Ann. Henri Poincaré 13 (2012), 1575-1611
(© 2012 Springer Basel AG
1424-0637/12/071575-37

published online February 15, 2012

DOI 10.1007/s00023-012-0163-2

I Annales Henri Poincaré

Characterization of the Anderson
Metal-Insulator Transition for Non Ergodic
Operators and Application

Constanza Rojas-Molina

Abstract. We study the Anderson metal-insulator transition for non
ergodic random Schrédinger operators in both annealed and quenched
regimes, based on a dynamical approach of localization, improving known
results for ergodic operators into this more general setting. In the proce-
dure, we reformulate the Bootstrap Multiscale Analysis of Germinet and
Klein to fit the non ergodic setting. We obtain uniform Wegner Estimates
needed to perform this adapted Multiscale Analysis in the case of Delone-
Anderson type potentials, that is, Anderson potentials modeling aperio-
dic solids, where the impurities lie on a Delone set rather than a lattice,
yielding a break of ergodicity. As an application we study the Landau
operator with a Delone-Anderson potential and show the existence of a
mobility edge between regions of dynamical localization and dynamical
delocalization.

1. Introduction

Under the effect of a random perturbation, the spectrum of an ergodic
Schrédinger operator is expected to undergo a transition where we can iden-
tify two distinct regimes: the insulator region, characterized by localized states
and the metallic region, characterized by extended states. The passage from
one to the other under a certain disorder regime is known as the Anderson
metal-insulator transition. Although a precise spectral description of this phe-
nomenon is still out of reach, this transition is better characterized in terms
of its dynamical properties. Germinet and Klein tackled this problem in [17]
by introducing a local transport exponent 3(E) to measure the spreading of a
wave packet initially localized in space and in energy evolving under the effect
of the random operator. This provides a proper dynamical characterization of
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the metal-insulator transition, and the mobility edge, i.e., the energy where
the transition occurs, is shown to be a discontinuity point of 3(E).

Since ergodicity is a basic feature in the theory of random Schrodinger
operators, Germinet and Klein’s work was done in that framework. However,
more real models may lack this fundamental property. Examples of this kind
of systems are Schrodinger operators with Anderson-type potentials where the
random variables are not i.i.d. or where impurities are located in aperiodic dis-
crete sets. The first case (sparse models, decaying randomness, surfacic poten-
tials) has been studied in [1,6,26,33], while the second case (Delone-Anderson
type potentials) has been treated in [3]. In the deterministic case, Delone
operators have been studied with a dynamical systems approach in [25,27-29]
and [31].

We aim to study the Anderson metal-insulator characterization in a gen-
eral non ergodic setting, with minimal requirements on the model to fit the
dynamical characterization of localization/delocalization using the local trans-
port exponent 3(E), extending the results of [17] to the non ergodic models
mentioned above. The main tool in the study of the transport transition is the
Multiscale Analysis (MSA), initially developed by Frélich and Spencer [12], it
has been improved over the last three decades to its strongest version so far,
the Bootstrap MSA by Germinet and Klein [15]. The Bootstrap MSA yields
among other features strong dynamical localization in the Hilbert—Schmidt
norm, and so it can be used to characterize the set of energies where the trans-
port exponent is zero, that is associated to dynamically localized states [17],
but since it was originally developed in the frame of ergodic operators it is not
suitable when there is lack of ergodicity, so we adapt it to our model. What
completes the dynamical characterization is the fact that, in the ergodic case,
slow transport in average over the randomness, the so-called annealed regime,
implies dynamical localization. This holds in our new setting and, moreover,
this can be improved and it can be shown that it is enough to have slow
transport with a good probability, that is, in a quenched regime, to obtain
dynamical localization, so in both quenched and annealed regimes the metal—
insulator transition can be characterized in an analog way. There are examples
related to the Parabolic Anderson model where the behavior of the solution
in both regimes differ from each other and this can depend on the density of
the random variables [22].

We obtain uniform Wegner estimates needed for the adapted version of
the Bootstrap MSA for operators with Delone-Anderson potentials, that is,
Anderson potentials where the impurities are located on sites of an a priori
aperiodic set, called a Delone set. It is known that a way to obtain Wegner
estimate is to “lift” the spectrum by considering the random Hamiltonian as a
negative perturbation of a periodic Hamiltonian whose spectrum starts above
a certain energy above the bottom of the spectrum of the original free Hamilto-
nian (called fluctuation boundary). In this way the Wegner estimate is obtained
“outside the spectrum of the periodic operator, as in [2]. We stress the fact
that this approach is not convenient in our case since we have no information
on where the fluctuation boundary lies. On the other hand, [9] and [10] take a
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different approach by using a unique continuation property to prove Wegner
estimates without a covering condition on the single-site potential, and not
using fluctuation boundaries. The results in [9] rely strongly on the periodicity
of the lattice and the use of Floquet theory, which, again, cannot be used in
our model since our set of impurities is aperiodic. However, this was improved
in [11] to obtain a positivity estimate for the Landau Hamiltonian that does
not rely on Floquet theory, but on specific features of the spectral projectors
inherent to the magnetic case. This makes it convenient for our setting and
therefore we can extend these results to the non ergodic case. Furthermore, we
can use the approach in [10] to obtain Wegner estimates outside the unper-
turbed spectrum in the case where the background Hamiltonian is periodic,
and for all energies in the case where the Integrated Density of States (IDS) of
the background operator is Holder continuous. In the case of the free Lapla-
cian, a uniform Wegner estimate can be obtained as well, at the bottom of the
spectrum in an interval whose length depends only on the Delone set param-
eters and not in the disorder parameter A\. We refer to [21] where a spatial
averaging method as in [7,13,14] is exploited to prove the required positivity
estimate, and bypass the use of Floquet theory.

For the Landau operator, and as an application of the main results, we
can show the existence of a metal-insulator transition, as expected from the
ergodic case [19]. Since the lattice is a particular case of a Delone set, these
results imply in particular those of the ergodic setting. By the lack of ergo-
dicity we cannot make use of the Integrated Density of States to prove the
existence of a non random spectrum for H,,, nor use the characterization of
the spectrum in terms of the spectra of periodic operators as done in [20] to
locate the spectrum in the Landau band. Therefore, to show our results are
not empty we need to prove that we can almost surely find spectrum near the
band edges, which is done adapting an argument in [8, Appendix B] in a not
necessarily perturbative regime of the disorder parameter A. We stress that
we consider a general Delone set and do not assume any geometric property,
like repetitivity or finite local complexity. These features, however, might be
needed for further results, for example, related to the Integrated Density of
States (see [21,29-31]).

The present note is organized as follows: in Sect. 2 we state the main
results, in Sect. 3 we adapt the Bootstrap MSA to fit our new setting. In
Sect. 4 we prove the results on the dynamics in both annealed and quenched
regimes. In Sect. 5 we prove uniform Wegner estimates for Delone-Anderson
random Schrédinger operators. In Sect. 6, in the lines of [19] we proof the
existence of a metal-insulator transition for a Landau Hamiltonian with a
Delone-Anderson potential and the existence of almost sure spectrum near the
band edges, that has non empty intersection with the localization region.

2. Main Results

For z € R? we denote by ||z|| the usual euclidean norm while the supremum
norm is defined as |z| = max;<;<q|z;|, where |-| stands for absolute value.
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Given z € R? and L > 0 we denote by B(z, L) the ball of center z and
radius L in the || - ||-norm, while the set

Ap(z) = {y ERY: |y — x| < g}
defines the cube of side L centered at x, also denoted as A, . We denote
the volume of a Borel set A C R? with respect to the Lebesgue measure as
|Al = [pa Xa(x)d?z, where X, is the characteristic function of the set A. We
will often write x.,z for x4, (») and denote by || f|[z,z or |[f|la, () the norm of
fin L2(A, p).

We denote by C°(A) the vector space of real-valued infinitely differen-
tiable functions with compact support contained in A, with C2%, (A) being the
subclass of nonnegative functions.

We denote by B(H) the Banach space of bounded linear operators on the
Hilbert space H. For a closed, densely defined operator A with adjoint A*, we
denote its domain by D(A) C L*(A) and by [|A|| = sup{||Ad|; [|¢|lz = 1} its
(uniform) norm if bounded. We define its absolute value by |A| = vV A*A and,
for p > 1, we define its (Schatten) p-norm in the Banach space J,(L*(A)) as
|All, = (tr|A[P)"/P. In particular, J; is the space of trace-class operators and
J2, the space of Hilbert—Schmidt operators. We write (z) = /(1 + ||=]|?) and
use (X) to denote the operator given by multiplication by the function (x).

For convenience we denote a constant C' depending only on the parame-
ters a,b,... by Cyp ...

We consider a random Schoédinger operator of the form

H, = Hy+ \V, onL*RY), (2.1)

where Hy is the free Hamiltonian, A measures the disorder strength which in
the following we consider fix, and V,,, called random potential, is the operator
multiplication by V[, such that {V,(z) : = € R%} is a real-valued measur-
able process on a complete probability space (2, F,P) having the following
properties:

(R) Vi, =V +V,, where VI and V are real valued measurable pro-
cesses on  such that for P-ae. w : 0 < V} € LL_(R?) and V is
relatively form-bounded with respect to —A, with relative bound <1,
i.e., there are nonnegative constants ©; < 1 and ©, independent of w
such that for all » € D(V) we have

(0, V)| < 01| V|2 + O1[0)|*  for P-ace. w.

(IAD) There exists o > 0 such that for any bounded sets By, B, C R?
with dist(B1, B2) > o, the processes {V,(z) : x € By} and {V,,(z) : © €
By} are independent.

In the case Hy = Hp, the unperturbed Landau Hamiltonian on LQ(RQ)

Hp = (—iV — A)? with A = g(xz, —z1), (2.2)
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where A is the vector potential and B is the strength of the magnetic field, we
ask A(z) € L .(R?; R?) to satisfy the diamagnetic inequality so we can obtain
trace estimates for the Landau Hamiltonian from those of the Laplacian.

It follows that H, is a semibounded selfadjoint operator for P-a.e. w.
Moreover, the mapping w — H,, is measurable for P-a.e. w, we denote its
spectrum by o,.

In the usual setting for (ergodic) random Hamiltonians, H, satisfies a
covariance condition with respect to the action of a family of unitary (transla-
tion) operators Uy, and its associated ergodic group of translations 7, on the
probability space 2. Throughout this paper we do not make any assumption
on the ergodicity of H,,, so this covariance condition, a priori, does not hold,
ie.,

H-r.y(w) 7é U'waU:yka (23)

which makes H, a non-ergodic random operator.

For the following assumption we need the notion of a finite volume opera-
tor, the restriction of H,, to either an open box Ay (x) with Dirichlet boundary
condition or to the closed box Ay (x) with periodic boundary conditions. In
this way, we obtain a well defined random operator H,, ,. 1, acting on L*(Ay(x))
defined by

Hw,x,L = HO,:c,L + AVw,m,L~

We denote its spectrum by o, .7 and by Ry (2) = (Hyep — 2)7 " its
resolvent operator. We define the spectral projections P, (J) = xs(H,) and
P, 2n(J) = xs(Hy ) for J C R a Borel set. When stressing the dependence
on A, it will be added to the subscript.

Definition 2.1. (UWE) We say that H,, satisfies a uniform Wegner esti-
mate with Holder exponent s in an open interval 7, i.e., for every F € J
there exists a constant (Qg, bounded on compact subintervals of 7 and
0 < s <1 such that

sup E{tr(P, s (E—nE+n)} < Qen°LY, (2.4)
zeR
for all n > 0 and L € 2N. It satisfies a uniform Wegner estimate at an

energy E if it satisfies a uniform Wegner estimate in an open interval 7
such that £ € 7.

To describe the dynamics, we consider the random moment of order p > 0
at time ¢ for the time evolution in the Hilbert—Schmidt norm, initially spatially
localized in a square of side one around u € Z? and localized in energy by the
function & € C°, (R), ie.,

Miuo(p, X, 8) = [[(X — u)P/2e™ e X (Hy ) xulf3. (2.5)
We next consider its time average,
2 (oo}
Muslp, 2,T) = 7 [ €200, 0. 2,1) (26)

0
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Definition 2.2. 1. We say that H, exhibits strong Hilbert—-Schmidt (HS-)
dynamical localization in the open interval I if for all X € C2° (1) we
have

sup E{sup M, .,(p,X,t)} < oo forall p > 0.
u€Z? teR
We say that H,, exhibits strong Hilbert—Schmidt (HS-) dynamical locali-
zation at an energy F if there exists an open interval I with E € I, such
that there is strong HS-dynamical localization in the open interval.
2. The strong insulator region for H, is defined as

Ys1 = {E € R : H,exhibits strong HS-dynamical localization at E}.

Note that if there exists a 6 > 0 such that dist(E,o,) > § for almost
every w, then F € Xgj.

As we shall see, the existence of such a region for random Schrédinger
operators is the consequence of the applicability of the Bootstrap MSA adapted
to the non ergodic setting Theorem 2.3.

Given # > 0,FE € R,z € Z% and L € 6N, we say that the box Ay (z) is
(0, E)-suitable for H, if E ¢ 0, , 1 and

1

||F$7LRUJ,1‘7L(E)XI,L/3‘ L < ﬁa

where 'y . = XA, ,(2)\A_s(x)- If We replace the polynomial decay 1/L? by
e~™L/2 we say that the box Ap(z) is (m, E) — regular for H,,.
The following theorem is a reformulation of Theorem 3.4 and Corol-

lary 3.10 [15] in a non ergodic setting,

Theorem 2.3. Let H, be a random Schrodinger operator satisfying a uniform
Wegner estimate in an open interval J with Hélder exponent s and assump-
tions (R), (IAD). Given 6 > d, for each E € J there exists a finite scale
Ly(E) = L(0,FE,Qpg,d,s), bounded in compact subintervals of J, such that if
for L > Ly(E) the following holds

1
;piélzfd P{A,(x) is (0, E) — suitable} > 1 — FYITL (2.7)
then there exists 6o > 0 and C¢ > 0 such that
TS
sup E < sSup ||Xz+uf(Hw)PW(I(6O>)Xu”%) < Cce el ) (2.8)
ueZd <1

for 0 < ¢ <1, where I(6y) = [E — 09, E + 60]. Moreover, E € Xg1 and we have
the following properties,
(SUDEC) Summable uniform decay of eigenfunction correlations: for a.e.
w € Q, the Hamiltonian H,, has pure point spectrum in I C Xg1 with finite
multiplicity. Let {€, o }nen be an enumeration of the distinct eigenvalues
of H,, in I. Then for each ¢ €]0,1[ and ¢ > 0 we have, for every z,u € 74,

— — dte dte  _14I¢
e+ udlllixuell < Creewl T ST ol (@ +w) = (u) = e, (2.9)

for all ¢, o € Ran P, ({€nw}) (see Sect. 3).
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(DFP) Decay of the Fermi projections: for E € Xg1 and for any ¢ € ]0,1]
we have

_1zl¢
up B Po((—00, E)xalB} < Conpe™ 1, (2.10)
UEL

where the constant C¢ g is locally bounded in E.
Remark 2.4. The condition (2.7) is called the initial length scale estimate

(ILSE) of the Bootstrap MSA. In practice is often useful to prove the equiva-
lent estimate [17, Theorem 4.2]: For some 6 > d, we have

lim sup ian P{A,(x) is (0, E)-suitable} = 1. (2.11)
TE d

L—oo

Definition 2.5. The multiscale analysis region for H,, is defined as the set of
energies where we can perform the bootstrap MSA, i.e.,

Ymsa = {F € R: H, satisfies a uniform Wegner estimate at E and
(ILSE) holds for some £ > Ly(E)}.

By Theorem 2.3, we have ¥ysa C Xgi.
We introduce the (lower) transport exponent in the annealed regime:

1 3 E(M, o X, T
B(p, X) = lim inf ~2+1Pu (Muw(p, X, T))
T—00 plOgT

: (2.12)

for p > 0,X € O (R), where log, t = max{0,logt}, and define the p-th local
transport exponent at the energy E, by
B(p,E)=inf sup fB(p,X), (2.13)
ISE Xecf?+(])
where I denotes an open interval. The exponents 3(p, E) provide a mea-

sure of the rate of transport in wave packets with spectral support near F.
Since they are increasing in p, we define the local (lower) transport exponent

B(E) by

B(E) = Jim B(p, E) = sup 5(p, E). (2.14)

With the help of this transport rate we can define two complementary sets
in the energy axis for fixed B > 0, A > 0, the region of dynamical localization

=Pl —(EcR: B(E) =0}, (2.15)

also called the trivial transport region (TT) in [17] and the region of dynamical
delocalization

EPP —(EcR: B(E) > 0}, (2.16)

also called the weak metallic transport region (WMT), in [17]. Recalling
Theorem 2.3 we have that Yyga C Xgr C =PL,

The following result is an improvement of [17, Theorem 2.11] for the non
ergodic setting,
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Theorem 2.6. Let H,, be a Schridinger operator satisfying a uniform Wegner
estimate with Holder exponent s in an open interval J and assumptions (R),
(IAD). Let X € C5 (R) with X =1 on some open interval J C J,a >0 and

. 19d d
p > pla,s) =122 + 2. If

1
lim inf sup EE (Myw(p, X,T)) < o0, (2.17)

T—o0 uezd

then J C Xyvsa - In particular, it follows that (2.17) holds for any p > 0.

Moreover, we can extend this result to a quenched regime, a new feature
in both ergodic and non-ergodic situations:

Theorem 2.7. Let H, be a Schridinger operator satisfying a uniform Wegner
estimate with Hoélder exponent s in an open interval J and assumptions (R),
(IAD). Let X € C% (R) with X =1 on some open interval J C J,a >0 and

p>pla,s) = 15% + 2ag. If
liminf sup TeP(M,, ., (p, X, T) > T) = 0, (2.18)

T uezd
then J C Xyvsa - In particular, it follows that (2.18) holds for any p > 0.

Remark 2.8. If the moment increases almost surely at any other rate less than
polynomial, this implies in particular condition (2.18) for some a > 0, and the
result follows.

Moreover, if condition (2.28) in [17, Theorem 2.11] holds for o > 0 and
p > p(a, s)+d, then condition (2.18) holds for o' = a+06 and the same p, where
0<s/2<0< W and p > p(c, s), since by Chebyshev’s inequality we
have, for all T'> 0

T sup P(My o (p, X, T) > T) sup B(My o (p, X, T)).  (2.19)

- 1
— Ta+6—s/2
This also shows that (2.18) is indeed a weaker condition than (2.17).

By Theorem 2.6 we have that ZP* C Yyga, so Theorems 2.8 and 2.10
of [17] hold in our setting. Thus, the local transport exponent 3(F) gives a
characterization of the metal-insulator transport transition for non ergodic
models as for the usual ergodic setting. Moreover, if we consider only the
random moments in a quenched regime to behave asymptotically slow, we see
the same behavior for the ergodic and non ergodic setting, in agreement with
the annealed regime.

As an application of these results, we can study a Landau Hamiltonian
with constant magnetic field B perturbed by a Delone-Anderson potential and
show an Anderson metal-insulator transition.

Definition 2.9. A subset D of R? is called a (1,R)-Delone set if there exist reals
r and R such that for any cubes A,., A of sides r and R respectively, we have
g(DNA;) <1and #(DNAg) > 1, where f stands for cardinality.
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Remark 2.10. Note that in a (r, R)-Delone set there exists a minimal distance
between any two points, /2, and a maximal distance between neighbors, VdR.
Such a set is said to be uniformly discrete and relatively dense. Lattices and
the set of vertices in a Penrose tiling are particular cases of Delone sets.

We consider the case where the free Hamiltonian in (2.1) is Hp, the
unperturbed Landau Hamiltonian on L?(R?) defined by

B
Hp = (—iV — A)? with A = 5(;«2, —z1), (2.20)

where A is the vector potential and B is the strength of the magnetic field,
and the random potential represents impurities placed in a Delone set, that is,

Vo(x) = Z wyu(x —7), (2.21)
yeD
where w, are independent identically distributed random variables of bounded
probability density p, D is a (r, R)-Delone set (for the case Hy = —A see [13]),
and the single-site potential u has small support such that supports of the
translations u; = u(- — i) for i € R? do not overlap. We assume furthermore
that u(0) = [Julle = 1.

The spectrum of Hp is pure point and consists of a sequence of infinitely
degenerate eigenvalues, the Landau levels {B,, = (2n+ 1)|B|; n =0,1,...},
with associated orthogonal projection operators I1,,. As the spectrum is inde-
pendent of the sign of B, we will always assume B > 0.

We denote the spectrum of the operator Hp » ., by o .. By perturba-
tion theory [23, Theorem V.4.10] we know that for each w € §2

oBxw C | Ba(B,N),
n=0
where B, (B, \) = [By, — Amqg, By, +AMp] is called the n-th Landau band. More-
over, by a Borel-Cantelli argument, for almost every w € €,

0B C OB A\w; (2.22)

where op is the spectrum of the free Landau operator. We also show that
there exists almost surely spectrum near the band edges so our results are not
empty (see Sect. 6.4).

For B fixed A is small enough such that

)\(mo + Mo) < 2B, (2.23)
i.e., the Landau bands B, (B, \) are disjoint and hence the open intervals
Gn(B,\) =By + AMy, Bpy1 — dmg[, n=0,1,2,..., (2.24)

are nonempty spectral gaps for Hp x ..

We aim to prove for this model the existence of complementary regions of
dynamical localization and delocalization in the spectrum and therefore, the
existence of a dynamical transition energy. By doing this we extend known
results for ergodic random Landau Hamiltonians [8,16,19,20] to non-ergodic
ones.
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Theorem 2.11. Let Hp ), be the Delone-Landauw Hamiltonian, satisfying in
particular condition (2.23). Then for any n = 0,1,2,... there exists a posi-
tive constant B(n), depending on parameters of the model, such that for any
B > B(n),Hp . exhibits almost surely an Anderson metal-insulator trans-
port transition in the n-th Landau band.

As shown in Sect. 6, Theorem 2.11 is a consequence of Theorems 6.1
and 6.4, which show dynamical localization an delocalization in each Landau
band, plus Theorem 6.5 which takes care of the lack of the existence of an
almost-sure spectrum and states that these results are non-empty.

3. Proof of Theorem 2.3

3.1. Generalized Eigenfunction Expansion

We have to construct a generalized eigenfunction expansion adapted to the
non ergodic case. Compared to [15, Sect. 2.3] we shall use a family of weighted
spaces rather than just one in particular, using translations in u € Z? of the
operator T' defined there and thus without using translation invariance in the
proofs.

Let T, be the operator in H given by multiplication by the function
(1+ |z — ul?)”, where v > d/4,u € Z*. We define the weighted spaces HY as

HL = LR, (1 + |z — u[?)* dz; C). (3.1)

The sesquilinear form

(D1, P2) 1y 1 = /5@2(33) dz for ¢y € HY, P € HY

makes HY and H* conjugates dual to each other and we denote by { the con-
jugation with respect to this duality. The natural injections % : H} — H and
L :'H — H“ are continuous with dense range, with (.%£)" = /. The operators
Ty+:HY - Hand T, _ : H — H" defined by T}, 1 = T,e%, Ty, — = 1T, on
D(T,) are unitary with T,, — = TJA_. Note that

XLl = IXaLllree 70 < Croaw(l+ |z —ul?), (3.2)

for all z € R? and L > 0.

With this redefinition we can follow [15], restating assumption GEE for
non ergodic operators. We consider a fixed open interval Z and we recall that
P,(J) = xs(H,) is the spectral projection of the operator H, on a Borel set
JCR.

(UGEE) For some v > d/4, the set DY = {¢ € D(H,) NHL : Hy,¢ €

4} is dense in Hy and an operator core for H, for P-a.e. w and all

u. There exists a bounded function f, strictly positive on the spectrum of

H,, such that,}

sup try (T f(Hy,)Po(Z)T 1) < oo, (3.3)

u

for P-a.e. w.
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If UGEE holds, for almost every w and all u we have
tro (T, PL(JNT)T ) < oo, (3.4)

for all bounded sets J. Thus with probability one, for all u
() = ten (T Po(T N DT, ) (3.5)

is a spectral measure for the restriction of H, to the Hilbert space P,(Z)H,
and for every bounded set J,

P (J) < 0. (3.6)

Then, we have a generalized eigenfunction expansion as in [15, Sect. 2J:

for every u, there exists a pi,, o-locally integrable function P, ,,(\) from R into
T, (HY, H" ), the space of trace class operators from H' to H", with
Po(N) =Py (V) (3.7)
and
tryy (T;iPuM(S\)T;}i_) =1 for p,-a.e. A, (3.8)
such that

P, (JNI)Y = /Puw(j\) dftu.(N)  for bounded Borel sets .J, (3.9)
b

where the integral is the Bochner integral of 77 (H!, H* )-valued functions.

The following (a restatement of assumption SGEE), is a stronger version
of UGEE:

(USGEE) We have that UGEE holds with
sup E([tro (T, ' f(HL) P (D)T, ))?) < . (3.10)

u

So for every bounded set J,
sup E(pty o (J)?) < oc. (3.11)

3.2. Kernel Decay and Dynamical Localization
Following the arguments in [15] for ergodic operators, we can show that HS-
strong dynamical localization is a consequence of the applicability of the Boot-
strap MSA for the non ergodic setting ([15, Theorem 3.4] with the stronger
initial ILSE (2.7) instead of the original one).

We can restate Lemma 2.5 and Lemma 4.1 [15] as follows, extending the
proofs to our new definitions,

Lemma 3.1. Let H, be a random operator satisfying assumption GEE. We
have with probability one, for all u, that for i, .-almost every A,

IXePuw(Nxyllt < O+ |z —ul>)”(1+ |y —ul?), (3.12)

for all z,y € RY, with C a finite constant independent of \,w and u.
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Suppose, moreover, that assumption EDI in [15] is satisfied in some com-
pact interval Iy C T. Given I C Iy,m > 0,L € 6N and z,y € Z%, if w €
R(m,L,I,2,y), with R(m,L,I,2,y) defined as in (3.18), then

IXePuwNxylla < Ce™™ A1+ |z —u) (L+ [y —u’)”,  (3.13)

for piy w-almost all X e, with C = C(m,d,v,7y1,), where 71, is the constant
on assumption EDI.

Proof of Theorem 2.3. To apply the MSA in the non ergodic case we first need
to verify for an operator satisfying only properties R, IAD and UWE;, the stan-
dard assumptions SLI, EDI [15], plus UNE and USGEE, which are stronger
assumptions than those stated in the mentioned article.

As for SLI and EDI, these are deterministic assumptions that hold for
each w € Q and their proof, done in [17, Appendix A], relies on property R,
with no use of ergodicity. In the same appendix we see that assumption NE
is uniform on cubes centered in z € R? and relies on property R so it holds
in our more general setting. The same is true for [17, Lemma A.3], and can
be extended in an analog way to the case Hy = Hp [5, Sect. 2.1], proving the
first part of USGEE (and UGEE).

As for the trace estimate (3.10) , for the case Hy = —A it follows from
[17, Lemma A.4] and [24, Theorem 1.1], taking V = (X — u)~2" there, the
result being uniform in u. It can be extended to the case Hy = Hp as in
[5, Proposition 2.1].

To obtain the basic result of MSA [15, Theorem 3.4] we need conditions
TAD, SLI, UNE and UWE to follow an analog iteration procedure. Recall that
in their article, Germinet and Klein take two versions of MSA by Figotin and
Klein, improve their estimates yielding other two MSA and then bootstrapping
them to obtain the strongest result out of the weakest hypothesis, so in order
to extend this results to the non ergodic setting we reformulate this meth-
ods. Each step consists of a purely geometric deterministic part where we use
SLI, and therefore it does not depend on the placement of the boxes were we
perform the procedure, and a probabilistic part, where we use UWE instead
of WE to obtain an estimate on the probability of having bad events, in a
stronger sense than the usual, that is, uniform with respect to the placement
of the box in space.

We begin with the single energy multiscale analyses, Theorems 5.1 and
5.6 [15], which in our non-ergodic setting consists in estimating the decay of

PL = SUp P, L, (3.14)
r€Z9
where
ps,r, = P{AL(z) is bad} (3.15)

(here a box is bad if it is not (0, E)-suitable for H, ). In the ergodic case we
need only to consider po 1. Hypothesis (2.7) ensures we can follow the same
iteration procedure in all boxes centered in = € Z%, where py 1, is thus replaced
by pr. We use properties SLI and UWE instead of WE, and the deterministic
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arguments remain the same, since they do not depend on the location of the
box. Considering a Holder exponent s in WE implies that the choice of the
initial length scale will also depend on s.

Next we consider the energy interval multiscale analyses, Theorems 5.2
and 5.7 [15], which in our general setting consists in estimating

pL = sup ﬁz,y,La (316)
z,yez?
|z—y|>L+o
with
Pa,y,. = P{R(m, L, 1(do), 2, y)}, (3.17)

where I(d9) = [E — 0o, E + dg], for some §p > 0 and

R(m,L,1(6p),z,y) = {w: for every E € I(dp), A(x) or AL(y) is good}
(3.18)

(here a box is good if it is (m, E)-regular for H,,, with m to be specified later).
In the ergodic case it suffices to consider p, .. We can thus follow the original
iteration procedure on this estimate, replacing p, . by pr, obtaining an ana-
log of [15, Eq. 3.4], i.e., there exists dp > 0 such that given any ¢,0 < ¢ < 1
there is a length scale Ly < co and a mass m¢ = m(¢, Ly) > 0 such that if we
set Lit1 = [LYen,0 < a < ("1 k=0,1,2,... we have

inf  P{R(mc, L, (), z,y)} > 1 — e T4, (3.19)
z,y€ZL
\:v—yJ|>L+Q

To derive results on the spectrum and the dynamics of the operator from
this estimate we need to consider also conditions EDI and USGEE. Thus,
with Lemma 3.1 in hand, (3.19) and USGEE we can follow the proof of
[15, Theorem 3.8] with minor modifications. We want to show that if (3.19)
holds we have that for any 0 < ¢ < 1, there is a finite constant C¢ such that

sup E <|;1|11<)1 ||Xo:+uf(Hw)Pw(1(50)))@”%) < CCe_mc’ (3'20)

For this, we consider the pair of points x, as the pair = 4 u,u, and fix € Z¢
and k such that Li4q1 4+ 0 > |x| > Li + 0. We split the expectation in (3.20) in
two parts: the first one over the set R(m¢, Lg, I(do), x + u,u) and the second
one over its complement, which has probability less than e*Li, uniformly in wu,
by (3.19). We follow the arguments in [15, Eq. 4.8-4.13]. By (3.9) and
Lemma 3.1 we can write, for a positive constant C',

¢
H?‘lnlgl ||Xw+uf(Hw)Pw(I(50))Xu||2 < Cie Lkﬂu,aJ(I)- (3'21)
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This implies,

supE (;1'151 X+ (Ho) P (I(80))Xull3: R(me, L, 1(8), 2 + u, u))

< CF sup B{ (1o (T(00))) e 2% (3.22)

As for the expectation over R(m¢, Ly, I(do),x + u, )¢, (3.19) implies that
supP(R(m¢, Lk, I(d0), x + u,u)) < e_Li,

this yields,
supE <|§1|II<)1 Xe+uf (Ho)Po(1(80))xull3; R(mc, Lie, 1(80), 2 + u, u)°

< 4 sup B (o (I(00)))* 2214, (3.23)

where we use the fact that by (3.5) we can write

Xt f (Ho) Po(1(80))xul3 < 11PN P (T (0))xll3 < ClLf 1t (1 (60))-
(3.24)
Combining (3.22) and (3.23), using USGEE we obtain the desired decay,
namely (3.20).

Now we can prove a strong version of dynamical localization as in [15,
Corollary 3.10]. Notice that, if p > 2

(X —u)? =3 1+ ly = ul®)PPxaly) < Ca D (14 [z = ul?)xu(y)

z€Z4 xeZd
=Ca Y (L4 1217 Xaruw), (3.25)
reZd

so we have,

(X = w)P/? f(Ho) Po(1(80))xu 3
= tr[Xuf (Ho) Pu(1(0))(X — u)P Py (1(00)) f(Hu)Xu)
< Ca > (1 + [|2]1*)P?tr [y f (Ho) Po(T(60))Xa+u P (1(60)) f () X

YA

= Ca ) (L4 12" Xt f (Hoo) P (1(50)) xull3- (3.26)

YA

Taking the expectation and then the supremum over u € Z2, by (3.20) we
obtain strong HS-dynamical localization in the energy interval I(dp).
Following the proof of [18, Corollary 3], after adapting [18, Theorem 1]
to our setting we obtain the summable uniform decay of eigenfunction corre-
lations SUDEC. As for property DFP, it is a consequence of (3.20) combined
with [4, Theorem 1.4], which is a deterministic result also valid in our setting,
in the lines of [18, Theorem 3]. O
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4. Proofs of Theorems 2.6 and 2.7

Here we can proceed as in [17]. First we state the following Lemma, which is
an intermediate result in the proof of [17, Lemma 6.4], adapted to the UWE
with Holder exponent s. We consider a cube Ap(z) with arbitrary x so we
omit it from the notation.

Lemma 4.1. Let H, be a random Schrodinger operator satisfying a umni-
form Wegner estimate in an open interval T, with Wegner constant Qg and
Holder exponent s. Let pg > 0 and v > d. For each E € 1, there exists
L = L(d,E,Qg,v,po,s) bounded on compact subsets of I, such that, given
L € 2N with L > L, and subsets By and Bs of A, (not necessarily disjoint)
with By C A _5/2 and A4 \AL_3 C Ba, then for each a >0 and 0 <e <1
we have

a
j ) < 20 (.
P (InoRun(B+ioxl > 7) <P (IxeRulE+ionl > 15 ) + 22, (4.1)

and

a . a
P(IxoRon(Bpale > 5) <P (HXzRu(E+Z€)X1|| > )

46 / d
+QE ( ) L 10 (4.2)
where x; stands for xp,,i =1,2.

Proof of Theorem 2.6. By the same arguments used in [17, Theorem 4.2], it
suffices to show that, under condition (2.18), for each E € J there is some
0 > d/s such that

1
lim sup mf P <|Fy LRuy.L(E)Xy L3y < L9> =1, (4.3)

L—oo YEZ

i.e., the starting condition for the bootstrap MSA, (2.7), in its strong version,
holds at some finite scale L > Ly(E).
Let E € J,0 > d/s and L € 6N. We start by estimating

1
Posi= s P (s Rt (Bualn > 7 ) (40

We decompose as in [17, Eq. 6.26-6.28], using
Xy,L = Xy,2L/3 T Xy,L\2L/3, Where Xy 1\21/3 = Xy, Az \Asr 55

o (for simplicity we omit the subscript y from the norm)

1
PE,L < Sl;pP ( 70 < HFy LRw L(E+ ZE)XU,L/3|L) (45)
1
sow (575 < clRon (B4 i1 IT R (B Vansall)  (46)
Y
o ( 175 < R ()i s (B + el ).
Yy

(4.7)
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To estimate the first term we use (4.1) with @ = L=, As for the rest, we
use (4.2) and (4.1), respectively, with a = 1, plus the uniform Wegner estimate.
We obtain

1
Prs <P (g < IuRolE + i)y (1.9
1 .
+owpP (5 < ITpLRulE + i anssl ) (1.9
Yy
1
+SUP1P’ = < IIxy.\2n/3 R0 (E +i€)xy, L/ (4.10)
s/27d s 95+d Sp
+Qr(4e)*?L% +2Q;€° L 0 (4.11)

for L > L, with £ as in Lemma 4.1, where v > d/s,0 < e < 1,0 < pyg < 1 and
Q1 =supgcr Qr < 00. Set

- 1/(0s+d)
L=L(Ie):= [<20Qfes> ] : (4.12)

6N

so that
QI(46)S/2Ld < % and 2Qe* LVt < 11)—(0).

We first estimate,
1
supP (g5 < Iyl E+ il ) (4.13)

To do this, we decompose the norm using the function X(H,) that localizes
in energy, yielding

1
P (s < Iy Rl B+ 10X (H. 110 ) (4.14)

—&—st;pIP’ ( 5[0 < ||y, LRu(E +i€e)(1 — X(Hw))xy’[//(g) . (4.15)
For the second term we use Chebyshev’s inequality and follow [17, Eq. 6.32—
6.34], so we can bound it by pg/12.

Estimating in the same way the terms (4.9) and (4.10) we obtain that for

L big enough,

1
Ps < w0 (g <00 (B +iOX(H) 0101 ) (4.16)
1
rswn (5 < TR (B +i0X (H)vyarl (117)
. 3po
+sup P 2“ < Ixy,p\2 /3R (B +i€) X (Ha)xy, Lyl | + =~
Y

(4.18)
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As for the first term,

1 .
P <2L9+,Y < Hl—‘y,LRw(E + ZG)X(HW)XZJ,L/E}”)

< 2LYTE (T, R (E + i€) X (Ho)xy,L/3]]) (4.19)
<20 N E(IUypRu(B+iX(Ho)val).  (4.20)
uEAL/:s(y)

For any wu fixed, given a compact subinterval I C J and M > 0 we set:
Ay re = {E €I E <||<X —u)P*Ry(E + iG)X(Hw)Xu”%) < ME_(QH)} '

We have, taking 7' = ¢! and using [17, Lemma 6.3]

1

[INAy a1,e] < Me(otD)

/ E((X — u)/Ry(E + ie) X (H,)yu|2) dE
R

27 _ i
= i [ TRX e e BB d

0

< sup E(My o (p, X, T)). (4.21)

T
MTe
Remark 4.2. Notice that the analogous sets Ay ;s in the proof [17, Theo-

rem 2.11] do not work in the non ergodic setting, so we need to consider a
family of sets Ay as.1,¢, indexed by u.

By hypothesis (2.17) we can pick a sequence T}, — oo such that for k big
enough, we have sup, E(My o (p, X,Tx)) < CT, then for the corresponding
sequence €, — 07 we have

C
[I\NAu1,e,] <

ot (4.22)

Notice that this bound is uniform in u.
Thus, for an E € I fixed and e; = T, ', either B € A, 1 s, in which
case we have,

E (|[Ty, L, Ro(E + ier) X (Hy)xull)
< CpaliPPE([(X = u)P/2 Ry (B + ien) X (Hy)xul2)
< Cpal"PE((X — w)P/?Ro(B + iex) X (Ho)xull3)"/
< prdL;p/2M1/2€;(a+l)/2, (4.23)
where we write Ly = L(I,¢), or else, E € I\Ay m.1.¢., SO by (4.22) there
exists Fy € Aqy.1,Mm,¢, such that

C
EF-FE,| < —
E-Fu< 1
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and so, by the resolvent identity and the definition of A, ar 1.,
E(|Ty, 2, R (E + t€r) X (Ho ) Xull)
S E(ITy, L, R (Bu + ieg) X (Ho ) xull)
+|E — Eu[E(||Ro (B + iex) || Ro (Ew + der) )

< OIl,dL]:;p/2M1/26];(a+l)/2 + 7 (424)
k
Therefore,
1 .
P (W <|[Ty,z, Ru(E + “k)X(Hw)Xy,Lka)

k
1 pO0+y—p/2+dq r1/2_—(a+1) 7 LZMM

S Cp)de M Gk‘ + p,d Me% . (4.25)

The remaining terms (4.17) and (4.18) are estimated in the same way,
using the fact that dist(Ap_1\Ar_3,Az2L) > %—% and dist(AL\@,Ag) > %.
3 3 3

For these terms we obtain an estimate as (4.25) with constants C;Ezd), C’;’)g) and

C;E‘:)i), C;((;), respectively, and with no ¢ in the exponent of L. Denote by Cp 4
the maximal constant, and since LY < Lf*7, the estimate on (4.25) using Cj 4
will imply the same estimate on (4.17) and on (4.18).

Now, for p such that p > p/(«, s) = a% + 12%, we can find 0,y > d/s for
which

p> 5043y +2d+ (a+1)(0s+d)/s, (4.26)
so if we set
M =L (4.27)
and recall
—(a+1)/2 a+1)(0s+d)/2s — —2(0s+d)/s
6 T2 = Cpy LTI 2 = 0 o, LT (4.28)
we obtain, for k£ big enough depending on d, I, p,«, 8,7, s, po, Qr,
Cl (LU PR/ 2g (0H ) /94 (4.29)
and
Z—&-'H—d
i
A7 <DPo/24, (4.30)
e Me?
so there exists a sequence L — oo such that for k£ big enough,
P < |y, Ru(E + ien) X (HL) I <2 (4.31)
2Lz+,y y, L Lt €k w)Xy,L/3 12° .

The same argument shows that the terms (4.17) and (4.18) are smaller than
po/12, for k big enough.
Inserting this in (4.16)—(4.18) we see that

) 1
imsupsup P (7 < Iy 2R (B sl ) S (432
— 00 Yy k

Since 0 < pg < 1 is arbitrary, we conclude that (4.3) holds for each F € I. O
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Proof of Theorem 2.7. From Eq. (4.3) to (4.18) the previous proof remains
valid in the current setting. We will only estimate (4.16), since the remaining
terms (4.17) and (4.18) can be estimated in the same way. Notice that

1 .
P (2L9+,y < |Ty,LR.(E + ze)X(Hw)nyL/gn)

1 .
<P T < Z Ty, LR (E +i€) X (Hy,) Xul|
u€Ar/3(y)

1 .
< Z P <2L9+7+d < Fy,LRw(E+Z€)X(Hw)Xu||> - (4.33)
u€Ap/3(y)

To estimate the r.h.s of the last inequality, the following following lemma is
crucial,

I:emma 4.3. There exists L= L(I,p,0,v,d,a, s,po, Q1) such that for any u €
Ap3(y) with L= L(I,¢€) as in (4.12), L > L and E € I fizved, if

0 d d
p>p(0,v,d,a,s) = a((s%) + 90 + 3y +2d + —, (4.34)
s

then, for T = ¢!,
. 1
{W [Ty, LR (B + i) X (Ho ) Xul| > 2L9+7+d}
Clw: My u(p, X, T)>T}. (4.35)
Now, if p > p(a, s) := 15% + 204%7 then there exist 6, > d/s such that
p > p(0,7v,d,a,s) > p(a, s) so Lemma 4.3 holds yielding, for L = L(I,¢) as in
(4.12) big enough,
1 .
g (2L9+7 < ||Ty, L Ru(E + ZG)X(Hw)Xy,L/sn)
< Cpo.0, T2 supP(M,, o (p, X, T) > T%), (4.36)
where C,, o, comes from L? = C,, o, T2, by (4.12).

By hypothesis (2.18), we can pick a sequence T, — oo such that for & big
enough

T supP(My o (p, X, Ti) > T) < po/12. (4.37)

In an analogous way we can estimate (4.17) and (4.18). It follows that for all
E € I we have

. 1
lim sup sup P (L‘g < Fvaka’nyk(E)Xy7Lk/3|Lk> < po. (4.38)

k—o0 Y k

Since 0 < pg < 1 is arbitrary, we conclude that (4.3) holds for each F € I. 0
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Proof of Lemma 4.3. Let w € {w : My, ,(p, X, T) <
subinterval I C J,M >0 and L = L(e, ) as in (4.12
H,

Ayorrr ={E €1 |[{(X —u)P?Ry(E +ie)X(
We have, using [17, Lemma 6.3]

T<}. For a given compact
), we set
)

Xull3 < Mem(FU},

1 .
N uoindl € iy [ 100 = w2 R(B + i (L)l 4B
R
(oo}
2m —2t/T p/2 —itH, 2
= 3f7eii | © [{(X —u)P"e X(Ho)xullz dt
0
m
= 3ra U,w aXyT
apre Muw (P )
< (4.39)

where the last bound is uniform on v and w.
Thus, for an E € I fixed either £ € A, , ar,; in which case we have

Iy BB+ i) X (Ho) x| < CpaL P/ 2[[(X = w)?* R (B + i) X (Ho) vl
< Cp gL 7P MY 2 (et D)/2 (4.40)
or else, E € I\ Ay w1, 50 by (4.39) there exists E, ., € Ay w a1 such that
T
E - Eu w S v
B = Buul <
and therefore, by the resolvent identity and the definition of Ay . a1,

1Ty, L R (B + i) X (Ho) Xull < 1Ty, 2 Re (B + i€) X (Hy ) Xl
+|E - Eu,w|||Rw(E + Ze)llHRw(Eu,w + ZE)H

< Cp L P2 MY 204 D/2 4 T3 (4.41)
Now, for p such that p > p(0,~,d, «, s) we have
20+~v+d) <p—60 —v—(1+a)(0s+d)/s, (4.42)
so if we set
M = L%+, (4.43)
and recall
6—(1—‘,—01)/2 _ Cpo,QzL(1+a)(es+d)/287 (4.44)

we obtain, for L big enough depending on d, I, p,, 0,7, s,pg, Qr,

Cpal™ p/2 /2= (a+1)/2 = Cpa.0:.p0 L [~ (P/2=(60+7)/2—(1+a)(0s+d)/2s)
1
and
™ _ ! L69+2772(05+d)/5 < 1 (4 46)
Me2 — PoQr ALO+y+d) :

Inserting this in (4.41) proves the lemma. O
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5. Uniform Wegner Estimates for Delone-Anderson Type
Potentials

Take 0 < r < R < oo and consider the operator H,, = Hy + AV, with random
potential given by

Vo(x) = Z wyu(x —7), (5.1)

yeD

where D is a (r, R)-Delone set, as in Definition 2.9. The measurable function u,
called single-site potential, is such that || >° . p u(-—7)[lc = 1, it has compact
support and satisfies

U Xo,e, <u<ut X0 (5.2)

u?

for some constants 0 < €, <8, <r <ooand 0 <u~ <ut < oo.
Here, (wy)yep is a family of independent random variables, with proba-
bility distributions s, of bounded and continuous densities p, such that

pi 1= Sup 191 loe < o0, (5.3)
~yeD
0 € supp py C [—mo, Mo, (5.4)

where 0 < mg < 00,0 < My < o0.

Under these assumptions V,, is a bounded scalar potential jointly mea-
surable in both w € Q and = € R?, and so the mapping w +— H,, is measurable.

Denote by Hy . 2,1 and Hy 4 1, the restriction of H,, and Hy to the cube
Ap(z) with periodic boundary conditions, respectively (in the particular case
of the Landau Hamiltonian, details on the finite volume operator Hp  are
stated in Sect. 6), with A fixed and V,, , 1, being the restriction of V,, to A (z),
defined by

Vewr()= 3 wyul-—n). (5.5)

YEDNAL_5, (x)

and denote by f/w 1, the potential defined by

Ver()= > ul—7), (5.6)

veAL -5, (z)

where Az (z) = DN A (x).

We denote by Py x.1,Fo.. 1 the spectral projector associated to the
finite volume operators H . » 1, Ho.z,1, Tespectively. In the particular case
of the finite volume random Landau Hamiltonian and free Landau Hamilto-
nian, we write Hp ) .1 and Hp ; 1, respectively, and we use the notation
1L, 2,1 for the spectral projector associated to the n-th Landau level, and

It for its orthogonal projector (see Sect. 6.1). Define s(e) = sup sup .,
o ~eD E€R

([E, E + ¢€)).
We prove several Wegner estimates that we summarize in the following
theorem,
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Theorem 5.1. (i) Ford =2, let Hy be the Landau Hamiltonian with constant
magnetic field B > 0 fized. For any bounded interval I € R there exist
constants Qw = Qw (B, A\, R, 7, I,u,mg, Mo),ng xs €]0,1] and o finite
scale L.(B, A\, I, R) such that for every compact subinterval J C I, with
|J| <nBxg and L > L., we have

Sup E{trPs 00,1 (J)} < Qu pis(1T]) L. (5.7)
z€R

i) Let By € R\o(Hy) for Hy = —A + Vi, where Vi is Z%-periodic.
(i)

For any bounded interval I C R\o(Hy) there exist a constant Qw =
Qw A\ R,r, I,u) and a finite scale L.(R) such that for every compact
subinterval J C I, (5.7) holds.

(#3) Assume the IDS of Hy is Hélder continuous with exponent § > 0 in some
open interval I and no further assumption on s(e€). Then there exists
a constant Qy = Qi (B, A\, I,u, R,r,d) > 0 such that for all compact
subintervals J C I with |J| small enough, and 0 < v < 1,

E{trPx w2,z (J)} < Qy max{|J|*7, [J| = s(|J|)} L%, (5.8)
In particular, if s(¢) < C€S, for some ¢ € [0,1], then
E{trPy 0.0, (J)} < Qly|J|772 LE. (5.9)

Remark 5.2. We point out that Theorem 5.1 (i) provides a Wegner estimate
at all energies, in particular, at Landau levels. Compare this result to Theo-
rem 6.2. Both these results are necessary to prove the transport transition of
Theorem 2.11. Theorem 6.2 is used to prove localization at the band edges,
while Theorem 5.1 (4) is needed to apply Theorem 2.6.

Since the results are uniform in z, we state them for x = 0, A fixed and
for simplicity we omit these subscripts from the notation.

For the proof we follow [10], based on [9], plus [11,19] in the case of
the Landau Hamiltonian. In all cases we need to estimate E{trP,, (J)}. We

decompose it with respect to the free spectral projector of an interval J, such
that J C J and d; = dist(J, J¢) > 0, that is

trP, (J) = trPy 1 (J)Po.r(J) + trP, 1 (J)Po.r(J°). (5.10)

The key step in estimating the first term of the r.h.s is to prove a positivity
estimate as in [10, Theorem 2.1]. In order to obtain this estimate in the case
of the Landau Hamiltonian, we need some preliminary lemmas.

Lemma 5.3. Using the notations above, there exists a positive finite constant
Cn(B,u, R), so that

Hn,LVx,LHn,L 2 Cn(Ba u, R)Hn,L~ (511)

Proof. From [11] we have that for n € N, R > 0, for each 0 < € < R, s > 1 and
1 > 0 there exists a constant Cy = C, ,, . » > 0 such that

I x0,elL, > Co(nxg gn — nllnXg . zHn)- (5.12)
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Because of the invariance of Hp under the magnetic translations (6.1) we have
that the projections II,, commute with these unitary operators, which in turn
gives, for an arbitrary z € R?,

UanXO,eHnU: > COUm(HnX07RHn - anX07KRHn)U; (513)
HnUzXO,eU;Hn 2 CO(HnUmX07RU;Hn - anUmXO,KRU;Hn) (514)
I, Xz, 11, > C()(HnX%RHn - anX:c,nRHn)’ (5.15)

since conjugation by unitary operators is a positivity preserving operation.
Now, we recall [19, Lemma 5.3] (which is independent of V and,
therefore, D).

Lemma 5.4. Fiz B> 0,n € NJR > 0,0 < e < R and n > 0. If K > 1 and
L € Np (defined as in (6.3)) are such that L > 2(Lp + kR) then for all
Z € Ap(x), we have

W, Xa,elln, L = Colln L(Xz g — 1Xz o) n,L + 1 2E€n 7,0 L, (5.16)

where Cy = Co;n,B,e,R,n > 0 is a constant as before and the error operator
En.,1 satisfies

||Sn,;i,L|| < On,B,e,R,neimn‘BL, (517)
for some positive constant m, .

Now, by (5.2) we have

Vor() = Y ult-vzu Y Xy (5.18)

'YGZ\L—JH(I) ’YGAL—Su (2)
We fix R > 2R + 8,, in which case
> XA Xed (5.19)
yEAL_s, (z)
Now fix k > 1 and pick n > 0 such that
. 1
7 Z Roymit S GXaLe (5.20)
YEAL 5, (T)

It follows from Lemma 5.4, (5.19) and (5.20) that
Hn,LVz,LHn,L > U_CO Z Hn,L()Z%R - n)A(W’RR)Hn,L + Hn,Lgn,LHn,L

yeAL s, (x)
(5.21)
Ll S S 1o (5.22)
> CiI1, 1, (5.23)
for L > L* for some L* = L;,BVE,R,&W < oo and Cq = “_400, since the error

operator

Hn,Lgn,LHn,L = Hn,L § gn,’y,LHn,L
YEAL_s, (z)
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by (5.17), satisfies

||gn,L || S L2C7L,B,6,R,neimn’BL~

Finally we recall,

Lemma 5.5 [10, Lemma 2.1]. Suppose that T is a trace class operator indepen-
dent of w and u, the single site potential (5.2). We then have

E{trP, r(J)w;Tu;} < 8s(|J])|lwiTujl1- (5.24)
where we use the notation u; = u(x —i),i € R2.

Proof of Theorem 5.1. To prove (i), using the preliminary lemmas we can fol-
low the proof in [10, Theorem 4.3]. Notice that the spatial homogeneity of the
Delone set in the sense that points do not accumulate neither are too far away,
so the sums over indexes of elements of D preserves the properties of the sums
over indexes of elements of the lattice Z2 as the original proofs.

Recall that we need to estimate E{trP, (J)} as in (5.10), that is, for an
arbitrary Fy € R, with J and J closed bounded intervals centered on Eq such
that J C J, |J| < 1,d; > 0, we need to estimate

trP,,(J) = trPy, (), + trPy 1 (J) . (5.25)

a. Estimate on E{terVL(J)HTJ;,L}.

The analysis in [10, Eq. 2.6-2.10] for the n-th Landau band remains valid
taking, for the constants defined therein, M = 1 and the operator K defined
by

Hpr+1 )2 < 1+J+>2
K=(—>2>—«—] , K|I<K,=[|1+ , 5.26
(HB’L_Em IK| - (5.26)

where E,, is an eigenvalue of Hp x o 1, d, = min{dist(I, B,,—1), dist(I, By41}
and J = [J_, J4].
Then we can obtain the analog of [10, Eq. 4.4],

trP, (), < KA\ max{mo, Mo}? Y |tr w;Pop(J)ui Kij|, (5.27)
i,jEA
where K;; = x;(Hp,1, + 1)2x;, for x > 0 a smooth function of compact sup-
port slightly larger than the support of u such that yu = u. Note that due to
the spatial homogeneity of D and the fact that supp w is contained in a cube
of side r, the translated supports of « do not overlap.
Now, denote by Ag = {i,j € A/Xin =0} and by A = {i,j € A/Xin +
0}. Fori,j € Ao, the operator K;; is trace class [5, Lemma 2.2], [10, Lemma 5.1]
and it satisfies the Combes—Thomas estimate,

1Kl = i (Hp,z + 1) 2x]l1 < CheCelli=ill (5.28)
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where C}) and Cj are positive constants. So we can use Lemma 5.5 to obtain

B{| Y truPon(Nuikily SE{L Y Jor wPo n(uikil} (5.29)

i,5€No i,j€Ao
< Co8s(1)) > e~ Colli=ill (5.30)
i,7€No
< Cis([J]IA]- (5.31)

where C7 also depends on r, since jj([\L) < Cr,de for L > R, see Eq. (6.21).

On the other hand, for i,j € /~\87 K;; is also trace class [5, Lemma 2.2] so
we can apply Lemma 5.5 again, obtaining

E{trP, L ()IL, 1} < Cas(|J))IA], (5.32)

where Cy > 0 depends on u, I, \,r and M = max{mg, My}.

b. Estimate on E{trP,, 1,(J)II, 1.}

We use the spectral projector 11, ;, in order to control the trace. Here the
key ingredient is the positivity estimate (5.11) and the fact that, under our
hypotheses on u, there exists a finite constant C,, depending on u only, such
that

0< VL2 < CuVL

Now,
1 ~
trP, (I, < ————trP, (J)IIL,, V.11, 5.33
oIt < Gt P () Vel (5.33)
1 - -
<———  _{trP, I, ; — trP, I, Vi, ).
= Cn<B,’U,,R){ r 7L(‘])VL L r 7L(‘]) n,LVL '7L}

(5.34)

Then we can proceed as in parts (2) and (3) of the proof of [10, Theorem
4.3], and we finally arrive to the desired result,

E{trF, L(J)} < Qws(|J])[A]. (5.35)

where the constant Qw > 0 depends on B, u, R,r, I, \ and M.

As for (i), note that in this case trPy (J) = 0 if J C R\o(Hy), so we
only need to estimate the second term in the r.h.s. of (5.10), where we do not
need the positivity estimate (5.11) for Py 1. The proof mimics (i)-a.

In case (i7i) we can estimate the first term in the r.h.s. of (5.10) without
using the analog of (5.11) for Py 1. Instead, the Holder continuity of the IDS
of the non perturbed operator implies that there exists a constant C' > 0 such
that

trPy 1 (J) < C|J°|Al,
and so, for 0 < v < 1
trP,, 1,(J)Po.r(J) < C|J|"°|Al. (5.36)
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Since, as in the previous case (writing explicitly the dependence on d )
we have
Qw
2
3
by taking d; = |J|” we obtain the desired result. Furthermore, if s(e) is (-
Holder continuous, we get, taking v such that vd = ¢ — 2,

E{trP, (J)Por(J)} <

s(IDIA;

E{trP, 1(J)} < Qi max{|J|?°,|J|*~2V}L? (5.37)
< Qi lJ[F L, (5.38)
where QY depends on u, I, \, R, and M. g

6. Applications to Non Ergodic Random Landau Operators:
Proof of Theorem 2.11

6.1. The Model

Recall the operator Hy g, = Hp + AV, where Hp is given by (2.20), V,,
is the Delone-Anderson potential (2.21), satisfying conditions (5.2)—(5.4) with
py = p, for all v € D. We assume the random variables are identically distrib-
uted and that the single-site potential u satisfies the additional conditions:
(uc.) 0, < r/10, i.e., u has compact support contained in B(0,7/10). This
implies that for ¢, j € D with ¢ # j, supp u; Nsupp u; = (), where we use
the notation u; = u(- — i) for i € R
(u0.) ||ulloo =1 and u(0) = 1.
We define the magnetic translations U, for a € R? and ¢ € C5°(R?), by

Usp(x) = e_ig(““l_xl‘”)(p(a: —a), (6.1)
obtaining a projective unitary representation of R? on L*(R?):
U Uy = ¢ (wbimaiba) o piBlasbi—aib) g pe R2. (6.2)

We then have U, HgU;} = Hp for all a € R2.
We now define finite volume operators following [19]. For B > 0, we set

Kpg = min keN:ksz and LB:KB\/E. (6.3)
A7 47

We denote Np = LpN,Np = Np U {oo} and Z3% = LpZ>.

We consider squares Ay (z) with L € Np and x € R?, and identify them
with the torii Ty, , = R?/(LZ* + z). We denote by X, the characteristic
function of the cube A () and for # € Ar(x) and L < L we denote by A; (%)
and Xz.i the cube and characteristic function in Ty, ;.

For the first order differential operator Dp = (—iV — A) restricted
to C°(AL(z)) we take its closed, densely defined extension Dp ., from
L?(Ap(x)) to L*(AL(x); C?), with periodic boundary conditions and then set
Hp o =Dg, DB,



Vol. 13 (2012) Characterization of Anderson Metal-Insulator Transition 1601

We are left with the operator Hp x . 2,1 acting on L2 (AL(z)) defined by

Hprwaor =Hpor +AVyar. (6.4)
where V,, ;1 is defined as in (5.5).
We write Rp(z) = (Hpawar — 2)" ' for the resolvent operator of

Hp ywaL-

Since Hp ;.1 has a compact resolvent, its spectrum consists of the Landau
Levels but now with finite multiplicity. We denote by II,, ; the orthogonal
projection associated to the n-th Landau level and define Pp xyq.r(J) =
X7(Hpawar) for J C R a Borel set.

This operator satisfies the compatibility conditions [19, Eq. 4.2]: If ¢ €

D(Dp,q,r) with supp ¢ C Ar_s, (x), then Z, o € D(Dp) and
Ia: D x, =D Iz, y

LVYB 2z LY Bl L¥ (6.5)

Ix,LXz,L—zSqu,r,L - Xz,L—Ju,Vw;

where Z,, 1, : L*(Az(x)) — L?*(R?) is the canonical injection
_Jwly) ifyeAp(e)
Lenely) = {O otherwise.

From this we have
Lo tHawe,1p = Hp xwle L@,
that is, the finite volume operators Hp x . .1 agree with Hp ) . inside the
square Ap(x).
However, Hp x w21 does not satisfy the covariance condition (2.3) so we
have a priori

ES
Hpxwar #UcHp )7, (0),0,0Us,

where U, is the magnetic translation (6.1) seen as a unitary map from
L*(Az(0)) to L*(AL(x)) and 7, is the translation defined as 7,(w,) = w,_,
for x € R2.

6.2. Dynamical Localization in Landau Bands
In this section we prove the following
Theorem 6.1. Let H, be as before. For any n = 0,1,2,... there exist finite

positive constants B(n) and K, ()\) depending only on n, M,u and p such that
for all B > B(n) we can perform MSA in the intervals

log B
YBmnAw = 0BAw {E € B, : |E—B,| > K\ O% } , (6.6)

We have strong HS-dynamical localization at energy levels up to a dis-

tance K, (\) IO%B from the Landau levels for large B.

For the proof we need to verify the conditions to start the modified Mul-
tiscale Analysis, Theorem 2.3. As mentioned in the proof of Theorem 2.3, this
model satisfies properties IAD, R, EDI, SLI and UNE. What is left to prove is
the existence of a suitable length scale Lo that satisfies (2.7) and UWE. The
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latter comes from the following improvement in the Wegner estimate of the
previous section and it follows [8, Theorem 3.1].

Theorem 6.2. There exists B > 0 and a constant Q, = Qn)\,u
for all B > B and for any closed interval I C B,\o(Hp)

E{trPp xwer(l)} < Qnmlllﬁ (6.7)
In particular, for Ey ¢ o(Hp) and all 0 < € < |Ey — By,

B
(IEo — Bu| — )
Proof. Without loss of generality we work within the first Landau band By,

containing the Landau level By. Set M = ||V, ||« = max{mq, Mo}. Let I be
an interval such that I C By\{Boy} and inf I > By, so dist(I, By) > 0.

Following the same arguments in [8, Eq. 3.4-3.11], we get

E{trPy(I)} < dist(Z, Bo) >M?||pllclZ| Y 15 I, (6.9)
i,5€D

|plloo such that

P{dist(c(Hpxw.1), Eo) < €} < Qn eL?. (6.8)

1/2

where Py (I) stands for Pg ) 2,1 (I) and we use the notation AY = ui/QAu]

for any bounded operator A.

To evaluate the sum we consider separately the indices #,j for which
|i — 7|l < 46, and those for which ||i — j|| > 44, with J, as in (5.2).

Let x;; be the characteristic function of supp(u; +u;). Again, as in Theo-
rem 5.1, the translated supports of u behave in a similar way as in the lattice.
Then we follow the same arguments therein and obtain, using [8, Lemma 2.1],

ool < lull% Y IxagToxislls < CoBlAllsupp ul,  (6.10)
li—j| <46, li—j| <48,

where the constant Cy actually depends on the index n of the Landau level,
which in this case is 0.
Define X;-;- to be the characteristic function of the set {z € R? : ||z —i| <

|z — j||} and denote Xij = 1-— ij Then we obtain

ij 1/2 1/2 1/2 - - 1/2
1T < My o, 2l o,y 22 + g * Mo, xg5 ;Mo 0y

Now, if |i — j| > 4d,, condition (5.2) implies that
[l =3l
2

dist(supp x?'j,supp uj) > — 0y > Kli — 4]l

for some k > 0. Similarly for dist(supp X;j+ SUPP u;). We then obtain

Y Gl < Culsupp ul[Al. (6.11)
i3] >46.

Combining (6.9), (6.10) and (6.11) we obtain
E{trPL(I)} < Qo(dist(Z, Bo))~*[lpllceBIAl,
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where the constant Qg depends on A\, M ,||u||oc and supp u. Taking I = [Ey —e,
E+¢| for small € > 0 and applying Chebyshev’s inequality we obtain (6.8). [

As for the initial length scale estimate (2.7) to start the multiscale anal-

ysis, we need to verify that for some Lj € 6N sufficiently large (as specified in
[16]), given 6 > 0, E € R\o(Hp,1,),

1

—, (6.12)
Lg

P {||Fw,L0RB,w,w,L0 (E)Xa,Los3ll < ng} >1-
0

for a suitable choice of p, where I's 1. = Xz, _, (2)\A;_s(2)-

To do so we follow the approach [8] to obtain estimates that we will later
state as in [16]. We need to show that in the annular region between a box of
side L/3 and L, there exists a closed, connected ribbon where the potential
V satisfies the condition |V (z) + B, — E| > a > 0, for E # B, with a good
probability ([8, Eq. 4.2]). To prove this, Combes and Hislop used bond per-
colation theory, defining occupied bonds of the lattice as those bonds where
the potential satisfies this property. However, in our case there is no need to
use percolation theory since this fact is assured by the assumption (uc) on
the single-site potential. More precisely, we will show that there exist ribbons
where the potential is zero almost surely.

Let us consider the Voronoi diagram associated to D [32]. Since Ap =
DN Ay is a discrete bounded set, we can write Ay = {p1,...,pn},n € N. For
each site p; we consider its Voronoi cell, defined as

Le., the set of points that are closer to p; than to any other site in Ar. The
Voronoi diagram associated to Ay, denoted by Vor(Ap) is a subdivision of Aj,
into Voronoi cells,

Vor AL U V(p;)-

1<i<n

The edges and vertices of Vor(AL) are polygonal connected lines with
the property that the minimal and maximal distances from any site p; to an
edge or vertex are r/4 and R/v/2, respectively.

Now, take a covering of Ay /3 by a finite collection of Voronoi cells, V4,
which is a convex polygon. Its perimeter is a polygonal line C that encloses
Ay /3 such that C N D = (). Taking L big enough with respect to R we have
C C Ar_3\Ap 3. Moreover, assumption (uc) implies that we can always find a
ribbon R associated to C, i.e., a set
r

_ 2. g r_or
R={z€eR .dlst(x,C)<4 10

2
such that V(z) =0 for all z € R (see Fig. 1)

Then, condition [8, Eq. (4.2)] holds almost surely, therefore [8, Corollary
4.1] holds almost surely, and this implies (see [8, Proposition 5.1], [16, Theorem
4.3])
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° ] R
a . - AL

FicUrE 1. Ribbon R in the Voronoi diagram associated to
D. Points represent the support of the Delone-Anderson
potential

Theorem 6.3. Let £ = B,, = 2a for some n = 0,1,2... with 0 < 2a < B.
There exists constants Y, 3, > 0 depending only on n, M, u,d, such that for
any 0 < e < a,L € 6N and Q,, as in the previous theorem,

B ‘ B
P {||Fx7LRB,w@,L(E)Xx7L sall < aneﬁnmm{wﬁ}} > 1—Qna—;L2. (6.13)

Therefore, to satisfy (6.12) we need only to verify the conditions

B : 1
Ynje_ﬁn min{aB,vB} < — (614)
ae Lg
Be 1
Qn—Li < =5, (6.15)
a? Ly

which can be done in the same way as in the proof of [16, Theorem 4.1],
yielding Theorem 6.1.

6.3. Dynamical Delocalization in Landau Bands

Theorem 6.4. Under the disjoint bands condition (2.23) the random Landau
Hamiltonian Hp y ., ezhibits dynamical delocalization in each Landau band
B.(B,A), i.e., foralln=1,2,...,

EPP Nop s, NBL(B, ) # 0. (6.16)

In particular, there exists at least one energy Ey, (B, \) € B, (B, \) such
that for every X € C2% (R) with X =1 on some open interval J > Ep, (B, \)
and p > 0, we have

MpA(p, X, T) > Cp xT5°, (6.17)
for all T >0 with Cp, » > 0.
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This is a consequence of the quantization of the Hall conductance in each
Landau band and the fact that in regions of dynamical localization, the Hall
conductance is constant, as proven in [19, Section 3]. We recall the main lines
of their strategy.

Consider the switch function h(t) = x| (t) and let h; denote the mul-

tiplication by the function h(z;),j = 1,2. The Hall conductance is defined as
OH, (B7 )\, E) = —27TZ.@(PB7)\7W,E)
1= t1{Pp »w,E[[PB 2 w,E: M) [PBAwE, h]l},  (6.18)

where Pp ) w g = Ppw((—00, E]).

Following the proof of [19, Lemma 3.2] we see that the Hall conductance is
constant in connected components of the dynamical localization region, where
property SUDEC is valid, as consequence of Theorem 2.3. On the other hand,
it is well known that for A = 0,0y, (B,\,E) = n if E € (B, B,41) for all
n = 0,1,2,.... Under the disjoint bands condition (2.23), if E € G, (B, \)
for A, and some n € {0,1,2,...}, we can find some Ag > A, such that E €
Gn(B, \) for all A € [0, A\g]. That is, the spectral gaps stay open as A increases.
Then we prove along the lines of [19, Lemma 3.3] that oy (B,\, E) = n if
E € G,(B,\), for all [0, A\g]. As the spectral gaps G, (B, \) are by definition
part of the localization region, this implies that the Hall conductance has the
same value in different gaps, which is a contradiction. Therefore, we must have
EPP Mo aw NBL(B,A) # 0 for every w € €.

By Theorems 6.1 and 6.4 we conclude that there exists a dynamical tran-
sition energy in each Landau band as stated in Theorem 6.4.

5,00)

6.4. Almost Sure Existence of Spectrum Near Band Edges

Since we deal with a non ergodic random operator, previous results on the
nature of the spectrum do not hold in this setting. In particular, we cannot
use the characterization of the spectra as a union of spectra of periodic opera-
tors as in [19]. We need a more constructive approach and thus, to go back to
the argument used in [8]. We extend [8, Theorem 7.1] to a Delone-Anderson
potential to make sure that, although the spectrum op . is random, there
exists almost surely some part of o5,y ., in the region were we can prove dynam-
ical localization, that is, in the spectral band edges.

Consider the operator acting on L?(R?), H? = Hp + AV.” where X\ > 0
and VP is defined as in (2.21). Recall that

VP(z) = Z Woy Uy, (6.19)
yeD

where D is a (r, R)-Delone set, the random variables w, are i.i.d. with abso-
lute continuous probability density p,supp p = [-M, M] and u, = u(z — 7).
Assume moreover u € C?, ||[u| s = 1,supp u C A,(0) and u(0) = 1.

Theorem 6.5. Under the disjoint bands conditions, for a random Landau
Hamiltonian as stated before and anyn = 0,1,2, ... there exists a finite positive
constant B(n) depending on n, M,u, X\ and K, (\) such that for all B > B(n),
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the intervals ¥p p a0 n Theorem 6.1 are almost surely non empty. More pre-
cisely, we prove that there exist finite positive constants Cy,, B(n) depending
on n, M,u such that for every B > B(n), we have for all E € B,

o(H,)N[E - XC,B™Y2 E 4+ \C,B~Y/?] £9. (6.20)

For a set A € R? we denote by A the intersection A N D. Recall that we
have, for an arbitrary box Az (z) of side L € N centered in z:

Cral? <t(Ar) =4(DNAL) < CphqL, (6.21)
where Cp g = R~% and C, 4 = [r~7].

Take a sequence {x,, } such that |z, —x,,| > L for every n, m and consider
the following sets in the probability space §2:
O (2g) = {w: lwy —m| <e Vye€ [\L(xn)}
and

of = U 9 (), (6.22)
N n>N
where 1 € [~M, M]. By the choice of {z,}, the events QF(z,) and QL (z,,)
are independent for n # m.
Since the random variables are i.i.d. and (6.21) holds for every box
Ar(z,), we obtain

P (0F(2) = P (1w — 1] < 7 € A fan)
= B (lwy — 5] < PN (6.22)
> P (|jwy — 1] < " (6.24)
d
= p([n —e;n+ ) et (6.25)

Therefore

> P (Qf () = oo, (6.26)

which implies that P (QF) = 1, by the Borel-Cantelli lemma.
Given § > 0, take ¢ = §/(rL)?. We have shown that for w € QF a

set of full measure, there exists an infinite sequence {x,} such that for any
n € [7M7 M]7
5 _
|wy =] < L) for all v € Ap(xy) (6.27)

Fix one of these boxes and call it Ay (so Ay depends on w, but this procedure
can be done for all w € Qg, the yielding result being uniform in w).

Without loss of generality, Ao contains 0. Indeed, if 0 ¢ A (z,) for all n,
take L > R so that Ag # 0 and take vy € Ag. Consider now the operator

HP™° =Hp+ X > wyu,. (6.28)

YED—0
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We have that o(HL) = o(HL~0), since, taking a translation 7., : Q@ x D —
Q x (D — 7o) defined by 7, (wy,v) = (wy,7 — Y0), that associates the same
random variable of a point to its translated, we can see HY is unitarily equiv-
alent to HP =0,

Moreover, by what is known for H2 with full probability there exists
a sequence {Z,} = {x, — 70} such that (6.27) holds. In particular, since the
cube Ag is a cube that satisfies (6.27) for HD, then the cube A, = Ag — 7o
satisfies (6.27) for HD =,

Define

Vig(w) =n Y (6.29)

Since 7o € Ag = AgND we have that 0 € /~\,Y0 = (Ao —0)N(D—"9). Moreover,
the assumptions on w, namely that u(0) = 1 and the supports of u, do not
overlap, imply that V., (0) = 7. Therefore, without loss of generality we can

assume Ag is centered in 0 and so we work from now on with H? VP and V;
as in (6.29) with v = 0.

Remark 6.6. The assumption u(0) = 1 is so we can later perform a Taylor
expansion around 0.

Proof of Theorem 6.5. From now on L is fixed. For the sake of completeness,
we will reproduce the details of [8, Appendix 2] with the corresponding adap-
tations and work in the 0-th Landau band. Let Il be the Landau projection
in the 0-th Landau band, around the Landau level By. Take the normalized
function ¢g € Iy(H),defined by

bo(z) = <2B>1/2 e Blal, (6.30)

™

Let E € [By—AM, By+AM], that is, E = B+ A for some n € [-M, M]. The
case n = 0 is trivial by the previous Borel-Cantelli argument, as { By, }n>0 C
o(H,) almost surely. Since the argument is analog for n < 0, in the following
we consider only n € (0, M], and write

I (HE = B) ¢oll = || (HZ — Bo — ) o (6.31)
< [Mo(AV2 = An)dol| + A (1 = To) V"ol (6.32)

For simplicity we write V, instead of V.P. The deterministic result [8, Lemma
A.1] implies that

(1 = TIo) Vi || < AC1B™Y/2, (6.33)

where C; is a constant depending only on the single-site potential u. We are
left with
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oAV = An)doll < AN wyuy + D> wyuy — n)doll (6.34)
"/E]\o ’YED\[\O
SAIC S wyty =)ol + Al D wyuygoll  (6.35)
"/EAU ’YGD\]\O
<MY wyuy = mgoll +AM > Jugdoll. (6.36)
v€Ao yED\Aq

Recall that
{yeD: yeD\Ag} c{yED: |[y]>r}. (6.37)
The second term in (6.36) can be estimated as in [8, Eq. 7.6], where it is shown

that
l[uyoll® = / () 2u(z — 7)2da < ||ul|Zoe 2B +Br (6.38)

which is summable for v such that |y| > r, yielding that for all B > B,, for a
constant B, big enough,
AM > Jlusgoll < AC,BY2, (6.39)
¥€D\Aq
where the constant is uniform in B.

As for the first term in (6.36), recalling the definition of V4 from (6.29),
we write

AllC Z wytiy =)ol = All( Z wyty — Vo + Vo = n)ol| (6.40)
€A, v€Ao
<A wyuy =1 D uy)doll + Al (Vo —m)éol
76]\0 7€1~\0
(6.41)
<A Z mu~yoll + A (Vo —n)goll.  (6.42)
v€ho
By the choice of Ay the first term in (6.42) is
ALY @y = n)usdoll < A6 (6.43)
y€Ao
As for the second term in (6.42),
2
16 - mol? = (2) [ Wate) = e 211 @ (6:49
RQ
= <2> /|VO(B‘1/2x) — pl2e 2ol Qg (6.45)
7r
R2

Now, since V5(0) = n, we have

Vo(B~22) — | = [Vo(B~%x) = V5 (0)] (6.46)



Vol. 13 (2012) Characterization of Anderson Metal-Insulator Transition 1609

and we can perform a Taylor expansion around 0 for V[, obtaining, since
supp Vo C Ao,

Vo(B™'22) = Vo(0)| < B~V2|[2l|[VVolloo < B™Y2L|VVolloc.  (6.47)

Notice that ||VVj|leo < Cs, for a constant C'3 depending only on u, uniformly
with respect to n € [0, M]. Replacing this in the integral we obtain

C — xT
10 - wenlP = (55 ) [ a, (6.49)
So we obtain once more
M (Vo = m)eoll < ACsB™V/2. (6.49)

Finally, adding the estimates (6.33), (6.39), (6.43) and (6.49) yields that for
all B > B,,

|HD = (Bo+ M) < ACsB™Y2 +3, (6.50)

where the bound is uniform in B,w € Qg and in 5 € [0, M]. The same result
holds in any Landau band for all B large enough. Therefore, with probability
one and for any F = B,, + An, we have

c(HPYN[E = AXC5B~Y% — 6, E 4+ AC5B~ Y% 4+ 6] #0. (6.51)

Since § > 0 is arbitrary,
o(HPYN[E = \CsB~Y2 E 4+ \CsBY/?] £ 0, (6.52)
for every E € [B,,, B, +AM]. This proves that any gap in the spectrum of H?
in the Landau band cannot exceed a length of order B—1/2. O

In particular, since we know by perturbation theory that o(H2) C [B,, —
AM, B,, + AM],we have that for E = B,, + AM, that is, in the edge of the
Landau band,

o(HD) N [By+ AM — XC5sB~'/2 B, + AM] # 0. (6.53)

On the other hand, by Theorem 6.1 we know the localization region is
at a distance K, (\)22 from the Landau level B,,. If \ is fixed and B is such
that

In B AC,
Kp(\) 2 < AM — 222
B VB
then the region of the spectrum that is almost surely near the band edge, that
is above B, + AM — AC,, B~'/2, lies in the localization region, that is above

BnJrKn(/\)%. So we have shown Theorem 6.5, that is, for everyn = 0,1,2, ...
YBnrw #0 forae we. (6.55)

(6.54)
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