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Abstract. We prove a new lower bound on the indirect Coulomb energy
in two-dimensional quantum mechanics in terms of the single parti-
cle density of the system. The new universal lower bound is an alter-
native to the Lieb–Solovej–Yngvason bound with a smaller constant,
C = (4/3)3/2

√
5π − 1 ≈ 5.90 < CLSY = 192

√
2π ≈ 481.27, which also

involves an additive gradient energy term of the single particle density.

1. Introduction

Since the beginning of quantum mechanics, there has been a wide interest in
estimating various energy terms of a system of electrons in terms of the sin-
gle particle density ρψ(x). Given that the expectation value of the Coulomb
attraction of the electrons by the nuclei can be expressed in closed form in
terms of ρψ(x), the interest focuses on estimating the expectation value of the
kinetic energy of the system of electrons and on the expectation value of the
Coulomb repulsion between the electrons. Here, we will be concerned with
the latest. The most natural approximation to the expectation value of the
Coulomb repulsion between the electrons is given by

D(ρ, ρ) =
1
2

∫
ρ(x)

1
|x− y|ρ(y) dxdy, (1)

which is usually called the direct term. The remainder, i.e., the difference
between the expectation value of the electronic repulsion and D(ρ, ρ), say E,
is called the indirect term. In 1930, Dirac [5] gave the first approximation to
the indirect Coulomb energy in terms of the single particle density. Using an
argument with plane waves, he approximated E by

E ≈ −cDe2/3
∫
ρ4/3 dx, (2)
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where cD = (3/4)(3/π)1/3 ≈ 0.7386 (see, e.g., [20], p. 299). Here, e denotes the
absolute value of the charge of the electron. The first rigorous lower bound for
E was obtained by Lieb [12], using the Hardy–Littlewood Maximal Function
[25]. There, he found that E ≥ −8.52e2/3

∫
ρ4/3 dx. The constant 8.52 was

substantially improved by Lieb and Oxford [13], who proved the bound

E ≥ −Ce2/3
∫
ρ4/3 dx, (3)

with C = cLO = 1.68. The best value for C is unknown, but Lieb and Oxford
[13] proved that it was larger or equal to 1.234. The Lieb–Oxford value was
later improved to 1.636 by Chan and Handy [4]. It is this last constant, as
far as we know, which is the smallest value for C that has been found to this
day. During the last 30 years, after the work of Lieb and Oxford [13], there
has been a special interest in quantum chemistry in constructing corrections
to the Lieb–Oxford term involving the gradient of the single particle density.
This interest arises with the expectation that states with a relatively small
kinetic energy have a smaller indirect part (see, e.g., [10,22,26] and references
therein). Recently, Benguria, Bley and Loss obtained an alternative to (3),
which has a lower constant (close to 1.45) to the expense of adding a gradient
term (see Theorem 1.1 in [2]).

After the work of Lieb and Oxford [13], many people have considered
bounds on the indirect Coulomb energy in lower dimensions (in particular
see, e.g., [9] for the one-dimensional case, [16,21,23] and [24] for the two-
dimensional case, which is important for the study of quantum dots). In this
study, we give an alternative to the Lieb–Solovej–Yngvason bound [16], with
a constant much closer to the numerical values proposed in [24] (see also the
references therein) to the expense of adding a gradient term. In some sense,
the result proven here is the analog of the three-dimensional result proven in
[2] for two-dimensional systems.

Our main result is the following theorem:

Theorem 1.1 (Estimate on the indirect Coulomb energy in two dimensions).
Let ψ ∈ L2(R2N ) be normalized to one and symmetric (or antisymmetric) in
all its variables. Define

ρψ(x) = N

∫

R2(N−1)

|ψ|2(x, x2, . . . , xN ) dx2 . . . dxN .

Then, for all ε > 0,

E(ψ) ≡
〈
ψ,

N∑
i<j

|xi − xj |−1ψ

〉
−D(ρψ, ρψ)

≥ −(1 + ε)β
∫

R2

ρ
3/2
ψ dx− 4

βε

∫

R2

|∇ρ1/4
ψ |2 dx (4)
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with

β =
(

4
3

)3/2 √
5π − 1 � 5.9045.

Remarks. i) Our constant β � 5.9045 is substantially lower than the con-
stant CLSY � 481.27 found in [16] (see equation (5.24) of Lemma 5.3 in
[16]), which is the best bound to date.

ii) The constant β is close to the numerical values (i.e., � 1.95) of [23] (and
references therein), but is not sharp.

Our proof relies on a stability result for an auxiliary molecular quantum
system in two dimensions (which is proven in Sect. 2) and an observation of
Lieb and Thirring [17]. The proof of the main theorem is given in Sect. 3.

2. A Stability Result for an Auxiliary Molecular System in Two
Dimensions

A key role in our proof of the Lieb–Oxford type bound in two dimensions will
be played by a stability result on an auxiliary molecular system in two dimen-
sions. This molecular system may be viewed as the two-dimensional version of
the zero mass limit of the relativistic Thomas–Fermi–Weizsäcker energy func-
tional studied in [1] (which corresponds to the zero mass limit of the model
introduced in [6–8]; the stability properties of the corresponding atomic system
were studied also in [3]). Thus, let us consider the energy functional

ξ(ρ)=a2

∫

R2

(∇ρ1/4)2 dx+ b2
∫

R2

ρ3/2 dx− c

∫

R2

V (x)ρ(x) dx+D(ρ, ρ) + U,

(5)

where the potential V is given by

V (x) =
K∑
i=1

z

|x−Ri| , (6)

which may be viewed as a Coulomb-like potential generated by K point par-
ticles (nuclei) of (equal) charge z > 0, located at Ri ∈ R

2 (with i = 1, . . .K).
Here, the function ρ(x) ≥ 0 is the electronic density of a system of N electrons,
and

D(ρ, ρ) =
1
2

∫

R2×R2

ρ(x)
1

|x− y|ρ(y) dxdy (7)

is the electronic repulsion energy. Finally,

U =
∑

1≤i<j≤K

z2

|Ri −Rj | . (8)
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The powers of the first two terms in (5), i.e.,

T (ρ) = a2

∫

R2

(∇ρ1/4)2 dx+ b2
∫

R2

ρ3/2 dx, (9)

are such that T (ρα) = αT (ρ), where ρα(x) = α2ρ(αx) (with α > 0) is such
that

∫
R2 ρα dx =

∫
R2 ρ(x) dx. In other words, the kinetic energy of the elec-

trons scales like one over a length, i.e., in the same way as the potential energy.
Then, as usual in this situation, the values of the coupling constant (i.e., the
values of the nuclear charge) will be crucial to ensure stability of the system.
Our main result in this section is the following stability theorem, which is the
two-dimensional analog of Theorem 1.2 in [1].

Theorem 2.1. For any a, b > 0, and Ri ∈ R
2, i = 1, . . . ,K, and for all ρ ≥ 0

(with ρ ∈ L3/2(R2) and ∇ρ1/4 ∈ L2(R2)), we have that

ξ(ρ) ≡ a2

∫

R2

(∇ρ1/4)2 dx+b2
∫

R2

ρ3/2 dx−
∫

R2

V (x)ρ(x) dx+D(ρ, ρ)+U ≥ 0,

(10)

where V , D and U are defined by (6), (7), and (8), respectively, provided,

0 ≤ z ≤ zc(a, b) ≡ a b

2
√

1 − σ. (11)

Here, 0 < σ < 1 is the only positive root of the quartic equation

σ2

√
1 − σ

=
32(5π − 1)

27
a

b3
(12)

on the interval (0, 1).

In the rest of this section, we will give the proof of this theorem, which is
similar to the proof of Theorem 1.2 in [1]. Notice that the upper limit zc(a, b)
on z to insure stability is not sharp; in other words, there could still be values
of z above our zc for which ξ(ρ) ≥ 0. We start with an appropriate Coulomb
uncertainty principle.

Theorem 2.2. For any smooth function f on the closed disk DR, of radius R,
and for all a, b ∈ R, we have

a2

∫

DR

|∇f(x)|2 dx+ b2
∫

DR

f(x)6 dx ≥ ab

∫

DR

(
1

2|x| − 1
R

)
f(x)4 dx.

To prove the theorem, one only imitates the proof of Theorem 2.1 in
[1] that deals with the three-dimensional case. We start with the following
preliminary result which may be of independent interest.

Lemma 2.3. Let u = u(|x|) be a sufficiently smooth real function (so that all
the terms in (13) are finite) defined on the interval [0, R], such that u(R) = 0.
Then the following uncertainty principle holds
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∣∣∣∣∣∣
∫

DR

[2u(|x|) + |x|u′(|x|)]f(x)4 dx

∣∣∣∣∣∣

≤ 4

⎛
⎝

∫

DR

|∇f(x)|2 dx

⎞
⎠

1/2 ⎛
⎝

∫

DR

u(|x|)2|x|2f(x)6 dx

⎞
⎠

1/2

. (13)

In (13) there is equality if and only if

f(x)2 =
1

λ
∫ |x|
0

su(s)ds+ C
, (14)

for some constants C and λ.

Proof. Set gj(x) = u(|x|)xj . Then we have,
∫

DR

[2u(|x|) + |x|u′(|x|)]f(x)4 dx =
2∑
j=1

∫

DR

[∂jgj(x)]f(x)4 dx

=
∑
j

∫

DR

f(x)∂j [gj(x)f(x)3] dx− 3
∑
j

∫

DR

f(x)3gj(x)∂jf(x) dx

= −4
∫

DR

〈∇f(x), x〉u(|x|)f(x)3 dx.

In the last equality, we integrated by parts and made use of the fact that u
vanishes on the boundary ∂DR. Next, the Schwarz inequality implies∣∣∣∣∣∣

∫

DR

[2u(|x|) + |x|u′(|x|)]f(x)4 dx

∣∣∣∣∣∣

≤ 4

⎛
⎝

∫

DR

|∇f(x)|2 dx

⎞
⎠

1/2 ⎛
⎝

∫

DR

u(|x|)2|x|2f(x)6 dx

⎞
⎠

1/2

.

In the last expression, equality is obtained if and only if

∂jf(x) = −λ

2
xju(|x|)f(x)3,

which after an integration yields the function given by (14) above. �
Proof of Theorem 2.2. Choosing u(r) = r−1 −R−1 in (13), we conclude that

ab

2

∣∣∣∣∣∣
∫

DR

(
1
|x| − 2

R

)
f(x)4dx

∣∣∣∣∣∣ ≤ 2ab

⎛
⎝

∫

DR

|∇f(x)|2dx
⎞
⎠

1/2 ⎛
⎝

∫

DR

f(x)6dx

⎞
⎠

1/2

≤ a2

∫

DR

|∇f(x)|2dx+ b2
∫

DR

f(x)6dx.

�
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To prove our main result of this section, i.e., Theorem 2.1, we will also
need the following auxiliary lemma.

Lemma 2.4. Let DL(x0) = {x ∈ R
2

∣∣ |x − x0| < L} and H be a half plane
such that dist(x0, ∂H) = L and x0 ∈ H. Then,∫

H\DL(x0)

1
|x− x0|3 dx =

2(π − 1)
L

.

Proof. Let us shift the origin of the coordinates to x0 and choose the x Carte-
sian axes parallel to ∂H. Then in the respective polar coordinates (�, ϕ),

∫

H\DL(x0)

1
|x− x0|3 dx = 2

0∫

−π/2

L
cos ϕ∫

L

1
�2

d�dϕ+ 2

π/2∫

0

∞∫

L

1
�2

d�dϕ

from which the assertion of the lemma follows by a straightforward integra-
tion. �

In the sequel, we need some notation. We introduce the nearest neighbor,
or Voronoi, cells [27] (see also the review [14]), {Γj}Kj=1, defined by

Γj = {x ∣∣ |x−Rj | ≤ |x−Rk|}. (15)

The boundary of Γj , ∂Γj , consists of a finite number of segments and/or half-
lines. We also define the distance

Dj = dist(Rj , ∂Γj) =
1
2

min{|Rk −Rj |
∣∣ k �= j}. (16)

Finally, we denote by Bj the disk of radius Dj centered at Rj , j = 1, . . . ,K.
One of the key ingredients we need in the sequel is the two-dimensional

version, (see e.g., [15]), of an electrostatic inequality of Lieb and Yau [18,19].
Define the piecewise function Φ(x) on R

2 with the aid of the Voronoi cells men-
tioned above. In the cell Γj , Φ(x) equals the electrostatic potential generated
by all the nuclei except for the nucleus situated in Γj itself, i.e., for x ∈ Γj ,

Φ(x) =
K∑
i=1
i�=j

z

|x−Ri| . (17)

Then, one has (see, e.g., [15]),

D(ρ, ρ) −
∫

R2

Φ(x)ρ(x) dx+ U ≥ z2

8

K∑
j=1

1
Dj

. (18)

This follows at once from the standard (three-dimensional) Lieb–Yau electro-
static inequality [18,19] by taking a Borel measure supported on a two-dimen-
sional plane, with density ρ(x).

With the help of the Coulomb uncertainty principle and the two-dimen-
sional electrostatic inequality (18), we are ready to prove the following esti-
mate.
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Lemma 2.5. For any ρ ∈ L3/2(R2) such that ∇ρ1/4 ∈ L2(R2); for all b1 > 0,
and b2 > 0 such that b21 + b22 = b2, and z ≤ a b2/2, we have

ξ(ρ) ≥
K∑
j=1

1
Dj

[
z2

8
− 4

27b41

(
2z3(π − 1) + πa3b32

)]
. (19)

Proof. Setting f(x)4 = ρ(x), splitting R
2 as the disjoint union of the Voronoi

cells Γj , using Theorem 2.2 in each disk Bj , and discarding the kinetic energy
terms (which are positive) in the complements Γj\Bj we conclude that

ξ(ρ) ≥ b21

∫

R2

ρ3/2dx−
∫

R2

V ρ dx+ ab2

×
K∑
j=1

∫

Bj

(
1

2|x−Rj | − 1
Dj

)
ρ(x)dx+D(ρ, ρ) + U. (20)

It is convenient to define the piecewise function W (x) as

W (x) =

⎧⎨
⎩

Φ(x) + z
|x−Rj | = V (x) if x ∈ Γj\Bj

Φ(x) + ab2
Dj

if x ∈ Bj ,
(21)

Provided z ≤ a b2/2 (which we assume from here on), we can estimate from
below the sum of the second and third integrals in (20) in terms of W (x) as
follows:

ab2

K∑
j=1

∫

Bj

(
1

2|x−Rj | − 1
Dj

)
ρ(x) dx−

∫

R2

V ρdx

= ab2

K∑
j=1

∫

Bj

(
1

2|x−Rj | − 1
Dj

)
ρ(x) dx− z

K∑
i,j=1

∫

Γj\Bj

ρ(x)
|x−Ri| dx

−z
K∑

i,j=1
i�=j

∫

Bj

ρ(x)
|x−Ri| dx− z

K∑
j=1

∫

Bj

ρ(x)
|x−Rj | dx

= −
∫

R2

W (x)ρ(x) dx+
K∑
j=1

∫

Bj

(
ab2
2

−z
)

ρ(x)
|x−Rj | dx≥−

∫

R2

W (x)ρ(x) dx.

Thus, we can write

ξ(ρ) ≥ ξ1(ρ) + ξ2(ρ), (22)

with

ξ1(ρ) = b21

∫

R2

ρ3/2 dx−
∫

R2

(W − Φ)(x)ρ(x) dx and,

ξ2(ρ) = D(ρ, ρ) −
∫

R2

Φ(x)ρ(x) dx+ U.
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From the definition of ξ1(ρ), it is clear that ξ1(ρ) ≥ ξ1(ρ̂), where ρ̂(x) =
4(W (x) − Φ(x))2+/(9b

4
1) and where as usual u+ = max(u, 0). Hence,

ξ1(ρ) ≥ − 4
27b41

∫

R2

(W − Φ)3+ dx

= − 4
27b41

K∑
j=1

⎛
⎜⎝

∫

Γj\Bj

z3

|x−Rj |3 dx+
∫

Bj

(
ab2
Dj

)3

dx

⎞
⎟⎠ ,

where the last equality follows from the definition (21) of W . As every Γj is
contained in a half-plane, we may estimate the first integral above with the
help of Lemma 2.4. This way we get

ξ1(�) ≥ − 4
27b41

[
2z3(π − 1) + πa3b32

] K∑
j=1

1
Dj

. (23)

The lower bound for ξ2(ρ) follows at once from (18), i.e.,

ξ2(�) ≥ z2

8

N∑
j=1

1
Dj

. (24)

Putting (22), (23) and (24) together, the assertion of the lemma immediately
follows. �

We end this section with the proof of Theorem 2.1.

Proof of Theorem 2.1. Let M(z) stand for the term inside the square brackets
on the right side of (19). With zc and σ defined by (11) and (12), respectively,
set p = z/zc, and b2 = p b

√
1 − σ. Hence, b21 = b2 − b22 = b2(1 − p2 + p2σ).

Replacing the expressions of b1 and b2 in the expression for M(z), we get

M(z) =
p2

32
a2 b2(1 − σ)

[
1 − 32 a

27b3
h(p)

√
1 − σ(5π − 1)

]
, (25)

where

h(p) ≡ p

(1 − p2 + p2σ)2
.

Here, both p and σ belong to the interval [0, 1]. It is simple to see that h(p)
strictly increases in the interval [0, 1], and thus h(p) ≤ h(1) = 1/σ2. Using
this last inequality in (25) together with the definition of σ, i.e., Eq. (12), we
conclude that

M(z) ≥ 0,

for all z ≤ zc. �
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3. Proof of Theorem 1.1

In this Section, we give the proof of the main result of this paper, namely
Theorem 1.1. We use an idea introduced by Lieb and Thirring in 1975 in their
proof of the stability of matter [17] (see also the review article [11] and the
recent monograph [14]).

Proof of Theorem 1.1. Consider the inequality (10), with K = N (where N is
the number of electrons in our original system), z = 1 (i.e., the charge of the
electrons) and Ri = xi (for all i = 1, . . . , N). With this choice, according to
(11), the inequality (10) is valid as long as a and b satisfy the constraint,

2 ≤ ab
√

1 − σ, (26)

with σ ∈ (0, 1) the solution of

σ2

√
1 − σ

=
β2

2
a

b3
(27)

where

β =
(

4
3

)3/2 √
5π − 1 � 5.9045. (28)

Then, take any normalized wavefunction ψ(x1, x2, . . . , xN ), and multiply (10)
by |ψ(x1, . . . , xN )|2 and integrate over all the electronic configurations, i.e., on
R

2N . Moreover, take ρ = ρψ(x). We get at once,

E(ψ) ≡
〈
ψ,

N∑
i<j

|xi − xj |−1ψ

〉
−D(ρψ, ρψ)

≥ −b2
∫

R2

ρ
3/2
ψ dx− a2

∫

R2

|∇ρ1/4
ψ |2 dx, (29)

provided a and b satisfy (26) and (27) above. Thinking of σ ∈ (0, 1) as a free
parameter, and a, b satisfying (26) and (27), and writing ε = (1 − σ)/σ we get
at once from (26) and (27) that

b2 ≥ (1 + ε)β,

for any ε > 0. The theorem then follows by choosing the minimum value of b2,
i.e., b2 = (1 + ε)β, and hence a2 = 4/(βε). �

Remark 3.1. In general, the two integral terms in (4) are not comparable. If
one takes a very rugged ρ, normalized to N , the gradient term may be very
large while the other term can remain small. However, if one takes a smooth
ρ, the gradient term can be very small as we illustrate in the example below.
Let us denote

L(ρ) =
∫

R2

ρ(x)3/2 dx
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and

G(ρ) =
∫

R2

(∇ρ(x)1/4)2 dx.

We will evaluate them for the normal distribution

ρ(|x|) = Ce−A|x|2

where C, A > 0. Some straightforward integration yields

L = C
3
2

2π
3A

, G = C
1
2π.

With C = NA/π, ∫

R2

ρ(|x|) dx = N,

and we have
G

L
=

3π
2N

,

i.e., in the “large number of particles” limit, the G term becomes negligible.
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Weizsäcker model. J. Phys. A Math. Gen. 35, 3409–3414 (2002)

[4] Chan, G.K.-L., Handy, N.C.: Optimized Lieb–Oxford bound for the exchange–
correlation energy. Phys. Rev. A 59, 3075–3077 (1999)

[5] Dirac, P.A.M.: Note on exchange phenomena in the Thomas atom. Math. Proc.
Camb. Philos. Soc. 26, 376–385 (1930)

[6] Engel, E.: Zur relativischen Verallgemeinerung des TFDW modells. Ph.D. Thesis
Johann Wolfgang Goethe Universität zu Frankfurt am Main (1987)

[7] Engel, E., Dreizler, R.M.: Field-theoretical approach to a relativistic Thomas–
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