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Correlated Markov Quantum Walks

Eman Hamza and Alain Joye

Abstract. We consider the discrete time unitary dynamics given by a quan-
tum walk on Z

d performed by a particle with internal degree of freedom,
called coin state, according to the following iterated rule: a unitary update
of the coin state takes place, followed by a shift on the lattice, conditioned
on the coin state of the particle. We study the large time behavior of the
quantum mechanical probability distribution of the position observable
in Z

d for random updates of the coin states of the following form. The
random sequences of unitary updates are given by a site-dependent func-
tion of a Markov chain in time, with the following properties: on each
site, they share the same stationary Markovian distribution and, for each
fixed time, they form a deterministic periodic pattern on the lattice. We
prove a Feynman–Kac formula to express the characteristic function of
the averaged distribution over the randomness at time n in terms of the
nth power of an operator M . By analyzing the spectrum of M , we show
that this distribution possesses a drift proportional to the time and its
centered counterpart displays a diffusive behavior with a diffusion matrix
we compute. Moderate and large deviation principles are also proven to
hold for the averaged distribution and the limit of the suitably rescaled
corresponding characteristic function is shown to satisfy a diffusion equa-
tion. An example of random updates for which the analysis of the distri-
bution can be performed without averaging is worked out. The random
distribution displays a deterministic drift proportional to time and its
centered counterpart gives rise to a random diffusion matrix, the law of
which we compute. We complete the picture by presenting an uncorre-
lated example.

1. Introduction

Quantum walks are simple models of discrete time quantum evolution taking
place on a d-dimensional lattice whose implementation yields a unitary dis-
crete dynamical system on a Hilbert space. The dynamics describes the motion
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of a quantum particle with internal degree of freedom on an infinite d-dimen-
sional lattice according to the following rules. The one-step motion consists in
an update of the internal degree of freedom by means of a unitary transform
in the relevant part of the Hilbert space, followed by a finite range shift on
the lattice, conditioned on the internal degree of freedom of the particle. Due
to their similarity with classical random walks on a lattice, quantum walks
constructed this way are often considered as their quantum analogs. In this
context, the space of the internal degree of freedom is called coin space, the
degree of freedom is the coin state and the unitary operators performing the
update are coin matrices.

Quantum walks have become quite popular in the quantum comput-
ing community in the recent years, due to the role they play in computer
science and, in particular, for quantum search algorithms. See for example
[33,4,26,28,39,5,32] and in the review [36]. Also, quantum walks are used as
effective dynamics of quantum systems in certain asymptotic regimes; see e.g.
[14,1,33,31,11,35], for a few models of this type, and [7,10,15,17,6] for their
mathematical analysis. Moreover, quantum walk dynamics have been shown
to describe experimental reality for systems of cold atoms trapped in suitably
monitored optical lattices [24], and ions caught in monitored Paul traps [42].

The literature contains several variants of the quantum dynamics on a
lattice as described above, which may include decoherence effects and/or more
general graph, see e.g. the reviews and papers [4,26,3,8]. In this work, we
consider the case where the evolution of the walker is unitary, and where the
underlying lattice is Z

d with coin space of dimension 2d, which is, in a sense,
the closest to the classical random walk.

We are interested in the long-time behavior of quantum mechanical expec-
tation values of observables that are non-trivial on the lattice only, i.e. that
do not depend on the internal degree of freedom of the quantum walker.
Equivalently, this amounts to studying a family of random vectors Xn on
the lattice Z

d, indexed by the discrete time variable, with probability laws
P(Xn = k) = Wk(n) defined by the prescriptions of quantum mechanics. The
initial state of the quantum walker is described by a density matrix.

As is well known, when the unitary update of the coin variable is per-
formed at each time step by means of the same coin matrix, this leads to a
ballistic behavior of the expectation of the position variable characterized by
EW (n)(Xn) � nV when n is large, for some vector V , and by fluctuations of
the centered random variable Xn − nV of order n, see e.g. [28]. These fea-
tures are characteristic of the coherent nature of the quantum dynamics in
homogeneous or periodic media.

The case where the coin matrices used to update the coin variable depend
on the time step in a random fashion, a situation of temporal disorder, is dealt
with in [21], see also [3]. All coin variables are updated simultaneously and,
in the same way, independently of the position on the lattice. This yields a
random distribution Wω

· (n), corresponding to the random variable Xω
n which,

once centered and averaged over the disorder, displays a diffusive behavior in
the long-time limit.
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If the coin matrices depend on the site of the lattice Z
d but not on time,

i.e. a case of spatial disorder, one expects dynamical localization, characterized
by finite values of all moments, uniformly bounded in time n, and for (almost)
all realizations. In dimension d = 1, this was proven in [20] for certain sets of
random coin matrices, which were further generalized in [2]. See also [27,38]
for related aspects. The higher dimensional case is open.

The situation addressed here is that of correlated spatio-temporal disor-
der. We consider random coin matrices which depend both on time and space
in the following way: The random coin matrix at site x ∈ Z

d and time n ∈ N is
given by Cωn (x) = σx(ω(n)), where {ω(j)}j∈N is a temporal stationary Markov
chain on a finite set Ω of unitary matrices on C

2d, and Z
d � x → σx is a given

representation of Z
d in terms of measure invariant bijections on Ω. In particu-

lar, σ0 =Id, the identity on Ω, and Γ = {y ∈ Z
d s.t. σy = Id} forms a periodic

sub-lattice of Z
d. Therefore, at each site x ∈ Z

d, the sequence {Cωj (x)}j∈N is
Markovian with a distribution independent of x, and at each time n ∈ N, the
set {Cωn (x), x ∈ Z

d} is Γ-periodic. This is a natural generalization of the case
studied in [21] which displays a deterministic non-trivial periodic structure in
the spatial patterns of random coin matrices at each time step.

This setup is an analog of the one addressed in [34,22,18], where the
dynamics is generated by a quantum Hamiltonian with a time-dependent
potential generated by a random process. For quantum walks, the role of
the random time-dependent potential is played by the random coin operators
whereas the role of the deterministic kinetic energy is played by the shift.

We address the problem by an analysis of the large n behavior of the
characteristic function of the distribution w·(n), Φn(y) = Ew(n)(eiyXn), where
w·(n) = E(Wω

· (n)) is the averaged quantum mechanical distribution on Z
d,

with initial condition ρ0, a density matrix on l2(Zd) ⊗ C
2d. By adapting the

strategy of [22,18], inspired by [34], to our discrete time unitary setup, we first
establish a Feynman–Kac type formula to express w·(n) in terms of (some
matrix element of) the nth power of a contraction operator M acting on
an extended Hilbert space which involves a space of (density) matrices and
the probability space of coin matrices. Then, we analyze the spectral prop-
erties of M , making use of the periodicity and invariance properties of σx
which yield a fiber decomposition of a generalized Fourier transform of M .
In turn, this allows us to provide a detailed description of the large n behav-
ior of the characteristic function Φn(y) in the diffusive regime y → y/

√
n,

and at y fixed, in terms of the spectral data of M and their perturbative
behavior.

The foregoing is the main technical result of the paper, from which sev-
eral consequences can be drawn, by arguments similar to those used in [21].
Under natural assumptions on the spectrum of M , the averaged distribution
w·(n) displays a diffusive behavior characterized by the following data: a deter-
ministic drift vector r ∈ R

d and a diffusion matrix D, which we compute, such
that, for n large and i, j = 1, 2, . . . , d,

Ew(n)(Xn) � nr, Ew(n)((Xn − nr)i(Xn − nr)j) � nDij .
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Moreover, we get convergence of the properly rescaled characteristic function
of Xn−nr, e−i[tn]ry/

√
nΦ[tn](y/

√
n), to the Fourier transform of superpositions

of solutions to a diffusion equation of the form
∫

Td e
− t

2 〈y|D(p)y〉dp/(2π)d with
diffusion matrix D(p), p ∈ T

d, the d-dimensional torus. Also, we get moderate
deviation results of the type

P(Xn − nr ∈ n(α+1)/2 Γ) � e−nα infx∈Γ Λ∗(x) as n → ∞, (1.1)

for any set Γ ∈ R
d, any 0 < α < 1, with some rate function Λ∗ : R

d → [0,∞] we
determine. Finally, we improve on [21] by establishing large deviations results
for sets in a certain neighborhood of the origin, under stronger hypotheses.
Informally, there exists an open ball B centered at the origin such that for all
sets Γ ∈ B ∩ R

d,

P(Xn − nr ∈ nΓ) � e−n infx∈Γ Λ
∗
(x) as n → ∞, (1.2)

where Λ
∗

: R
d → [0,∞] is another rate function we determine. By Bryc’s argu-

ment [13], a central limit theorem for Xn holds under the same conditions. We
note here that the deterministic case corresponding to Ω = {C}, σx ≡ Id and
a trivial Markov chain fits in our framework. However, the corresponding con-
traction operator M fails to satisfy our spectral requirements, see Remark 3.12,
which explains the difference in behaviors, at the technical level.

To complete the picture, we work out an example introduced in [21] where
the distribution of coin matrices is supported on the set of unitary permutation
matrices. This case allows us to analyze the random distribution Wω(n), with-
out averaging over the disorder. We show that under our hypotheses, in this
case Wω(n) coincides with the distribution of a classical walk on the lattice,
with increments being neither stationary, nor Markovian. Nevertheless, we can
apply spectral methods as well to study the long-time asymptotics of the corre-
sponding random characteristic function, which allows us to get the existence
of a random diffusion matrix D

ω such that

EWω(n)((Xω
n − nr)i(Xω

n − nr)j) � nD
ω
ij , i, j = 1, 2, . . . , d,

and whose matrix elements D
ω
ij are distributed according to the law of Xω

i X
ω
j ,

where the vector Xω is distributed according to N (0,Σ), for a matrix Σ we
determine.

We also consider the completely decorrelated case where the coin matri-
ces at each sites are i.i.d, i.e. a situation where no spatial structure is present
in the pattern of coin matrices.

2. General Setup

Let H = C
2d ⊗ l2(Zd) be the Hilbert space of the quantum walker in Z

d

with 2d internal degrees of freedom. We denote the canonical basis of C
2d

by {|τ〉}τ∈Id
±
, where I± = {±1,±2, . . . ,±d}, so that the orthogonal projec-

tors on the basis vectors are noted Pτ = |τ〉〈τ |, τ ∈ I±. We shall denote
the canonical basis of l2(Zd) by {|x〉}x∈Zd , or by {δx}x∈Zd . We shall write
for a vector ψ ∈ H, ψ =

∑
x∈Zd ψ(x)|x〉, where ψ(x) = 〈x|ψ〉 ∈ C

2d and
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∑
x∈Zd ‖ψ(x)‖2

C2d = ‖ψ‖2 < ∞. We shall abuse notations using the same sym-
bols 〈·|·〉 for scalar products and corresponding “bra” and “ket” vectors on
H, C

2d and l2(Zd), the context allowing us to determine which spaces we are
talking about. Also, we will often drop the subscript C

2d of the norm.
A coin matrix acting on the internal degrees of freedom, or coin state, is

a unitary matrix C ∈ M2d(C) and a jump function is a function r : I± → Z
d.

The shift S is defined on H by

S =
∑

x∈Zd

∑

τ∈I±

Pτ ⊗ |x+ r(τ)〉〈x|. (2.1)

By construction, a walker at site y with internal degree of freedom τ repre-
sented by the vector |τ〉 ⊗ |y〉 ∈ H is just sent by S to one of the neighboring
sites depending on τ determined by the jump function r(τ)

S‖τ〉 ⊗ |y〉 = |τ〉 ⊗ |y + r(τ)〉. (2.2)

The composition by C(y)⊗ I, where the coin matrix C(y) is allowed to depend
on the site y, reshuffles or updates the coin state so that the pieces of the
wave function corresponding to different internal states are shifted to differ-
ent directions, depending on the internal state. The corresponding one step
unitary evolution U of the walker on H = C

2d ⊗ l2(Zd) is given by

U =
∑

x∈Zd

∑

τ∈I±

PτC(x) ⊗ |x+ r(τ)〉〈x|. (2.3)

Given a set of n > 0 site-dependent unitary coin matrices Ck(x) ∈
M2d(C), k = 1, . . . , n and x ∈ Z

d, we construct an evolution operator U(n, 0)
from time 0 to time n, characterized at time k by Uk defined in (2.3) with
{Ck(x)}x∈Zd via

U(n, 0) = UnUn−1 · · ·U1. (2.4)

Let f : Z
d → C and define the multiplication operator F : D(F ) → H on

its domain D(F ) ⊂ H by (Fψ)(x) = f(x)ψ(x), ∀x ∈ Z
d, where ψ ∈ D(F ) is

equivalent to
∑
x∈Zd |f(x)|2‖ψ(x)‖2

Cd < ∞. Note that F acts trivially on the
coin state.

When f is real valued, F is self-adjoint and will be called a lattice
observable.

In particular, consider a walker characterized at time zero by the nor-
malized vector ψ0 = ϕ0 ⊗ |0〉, i.e. which sits on site 0 with coin state ϕ0. The
quantum mechanical expectation value of a lattice observable F at time n is
given by 〈F 〉ψ0(n) = 〈ψ0|U(n, 0)∗FU(n, 0)ψ0〉.

A straightforward computation yields the following expression for the
corresponding discrete evolution from time zero to time n

Lemma 2.1. With the notations above,

U(n, 0) =
∑

x∈Zd

∑

k∈Zd

Jxk (n) ⊗ |x+ k〉〈x|, (2.5)
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where

Jxk (n) =
∑

τ1,τ2,...,τn∈I±n
∑n

s=1 r(τs)=k

Pτn
Cn

(

x+
n−1∑

s=1

r(τs)

)

×Pτn−1Cn−1

(

x+
n−2∑

s=1

r(τs)

)

· · ·Pτ1C1(x) ∈ M2d(C) (2.6)

and Jxk (n) = 0, if
∑n
s=1 r(τs) �= k. Moreover, for any lattice observable

F , and any normalized vector ψ0 = ϕ0 ⊗ |0〉,

〈F 〉ψ0(n) = 〈ψ0|U∗(n, 0)FU(n, 0)ψ0〉 =
∑

k∈Zd

f(k)〈ϕ0|J0
k (n)∗J0

k (n)ϕ0〉

≡
∑

k∈Zd

f(k)Wk(n), (2.7)

where Wk(n) = ‖J0
k (n)ϕ0‖2

C2d satisfies

∑

k∈Zd

Wk(n) =
∑

k∈Zd

‖J0
k (n)ϕ0‖2

C2d = ‖ψ0‖2
H = 1. (2.8)

Remark 2.2. We view the non-negative quantities {Wk(n)}n∈N∗ as the prob-
ability distributions of a sequence of Z

d-valued random variables {Xn}n∈N∗

with

Prob(Xn = k) = Wk(n)
= 〈ψ0|U(n, 0)∗(I ⊗ |k〉〈k|)U(n, 0)ψ0〉 = ‖J0

k (n)ϕ0‖2
C2d , (2.9)

in keeping with (2.7). In particular, 〈F 〉ψ0(n) = EWk(n)(f(Xn)). We shall use
freely both notations.

Remark 2.3. All sums over k ∈ Z
k are finite since Jxk (n) = 0 if maxj=1,...,d

|kj | > ρn, for some ρ > 0 independent of x ∈ Z
d, since the jump functions

have finite range.

We are particularly interested in the long-time behavior, n >> 1, of
〈X2〉ψ0(n), the expectation of the observable X2 corresponding to the function
f(x) = x2 on Z

d with initial condition ψ0. Or, in other words, in the second
moments of the distributions {Wk(n)}n∈N∗ .

Let us proceed by expressing the probabilities Wk(n) in terms of the
Ck’s, k = 1, . . . , n. We need to introduce some more notations. Let In(k) =
{τ1, . . . , τn}, where τl ∈ I±, l = 1, . . . , n and

∑n
l=1 r(τl) = k. In other words,

In(k) denotes the set of paths that link the origin to k ∈ Z
d in n steps via the

jump function r. Let us write ϕ0 =
∑
τ∈I± aτ |τ〉.
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Lemma 2.4.

Wk(n) =
∑

τ0,{τ1,...,τn}∈In(k)
τ ′
0,{τ ′

1,...,τ
′
n}∈In(k)

s.t. τn=τ ′
n

aτ ′
0
aτ0〈τ ′

0|C∗
1 (0) τ ′

1〉〈τ1|C1(0)τ0〉

×
n∏

s=2

〈

τ ′
s−1|C∗

s

⎛

⎝
s−1∑

j=1

r(τ ′
j)

⎞

⎠ τ ′
s

〉〈

τs|Cs

⎛

⎝
s−1∑

j=1

r(τj)

⎞

⎠ τs−1

〉

.

(2.10)

We approach the problem through the characteristic functions Φn of the
probability distributions {W·(n)}n∈N∗ defined by the periodic function

Φn(y) = EW (n)(eiyXn) =
∑

k∈Zd

Wk(n)eiyk, where y ∈ [0, 2π)d. (2.11)

To emphasize the dependence in the initial state, we will sometimes write Φϕ0
n

and/or Wϕ0
k (n). All periodic functions will be viewed as functions defined on

the torus, i.e. [0, 2π)d � T
d. The asymptotic properties of the quantum walk

emerge from the analysis of the limit in an appropriate sense as n → ∞ of the
characteristic function in the diffusive scaling

lim
n→∞ Φn(y/

√
n). (2.12)

3. Correlated Markovian Random Framework

We give here the hypotheses we make on the randomness of the model.

Assumption C: Let Ω = {C1, C2, . . . , CF } be a finite set of unitary coin
matrices on C

2d and let ω ∈ ΩN be a Markov chain with stationary initial dis-
tribution p and transition matrix P s.t. P(η, ζ) = Prob(ω(n+1) = ζ|ω(n) = η),
for all n ∈ N. Let σ be a representation of Z

d, x �→ σx, in terms of measure pre-
serving maps σx : Ω → Ω such that p(σxζ) = p(ζ) and P(σxζ, σxη) = P(ζ, η).

Remark 3.1. (i) This is equivalent to saying that the paths of σx(ω(·)) have
the same distribution as the paths of ω(·), for all x ∈ Z

d.
(ii) Because x �→ σx is a representation of Z

d, σx is a bijection over the finite
set Ω for any x ∈ Z

d and σ0 = Id. Moreover, the finite set of bijections
{σx}x∈Zd must commute with one another.

(iii) Let Γ = {x ∈ Z
d s.t. σx = Id}. Then, σx = σy is equivalent to x− y ∈ Γ.

If g ∈ N
∗ denotes the cardinal of the group {σx}x∈Zd , then for any j ∈

{1, . . . , d}, the vector (0, . . . , 0, g, 0, . . . , 0)T ∈ Z
d, where g sits at the jth

slot, belongs to Γ. Hence the lattice Γ is of dimension d.
(iv) We choose BΓ ⊂ Z

d such that 0 ∈ BΓ and σ|BΓ is a bijection on the
set of bijections of Ω. For any x ∈ Z

d, we have a unique decomposition
x = x0 + η, with x0 ∈ BΓ and η ∈ Γ.
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We consider the random evolution obtained from sequences of coin matri-
ces defined on site x ∈ Z

d at time n ≥ 0 by

Cωn (x) = σx(ω(n)). (3.1)

This means that while the coin matrices at different sites have all the
same distribution as Cωn (0) = ω(n), they can take different correlated values
depending on σx.

It is more natural in this setting to carry out the analysis in terms of
density matrices. The set of density matrices, DM , consists in trace one non-
negative operators on C

2d⊗l2(Zd). Any bounded operators on H = C
2d⊗l2(Zd)

can be represented by its kernel as

ρ =
∑

(x,y)∈Z2d

ρ(x, y) ⊗ |x〉〈y|, where ρ(x, y) ∈ M2d(C). (3.2)

A non-negative operator ρ on H is trace class iff
∑

x∈Zd

‖ρ(x, x)‖ < ∞. (3.3)

We say that ρ belongs to l2(Zd × Z
d;M2d(C)) when

∑

(x,y)∈Zd×Zd

‖ρ(x, y)‖2 < ∞. (3.4)

Note that (3.4) is equivalent to finiteness of the Hilbert–Schmidt norm induced
by the scalar product on l2(Zd × Z

d;M2d(C))
〈
η, ρ

〉
= Tr(η∗ρ) =

∑

(x,y)∈Zd×Zd

Tr(η(x, y)∗ρ(x, y)), (3.5)

where we used the same symbol “Tr” for the trace in different spaces, which
makes l2(Zd × Z

d;M2d(C)) a Hilbert space. We also note that if ρ is non-neg-
ative, this implies for any x, y ∈ Z

d, (see [21] and Lemma 1.21 in [41])

ρ(x, y) = ρ(y, x)∗, ρ(x, x) ≥ 0, and ‖ρ(x, y)‖ ≤ ‖ρ(x, x)‖1/2‖ρ(y, y)‖1/2.

(3.6)

Thus DM and the set of non-negative trace-class operators belong to l2(Zd ×
Z
d;M2d(C)).

If ρ0 denotes the initial density matrix, its evolution at time n under
U(n, 0) defined by (2.5) is given by

ρn = U(n, 0)ρ0U
∗(n, 0). (3.7)

The kernel of ρn reads

ρn(x, y) =
∑

(k,k′)∈Zd×Zd

Jx−k
k (n)ρ0(x− k, y − k′)Jy−k′

k′
∗
(n), (3.8)

and the expectation of the lattice observable F = I ⊗ f is denoted by

〈F 〉ρ0(n) = Tr(ρn(I ⊗ f)) =
∑

x∈Zd

Tr(ρn(x, x))f(x), (3.9)



Vol. 13 (2012) Correlated Markov Quantum Walks 1775

if it exists. Again, we can express 〈F 〉ρ0(n) as the expectation of a random
variable on the lattice Z

d:

〈F 〉ρ0(n) = EW (n)(f(Xn)), with Prob(Xn = k) = Wk(n) = Tr(ρn(k, k)).
(3.10)

In case the evolution is random, the distribution Wω(n) is random and the
density matrix ρωn is random as well. We consider thus the expectation with
respect to the randomness, noted E of the quantum mechanical expectation of
the lattice observable, i.e.

E(〈F 〉ωρ0(n)) = EWω(n)(f(Xn)) ≡ Ew(n)(f(Xn)), (3.11)

where the distribution w(n) on Z
d is given by

Prob(Xn = k) = wk(n) = E(Wω
k (n)) = E(Tr(ρωn(k, k))). (3.12)

The corresponding characteristic function is defined by

Φρ0n (y) = Ew(n)(eiyXn) =
∑

x∈Zd

eiyxTr( E (ρωn(x, x))). (3.13)

The following assumption gives the required regularity properties on the
lattice observable F = I⊗ f and the initial density matrix ρ0 to legitimate the
manipulations that follow.

Assumption R:

(a) The lattice observable is such that, for any μ < ∞, ∃Cμ < ∞ such that

|f(x+ y)| ≤ Cμ|f(x)|, ∀ (x, y) ∈ Z
d × Z

d with ‖y‖ ≤ μ. (3.14)

(b) The kernel ρ0(x, y) is such that
∑

(x,y)∈Zd×Zd

‖ρ0(x, y)‖ < ∞ (3.15)

∑

x∈Zd

|f(x)|‖ρ0(x, x)‖ < ∞. (3.16)

Lemma 2.11 of [21] applies here as well, with the same proof, to ensure
that for any n ∈ N, the kernel ρn(x, y) satisfies Assumption R if the ker-
nel ρ0 does. For more discussion about properties of the density matrices,
we refer to [21].

3.1. Feynman–Kac–Pillet Formula

We denote by l2(Ω;M2d(C)) the finite dimensional Hilbert space of M2d(C)-
valued functions defined on Ω with scalar product defined by

〈ϕ ,ψ〉 =
∑

η∈Ω

p(η)Tr(ϕ∗(η)ψ(η)), (3.17)

where the measure p on Ω is the stationary initial distribution. We denote by
|τ〉〈τ ′| ∈ l2(Ω;M2d(C)) the constant map which assigns |τ〉〈τ ′| to any η ∈ Ω



1776 E. Hamza and A. Joye Ann. Henri Poincaré

and stress that the τ, τ ′ element of a matrix ρ ∈ M2d(C), τ, τ ′ ∈ I±, can be
expressed as

(ρ)τ,τ ′ = Tr(|τ ′〉〈τ | ρ) = Tr((|τ〉〈τ ′|)∗ ρ). (3.18)

Consider now, the extended Hilbert space l2(Zd × Z
d; l2(Ω;M2d(C))) �

l2(Zd × Z
d × Ω;M2d(C)). Any ρ ∈ l2(Zd × Z

d × Ω;M2d(C)) can be expressed
as

ρ = (ρ(x, y; η))(x,y;η)∈Zd×Zd×Ω, where ρ(x, y; η) ∈ M2d(C) (3.19)

satisfies
∑

η∈Ω
(x,y)∈Z

d×Z
d

p(η)Tr(ρ(x, y; η)∗ρ(x, y; η)) < ∞. (3.20)

The following is a version of Feynman–Kac–Pillet formula in the current
setting. Let ρ0 ∈ l2(Zd × Z

d;M2d(C)) denote the initial density matrix, its
evolution at time n under the random evolution operator U(n, 0) defined by
(2.5) and (2.6) is given by

ρn = U(n, 0)ρ0U
∗(n, 0). (3.21)

Since l2(Zd × Z
d;M2d(C)) ↪→ l2(Zd × Z

d × Ω;M2d(C)), we can consider ρ0

an element of l2(Zd ⊗ Z
d × Ω;M2d(C)), keeping the same notation. With the

notation δx = |x〉 we have

Proposition 3.2. Let K = l2(Zd×Z
d×Ω;M2d(C)) and assume C holds. Then,

if ρ0 ∈ K, we have for any n ∈ N, and any τ, τ ′ ∈ I±,

E(ρn(x, y))τ,τ ′ =
〈
δx ⊗ δy ⊗ |τ〉〈τ ′| ,Mnρ0

〉
K, (3.22)

where the single step operator M : K → K is given by

(Mρ)(x, y; η)

=
∑

τ,τ ′∈I±
ζ∈Ω

Q(η, ζ)Pτ (σx−r(τ)η)ρ(x− r(τ), y − r(τ ′), ζ)(σy−r(τ ′)η)∗Pτ ′ ,

(3.23)

where ρ ∈ l2(Zd × Z
d × Ω;M2d(C)) and Q(η, ζ) = Prob(ω(0) = η|ω(1) = ζ).

Remark 3.3. (i) Using that the initial distribution is stationary, it is easy to
see that

Q(ζ, η) =
p(η)
p(ζ)

P(η, ζ). (3.24)

(ii) In view of (3.12), the averaged distribution w(n) reads

wx(n) =
∑

τ∈I±

E(ρn(x, x))τ,τ =
〈
Ψx, M

nρ0

〉

where Ψx = δx ⊗ δx ⊗ Id . (3.25)
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(iii) The adjoint of M , M∗, acts as follows

(M∗ρ)(x, y; η)

=
∑

τ,τ ′∈I±
ζ∈Ω

P(η, ζ)(σxζ)∗Pτρ(x+ r(τ), y + r(τ ′), ζ)Pτ ′(σyζ). (3.26)

(iv) If {ρ(x, y; η)}x,y∈Zd is self-adjoint, the same is true for {(Mρ)
(x, y; η)}x,y∈Zd . Such initial conditions ρ yield real-valued quantities
wx(n) =

〈
Ψx, M

nρ0

〉
.

Proof. First note that
〈
δx ⊗ δy ⊗ |τ〉〈τ ′| ,Mnρ0

〉
K =

∑

ζ∈Ω

p(ζ)((Mnρ0)(x, y; ζ))τ,τ ′ . (3.27)

Let ti =
∑n
s=i r(τs) and t′i =

∑n
s=i r(τ

′
s). Using the definition of M , we see

that

(Mnρ0)(x, y; ζ) =
∑

{τ1,...,τn}∈In
±

{τ ′
1,...,τ

′
n}∈In

±
{η1,η2,...,ηn}∈Ωn

Q(ζ, ηn)Q(ηn, ηn−1) · · · Q(η2, η1)

×Pτn
(σx−tnζ)Pτn−1(σx−tn−1ηn) · · ·Pτ1(σx−t1η2)ρ0(x− t1, y − t′1)

×(σy−t′1η2)
∗Pτ ′

1
· · · (σy−t′n−1

ηn)∗Pτ ′
n−1

(σy−t′nζ)
∗Pτ ′

n
.

Since the initial distribution p is stationary, a straightforward computation
shows that

p(ζ)Q(ζ, ηn)Q(ηn, ηn−1) · · · Q(η2, η1) = p(η1)P(η1, η2) · · · P(ηn−1, ηn)P(ηn, ζ).
(3.28)

Therefore,
〈
δx ⊗ δy ⊗ |τ〉〈τ ′| ,Mnρ0

〉
K

=
∑

{τ1,...,τn}∈In
±

{τ ′
1,...,τ

′
n}∈In

±
{η1,η2,·,ηn,ζ}∈Ωn+1

p(η1)P(η1, η2) · · · P(ηn−1, ηn)P(ηn, ζ)

×〈τ |Pτn
(σx−tnζ)Pτn−1(σx−tn−1ηn) · · ·Pτ1(σx−t1η2)ρ0(x− t1, y − t′1)

×(σy−t′1η2)
∗Pτ ′

1
· · · (σy−t′n−1

ηn)∗Pτ ′
n−1

(σy−t′nζ)
∗Pτ ′

n
τ ′〉. (3.29)

On the other hand,

E(ρn(x, y))

=
∑

{τ1,...,τn}∈In
±

{τ ′
1,...,τ

′
n}∈In

±
{η1,η2,·,ηn}∈Ωn

{η′
1,η

′
2,·,η′

n}∈Ωn

Prob
(
σx−tiω(i) = ηi, σy−t′iω(i) = η′

i for all i ∈ {1, . . . , n}
)

× Pτn
ηnPτn−1ηn−1 · · ·Pτ1η1ρ0 (x− t1, y − t′1) η

′∗
1 Pτ ′

1
· · ·Pτ ′

n−1
η′∗
n Pτ ′

n
.

(3.30)
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However, it is easy to see that

Prob
(
σx−tiω(i) = ηi, σy−t′iω(i) = η′

i for all i ∈ {1, . . . , n}
)

=

{
Prob

(
ω(i) = σ−1

x−tiηi for all i ∈ {1, . . . , n}
)

if σ−1
x−tiηi = σ−1

y−t′iη
′
i

0 otherwise.

(3.31)

Now by letting αi = σ−1
x−tiηi, and using that ω is a Markov chain on Ω we get

E(ρn(x, y))

=
∑

{τ1,...,τn}∈In
±

{τ ′
1,...,τ

′
n}∈In

±{α0,α1,·,αn}∈Ωn+1

p(α0)P(α0, α1)P(α1, tα2) · · · P(αn−1, αn)

×Pτn
(σx−tnαn)Pτn−1 · · ·Pτ1(σx−t1α1)ρ0 (x− t1, y − t′1))

×(σy−t′1α1)∗Pτ ′
1
· · ·Pτ ′

n−1
(σy−t′nα1)∗Pτ ′

n
. (3.32)

Comparing (3.29) and (3.32) completes the proof. �

3.2. Spectral Analysis of M

Using Feynman–Kac–Pillet formula, studying the time evolution of our sys-
tems relies on the spectral analysis of the “single-step” operator M defined in
(3.23). In order to do that, we first take a closer look at the underlying sym-
metries of the systems. The operator M commutes with a group G of unitary
operators generated by translations:

1. Simultaneous translation of position and disorder by an arbitrary element
ξ of Z

d:

Sξ ρ(x, y;ω) = ρ(x− ξ, y − ξ;σξω),

2. For η ∈ Γ ⊂ Z
d such that ση = Id , M commutes with translation of the

first position coordinate by η:

S(1)
η ρ(x, y;ω) = ρ(x− η, y;ω).

Note that SξS
(1)
η = S

(1)
η Sξ, so the group of symmetries G is isomorphic to

Z
d × Z

d. We have chosen to use translation of the first position in the defini-
tion of S(1); however, since ση = Id, we have SηS

(1)
−ηρ(x, y;ω) = ρ(x, y − η;ω).

Remark 3.4. For any η ∈ Γ = {ξ ∈ Z
d : σξ = Id}, and any x ∈ Z

d, we have
σx+η = σx. Moreover, for any x ∈ Z

d, there exists a unique x0 ∈ BΓ such that
σx = σx0 .

In order to take these symmetries into account in the spectral analysis of
M , we define a generalized Fourier transform similar to [18]. We shall use the
following notations
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L2(X;M2d(C)) = {f : X → M2d(C) : ‖f‖2

= Tr(f∗f) =
∫

X

dm(x)Tr(f∗(x)f(x)) < ∞},

where m is a locally finite positive measure on X.
Also, we introduce Γ∗ = {p∗ ∈ R

d | p∗γ ∈ Z, ∀γ ∈ Γ}. If {γj}dj=1 is
a basis of Γ, let {p∗

j}dj=1 be the basis of Γ∗ defined by p∗
jγi = δi,j . We have

that Z
d ⊂ Γ∗. We note T

d
Γ = {p =

∑d
j=1 pjp

∗
j | pj ∈ [0, 2π), j = 1, . . . , d}.

With the linear map P : R
d → R

d defined by its action on the vectors of the
canonical basis as Pej = p∗

j , j = 1, . . . , d, we have T
d
Γ = PT

d where T
d denotes

the d-dimensional torus. In particular, for any f defined on T
d
Γ

∫

T
d
Γ

f(p)dp =
∫

Td

f(Pt)|P |dt, and Vol(T dΓ) = (2π)d|P |, (3.33)

where | · | denotes the Jacobian determinant here. We denote the normalized
measure on T

d
Γ by dp̃ = dp/((2π)d|P |).

We are ready to introduce the map F : l2(Zd × Z
d × Ω;M2d(C)) →

L2(BΓ × T
d × T

d
Γ × Ω;M2d(C)), defined by

(FΨ)(x, k, p; ζ) := Ψ̂(x, k, p; ζ) =
∑

ξ∈Z
d

η∈Γ

eip·(x−η)−ik·ξΨ(x− ξ − η,−ξ, σξζ).

(3.34)

Since we can add to x any vector of Γ without changing the RHS, Ψ̂ actually
depends on x0 ∈ BΓ defined according to remark 3.4. One checks that this
generalized Fourier transform is a unitary operator with inverse

(F−1χ)(x, y; ζ) =
∫

Td×T
d
Γ

e−iyke−ip(x−y)χ(x− y, k, p;σyζ)d̃kd̃p, (3.35)

where d̃kd̃p is the normalized measure on T
d × T

d
Γ.

Remark 3.5. (i) If (FΨ)(x, k, p; ζ) = Ψ̂(x0, k, p; ζ), it satisfies for any p∗ ∈
Γ∗, any η ∈ Γ and any k∗ ∈ Z

d

Ψ̂(x0 + η, k + 2πk∗, p+ 2πp∗; ζ) = ei2πp
∗x0Ψ̂(x0, k, p; ζ). (3.36)

(ii) The operator {ψ(x, y, ζ)}x,y∈Zd is self-adjoint, i.e. ψ(x, y, ζ)∗ = ψ(y, x, ζ)
if and only if Ψ̂(x0, k, p; ζ) = Ψ̂((−x)0,−k, p− k;σx0ζ)

∗.

Because of the symmetries of M , its expression FMF−1 in Fourier space
admits a fiber decomposition of the form

FMF−1 =

⊕∫

Td×T
d
Γ

M̂(k, p) d̃kd̃p, (3.37)



1780 E. Hamza and A. Joye Ann. Henri Poincaré

where M̂(k, p) is an operator on l2(BΓ × Ω;M2d(C)) which becomes a mul-
tiplication operator in the variables (k, p) ∈ T

d × T
d
Γ which we compute.

The following expression holds for the (k, p) dependent “single-step” opera-
tor M̂(k, p) on L2(BΓ × T

d × T
d
Γ × Ω;M2d(C)):

(M̂(k, p)Ψ)(x, k, p; η) =
∑

τ,τ ′∈I±
ζ∈Ω

Q(η, ζ)eikr(τ
′)eip(r(τ)−r(τ

′))

×Pτ (σx−r(τ)η)Ψ
(
x− r(τ) + r(τ ′), k, p, σ−r(τ ′)ζ

)
(σ−r(τ ′)η)∗Pτ ′ . (3.38)

Remark 3.6. The action of the adjoint of M̂(k, p), denoted by M̂(k, p)∗, reads

(M̂(k, p)∗Ψ)(x, k, p; η) =
∑

τ,τ ′∈I±
ζ∈Ω

P(η, ζ)e−ikr(τ ′)e−ip(r(τ)−r(τ ′))

×(σxζ)∗PτΨ
(
x+ r(τ) − r(τ ′), k, p, σr(τ ′)ζ

)
Pτ ′ζ.

(3.39)

Let us now consider the operator M̂(k, p) for (k, p) ∈ T
d × T

d
Γ fixed as

an operator on l2(BΓ × Ω;M2d(C)). As BΓ and Ω are finite, M̂(k, p) can be
represented by a square matrix of dimension 4d|BΓ||Ω| depending parametri-
cally on (k, p). Moreover, the map (k, p) �→ M̂(k, p) is analytic on C

d × C
d.

We denote the norm on l2(BΓ × Ω;M2d(C)) by ‖ · ‖l2 .

Proposition 3.7. Let Spr denote the spectral radius, then for all (k, p) ∈ T
d×T

d
Γ

Spr(M̂(k, p)) ≤ ‖M̂(k, p)‖l2 ≤ 1, (3.40)

On the other hand for k = 0 and all p ∈ T
d
Γ

Spr(M̂(0, p)) = ‖M̂(0, p)‖l2 = 1, (3.41)

Remark 3.8. It follows that Spr (M̂) = ‖M̂‖ = 1, where M̂ is viewed as an
operator on L2(BΓ × T

d × T
d
Γ × Ω;M2d(C)).

Proof. First note that M̂(k, p) can be written as M̂(k, p) = ΣSQ̃, where

(Q̃Ψ)(x, k, p; η) =
∑

ζ∈Ω

Q(η, ζ)Ψ(x, k, p; ζ)

(SΨ)(x, k, p; η) = (σxη)Ψ(x, k, p; η)(σ0η)∗ (3.42)

(ΣΨ)(x, k, p; ζ) =
∑

τ,τ ′∈I2±
eikr(τ

′)eip(r(τ)−r(τ
′))

×PτΨ(x− r(τ) + r(τ ′), k, p;σ−r(τ ′)ζ)Pτ ′ .

We fix (k, p) and consider these operators on l2(BΓ × Ω;M2d(C)). Now Q̃ =
Id⊗Q where Q : l2(Ω; C) → l2(Ω; C) given by Qf(η) =

∑
ζ∈Ω Q(η, ζ)f(ζ) and

Id means the identity on l2(BΓ;M2d(C)). An easy calculation using Jensen’s
inequality shows that for all f ∈ l2(Ω; C)
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‖Qf‖2 =
∑

η∈Ω

p(η)

∣
∣
∣
∣
∣
∣

∑

ζ∈Ω

Q(η, ζ)f(ζ)

∣
∣
∣
∣
∣
∣

2

≤
∑

η∈Ω

p(η)
∑

ζ∈Ω

Q(η, ζ)|f(ζ)|2

(3.43)

=
∑

ζ∈Ω

p(ζ)|f(ζ)|2 = ‖f‖2. (3.44)

Therefore, we have that ‖Q̃‖l2 ≤ 1.
On the other hand, for all Ψ ∈ l2(BΓ × Ω;M2d(C))

‖SΨ‖2
l2 =

∑

x∈BΓ
ζ∈Ω

p(ζ)Tr [ζΨ∗(x; ζ)(σxζ)∗(σxζ)Ψ(x; ζ)ζ∗]

=
∑

x∈BΓ
ζ∈Ω

p(ζ)Tr [Ψ∗(x; ζ)Ψ(x; ζ)] = ‖Ψ‖2
l2 . (3.45)

Where we used the cyclicity of the trace and that elements of Ω are unitary
matrices. Finally to see that for any (k, p) ∈ T

d × T
d
Γ, ‖Σ‖ = 1, we notice that

Tr [(ΣΨ)∗(x; ζ)(ΣΨ)(x; ζ)]

=
∑

τ,α∈I2±
〈α|Ψ∗(x− r(τ) + r(α);σ−r(α)ζ)τ〉〈τ |Ψ(x− r(τ) + r(α);σ−r(α)ζ)α〉

(3.46)

Now for fixed α, τ let y = x− r(τ) + r(α) and η = σ−r(α)ζ. Using that σx are
measure preserving transformations on Ω, we have

‖ΣΨ‖2
l2 =

∑

τ,α∈I2±

∑

y∈BΓ
η∈Ω

p(η)〈α|Ψ∗(y; η)τ〉〈τ |Ψ(y; η)α〉 (3.47)

=
∑

y∈BΓ
η∈Ω

p(η)Tr [Ψ∗(y; η)Ψ(y; η)] = ‖Ψ‖2. (3.48)

Putting the estimates on the norms of Q̃, S and Σ together, we get the required
bound on the norm of M̂(k, p) for all (k, p) ∈ T

d × T
d
Γ.

Now consider Ψ̂1(x; ζ) = δ0 ⊗ Id, where Id ∈ l2(Ω;M2d(C)) takes the
constant value Id. We compute

(M̂(k, p)Ψ̂1)(x; η) =
∑

τ,τ ′∈I±
ζ∈Ω

eikr(τ
′)eip(r(τ)−r(τ

′))
Q(η, ζ)

×Pτ (σx−r(τ)η)(σ−r(τ ′)η)∗Pτ ′δ0(x− r(τ) + r(τ ′))

=
∑

τ,τ ′∈I±

eikr(τ
′)eip(r(τ)−r(τ

′))Pτδτ,τ ′δ0(x− r(τ) + r(τ ′))

=
∑

τ∈I±

eikr(τ)Pτδ0(x), (3.49)
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where we use
∑
ζ∈Ω Q(η, ζ) = 1. From this, it is clear that Ψ̂1 is an eigenvector

of M̂(0, p) with an eigenvalue 1 for all p ∈ T
d
Γ. Therefore, we have that

Spr(M̂(0, p)) = ‖M̂(0, p)‖l2 = 1. (3.50)

�

Remark 3.9. A similar computation shows that

M̂(0, p)∗Ψ̂1 = Ψ̂1. (3.51)

If Ψ̂1 is considered a vector of L2(BΓ × T
d × T

d
Γ × Ω;M2d(C)) it corresponds

to

Ψ1(x, y; η) = F−1Ψ̂1(x, y; η) = δ0(x) ⊗ δ0(y) ⊗ Id � Id⊗|0〉〈0|. (3.52)

Also, with the definition (3.25)

FΨx̃(x, k, p, η) = eikx̃δ0(x) ⊗ Id = eikx̃Ψ̂1(x). (3.53)

At this point, we note that the characteristic function Φρ0n (y) of the dis-
tribution w(n) satisfies, see (3.25) and (3.53)

Φρ0n (y) =
∑

x∈Zd

eiyx
〈
Ψx, M

nρ0

〉
=
∑

x∈Zd

eiyx
〈
Ψ̂x, M̂(·, ·)nρ̂0

〉
K

=
∑

x∈Zd

eiyx
∫

Td

e−ikx〈Ψ̂1, M̂(k, ·)nρ̂0(k)
〉
L2(BΓ×T

d
Γ×Ω;M2d(C))

d̃k. (3.54)

In other words, slightly abusing notations,

Φρ0n (y) =
〈
Ψ̂1, M̂(y, ·)nρ̂0(y)

〉
L2(BΓ×Td×Ω;M2d(C))

=
〈
(M̂(y, ·)∗)nδ0 ⊗ Id, ρ̂0(y)

〉
L2(BΓ×T

d
Γ×Ω;M2d(C))

=
∫

T
d
Γ

〈
(δ0 ⊗ Id, M̂(y, p))nρ̂0(y, p)

〉
l2(BΓ×Ω;M2d(C))

d̃p

=
∑

η∈Ω

p(η)
∫

T
d
Γ

Tr(M̂(y, p)nρ̂0)(0, y, p, η)d̃p (3.55)

where

ρ0(x− ξ − η,−ξ) ≡ ρ̂0(x, k, p) (3.56)

is independent of ζ.

Remark 3.10. If

ρ0 = |ϕ0〉〈ϕ0| ⊗ |0〉〈0| � δ0 ⊗ δ0 ⊗ |ϕ0〉〈ϕ0|, where ϕ0 ∈ C
d is normalized,

(3.57)

then

ρ̂0(x, k, p, η) = δ0(x) ⊗ |ϕ0〉〈ϕ0| := R0(x) is independent of (k, p, η) (3.58)
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and

Φϕ0
n (y) =

∑

η∈Ω

p(η)
∫

T
d
Γ

Tr(M̂(y, p)n|ϕ0〉〈ϕ0|)(0, y, p, η)d̃p. (3.59)

Hence, in the diffusive scaling, we need to control the large n behavior of
the vectors M̂∗(y/

√
n, p)nδ0 ⊗ Id and ρ̂0(y/

√
n) in L2(BΓ × T

d
Γ × Ω;M2d(C)).

This can be done, following the arguments of [21], under some spectral hypoth-
esis. We shall discuss the validity of this hypothesis for specific cases later on
and proceed by showing that it is sufficient to prove the diffusive character of
the (averaged) dynamics, arguing as in [21]. We shall refrain from spelling out
all details, referring the reader to the above-mentioned paper.

We work under the following spectral hypothesis on the matrix M̂(0, p)
on l2(BΓ × Ω;M2d(C)). Let D(z, r) be the open disc of radius r > 0 centered
at z ∈ C.

Assumption S: For all p ∈ T
d
Γ, we have

σ(M̂(0, p)) ∩ ∂D(0, 1) = {1} and this eigenvalue is simple. (3.60)

Remark 3.11. Actually, because of (3.55), it is enough to assume that
M̂(0, p))|I satisfies assumption S, where I is the M̂(k, p)∗-cyclic subspace gen-
erated by δ0 ⊗ Id, for all (k, p) ∈ T

d × T
d
Γ.

Remark 3.12. In the deterministic case characterized by Ω = {C}, σx ≡ Id,
Γ = Z

d and BΓ = {0} one readily computes that I = C∗DC, where D ⊂
M2d(C) is the set of diagonal matrices, and that M̂(0, p))|I(·) = C · C∗. This
is a unitary map, thus assumption S does not hold in this case.

By analytic perturbation theory, there exist δ > 0, ν(δ) > 0 and κ(δ) > 0
such that for all (k, p) ∈ Bdκ × T d

ν , where Bdκ = {y ∈ C
d | ‖y‖ < κ} and

T d
ν = {y = y1 + iy2, |y1 ∈ T

d
Γ, y2 ∈ R

d with ‖y2‖ < ν} the following holds:

σ(M̂(k, p)) ∩D(1, δ) = {λ1(k, p)}
σ(M̂(k, p))\{λ1(k, p)} ⊂ D(0, 1 − δ),

(3.61)

and the eigenvalue λ1(k, p) is simple. For such values of the parameters (k, p),
we have the corresponding spectral decomposition

M̂(k, p) = λ1(k, p)P1(k, p) + M̂P̄1
(k, p) (3.62)

where M̂P̄1
(k, p) = P̄1(k, p)M̂(k, p)P̄1(k, p) and P̄1(k, p) = I − P1(k, p).

The simple eigenvalue λ1(k, p), the corresponding spectral projector
P1(k, p) and the restriction M̂P̄1

(k, p) are all analytic on Bdν × T d
ν and

Spr (M̂P̄1
(k, p)) < 1 − δ. Moreover, for any p ∈ T

d
Γ

lim
k→0

λ1(k, p) = 1, and lim
k→0

P1(k, p) = |Ψ̂0〉〈Ψ̂0| ≡ Π, (3.63)

where Ψ̂0 = Ψ̂1/‖Ψ̂1‖ = 1√
2d
δ0 ⊗ Id, see (3.51).
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Taking into account the fact that wx(n) is real valued for any selfadjoint
and trace class ρ0, we have

Φρ0n (k) = Φρ0n (−k), for all k ∈ T
d. (3.64)

This yields a symmetry of λ1:

Lemma 3.13. For all k ∈ Bdκ, and all p ∈ T
d
Γ, the following identity holds

λ1(k, p) = λ1(−k, p− k). (3.65)

Proof. It follows from (3.55) that for any k ∈ R
d and any self adjoint trace

class ρ0

Φρ0n (k) =
∫

T
d
Γ

〈
δ0 ⊗ Id, M̂(k, p)

n
ρ̂0(k, p)

〉
l2(BΓ×Ω;M2d(C))

d̃p

=
∫

T
d
Γ

〈
δ0 ⊗ Id, M̂(−k, p)

n
ρ̂0(−k, p)

〉
l2(BΓ×Ω;M2d(C))

d̃p (3.66)

The first step consists in showing the pointwise identity of the smooth scalar
products in l2(BΓ × Ω;M2d(C)) for ρ̂0 = δ0(x) ⊗ |ϕ0〉〈ϕ0| = R0(x) :

〈
δ0 ⊗ Id, M̂(k, p)

n
R0

〉
−
〈
δ0 ⊗ Id, M̂(−k, p− k)

n
R0

〉
= 0. (3.67)

Identity (3.66) holds for any self-adjoint ρ0, thus in particular for ρ0(x0,
k, p) = b(k, p)R0(x) where b belongs to the vector space of periodic functions
satisfying

b : T
d × T

d
Γ → C, such that b(k, p) = b(−k, p− k), (3.68)

see Remarks 3.5. Therefore, we get for any such b

0 =
∫

T
d
Γ

〈
δ0 ⊗ Id, M̂(k, p)

n
R0

〉
b(k, p)

−
〈
δ0 ⊗ Id, M̂(−k, p)

n
R0

〉
b(k, p+ k)d̃p

=
∫

T
d
Γ

(〈
δ0 ⊗ Id, M̂(k, p)

n
R0

〉
−
〈
δ0 ⊗ Id, M̂(−k, p− k)

n
R0

〉)
b(k, p)d̃p.

(3.69)

An example of smooth function b satisfying our requirements is b1(k, p) =
f1(k)g1(2p− k) with

g1 : R
d → R, 2πΓ∗− periodic, and f1 : R

d → R, 2πZ
d − periodic and even.

(3.70)

Note that Z
d ⊂ Γ∗ ensures Z

d periodicity of b1 in k and that b1(k, p+2πγ∗/2) =
b1(k, p), for all k and γ∗ ∈ Γ∗. Another slightly more complicated choice is con-
structed with

g2 : R
d→ R, 2πΓ∗− anti-periodic i.e. g2(x+ 2πγ∗

i ) = −g2(x), ∀i = 1, . . . , d,
(3.71)
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and {γ∗
j }dj=1 is the basis of Γ∗. Then, f2 : R

d → R is defined as follows: for
j = 1, . . . , d, ej =

∑d
i=1mi(j)γ∗

i , where mi(j) ∈ Z, and

f2(x+ 2πej) = (−1)
∑d

i=1mi(j)f2(x), ∀x ∈ R
d, ∀j = 1, . . . , d. (3.72)

That is f2 is 2π-periodic or 2π-anti-periodic in the direction ej , depending
on the components of the corresponding vector γ∗

j . Then, by construction,
b2(k, p) = f2(k)g2(2p − k) satisfies our requirements and, moreover b2(k, p +
2πγ∗

j /2) = −b2(k, p).
Now, assume (3.67) does not hold at some p0 ∈ T

d
Γ. By a suitable choice

of g1 and g2 as above, we can construct a smooth b(k, p) = b1(k, p) + b2(k, p)
that is non-zero in a small neighborhood of p0 only so that (3.69) fails, which
yields a contradiction.

Then, one exploits the spectral decomposition (3.62) and (3.63) with〈
δ0 ⊗ Id, R0

〉
= 1 to deduce from the above that if ‖k‖ is small enough

λ1(k, p) = lim
n→∞

(〈
δ0 ⊗ Id, M̂(k, p)

n
R0

〉)1/n

= lim
n→∞

(〈
δ0 ⊗ Id, M̂(−k, p− k)

n
R0

〉)1/n

= λ1(−k, p− k). (3.73)

The result extends to complex k by analyticity of λ1(·, p) in Bdκ. �
We now compute a second-order expansion of λ1(k, p) = Tr(P1(k, p)

M̂(k, p)) around k = 0, using the decomposition (3.42)

M̂(k, p) = Σ(k)SQ̃, (3.74)

where only the unitary map Σ depends on k (and p), as stressed in the nota-
tion. We expand Σ(k) as

Σ(k) = Σ(0) + Σ1(k) + Σ2(k) +Op(‖k‖3), (3.75)

where Σj(k) is of order j = 1, 2 in k and the remainder is Op(‖k‖3), uniformly
in p ∈ T d

ν . Explicitly,

(Σ1(k) + Σ2(k))Ψ(x, k, p; ζ) =
∑

τ,τ ′∈I2±
(ikr(τ ′)

−(kr(τ ′))2/2)eip(r(τ)−r(τ
′))PτΨ(x− r(τ) + r(τ ′), k, p;σ−r(τ ′)ζ)Pτ ′ .

(3.76)

Then, in terms of the unperturbed reduced resolvent Sp(z) defined for any
p ∈ T d

ν and z in a neighborhood of 1, by

(M̂(0, p) − z)−1 =
Π

1 − z
+ Sp(z) (3.77)

we have see [23], p. 79,

λ1(k, p) = 1 + Tr(Σ1(k)SQ̃Π)

+Tr(Σ2(k)SQ̃Π − Σ1(k)SQ̃Sp(1)Σ1(k)SQ̃Π) +Op(‖k‖3). (3.78)
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Explicit computations making use of SQ̃Ψ̂0 = Ψ̂0, SQ̃Sp(1) = Σ(0)−1(I − Π +
Sp(1)) and

(Σ(0)−1Φ)(x, η)=
∑

(τ,τ ′)∈I2±
e−ip(r(τ)−r(τ ′))PτΦ((x+r(τ) − r(τ ′), σr(τ ′))Pτ ′

(3.79)

yield

Lemma 3.14. For all p ∈ T d
ν and k ∈ B(0, κ), there exists a symmetric matrix

D(p) ∈ Md(C) such that

λ1(k, p) = 1 +
i

2d

∑

τ∈I±

kr(τ) +Op(‖k‖3) +
1
2d

⎛

⎝
∑

τ∈I±

(kr(τ))2

2

+
∑

τ,τ ′∈I±

(kr(τ))(kr(τ ′))
{
〈
δ0 ⊗ Pτ ′ |(Sp(1)δ0 ⊗ Pτ )

〉
l2

− 1
2d

}
⎞

⎠

≡ 1 +
i

2d

∑

τ∈I±

kr(τ) − 1
2
〈k|D(p)k〉 +Op(‖k‖3). (3.80)

The map p �→ D(p) is analytic on T d
ν ; when p ∈ T

d
Γ,D(p) ∈ M2d(R) is non-

negative and D(p)i,j = ∂2

∂ki∂kj
λ(0, p), i, j ∈ {1, 2, . . . , d}. Moreover, Op(‖k‖3)

is uniform in p ∈ T d
ν .

Proof. Existence and analyticity in p of D(p) follow from analyticity of λ1

in y and analyticity of Sp(1) in p, see (3.77). Since D(p)i,j = ∂2

∂ki∂kj
λ(0, p),

the matrix is symmetric. For p ∈ T
d
Γ, Lemma 3.13 implies that λ(0, p) is real

valued, hence the matrix elements D(p) for p ∈ T
d
Γ are real as well. Finally,

(3.40) implies that 〈k|D(p)k〉 ≥ 0 for all k ∈ T
d. �

As a consequence of the spectral analysis above, it follows exactly as in
[21], that

Proposition 3.15. Under assumption S, uniformly in p ∈ T d
ν , in k in compact

sets of C
d and in t in compact sets of R

∗
+,

lim
n→∞ M̂(k/n, p)[tn] = eityrΠ, (3.81)

lim
n→∞ M̂(k/

√
n, p)[tn]e−i[tn]ry/

√
n = e− t

2 〈y|D(p)y〉Π. (3.82)

4. Diffusion Properties

These technical results lead to the main results of this section which are the
existence of a diffusion matrix and central limit type behaviors in the diffusive
scaling, as in [21], with the same proofs that we do not need to repeat.

Let N (0,Σ) denote the centered normal law in R
d with positive definite

covariance matrix Σ and let us write Xω � N (0,Σ) a random vector Xω ∈ R
d
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with distribution N (0,Σ). The superscript ω can be thought of as a vector in
R
d such that for any Borel set A ⊂ R

d

P(Xω ∈ A) =
1

(2π)d/2
√

det(Σ)

∫

A

e− 1
2 〈ω|Σ−1ω〉dω. (4.1)

The corresponding characteristic function is ΦN (y) = E(eiyX
ω

) = e− 1
2 〈y|Σy〉.

The first result concerning the asymptotics of the random variable Xn

reads as follows for an initial density matrix of the form ρ0 = |ϕ0〉〈ϕ0|⊗ |0〉〈0|:

Theorem 4.1. Under Assumption C and S, uniformly in y in compact sets of
C
d and in t in compact sets of R

∗
+,

lim
n→∞ Φϕ0

[tn](y/n) = eityr (4.2)

lim
n→∞ e

−i[tn] ry√
n Φϕ0

[tn](y/
√
n) =

∫

T
d
Γ

e− t
2 〈y|D(p)y〉 dp̃, (4.3)

where the right hand side admits an analytic continuation in (t, y) ∈ C × C
d.

In particular, for any (i, j) ∈ {1, 2, . . . , d}2,

lim
n→∞

〈Xi〉ψ0(n)
n

= ri (4.4)

lim
n→∞

〈(X − nr)i(X − nr)j〉ψ0(n)
n

=
∫

T
d
Γ

Di j(p) dp̃. (4.5)

If D(p) = D > 0 is independent of p ∈ T
d
Γ, then, for any initial vector Ψ0 =

ϕ0 ⊗ |0〉, we have as n → ∞, with convergence in law,

Xn − nr√
n

D−→ Xω � N (0,D). (4.6)

Remark 4.2. We will call diffusion matrices both D(p) and D =
∫

T
d
Γ

D(p) dp̃.

Remark 4.3. We prove below that a central limit theorem for Xn may hold in
cases where D depends on p, see Theorem 6.4.

For initial conditions corresponding to a density matrix ρ0, we have

Corollary 4.4. Under Assumptions C, S and R for the observable X2, we have
for any t ≥ 0, y ∈ C

d,

lim
n→∞ Φρ0[tn](y/n) = eityr, (4.7)

lim
n→∞ e

−i[tn] ry√
n Φρ0[tn](y/

√
n) =

∫

T
d
Γ

e− t
2 〈y|D(p)y〉

×
〈
Ψ1|Πρ̂0(·, 0, p, ·)

〉
L2(BΓ×Td×Ω;M2d(C))

dp̃

=
∫

T
d
Γ

e− t
2 〈y|D(p)y〉 Tr(ρ̂0)(0, 0, p)dp̃ (4.8)
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where, see 3.56,

ρ̂0(0, 0, p) =
∑

ξ∈Z
d

ζ∈Γ

e−ipζρ0(ξ − ζ, ξ). (4.9)

Also, for any (i, j) ∈ {1, 2, . . . , d}2,

lim
n→∞

〈Xi〉ρ0(n)
n

= ri, (4.10)

lim
n→∞

〈(X − nr)i(X − nr)j〉ρ0(n)
n

=
∫

T
d
Γ

Di j(p)Tr(ρ̂0)(0, 0, p)dp̃. (4.11)

From Corollary 4.4, and Theorem 4.1, we gather that the characteristic
function of the centered variable Xn − nr in the diffusive scaling T = nt,
Y = y/

√
n, where n → ∞, converges to

∫

T
d
Γ

F
(

e− 1
2t 〈·|D−1(p)·〉

(t2π)d/2
√

det D(p)

)

(y)Tr(ρ̂0)(0, 0, p)dp̃, (4.12)

where the function under the Fourier transform symbol F is a solution to the
diffusion equation

∂ϕ

∂t
=

1
2

d∑

i,j=1

Dij(p)
∂2ϕ

∂xi
∂xj

. (4.13)

As explained in [22,18], it follows that the position space density wk([nt])
δ(

√
nx− k) converges in the sense of distributions to a superposition of solu-

tions to the diffusion equations (4.13) as n → ∞.

5. Moderate Deviations

It is shown in [21] that the spectral properties of the matrix M̂(k, p) proven
in Sect. 3.2 allow us to obtain further results on the behavior with n of the
distribution of the random variable Xn defined by (3.12) with localized initial
condition ρ0 = |ϕ0〉〈ϕ0| ⊗ |0〉〈0|, corresponding to the vector R0 ∈ l2(BΓ ×
Ω;M2d(C)), see (3.58). This section is devoted to establishing some moderate
deviation results on the centered random variable Xn − nr. Again, since all
proofs are identical to those given in [21], we merely state the results.

Moderate deviation results depend on asymptotic behaviors in different
regimes of the logarithmic generating function of Xn − nr defined for y ∈ R

d

by

Λn(y) = ln(Ew(n)(ey(Xn−nr))) ∈ (−∞,∞]. (5.1)

This function Λn is convex and Λn(0) = 0.
Let {an}n∈N be a positive-valued sequence such that

lim
n→∞ an = ∞, and lim

n→∞ an/n = 0. (5.2)
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Define Yn = (Xn−nr)/√nan and, for any y ∈ R
d, let Λ̃n(y) = ln(Ew(n)(eyYn))

be the logarithmic generating function of Yn.

Proposition 5.1. Assume C and S and further suppose D(p) > 0 for all p ∈ T
d.

Let y ∈ R
d\{0} and assume the real analytic map T

d � p �→ 〈y|D(p)y〉 ∈ R
+
∗ is

either constant or admits a finite set {pj(y)}j=1,...,J of non-degenerate maxi-
mum points in T

d. Then, for any y ∈ R
d,

lim
n→∞

1
an

Λ̃n(any) =
1
2
〈y|D(p1(y))y〉 (5.3)

which is a smooth convex function of y.

Let us introduce a few more definitions and notations. A rate function I
is a lower semicontinuous map from R

d to [0,∞] s.t. for all α ≥ 0, the level sets
{x | I(x) ≤ α} are closed. When the level sets are compact, the rate function
I is called good. For any set Γ ⊂ R

d, Γ0 denotes the interior of Γ, while Γ
denotes its closure.

As a direct consequence of Gärtner–Ellis Theorem, see [16] Sect. 2.3, we
get

Theorem 5.2. Define Λ∗(x) = supy∈Rd

(
〈y|x〉 − 1

2 〈y|D(p1(y))y〉
)
, for all x ∈

R
d. Then, Λ∗ is a good rate function and, for any positive-valued sequence

{an}n∈N satisfying 5.2 and all Borel set Γ ⊂ R
d

− inf
x∈Γ0

Λ∗(x) ≤ lim inf
n→∞

1
an

ln(P((Xn − nr) ∈ √
nan Γ))

≤ lim sup
1
an

ln(P((Xn − nr) ∈ √
nan Γ)) ≤ − inf

x∈Γ
Λ∗(x). (5.4)

Remark 5.3. As a particular case, when D(p) = D > 0 is constant, we get

Λ∗(x) =
1
2
〈x|D−1x〉. (5.5)

Remark 5.4. Specializing the sequence {an}n∈N to a power law, i.e. taking
an = nα, we can express the content of Theorem 5.2 in an informal way as
follows. For 0 < α < 1,

P((Xn − nr) ∈ n(α+1)/2 Γ) � e−nα infx∈Γ Λ∗(x). (5.6)

For α close to zero, we get results compatible with the central limit theorem
and for α close to one, we get results compatible with those obtained from a
large deviation principle.

6. Large Deviations

In this section, we push further the analysis of the large n behavior distribution
of the random variable Xn (defined by (3.12) with localized initial condition
ρ0 = |ϕ0〉〈ϕ0|⊗|0〉〈0|) by proving large deviations estimates and a central limit
theorem under stronger assumptions on the spectral properties of the matrix
M̂(k, p).
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We change scales and define for n ∈ N
∗ and y ∈ R

d a rescaled random
variable and the corresponding convex logarithmic generating function

Yn =
Xn − nr̄

n
and Λ̃n(y) = ln Ew(n)(eyYn) ∈ (−∞,∞]. (6.1)

Because of the new scale n, the existence of limn→∞
Λ̃(ny)
n = limn→∞

ln Ew(n)(e
yXn )

n −yr̄ is not granted for all y, by contrast with the previous section.
However, because ‖Yn‖ ≤ c0, for some c0 < ∞, we have for any y ∈ C

d, and a
fortiori for any y ∈ R

d,

|Λ̃(ny)|
n

≤ ‖y‖c0. (6.2)

Moreover, as the next Proposition states, the limit exists for ‖y‖ small enough,
under more global, yet reasonable, hypotheses:

Proposition 6.1. Let y ∈ R
d ∩ B(0, κ) be fixed and assume the function T

d
Γ �

p �→ |λ1(−iy, p)| is either constant or admits a finite set of non-degenerate
global maxima {pj(y)}j=1,...,N in T

d
Γ. Further assume ∇pλ1(−iy, pj(y)) = 0,

for all j = 1, . . . , N . Then, for κ > 0 small enough,

lim
n→∞

Λ̃(ny)
n

= −yr̄ + ln(λ1(−iy, p1(y))) (6.3)

is a smooth real-valued convex function of y ∈ B(0, κ) ∩ R
d.

Remark 6.2. (i) In case λ1(−iy, p) ≡ λ1(−iy, 0) is independent of p ∈ T
d,

the right hand side of (6.3) equals −yr̄ + ln(λ1(−iy, 0)).
(ii) The assumption ∇pλ1(−iy, pj(y)) = 0 may be too strong to deal with cer-

tain cases. However, if it does not hold, in which case ∇pλ1(−iy, pj(y)) ∈
iRd, the asymptotics of the integral that yields Λ̃(ny)/n is out of reach of
a steepest descent method without further information on the behavior
of λ1(−iy, p) for p away from T

p
Γ.

The proof is a straightforward alteration of that of Proposition 5.1, based
on Laplace’s method to evaluate the asymptotics of the integral

Ew(n)(enyYn) = e−nyr̄
∫

T
d
Γ

〈
Ψ1|M̂n(−iy, p)R0

〉
l2(BΓ×Ω,M2d(C))

dp̃

= e−nyr̄
∫

T
d
Γ

en ln(λ1(−iy,p))〈Ψ1|P (−iy, p)R0

〉
l2(BΓ×Ω,M2d(C))

dp̃

+Op(e−nγ), (6.4)

where γ > 0 and the prefactor is non-zero, due to the smallness of ‖y‖. For
completeness, we briefly recall the argument in case there is only one maximum
at p1 ∈ T

d
Γ. Dropping the variable y in the notation and writing ln(λ1(p)) =



Vol. 13 (2012) Correlated Markov Quantum Walks 1791

a(p) + ib(p),P(p) =
〈
Ψ1|P (−iy, p)R0

〉
l2(BΓ×Ω,M2d(C))

we have in a neighbor-

hood of p1 ∈ T
d
Γ determined by ∇a(p1) = 0 and D2a(p1) < 0

en ln(λ1(p))P(p) = en ln(λ1(p1))P(p1)

×ein〈∇b(p1)(p−p1)〉en〈(p−p1)|(D2a(p1)+iD
2b(p1))(p−p1)〉/2enO(‖p−p1‖3)

(1 +O(‖p− p1‖)). (6.5)

Making use of D2a(p1) < 0, we can restrict the integration range in (6.4) to
B(p1, μ(n)) ⊂ R

d, with 1/
√
n � μ(n) � 1/n1/3, at the cost of an error of

order e−nμ(n)2c, for some c > 0, so that we are lead to
∫

B(0,μ(n))

ein〈∇b(p1)|p〉en〈p|(D2a(p1)+iD
2b(p1))p〉/2dp (1 +O(nμ(n)3) +O(μ(n))).

(6.6)

When ∇b(p1) �= 0, the analysis of the large n behavior of (6.4) and (6.6)
requires global informations about the analytic properties of λ1 for p far from
the real set T

d
Γ, hence we require ∇b(p1) = 0. Since λ1 = 1 + O(‖y‖) �= 0, we

have

∇a(p1) = 0 ⇔ �λ1(p1)∇�λ1(p1) + �λ1(p1)∇�λ1(p1) = 0 (6.7)

∇b(p1) = ∇ arg(λ1(p)) =
∇�λ1(p1)
�λ1(p1)

, (6.8)

so that the hypothesis ∇b(p1) ∈ R
d implies ∇λ1(p1) = 0. Now, at the cost of

another error of order e−nμ(n)2c, (6.6) equals
∫

Rd

en〈p|(D2a(p1)+iD
2b(p1))p〉/2dp (1 +O(nμ(n)3) +O(μ(n))) +O(e−nμ(n)2c),

(6.9)

where a Gaussian integral yields
∫

Rd

en〈p|(D2a(p1)+iD
2b(p1))p〉/2dp =

G

nd/2
,

where G =
(2π)d/2

√
det(−D2a(p1) − iD2b(p1))

. (6.10)

Altogether, we get

ln(Ew(n)(enyYn))
n

= ln(λ1(−iy, p)) − yr

+
1
n

ln
(GP(p1)

nd/2
(1 +O(nμ(n)3) +O(μ(n)) +O(e−nμ(n)2c)

)
, (6.11)

which yields the result in the limit n → ∞. �
We set for all y ∈ R

d

Λ(y) = lim sup
n→∞

Λ̃(ny)
n

∈ (−∞,∞), (6.12)
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which is convex, finite everywhere and bounded by c0‖y‖. Moreover, for ‖y‖ <
κ,Λ(y) equals the right hand side of (6.3) and is thus smooth, and Λ(0) =
Λ(0) = 0. Let us consider the Legendre transform of Λ

Λ
∗
(x) = sup

y∈Rd

(
〈y|x〉 − Λ(y)

)
≥ 0, for all x ∈ R

d. (6.13)

We are now in a position to state our large deviation results via Gärtner–Ellis
Theorem.

Theorem 6.3. Assume the hypotheses of Proposition 6.1 Let Λ and Λ
∗

be de-
fined by (6.12) and (6.13). Further assume Λ is strictly convex in neighborhood
of the origin. Then, Λ

∗
is a good rate function and there exists η > 0 such that

for any Γ ∈ R
d

lim sup
1
n

ln(P((Xn − nr) ∈ nΓ)) ≤ − inf
x∈Γ

Λ
∗
(x) (6.14)

lim inf
n→∞

1
n

ln(P((Xn − nr) ∈ nΓ)) ≥ − inf
x∈Γ0∩B(0,η)

Λ
∗
(x). (6.15)

Proof. Exercise 2.3.25, p. 54 in [16], shows that since Λ is finite on R
d then

Λ
∗

is a good rate function and that (6.14) holds.
To show that (6.15) holds, we invoke Baldi’s Theorem, Thm 4.5.20 in

[16]. First, Exercise 4.1.10 of [16], point c), shows that the law of Yn is expo-
nentially tight, as a consequence of Λ

∗
being a good rate function and (6.14)

holding true. Then, by Exercise 2.3.25 still, if x = ∇Λ(y) = ∇Λ(y) for some
y ∈ B(0, κ), then x ∈ F , where F is the set of exposed point for Λ

∗
with expos-

ing hyperplane y. Let us recall that this means that for all z �= x, yx−Λ
∗
(x) >

yz − Λ
∗
(z). Now, since Λ is strictly convex at the origin, its Hessian at zero

is positive definite and ∇Λ(0) = 0. It thus follows from the implicit function
theorem that for some η > 0, the map y → ∇Λ(y) is a bijection with range
B(0, η). Hence B(0, η) is included in the set of exposed points for Λ

∗
. Also,

the corresponding set of exposing hyperplanes belongs to B(0, κ), where Λ
coincides with Λ, which is finite everywhere. Hence, all hypotheses of Baldi’s
Theorem are met, so that (6.15) holds. �

Another direct consequence of Proposition 6.1 together with (6.2) is a
central limit theorem for Xn, as proven by Bryc [13]. A vector-valued version
of Bryc’s Theorem suited for our purpose can be found in [19].

Theorem 6.4. Under the assumptions of Proposition 6.1, we have, with con-
vergence in law,

Xn − nr̄

n1/2
−→ N (0,D) (6.16)

where Di,j = ∂2

∂yi
∂yj

Λ(0) ≥ 0.

Remark 6.5. The results of this section carry over to the cases considered in
[21], see also Sect. 9.
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7. Example

Let us consider here a fairly general situation in which the spectral hypotheses
we need can be checked explicitly.

We work in Z
d and consider a model characterized by a representation

of Z
d, x �→ σx of measure preserving maps, a jump function r : I± → Z

d such
that

r(τ) − r(τ ′) ∈ Γ, ∀τ, τ ′ ∈ I±, (7.1)

a kernel P with identical lines

P(η, ζ) = P(ζ), ∀η ∈ Ω, (7.2)

and a set of unitary matrices {η}η∈Ω with trivial commutant

{η}′
η∈Ω = {cI, c ∈ C}. (7.3)

This implies that the corresponding stationary distribution is p(ζ) = P(ζ). We
address the simplicity of the eigenvalue 1 of M̂(0, p)|I , see Remark 3.11.

Proposition 7.1. Under assumptions (7.1), (7.2) and (7.3), M̂(k, p)|I is inde-
pendent of p and M̂(0, p)|I admits 1 as a simple eigenvalue.

Proof. The simplicity of the eigenvalue 1 of M̂(0, p)|I is equivalent to the
simplicity of the eigenvalue 1 of M̂(0, p)∗|I .

We first observe that M̂(k, p)∗ leaves the subspace

J ≡ span{δ0 ⊗A |A : Ω → M2d(C) is constant} (7.4)

invariant:

(M̂(k, p)∗δ0 ⊗A)(x, η)

=
∑

τ,τ ′∈I±
ζ∈Ω

p(ζ)e−ikr(τ ′)e−ip(r(τ)−r(τ ′))(σxζ)∗δ0 (x+ r(τ) − r(τ ′))PτAPτ ′ζ

= eipxδ0 (x)
∑

τ,τ ′∈I±
ζ∈Ω

p(ζ)(σxζ)∗PτAPτ ′e−ikr(τ ′)ζ

= δ0(x)
∑

ζ∈Ω

p(ζ)ζ∗AU(k)ζ, (7.5)

where U(k) =
∑
τ ′∈I± Pτ ′e−ikr(τ ′). Hence, we have I ⊂ J and M̂(k, p)∗|J is

independent of p ∈ T
d
Γ. Thus, we can consider M̂(0, p)∗|J .

Note that U(0) = I and that M̂(0, p)∗|J δ0 ⊗A = δ0 ⊗A is equivalent to
M(A) = A where

M(A) :=
∑

ζ∈Ω

p(ζ)ζ∗Aζ, ∀A ∈ M2d(C). (7.6)

With the scalar product 〈A|B〉 = Tr(A∗B) on M2d(C) we have

‖M(A)‖2 =
∑

(ζ,η)∈Ω2

p(ζ)p(η)〈η∗Aη|ζ∗Aζ〉, (7.7)
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where |〈η∗Aη|ζ∗Aζ〉| ≤ ‖A‖2, with equality if and only if η∗Aη = eiθηζζ∗Aζ,
for some θηζ ∈ R. Hence ‖M(A)‖ = ‖A‖ if and only if η∗Aη = ζ∗Aζ, for all
η, ζ. Thus, any invariant matrix under M satisfies

M(A) = η∗Aη = A, ∀η ∈ Ω. (7.8)

Since the commutant of {η}η∈Ω is assumed to be reduced to cI, c ∈ C, we get
the result. �

8. Examples of Diffusive Random Dynamics

In this section, we consider a specific example of measure dμ on U(2d), the set
of coin matrices, for which we can prove convergence results on the random
quantum dynamical system associated with (3.1) for large times. This example
is a generalization of the example considered in [21] for site-independent coin
matrices. While the following results hold for vector and density matrix initial
conditions, we only consider here the vector case, for shortness.

8.1. Permutation Matrices

We start by recalling a few deterministic facts. Let S2d be the set of permu-
tations of the 2d elements of I± = {±1,±2, . . . ,±d}. For π ∈ S2d, define

C(π) =
∑

τ∈I±

|π(τ)〉〈τ | ∈ U(2d) so that Cστ (π) = δσ,π(τ), (8.1)

and C(π) is a permutation matrix associated with π. Note the elementary
properties: for any π, σ ∈ S2d,

C(I) = I, C∗(π) = CT (π) = C(π−1), C(π)C(σ) = C(πσ). (8.2)

The matrices C(π) allow for explicit computations of the relevant quan-
tities introduced in Sect. 2. Given a sequence {Cj = C(πj)}j=1,...,n of such
matrices, a direct computation shows that with the definition τj = πj(τj−1),
J0
k (n) takes the form

J0
k (n) =

∑

τ1∈I± s.t.∑n
j=1 r(τj)=k

|τn〉〈π−1
1 (τ1)|, (8.3)

and J0
k (n) = 0, if

∑n
j=1 r(τj) �= k.

Consequently, the non-zero probabilities Wk(n) on Z
d read for any nor-

malized internal state vector ϕ0.

Wϕ0
k (n) = ‖J0

k (n)ϕ0‖2 =
∑

τ1∈I± s.t.∑n
j=1 r(τj)=k

|〈π−1
1 (τ1)|ϕ0〉|2. (8.4)

Moreover, with τ1 = π1(τ0) we get

ϕ0 =
∑

τ0∈I±

aτ0 |τ0〉 ⇒ |〈π−1
1 (τ1)|ϕ0〉|2 =

∑

τ0∈I±

|aτ0 |2δτ1,π1(τ0). (8.5)
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Hence Wϕ0
k (n) =

∑
τ0∈I± |aτ0 |2δ∑n

j=1 r(τj),k so that for F = I ⊗ f and ψ0 =
ϕ0 ⊗ |0〉〈0|

〈F 〉ψ0(n) =
∑

k∈Zd

Wϕ0
k (n)f(k) =

∑

τ0∈I±

|aτ0 |2f(
n∑

j=1

r(τj)). (8.6)

Remark 8.1. In other words, given a set of n permutations, there is no more
quantum randomness in the variable Xn, except in the initial state.

If one generalizes the set of matrices by adding phases to the matrix
elements of the permutation matrices, it does not change the probability dis-
tribution {Wϕ0

k (n)}k∈Zd , see [21].

Therefore, the characteristic functions take the form

Corollary 8.2. With τj = (πjπj−1 · · ·π1)(τ0), for j = 1, . . . , n,

Φϕ0
n (y) =

∑

τ0∈I±

eiy
∑n

j=1 r(τj)|aτ0 |2. (8.7)

The dynamical information is contained in the sum Sn =
∑n
j=1 r(τj)

which appears in the phase. The next section is devoted to its study, in the
random version of this model where the coin matrices are random variables
with values in {C(π), π ∈ S2d} distributed according to (3.1).

8.2. Random Setup

We consider that the permutation matrices are given by the process defined
by (3.1) and we identify C(π) and π:

Assumption M̃: Let {ω(n)}n∈N be a finite state space Markov chain on Ω ⊂
S2d with transition matrix P and stationary initial distribution p and a repre-
sentation σ of Z

d of the form x �→ σx where for each x ∈ Z
d, σx : Ω → Ω with

Ω ⊂ S2d, is a measure preserving bijection. We set Cωn (x) = σx(ω(n)) with
Cωn (0) = ω(n).

We have that for every x ∈ Z
d, the set of random matrices/permutations

{πωn (x))}n∈N = {σx(ω(n))}n∈N, with ω(n) ∈ Ω ⊂ S2d, the Markov chain.
Given a set of random permutation matrices as above, we start at time

zero on site 0 ∈ Z
d, with initial vector |τ0〉⊗ |0〉. The dynamics induced by the

permutation matrices sends this state at time n ≥ 1 to the state |
∑n
s=1 r(τs)〉⊗

|τn〉, where τj = σ∑j−1
s=1 r(τs)(ω(j))τj−1.

Hence, in view of (8.7), we introduce the random variables Sn(ω) =∑n
j=1 r(τj(ω)) ∈ Z

d and r(τj(ω)) where τj(ω) is defined for j = 1, . . . , n by

τ1(ω) = σ0(ω(1))τ0, τj(ω) = σ∑j−1
s=1 r(τs(ω))(ω(j))τj−1(ω), (8.8)

for a given τ0. Note that τj(ω) = τj((ω(j), ω(j − 1), . . . , ω(1)). They have the
following properties

Lemma 8.3. Let ϕ0 =
∑
τ0
aτ0 |τ0〉 be the initial vector, and assume M̃ holds

true. Let {τj(ω)}j∈N be the IN

± valued process defined by (8.8). Then, with the
notation
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Prob((τn(ω), . . . , τ1(ω), τ0(ω)) = (τn, . . . , τ1, τ0)) = T (τn, . . . , τ1, τ0), n ∈ N,

(8.9)

we have

T (τn, . . . , τ1, τ0)

= |aτ0 |2
∑

π1,...,πn∈Ω

p(π1)P(σr(τ1)(π1), π2) · · · P(σr(τn−1)(πn−1), πn)

×〈τn|C(πn)τn−1〉 · · · 〈τ1|C(π1)τ0〉. (8.10)

Proof. We start with T (τ0) = |aτ0 |2, according to the initial condition, and

T (τ1, τ0) = |aτ0 |2Prob(ω1 s.t. σ0(ω1)(τ0) = τ1)

= |aτ0 |2
∑

π1∈Ω

δτ1,σ0(π1)(τ0)p(π1)=|aτ0 |2
∑

π1∈Ω

〈τ1|C(σ0(π1)) τ0〉p(π1).

(8.11)

Note that since σ0 is the identity, T (τ1, τ0) = Ep(〈τ1|C(ω) τ0〉)|aτ0 |2. Then

T (τ2, τ1, τ0)
= |aτ0 |2Prob((ω1, ω2) s.t. σ0(ω1)(τ0) = τ1 andσr(τ1)(ω2)(τ1) = τ2)

= |aτ0 |2
∑

π1,π2∈Ω

δτ2,σr(τ1)(π2)(τ1)δτ1,σ0(π1)(τ0)p(π1)P(π1, π2)

= |aτ0 |2
∑

π1,π2∈Ω

〈τ2|C(σr(τ1)(π2)) τ1〉〈τ1|C(σ0(π1)) τ0〉p(π1)P(π1, π2),

(8.12)

and, by induction

T (τn, . . . , τ1, τ0) = |aτ0 |2
∑

π1,...,πn∈Ω

p(π1)P(π1, π2) · · · P(πn−1, πn)

×〈τn|C(σ∑n−1
s=1 r(τs)(πn))τn−1〉 · · · 〈τ1|C(σ0(π1))τ0〉.

(8.13)

Using the properties of σ, the measure invariant representation of Z
d, we get

for any j ≥ 1 with π̃j = σ∑j−1
s=1 r(τs)(πj),

∑

πj∈Ω

P(πj−1, πj)〈τj |C(σ∑j−1
s=1 r(τs)(πj))τj−1〉

=
∑

π̃j∈Ω

P(σr(τj−1)(π̃j−1), π̃j)〈τj |C(π̃j)τj−1〉, (8.14)

which ends the proof. �
The distribution of {τj(ω)}j∈N is neither stationary nor Markovian, in

general. But we can express it in a more convenient way as follows.
Consider the space C

2d ⊗ C
|Ω| with orthonormal basis denoted by

{|τ ⊗ π〉}τ∈I±,π∈Ω. Let N ∈ M2d|Ω|(R+) be defined by its matrix elements
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〈τ ′ ⊗ π′|N τ ⊗ π〉 = 〈τ ′|C(π′) τ〉P(σr(τ)(π), π′) = δτ ′,π′(τ)P(σr(τ)(π), π′),
(8.15)

and the vectors Ψ1 =
∑
τ∈I±
π∈Ω

|τ ⊗ π〉 and A(τ0) =
∑
π,τ |aτ0 |2p(π)〈τ |C(π)τ0〉|

τ ⊗ π〉. Then, (8.10) reads

T (τn, . . . , τ1, τ0)
=
〈
Ψ1|(|τn〉〈τn| ⊗ I)N(|τn−1〉〈τn−1| ⊗ I) . . . N(|τ1〉〈τ1| ⊗ I)A(τ0)

〉
.

(8.16)

Introducing also the matrices D(y) and N(y) on C
2d ⊗ C

|Ω| with y ∈ T
d by

D(y) = d(y) ⊗ I, where d(y) =
∑

τ∈I±

eiyr(τ)|τ〉〈τ | and N(y) = D(y)N

(8.17)

we can express the characteristic function ΦTn : T
d → C of the random variable

Sn(ω) =
∑n
j=1 r(τj(ω)) as

ΦTn (y) =
∑

τn,τn−1,...,τ0∈I±

eiy
∑n

j=1 r(τj)T (τn, . . . , τ1, τ0)

=
〈
Ψ1|(N(y))n−1B(y)

〉
, where B(y) = D(y)

∑

τ0∈I±

A(τ0). (8.18)

At this point, we can apply the same methods as above to describe the
large n behavior of Sn(ω) by studying the asymptotic behavior of the suitably
rescaled characteristic function ΦTn (y) under appropriate spectral assumptions
on N .

Note that N is a stochastic matrix and that P and p are invariant under
σx, so that we have

NTΨ1 = Ψ1 , Nχ1 = χ1 , and ‖N‖ = Spr (N) = 1 (8.19)

with

Ψ1 =
∑

τ∈I±
π∈Ω

|τ ⊗ π〉 and χ1 =
∑

τ∈I±
π∈Ω

p(π)|τ ⊗ π〉. (8.20)

Also, D(y) being unitary for y real, we have ‖N(y)‖ ≤ 1 for all y ∈ T
d.

Assumption S̃:

σ(N) ∩D(0, 1) = {1}, and this eigenvalue is simple. (8.21)

Remark 8.4. The corresponding spectral projector of N reads |χ1〉〈Ψ1|/(2d).
Again, it is enough to assume that S̃ holds for the restriction of N to the
N(y)∗-cyclic subspace generated by Ψ1.

The perturbative arguments given in Sect. 4 leading to Corollary 4.1 by
means of Lévy Theorem apply here. For y ∈ C

d in a neighborhood of the
origin, let λ1(y) be the simple analytic eigenvalue of N(y) emanating from 1
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at y = 0. Let v ∈ R
d and the non-negative matrix Σ ∈ Md(R) defined by the

expansion

λ1(y) = 1 + iyv − 1
2
〈y|Σy〉 +O(‖y‖3). (8.22)

Explicit computations yield for any y ∈ C
d

v =
1
2d

∑

τ∈I±

r(τ) ≡ r

〈y|Σy〉 = −1
d

∑

τ∈I±

(yr(τ))2

2
(8.23)

−1
d

⎛

⎝
∑

τ,τ ′∈I±

(yr(τ))(yr(τ ′))
{

〈τ ⊗ η1|S(1)τ ′ ⊗ ηp〉 − 1
2d

}
⎞

⎠,

where S(1) is the reduced resolvent of N at 1, η1=
∑
π |π〉 and η1=

∑
π p(π)|π〉.

Proposition 8.5. Let ϕ0 =
∑
τ0∈I± aτ0 |τ0〉 and let Sn(ω) =

∑n
j=1 r(τj(ω)), with

τj(ω) defined by (8.8). Assume M̃ and S̃ and let Σ be defined by (8.23). Then,
if Σ > 0 , we have as n → ∞

Sn(ω)
n

D−→ r (8.24)

Sn(ω) − nv√
n

D−→ Xω � N (0,Σ). (8.25)

As a consequence, for any sample of random coin matrices, we obtain the
following long-time asymptotics of the quantum mechanical random probabil-
ity distribution Wϕ0· (n) of the variable Xω

n , whose characteristic function is
defined by (8.7).

Theorem 8.6. Under the assumptions of Proposition 8.5, the following random
variables converge in distribution as n → ∞:

e−iyr√nΦϕ0
n (y/

√
n) =

∑

τ0∈I±

|aτ0 |2
(
e
iy 1√

n
(Sn(ω)−nr)

)
−→ eiyX

ω

, (8.26)

where Xω � N (0,Σ). Moreover, for any (i, j) ∈ {1, 2, . . . , d}2, as n → ∞, we
have in distribution,

〈Xi〉ωψ0
(n)

n
−→ ri (8.27)

〈(X − nr)i(X − nr)j〉ωψ0
(n)

n
−→ D

ω
jk (8.28)

where D
ω
jk is distributed according to the law of Xω

j X
ω
k , where Xω � N (0,Σ).

Proof. Identical to that of Corollary 6.8 in [21]. �



Vol. 13 (2012) Correlated Markov Quantum Walks 1799

8.3. Specific Case

Let us close this section by providing an example that satisfies the assumption
S̃. It is the case where the kernel P depends on the second index only, i.e.,
when the permutations {ω(j)}j∈N are i.i.d. and distributed according to p.

Proposition 8.7. Assume M̃ with a kernel P satisfying P(π′, π) = p(π). Let P
be the bi-stochastic matrix acting on C

2d defined by

P =
∑

π∈Ω

p(π)CT (π) ≡ Ep(CT (ω)) (8.29)

and assume it is irreducible and aperiodic. Then, S̃ holds and Theorem 8.6
applies with Σ given by

Σij = − 1
2d

〈ri|rj〉 + rirj − 1
2d

(〈ri|S(1)rj〉 + 〈rj |S(1)ri〉) , (8.30)

with S(1) the reduced resolvent of P at 1 and, for j ∈ {1, . . . , d}, rj =∑
τ∈I± rj(τ)|τ〉 ∈ C

2d.

Proof. In this case, (8.15) reduces to

〈τ ′ ⊗ π′|N τ ⊗ π〉 = 〈τ ′|C(π′) τ〉p(π′), (8.31)

so that we can write with η1 =
∑
π |π〉,

NT =
∑

π

p(π)CT (π) ⊗ |η1〉〈π|. (8.32)

Accordingly, for any ξ ∈ C
2d ⊗ C

|Ω|, we have

NT ξ = ζ(ξ) ⊗ |η1〉, with ζ(ξ) =
∑

π∈Ω

p(π)CT (π)〈π|ξ〉C|Ω| , 〈π|ξ〉C|Ω| ∈ C
2d.

(8.33)

Hence, any eigenvector Ψ̃ with eigenvalue eiθ, θ ∈ R, needs to be of the form
Ψ̃ = ψ ⊗ η1 with

eiθψ =
∑

π∈Ω

p(π)CT (π)ψ = Pψ. (8.34)

The matrix P being bi-stochastic, irreducible and aperiodic, there exists only
one solution to (8.34), given by ψ =

∑
τ∈I± |τ〉 and eiθ = 1, which shows that

S̃ holds.
The expectation v and correlation matrix Σ can be obtained from The-

orem 6.6 in [21]. Indeed, under our assumptions, Lemma 8.3 shows that the
process {τj(ω)}j=1,...,n is a Markov chain on I±, with kernel P = Ep(CT (ω))
and initial distribution p0(τ0) = |aτ0 |2:

T (τn, . . . , τ1, τ0) = |aτ0 |2
∑

π1,...,πn∈Ω

p(π1)p(π2) · · · p(πn)

×〈τn|C(πn)τn−1〉 · · · 〈τ1|C(π1)τ0〉
= P (τn, τn−1) · · ·P (τ1, τ0)p0(τ0). (8.35)
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The afore-mentioned result provides the characteristics v and Σ (8.30) of the
functional central limit theorem for the Markov chain {τj(ω)}j=1,...,n corre-
sponding to the random variable Sn(ω) =

∑n
j=1 r(τj(ω)). �

Proof of (8.35). With (3.57), (8.10) reads

T (τn, . . . , τ1, τ0) = |aτ0 |2
∑

π1,...,πn∈Ω

p(π1)p(π2) · · · p(πn)

×〈τn|C(σ∑n−1
s=1 r(τs)(πn))τn−1〉 · · · 〈τ1|C(σ0(π1)))τ0〉,

(8.36)

where for all j ≥ 1, thanks to the fact that σx is measure preserving,
∑

πj

p(πj)〈τj |C(σ∑j−1
s=1 r(τs)(πj))τj−1〉 =

∑

πj

p(πj)〈τj |C(πj))τj−1〉. (8.37)

Setting P (τ ′, τ) = Ep(〈τ ′|CT (ω)τ〉) and p0(τ) = |aτ |2, we can write

T (τn, . . . , τ1, τ0) = P (τn, τn−1) · · ·P (τ1, τ0)p0(τ0), (8.38)

which proves the claim. �

Remark 8.8. Actually, a strong law of large numbers holds in this case, i.e.
limn→∞ Sn(ω)/n → r almost surely.

9. Uncorrelated Example

In this last section, we briefly present two cases where the random coin matri-
ces are chosen in an uncorrelated way to complete the picture. In a sense, it
can be viewed as the limiting case where the representation σ of Z

d is such
that the periodicity lattice Γ is infinite. This is the complete opposite situation
to the one considered in [21], where all coin matrices were identical in space,
at all time step. Nevertheless, the methods developed in that paper apply here
too.

We recall some notations used in Section 2.1 in [21]: let xs =
∑s−1
j=1 r(τj),

x′
j =

∑s−1
j=1 r(τ

′
j), then the generic term in Lemma 2.4 reads

〈τ ′
s−1|C∗

s (x
′
s) τ

′
s〉〈τs|Cs(xs) τs−1〉 = 〈τ ′

s|Cs(x′
s) τ ′

s−1〉〈τs|Cs(xs) τs−1〉 (9.1)

≡ 〈τs ⊗ τ ′
s|(Cs(xs) ⊗ Cs(x′

s)) τs−1 ⊗ τ ′
s−1〉.
(9.2)

Let us introduce the unitary tensor product

Vs(x, y) ≡ Cs(x) ⊗ Cs(y) in C
2d ⊗ C

2d. (9.3)

Now consider the set of pathsGn(K) in Z
2d from the origin toK =

(
k
k′

)

∈ Z
2d

via the (extended) jump function defined by

R : I2
± → Z

2d, R

(
τs
τ ′
s

)

=
(
r(τs)
r(τ ′

s)

)

, (9.4)
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that is paths of the form (T1, . . . , Tn−1, Tn), where Ts =
(
τs
τ ′
s

)

∈ I2
±, s =

1, 2, . . . , n, and
∑n
s=1R(Ts) = K. For s ≥ 2 let Xs =

∑s−1
j=1 R(Tj), while

X1 = 0. This last condition states that we start the walk at the origin.
With these notations, we consider the complex weight of n-step paths in

Z
2d from the origin to K, with last step T , defined by

WT
K(n) =

∑

(T1,...,Tn−1)∈I2±n−1
s.t.

(T1,...,Tn−1,T )∈Gn(K)

〈T |Vn(Xn)Tn−1〉 · · · 〈T2|V2(X2)T1〉〈T1V1(0)χ0〉,

(9.5)

with χ0 defined via the decomposition

ϕ0 =
∑

τ∈I±

aτ |τ〉 ⇒ χ0 = ϕ0 ⊗ ϕ0 =
∑

(τ,τ ′)∈I2±
aτaτ ′ |τ ⊗ τ ′〉. (9.6)

The expectation of this complex weight is the key quantity to analyze the
averaged characteristic function (3.13), see [21]. Under certain assumptions on
the distributions of the matrices Cj(x) ∈ Ω,Ω finite, for simplicity, some cases
can be readily studied using this method.

Assumption A:

(a) The matrices V ωj (X) are distributed so that

P(V ωn (Xn) = Zn, V
ω
n−1(Xn−1) = Zn−1, . . . , V

ω
1 (X0) = Z0)

=
n∏

j=1

P(V ωj (Xj) = Zj). (9.7)

(b) The expectation E(V ωk (X)) is independent of the position X:

Qk =
∑

Z∈Ω⊗Ω

ZP(V ωk (X) = Z) = E(V ωk (X)).

Assumption A is clearly satisfied in the following cases:

Case 1. Assuming that the distributions of the matrices Cs(x) are i.i.d in time
and position, requirement (a) is satisfied with P(V ωj (X) = Z) independent of
j. Moreover, P(V ω(x, y) = Z) = PO(Z), for all x �= y, and P(V ω(x, x) = Z) =
PD(Z), for all x. Further assuming

∑

Z∈Ω⊗Ω

ZPO(Z) =
∑

Z∈Ω⊗Ω

ZPD(Z) ≡ Q, (9.8)

we meet requirement b) as well.

Case 2. The following holds:

(i) For X ∈ Z
2d, V ωj (X) is a Markov chain in time on Ω ⊗ Ω with initial

distribution pX and transition matrix PX . While for X �= Y , the random
variables V ω(X), V ω(Y ) are independent.
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(ii) The jump function R : I2
± → Z

2d is one to one and any X ∈ Z
2d can

only be reached at most once on {
∑
T∈I2± αTR(T ), αT ∈ N} ⊂ Z

2d along

any path Xs =
∑s−1
j=1 R(Tj), s ∈ N.

(iii) E(V ωj (X)) =
∑
Z∈Ω⊗Ω Z〈pX |Pj−1

X Z〉 ≡ Qj is independent of X, for any
j ∈ N.

Under assumption A, we get the following expression for the expectation
of WT

K(n)

E(WT
K(n)) =

∑

(T1,...,Tn−1)∈I2±n−1
s.t.

(T1,...,Tn−1,T )∈Gn(K)

〈T |QnTn−1〉
n−1∏

j=2

〈Tj |QjTj−1〉〈T1|Q1χ0〉.

(9.9)

Now we proceed as in [21]. Introduce the vectors in C
4d2 � C

2d ⊗ C
2d with

Y ∈ T
2d and n ≥ 0

Φn(Y ) =
∑

T∈I2±

∑

K∈Z2d

eiY KWT
K(n) |T 〉 and Φ0 =

∑

T∈I2±
AT |T 〉. (9.10)

Using the notation

D(Y ) =
∑

T∈I2±
eiY R(T ) |T 〉〈T |, with Y ∈ T

2d and Mk(Y ) = D(Y )Qk,

(9.11)

we obtain the following expression for the expectation

E(Φn(Y )) = Mn(Y )Mn−1(Y ) · · ·M1(Y )Φ0. (9.12)

We get the following expression for the expectation of characteristic function
(Proposition 2.9 in [21])

E(Φϕ0
n (y)) =

∫

Td

〈Ψ1|Mn(Yv)Mn−1(Yv) · · ·M1(Yv)Φ0〉dṽ, (9.13)

where

Ψ1 =
∑

T∈H±

|T 〉 =
∑

τ∈I±

|τ ⊗ τ〉 and Yv =
(
y − v
v

)

∈ R
2d (9.14)

At this stage, the exact dependence of the matrix Mj on time j becomes
crucial. In Case 1, Mj = M for all j, so that we are directly lead to the
asymptotic study of

∫

Td

〈Ψ1|Mn(Yv)Φ0〉dṽ, (9.15)

as in [21], which allows us to get diffusion properties and deviation estimates
as in Sects. 4, 5, 6, provided M(Yv) satisfies the required spectral properties.

In order to deal with Case 2 for non-stationary initial distribution pX , an
analysis of the large j behavior of Qj based on the spectral properties of the
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transition matrix PX is in order. This should provide the necessary information
to reach similar conclusions as in Case 1.
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