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Dynamical Locality and Covariance:
What Makes a Physical Theory
the Same in all Spacetimes?

Christopher J. Fewster and Rainer Verch

Abstract. The question of what it means for a theory to describe the same
physics on all spacetimes (SPASs) is discussed. As there may be many
answers to this question, we isolate a necessary condition, the SPASs
property, that should be satisfied by any reasonable notion of SPASs. This
requires that if two theories conform to a common notion of SPASs, with
one a subtheory of the other, and are isomorphic in some particular space-
time, then they should be isomorphic in all globally hyperbolic spacetimes
(of given dimension). The SPASs property is formulated in a functorial
setting broad enough to describe general physical theories describing pro-
cesses in spacetime, subject to very minimal assumptions. By explicit
constructions, the full class of locally covariant theories is shown not to
satisfy the SPASs property, establishing that there is no notion of SPASs
encompassing all such theories. It is also shown that all locally covariant
theories obeying the time-slice property possess two local substructures,
one kinematical (obtained directly from the functorial structure) and the
other dynamical (obtained from a natural form of dynamics, termed rel-
ative Cauchy evolution). The covariance properties of relative Cauchy
evolution and the kinematic and dynamical substructures are analyzed in
detail. Calling local covariant theories dynamically local if their kinemat-
ical and dynamical local substructures coincide, it is shown that the class
of dynamically local theories fulfills the SPASs property. As an appli-
cation in quantum field theory, we give a model independent proof of
the impossibility of making a covariant choice of preferred state in all
spacetimes, for theories obeying dynamical locality together with typical
assumptions.
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1. Introduction

Terrestrial experiments in particle physics are conducted in a weak gravita-
tional field. To interpret their results in terms of QFT models it is therefore
necessary that these models can, in principle, be formulated in curved space-
times without altering their essential physical content, and that one can study
and control the limit of weak gravitational fields. This paper is devoted to the
first of these issues: specifically, to understanding what requirements should
be imposed on a theory formulated on a large class of spacetimes to ensure
that the physical content is the same in all cases.

Operational concerns dictate a number of restrictions. Experiments are
performed in finite regions of spacetime; local causality [31] requires that these
experiments should be insensitive to the geometry in the casual complement of
the region concerned. Furthermore, the geometrical description of the theory
should not be based on preferred systems of reference.

In the context of quantum field theory in curved spacetime, the
requirements mentioned so far are implemented within a framework of locally
covariant QFT developed by Brunetti, Fredenhagen and Verch (hereafter
abbreviated to BFV) in [9] (see also [50]; antecedents of these ideas may be
found, e.g., in [22,35,36]). There, a quantum field theory defined on all space-
times is modelled by a functor between a category of globally hyperbolic man-
ifolds and a category of unital (C)∗-algebras. Thus, to each spacetime M the
theory assigns a (C)∗-algebra A (M) which might be an algebra of smeared
fields, or of local observables; importantly, to each morphism ψ : M → N
between spacetimes1 there is a corresponding morphism A (ψ) : A (M) →
A (N) of (C)∗-algebras, so that A (ψ ◦ ϕ) = A (ψ) ◦A (ϕ), and with identity
morphisms of spacetimes mapped to identity morphisms of (C)∗-algebras.

The BFV approach, which we review and develop in Sect. 3, has signifi-
cantly advanced the programme of extending results of flat spacetime QFT to
curved spacetimes; particular instances include a spin-statistics theorem [50],
analogues of the Reeh-Schlieder theorem [47], superselection theory [11,12],
and the perturbative construction of interacting theories in curved spacetime
[7,32,33]. Applications to a priori bounds on Casimir energy densities [24,27]
and new viewpoints in cosmology [18,20,51] have also resulted from this circle
of ideas.

Somewhat surprisingly, however, it turns out that one may formulate
theories in the BFV framework that (at least intuitively) do not represent
the same physical content in all spacetimes. We will give specific examples in
Sect. 4, although these should be regarded as illustrating the range of patholog-
ical behaviour, rather than completely describing it. This raises the questions:
(a) can one make precise the sense in which such theories fail to have the
same content in all spacetimes, and (b) what additional conditions should be
imposed to remedy this shortcoming? While we will not completely resolve

1 The morphisms are isometric embeddings, preserving orientation and time-orientation,
with causally convex image (see Sect. 2).
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these issues, we are able to give a framework in which it may be addressed and
at least partly resolved.

A fundamental problem is that it is unclear how the ‘physical content’
of a theory is to be defined in an axiomatic framework. Even a recourse to
a Lagrangian setting does not resolve all the issues: see [25] for examples of
covariantly defined Lagrangian field theories that do not represent the same
physics in all spacetimes. This being so, it is even harder to make precise, by
a purely intensional definition, what it means for this content to ‘be the same’
in different spacetimes.

Given this situation, it seems advisable to allow that there may be many
cogent notions of what it means for a theory to represent the same physics in
all spacetimes (often abbreviated as SPASs in this paper).2 Our first aim is to
assert principles that should be obeyed by any notion of SPASs and investigate
the consequences. In order to do this, we represent any candidate definition
of SPASs by the class of theories that conform to it (i.e., an extensional view-
point); our principles can therefore be expressed as necessary conditions on a
class T of theories in order that it can serve as a notion of SPASs. Stated as
physical principles, they are:
S1 Every theory in T should be locally covariant.
S2 If A and B are (not necessarily distinct) theories in T, with A a sub-

theory of B, and A and B coincide in one spacetime, then they should
coincide in all spacetimes.

We do not by any means claim that this is an exhaustive prescription and
emphasise again that this is not a definition of any particular notion of SPASs
but rather a set of principles that should be obeyed by all reasonable notions.
Moreover, the term ‘coincide’ requires precise definition, which will be given
below. However, the two conditions together will turn out to be surprisingly
strong.

Implementing these principles mathematically, S1 is exactly implemented
in the BFV framework and immediately restricts attention to theories that are
covariant functors from the category of globally hyperbolic spacetimes to a cat-
egory Phys of mathematical objects representing ‘the physics’. Principle S2 is
new, and can be implemented in the BFV framework as follows: if A and B
are functors representing locally covariant theories, any natural transforma-
tion ζ : A

.→ B is interpreted as embedding A as a subtheory of B. The
collection of locally covariant theories becomes a category on adopting such
subtheory embeddings as morphisms. We will regard the theories as coincid-
ing in some spacetime M if this embedding is an isomorphism in M , in which
case ζ is called a partial isomorphism; the theories coincide in all spacetimes
if this condition holds for all M , in which case ζ is a natural isomorphism.
Principle S2 is then implemented by requiring that all partial isomorphisms
between theories in T are in fact isomorphisms. In this paper, we will refer
to S2, implemented in this way, as the SPASs property; however, as indicated
above, the axioms above are not expected to be exhaustive. It is conceivable

2 In principle, we even allow that there might even be no such notion.
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that S2 should be strengthened, to cover situations in which A and B may
be regarded as coinciding in one spacetime but without the assumption that
one is a subtheory of the other. At present, it is not known how to implement
this mathematically.

Before proceeding, we wish to emphasise the nature of the subtheory
embedding with an example. Consider the quantum field theory of the non-
minimally coupled scalar field. The field equations (� + ξR + m2)φ = 0 are
evidently independent of the coupling constant in Ricci-flat spacetimes, and
this allows the construction of an obvious isomorphism between the algebras
of observables for different values of ξ in such spacetimes. However, this does
not extend to give a natural transformation between the theories labelled by
distinct ξ: the ‘obvious isomorphism’ does not qualify as a coincidence of the
theories, in our sense, even in Ricci-flat spacetimes. A proof of this is sketched
at the end of Sect. 3.4.

The main result of Sect. 4 is that the SPASs property does not hold
in the category of all locally covariant theories unless Phys has rather triv-
ial content; indeed, one can give pairs of theories (which can be otherwise
well-behaved) that cannot satisfy the SPASs property; accordingly, there is no
common notion of SPASs that can accommodate both theories.3 This is done
by an explicit construction that may provide a useful supply of nonstandard
locally covariant theories for other purposes. To give a simple outline of one
version of our construction, suppose that Phys is the category of ∗-algebras
and suppose that A is a well-behaved theory. We will show that it is possible
to construct nonconstant functions on the category of spacetimes, valued in
the natural numbers, that are monotonic in the sense that χ(M) ≤ χ(N) for
all pairs of spacetimes linked by a morphism M → N . We then define a new
theory ˜A on objects by ˜A (M) = A (M)⊗χ(M), where the tensor product is
the algebraic tensor product on Alg. To any morphism ψ : M →N , we assign
a morphism ˜A (ψ) : ˜A (M)→ ˜A (N) given by

˜A (ψ)(A) = A (ψ)⊗χ(M)(A)⊗
(

1A (N)

)⊗(χ(N)−χ(M))
.

A simple computation shows that ˜A is a functor from the category of
spacetimes to Alg. To check this, note that

˜A (idM ) = A (idM )⊗χ(M) = id⊗χ(M)
A (M) = id

˜A (M)
,

and that, if M1
ψ1→M2

ψ2→M3 then

˜A (ψ2 ◦ ψ1)(A) = A (ψ2 ◦ ψ1)⊗χ(M1)(A)⊗
(

1A (M3)

)⊗(χ(M3)−χ(M1))

=
(

A (ψ2)⊗χ(M1)(A (ψ1)⊗χ(M1)(A))
)

⊗ 1⊗(χ(M2)−χ(M1))
A (M3)

⊗1⊗(χ(M3)−χ(M2))
A (M3)

3 At the end of Sect. 4 we even construct single theories that cannot satisfy any notion of
SPASs.
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= A (ψ2)⊗χ(M2)
(

A (ψ1)⊗χ(M1)(A)⊗ 1⊗(χ(M2)−χ(M1))
A (M2)

)

⊗1⊗(χ(M3)−χ(M2))
A (M3)

= ˜A (ψ2)( ˜A (ψ1)(A)) =
(

˜A (ψ2) ◦ ˜A (ψ1)
)

(A)

for any A ∈ A (M1), using the unit-preserving property of Alg-morphisms.
Thus, the functor ˜A satisfies the definition of a locally covariant quantum
field theory. However, one cannot expect both A and ˜A to have the same
physical content in all spacetimes as the theory consists of χ(M) copies of the
basic theory A (M) in each spacetime M . Developing the example further, if
χ has 1 and � as its minimum and maximum values, then there are successive
subtheory embeddings A

.→ ˜A
.→ A ⊗�, each of which is a partial isomor-

phism, but whose composite is not an isomorphism (this is a mild assumption
on A ); so at least one of the partial isomorphisms cannot be an isomorphism.
Thus, the three theories {A , ˜A ,A ⊗�} cannot conform to a single notion of
SPASs, and indeed the same is true of at least one of the pairs {A , ˜A } or
{A ⊗�, ˜A }. Of course, if A is a familiar theory that one would regard intu-
itively as representing SPASs, then one would regard ˜A as ‘obviously’ not
representing SPASs by the same intuitive standard. Our aim in formalising
these questions is to provide a framework in which such judgements can be
made without relying on intuition.

This result raises the question as to what conditions might produce a class
of theories obeying the SPASs property. Our answer to this involves a closer
examination of the specification of the physics associated with local regions
in globally hyperbolic spacetimes. One of the attractive features of the BFV
framework is that it gives a definition for the local physics associated with a
region O in spacetime M , essentially by considering the region O (with the
geometry restricted from M) as a spacetime in its own right. We shall regard
this as a kinematical description of local physics. In Sect. 5, we introduce a new
description of the local physics in O that is based on dynamics: the local phys-
ics in O is that portion of the physics on the whole spacetime that is invariant
under modifications of the spacetime metric in the causal complement of O
in M . The effect of a modification to the metric is captured by the relative
Cauchy evolution introduced by BFV, which is closely related to the dynamics
of the theory.4 We investigate the basic properties of the resulting ‘dynamical
net’; while it has a number of features in common with the ‘kinematic net’ it
lacks others, notably the local covariance property of the kinematic net does
not hold for the dynamical net in general.

The situation in which the kinematic and dynamical nets coincide is of
particular interest, and those theories for which it holds will be said to be
dynamically local. As we show in Sect. 6, dynamically local theories have a
number of good properties: they are additive, have good covariance properties

4 The functional derivative of the relative Cauchy evolution with respect to the metric per-
turbation can be interpreted as the stress–energy tensor, from which viewpoint the relative
Cauchy evolution is a replacement for a classical action in this framework.
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for the dynamical net, and (under a mild additional assumption) obey extended
locality in the sense that the local physics for spacelike separated regions inter-
sect only trivially.5 The scope for constructing pathological theories of the
sort discussed in Sect. 4 is significantly reduced and even eliminated if the
theory has no nontrivial automorphisms (as is expected for a theory of local
observables). Moreover, as is shown in Theorem 6.10, the class of dynamically
local theories has the SPASs property. Accordingly, the concept of dynam-
ical locality provides a first answer to the problem of isolating those theo-
ries that can be regarded as representing the same physics in all spacetimes,
and appears to be a useful addition to the axiomatic framework in curved
spacetimes.

As an application of these results to QFT, we give the first model inde-
pendent proof of the impossibility of selecting a single ‘natural’ state in each
spacetime (Sect. 6.3) for any nontrivial dynamically local theory with the ex-
tended locality property, on the assumption that the supposed natural state
has the Reeh–Schlieder property in some spacetime. (Here, we say that a
theory is trivial if it is equivalent to the theory whose algebra of observ-
ables consists of complex multiples of the unit in every spacetime.) Neither
of these additional assumptions seem unreasonable; in particular, our result
applies to any theory that reduces, in Minkowski space, to a Wightman or
Haag–Kastler theory obeying standard conditions and with the natural state
reducing to the Minkowski vacuum state. It is worth noting that the SPASs
property is used as a technical input to the proof; the given theory is shown
to coincide with the trivial theory in one spacetime, and must therefore do so
in all.

In addition to these results, and as a necessary technical tool in proving
them, we make a thorough study of the relative Cauchy evolution, deepen-
ing the investigation begun by BFV. We particularly study the covariance
properties of the relative Cauchy evolution, and the way in which subthe-
ory embeddings intertwine the relative Cauchy evolutions of different theories.
Our methods, wherever possible, are adapted to the widest possible categor-
ical setting, to emphasise the applicability of underlying ideas; all the key
concepts are expressed in terms of universal properties, which make for effi-
cient proofs that are portable between different physical settings. On the geo-
metrical side, we also adapt and extend the spacetime deformation methods
introduced in [29]; in spacetime dimension n ≥ 2, these techniques allow us
to partition the category of spacetimes into connected components labelled
by equivalence classes of Riemannian manifolds of dimension n − 1, modulo
orientation-preserving diffeomorphisms. Here, connectedness is understood in
terms of the existence of chains of ‘Cauchy wedges’ from one spacetime to
another. One might conjecture that a more detailed study of the category of
spacetimes from this viewpoint would give a cohomology theory with many

5 What ‘trivial’ means here will depend on the category Phys employed to describe the phys-
ics. In the categories of (C)∗-algebras employed in QFT, this means that the intersection
consists of complex multiples of the algebra unit. Extended locality was originally introduced
in [38,49] in the context of algebraic QFT in Minkowski space.
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ramifications. Indeed, following our suggestion, Sanders has shown that one
may regard various freedoms arising in the construction of the Dirac field in
curved spacetimes in precisely such a cohomological way [48]. Appendix A
provides a body of material on spacetime structure, required in the body
of the paper, particularly in relation to different notions of causal comple-
ment. We hope that a number of these developments will be useful for other
purposes.

A separate paper [28] is devoted to an investigation of the dynamical
locality for various linear theories, both as classical and quantum fields. It is
shown that dynamical locality is satisfied by the massive minimally coupled
free scalar field. At zero mass, dynamical locality fails; however, this can be
understood as an expression of the rigid gauge symmetry of the minimally cou-
pled massless field. When the theory is quantised as a (rather simple) gauge
theory, dynamical locality is restored in dimension n > 2 (and even in dimen-
sion n = 2 if one restricts to connected spacetimes). What significance can be
read into this special case is currently unclear. Dynamical locality is known to
hold for the nonminimally coupled scalar field at any value of the mass [23],
and work on other models, including the algebra of Wick products is under
way.

2. Categories of Spacetimes

We begin by defining the categories of spacetimes that will be used as the arena
for locally covariant theories. This serves to fix our notation and terminology;
while much of this material is fairly standard, our study of the connectedness
properties of the categories with respect to wedges gives a new viewpoint on
classical results on deformations of globally hyperbolic spacetimes [29]. Some
of the details are deferred to Appendix A, which also contains a number of
useful results on causal structure.

2.1. Globally Hyperbolic Spacetimes

A globally hyperbolic spacetime of dimension n is a quadruple (M, g, o, t) such
that
• M is a smooth paracompact orientable nonempty n-manifold with finitely

many connected components
• g is a smooth time-orientable metric of signature +− · · ·− on M
• o is a choice of orientation, i.e., one of the connected components of the set

of nowhere-zero smooth n-form fields on M
• t is a choice of time-orientation for g, i.e., one of the connected components

of the set of nowhere-zero smooth g-timelike 1-form fields on M
and such that the resulting causal structure is globally hyperbolic, i.e., there
are no closed causal curves and the intersection of the causal past and future
of any pair of points is compact.6 For global hyperbolicity, it is sufficient that

6 This appears weaker than the definition given, e.g., in [31], but the two are equivalent by
Theorem 3.2 in [6].
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M contains a Cauchy surface [44, Cor. 14.39], i.e., a subset met exactly once
by every inextendible timelike curve in the spacetime.7 A Cauchy surface is
necessarily a closed achronal topological hypersurface met (at least once) by
every inextendible causal curve [44, Lem. 14.29]. All Cauchy surfaces of a given
globally hyperbolic spacetime M are homeomorphic [44, Cor. 14.27]. Further,
M admits smooth spacelike Cauchy surfaces [3, Thm 1.1]; given any such sur-
face Σ, it is possible to construct a diffeomorphism ρ : R × Σ →M with the
following properties (see [5, Thm 1.2] and [4, Thm 2.4]):
• ρ0(·) = ρ(0, ·) is the inclusion Σ ↪→M ,
• for each t ∈ R, ρ({t} × Σ) is a smooth spacelike Cauchy surface,
• ρ∗∂/∂t is future-directed, and
• the pulled back metric splits in the form ρ∗g = βdt ⊗ dt − ht where
β ∈ C∞(R × Σ) is positive, and t 	→ ht is a smooth map into the smooth
Riemannian metrics on Σ.

The Cauchy surface Σ has a unique orientation w such that o = t ∧ w
(extending the wedge product to equivalence classes of forms in an obvious
way) and we will regard this as the canonical orientation on Σ. Equipping
R × Σ with the orientation corresponding to dt ∧ w, the diffeomorphism ρ
is promoted to an orientation-preserving diffeomorphism (abbreviated as ori-
ented-diffeomorphism); this preserves time-orientations on declaring ∂/∂t to
be future-pointing. We refer to the result of the above construction as the
normal form for globally hyperbolic spacetimes.

There are, of course, many globally hyperbolic spacetimes.

Proposition 2.1. Every smooth, paracompact oriented (n− 1)-manifold that is
connected (resp., has finitely many connected components) is oriented-diffeo-
morphic to a smooth spacelike Cauchy surface of a spacetime in Loc0 (resp.,
Loc).

Proof. In the connected case, suppose an (n − 1)-manifold Σ is given with
orientation defined by a nonvanishing (n − 1)-form ω. Equip Σ with a com-
plete Riemannian metric h [43] and endow R × Σ with metric dt ⊗ dt − h,
orientation dt ∧ ω and time-orientation ∂/∂t. Then the resulting structure
is globally hyperbolic with each {t} × Σ as a Cauchy surface [34, Prop. 5.2]
that is oriented-diffeomorphic to Σ with orientation ω. In the disconnected
case, we perform this construction on each connected component and form the
union. �

2.2. The Categories Loc and Loc0

The globally hyperbolic spacetimes (of dimension n) form the objects of a
category Loc. By definition, a morphism ψ in Loc between M = (M, g, o, t)
and M ′ = (M′, g′, o′, t′) is a smooth embedding (also denoted ψ) ofM inM′

whose image is causally convex in M ′ and such that ψ∗g′ = g, ψ∗o′ = o and

7 A slightly stronger definition is employed in [31], where a Cauchy surface is defined to be
an edgeless acausal set intersected (exactly once) by every inextendible causal curve. This
equates to an acausal Cauchy surface in our terminology.
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ψ∗t′ = t. Thus, the embedding is isometric and respects orientation and time-
orientation. In particular, any diffeomorphism putting a globally hyperbolic
spacetime into normal form is itself an isomorphism in Loc.

Causal convexity of the image entails that every smooth causal curve
with ends contained in the image is contained entirely in it. In particular, if
O1 and O2 are any distinct connected components of the image of M there
can be no causal curve joining a point of O1 to a point of O2, i.e., O1 ⊂ O⊥

2 :=
N\JN (O2) and likewise O2 ⊂ O⊥

1 . In fact, as the Oi and hence JN (Oi) are
necessarily open (see, e.g., Lemma A.8), we have the slightly stronger con-
dition O1 ⊂ O′

2 := N\ cl JN (O2) and O2 ⊂ O′
1. It is possible, nonetheless,

that the closures of O1 and O2 can intersect nontrivially. Note that we have
introduced two distinct notions of causal complement, both of which will be
needed in what follows. Some relations between these two definitions and their
various properties are discussed in Appendix A, in which standard definitions
of causal structure (such as the set JN (O) just used) are also recalled (see
Appendix A.2).

We will also study the full subcategory of Loc with connected spacetimes
as objects, which will be denoted Loc0. Each connected component of an Loc
object M is an Loc0 object; we denote the set of components of M ∈ Loc by
Cpts(M). Each Loc morphism ψ : M →N comprises one or more Loc0 mor-
phisms; to each component B ∈ Cpts(M) there is a unique component C ∈
Cpts(N) containing the image ψ(B) of B, and the restriction of ψ to B yields
a Loc0-morphism ψC

B : B → C. Conversely, any collection of Loc0-morphisms
(ψf(B)

B )B∈Cpts(M), where f : Cpts(M) → Cpts(N) and ψ
f(B)
B : B → f(B)

defines a Loc morphism, provided that their images are all causally disjoint in
the above sense. It is not required that every component of N should contain
the image of one or more components of M .

Two particular classes of Loc and Loc0 morphisms will be used exten-
sively in what follows: canonical inclusions and Cauchy morphisms. Inclu-
sions arise as follows. For any M in Loc (and hence Loc0) let O(M) be the
set of open globally hyperbolic subsets8 of M with at most finitely many
connected components all of which are mutually causally disjoint, and let
O0(M) be the set of connected open globally hyperbolic subsets of M . For
each M = (M, g, o, t) ∈ Loc, any nonempty O ∈ O(M) induces an ob-
ject M |O = (O, g|O, o|O, t|O) of Loc, which we call the restriction of M
to O, and the subset inclusion of O in M induces a Loc-morphism ιM ;O :

M |O → M that we call a canonical inclusion. Any morphism L
ψ→ M in-

duces a canonical isomorphism ψ̃ : L
∼=→ M |ψ(L) so that ψ = ιM ;ψ(L) ◦ ψ̃. If

O ∈ O0(M) for M ∈ Loc0 then ιM ;O is also a Loc0-morphism, provided O is
nonempty.

A morphism ψ : M → N will be described as a Cauchy morphism, or
simply as Cauchy if its image contains a Cauchy surface for N . All identity

8 See [44, Def. 14.20]. Note that the open globally hyperbolic subsets of a globally hyperbolic
spacetime are precisely the open causally convex subsets.
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morphisms in Loc0 and Loc are Cauchy and compositions of Cauchy mor-
phisms are Cauchy (Lemma A.3 in Appendix A), so the globally hyperbolic
spacetimes with Cauchy morphisms define subcategories of Loc0 and Loc. As
there are slightly different definitions of Cauchy surface in the literature, of
which we have adopted the weakest, the following observation is worth record-
ing (see Appendix A for the proof).

Proposition 2.2. If ψ : M → N is Cauchy (in Loc0 or Loc) then ψ(M)
contains a Cauchy surface of N that is smooth, spacelike and acausal. More-
over, the Cauchy surfaces of M and N are homeomorphic and their smooth
spacelike Cauchy surfaces are oriented-diffeomorphic.

A key fact for our purposes is that morphisms in Loc0 whose domain has
compact Cauchy surfaces are always Cauchy. The following is an immediate
consequence of Proposition A.1 in Appendix A together with Proposition 2.2.

Proposition 2.3. (a) Suppose ψ : M →N in Loc0, where M has compact Cau-
chy surfaces. Then ψ is Cauchy and the smooth spacelike Cauchy surfaces of
N are oriented-diffeomorphic to those of M . (b) Suppose ψ : M →N in Loc
and suppose B ∈ Cpts(M) has compact Cauchy surfaces. If C is the compo-
nent of N containing ψ(B), then ψC

B is Cauchy and C has smooth spacelike
Cauchy surfaces oriented-diffeomorphic to those of B. Moreover, C cannot
contain the image of any component of M other than B (because ψ(B) has
trivial causal complement in C).

2.3. Deformation Arguments and “Wedge Connectedness”

Globally hyperbolic spacetimes with oriented-diffeomorphic Cauchy surfaces
can be deformed into one another, a result going back to [29] (although the
emphasis on orientation here is new). In the present language, this can be
stated as follows:

Proposition 2.4. Two spacetimes M , N in Loc0 (resp., Loc) have oriented-
diffeomorphic Cauchy surfaces if and only if there exists a chain of Cauchy
morphisms in Loc0 (resp., Loc) forming a diagram

M ← F → I ← P →N . (2.1)

Proof. If such a chain of Cauchy morphisms exists, then M and N have
oriented-diffeomorphic smooth spacelike Cauchy surfaces by Proposition 2.2.
The converse is an elaboration of [29, Appx C] and is given for completeness
in Appendix A. �

The chain of morphisms here is far from unique. We will find it useful to
regard this result in the following manner. In a general category, a wedge is any
pair of morphisms with common domain, i.e., a diagram of form B

f← A
g→ C.

Proposition 2.4 then asserts that spacetimes with oriented-diffeomorphic Cau-
chy surfaces are connected by two Cauchy wedges, i.e., wedges consisting of
Cauchy morphisms. This shows that Loc decomposes into “Cauchy-wedge-con-
nected” components labelled by equivalence classes of Cauchy surfaces modulo
oriented-diffeomorphisms; the same is true for Loc0 on restriction to connected
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(n− 1)-manifolds. We remark in passing that some oriented (n− 1)-manifolds
belong to the same equivalence class as their orientation reverse (e.g., R

n−1,
Sn−1) while others (e.g., the three-dimensional lens space L5(1, 1)) are not,
and are sometimes called chiral (see, e.g., [42]). Thus, any two spacetimes
with Cauchy surfaces diffeomorphic to R

n−1 (with the standard differential
structure) are linked by a chain of Cauchy morphisms, but spacetimes with
inequivalently oriented chiral Cauchy surfaces belong to different Cauchy com-
ponents of Loc.

We also have another connectedness result, this time for the general class
of wedges. To this end, we first introduce the particularly useful class of dia-
mond subsets of a globally hyperbolic spacetime following Brunetti and Ruzzi
[12]. We will also consider multi-diamonds, i.e., unions of finitely many causally
disjoint diamonds.

Definition 2.5. Let M be a spacetime in Loc. A Cauchy ball in a Cauchy sur-
face Σ of M is a subset B ⊂ Σ for which there is a chart (U, φ) of Σ such
that φ(B) a nonempty open ball in R

n−1 whose closure is contained in φ(U).
A diamond in M is any open relatively compact subset of the form DM (B),
where B is a Cauchy ball in some Cauchy surface Σ. We say that the diamond
has base B and that it is based on the Cauchy surface Σ.9 A multi-diamond
is a union of finitely many causally disjoint diamonds, and therefore takes the
form DM (B) where B is a Cauchy multi-ball, i.e., a union of finitely many
causally disjoint Cauchy balls.

Using Theorem 4.1 and Remark 4.14 in [5], for any Cauchy multi-ball B
there is a (nonunique) Cauchy surface in which it is contained. This observation
allows us to extend the properties of diamonds established in [12] to show that,
in spacetime dimension n ≥ 3, any (multi)-diamond is (among other proper-
ties) open, relatively compact, simply connected, and has a nonempty causal
complement O′ = M\ cl(JM (O)), whose intersection with any connected com-
ponent of M is itself connected. Diamonds are connected. A number of fur-
ther properties of(multi-)diamonds are given in Appendix A. In particular,
in Lemma A.9 we demonstrate for completeness that any (multi-)diamond is
causally complete in the sense that O = O′′.

In what follows, we will say that a spacetime D is a (multi-)diamond if it
is isomorphic to a restriction M |O, where O is a (multi-)diamond of some M
in Loc or Loc0. A truncated (multi-)diamond will refer to any intersection of a
(multi-)diamond with an open globally hyperbolic neighbourhood of a Cauchy
surface on which it is based.

Proposition 2.6. If M and N are any globally hyperbolic spacetimes in Loc
(resp., Loc0) then there exists a chain of (not necessarily Cauchy) morphisms
in Loc (resp., Loc0) creating a diagram of the form (2.1).

Proof. Let O1 and O2 be diamond regions in M and N , respectively. The
Cauchy surfaces of M |O1 and N |O2 , are oriented-diffeomorphic(they are

9 Neither the base B nor the Cauchy surface Σ is uniquely associated with the diamond.
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homeomorphic to R
n−1), so we may apply Proposition 2.4 to obtain a chain

of Cauchy morphisms M |O1 ← F → I ← P → N |O2 and we compose at the
two ends with ιM ;O1 and ιN ;O2 to obtain the required result. �

3. Locally Covariant Theories

3.1. Categories of Physical Systems

The focus of BFV was on quantum field theories, described in terms of algebras
of observables and suitable state spaces. Here, we wish take a more general
approach in order to encompass a broader range of physical theories.

Suppose a certain type of physical system is to be formulated in a locally
covariant way on globally hyperbolic spacetimes. We suppose that the physical
systems concerned can be represented mathematically by objects of a cate-
gory Phys, whose morphisms correspond to embeddings of one such system in
another.

The general conditions imposed on Phys will be that all its morphisms
are monic, that it has equalisers, intersections and unions (in the categorical
sense, which do not necessarily coincide with the set-theoretic notions; the
relevant definitions are given in Appendix B), and that it possesses an initial
object, denoted I and representing the trivial physical system of the given
type, which is uniquely embedded in every system A via a morphism denoted
IA (we have α ◦ IA = IB for every α : A → B). As general references on
category theory, see [1,41]; our discussion of subobjects and their intersections
and unions follows [21].

Possible candidates for the category Phys abound. The BFV setting cor-
responds to categories such as: (a) the category Alg of unital ∗-algebras with
unit preserving faithful ∗-homomorphisms; (b) the category C∗-Alg of unital
C∗-algebras with unit preserving faithful ∗-homomorphisms; (c) the category
TAlg of unital topological ∗-algebras with continuous unit preserving faithful
∗-homomorphisms as morphisms; in each case the initial object I is the com-
plex number field C with 1 as the unit, complex conjugation as the ∗-operation
and additional topological structure as appropriate to the category concerned.
Elsewhere, we will discuss a category Sys, whose objects are ∗-algebras or
C∗-algebras together with a suitable subset of the states thereon. More widely,
our discussion could also be applied to classical mechanical or field systems—
the use of a general category Phys emphasises these possibilities. As a classical
example, Phys could be the category of presymplectic vector spaces with injec-
tive symplectic linear maps as morphisms, and the trivial symplectic space as
initial object.

The categorical notions mentioned above can be illustrated easily in
C∗-Alg: the equaliser of α, β : A → B can be described as the inclusion map in
A of the maximal C∗-subalgebra of A on which α and β agree; given a family
(αi)i∈I of morphisms αi : Ai → B, their intersection

∧

i∈I αi is the inclusion
map of the set-theoretic intersection

⋂

i∈I αi(Ai) in B, while the union
∨

i∈I αi
is the inclusion of the C∗-subalgebra of B generated by the αi(Ai) (i.e., the
intersection of all C∗-subalgebras containing the set-theoretic union).
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3.2. The Category of Locally Covariant Theories

Once the category Phys has been selected, we may follow the line of BFV and
define a locally covariant physical theory of the given type to be any (covar-
iant) functor A from Loc to Phys (equally we may use Loc0 as the domain
category if we wish to restrict to connected spacetimes). Thus, to each space-
time M ∈ Loc there is an object A (M) of Phys and to each Loc-morphism
ψ : M → N there is an Phys-morphism A (ψ) : A (M) → A (N) such
that A (ψ ◦ ψ′) = A (ψ) ◦A (ψ′) for arbitrary compositions of morphisms and
A (idM ) = idA (M) for all M . For BFV, where Phys is a suitable category
of ∗-algebras, the A (M) is the algebra of observables or of smeared fields
describing the theory in spacetime M .

There is always at least one theory, namely the trivial theory I with
I (M) = I, I (ψ) = idI , where I is the initial object of Phys. As shown
in BFV, the standard example of the Klein–Gordon field provides another
example (with Phys chosen as a category of ∗- or C∗-algebras according to the
quantisation method); the same is true of the extended algebra of Wick prod-
ucts [32] (refined, to remove the dependence on choice of Hadamard function,
as in [8, §5.5.3]) and (passing to the category of globally hyperbolic spacetimes
with spin structure) the Dirac field [48] and its corresponding extended alge-
bra [19]. (Strictly, these examples were discussed in the context of functors
from Loc0 to Alg or C∗-Alg, but they generalise to Loc.)

The functorial nature of a theory A ensures that it respects local general
covariance, as we will see in Sect. 3.3. In practice, various other properties
would normally be expected of the theory. Here, the most important will be
the time-slice property which requires that A maps Cauchy morphisms of Loc
to isomorphisms in Alg.10 The time-slice property essentially asserts the exis-
tence of a dynamical law for the theory and will hold in this form for many
different physical theories.

For our purposes, it will be important to regard locally covariant theories
as objects within the functor category LCT = Funct(Loc,Phys) (or, LCT0 =
Funct(Loc0,Phys)) in which the morphisms are natural transformations ζ :
A

.→ B. Thus, to each M ∈ Loc there is a morphism ζM : A (M)→ B(M)
such that B(ψ) ◦ ζM = ζN ◦ A (ψ) for all morphisms ψ : M → N . The
physical interpretation of a morphism ζ : A

.→ B is that it provides a way of
embedding the theory A as a subtheory of B. In the special case where every
component ζM is an isomorphism, ζ is said to be a natural isomorphism; we
interpret this as indicating that the theories are equivalent.

Simple examples of morphisms in LCT may be constructed as follows.
First, the trivial theory I is a subtheory of every theory A , and indeed is an
initial object for LCT because there is a unique natural IA : I

.→ A , whose
typical component is (IA )M = IA (M), the unique morphism I → A (M).

10 In BFV, the timeslice property was phrased in terms of surjectivity of A (ψ)—an equiv-
alent formulation in the category of C∗-algebras. In general, however, what is needed is the
invertibility of A (ψ) (in Phys) when ψ is Cauchy.
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Second, given an endofunctor F of Phys and a natural η : F
.→ idPhys,

any A ∈ LCT has a subtheory ζ : F ◦ A
.→ A . In the case Phys = TAlg,

an example is given as follows: to each object A, let F (A) be the same ∗-
algebra but equipped with the discrete topology, and let ηA : F (A) → A
have the identity as its underlying ∗-homomorphism; then F can be de-
fined on morphisms in the obvious way so as to ensure naturality of η :
F

.→ idTAlg.
Third, if Phys is a monoidal category (see, e.g., [41]), with the initial

object as the unit, it induces a monoidal structure on LCT: given A ,B ∈ LCT,
define (A ⊗B)(M) = A (M) ⊗B(M) and (A ⊗B)(ψ) = A (ψ) ⊗B(ψ);
this is easily checked to define a new functor A ⊗B ∈ LCT. The theory I is
the unit for the tensor product in LCT and the associators and unitors all lift
immediately. For example, recall that the right unitor ρ of a monoidal category
Phys is a natural isomorphism with components ρA : A⊗I ∼= A (obeying cer-
tain properties). This lifts to a natural ρ̂, with components ρ̂A : A ⊗I ∼= A ,
where (ρ̂A )M = ρA (M) and which functions as the right unitor in LCT. One
may check that all the coherence properties required of a monoidal structure
lift in this way. Writing λ̂ for the left-unitor in LCT, we obtain LCT mor-
phisms ηA ,B : A

.→ A ⊗B and ζA ,B : B
.→ A ⊗B for any pair of theories

A ,B ∈ LCT, given by

ηA ,B = (idA ⊗IB) ◦ ρ̂−1
A ζA ,B = (IA ⊗ idB) ◦ λ̂−1

B .

Given these structures we can define arbitrary monoidal powers of a given
theory A ∈ LCT, by setting, for example, A ⊗1 := A and A ⊗(k+1) := A ⊗k ⊗
A for each k ∈ N.11 Then γ(k) := ηA ⊗k,A provides a natural transforma-
tion γ(k) : A ⊗k .→ A ⊗(k+1); and if k < k′ are any natural numbers we may
set

β(k, k′) = γ(k′ − 1) ◦ · · · ◦ γ(k), (3.1)

giving a natural transformation β(k, k′) : A ⊗k .→ A ⊗k′
. Defining, addition-

ally, β(k, k) = idA ⊗k (the identity morphism of A ⊗k in LCT), it is clear that
β(k′, k′′)◦β(k, k′) = β(k, k′′) whenever k ≤ k′ ≤ k′′ and that β defines a functor
β : N→ LCT. Here, N is the category whose morphisms are ordered pairs (k, k′)
of natural numbers with k ≤ k′ and composition (k′, k′′) ◦ (k, k′) = (k, k′′);
i.e., N is the partially ordered set (N,≤) regarded as a category.

In the case Phys = Alg, using the algebraic tensor product, these con-
structions reduce to

A ⊗k(M) = A (M)⊗k, β(k, k′)MA = A⊗ 1⊗(k′−k)
A (M) (A ∈ A (M)⊗k)

for k < k′; the duals of the β(k, k′)M are of course partial traces.

11 Thus A ⊗k = ((· · · ((A ⊗A )⊗A )⊗· · · )⊗A )⊗A . In a monoidal category in which asso-
ciators are not necessarily identities, there would be other possible (isomorphic) definitions
of the monoidal powers by different placement of brackets.
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There are many similar ways of constructing functors from N to LCT, of
course, but the above will suffice for our purposes and provide useful building
blocks in the sequel.

3.3. The Kinematic Net

One of the aims of the BFV paper was to formulate QFT in curved spacetime
in such a way that algebraic quantum field theory in Minkowski space could
be recovered as a special case. This requires that every suitable subregion of
a spacetime M should be associated with a subalgebra of the algebra A (M)
assigned to M by the theory A (for the moment, we take Phys = Alg or
C∗-Alg).

For any M ∈ Loc, recall that O(M) is the set of globally hyperbolic
open subsets of M with at most finitely many connected components, all of
which are mutually causally disjoint, and O0(M) those which are connected.
For each nonempty O ∈ O(M) (resp., O ∈ O0(M)), we have a canonical
inclusion ιM ;O : M |O →M , an algebra A (M |O) and a morphism A (ιM ;O) :
A (M |O)→ A (M). BFV took the image of A (ιM ;O) as the subalgebra asso-
ciated with O and showed that this assignment generalises AQFT. To facilitate
the discussion of arbitrary categories Phys it is better to focus attention on
the morphism A (ιM ;O) than its ‘image’ (which is not defined in general cat-
egories).

Accordingly, let Phys be any category obeying our minimal assumptions
and let A ∈ LCT (resp., LCT0). For M ∈ Loc (resp., Loc0) and nonempty
O ∈ O(M) (resp., O ∈ O0(M)), we define

A kin(M ;O) = A (M |O), and αkin
M ;O = A (ιM ;O) : A kin(M ;O)→ A (M).

We refer to the assignment O 	→ αkin
M ;O as the kinematic net. Strictly, BFV only

considered local algebras corresponding to relatively compact globally hyper-
bolic subsets; however, it is useful (and natural, in the functorial setting) to
extend the assignment of local algebras to regions with noncompact closure.
Note, however, that the pathologies discussed below are already visible for
local algebras of relatively compact regions.

The following result shows that the subobject depends only on M and
O. In the statement of this result, the ∼= symbol between two morphisms with
a common codomain asserts their isomorphism as subobjects of the codomain
object; i.e., α ∼= β holds iff there is a (necessarily unique) isomorphism γ such
that α = β ◦ γ; see Appendix B.

Lemma 3.1. If ψ : L→M then A (ψ) ∼= αkin
M ;ψ(L).

Proof. We may factor ψ = ιM ;ψ(L) ◦ ψ̃ where ψ̃ : L →M |ψ(L) is an isomor-
phism; as functors preserve isomorphisms we therefore have A (ψ) = αkin

M ;ψ(L)◦
A (ψ̃) ∼= αkin

M ;ψ(L). �

The basic properties of O 	→ A kin(M ;O) are discussed in Prop. 2.3
of BFV (in the caseof connected O). In particular, if O1 ⊂ O2 then ιM ;O1
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factorises via ιM ;O2 as ιM ;O1 = ιM ;O2 ◦ ιM |O2 ;O1 and the functorial property
of A implies

αkin
M ;O1

= αkin
M ;O2

◦A (ιM |O2 ;O1), (3.2)

which can also be written in the form αkin
M ;O1

≤ αkin
M ;O2

, where ≤ is the order
relation in the subobject lattice of A (M) (see, e.g., [21]), i.e., the kinematic
net is isotonous.

If, additionally, O1 contains a Cauchy surface for O2, then the morphism
ιM |O2 ;O1 is Cauchy and is mapped to an isomorphism if A obeys the timeslice
property. Then the factorisation (3.2) asserts that αkin

M ;O1
and αkin

M ;O2
deter-

mine isomorphic subobjects of A (M); we write αkin
M ;O1

∼= αkin
M ;O2

. (This is
an improved formulation of Prop. 2.3(d) in BFV. Compare also Theorem 5.4
below.)

Now suppose that ψ : M → N . If O ∈ O(M) (resp., O0(M)) is non-
empty then ψ(O) ∈ O(N) (resp., O0(N)) and there is an isomorphism ψ̃ :
M |O → N |ψ(O) such that ψ ◦ ιM ;O = ιN ;ψ(O) ◦ ψ̃. Applying the functor A ,
this gives a commuting diagram

and thus the equivalence of subobjects

αkin
N ;ψ(O)

∼= A (ψ) ◦ αkin
M ;O, (3.3)

which expresses the covariance of the kinematic net. In particular, this gives the
action of automorphisms of M (i.e., a (time-)orientation preserving isometric
diffeomorphism) on the kinematic net: the functor A provides a representation
of the automorphism group Aut(M) in the automorphism group of A (M) by
κ 	→ A (κ), and the formula

αkin
M ;κ(O)

∼= A (κ) ◦ αkin
M ;O

shows that this has the expected geometrical action on the kinematic net.

3.4. Relative Cauchy Evolution

Let M = (M, g, o, t) ∈ Loc be a globally hyperbolic spacetime. Given any
symmetric h ∈ C∞

0 (T 0
2 M) such that g +h is a time-orientable Lorentz metric

onM, there is a unique choice of time-orientation th for g+h that agrees with
t outside K. If M [h] = (M, g +h, o, th) is a globally hyperbolic spacetime, we
say that h is a globally hyperbolic perturbation of M and write h ∈ H(M). The
subset of h ∈ H(M) with support in K ⊂ M is denoted H(M ;K). Clearly,
M = M [0], where 0 is identically zero, so H(M) is nonempty; in fact, it
contains an open neighbourhood of 0 in the usual test-function topology on
symmetric smooth compactly supported sections of T 0

2 M (see §7.1 of [2]). We
endow H(M) with the subspace topology induced from D(T 0

2M).
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If a theory A ∈ LCT has the timeslice property then, as shown by BFV,
we may compare the dynamics on M and its perturbations via a relative
Cauchy evolution. We now describe the construction in more depth than BFV,
paying attention to the covariance properties of the relative Cauchy evolution
and the relation between the evolutions of theories related by morphisms in
LCT. A number of geometrical lemmas, including the following, will be proved
in Appendix A.

Lemma 3.2. Let M ∈ Loc and h ∈ H(M), and set M± = M\J∓
M (supph).

Then (a) M± are globally hyperbolic subsets of both M and M [h], and
M±[h] def= M |M± = M [h]|M± ; (b) the canonical inclusions ı±M [h] def= ιM ;M±

and j±M [h] def= ιM [h];M± are Cauchy morphisms. If M ∈ Loc0, then M [h],
M±[h] are also in Loc0, and the morphisms ιM [h]±, j±M [h] are Loc0-mor-
phisms.

Among other things, this result shows that we can work consistently in
either Loc or Loc0. For the rest of this section, we will not distinguish between
Loc or Loc0 in the statement of our results (with the exception of Proposi-
tion 3.5, where there is a slight difference) but it should be understood that
all spacetimes and morphisms should be taken consistently from one or other
of Loc or Loc0, and that the locally covariant theories mentioned are taken con-
sistently from LCT or LCT0, respectively. (In some cases, the proofs of these
statements differ slightly depending on which category is being used.)

Proceeding in this way, if M is a spacetime, each h ∈ H(M) induces a
past Cauchy wedge, i.e., the diagram

M
ı−M [h]←− M−[h]

j−M [h]−→ M [h]

and a future Cauchy wedge, namely,

M
ı+M [h]←− M+[h]

j+M [h]−→ M [h].

Any locally covariant theory A obeying the timeslice axiom will map
each morphism in the past and future Cauchy wedges to an isomorphism. In
particular, there are isomorphisms

τ±
M [h] = A (j±M [h]) ◦ (A (ı±M [h]))−1 : A (M)→ A (M [h])

and an automorphism rceM [h] of A (M) given by

rceM [h] = (τ−
M [h])−1 ◦ τ+

M [h],

which is called the relative Cauchy evolution induced by h. Not all metric per-
turbations are physically significant: for example, if M = (M, g, o, t) and ψ is
a diffeomorphism of M acting as the identity outside a compact set K, then
ψ induces a morphism (also denoted ψ) from M to M ′ = (M, ψ∗g, ψ∗o, ψ∗t)
which can be regarded as a globally hyperbolic perturbation M ′ = M [h] for
h = ψ∗g − g. It is easily seen that

ψ ◦ ı±M [h] = j±M [h]
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for both choices of sign; accordingly, we have τ+
M [h] = A (ψ) = τ−

M [h] and
hence rceM [h] = idA (M), which reflects the fact that M and M ′ are physi-
cally equivalent and have equivalent dynamics.

The definition of relative Cauchy evolution given here differs slightly from
that given in BFV, where the Cauchy morphisms used were not fixed by the
perturbation; our approach avoids the necessity of demonstrating that the
definition does not depend on the choices made by introducing the preferred
past and future Cauchy wedges. In order to make contact with the original
definition, however, we give the following result, which is also useful for com-
putations (and, in passing, establishes the independence mentioned above).

Proposition 3.3. Let K be a compact subset ofM and suppose ψ± : L± →M
are Cauchy morphisms with image contained in M\J∓

M (K). For each h ∈
H(M ;K) there are morphisms ψ±[h] : L± →M [h] with the same underlying
embedding as ψ± such that

τ±
M [h] = A (ψ±[h]) ◦A (ψ±)−1

and hence

rceM [h] = A (ψ−) ◦A (ψ[h]−)−1 ◦A (ψ+[h]) ◦A (ψ+)−1.

Proof. The following lemma will be proved in Appendix A.

Lemma 3.4. Let K be a compact subset ofM and suppose ψ : L→M has its
range contained in one or both ofM\J∓

M (K). Then the underlying embedding
of ψ induces ψ[h] : L → M [h] for any h ∈ H(M ;K) (independent of the
choice ± in the hypothesis). Moreover, there is ϕ± : L→M±[h] such that

ψ = ı±M [h] ◦ ϕ±, ψ[h] = j±M [h] ◦ ϕ±.

If ψ is Cauchy then so are ψ[h] and ϕ±.

The immediate consequence is that

τ±
M [h] ◦A (ψ) = τ±

M [h] ◦A (ı±M [h]) ◦A (ϕ±) = A (j±M [h]) ◦A (ϕ±) = A (ψ[h]).

Applying the + (resp., −) case to the ψ+ (resp., ψ−) in the hypothesis, Prop-
osition 3.3 follows. �

Much of the present paper depends crucially on locality and covariance
properties of the relative Cauchy evolution that were not addressed in BFV.
Locality can be obtained from Lemma 3.4.

Proposition 3.5. Let K be a compact subset ofM and suppose ψ : L→M has
its range contained in the causal complement K⊥ =M\JM (K) of K (hence,
in particular, if K ⊂ ψ(L)′). Then

rceM [h] ◦A (ψ) = A (ψ)

for all h ∈ H(M ;K). In particular, this implies that the kinematical net obeys

rceM [h] ◦ αkin
M ;O = αkin

M ;O

for all nonempty O ∈ O(M) (or O0(M) for theories in LCT0) with O ⊂
(supph)⊥.
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Proof. The morphism ψ obeys the hypothesis of Lemma 3.4 in both the + and
− cases. Accordingly

τ+
M [h] ◦A (ψ) = A (ψ[h]) = τ−

M [h] ◦A (ψ)

and the result follows on composing with τ−
M [h]−1. �

We remark that the hypotheses of this result allow for nontrivial inter-
section of cl(ψ(L)) and JM (K).

Our covariance result depends on the following geometrical lemma.

Lemma 3.6. For each morphism ψ : M → N , we have ψ∗H(M) ⊂ H(N).
Moreover, for each h ∈ H(M) and ψ : M →N there are morphisms ψ±[h] :
M±[h]→N±[ψ∗h] and ψ[h] : M [h]→N [ψ∗h] so that the following diagram
commutes:

(3.4)

Proof. The most involved aspect is to prove that ψ∗h ∈ H(N). This is accom-
plished by Lemma A.7 below. As the horizontal morphisms in diagram (3.4)
are inclusions it is now sufficient to show that there are morphisms ψ±[h] :
M±[h] → N±[ψ∗h] and ψ[h] : M [h] → N [ψ∗h] with the same underlying
embedding as ψ; the diagram will then automatically commute. The existence
of ψ[h] is obvious. As the image of ψ is causally convex in N , J∓

N (suppψ∗h)∩
ψ(M) = ψ(J∓

M (supph)) and hence ψ(M\J∓
M (supph)) ⊂ N\J∓

N (suppψ∗h)).
Hence, the underlying embedding induces a morphism ψ±[h] : M±[h] →
N±[h] as required. �

This result shows that the sets of hyperbolic perturbations are functori-
ally assigned to spacetimes of Loc and Loc0, and the push-forward induces a
mapping between Cauchy wedges, which could also be interpreted as a mor-
phism in a suitable category of wedges. We do not pursue this here. The main
use of the above lemma is to establish covariance of the relative Cauchy evo-
lution.

Proposition 3.7. If ψ : M →N and h ∈ H(M), then

τ±
N [ψ∗h] ◦A (ψ) = A (ψ[h]) ◦ τ±

M [h], (3.5)

and consequently

rceN [ψ∗h] ◦A (ψ) = A (ψ) ◦ rceM [h]. (3.6)

Proof. Lemma 3.6 demonstrates that the τ±
N [ψ∗h] and rceN [ψ∗h] exist. Tak-

ing the image under A of diagram (3.4) and using the definitions of τ±
M [h]

and τ±
N [ψ∗h], we obtain the commutative diagrams
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(we suppress labels on the slanted arrows) from which Eqs. (3.5) and (3.6)
follow immediately. �

So far we have defined relative Cauchy evolution for a single theory A
obeying the timeslice property. Where a number of theories are considered,
we will distinguish the relative Cauchy evolution and related structures by a
superscript to indicate the theory concerned. The relative Cauchy evolution
interacts in an elegant way with the morphisms of LCT and LCT0.

Proposition 3.8. Suppose locally covariant theories A and B both satisfy the
timeslice property and let ζ : A

.→ B. For any spacetime M and metric
perturbation h ∈ H(M) we have

ζM [h] ◦ τ (A )±
M [h] = τ

(B)±
M [h] ◦ ζM

and therefore

rce(B)
M [h] ◦ ζM = ζM ◦ rce(A )

M [h].

Proof. Introducing the past and future Cauchy wedges as before, we have

τ
(B)±
M [h] ◦ ζM ◦A (ı±M [h]) = τ

(B)±
M [h] ◦B(ı±M [h]) ◦ ζM±[h]

= B(j±M [h]) ◦ ζM±[h] = ζM [h] ◦A (j±M [h])

= ζM [h] ◦ τ (A )±
M [h] ◦A (ı±M [h])

and since A (ı±M [h]) is epic, the first result holds. Hence

τ
(B)+
M [h] ◦ rce(B)

M [h] ◦ ζM = τ
(B)−
M [h] ◦ ζM = ζM [h] ◦ τ (A )−

M [h]

= ζM [h] ◦ τ (A )+
M [h] ◦ rce(A )

M [h]

= τ
(B)+
M [h] ◦ ζM ◦ rce(A )

M [h]

and as τ (B)+
M [h] is monic the second part follows. �

An important observation in BFV is that the functional derivative of
the relative Cauchyevolution with respect to the metric can be interpreted
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as a stress–energy tensor of the theory, so that (in the case Phys = Alg
or C∗-Alg)

[T M [f ], A] = 2i
d
ds

rceM [sf ]A
∣

∣

∣

∣

s=0

,

where T M is the stress–energy tensor in M ; the left-hand side should be
regarded as the definition of a (not necessarily inner) derivation, and we sup-
press all technicalities regarding the sense in which differentiation is intended.
Proposition 3.8 then has an immediate consequence that

[T (B)
M [f ], ζMA] = ζM [T (A )

M [f ], A], (3.7)

i.e., a subtheory embedding necessarily intertwines the stress–energy tensors
of the two theories.

As an immediate application, consider the quantum field theory of the
nonminimally coupled scalar field, with field equation (�M +ξRM +m2)ϕ = 0,
where RM is the scalar curvature. For each value of the coupling ξ and the
mass m, there is a locally covariant theory A (m,ξ) so that each A (m,ξ)(M) has
generators Φ(m,ξ)

M (f) labelled by f ∈ C∞
0 (M) subject to relations depending

only on the field equation and its Green functions (together with basic struc-
tures of linearity and complex conjugation). In Ricci-flat spacetimes, therefore,
the map Φ(m,ξ)

M (f) 	→ Φ(m,ξ′)
M (f) extends to an isomorphism A (m,ξ)(M) →

A (m,ξ′)(M) for any ξ, ξ′. We shall call this the ‘obvious isomorphism’. Sim-
ilarly, if M has constant scalar curvature, there is an obvious isomorphism
A (m,ξ)(M) ∼= A (m′,ξ′)(M) whenever m2 + ξRM = m′2 + ξ′RM . However,
none of these isomorphisms (for distinct values of the labels) can be the com-
ponents of natural transformations between these theories for the simple rea-
son that the commutators of the stress–energy tensor with the smeared fields
(which yield further smeared fields) depend nontrivially on the parameters
m and ξ even in spacetimes that have constant or vanishing scalar curvature.
Thus, Eq. (3.7) cannot hold if ζM is one of these ‘obvious’ isomorphisms.

4. Failure of SPASs in LCT

The BFV definition of a locally covariant QFT is that it is a functor A : Loc→
Alg. However, in the absence of further assumptions this does not fully answer
the question of what it means for the theory to have the same physical content,
i.e., to be ‘the same theory’ in different spacetimes of the same dimension.12

A definition of what it means for a single theory to represent the same
physics in all spacetimes (abbreviated SPASs) is not easy to give, and risks
the introduction of possibly over-restrictive assumptions on the nature of the
theory in question. However, it seems reasonable that if we are given two the-
ories, each of which represents the same physics in all spacetimes (by some

12 The question of whether there is a sensible notion of ‘the same theory’ in spacetimes of
different dimensions is an interesting one, to which we hope to return elsewhere.
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reasonable definition) and these theories coincide in some spacetime, then
they should coincide in all spacetimes. This motivates the following definition,
in which we refer to a natural transformation between functors as a partial
isomorphism if at least one of its components is an isomorphism.

Definition 4.1. A class of theories T in LCT (or LCT0) is said to have the
SPASs property if all partial isomorphisms (in LCT or LCT0) between theories
in T are isomorphisms.

As explained in Sect. 1, any candidate definition of SPASs can be repre-
sented by the class of theories that obey it; the SPASs property can then be
used as a necessary criterion on ‘good’ notions of SPASs. In this section, we will
show by examples that neither LCT0 nor LCT has the SPASs property except
where the category Phys is rather trivial; we will use this to demonstrate the
existence of individual theories that cannot be regarded as representing the
same physics in all spacetimes by any reasonable definition. This will be reme-
died in Sect. 6.2, where we will exhibit particular subclasses that do enjoy the
SPASs property.

4.1. Diagonal Functors

In Sect. 1, we gave a simple example of a pathological locally covariant theory
with target category Alg. As we now show, this example may be placed within
a more general setting, which provides a broader class of pathological theories
and enables the consideration of more general categories for Phys.

We begin with a simple categorical construction. Given any two catego-
ries C and C′, the functors between C and C′ form the objects of a category
Funct(C,C′) (also written C′C in the literature) in which morphisms are nat-
ural transformations between pairs of functors. In particular, this applies to
the locally covariant theories, which (in the BFV definition) are precisely the
objects of LCT0 = Funct(Loc0,Phys). Iterating this construction, we may also
consider functors from C to Funct(C,C′); any such functor then induces a
functor in Funct(C,C′) by the following ‘diagonal construction’.

Proposition 4.2. Given ϕ ∈ Funct(C,Funct(C,C′)), define maps of objects A ∈
C and morphisms f ∈ C(A,B) of C to objects and morphisms of C′ by

ϕΔ(A) = ϕ(A)(A)

ϕΔ(f) = ϕ(f)B ◦ ϕ(A)(f).

Then ϕΔ is a functor from C to C′; we refer to ϕΔ as the diagonal of ϕ.
Moreover, if ϕ, ϕ′ are elements of Funct(C,Funct(C,C′)) and ξ : ϕ .→ ϕ′ is
natural, there is a natural transformation ξΔ : ϕΔ

.→ ϕ′
Δ with components

(ξΔ)A = (ξA)A. The map ξ 	→ ξΔ is in fact a functor from Funct(C,Funct
(C,C′)) to Funct(C,C′).
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Remarks. (1) The expressions above are well-defined because ϕ(f) : ϕ(A) .→
ϕ(B); diagrammatically, ϕΔ(f) is the diagonal of the naturality square

and we also have ϕΔ(f) = ϕ(B)(f) ◦ ϕ(f)A.
(2) Given any functor F : C → C′, let ϕ be the constant functor C →

Funct(C,C′) taking the value F on all objects. Then F = ϕΔ.

Proof. As ϕ and ϕ(A) are functors, we have

ϕΔ(idA) = ϕ(idA)A ◦ ϕ(A)(idA) = (idϕ(A))A ◦ idϕ(A)(A) = idϕ(A)(A) = idϕΔ(A)

for any A ∈ C. Moreover, if g : B → C, we have

ϕΔ(g ◦ f) = ϕ(C)(g ◦ f) ◦ ϕ(g ◦ f)A
= ϕ(C)(g) ◦ ϕ(C)(f) ◦ ϕ(g)A

︸ ︷︷ ︸

=ϕ(g)B◦ϕ(B)(f)

◦ϕ(f)A = ϕΔ(g) ◦ ϕΔ(f),

in which we have used the naturality of ϕ(g) : ϕ(B) .→ ϕ(C).
Now suppose that ξ : ϕ .→ ϕ′. Noting that ξA : ϕ(A) → ϕ′(A) is itself

a natural transformation, each (ξA)A is a morphism from (ξA)A : ϕ(A)(A)→
ϕ′(A)(A). Given f : A→ B we compute

ϕ′
Δ(f) ◦ (ξΔ)A = ϕ′(B)(f) ◦ ϕ′(f)A ◦ (ξA)A = ϕ′(B)(f) ◦ (ϕ′(f) ◦ ξA)A

= ϕ′(B)(f) ◦ (ξB ◦ ϕ(f))A = ϕ′(B)(f) ◦ (ξB)A ◦ ϕ(f)A
= (ξB)B ◦ ϕ(B)(f) ◦ ϕ(f)A = (ξΔ)B ◦ ϕΔ(f),

thus establishing naturality. (The above computation may be displayed dia-
grammatically using a commuting cube). It is simple to check the functor
property and we skip the proof. �

In our examples, it will be convenient to construct functors from the
category of spacetimes to the category of locally covariant theories using a
construction of the following type.

Lemma 4.3. Let C and C′ be categories and I be a partially ordered set, which we
may regard as a category (with a single arrow ι→ ι′ if and only if ι � ι′), and
suppose a functor β : I → Funct(C,C′) is given. Then every functor λ : C → I
determines a functor ϕ = β◦λ : C→ Funct(C,C′) and hence a diagonal functor
ϕΔ ∈ Funct(C,C′). Moreover, any natural transformation ζ : λ .→ λ′ between
λ, λ′ ∈ Funct(C, I) induces a natural transformation between the corresponding
diagonal functors.

Remark. A functor λ : C→ I is equivalent to labelling each object A of C with
an element λ(A) ∈ I, subject to the requirement that λ(A) � λ(B) if there is a
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C-morphism from A to B. The existence of a natural transformation between
λ and λ′ amounts to the condition that λ(A) � λ′(A) for all A. The use of
partially ordered sets is simply for convenience and familiarity.

Proof. Given functors β and λ as described, it is obvious that ϕ = β ◦ λ ∈
Funct(C,Funct(C,C′)). Given ζ : λ .→ λ′, the maps ξA = β(ζA) form the com-
ponents of a natural ξ : ϕ .→ ϕ′ by functoriality of β. Hence ξΔ : ϕΔ

.→ ϕ′
Δ

has components (ξΔ)A = β(ζA)A. �

4.2. Diagonal Theories in LCT0 and LCT

Any functor ϕ : Loc → LCT assigns to each spacetime M ∈ Loc a locally
covariant theory defined on all spacetimes, i.e., a functor ϕ(M) : Loc→ Phys,
and assigns to each embedding ψ : M → N a natural transformation ϕ(ψ) :
ϕ(M) .→ ϕ(N) between the theories assigned to M and N , respectively. The
diagonal functor ϕΔ is then again an object of LCT and hence a theory in its
own right; we will refer to it as a diagonal theory.

By Remark (2) following Proposition 4.2, every theory A ∈ LCT0 is a
diagonal theory in which ϕ : Loc0 → Phys is a constant functor taking the
value A in all spacetimes. So diagonal theories certainly exist. Our aim in this
subsection is to investigate some of the general properties of diagonal theories
and to develop criteria that would give various types of desirable or path-
ological properties; in particular, that violations of SPASs can, in principle,
be achieved with theories that are otherwise well-behaved. In the following
subsection we will show that such diagonal theories exist under fairly mild
restrictions on the category Phys.

Our discussion is expressed for diagonal theories in LCT; all our remarks
in this subsection apply equally to diagonal theories in LCT0 on replacing Loc
by Loc0, LCT by LCT0, and O(M) by O0(M).

The kinematic net. If M ∈ Loc and O ∈ O(M), the kinematic local algebra
is

(ϕΔ)kin
M ;O = ϕΔ(ιM ;O) = ϕ(M)(ιM ;O) ◦ ϕ(ιM ;O)M |O

= ϕ(M)kin
M ;O ◦ ϕ(ιM ;O)M |O ≤ ϕ(M)kin

M ;O.

If there exists any morphism ψ : L → M such that ϕ(ψ)M is not an
isomorphism then (ϕΔ)kin

M ;ψ(L) is a proper subobject of ϕ(M)kin
M ;ψ(L).

The timeslice property. Suppose ϕ : Loc→ LCT. For any morphism ψ : M →
N we have ϕΔ(ψ) = ϕ(ψ)N ◦ ϕ(M)(ψ). Accordingly, a sufficient condition
for ϕΔ to satisfy the timeslice property is that both the following hold: (i)
for every M ∈ Loc, ϕ(M) satisfies the timeslice property and (ii) ϕ obeys
the timeslice property in that ϕ(ψ) is a natural isomorphism whenever ψ is
Cauchy.

In particular, suppose that ϕ = β ◦ λ, where I is a poset (regarded as a
category) and β and λ are functors. Then the sufficient condition just men-
tioned becomes (i) for each � ∈ �λ, β(�) obeys the timeslice axiom,and (ii) λ
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is constant on Cauchy-wedge-connected components of Loc. To see this, note
that (ii) implies that if ψ : M →N is Cauchy, then λ(ψ) = idλ(M) and hence
ϕ(ψ) = idϕ(M).

The relative Cauchy evolution. Suppose ϕ : Loc → LCT is such that every
ϕ(M) obeys the timeslice axiom and so does ϕΔ.

Lemma 4.4. If M
ψ→ N is a Cauchy morphism then ϕ(ψ)M and ϕ(ψ)N are

isomorphisms.

Proof. As ϕ(M) and ϕ(N) obey the timeslice axiom, ϕ(M)(ψ) and ϕ(N)(ψ)
are isomorphisms. As ϕΔ(ψ) is also an isomorphism, the result follows because
ϕ(ψ)M = (ϕ(N)(ψ))−1 ◦ ϕΔ(ψ) and ϕ(ψ)N = ϕΔ(ψ) ◦ (ϕ(M)(ψ))−1. �

Proposition 4.5. For any h ∈ H(M) we have

τ
(ϕΔ)±
M [h] = τ

(ϕ(M [h]))±
M [h] ◦ ϕ(j±M [h])M ◦

(

ϕ(ı±M [h])M

)−1
, (4.1)

where M
ı±M [h]←− M±[h]

j±M [h]−→ M [h] are the future and past Cauchy wedges
induced by h. Hence

rce(ϕΔ)
M [h] = ϕ(ı−M [h])M ◦ ϕ(j−M [h])−1

M ◦ ϕ(j+M [h])M

◦
(

ϕ(ı+M [h])M

)−1 ◦ rce(ϕ(M))
M [h].

If ϕ also obeys timeslice [i.e., ϕ(ψ) is a natural isomorphism for each Cauchy
morphism ψ] then these results may be written more compactly as

τ
(ϕΔ)±
M [h] = τ

(ϕ(M [h]))±
M [h] ◦ (τ (ϕ)±

M [h])M

and

rce(ϕΔ)
M [h] = (rceϕM [h])M ◦ rce(ϕ(M))

M [h].

Proof. As usual, τ (ϕΔ)±
M [h] is the unique morphism such that τ (ϕΔ) ±

M [h] ◦
ϕΔ(ı±M [h]) = ϕΔ(j±M [h]), i.e.,

τ
(ϕΔ)±
M [h] ◦ ϕ(ı±M [h])M ◦ ϕ(M±)(ı±M [h]) = ϕ(j±M [h])M [h] ◦ ϕ(M±)(j±M [h])

= ϕ(j±M [h])M [h] ◦ τ (ϕ(M±))±
M [h]

◦ ϕ(M±)(ı±M [h]).
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As ϕ(M±)(ı±M [h]) and (by Lemma 4.4) ϕ(ı±M [h])M are isomorphisms,
Eq. (4.1) holds. Accordingly,

rce(ϕΔ)
M [h] =

(

τ
(ϕΔ)−
M [h]

)−1

◦ τ (ϕΔ)+
M [h]

= ϕ(ı−M [h])M ◦
(

ϕ(j−M [h])M

)−1 ◦ rce(ϕ(M [h]))
M [h]

◦ ϕ(j+M [h])M ◦
(

ϕ(ı+M [h])M

)−1

= ϕ(ı−M [h])M ◦
(

ϕ(j−M [h])M

)−1 ◦ ϕ(j+M [h])M ◦ rce(ϕ(M+))
M [h]

◦
(

ϕ(ı+M [h])M

)−1

= ϕ(ı−M [h])M ◦
(

ϕ(j−M [h])M

)−1 ◦ ϕ(j+M [h])M ◦
(

ϕ(ı+M [h])M

)−1

◦ rce(ϕ(M))
M [h]

as required, where we have used Proposition 3.8 in the last two steps. The
remaining statements are straightforward. �

It is clear from the above result that the diagonal theory ϕΔ does not nec-
essarily have the same relative Cauchy evolution in spacetime M as ϕ(M).
In principle, this allows the stress–energy tensor to have a component that
reflects the dynamics of the functor ϕ as well as the dynamics of the theory in
spacetime M . We do not know whether this can be realised in actual exam-
ples, however. Certainly, if ϕ factors through a poset, then (as we have already
seen) ϕ maps any Cauchy morphism to an identity and so we have the simpler
formulae

τ
(ϕΔ)±
M [h] = τ

(ϕ(M [h]))±
M [h] (4.2)

rce(ϕΔ)
M [h] = rce(ϕ(M))

M [h]. (4.3)

Any diagonal theory in which these relations hold will be described as
ordinary.

Comparison of theories and failure of SPASs in LCT. Suppose ϕ = β◦λ, where
λ : Loc → I and β : I → LCT with I a poset. Suppose that there are �, �′ ∈ I
such that � � λ(M) � �′ for all M ∈ Loc, with both � and �′ being attained
on certain spacetimes, and assume that β(�, �′) is not an isomorphism. By the
remark following Lemma 4.3, this gives natural transformations κ�

.→ λ
.→ κ�′ ,

where κp is the constant functor taking the value p on all objects; hence, by
Lemma 4.3, there are natural transformations

β(�) = (β ◦ κ�)Δ .→ (β ◦ λ)Δ
.→ (β ◦ κ�′)Δ = β(�′) (4.4)

whose components in an arbitrary spacetime M are

β(�)(M)
β(�,λ(M))M−−−−−−−−→ (β ◦ λ)Δ(M)

β(λ(M),�′)M−−−−−−−−−→ β(�′)(M),

composing to β(�, �′)M . Accordingly the two naturals in Eq. (4.4) compose to
β(�, �′).

Now let L and L′ be spacetimes with λ(L) = �, λ(L′) = �′. Then the
first natural is an identity in spacetime L, while the second is an identity in
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spacetime L′. Thus both are partial isomorphisms. If the SPASs property were
to hold on (any class of theories including) β(�), (β ◦λ)Δ and β(�′), then both
naturals would have to be isomorphisms, which contradicts the fact that their
composite, β(�, �′), is not an isomorphism.

In particular, if one or both of the theories β(�) and β(�′) are regarded
as individually representing the same physics in all spacetimes (by some rea-
sonable definition) then it is clearly impossible for (β ◦ λ)Δ to represent the
same physics in all spacetimes (by the same definition).

This discussion shows that the failure of SPASs can be exhibited quite
straightforwardly, given suitable functors β and λ. In the next subsection,
we will give some concrete constructions which achieve this goal. We have
presented the discussion so far in fairly abstract terms, partly to facilitate
discussion of general categories Phys and partly because a wide range of con-
structions can be given and we wish to emphasise that the issue runs more
deeply than a few isolated counterexamples (each of which, perhaps, could be
removed by some ad hoc additional assumptions). In addition, it may be that
diagonal theories may provide useful examples in other contexts, e.g., locally
covariant theories that do not obey the timeslice axiom.

4.3. Specific Examples

To start, let us consider the problem of constructing a functor from Loc0 to a
poset. There are many ways of doing this, and the reader should regard the
examples presented here as indicative rather than exhaustive.

For a first example, fix a constant R0 > 0 with dimensions of length−2

and define

λ(M) =

{

2 supRM > R0

1 supRM ≤ R0,
(4.5)

where RM is the scalar curvature on M ∈ Loc0 and the supremum is taken
over all of M . It is clear that if ψ : M → N then λ(M) ≤ λ(N), so λ is
indeed a functor from Loc0 to N, i.e., the natural numbers with their usual
ordering.

This particular functor is not constant on Cauchy-wedge-connected com-
ponents of Loc0, however. To see this, consider a spacetime containing Cauchy
surfaces Σ1 and Σ2 so that the scalar curvature exceeds R0 near Σ1, but is
everywhere less than R0 in a globally hyperbolic neighbourhood of Σ2. This
induces a Cauchy wedge connecting a spacetime with λ = 1 to a spacetime
where λ = 2. Thus, diagonal theories based on such functors would not be
expected to have the timeslice property. However, we will find a use for this
example below.

A different type of example is constructed by choosing any function μ :
Loc0 → N such that (i) μ(M) depends only on the oriented-diffeomorphism
class of the smooth spacelike Cauchy surfaces of M ; (ii) μ takes its minimum
value on all spacetimes with noncompact Cauchy surfaces. This is obviously
constant on Cauchy-wedge-connected components by Proposition 2.4. To see
that it is a functor from Loc0 to N, we take any morphism ψ : M →N in Loc0.
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If M has noncompact Cauchy surface, then μ(M) ≤ μ(N) by condition (ii).
If, on the other hand, M has compact Cauchy surfaces, then Proposition 2.3(a)
entails that M and N have oriented-diffeomorphic Cauchy surfaces and hence
μ(M) = μ(N). Thus, μ ∈ Funct(Loc0,N). (Equally, this construction gives a
functor to �μ, equipped with the partial ordering in which p � q iff p = q or
p = min�μ.)

In view of the comments in the previous subsection, diagonal theories
(β ◦ μ)Δ will obey the timeslice property provided that β(�) obeys timeslice
for each � ∈ �μ.

Turning to the case of possibly disconnected spacetimes, one way of con-
structing a functor from Loc to N is to take any functor λ0 : Loc0 → N and to
define

λ(M) = max
C∈Cpts(M)

λ0(C)

for M ∈ Loc. Consider any Loc-morphism ψ : M → N and let B be a com-
ponent of M such that λ(M) = λ0(B). Then there is a component C of N
so that ψ(B) ⊂ C and a Loc0-morphism ψB

C : B → C. Then

λ(M) = λ0(B) ≤ λ0(C) ≤ λ(N),

which suffices to show that λ ∈ Funct(Loc,N). Moreover, λ will be constant
on Cauchy-wedge-connected components of Loc if λ0 is constant on Cauchy-
wedge-connected components of Loc0.

There are many other possibilities. Let Surf be the set of smooth con-
nected compact orientable (n−1) manifolds modulo-oriented-diffeomorphisms
(n being the spacetime dimension). To every M ∈ Loc there is a function
νM : Surf → N0 such that νM (Σ) is the number of connected components of
M whose Cauchy surfaces are oriented-diffeomorphic to Σ. Evidently νM (Σ)
is nonzero for at most finitely many Σ ∈ Surf; using Proposition 2.3(b) it
is easily seen that the existence of a morphism ψ : M → N entails that
νM (Σ) ≤ νN (Σ) for all Σ ∈ Surf (we are only counting compact connected
components). A wide variety of functors λ : Loc→ N may now be constructed,
such as

λ(M) = a+
∑

Σ

m(Σ)νM (Σ)p(Σ)

for a ∈ N and any functions m, p : Surf → N0. All such functors are constant
on Cauchy-wedge-connected components of Loc, because Cauchy-wedge-con-
nected spacetimes M and N have oriented-diffeomorphic Cauchy surfaces, so
the functions νM and νN coincide.

We have shown that it is possible to construct functors from Loc0 and
Loc to various posets in various ways. There are also various ways of obtaining
functors from a poset to LCT as shown by the following examples (all of which
adapt straightforwardly to LCT0):
1. If I is the poset N with the ordering p � q iff p = 1 or p = q, we may proceed

by setting β(1) = I , the initial theory, and choose β(p) ∈ LCT arbitrarily
for p ≥ 2. To the arrow 1 → p assign the natural Iβ(p) : I

.→ β(p)
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that arises because I is initial. All other arrows in I are identities, and we
assign to each idp the morphism idβ(p) (evidently this is compatible with
the previous assignment for p = 1). Then β ∈ Funct(I, LCT).

2. Suppose Phys admits an endofunctor F and a natural η : F
.→ idPhys.13

Given any A ∈ LCT there is a functor β : ({1, 2},≤)→ LCT with

β(1) = F ◦A , β(2) = A , β(id1) = idF◦A ,

β(1→ 2) = η, β(id2) = idA .

3. If Phys has a monoidal structure then, as discussed in Sect. 3.2, we obtain a
functor β : N→ LCT with β(k) = A ⊗k and naturals β(k, k′) : β(k) .→ β(k′)
for any k ≤ k′.

Pursuing the third of these examples, let us suppose that μ0 : Loc0 → N

is constant on Cauchy-wedge-connected components of Loc0, with μ0(M) = 1
if M has noncompact Cauchy surfaces and μ0(M) �= 1 for some spacetimes.
Let us suppose that the basic theory A has the timeslice property and is not
idempotent, meaning that there is no k ≥ 2 for which β(1, k) is an isomor-
phism. Setting ϕ = β ◦λ, the ϕΔ is an ordinary diagonal theory in LCT0, that
will be denoted A [μ0]; it obeys the timeslice axiom because each A ⊗k does.

In any spacetime M , we have A [μ0](M) = A ⊗μ0(M)(M); if ψ : M →N
and μ0(M) ≤ μ0(N) then

A [μ0](ψ) = β(μ0(M), μ0(N))N ◦A ⊗μ0(M)(ψ)

= β(μ0(M), μ0(N))N ◦A (ψ)⊗μ0(M)

(if the category Phys is Alg, with the algebraic tensor product as the monoidal
structure, then this has the action

A [μ0](ψ)X = (A ⊗μ0(M)(ψ)X)⊗ 1⊗(μ0(N)−μ0(M))
A (N)

on X ∈ A ⊗μ0(M)(M)). The kinematic net for ϕΔ produces subobjects
(ϕΔ)kin

M ;O that are proper subobjects of ϕ(M)kin
M ;O whenever μ0(M) > 1 and

O ∈ O0(M) has noncompact Cauchy surface.
If, additionally, μ0 is bounded with maximum value �′, then we may argue

as in the previous subsection that the SPASs property cannot hold on any class
of theories including A , A [μ0] and A ⊗�′ ; if either A or A ⊗�′ is regarded as
representing the same physics in all spacetimes (by some definition), it follows
that A [μ0] cannot have this property (by the same definition).

This example is enough to show that LCT0 will generally fail to have
the SPASs property, except in the case that all its theories are idempotent.
Similarly, in LCT, if we define μ(M) = max{μ0(C) : C ∈ Cpts(M)}, then
the theory A [μ] := (β ◦ μ)Δ (with β now giving monoidal powers in LCT) has
analogous properties and demonstrates the failure of SPASs in LCT.

We conclude this section by sketching two other examples to illustrate
the range of bad behaviour that can occur. For the first, we return to the
functor λ : Loc0 → N of Eq. (4.5) and compose with thefunctor β(k) = A ⊗k,

13 See Sect. 3.2 for an example in TAlg.
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where A is nontrivial and has the timeslice property and is additive, in the
sense that A (M) is generated by the A kin(M ;Oi) whenever the Oi form a
cover of M by open globally hyperbolic spacetimes. The upshot is a theory
B = (β ◦ λ)Δ that coincides with A ⊗2 in spacetimes whose scalar curvature
somewhere exceeds R0, and otherwise coincides with A . (The theory B does
not have the timeslice property.) Now consider a spacetime M that has a
Cauchy surface Σ on which the scalar curvature is everywhere greater than
R0, but which also has an open globally hyperbolic region U on which the
scalar curvature is everywhere less than R0. Consider any cover M =

⋃

iOi
by nonempty open globally hyperbolic spacetimes Oi. Then the Oi also cover
Σ, and every Oi that intersects Σ nontrivially must have λ(M |Oi

) = 2, so
Bkin(M ;Oi) = A ⊗2kin(M ;Oi) for these particular regions. As A ⊗2 has the
timeslice property, this proves that B(M) is generated by the Bkin(M ;Oi)
with Oi ∩ Σ �= 0, and hence a fortiori by the full collection of Bkin(M ;Oi).
Thus, the theory B is additive on M and has B(M) = A ⊗2(M); but at the
same time, M contains a region U for which the local kinematic subobject
βkin

M ;U = β(1, 2) ◦ αkin
M ;U corresponds to only one copy of the theory A . This

example stands as a counterpoint to the previous examples, where additivity
would not be expected to hold in spacetimes with λ = 2.

Finally, as an extreme example, suppose Phys admits infinite monoidal
products indexed over the naturals (i.e., a colimit of the functor giving finite
monoidal powers). Then we may also form infinite powers B⊗∞ of any theory
B in LCT. There is a right-shift endomorphism σ : B⊗∞ .→ B⊗∞ which is
given (for Phys = Alg, say) by

σMX = 1B(M) ⊗X,

which realises any such B⊗∞ as a proper subtheory of itself (i.e., σ is a non-
automorphic endomorphism) except if B is the trivial theory. Now suppose A
is any nontrivial locally covariant theory and let B be a diagonal theory that
coincides with I in some spacetimes and A in others. Then the right-shift σ
on B⊗∞ is a partial isomorphism, as σM is an isomorphism in every spacetime
where B(M) is trivial. Of course, the theory B⊗∞(M) is also trivial in such
spacetimes, but by passing to the theory A ⊗B⊗∞, we obtain a theory that
is nontrivial in all spacetimes and admits an endomorphism idA ⊗ σ that is a
partial isomorphism but not an automorphism. Theories of this type cannot
be regarded as obeying the same physics in all spacetimes by any reasonable
notion: even the singleton {A ⊗ B⊗∞} fails to have the SPASs property.
One might suspect that theories admitting proper endomorphisms are always
unphysical; elsewhere it will be shown that they conflict with natural require-
ments of nuclearity/energy compactness, which supports the idea that they
must have infinitely many degrees of freedom available in bounded regions at
finite energies [26].

We have described these examples in some detail to illustrate that a wide
variety of bad behaviour can be exhibited by locally covariant theories. It seems
likely that yet worse behaviour could be found.
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5. Dynamical Determination of Local Observables

5.1. The Dynamical Net

In Sect. 3.3, we saw how BFV used the functorial structure of a locally covar-
iant theory to reconstruct a net structure of local observables. The idea was
to regard the theory in a subregion of a spacetime as the theory assigned to
that subregion when considered as a spacetime in its own right. We regard
this as a kinematic description of the local physics. In this section, we use
the dynamics of the relative Cauchy evolution to give another description of
local physics; the theory will be said to be dynamically local when these two
descriptions of the local physics coincide. The diagonal theories, as we will see,
include examples of theories that are not dynamically local; in [28], we will
show that the Klein–Gordon theory is dynamically local both as a classical
and as a quantum theory (at nonzero mass; the massless case involves further
subtleties).

To illustrate the general idea, suppose that Alg has been taken as the
category Phys, and that A is a locally covariant theory in this setting. Fix
a spacetime M and a compact set K therein. Any hyperbolic perturbation
h ∈ H(M ;K⊥) represents a modification in the spacetime in regions causally
inaccessible from K; one would expect that observables localised within K
should be insensitive to such changes. Taking this as a definition of what it
means to be localised in K, we are led to study the subalgebra

A •(M ;K) = {A ∈ A (M) : rceM [h]A = A for all h ∈ H(M ;K⊥)}

as the candidate for the description of the local physics. Given an open glob-
ally hyperbolic subset with finitely many components (though not necessarily
nonempty) O ∈ O(M) we may define the subalgebra A dyn(M ;O) of A (M)
generated by the A •(M ;K) for a suitable class of compact subsets of O. (The
simpler possibility of defining the A •(M ; cl(O)) as the local algebra of a rel-
atively compact open globally hyperbolic set O would not generally give a
match with the kinematic algebra A kin(M ;O) as can be seen in the example
of the Klein–Gordon field [28].) To this end, for each nonempty O ∈ O(M) we
define K (M ;O) to be the set of compact subsets contained in O and having
a multi-diamond neighbourhood whose base is contained in O. In particular,
this condition is obeyed by the empty set, so ∅ ∈ K (M ;O) for all nonempty
O ∈ O(M). By convention we also set K (M ; ∅) = {∅}. We use K (M) as a
shorthand for K (M ;M).

This class is chosen for various reasons. The requirement to have a (multi)-
diamond neighbourhood ensures, for example, that if K ∈ K (M) then K⊥⊥

is again compact (see Lemma A.10; the proof relies on the relative compact-
ness of multi-diamonds). We use multi-diamonds, rather than diamonds, to
facilitate the treatment of sets O with more than one connected component;
in some (but not all) theories one could insist on diamond neighbourhoods
without loss. These issues will be discussed elsewhere.

We then define the dynamical net as the assignment to each O ∈ O(M)
of the subalgebra
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A dyn(M ;O) =
∨

K∈K (M ;O)

A •(M ;K) (5.1)

in which the right-hand side denotes the Alg-subobject of A (M) generated
by the A •(M ;K) for K (M) � K ⊂ O. As ∅ ∈ K (M ;O), we always
have A •(M ; ∅) ⊂ A dyn(M ;O) for every O; in particular, A dyn(M ; ∅) =
A •(M ; ∅). As we will show in [28], Eq. (5.1) gives the correct local algebras
for the simple model of the massive Klein–Gordon field.

More generally, the above ideas can be implemented in any category Phys
satisfying our standing assumptions. As in the case of the kinematic net it is
convenient to focus on the subobject morphisms; we will also find it useful to
give ‘universal’ definitions for the various subobjects of interest.

Lemma 5.1. For any compact subset K of M there exists a unique (up to
isomorphism) subobject α•

M ;K of A (M) such that (i)

rceM [h] ◦ α•
M ;K = α•

M ;K ∀h ∈ H(M ;K⊥); (5.2)

and (ii) if any other morphism α satisfies Eq. (5.2) in place of α•
M ;K , then

α ≤ α•
M ;K in the subobject lattice of A (M).14

Proof. For each h ∈ H(M ;K⊥), let αh be the equaliser of rceM [h] and
idA (M) (which exists by assumption on Phys), i.e., a morphism such that
rceM [h] ◦αh = αh, and so that any other morphism βh obeying this equation
in place of αh obeys βh ≤ αh. Then any intersection

α•
M ;K

∼=
∧

h∈H(M ;K⊥)

αh

(which exists by assumption on Phys) obeys Eq. (5.2): see, e.g., LemmaB.1.
Any β also obeying this equation must, in particular, obey β ≤ αh for all
h ∈ H(M ;K⊥) by the definition of the equaliser; accordingly, β ≤ α•

M ;K by
the definition of an intersection. �

In the case Phys = Alg, α•
M ;K is of course the inclusion morphism of

A •(M ;K) in A (M). Returning to the general case, Phys also has arbitrary
categorical unions; accordingly, to each O ∈ O(M) there is a (unique up to
isomorphism) subobject

αdyn
M ;O

∼=
∨

K∈K (M ;O)

α•
M ;K (5.3)

(generalising the inclusion morphism of A dyn(M ;O) in A (M) in the cate-
gory Alg) that we take as the definition of the dynamical net. Denoting the
domain of αdyn

M ;O as A dyn(M ;O), Eq. (5.3) means that (i) every α•
M ;K (with

K ∈ K (M ;O)) factorises (uniquely) via αdyn
M ;O as α•

M ;K = αdyn
M ;O ◦ αM ;O;K ;

(ii) whenever there are morphisms β and γ and βK such that β◦βK = γ◦α•
M ;K

14 Recall that this means there is a unique β such that α = α•
M ;K ◦ β.
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for every K ∈ K (M ;O), there exists a unique ξ : A dyn(M ;O) → B such
that

βK = ξ ◦ αM ;O;K and β ◦ ξ = γ ◦ αint
M ;O

for all K ∈ K (M ;O). Diagrammatically, fixing β and γ, if the outer portion
of every diagram of the following form commutes as K varies in K (M ;O)
then there is a unique ξ to make all the diagrams commute in full:

(see Appendix B and [21] for more details on the union in general categories).
Although we have given notation for the domains of the morphisms

α•
M ;K , αdyn

M ;O, one should bear in mind that it is the morphisms that are
the significant entities. For the sake of familiarity we will write expressions
such as A •(M ;K1) ⊂ A •(M ;K2), but this must be understood as assert-
ing that α•

M ;K1
factorises via α•

M ;K2
, i.e., α•

M ;K1
= α•

M ;K2
◦ β for some

β : A •(M ;K1) → A •(M ;K2). This is the order relation in the subob-
ject lattice of A (M) (see, e.g., [21]). Similarly, A •(M ;K1) ∼= A •(M ;K2)
asserts that α•

M ;K1
= α•

M ;K2
◦β with β an isomorphism, i.e., α•

M ;K1
∼= α•

M ;K2

as subobjects. In the case of Alg or other category in which A •(M ;K) and
A dyn(M ;O) are realised concretely as subsets of A (M), and the α•

M ;K , αdyn
M ;O

morphisms are set inclusions then the ⊂ notation may be taken to indicate a
subset and isomorphism can be upgraded to equality.

5.2. Properties of the Dynamical Net

The assignments K 	→ A •(M ;K) and O 	→ A dyn(M ;O) possess a number of
properties that would be expected of a net of local algebras: namely, isotony,
causal dynamics, and covariance with respect to isomorphisms.

Theorem 5.2. (a) Suppose K1,K2 are compact and JM (K1) ⊂ JM (K2) (in
particular, if K1 ⊂ K2). Then A •(M ;K1) ⊂ A •(M ;K2).

(b) In consequence, we have

A •(M ;K) ∼= A •(M ;K⊥⊥)

provided K⊥⊥ is also compact (in particular, if K ∈ K (M)) and, for
any compact sets K1,K2,

A •(M ;K1) ∨A •(M ;K2) ⊂ A •(M ;K1 ∪K2)
A •(M ;K1 ∩K2) ⊂ A •(M ;K1) ∧A •(M ;K2)

and A •(M ; ∅) ⊂ A •(M ;K) for all compact K. (c) If ψ : M → N is
an isomorphism then A (ψ) restricts to an isomorphism A •(M ;K) →



1646 C. J. Fewster and R. Verch Ann. Henri Poincaré

A •(N ;ψ(K)) (this applies in particular to the (time-)orientation pre-
serving isometric isomorphisms of M).

Proof. (a) Immediate from the definition. (b) These results follow from (a)
because JM (K) = JM (K⊥⊥) for compact K (see Lemma A.10(ii)) and the
obvious inclusions K1 ∩ K2 ⊂ Ki ⊂ K1 ∪ K2. (c) As ψ is an isomorphism,
ψ(K)⊥ = ψ(K⊥). Thus the pushforward ψ∗ restricts to an isomorphism
between H(M ;K⊥) and H(N ;ψ(K)⊥), with inverse given by the pullback
ψ∗. Hence for all h ∈ H(N ;ψ(K)),

rceN [h] ◦A (ψ) ◦ α•
M ;K = A (ψ) ◦ rceM [ψ∗h] ◦ α•

M ;K = A (ψ) ◦ α•
M ;K

by the defining property of α•
M ;K ; it follows that A (ψ) ◦α•

M ;K = α•
N ;ψ(K) ◦β

for some β (depending on ψ and K). Applying the same argument to ψ−1, it
follows easily that β is an isomorphism. �

These results immediately induce a number of analogous properties of
the A dyn(M ;O), in Theorem 5.4 below. First, we give a useful simplifying
observation.

Lemma 5.3. Given any O ∈ O(M), we have

A dyn(M ;O) ∼=
∨

K∈Kb(M ;O)

A •(M ;K),

where Kb(M ;O) is the set of those K ∈ K (M ;O) obtained as the closure of
a base of a multi-diamond, with Kb(M ; ∅) = {∅} by convention. If, in fact, O
is a multi-diamond, then

A dyn(M ;O) ∼=
∨

K⊂⊂B
A •(M ;K),

where B is any base of O and the union is taken over all compact subsets
of B.

Proof. If O is empty, the first statement holds trivially because Kb(M ; ∅) =
K (M ; ∅) = {∅}; as ∅ is not a multi-diamond the second statement is irrele-
vant. Accordingly, now assume that O is nonempty and let K ∈ K (M ;O).
Then there is a multi-diamond with base B ⊂ O such that K ⊂ DM (B).
By Lemma A.14, there exists a compact set K̃ ⊂ B with K ⊂ K̃⊥⊥; it is
clear that K̃ ⊂ K (M ;O). Hence A •(M ;K) ⊂ A •(M ; K̃⊥⊥) ∼= A •(M ; K̃)
by parts (a) and (c) of Theorem 5.2. In the case of a general nonempty O ∈
O(M) we deduce that the defining union of A dyn(M ;O) may be taken over
K ∈ Kb(M ;O) (see Lemma B.2 for a proof in the abstract setting); in the
case where O is a multi-diamond with B as a base, we may evidently require
that each K̃ be a subset of B, obtaining the second refinement (every compact
subset of B is clearly a member of K (M ;O)). �

We expect that stronger causality results than (c) below can be obtained
along similar lines.
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Theorem 5.4. (a) If O1, O2 ∈ O(M) and O1 ⊂ O2 then A dyn(M ;O1) ⊂
A dyn(M ;O2). In consequence, we also have, for arbitrary O1, O2

∈ O(M),

A dyn(M ;O1) ∨A dyn(M ;O2) ⊂ A dyn(M ;O1 ∪O2)

A dyn(M ;O1 ∩O2) ⊂ A dyn(M ;O1) ∧A dyn(M ;O2)

and A •(M ; ∅) ∼= A dyn(M ; ∅) ⊂ A dyn(M ;O) for all O ∈ O(M).
(b) If ψ : M →N is an isomorphism then A (ψ) restricts to an isomorphism

A dyn(M ;O)→ A dyn(N ;ψ(O)) for each O ∈ O(M). (In particular, this
applies to automorphisms ψ ∈ Aut(M).)

(c) If O ∈ O(M) and O′′ is a multi-diamond with a base contained in O,
then

A dyn(M ;O′′) ∼= A dyn(M ;O).

Proof. (a) is obvious because K (M ;O1) ⊂ K (M ;O2). For (b), we use The-
orem 5.2(c) and the obvious fact that the unions of isomorphic subobjects
of isomorphic objects are isomorphic. Turning to (c), we may suppose that
O′′ = DM (B), where B ⊂ O is a base of O′′. By Lemma 5.3 we then have

A dyn(M ;O′′) ∼=
∨

K⊂⊂B
A •(M ;K) ⊂ A dyn(M ;O) ⊂ A dyn(M ;O′′),

where we have also used part (a). �

Further light on the relationship between the two species of dynamical
net is shed by the next result. We will need the following definition.

Definition 5.5. A compact set K ⊂ M will be called outer regular if there
exist relatively compact nonempty On ∈ O(M) (n ∈ N) with cl(On+1) ⊂ On
and K ∈ K (M ;On) for all n, such that K =

⋂

nOn. (Note that this excludes
the empty set from being outer regular.) Any such sequence On will be called
an outer approximation to K. The set of outer regular compact subsets of any
nonempty O ∈ O(M) will be denoted K o.r.(M ;O). If K ∈ K o.r.(M ;O) has
an outer approximating sequence On ∈ O0(M), we write K ∈ K o.r.

0 (M ;O).

Note that Kb(M ;O) ⊂ K o.r.(M ;O). We write K o.r.(M) for K o.r.

(M ;M).

Theorem 5.6. (a) For all O ∈ O(M) and h ∈ H(M ;O′) we have rceM [h] ◦
αdyn

M ;O = αdyn
M ;O.

(b) If O ∈ O(M) is relatively compact, then

A dyn(M ;O) ⊂ A •(M ; cl(O)).

(c) If K ∈ K o.r.(M) has outer approximating sequence On, then

A •(M ;K) ∼=
∧

n∈N

A dyn(M ;On). (5.4)
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Proof. (a) If K ∈ K (M ;O), then K⊥ ⊃ O′ and hence h ∈ H(M ;K⊥).
Thus, rceM [h] ◦ α•

M ;K = α•
M ;K for all such K. The same then holds for

αdyn
M ;O due to Eq. (5.3). (For completeness, a proof is given in Lemma B.3

of Appendix B.)
(b) Lemma A.12 entails that O′ = (cl(O))⊥. Using (a), we deduce that

rceM [h] ◦ αdyn
M ;O = αdyn

M ;O for all h ∈ H(M ; cl(O)⊥) and hence αdyn
M ;O ≤

α•
M ;cl(O), establishing the required inclusion.

(c) As K ∈ K (M ;On) for each n ∈ N the right-hand side of Eq. (5.4) clearly
contains the left-hand side. On the other hand, Lemma A.11(ii) entails
that

K⊥ =
⋃

n∈N

O′
n

so for any h ∈ H(M ;K⊥), the compact set supp h ⊂ K⊥ is covered by
finitely many of the open sets O′

n and hence (as O′
n ⊂ O′

n+1 for each n) is
contained in some O′

n0
. It follows that h ∈ H(M ;O′

n0
), so rceM [h] acts

trivially on A dyn(M ;On0) and therefore on the intersection in Eq. (5.4).
Accordingly, the right-hand side is contained in A •(M ;K). �

We remark that this result also gives A •(M ;K) for sets K such that
K⊥⊥ is outer regular, by virtue of Theorem 5.2(b).

As an example of the various relationships developed above, we note that
if p, q are distinct timelike separated points with q to the future of p, then

A •(M ; {p, q}) ∼= A •(M ; {p, q}⊥⊥) ∼= A •(M ;J+
M (p) ∩ J−

M (q))

⊃ A dyn(M ; I+
M (p) ∩ I−

M (q)).

Moreover, if pn → p in I−
M (p), and qn → q in I+

M (q) then

A •(M ; {p, q}) ∼=
∧

n

A dyn(M ; I+
M (pn) ∩ I−

M (qn)).

In addition if K ∈ K (M) is the closure of a Cauchy multi-ball, then we
may choose a sequence of Cauchy multi-balls Bk such that cl(Bk+1) ⊂ Bk
and

⋂

k Bk = K. Choose a strictly decreasing sequence (εk) with εk → 0 such
that Ok = DM (Bk) ∩ T −1(−εk, εk) belongs to O(M) for each k, where T is
a Cauchy temporal function [4] such that T −1(0) contains all the Bk. Then
K =

⋂

k Ok and so

A •(M ;K) ∼=
∧

k

A dyn(M ;Ok).

Finally, let us compute the dynamical nets of ordinary diagonal
models ϕΔ.

Theorem 5.7. For any ordinary diagonal theory ϕΔ, we have

ϕ•
Δ(M ;K) = ϕ(M)•(M ;K) (5.5)
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for all compact K ⊂M , and

ϕdyn
Δ (M ;O) = ϕ(M)dyn(M ;O) (5.6)

for all O ∈ O(M).

Proof. The first statement is an immediate consequence from Proposition 4.5
as rce(ϕΔ)

M [h] = rce(ϕ(M))
M [h]; the second follows immediately. �

Thus, the ordinary diagonal theories provide examples in which it is the
dynamical net, rather than the kinematic net, that appears to have the ‘right’
notion of the local observables on any given spacetime. (As we have no exam-
ples of extraordinary diagonal theories, it is less clear what should be expected
in that case.)

6. Dynamical Locality

6.1. Definition and Main Properties

The kinematical and dynamical nets give two isotonous nets on each space-
time; the diagonal theories show that they are not always equal. In general,
their relationship is given as follows.

Proposition 6.1. Let A ∈ LCT (resp., LCT0). Suppose O ∈ O(M) (resp.,
O0(M)) is nonempty, and that O ⊂ K ∈ K (M ; Õ) for some Õ ∈ O(M).
Then

A kin(M ;O) ⊂ A •(M ;K) ⊂ A dyn(M ; Õ).

Proof. By Proposition 3.5, we have rceM [h] ◦ αkin
M ;O = αkin

M ;O for all h ∈
H(M ;K⊥), so αkin

M ;O = α•
M ;K ◦β for some β and the first inclusion is proved.

The second follows immediately as A •(M ;K) is one of the generating algebras
for A dyn(M ; Õ). �

A clear case of interest is that in which these two nets actually coincide;
in view of Proposition 6.1 this is a maximality condition on the kinematic net.
It requires, roughly, that every observable invariant under changes of metric
in the causal complement of O is localised in O.

Definition 6.2. A theory A ∈ LCT (resp., LCT0) obeys dynamical locality if
it obeys the timeslice property and, additionally, for each M ∈ Loc (resp.,
Loc0) and all nonempty O ∈ O(M) (resp., O0(M)) we have A kin(M ;O) ∼=
A dyn(M ;O), i.e., more abstractly,

αkin
M ;O

∼= αdyn
M ;O.

In view of Lemma 3.1, the dynamical locality condition may also be writ-
ten in the form

A (ψ) ∼= αdyn
N ;ψ(M)

∼=
∨

K∈K (N ;ψ(M))

α•
N ;K

for all ψ : M →N .
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An immediate example is furnished by the initial theory I , because all
subobjects of an initial object are isomorphic. More physically interesting the-
ories will be considered in [28]. In the remainder of this section we explore
various general features of dynamically local theories without restricting Phys;
later, in Sect. 6.3, we will consider applications to quantum field theory by
specifying that Phys should be Alg or C∗-Alg.

Additivity. Dynamical locality imposes a form of additivity on the theory.

Theorem 6.3. Suppose A ∈ LCT (resp., LCT0) is dynamically local in LCT
(resp., LCT0).
(a) For any M ∈ Loc (resp., Loc0), the maps

∨

K∈K (M) α
•
M ;K and

∨

K∈Kb(M) α
•
M ;K are isomorphisms, i.e.,

A (M) ∼=
∨

K∈K (M)

A •(M ;K) ∼=
∨

K∈Kb(M)

A •(M ;K).

(b) Suppose ˜O is a subset of O(M) such that every K ∈ Kb(M) is contained
in some O ∈ ˜O. Then

∨

O∈ ˜O α
dyn
M ;O is an isomorphism, i.e.,

A (M) ∼=
∨

O∈ ˜O

A dyn(M ;O) ∼=
∨

O∈ ˜O

A kin(M ;O).

Remark. In particular, by definition of Kb(M), part (b) applies when the ˜O
consists of the truncated multi-diamonds of M .

Proof. (a) First observe that αdyn
M ;M ∼= αkin

M ;M ∼= idA (M) (by Lemma 3.1).
Thus αdyn

M ;M is an isomorphism. The statement follows from the defini-
tion of αdyn

M ;M and Lemma 5.3.

(b) For each K ∈ K (M) choose a OK ∈ ˜O with K ⊂ OK , whereupon
there is a factorisation α•

M ;K = αdyn
M ;OK

◦ αM ;OK ;O for each such K. By
Lemma B.2,

∨

K∈Kb(M)

α•
M ;K ≤

∨

O∈ ˜O

αdyn
M ;O.

As the left-hand side is an isomorphism, the monic property of
∨

O∈ ˜O α
dyn
M ;O

implies that it is an isomorphism. The remaining statements are imme-
diate. �

Covariance. Theorems 5.2(b) and 5.4(b) provide rather weaker forms of covari-
ance than the relation Eq. (3.3) that holds for the kinematic net. Dynamical
locality provides the missing ingredient, provided the class of compact indexing
regions is restricted slightly.

Theorem 6.4. Suppose A ∈ LCT (resp., LCT0) is dynamically local in LCT
(resp., LCT0) and let ψ : M → N in Loc (resp., LCT0). Then for all non-
empty O ∈ O(M) and K ∈ K o.r.(M) (resp., O0(M), K ∈ K o.r.

0 (M)), we
have
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αdyn
N ;ψ(O)

∼= A (ψ) ◦ αdyn
M ;O and α•

N ;ψ(K)
∼= A (ψ) ◦ α•

M ;K .

The second formula holds also for compact K such that K⊥⊥ is outer
regular.

Proof. The first statement follows immediately from dynamical locality and
the covariance of the kinematic net of Eq. (3.3), by the calculation

αdyn
N ;ψ(O)

∼= αkin
N ;ψ(O) = A (ψ) ◦ αkin

M ;O
∼= A (ψ) ◦ αdyn

M ;O.

For the second, we claim that if On is outer approximating to K in M ,
then ψ(On) is outer approximating to ψ(K) in N . We use the fact that ψ
maps diamonds and their bases in M to diamonds and their bases in N ; this
is otherwise straightforward. Using this observation and the first part of the
result, we calculate

α•
N ;ψ(K)

∼=
∧

n

αdyn
N ;ψ(On)

∼=
∧

n

A (ψ) ◦ αdyn
M ;On

∼= A (ψ) ◦
∧

n

αdyn
M ;On

∼= A (ψ) ◦ α•
M ;K ,

in conjunction with Theorem 5.2(b) and Lemma B.1. Finally, if K⊥⊥ ∈ K o.r.

(M) (resp., K o.r.
0 (M)), we calculate

α•
N ;ψ(K)

∼= α•
N ;ψ(K)⊥⊥ = α•

N ;ψ(K⊥⊥)
∼= A (ψ) ◦ α•

M ;K⊥⊥ ∼= A (ψ) ◦ α•
M ;K

using the previous result, Theorem 5.2(b), and the identity ψ(K⊥⊥) = ψ(K)⊥⊥

proved in Lemma A.15. �

Extended locality. In Minkowski space algebraic QFT, extended locality
[38,49] is the condition that local algebras of spacelike separated regions should
intersect only on multiples of the identity. Here, we will give a necessary and
sufficient condition for a version of extended locality in general locally covari-
ant physical theories subject to dynamical locality.

Theorem 6.5. Suppose that A ∈ LCT (resp., LCT0) is dynamically local. Then
the following are equivalent:
1. A obeys extended locality, in the sense that αkin

M ;O1
∧ αkin

M ;O2
is trivial for

all causally disjoint nonempty Oi ∈ O(M)15 (resp., O0(M)) for arbitrary
M ∈ Loc (resp., Loc0);

2. α•
M ;∅ (or equivalently αdyn

M ;∅) is trivial, i.e., equivalent to IA (M) for every
M ∈ Loc (resp., Loc0).

Proof. (1) =⇒ (2): take any two nonempty causally disjoint Oi ∈ O0(M). We
then have, using Theorem 5.4(a),

α•
M ;∅ ∼= αdyn

M ;∅ = αdyn
M ;O1∩O2

≤ αdyn
M ;O1

∧ αdyn
M ;O2

∼= αkin
M ;O1

∧ αkin
M ;O2

∼= IA (M).

(2) =⇒ (1): On the other hand, let α ∼= αkin
M ;O1

∧ αkin
M ;O2

for causally disjoint
nonempty Oi ∈ O0(M). Then α = αkin

M ;Oi
◦ αi for some αi; we will show that

15 That is, O1 ⊂ O⊥
2 and O2 ⊂ O⊥

1 , from which it follows that O1 ⊂ O′
2 and O2 ⊂ O′

1.
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the αi are trivial, which implies triviality of α. To this end, let h ∈ H(M |O1)
be arbitrary and observe that

A (ιM ;O1) ◦ rceM |O1
[h] ◦ α1 = rceM [ιM ;O1∗h] ◦A (ιM ;O1) ◦ α1

= rceM [ιM ;O1∗h] ◦A (ιM ;O2) ◦ α2

= A (ιM ;O2) ◦ α2 = A (ιM ;O1) ◦ α1,

where we have used the causal separation of theOi and Proposition 3.5. Cancel-
ling the monic A (ιM ;O1), we have rceM |O1

[h] ◦α1 = α1 for all h ∈ H(M |O1).
Hence α1 ≤ α•

M |O;∅ ∼= IA (M |O1 ) and is therefore trivial. �

The subobject α•
M ;∅ represents those elements of the theory that are

invariant with respect to arbitrary perturbations of the metric, and therefore
do not couple to gravity. Under many circumstances one would want this to
be trivial, i.e., that α•

M ;∅ ∼= IM for all spacetimes M . As we will see, this
requirement is not always satisfied—indeed, it is not satisfied for the theory
of the free massless minimally coupled scalar field in spacetimes of compact
spatial section. However, it can be derived from other reasonable conditions
on theories in LCT as will be discussed elsewhere.

6.2. The SPASs Property

The pathological theories constructed in Sect. 4 had the property that there
are natural transformations between them such that some, but not all, of their
components are isomorphisms. In this section, we prove that this cannot occur
if we restrict to dynamically local theories. Throughout this section, A and
B are fixed theories in either LCT or LCT0 obeying the timeslice property.

The following preparatory lemmas are elementary, but crucial; we give
proofs for completeness.

Lemma 6.6. Let M be an arbitrary spacetime. Suppose there is a morphism
ζM : B(M)→ A (M) (not necessarily a component of a natural transforma-
tion) such that

rce(A )
M [h] ◦ ζM = ζM ◦ rce(B)

M [h] (6.1)

for all h ∈ H(M ;K⊥). Then there are unique morphisms

ζ•
M ;K : B•(M ;K)→ A •(M ;K)

ζdyn
M ;O : Bdyn(M ;O)→ A dyn(M ;O)

such that

α•
M ;K ◦ ζ•

M ;K = ζM ◦ β•
M ;K (6.2)

αdyn
M ;O ◦ ζ

dyn
M ;O = ζM ◦ βdyn

M ;O, (6.3)

where we use β•
M ;K and βint

M ;O for the inclusion morphisms of B•(M ;K) and
Bdyn(M ;O) in B(M). Thus ζ•

M ;K and ζdyn
M ;O are restrictions of ζM . More-

over, if ζM is an isomorphism, so are ζ•
M ;K and ζdyn

M ;O. In particular, these
conclusions hold if ζM is a component of a natural transformation ζ : B

.→ A .
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Proof. As α•
M ;K and αdyn

M ;O are monic, uniqueness is automatic and one need
only demonstrate existence. First, by Eq. (6.1) and the defining property of
β•

M ;K ,

rce(A )
M [h] ◦ ζM ◦ β•

M ;K = ζM ◦ rce(B)
M [h] ◦ β•

M ;K = ζM ◦ β•
M ;K

for all h ∈ H(M ;K⊥). Hence, ζM ◦β•
M ;K shares the defining property of α•

M ;K

and we deduce the existence of unique ζ•
M ;K : B•(M ;K)→ A •(M ;K) such

that Eq. (6.2) holds.
Second, for each K (M) � K ⊂ O, the outer portion of the diagram

now commutes, thus inducing a unique ζdyn
M ;O : Bdyn(M ;O) → A int(M ;O)

such that all the diagrams commute in full; in particular, we have the required
property Eq. (6.3).

Thirdly, if ζM is an isomorphism, Eq. (6.1) holds with ζM replaced by
ζ−1
M and A and B interchanged. Thus there are unique morphisms (ζ−1

M )•
;K

and (ζ−1
M )int

;O such that

β•
M ;K ◦ (ζ−1

M )•
;K = ζ−1

M ◦ α•
M ;K

βdyn
M ;O ◦ (ζ−1

M )dyn
;O = ζ−1

M ◦ αdyn
M ;O.

Combining with Eqs. (6.2) and (6.3) and using the facts that α•
M ;K , β

•
M ;K

are monic, it is easily seen that (ζ−1
M )•

;K and (ζ−1
M )int

;O are inverses to ζ•
M ;K and

ζ int
M ;O, which are therefore isomorphisms.

Finally, in the case that ζM is a component of a natural transformation
ζ : B

.→ A , Eq. (6.1) holds by Proposition 3.8. �

Lemma 6.7. Suppose ζ : B
.→ A and that there exist subobjects ψi : M i →M

(i ∈ I) such that
∨

i∈I A (ψi) and all the ζMi
are isomorphisms. Then ζM and

∨

i∈I B(ψi) are isomorphisms.

Proof. Consider, for each i ∈ I, the diagram



1654 C. J. Fewster and R. Verch Ann. Henri Poincaré

in which the unlabelled morphisms are the canonical inclusions associated with
the join. Thus, the two horizontal morphisms on the top line compose to give
A (ψi), and the left two horizontal morphisms on the bottom line compose to
give B(ψi). The outer portion of the diagram therefore commutes because ζ
is natural and the universal property of the union induces a unique morphism
ξ such that every such diagram commutes in full. Considering the right-hand
rectangle, it is evident that ζM and

∨

i∈I B(ψi) have inverses

ζ−1
M =

(

∨

i∈I
B(ψi)

)

◦ ξ ◦
(

∨

i∈I
A (ψi)

)−1

(

∨

i∈I
B(ψi)

)−1

= ξ ◦
(

∨

i∈I
A (ψi)

)−1

◦ ζM ;

hence they are isomorphisms. �

Both the previous results hold regardless of whether A and B are dynam-
ically local (indeed, Lemma 6.7 does not even use the timeslice property). Given
the additional assumption we can use Lemma 6.6 to prove:

Proposition 6.8. Suppose A and B are dynamically local and ζ : B
.→ A .

Suppose in addition that ζN is an isomorphism for some N . Then ζM is an
isomorphism for all M for which there is a morphism M →N .

Proof. We have a diagram

in which the two vertical isomorphisms arise because B(ψ) ∼= βdyn
N ;ψ(M) and

A (ψ) ∼= αdyn
N ;ψ(M) by dynamical locality, whereupon the side triangles com-

mute. The upper trapezium commutes by naturality of ζ and the lower tra-
pezium by Lemma 6.6, which also entails that ζN ;ψ(M) is an isomorphism.
Thus, the diagram commutes in full, implying that ζM is an isomorphism by
commutativity of the outer rectangle. �

In addition, we will use the following simple result (here dynamical local-
ity is not assumed):

Proposition 6.9. Suppose ζ : B
.→ A . If ψ : M →N is a Cauchy morphism,

then ζM is an isomorphism if and only if ζN is an isomorphism.
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Proof. We have A (ψ)◦ζM = ζN ◦B(ψ), with A (ψ) and B(ψ) isomorphisms.
If ζN is an isomorphism then B(ψ)−1 ◦ ζ−1

N ◦ A (ψ) is inverse for ζM , and
hence ζM is an isomorphism. Similarly, B(ψ) ◦ ζ−1

M ◦A (ψ)−1 is inverse to ζN
if ζM is an isomorphism. �

Given the above preparation, we may now state and prove our main
result of this section, namely that the dynamically local theories have the
SPASs property.

Theorem 6.10. Suppose A and B dynamically local theories and ζ : B
.→ A .

If ζM is an isomorphism for some spacetime M then ζ is a natural isomor-
phism.

Proof. Given that ζM is an isomorphism, Proposition 6.8 entails that ζD is
an isomorphism for any multi-diamond spacetime D → M . Now let D′ be
any other multi-diamond spacetime with the same number of components as
D; as D and D′ have oriented-diffeomorphic Cauchy surfaces, they are linked
by a chain of Cauchy morphisms by as shown in Proposition 2.4. Using Prop-
ositions. 6.9 and 6.8, we may conclude that ζD′ is also an isomorphism. As
M contains multi-diamonds with any finite number of components, it follows
that ζD′ is an isomorphism for every multi-diamond spacetime D′.

Now let M ′ be an arbitrary spacetime; as A is dynamically local, we
may deduce that ζM ′ is an isomorphism using Theorem 6.3(b) and the remark
thereafter, in conjunction with Lemma 6.7. �

Thus, for any dynamically local theory A , there is no simpler dynamically
local theory that could account for the physics in any particular spacetime. In
this sense, dynamical locality therefore ensures that A has the same physical
content in all spacetimes. Examples of the type presented in Sect. 4 include
cases, where A (resp., B) is dynamically local, but B (resp., A ) is not and
where there is a partial isomorphism B → A that is not an isomorphism. Let
us note that much of the argument depends largely on the additivity property
(that is a consequence of dynamical locality). The exception is Proposition 6.8,
where additivity seems to be insufficient, and one requires the stronger dynam-
ical locality assumption.

To conclude this section, we consider the consequences of dynamical local-
ity for ordinary diagonal theories.

Theorem 6.11. Suppose ϕΔ is an ordinary diagonal theory such that ϕΔ and
every ϕ(M) are dynamically local. Then (a) for every morphism ψ : M →N ,
ϕ(ψ) is a natural isomorphism; (b) ϕΔ is gauge-equivalent to any ϕ(M). In
particular, if Aut(ϕ(M)) is trivial, then ϕΔ is equivalent to each ϕ(M).

Proof. (a) We have

ϕΔ(ψ) ∼= α
(ϕΔ)kin
N ;ψ(M)

∼= α
(ϕΔ)dyn
N ;ψ(M)

∼= α
(ϕ(N))dyn
N ;ψ(M)

∼= α
(ϕ(N))kin
N ;ψ(M)

∼= ϕ(N)(ψ)

using dynamical locality of ϕΔ and ϕ(N) and Theorem 5.7 (expressed
in subobject language). Hence, ϕ(N)(ψ) ◦ ϕ(ψ)M

∼= ϕ(N)(ψ) and as
ϕ(N)(ψ) is monic, ϕ(ψ)M is an isomorphism. As both ϕ(M) and ϕ(N)
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are dynamically local, Theorem 6.10 entails that ϕ(ψ) is a natural iso-
morphism.

(b) Writing M0 for Minkowski space, for each M we may choose a chain of
morphisms as in Proposition 2.6

M0 ←M1 →M2 ←M3 →M

and use part (a) four times, composing the corresponding natural isomor-
phisms or their inverses, to obtain a natural isomorphism ζM : ϕ(M0)

.→
ϕ(M). Then for each ψ : M → N , η(ψ) := ζ−1

N ◦ ϕ(ψ) ◦ ζM is an auto-
morphism of ϕ(M0). It is obvious that η(ψ ◦ ψ′) = η(ψ) ◦ η(ψ′) and
η(idM ) = idϕ(M0). Thus, η ∈ Funct(Loc0,Aut(ϕ(M0))) (with the auto-
morphism group regarded as a category) and we have

ϕΔ(ψ) ◦ (ζM )M = ϕ(N)(ψ) ◦ ϕ(ψ) ◦ (ζM )M

= ϕ(N)(ψ) ◦ (ζM )N ◦ η(ψ)M

= (ζN )N ◦ ϕ(M0)(ψ) ◦ η(ψ)M .

Thus, the morphisms (ζM )M form the components of a natural transfor-
mation up to the twisting η.

Finally, if the automorphism group is trivial, η(ψ) is an identity for all
ψ and the (ζM )M become components of a natural isomorphism ζ̂ : ϕ(M0)
.→ ϕΔ. �

This result raises the interesting issue of how much freedom is avail-
able through choice of η, which can be regarded as a cohomological issue. If
Aut(ϕ(M0)) is nontrivial, we can see that inequivalent diagonal theories can
be constructed in the following way. Label every homeomorphism equivalence
class [Σ] of compact connected Riemannian manifold by an element g[Σ] of
Aut(ϕ(M0)), and for each morphism ψ : M → N in Loc0 define η(ψ) to be
trivial except in the case that M has noncompact Cauchy surfaces and N has
compact Cauchy surface, in which case we set η(ψ) = g[Σ(N)]. It is clear that
this defines a functor into Aut(ϕ(M0)).

6.3. A No-Go Theorem for Natural States

To illustrate the significance of the dynamical locality assumption, we prove a
model-independent no-go theorem for assignments of a natural choice of pre-
ferred state of a QFT in all spacetimes. This brings to sharper form an argu-
ment sketched in BFV and [32] for the free scalar field; essentially it shows
that a preferred state is essentially incompatible with quantum field theory.

Unlike the results above, this result is specific to situations in which
Phys is a category of ∗-algebras (including C∗-Alg). We realise the subobjects
A •/dyn/kin(M ;O) as subalgebras of A (M) throughout. In this context, a
state of the theory in spacetime M is a normalised positive linear functional
on the algebra A (M); the space of all states is denoted A (M)∗

+,1. The result
is stated in LCT but has an obvious analogue in LCT0.
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Definition 6.12. A natural state of a theory A in LCT is an assignment Loc �
M 	→ ωM ∈ A (M)∗

+,1 such that A (ψ)∗ωN = ωM for all morphisms ψ :
M →N .

Theorem 6.13. Suppose A is a dynamically local theory in LCT, and has a
natural state (ωM )M∈Loc. If there is a spacetime M with noncompact Cauchy
surfaces such that ωM induces a faithful GNS representation with the Reeh–
Schlieder property [i.e., the GNS vector corresponding to ωM is cyclic for the
induced representation of A (M |O) for all relatively compact O ∈ O0(M)],
then the relative Cauchy evolution is trivial in M . If, additionally, A obeys
extended locality, then A is equivalent to the trivial theory I .

Proof. Let M be as in the statement of the theorem. As the relative Cauchy
evolution is a composition of (inverses of) morphisms A (ψ), we have ωM ◦
rceM [h] = ωM for each M and all h ∈ H(M). Consequently, in the GNS
representation πM induced by ωM , the relative Cauchy evolution may be un-
itarily implemented as

πM (rceM [h]A) = UM [h]πM (A)UM [h]−1

for unitaries UM [h] defined by UM [h]πM (A)ΩM = πM (rceM [h]A)ΩM , leav-
ing the GNS vector ΩM invariant.

Now let h ∈ H(M) and choose a nonempty relatively compact O ∈
O0(M) such that O ⊂ (supph)⊥ (here we use the noncompactness of the
Cauchy surfaces). Then by Proposition 3.5 and Lemma 3.1, we have

rceM [h] ◦ αkin
M ;O = αkin

M ;O

and hence that

UM [h]πM (A (ιM ;O)A)ΩM = πM (A (ιM ;O)A)ΩM

for all A ∈ A (M |O). Using the Reeh–Schlieder assumption on ωM we may
deduce that UM [h] agrees with the identity operator on a dense set and hence
UM [h] = 1HM

for all h ∈ H(M).
As the representation πM is assumed faithful, the relative Cauchy evo-

lution is trivial on A (M) as claimed. Consequently, A •(M ;K) = A (M)
for all compact sets K and hence by dynamical locality A kin(M ;O) = A dyn

(M ;O) = A (M) for each nonempty O ∈ O(M).
Now consider two causally disjoint nonempty O1, O2 ∈ O(M) (it suffices

that they are each connected). It is clear that A can obey extended locality
only if A (M) = C1A (M). (The same would also be true if the A kin(M ;Oi)
are required to be algebraically independent: otherwise we can find a line-
arly independent set {1A (M), A} common to the two algebras, whose list of
products are of course linearly dependent.)

Thus, the subtheory embedding IA : I
.→ A is an isomorphism in

spacetime M . As both I and A are assumed dynamically local, it follows
from Theorem 6.10 that IA is a natural isomorphism. �

We remark that the assumption of commutation at spacelike separation
(in place of extended locality) results in A (M) being abelian, from which we
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can deduce that A (N) is abelian if N is any truncated multi-diamond space-
time, or any spacetime in which the truncated multi-diamonds form a directed
net.

7. Conclusion

We conclude with a brief discussion of further work and related approaches.
First, now that the basic framework has been established, it is necessary to
show that familiar models satisfy dynamical locality. As already mentioned,
we show in [28] that the minimally coupled free scalar field is dynamically
local for nonzero mass, and that the failure of dynamical locality at zero mass
is understood as an expression of the gauge symmetry. Once this is taken into
account the massless theory is again dynamically local, with the single excep-
tion of the two-dimensional theory on Loc. Work is under way on other models,
including the algebra of Wick products.

Second, we again emphasise that we do not expect that the two principles
S1 and S2 described in Sect. 1 completely characterise what a notion of SPASs
should be. For example, it is conceivable that there are (as yet unknown)
dynamically local theories that one might not wish to regard as representing
the same physics in all spacetimes; in that case, it would be clear that S1 and
S2 are insufficient and that further conditions should be imposed. Furthermore,
our discussion is conducted for the most part at the level of local observables.
Even in the algebraic approach to quantum field theory in curved spacetimes
there are several levels of description and the present work addresses only
those aspects that are independent of choices of state spaces which can bring
in properties deriving from the global structure of spacetime. In addition, it is
possible that the formulation of dynamical locality can be refined further. For
example, one might base the theory on the requirement that α•

M ;K should be
isomorphic to any intersection

∧

n α
kin
M ;On

where On is an outer approximating
sequence to K.

Finally, we conclude with some remarks that may help to clarify the
relation of the present work to other approaches studying the interplay of
covariance, locality and dynamics in abstract (operator-algebraic) quantum
field theory. If our setting is specialised to the case that Phys is C∗-Alg, the
category of unital C∗ -algebras, then our discussion remains purely at the
C∗-algebraic level, in that we do not discuss special classes of states or their
GNS representations, from which, in a next step, the C∗-algebraic setting
would be taken to the von Neumann-algebraic level. This step, together with
the analysis of distinguished states and their induced representations, is one of
the central issues in the model-independent approach to quantum field theory,
as is laid out in [30], and other work devoted to the relations between covari-
ance, locality and dynamics is mostly tied to distinguished states, often the
vacuum state in Minkowski spacetime. Some authors have attempted to derive
a concept of dynamical localisation of observables for quantum field theory
in Minkowski spacetime, making use of the properties of the vacuum repre-
sentation [37,39]; however this concept of dynamical localisation is different
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from ours. Another major theme in operator-algebraic quantum field theory
is the concept of “geometric modular action” [13] which has at its roots the
famous Bisognano–Wichmann theorem (see [30], and references cited there).
This theorem says that the Tomita–Takesaki modular objects corresponding
to von Neumann algebras of observables localised in special regions, and to
the vacuum vector, carry geometrical significance. In fact, in some situations
one can gain the full local net structure and covariance group from such mod-
ular objects [13,53]. This is of interest as the modular objects also encode
dynamical information [30], and in some works, this dynamical information
has been related to concepts of locality and covariance [10,14,15,17]. While
these cited works are not directly related to the approach taken in the pres-
ent article, they also focus on the relation between covariance, locality and
dynamics. Closer connections between the cited works and the present article
may possibly be revealed once our setup can suitably be extended at the von
Neumann algebraic level, incorporating distinguished classes of states.
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Appendix A. Geometrical Lemmas

A.1. Cauchy Morphisms

Proposition A.1. Suppose M ∈ Loc0 admits a compact Cauchy surface Σ. If
M

ψ→N in Loc0 then ψ is Cauchy.

Proof. Using homeomorphism equivalence of Cauchy surfaces in M
[44, Cor. 14.32] and [3, Thm. 1.1], we may assume without loss of generality
that Σ is a smooth spacelike Cauchy surface, which is connected
[44, Prop. 14.31], compact and embedded in M . As ψ is an isometric embed-
ding, ψ(Σ) is (in particular) a smoothly immersed spacelike submanifold of N
that is also compact and connected as a result of the properties of Σ. Theorem
1 of [16] then entails that ψ(Σ) is an acausal Cauchy surface16 of N , so ψ is
Cauchy. �

16 Note that ‘acausal’ is included in the definition of Cauchy surface in [16].
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Lemma A.2. Suppose ψ : M →N is Cauchy. Then if Σ is any Cauchy surface
of M , ψ(Σ) is a Cauchy surface of N .

Proof. Any inextendible timelike curve γ : R → N in N enters ψ(M), and
I = γ−1(ψ(M)) is open and connected by causal convexity of the embedding.
We therefore obtain a timelike curve γ̂ : I → M so that ψ ◦ γ̂ = γ|I . Now γ̂
has no endpoint in M and is therefore inextendible; accordingly it intersects
Σ exactly once. Hence, γ|I intersects ψ(Σ) exactly once and so the same is
true of γ. �

Lemma A.3. The composite of Cauchy morphisms is Cauchy.

Proof. If ϕ : L→M and ψ : M →N are Cauchy and Σ is a Cauchy surface
of L, then we apply Lemma A.2 successively to show that ϕ(Σ) is a Cauchy
surface of M and hence (ψ ◦ ϕ)(Σ) is a Cauchy surface of N . Hence, ψ ◦ ϕ is
Cauchy. �

We now give two proofs deferred from Sect. 2.

Proof of Proposition 2.2. We are given a Cauchy morphism ψ : M → N in
Loc0 or Loc, and must prove that ψ(M) contains a smooth, spacelike and
acausal Cauchy surface for N and that the smooth spacelike Cauchy surfaces
of M and N are oriented-diffeomorphic.

By virtue of [3, Thm. 1.1] M has a smooth spacelike Cauchy surface Σ;
Lemma A.2 shows that the smooth spacelike surface Σ′ = ψ(Σ) is a Cauchy
surface for N , and is therefore acausal by [44, Lem. 14.42]. Putting M and N
into normal form, we may construct oriented-diffeomorphisms ρ : R×Σ→M ,
ρ′ : R × Σ′ → N (with the canonical orientations and other properties dis-
cussed in Sect. 2), thus giving a smooth map Ψ = prΣ′ ◦(ρ′)−1◦ψ◦ρ0 : Σ→ Σ′,
where prΣ′ is the projection onto Σ′ and ρ0(·) = ρ(0, ·).

Now Ψ is an immersion (and hence also a submersion) because the ker-
nel of (prΣ′ ◦(ρ′)−1)∗ is timelike while the image of (ψ ◦ ρ0)∗ is spacelike; it
is also injective (prΣ′ ◦(ρ′)−1 identifies points only if they are connected by
a timelike curve, while ρ0(Σ) is achronal and ψ(M) is causally convex) and
surjective (by definition of Σ′ = ψ(Σ) and because prΣ′ ◦(ρ′)−1 ◦ ρ′

0 = idΣ′).
Accordingly, Ψ is a diffeomorphism (see, e.g., [40, Thm 7.15]) that preserves
orientations because ψ preserves orientation and time-orientation. In partic-
ular, Ψ is a homeomorphism and so all Cauchy surfaces of M and N are
homeomorphic. �

Proof of Proposition 2.4 (converse). Our argument is a slight elaboration and
variant of that in [29] in order to incorporate detail on orientations. We also
take the opportunity to simplify the argument slightly, while also being more
specific on some details. We suppose M and N have oriented-diffeomorphic
smooth spacelike Cauchy surfaces Σ and Σ′ with canonical orientations w and
w′. Using any oriented-diffeomorphism between Σ and Σ′ we may put both
M and N into normal form on R×Σ equipped with the orientation dt∧w by
means of oriented-diffeomorphisms ρM : R × Σ →M and ρN : R × Σ → N .
The two pulled back metrics on R× Σ may be written as
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ρ∗
MgM = βMdt⊗ dt− ht, ρ∗

NgN = βNdt⊗ dt− kt,

where βM , βN ∈ C∞(R × Σ) are strictly positive and ht and kt are smooth
Riemannian metrics on Σ depending smoothly on t. One may find smooth
positive functions K,H ∈ C∞(R×Σ) such that kt,σ ≥ K(t, σ)ht,σ and ht,σ ≥
H(t, σ)kt,σ as quadratic forms.17 Fixing t0 > 0, let F = (t0,∞) × Σ and
P = (−∞,−t0) × Σ and choose any nonnegative χ ∈ C∞(R) such that χ
equals unity on F and vanishes on P . Construct a metric

g = βdt⊗ dt− (χht + (1− χ)kt)

where β is chosen to be a smooth positive function such that

β ≤ (χ+ (1− χ)K)βM

on t > − 1
2 t0, with equality for t ≥ t0, and

β ≤ (1− χ+ χH)βN

on t < 1
2 t0, with equality for t ≤ −t0. Then it is easily seen that every g-causal

curve is ρ∗
MgM -causal in (− 1

2 t0,∞)×Σ and ρ∗
NgN -causal in (−∞, 1

2 t0)×Σ.
But these metrics are globally hyperbolic, so every inextendible g-timelike
curve intersects each {t} × Σ surface exactly once. Accordingly, R × Σ, with
the metric g, orientation dt ∧ w and time-orientation so that ∂/∂t is future-
pointing, is a globally hyperbolic spacetime in Loc (or Loc0 as appropriate),
which we denote I. The metric g clearly coincides with ρ∗

MgM in F and with
ρ∗

NgN on P .
Finally, the regions F and P are open globally hyperbolic subsets of I

containing Cauchy surfaces of I and their images ρM (F ) and ρN (P ) evidently
contain Cauchy surfaces for M and N . Setting F = I|F and P = I|P , we
then have a diagram of the form (2.1)

M ← F → I ← P →N ,

with the canonical inclusions ιI;F and ιI;P providing the inner Cauchy mor-
phisms and the restrictions ρM |F and ρN |P as the outer two Cauchy mor-
phisms. �

.

A.2. Covariance of Hyperbolic Perturbations

Next, we turn to a number of results used in the discussion of relative Cauchy
evolution in Sect. 3.4. We recall that the chronological future(+)/past(−)
I±
M (p) of p consists of all points (excluding p) that can be reached from p along

a future/past-directed piecewise smooth timelike curve in M ; by smoothing
results such as [45, Prop. 2.23] we obtain the same set if we only admit smooth
timelike curves (which may even be chosen to be geodesic near their endpoints).
Similarly, the causal future/past J±

M (p) consists of all points (including p) that
can be reached from p by future/past directed piecewise smooth (or, equiv-
alently, smooth) causal curves. Note that any causal curve is confined to a

17 E.g., use K = [(ht)i
j(ht)

j
i]

−1/2 with kt used to raise indices, and the analogous expres-

sion for H.
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single connected component of the spacetime. For a subset S ⊂M we define
J±

M (S) =
⋃

p∈S J
±
M (p), etc. Extensive use will be made of the fact that glob-

ally hyperbolic spacetimes are causally simple: for every compact set K, the
sets J±

M (K) are closed (see, e.g., Prop. 6.6.1 in [31]; Theorem 8.3.11 in [52]).
For any subset S ⊂ M we define the future(+)/past(−) Cauchy devel-

opment D±(S) of S to be the set of points p such that every past/future-in-
extendible piecewise smooth causal curve through p intersects S; DM (S) =
D+

M (S) ∪ D−
M (S). If S is either achronal or closed, we may replace ‘piece-

wise smooth’ by ‘smooth’ without loss, but more generally, this can result in
a different set.

Proof of Lemma 3.2. If M is connected, this is immediate from the special
case K = supph of the following result, Lemma A.4. If M has more than
one connected component, the result follows by applying Lemma A.4 to each
component. �

Lemma A.4. Let K be a compact subset of the underlying manifold M of
M ∈ Loc0 and defineM± =M\J∓

M (K). ThenM± are open, connected, glob-
ally hyperbolic subsets of M [h] for any h ∈ H(M ;K). Moreover, M |M± =
M [h]|M± and the canonical inclusions M [h]|M± → M [h] are Cauchy mor-
phisms.

Remark. We do not assume that K is connected.

Proof. As K is compact, J±
M (K) are closed so M± are open. We now claim

that J±
M [h](K) = J±

M (K) for any h ∈ H(M ;K). To show this (for the (+)
case), take any q ∈ M\K with q ∈ J+

M [h](K). Then there is a future-directed
M [h]-causal curve γ : [0, 1] → M with γ(0) ∈ K and γ(1) = q. Defining
τ∗ = sup γ−1(K) we have τ∗ < 1 and γ(τ∗) ∈ K. As h is supported in K, the
curve γ|[τ∗,1] is also M [h′]-causal for any h′ ∈ H(M ;K), so q ∈ J+

M [h′](K).
Thus, J+

M [h](K) ⊂ J+
M [h′](K); reversing the roles of h and h′ the two sets are

therefore equal for arbitrary h,h′ ∈ H(M ;K). Setting h′ = 0 the (+)-case of
the claim is established; the (−)-case is analogous.

To establish global hyperbolicity, take p, q ∈M− and γ a future-directed
M [h]-causal curve from p to q. If γ leaves M− then it contains a point of
J+

M [h](K); hence q ∈ J+
M [h](K), which is a contradiction. Thus, γ is contained

within M, as required.
Connectedness is proved as follows. Take any p, q ∈ M−, then we may

find a M -Cauchy surface Σ that is contained in M− and lies to the past of
both p, q.18 As there are past-directed causal curves joining each of p and q to

18 Let T : M → R be a Cauchy temporal function for M , which exists by [4, Thm 1.1];

then T (K) is compact and hence T (J+
M (K)) ⊂ [τ,∞) for some τ ∈ R, which, without loss

of generality may be chosen so that τ < min{T (p), T (q), 0}. Then Σ = T −1({2τ}) meets
the requirements, by choice of T we may additionally arrange that Σ be spacelike.
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Σ, which is path-connected,19 we conclude that p is path-connected to q. As
p, q are arbitrary, we deduce thatM− is path-connected and hence connected.

Finally, as M± contain M [h]-Cauchy surfaces (using a similar argu-
ment to that in footnote 18), the canonical inclusions of M [h]|M± → M [h]
are Cauchy morphisms. Moreover, M [h]|M± = (M±, g|M± , o|M± , t|M±) =
M |M± for all h ∈ H(M). �
Proof of Lemma 3.4. We prove the (+) case, thus supposing that the range
of ψ is contained in M\J−

M (K). Then we have ψ∗h = 0 for h ∈ H(M ;K)
and it follows straightforwardly that the underlying embedding of ψ induces
ψ[h] : L→M [h]. By Lemma 3.2 the setM+ =M\J−

M (supph) is a globally
hyperbolic subset of M and M [h]; as ψ(L) ⊂ M+ ⊂ M, the morphisms
ψ and ψ[h] factor via the inclusion morphisms ı+M [h] : M+[h] → M and
j+M [h] : M+[h]→M [h], respectively, i.e.,

ψ = ı+M [h] ◦ ϕ+, ψ[h] = j+M [h] ◦ ϕ+.

for ϕ+ : L→M+[h].
If ψ is Cauchy then ψ(L) contains a Cauchy surface for M and hence

M+[h] (as ψ(L) ⊂ M+). Thus ϕ+ is Cauchy. As j+M [h] is Cauchy and
the composite of Cauchy morphisms is Cauchy, it follows that ψ[h] is also
Cauchy. �

The next task is to prove that the push-forward of a globally hyperbolic
perturbation under a Loc (or Loc0) morphism is again a globally hyperbolic
perturbation (Lemma A.7). This is broken into steps as follows.

Lemma A.5. Suppose that K is a compact subset of a globally hyperbolic space-
time M = (M, g, o, t) ∈ Loc and that γ : I → M is an inextendible future-
directed M -timelike curve, where I is an open interval of R. Then γ−1(K) is
bounded.

Proof. Choose a Cauchy temporal function T on M then T (K) is compact
and contained in some interval (τ−, τ+). Then Σ± = T −1(τ±) are Cauchy
surfaces of M to the past (−) and future (+) of K, i.e., J±

M (Σ±) ∩ K = ∅.
As it is inextendible, γ intersects Σ± at unique t± ∈ I and it is clear that
γ−1(K) ⊂ (t+, t−) because γ(t) lies in J−

M (Σ−) for t < t− (resp., J+
M (Σ+) for

t > t+) and does not intersect K in this interval. �
Lemma A.6. Suppose M = (M, g, o, t) ∈ Loc and let K be a compact sub-
set of M contained in an open M -causally convex subset U that has at most
finitely many connected components. Let Σ be a Cauchy surface of M to the
past of K, i.e., K ⊂ I+

M (Σ). Suppose g′ is a time-orientable Lorentz metric
on M with time-orientation t′ such that g′ = g, t′ = t outside K, and so that
U = (U, g′|U , o|U , t′|U ) ∈ Loc. Then:

(i) if γ is a (g′, t′)-causal curve inM with endpoints in U then γ is contained
in U ;

19 It is connected [44, Prop. 14.31] and therefore path-connected, because it is a topological
manifold.
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(ii) if γ : R → M is an inextendible (g′, t′)-timelike curve intersecting K
then γ−1(U) is an open interval and γ−1(K) is bounded;

(iii) any inextendible g′-timelike curve γ : R→M intersects Σ exactly once;
(iv) the spacetime M ′ = (M, g′, o, t′) is globally hyperbolic, i.e., M ′ ∈ Loc.

Proof. (i) Suppose γ : [0, 1] →M is (g′, t′)-causal with γ(0), γ(1) ∈ U , but
γ(t) �∈ U for some t ∈ (0, 1). Then there are t0, t1 with 0 < t0 < t < t1 < 1
such that γ(t0), γ(t1) ∈ U but γ|[t0,t1] does not intersectK. Hence, γ|[t0,t1]
is M -causal and therefore contained in U by causal convexity. This is a
contradiction.

(ii) An immediate corollary of (i) is that I = γ−1(U) is an open convex subset
of R, i.e., an open interval. Now the restriction of γ to I is an inextend-
ible future-directed timelike curve in the globally hyperbolic spacetime
U . Applying Lemma A.5, we find that (γ|I)−1(K) = γ−1(K) is bounded.

(iii) If γ does not intersect the interior ofK, it is also M -timelike and therefore
intersects Σ exactly once. If γ does intersect int(K) ⊂ U , then γ−1(K) is
bounded from below by (ii) and t0 = inf γ−1(K) is finite. As any portion
of γ outside K is M -timelike and future-directed, we have

γ(t) ∈ J+
M (γ(sup{t′ ≤ t : γ(t′) ∈ K})) ⊂ J+

M (K)

for any t > t0. Thus γ|(t0,∞) does not intersect Σ, while the past-inex-
tendible portion γ|(−∞,t0] intersects Σ exactly once because γ(t0) ∈ K
lies to the future of Σ.

(iv) It follows immediately from (iii) that Σ is a Cauchy surface for the space-
time (M, g′, o′, t′), which is therefore globally hyperbolic. �

We can now prove the covariance property of globally hyperbolic pertur-
bations.

Lemma A.7. Suppose ψ : L → M in Loc. Then ψ∗(H(L)) ⊂ H(M). (In
particular, this applies to all morphisms in Loc0.)

Proof. Write M = (M, g, o, t), L = (L, ψ∗g, ψ∗o, ψ∗t) and U = ψ(L), K =
ψ(supph), where h ∈ H(L). Then g′ = g + ψ∗h is a Lorentz metric on M.
To show that it is time-orientable, let T1 (resp., T2) be a L[h]-timelike (resp.,
M -timelike) nowhere zero, future-pointing vector field on L (resp., M). Let
χ ∈ C∞

0 (M) be nonnegative, with χ = 1 on K and χ = 0 outside U . Then
χψ∗T1+(1−χ)T2 is nowhere zero and g′-timelike, and therefore defines a time-
orientation t′ of g′ that agrees with t outside ψ(K). As there exist M -Cauchy
surfaces to the past of K, Lemma A.6(iv) entails that (M, g′, o, t′) ∈ Loc, i.e.,
ψ∗h ∈ H(N). �

A.3. Causal Complements and (Multi-)Diamonds

Finally, we give a number of results relating to causal structure and multi-
diamonds in globally hyperbolic spacetimes. Similar results appear elsewhere
(e.g., [12, Appx B], [11, §2], [46, §3]) but we are not aware of a full presentation
of all the results needed in the body of this paper. Notation and terminology
varies in the literature and the definition of causal complement is not always
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made clear (the cited references are exceptions to this). It is hoped that this
appendix may be useful more widely.

Recall that we have two notions of causal complement in a globally hyper-
bolic spacetime M : O⊥ =M\JM (O) and O′ =M\ cl(JM (O)). Clearly O′ is
always an open set.

Lemma A.8. Let O be an open subset of a globally hyperbolic spacetime M .
Then J±

M (O) are open, and O ⊂ O′′.

Proof. If q ∈ J±
M (O) then O has nontrivial intersection with the (closed)

set J∓
M (q), which is the closure of I∓

M (q) as M is globally hyperbolic ([44],
Lem. 14.6). Thus O intersects I∓

M (q), so q ∈ I±
M (p′) for some p′ ∈ O, and we

have shown that J±
M (O) ⊂ I±

M (O) = int(J±
M (O)). As O′ ∩ JM (O) is empty,

so is JM (O′) ∩O and hence cl(JM (O′)) ∩O. Thus O ⊂ O′′. �

Lemma A.9. Let Σ be an acausal Cauchy surface in globally hyperbolic space-
time M and let S be an open subset of Σ such that clS has nontrivial comple-
ment in Σ. Then S′′ = DM (S) = DM (S)′′. In particular, every multi-diamond
O is causally complete in the sense that O = O′′.

Proof. First, using DM (S) ⊂ JM (S), observe that

DM (S)′ =M\ cl JM (DM (S)) =M\ cl JM (S) = S′

and hence S′′ = DM (S)′′ (this holds for any subset S of M ; similarly, we also
have DM (S)⊥ = S⊥ and thus S⊥⊥ = DM (S)⊥⊥ for any subset S); it remains
to show that DM (S) is causally complete.

As S is open in Σ, it inherits the property of being an acausal topological
hypersurface [44, 14.24] from Σ; accordingly O = DM (S) is an open subset
of M [44, 14.42]. We observe that Σ\ cl(S) ⊂ O′; if not, then we may find
q ∈ Σ\ cl(S) and qn → q with qn ∈ JM (O). Choose an open neighbourhood
U of q in Σ that does not intersect cl(S), then DM (U) is an open neighbour-
hood of q that contains qn for sufficiently large n. But qn ∈ JM (O) = JM (S)
contradicts qn ∈ DM (U).

To establish causal completeness it suffices to show O′′ ⊂ O. If p /∈ O
there is an inextendible causal curve through p intersecting Σ at q /∈ S. Assume
without loss that p ∈ J+

M (q). Then there are points pn → p with pn ∈ I+
M (q)

and hence neighbourhoods Un of q with Un ⊂ I−
M (pn). Each Un must intersect

Σ\ cl(S) nontrivially, so pn ∈ J+
M (Σ\ cl(S)) ⊂ JM (O′). Hence p ∈ cl(JM (O′))

i.e., p /∈ O′′. Thus O′′ ⊂ O, so O′′ = O.
If O is a multi-diamond then O = DM (S) where S meets the above

hypotheses; hence O = O′′. �

Lemma A.10. Suppose K is a compact subset of globally hyperbolic spacetime
M . Then (i) K⊥ is open, K⊥⊥ is closed, and K ⊂ K⊥⊥; (ii) K⊥⊥⊥ = K⊥

and K⊥⊥ is causally complete with respect to ⊥; (iii) K⊥⊥ is causally convex.
If, in addition, K has a multi-diamond neighbourhood O then K⊥⊥ is compact
and contained in cl(O).



1666 C. J. Fewster and R. Verch Ann. Henri Poincaré

Remark. In general, K⊥⊥ need not be compact, e.g., if K contains a Cauchy
surface for M . As another example, let K be a closed ball of radius 1 in the
t = 0 plane of the |t| < 1/2 portion of Minkowski space in standard coordi-
nates, then K⊥⊥ is the |t| < 1/2 portion of the diamond based on the interior
of K, and is noncompact.

Proof. (i) As K is compact, JM (K) is closed and K⊥ =M\JM (K) is there-
fore open. Hence, by Lemma A.8, JM (K⊥) is open and K⊥⊥ is closed.
Moreover, as K⊥ ∩ JM (K) is empty, so is JM (K⊥) ∩ K; hence we see
that K ⊂ K⊥⊥.

(ii) If p ∈ K⊥⊥ then JM (p) ⊂ JM (K); otherwise, JM (p) would intersectK⊥,
giving p ∈ JM (K⊥) and a contradiction. Thus, JM (K⊥⊥) = JM (K) and
so K⊥⊥⊥ = K⊥. In particular, K⊥⊥ is casually complete with respect to
⊥.

(iii) Take any p, q ∈ K⊥⊥. If a future-directed causal curve γ joins p and q but
leaves K⊥⊥ there must be r ∈ JM (K⊥) such that q ∈ J+

M (r), p ∈ J−
M (r).

Thus, one or both of p, q belong to JM (K⊥), which is a contradiction.
Hence, K⊥⊥ is causally convex and therefore a closed globally hyperbolic
subset of M .
Finally, if K has a multi-diamond neighbourhood O, then O′ ⊂ K⊥,

and hence JM (O′) ⊂ JM (K⊥). Hence, K⊥⊥ ⊂M\JM (O′) = cl(O′′) = cl(O),
which is compact. Accordingly, K⊥⊥ is a closed subset contained in a compact
set, and hence compact. �

Lemma A.11. Let M be a globally hyperbolic spacetime. (i) Suppose O1 and
O2 are open subsets of M , with O1 relatively compact and cl(O1) ⊂ O2. Then
cl(JM (O1)) ⊂ JM (O2). (ii) Suppose On (n ∈ N) is a sequence of relatively
compact subsets of M with cl(On+1) ⊂ On for all n ∈ N and

⋂

n∈N
On = K

compact. Then

JM (K) =
⋂

n∈N

JM (On) =
⋂

n∈N

cl(JM (On)), and hence K⊥ =
⋃

n∈N

O′
n.

Proof. (i) We calculate

cl(JM (O1)) ⊂ cl(JM (cl(O1))) = JM (cl(O1)) ⊂ JM (O2)

using the fact that JM (cl(O1)) is closed.
(ii) The inclusion JM (K) ⊂

⋂

n∈N
JM (On) is immediate from K ⊂ On for

all n. On the other hand, if p ∈
⋂

n∈N
JM (On) then there exist qn ∈

JM (p)∩On for all n. As all qn are contained in the relatively compact set
O1 we may pass to a convergent subsequence qnr

with limit q ∈ cl(O1); as
all but finitely many of the qnr

are contained in each Om+1 (m = 1, 2, . . .),
we also have q ∈ cl(Om+1) ⊂ Om for each m ∈ N and hence q ∈ K. As the
qnr

lie in the closed set JM (p), we additionally have q ∈ K ∩ JM (p) and
hence conclude that p ∈ JM (K). Accordingly, we have proved the first
of the required equalities. By part (i) we have cl(JM (On+1)) ⊂ JM (On)
for all n from which the second equality follows. Taking complements in
M we obtain the required formula for K⊥. �
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Lemma A.12. Let S be a subset of a time-oriented Lorentzian spacetime M
such that J+

M (cl(S)) is closed (for example, if S is a relatively compact subset
of a globally hyperbolic spacetime). Then

J+
M (cl(S)) = cl(I+

M (S)) = cl(J+
M (S)). (A.1)

The analogous result holds for causal and chronological pasts. If both
J±

M (cl(S)) are closed then JM (cl(S)) = cl(JM (S)) and hence (cl(S))⊥ = S′.

Proof. Owing to the hypothesis, we have

J+
M (cl(S)) = cl(I+

M (cl(S))) = cl(I+
M (S)) ⊂ cl(J+

M (S))

⊂ cl(J+
M (cl(S))) = J+

M (cl(S))

using the standard results Lemma 14.6(2) in [44] and Prop. 2.11 in [45] for the
first two equalities. This establishes Eq. (A.1); the remaining statements are
trivial. �
Lemma A.13. Let S be any subset in a globally hyperbolic spacetime M . Then
the Cauchy development obeys DM (S) ⊂ S⊥⊥, with equality if S lies in an
acausal Cauchy surface of M .

Remark. The example of S = {p, q} for q ∈ J+
M (p), for which DM (S) = S,

S⊥⊥ = J+
M (p) ∩ J−

M (q), shows that equality cannot be expected in general.

Proof. If p ∈ DM (S) then every inextendible causal curve through p inter-
sects S. Thus, any point causally connected to p is causally connected to S,
i.e., p /∈ JM (S⊥) and hence p ∈ S⊥⊥. If S ⊂ Σ, an acausal Cauchy surface
of M , then Σ\S ⊂ S⊥. Accordingly, any inextendible causal curve through
p ∈ S⊥⊥ must cut Σ in S, so S⊥⊥ = DM (S) in this case. �
Lemma A.14. Suppose D is a multi-diamond, with base B in spacetime M ∈
Loc. If K is any compact subset of D then K ⊂ K̃⊥⊥ for a compact subset K̃
of B (hence K̃ ∈ K (M ;D)).

Proof. Suppose Σ is a spacelike Cauchy surface for M with B ⊂ Σ. Then
JM (K) ∩ Σ is compact and contained in B, which has a finite number R
of connected components Br. Each Br is contained in a chart (Ur, φr) of Σ
in which φr(Br) is an open ball; we may choose a compact set Kr so that
φr(Kr) is the closure of a slightly smaller ball with the same centre and so
that Kr contains JM (K)∩Σ∩Br. Then K̃ =

⋃R
r=1Kr is compact and contains

JM (K) ∩ Σ. Moreover, K ⊂ DM (K̃) = K̃⊥⊥ by Lemma A.13 and the fact
that spacelike Cauchy surfaces are acausal [44, Lem. 14.42]. Finally, K̃ has a
multi-diamond neighbourhood D, with base B ⊂ D, so K̃ ∈ K (M ;D). �
Lemma A.15. If ψ : M → N in Loc then ψ(K⊥⊥) = ψ(K)⊥⊥ for all K ∈
K (M).

Proof. Observe first that for any subset S ⊂M , we have JN (ψ(S))∩ψ(M) =
ψ(JM (S)) by causal convexity of ψ(M) and hence ψ(S)⊥ ∩ ψ(M) = ψ(S⊥),
using also the injectivity of ψ. It follows that

ψ(K⊥⊥) = ψ(K⊥)⊥ ∩ ψ(M) = (ψ(K)⊥ ∩ ψ(M))⊥ ∩ ψ(M).
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But as K has a multi-diamond neighbourhood D in M , K⊥⊥ ⊂ cl(D)
(Lemma A.10); similarly, as ψ(D) is a multi-diamond in N we have ψ(K)⊥⊥ ⊂
cl(ψ(D)) ⊂ ψ(M) and hence

ψ(K⊥⊥) = (ψ(K)⊥ ∩ ψ(M))⊥ ⊃ ψ(K)⊥⊥.

Now take any point p ∈ K⊥⊥ and suppose for a contradiction that ψ(p) ∈
N\ψ(K)⊥⊥ = JN (ψ(K)⊥). By causal convexity of ψ(M), ψ(p) would lie in
JN (ψ(K)⊥) only if p ∈ JM (K⊥), which would contradict the assumption that
p ∈ K⊥⊥. Accordingly, we have ψ(p) ⊂ JN (q) for some q ∈ ψ(K)⊥\ψ(K⊥),
which must therefore lie outside ψ(M) because ψ(K⊥) = ψ(K)⊥ ∩ ψ(M) as
shown above. Without loss of generality, we may suppose that ψ(p) lies to
the future of q along smooth causal curve γ. The pre-image of γ under ψ is
a connected future-directed smooth causal curve, which is past-inextendible
in M and therefore contains points outside J+

M (K). Take any such point r; r
cannot lie in J−

M (K) (otherwise q ∈ J−
N (ψ(K))) and hence r ∈ K⊥. But this

entails that p ∈ JM (K⊥), contradicting the initial assumption p ∈ K⊥⊥. �

Appendix B. Subobjects, Intersections and Unions

We summarise the basic properties of subobjects that are used in the body of
the text. For completeness, we also include some standard definitions of cate-
gory theory (although we take the basic definition of a category for granted).
To a large extent we follow [21].

In a general category C, then, a morphism f is described as monic (or as
a monomorphism) iff it is left-cancellable, so f ◦g = f ◦h implies g = h, and as
epic (or as an epimorphism) iff it is right-cancellable, so g ◦ f = h ◦ f implies
g = h. An object � of C is initial if there is a unique morphism �A : � → A
for each object A of C. A monic will be equivalently described as defining a
subobject of its codomain, so that m : M → A is a subobject of A. In cases
where the morphism �A is monic, we will describe this as the trivial subob-

ject of A. Subobjects M m→ A and M ′ m′
→ A are isomorphic iff there exists

an isomorphism f : M → M ′ such that m = m′ ◦ f , in which case we write
m ∼= m′; in the case where m = m′ ◦ f for some f that is not necessarily an
isomorphism, we write m ≤ m′ (f is uniquely specified because m′ is monic).

A category C has equalisers if it satisfies the following condition: for every
pair of morphisms f, g : A→ B there is a morphism h such that f ◦ h = g ◦ h
and such that if k is any morphism such that f ◦ k = g ◦ k then k factorises
uniquely via h, i.e., k = h ◦m for a unique morphism m; h is said to be an
equaliser of f and g in this situation.

Given a collection (mi)i∈I (in which I is a class) of subobjects of A their
intersection and union may be defined as follows: An intersection is a subobject
m : M → A with the following properties:
1. m factorises via each mi as m = mi ◦ ji;
2. given any f : B → A factorising via each mi as f = mi ◦ ki, there exists a

unique g : B →M such that ji ◦ g = ki for all i ∈ I, and hence f = m ◦ g.
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These properties define m up to isomorphism and we write

m ∼=
∧

i∈I
mi :

∧

i∈I
Mi → A.

The category C is said to have intersections (with respect to monics) if every
such collection of subobjects has an intersection. More generally, one can define
intersections with respect to a subclass M of monics [21].

Lemma B.1. (a) With the above notation, if (vi)i∈I are isomorphisms pre-
composable with the (mi) then (mi)i∈I has an intersection if and only if
(mi ◦ vi)i∈I does, and

∧

i∈I
mi ◦ vi ∼=

∧

i∈I
mi

(b) If k : A→ A′ is monic then (k ◦mi)i∈I has an intersection if and only if
(mi)i∈I does; provided that I is nonempty20 we have

k ◦
∧

i∈I
mi
∼=

∧

i∈I
k ◦mi

Proof. (a) Suppose (mi) has an intersection m with factorisations m = mi ◦
ji. Then m also factorises as m = mi ◦ vi ◦ j′

i for j′
i = v−1

i ◦ ji and we will
show that this defines an intersection of (mi ◦vi)i∈I . Suppose f factorises
as f = mi ◦vi ◦ki, then the intersection property of the (mi) implies that
there is a unique g such that vi ◦ ki = ji ◦ g and hence ki = j′

i ◦ g for all
i ∈ I. Thus, (mi ◦vi)i∈I has m as an intersection. The reverse implication
also follows from this argument.

(b) Suppose (mi) has an intersection m with factorisations m = mi ◦ ji; we
must show that k ◦ m is an intersection of the k ◦ mi, with factorisa-
tions k ◦m = (k ◦mi) ◦ ji. To this end, suppose there are factorisations
f = k ◦mi ◦ li for all i. As k is monic, this implies the existence of h such
that mi ◦ li = h for all i and (because

∧

imi exists), the existence of a
unique g with li = ji ◦ g for all i, which was to be shown. On the other
hand, suppose that (k◦mi)i∈I have an intersection h = k◦mi ◦ji. Again,
as k is monic, we may write h = k ◦m with m = mi ◦ ji for all i. To see
that this defines an intersection of (mi)i∈I , suppose f = mi ◦ li for all i.
Then k ◦ f = k ◦mi ◦ li and (because

∧

i k ◦mi exists) there is a unique
g such that li = ji ◦ g, which was to be shown. �

On the other hand, the union is a subobject m : M → A with the follow-
ing properties

1. every mi factorises as mi = m ◦ m̃i (in which m̃i : Mi →M)
2. given any f : A→ B, if there exists a subobject n : N → B such that every
f ◦mi factorises as n ◦ ñi, then there is a unique morphism f̃ : M → N
such that n ◦ f̃ = f ◦m and f̃ ◦ m̃i = ñi for all i ∈ I.

20 The intersection of an empty class of subobjects of A is idA.
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Property (2) can be displayed diagrammatically as the commuting dia-
gram

(B.1)

(in which it is tacit that mi = m ◦ m̃i).
It is easy to see that this defines the union subobject up to isomorphism;

we therefore write (following [21] §1.9)

m ∼=
∨

i∈I
mi :

∨

i∈I
Mi → A

The union always exists if C has intersections and also has pull-backs
with respect to monics in the following sense: whenever f : X → Y and
n : N → Y is a subobject, there is a subobject m : M → X and a morphism
f ′ : M → N such that n◦ f ′ = f ◦m, and if there are morphisms g and h such
that n ◦ h = f ◦ g then there is a unique t such that m ◦ t = g, whereupon also
h = f ′ ◦ t.

Lemma B.2. Let (mi)i∈I (resp., (nj)j∈J ) be a class-indexed family of subob-
jects of A ∈ C with union m : M → A (resp., n : N → A). If, to each i ∈ I
there is j(i) ∈ J such that mi = nj(i) ◦ μi for some μi, then there is a unique
ξ : M → N such that n ◦ ξ = m. If, additionally, J ⊂ I and nj ∼= mj for each
j ∈ J then ξ is an isomorphism.

Proof. Let nj = n ◦ n̂j be the factorisations associated with
∨

j∈J nj , and con-
sider diagram (B.1), with B = A, f = idA and ñi = n̂j(i) ◦ μi. As the outer
portion commutes we deduce the existence of a unique ξ (replacing f̃) with the
property stated. In the special case, we may apply this result again with the
roles of mi and nj reversed, giving a unique η such that m◦η = n. As m and n
are monic, it follows that η and ξ are mutual inverses, hence isomorphisms. �

A useful consequence is that if I is a class and for each i ∈ I there is a
nonempty class Ji labelling subobjects mij , then we have the ‘Fubini property’

∨

i∈I

∨

j∈Ji

mij
∼=

∨

(i,j)∈K
mij
∼=

∨

j∈J

∨

i∈Ij

mij , (B.2)

where J =
⋃

i∈I Ji, K = {(i, j) ∈ I × J : j ∈ Ji} and Ij = {i ∈ I : j ∈ Ji}
(j ∈ J).

Lemma B.3. Suppose a category C has equalisers, and intersections and pull-
backs with respect to monics. Let (mi)i∈I be a class-indexed family of subobjects
of A ∈ C with union m : M → A. If h : A→ A obeys h ◦mi = mi for all i ∈ I
then h ◦m = m.
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Proof. We have h◦mi = idA ◦mi and hence a factorisation mi = g◦ g̃i for each
i ∈ I where g is an equaliser of h and idA (and is necessarily monic). In conjunc-
tion with the factorisation mi = m◦m̃i this induces a factorisation mi = n◦ ñi
via the intersection (=pullback) n : N → A of g and m, corresponding to
n = g◦k = m◦�. The outer portion of the diagram (B.1) commutes for all i ∈ I,
with B = A, f = idA, and there is therefore a morphism f̃ to make the diagram
commute in full. Consequently, h◦m = h◦n◦f̃ = h◦g◦k◦f̃ = g◦k◦f̃ = n◦f̃ = m
as required. �

As we study categories in which all morphisms are monic, the existence
of pull-backs with respect to monics follows from existence of intersections.
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incaré 5, 1065–1080 (2004)

[15] Buchholz, D., Mund, J., Summers, S.J.: Covariant and quasi-covariant quantum
dynamics in Robertson–Walker spacetimes. Class. Quantum Gravity 19, 6417–
6434 (2002)

[16] Budic, R., Isenberg, J., Lindblom, L., Yasskin, P.B.: On the determination
of Cauchy surfaces from intrinsic properties. Commun. Math. Phys. 61, 87–
95 (1978)

[17] Connes, A., Rovelli, C.: von Neumann algebra automorphisms and time-ther-
modynamics relation in generally covariant quantum theories. Class. Quantum
Gravity 11, 2899–2917 (1994)

[18] Dappiaggi, C., Fredenhagen, K., Pinamonti, N.: Stable cosmological models
driven by a free quantum scalar field. Phys. Rev. D 77, 104015 (2008)

[19] Dappiaggi, C., Hack, T.P., Pinamonti, N.: The extended algebra of observables
for Dirac fields and the trace anomaly of their stress–energy tensor. Rev. Math.
Phys. 21, 1241–1312 (2009)

[20] Degner, A., Verch, R.: Cosmological particle creation in states of low energy. J.
Math. Phys. 51, 022302 (2010)

[21] Dikranjan, D., Tholen, W.: Categorical structure of closure operators. In: Math-
ematics and its Applications, vol. 346. Kluwer, Dordrecht (1995)

[22] Dimock, J.: Algebras of local observables on a manifold. Commun. Math.
Phys. 77, 219–228 (1980)

[23] Ferguson, M.: Dynamical locality of the nonminimally coupled scalar field and
enlarged algebra of Wick polynomials (2012). arXiv:1203.2151

[24] Fewster, C.J.: Quantum energy inequalities and local covariance. II. Categorical
formulation. Gen. Relativ. Gravit. 39, 1855–1890 (2007)

[25] Fewster, C.J.: On the notion of ‘the same physics in all spacetimes’. In: Finster,
F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field
Theory and Gravity. Conceptual and Mathematical Advances in the Search for
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