’s equation (9)
defines φc only in F , and in fact only up to a constant.

We therefore extend now φc to V. Below we consider four alternative def-
initions of the rotational variables valid on R3, labelled A, B<, B> and C. In
extensions B<, B> and C we follow standard practice and prescribe φc(xi) a
priori on R3, irrespective of the fluid distribution. Of course we can also pre-
scribe �U(xi) instead of φc(xi), together with a constant in the resulting φc. On
the other hand, extension A is motivated by the analogy between the Poisson
equations (7) and (13), which suggests treating ρc as a “source” for φc.

While A, B< and B> are compatible with any symmetry, definition C
refers only to a cylindrically symmetric velocity distribution φc(r). All defi-
nitions are in fact not only extensions from F to V, but involve also extra
conditions on the falloff of the velocity at infinity if the fluid spreads there
(cf. the remarks after Definition 2.5 for details).

Definition 2.5. For a solution of (6–11) with I finite, ρg and φg as in Lemma 2.4,
and 1 < q < ∞, 0 < ε < 1, we assume one of A, B or C:
A. ρc ∈ W 0,q

−2−ε in F , ρc ≡ 0 in V and φc → 0 at infinity.
B. φc(xi) ∈ W 2,q given on R3 such that, for all radial unit vectors �n there

is a unique limit

lim
R →∞

φc(R �n) = φ∞(�n) = φ∞(ϑ, ϕ) (16)

and either
B<. supϑ,ϕ φ∞(ϑ, ϕ) = 0, or
B>. infϑ,ϕ φ∞(ϑ, ϕ) = 0.

C. φc(r) ∈ C1(R \ {0}) given (and possibly divergent at 0), and limr→∞
φc(r) = 0.

Remarks. 1. While condition A is somewhat alien to the Newtonian case, it
is mainly motivated by relativity. There the norm and twist potentials of
the stationary Killing field satisfy elliptic equations, while on the other
hand counterparts of the coordinate conditions B and C will hardly make
good sense.



166 P. Mach and W. Simon Ann. Henri Poincaré

2. We note that cylindrically symmetric potentials φc(r) do not satisfy (16)
unless φc(r) = const., since the limit limR→∞ φc(r) = limz→∞ φc(r) =
φc(r) in the axis direction depends manifestly on r, while there should
be a unique φ∞(ϑ = 0, φ). On the other hand, condition B is meaningful
in particular for “almost spherical” velocity distributions.

3. Since φc was defined in (11) only up to a constant, condition B amounts
to requiring (16), and that either supϑ,ϕ φ∞(ϑ, ϕ) < ∞, or infϑ,ϕ φ∞
(ϑ, ϕ) > −∞, while C includes the requirement that limr→∞ φc(r) >
−∞. This latter requirement can in fact be removed, so that φc(r) is
allowed to diverge both at the axis and at infinity. However, in order
not to overload the subsequent definitions and results, this option will be
considered only in the final remark of Sect. 3.2 and in examples.

4. The falloff conditions B< and B> and C are in some sense less restrictive
than A. However in Theorem 4.2 the former requirements need to be
explicitly supplemented by a falloff condition on the pressure which, on
the other hand, follows from A automatically by virtue of the Bernoulli
equation.

5. None of the definitions A, B<, B> or C extends the validity of the
Bernoulli equation from F to the vacuum region V in general. Such an
extension could simply be afforded by setting φc = −φg + ΦS in V, but
it seems to be of little use. Note in particular that such a φc would not
necessarily be C1 at the surface.

6. In principle, we could also consider axially symmetric velocity distri-
butions of the form φc(r, z). However, the Poincaré–Wavre theorem,
Lemma 3.1, then already implies cylindrical symmetry in F , so an exten-
sion to V with the same symmetry is the natural choice.
The following Lemma is analogous to Lemma 2.4 but, compared to the

gravitational variables, the falloffs are slower here, and in contrast to the nat-
ural condition ρg ≥ 0, the assumption ρc ≥ 0 is highly restrictive.

Lemma 2.5.1. If ρc ∈ W 0,2
−2−α, α > 0, then φc can be chosen such that φc ∈

W 2,2
−α. Moreover, if ρc ≥ 0, then φc ≤ 0, and therefore also ΦS ≤ 0.

We now have the following easy to prove, but important Lemma.

Lemma 2.5.2. Under the requirements and with the labelling of Definition 2.5
the following holds:
A. If ΦS �= 0 then the fluid is finite. Moreover, if ρc ≥ 0 the fluid is finite if

ΦS < 0 and infinite if ΦS = 0.
B. If φ∞(ϑ, ϕ) does not agree with ΦS for some (ϑ, ϕ), the fluid is finite

“in the direction (ϑ, ϕ),” or more precisely, it does not intersect any
2-sphere S2

R of sufficiently large radius R at the points (R,ϑ, ϕ) ∈ S2
R.

In particular, for extensions B<, B> the fluid is finite if ΦS > 0,ΦS < 0
respectively.

C. If ΦS < 0, the fluid is finite (in all directions), and if ΦS > 0 the fluid
is finite in every direction except possibly in the axial one. Moreover, if
ΦS = 0, and the fluid extends to infinity in the axis direction at some
radius r1, it is static for all r ≥ r1.
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Proof. The proofs of parts A and B follow easily from the definitions, and
the second part of case A from the maximum principle. The proof of C is
postponed to Sect. 3.2. �

Remark. We recall from a previous remark that a cylindrically symmetric φc(r)
considered under C in Lemma 2.5.2 is not compatible with B, in particular
not with (16). This accounts for differences in the conclusions and the proofs
in the corresponding parts of Lemma 2.5.2.

3. Results with Symmetry

Assumptions and results on symmetry of barotropic perfect fluids require a
careful discussion (cf. [21] where the relativistic case is included as well).

It is important to distinguish between the symmetry of the velocity field
�U(xi) and its trajectories on the one hand, and the symmetry of the whole
configuration on the other hand. In fact, a well-known example important
in theory are non-axially symmetric fluid trajectories winding around an axi-
ally symmetric torus (cf. [1] in the Newtonian case and [22] in relativity).
Fluids with non-axially symmetric configuration have been discussed; cf. [21]
and Sect. 2.8.3 of [3]. On the other hand, known existence proofs of reasonable
generality all assume axially symmetric velocities (cf. [11] and the references
therein).

In the Newton–Euler system (6–9) the gravitational and velocity variables
can enjoy different symmetries, as long as the coupling between the potentials
via the Bernoulli equation (11) is respected. In this work we do not assume any
symmetry of the matter variables ρg and φg. As to the rotational variables we
first state in Sect. 3.1 the definitions of axial and cylindrical symmetry. Then
we continue with a known result (the “Poincaré–Wavre theorem”) relating
them, and give a simple application. In Sect. 3.2 we examine systematically
the results arising from the integrals of the cylindrically symmetric Bernoulli
equation via the limits r → ∞ and z → ∞. In particular, Sect. 3.2 also contains
the proof of Lemma 2.5.2.C.

3.1. The Poincaré–Wavre Theorem

Definition 3.1. This refers to solutions to the Newton–Euler system (6–9):

1. A solution has axially symmetric velocity if the velocity �U is proportional
to the axial Killing vector, and if |�U | (and hence also φc) are rotation
invariant.

2. An axially symmetric solution has cylindrically symmetric velocity if �U ,
(and hence also φc) are invariant under translations along an axis.

Lemma 3.1. For a solution of Newton–Euler system (6–9) with axially symmet-
ric centrifugal potential φc(r, z), the latter is in fact cylindrically symmetric,
viz.

φc(r, z) = φc(r), �U = ω(r)
∂

∂ϕ
, (17)
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and it holds

φc(r) = −
r∫

r1

ω2(r′)r′ dr′, r > r1 = const. (18)

Proof. The proof is obvious from Euler’s equation which reads

∂φc(r, z)
∂z

= 0,
∂φc(r, z)

∂r
= −ω2(r, z)r (19)

under the stated assumptions. �
Here is a simple application of the previous Lemma.

Proposition 3.1. We assume a cylindrically symmetric velocity distribution
and an EOS as in Lemma 2.3.1. If the fluid extends to infinity in the axis
direction at two different radii r1 ≥ 0 and r2 > r1, the intermediate region
A = {(r, z) with r1 < r < r2 and − ∞ ≤ z ≤ ∞} must be static, i.e.,
φc = const. in A.

Proof. From the Bernoulli equation we obtain

φc(r1) = lim
z→∞φc(r1) = lim

z→∞(ΦS − φg − I) = ΦS, (20)

and analogously φc(r2) = ΦS, which contradicts (18), unless ω ≡ 0, and the
solution is static. �

Remark. This result implies in particular that solutions with axially symmet-
ric velocity distribution which fill the whole space must be static and hence
spherically symmetric.

3.2. Finiteness and ΦS

In this section we discuss the finiteness question under the assumption
that we know the sign or the vanishing of ΦS; in particular we will prove
Lemma 2.5.2.C. On the other hand, in Sect. 4 the virial theorem will be
employed to obtain the required information on ΦS from the EOS and the
LOM, independently of symmetry assumptions.

Finiteness in the radial direction, and the behaviour near the axis, can be
obtained rather easily from a qualitative discussion of the form of the potential.
The key features of the potentials to be kept in mind here are:
1. φg ≤ 0.
2. φc(r) behaves as in Definition 2.5.C and is monotonically decreasing with

r from (18).
3. Inside the fluid region φ = φg + φc ≤ ΦS, and φ ↗ ΦS, as one approaches

a locus of zero pressure (irrespective of its location in space).
Figure 1a–d show qualitatively possible forms of the potentials together

with the respective fluid fillings (shaded), differing in their range with respect
to infinity and the axis. For positive potentials φ as in Fig. 1a no solution
exists, irrespective of the value of ΦS, while the other figures show ranges for
φ which are a priori admissible but still without guarantee of existence of a
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(a) (b)

(c) (d)

Figure 1. Different a priori possible forms of the potentials
φg, φc and φ

solution. If the fluid is not axially symmetric, the curves are understood to be
sections of higher-dimensional level surfaces of the potentials.

While the behaviour of the fluid in the axis direction as included in
Lemma 2.5.2.C is not seen from the above diagrams, it is a simple consequence
of the Bernoulli equation. The Lemma is now proven as follows.

Proof of Lemma 2.5.2.C. By contradiction: Assume that the fluid is infinite in
the r direction. Then (11) and Definition 2.5.C yield

ΦS = lim
r→∞(φ+ I) = 0, (21)

which contradicts the behaviour of ΦS, as claimed for finiteness in the r direc-
tion. Here (21) in fact holds for the limit in any direction not parallel to the
axis. The final assertion of the Lemma is obtained from (11), (18) and Defi-
nition 2.5.C. as follows: Assuming that the fluid extends to infinity in the z



170 P. Mach and W. Simon Ann. Henri Poincaré

direction at r we get

ΦS = lim
z→∞(φ+ I) = φc(r) =

∞∫

r

ω2(r′)r′dr′, (22)

and hence ΦS = 0 implies ω = 0. �

Remark. As remarked after Definition 2.5, the condition in part C
that limr→∞ φc(r) > −∞ can be removed. In fact, if limr→∞ φc(r) = −∞,
the statement of Lemma 2.5.2.C remains correct and the proof is trivially
adapted.

4. General Results

In Sect. 4.1 we give a result which, under rather restrictive conditions, forbids
shells or “hollow” bodies. We continue in Sect. 4.2 with our main finiteness the-
orem, which rests on the suitably adapted virial theorem, and we also obtain
a more general bound on ΦS.

4.1. A “no-shell” Result

Proposition 4.1. We consider a solution of (6–13) and assume part A of Defi-
nition 2.5, with ρc ≥ 0. Then there cannot be any vacuum region not connected
to infinity, i.e., the fluid F is not a “shell”, and it is not “hollow”.

Proof. Assuming the contrary, F has an inner and an outer boundary, the
latter either separating F from infinity or located at infinity, where φ takes
on the value ΦS. We first apply the strong maximum principle, Thm. 9.6 of
[20], to (13) on the region R consisting of F and the “inner vacuum,” but not
the vacuum component connected to infinity. This implies that φ = ΦS is the
maximum taken at the boundary of R (the outer boundary of F). But this
maximum is also taken on at interior points of R, namely the inner boundary
of F , and hence the maximum principle implies that φ is constant on R. The
latter, however, is easily excluded from the assumptions. �

Remark. Clearly, this result does not exclude toroidal rings of finite thickness,
with or without central body.

4.2. The Finiteness Theorem

Our main result is now obtained by combining various Lemmas of the preced-
ing sections. The quantities F and D are defined in the Introduction; the main
conditions (23) and (24) are discussed in remarks after the following Theorem
and in Sect. 5.

Theorem 4.2. Assume we are given a solution of (6–11) such that the EOS (6)
satisfies the requirements of Lemma 2.3.1, and that ρg ∈ W 0,2

−3−ε, ε > 0 as in
Lemma 2.4. Moreover, we require that φc or ρc should satisfy one of A, B<,
B> or C in Definition 2.5 and that there holds in case



Vol. 14 (2013) (In)Finite Extent of Stationary Perfect Fluids 171

A. one of

F (p) ≥ 0 ∀ p and D(x) ≥ 0 ∀x, (23)

F (p) ≤ 0 ∀ p and D(x) ≤ 0 ∀x, (24)

B<. p ∈ W 1,1
−4−ε and (23),

B>. p ∈ W 1,1
−4−ε and (24),

C. p ∈ W 1,1
−4−ε and (24).

Then either ΦS �= 0 and the fluid is finite, or F ≡ 0,D ≡ 0 and ΦS = 0.

Corollary 4.2.1. In case C above, assume that (23) holds instead of (24). Then
the fluid is finite in all directions except possibly in the axial one.

Corollary 4.2.2. In case A above, assume that there hold (24) and ρc ≥ 0.
Then either ΦS < 0 and the fluid is finite, or F ≡ 0,D ≡ 0 and ΦS = 0, and
the fluid is infinite.

Proof. We use the following modified version of the Pohozaev–Rellich identity
[24,25]: Let �ξ = xi ∂

∂xi be a dilation, i.e., ∇(iξj) = 1
2 (∇iξj +∇jξi) = gij , where

gij denotes the components of the 3-metric, and ∇i is the covariant derivative
with respect to gij . Then a simple calculation (compare [5,7]) shows that

∇i

[(
ξj∇jφg +

1
2
φg

)
∇iφg − 1

2
ξi∇jφg∇jφg + 4πpξi

]

= 2π[ρg(φg − 2ξi∇iφc) + 6p]. (25)

We first note that p ∈ W 1,q
−4−ε, which in case A follows from Euler’s equa-

tion (9). Next, by Gauss’s law, the left hand side can be written as a surface
term over a ball S of radius R. We now insert the forms of φg, ∇φg, obtained
in Lemma 2.4, and use the fact that ψg and ∇iψg defined in this Lemma “fall
off faster” than the leading terms, to show that the surface integral vanishes
as R → ∞. This follows straightforwardly via Cauchy–Schwarz estimates and
by applying the “trace theorem” (see e.g., Sect. 5.5 of [23]):

||f |∂S ||L2(∂S) ≤ C||f ||W 1,q(S) (26)

(which holds for any function f ∈ W 1,q(S), q ≥ 1, and its extension f |∂S to
∂S), to the functions ψg,∇iψg and p. In the limit R → ∞ we are left with

0 = 2π
∫

R3

[ρg(φg − 2ξi∇iφc) + 6p]dν. (27)

Inserting (11) into the above expression gives

mΦS =
∫

R3

[F (x) + 2ρgD(x)]dν. (28)

The theorem is now obvious from the requirements and from Lemma 2.5.2.
�
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Remarks. 1. Note that the conclusion does not require falloff conditions for
F (x), and only the mild falloff conditions on φc(xj) or ρc from Defini-
tion 2.5. Even without such conditions, Eq. (28) and finiteness of mΦS

imply that the integral on the right exists.
2. In the static case existence of finite, spherically symmetric solutions is

known for polytropes with index n ≤ 5, which corresponds to F ≤ 0. On
the other hand, if F ≥ 0 solutions with finite mass do not exist except for
the polytropes of index n = 5. This suggests that the “realistic” range
for rotating fluids is given by conditions (24). In fact the requirements of
existence results for axisymmetric rotating fluids of which we are aware
([11] and the references therein) fall in this range, whereas (23) might
not allow for solutions at all.

3. If ρc is at least weakly differentiable, the second term on the right in (28)
can be rewritten as∫

R3

ρgD(x) dν =
∫

R3

φg

[
xi ∂

∂xi
ρc +

5
2
ρc

]
dν + surface terms, (29)

and, since φg ≤ 0, the sign of the expression in the bracket determines
(in)finite extent of the fluid region in the same manner as D(xi). The
surface terms vanish in case A but have to be handled with care in cases
B<, B> and C.

4. To show the relation with the classical virial theorem (cf. Sect.1.4 of
[15] or Sect.2.8.1 of [3]) we use (25) and definition (10) to obtain (30)
below. To get (31) which is the sum of the potential energy Epot =
1/2

∫
R3 ρgφg dν the (bulk) kinetic energy Ekin = 1/2

∫
R3 ρg|U |2 dν and

the thermal energy (kinetic energy of the thermal motion) Etherm =
3/2

∫
R3 p dν one has to remove the second term in (30) by partial inte-

gration using the continuity equation (8), and assume that the velocity
�U falls off suitably in order for the surface terms to vanish.

0 = 2π
∫

R3

{ρg[φg − 2U j∇j(ξiUi) + 2|U |2] + 6p} dν (30)

= 4π(Epot + 2Ekin + 2Etherm). (31)

5. In the static case ΦS is the gravitational potential at the surface, and it
is related to the observed redshift. For a rotating, extended object, the
redshift on the rim clearly depends on the velocity of the rotation as well,
but does not seem to bear any obvious relation to ΦS.

6. Equation (28) is a formula for ΦS, but as such it requires a knowledge
of F (x), as opposed to the mere sign condition on F (p) used before. An
estimate for ΦS in terms of F (p) and D(x) is the following.

Proposition 4.2. Under the requirements of Lemma 2.3.2,

|ΦS| ≤ sup
F

∣∣∣∣F (p)
ρg

∣∣∣∣ + 2 sup
F

|D(x)|. (32)
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Proof. From (28),

m|ΦS| ≤
∫

R3

ρg sup
∣∣∣∣F (x)
ρg

+ 2D(x)
∣∣∣∣ dν

≤ m sup
F

∣∣∣∣F (ρg)
ρg

+ 2D(x)
∣∣∣∣ ≤ m sup

F

∣∣∣∣F (p)
ρg

∣∣∣∣ + 2m sup
F

|D(x)|, (33)

and the supremum of F (p)/ρg(p) exists, since from Lemma 2.3.2 limp→0 F (p)/
ρg(p)=limp→0 p/ρg(p) = 0. �

5. Examples

We examine here the limiting case of Theorem 4.2, and conclude with dis-
cussing “power law rotations.” Explicit examples are only available in the
cylindrically symmetric case.

5.1. The Limiting Case

The limiting case of Theorem 4.2 is F (p) ≡ 0,D ≡ 0 and ΦS ≡ 0. The first con-
dition yields the 1-parameter family of polytropic EOS (1) with index n = 5.
In the static case, the resulting PDE

Δφg = −4πρoφ
5
g (34)

has for each ρo the well-known (cf. e.g. [4]) family of solutions

φg = − m√
4π
3 ρom4 +R2

(35)

parametrized by the mass m. All these solutions extend to infinity.
In the stationary case, if ρc is differentiable, it follows from 0 = D =

xi∂iφc + 1
2φc that xi∂iρc + 5

2ρc = 0. This yields that φc and ρc are homoge-
neous functions of degree −1/2 and −5/2, respectively. That is to say, these
functions have the form

φc = z− 1
2σ

(x
z
,
y

z

)
, ρc = z− 5

2 τ
(x
z
,
y

z

)
, z �= 0 (36)

for some arbitrary (but mutually related) functions σ(x, y) and τ(x, y). To
determine the solution, we have to solve

Δφ = Δ(φg + φc) = −4πρoφ
5 + 4πz− 5

2 τ
(x
z
,
y

z

)
(37)

in F , and Δφ = 0 in V (if present). We remark that (37) is scale invariant under

φ(xi) −→
√

1
λ
φ

(
xi

λ

)
, ∀λ = const. > 0. (38)

Thus the motion determined by D ≡ 0 could be called “scale invariantly
rotating polytrope of index 5.”

Scale invariance is sometimes useful for getting information about (non-)
existence of solutions, in particular in combination with the scaling behaviour
of the energy functional. We do not go into details here.
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Under restriction to axially symmetric rotation laws (about the
z-axis) (36) becomes

φc = z− 1
2α

(r
z

)
, ρc = z− 5

2 β
(r
z

)
, z �= 0 (39)

for some arbitrary (again related) functions α(r) and β(r). However, by
Lemma 3.1, the rotation law must be cylindrically symmetric. Choosing α
and β in (39) appropriately, we have

φc(r) = 2
C2

√
r
, ρc(r) =

C2

8πr
5
2
, C = const. in F . (40)

We obtain the following behaviour for the “scale invariant rotation” ωsi(r),
whose falloff interestingly lies between the Kepler angular velocity ω� (actu-
ally Copernicus [26], as this is for circular orbits) and the observed galaxy
rotation curves ω@:

ω� =
C

r
3
2
, ωsi =

C

r
5
4
, ω@ ∼ C

r
. (41)

Regarding finiteness, we note that ω and φc are singular on the axis,
whence Theorem 4.2 A is not applicable; in particular the maximum of φ is
obviously taken at the axis. However, (40) implies that φ = φc+φg = 2C2/

√
r−

m/R + o(1/R1+ε) ≥ 0 for sufficiently large r. Hence if a solution exists, the
form of φ must be as in Fig. 1c, while the form of Fig. 1b is excluded at least
in the cylindrically symmetric case considered here. Thus the fluid is either
finite (with a hole near the axis) or it is infinite in the z-direction (respecting
Proposition 3.1). The former case would probably give a toroidal configuration.

We can now discuss the consequences of the above arguments for “power
law rotations”.

5.2. Power Law Rotation

Proposition 5.2. Assume (6–11) have a solution which satisfies the conditions
of Theorem 4.2.C with the rotation law

φc(r) =
C2

2(k − 1)r2(k−1)
⇐⇒ ω(r) =

C

rk
, k, C ∈ R. (42)

Then depending on the value of k the fluid has the following properties
regarding infinity and the axis:
1. k < 3

2 : It is finite in the radial direction.
2. k > 1: It has a “hole” near the axis.
3. k ≥ 5

4 , F ≤ 0 and p ∈ W 1,1
−4−ε: It is either finite (with a hole near the axis),

or infinite in the axis direction (respecting Proposition 3.1).
Moreover, if the solution is finite in the axis direction in case (3), the conclusion
(finiteness) holds without the falloff condition on the pressure.

Proof. For k ≤ 1 statement (1) follows form the fact that φc diverges at infin-
ity. For 1 < k < 3/2 the same conclusion can be inferred from the argument
used in Sect. 5.1 to show that for the “scale invariantly” rotating polytrope
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φ = φc +φg ≥ 0 for sufficiently large r. Conclusion (2) is obvious from the fact
that φc diverges at the axis. To see (3) we calculate from Definition (3)

D(r) =
C2(5 − 4k)

4(k − 1)r2(k−1)
, (43)

and use Theorem 4.2.C for the generic case, and the discussion of Sect. 5.1 for
the limiting case with ΦS = 0. For the final statement, we note that (9) with
Lemma 2.4 and k ≥ 5/4 imply that p = O(r−7/2). This is sufficient in order
for the surface term in the integral of (25) to vanish as R → ∞, provided the
fluid is finite in the axis direction. �
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