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Ultraviolet–Infrared Mixing
on the Noncommutative Minkowski Space
in the Yang–Feldman Formalism

Jochen Zahn

Abstract. We study infrared divergences due to ultraviolet–infrared mix-
ing in quantum field theory on Moyal space with Lorentzian signature
in the Yang–Feldman formalism. Concretely, we are considering the φ4

and the φ3 model in arbitrary even dimension. It turns out that the sit-
uation is worse than in the Euclidean setting, in the sense that we find
infrared divergences in graphs that are finite there. We briefly discuss the
problems one faces when trying to adapt the nonlocal counterterms that
render the Euclidean model renormalizable.

1. Introduction

The most serious difficulty that shows up in the study of quantum field theo-
ries on Moyal space (NCQFT), cf. [1] for a review, is a peculiar mixing of low
and high energy scales, the so-called UV–IR mixing [2]. In the Euclidean case,
this leads to strange infrared divergences, which can only be renormalized with
counterterms that either break translation invariance [3], or are nonlocal [4].
Another, rather technical, difficulty is that the models on spaces with Euclid-
ean and Lorentzian signature are not easily related in the case of space-time
noncommutativity, i.e., if there is no timelike direction that commutes with
all other directions. In particular, a naive application in the Lorentzian case
of the Feynman rules derived in the Euclidean, cf. [5], leads to a violation of
unitarity [6]. For the Lorentzian case, two different quantization procedures
have been proposed, the Hamiltonian framework [7] and the Yang–Feldman
approach [8,9]. In general, contrary to the case of classical spacetime, these
two approaches are inequivalent.

Despite of the unitarity problem and the missing correspondence with
some theory in the Lorentzian sector, most of the work on NCQFT has been
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Figure 1. The nonplanar tadpole

Figure 2. A graph exhibiting an infrared divergence due to
UV–IR mixing

done in the Euclidean framework. In particular, the UV–IR mixing was found
in that setting [2]. However, relatively little is known about the situation in
the Lorentzian case. Since at least some of the momentum integrations in the
Hamiltonian and the Yang–Feldman approach are restricted to the mass shell,
there was hope that in these models the infrared divergences were absent or
alleviated in the massive case, as it is the integration over the origin in momen-
tum space that causes the troubles in the Euclidean. However, it was recently
shown [10] that in the Hamiltonian approach a kind of UV–IR mixing occurs,
even though the mechanism is quite different. Here, we show that also the
Yang–Feldman approach is plagued by the UV–IR mixing.

Typically, the self-energy of a nonplanar (sub)graph will be a function of
(σp)2, where σ is the noncommutativity matrix, with a divergence in (σp)2 = 0.
There are now two potential problems:

(i) The integration over the singularity at (σp)2 = 0.
(ii) The fact that (σp)2 does not fall off in some directions, i.e., the hyper-

surfaces (σp)2 = const are not compact, which may spoil integrability.

While the first difficulty has some similarity with the Euclidean case (where
(σp)2 = 0 means p = 0), the latter difficulty is new. It leads to divergences in
situations that are finite in the Euclidean case. A particularly striking example
of this is a divergence in the two-dimensional case.

Let us briefly review how the UV–IR mixing occurs in the Euclidean
setting. Some graphs that would be finite in the commutative case are regular-
ized by the inverse of the incoming momentum. The simplest example is the
so-called nonplanar tadpole in the φ4 model, which is depicted in the graph
shown in Fig. 1. If such a graph is inserted in a loop of a bigger graph, then the
momentum will be integrated over p = 0, where it diverges. As an example,
consider a graph of the form shown in Fig. 2. Such a graph is always UV finite,
as the nonplanar tadpoles fall off exponentially for large momentum p (in the
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massive case). But the integral over the origin p = 0 may lead to troubles. In
the two-dimensional case, the nonplanar tadpoles behave for small momenta
as log p2, so an arbitrary number of them can be inserted without spoiling
integrability at p = 0. However, in the four-dimensional case, the nonplanar
tadpoles scale as p−2. Thus, if two of them are inserted in the above graph,
it diverges logarithmically in the infrared. With more and more nonplanar
insertions, the behavior at p = 0 can be made arbitrarily bad.

The problem can be cured by modifying the propagator, either by intro-
ducing the so-called Grosse–Wulkenhaar potential [3], which breaks translation
invariance, or by adding a nonlocal but translation-invariant term [4]. How-
ever, an adaption of the Grosse–Wulkenhaar term to the Lorentzian case leads
to strange divergences [11], even in two dimensions. The setting of [4] has not
yet been considered in the Lorentzian case, and we comment on that possibility
below (in Sect. 5).

In the Yang–Feldman formalism, the loop momentum p in graphs of the
type depicted in Fig. 2 will always be on-shell. Thus, in a massive theory, one
does not integrate over p = 0. One might thus hope that in this framework
the infrared divergences are absent or weakened. However, we show that the
analog of the graph shown in Fig. 2 diverges in the Yang–Feldman formalism,
already for one nonplanar insertion and independently of the dimension, i.e.,
even for d = 2. Now a graph of this form is a tadpole, so one might think
that the divergence can easily be subtracted, in particular as it is local in the
adiabatic limit. However, we will see that the graph is finite before taking
the adiabatic limit. Thus, a suitable counterterm can not be local, as it must
depend on the cutoff function in a highly nontrivial way. We will also show
that when nonplanar graphs are inserted into a planar fish graph, one finds the
same dependence on the dimension as in the Euclidean case, i.e., a divergence
in the φ4

4 and the φ3
6 model. However, the divergences appear earlier than in

the Euclidean case, e.g., for the φ3
6 model, with two nonplanar insertions, as

opposed to three in the Euclidean case.
The paper is organized as follows. In the next section, we give a short

introduction to the Yang–Feldman formalism. In Sect. 3, we discuss the analog
of the graph shown in Fig. 2 in the Yang–Feldman formalism. Section 4 deals
with the UV–IR mixing in the φ3 model. We conclude with a summary and
an outlook. In an appendix, we recall some notions from microlocal analysis
that are used below.

1.1. Notation and Conventions

Throughout, we work on Moyal space with even dimension d. The � -product
is defined via the twisted convolution of the Fourier transforms as

(f � h)̂ (k̃) = (2π)−d/2

∫
ddk f̂(k)ĥ(k̃ − k)e− i

2 kμσμν k̃ν . (1)
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The noncommutativity matrix σ is assumed to be given by1

σ =

⎛
⎜⎝
ε 0

. . .
0 ε

⎞
⎟⎠ ,

with

ε =
(

0 −1
1 0

)
.

Thus, it is always the first spatial coordinate that does not commute with
time. Correspondingly, we will often decompose d-dimensional vectors as p =
(p0, p1, ps). Given a d − 1 dimensional momentum vector p, we define ωp =√|p|2 +m2 and p± = (±ωp,p). As they play a major role in the Yang–
Feldman formalism, we recall the retarded propagator and the two-point func-
tion in momentum space:

Δ̂R(k) = (2π)− d
2 lim

ε→+0

−1
k2 −m2 + iεk0

,

Δ̂+(k) = (2π)− d
2 +1θ(k0)δ(k2 −m2).

As usual, D′(Rn) denotes the distributions on test functions with compact sup-
port and S ′(Rn) the tempered distributions. We sometimes use the notation
cd for a constant that depends on the dimension and whose value may change
in the same equation.

2. The Yang–Feldman Formalism

We give a brief introduction to the Yang–Feldman formalism in the context
of NCQFT. The basic idea is a perturbative and recursive construction of the
interacting field in terms of the incoming field, which is supposed to be free.
As an example, consider the noncommutative φ4 model. There, the equation
of motion is given by

(� +m2)φ = λφ �φ �φ. (2)

One now writes the interacting field as a formal power series in the coupling
constant λ:

φ =
∞∑

n=0

λnφn.

Inserting this ansatz into (2), one obtains

(� +m2)φn =
∑

∑
ni=n−1

φn1 � φn2 � φn3 . (3)

1 It is thus of the form proposed in [7] in order to fulfill certain space-time uncertainty
relations derived from semiclassical arguments. Note that we choose the length scale of
noncommutativity as the length unit.
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In particular, φ0 is a free field. Identifying it with the incoming field, the higher
order components are obtained by convolution with the retarded propagator:

φ1 = ΔR × φ0 � φ0 � φ0,

(4)
φ2 = ΔR × (φ1 � φ0 � φ0 + φ0 � φ1 � φ0 + φ0 � φ0 � φ1) .

Quantum effects enter when contractions are considered. Two free fields φ0

can be contracted, yielding a two-point function Δ+.
A subtle point in the quantization procedure concerns a symmetry of

the � -product. The change σ �→ −σ corresponds to the replacement of the
� -product by the �̄ -product, which is defined by f �̄ g = g � f . But, obviously,
we have φ �φ = φ �̄ φ. Thus, the equation of motion (2) is invariant under
σ �→ −σ. However, this symmetry is violated in a naive quantization.2 As an
example, consider the product φ �φ �φ occurring on the r.h.s. of (2). By (1),
we would write it, in momentum space, as

̂φ �φ �φ(k) = cd

∫ ∏
i
ddki δ(k −

∑
ki)φ̂(k1)φ̂(k2)φ̂(k3)

×e− i
2 (k1σk2+k1σk3+k2σk3). (5)

If the φ̂(ki)’s were numbers, this expression would be invariant under the
replacement σ �→ −σ. However, in the quantum case, they are operators that
do not commute in general. In order to restore the classical symmetry, we
propose to symmetrize the quantum field part in the product that defines the
interaction term, i.e., to set

̂φ �φ �φ(k) = cd

∫ ∏
i
ddki δ(k −

∑
ki){φ̂(k1), φ̂(k2), φ̂(k3)}

×e− i
2 (k1σk2+k1σk3+k2σk3) (6)

instead of (5), where {·, ·, ·} stands for complete symmetrization.3 Such a sym-
metrization was already proposed and used in [12] in order to cure certain
inconsistencies in the quantization of gauge fields.

Using this product in (3), we find

φ̂n(k) = cdΔ̂R(k)
∫ ∏

i

ddki δ(k −
∑

ki)
∑

∑
ni=n−1

φ̂n1(k1)φ̂n2(k2)φ̂n3(k3)

×
{

cos( 1
2k1σk2)e− i

2 (k1+k2)σk3 + cos( 1
2k1σk3)e− i

2 (k1+k3)σk2

+ cos( 1
2k2σk3)e− i

2 (k2+k3)σk1

}
. (7)

The formal power series thus obtained is then a solution of (2), where the
expression on the r.h.s. is defined by (6).

2 This observation is due to Micha�l Wrochna (private communication).
3 The invariance under the symmetry σ �→ −σ could also be restored by just symmetrizing

φ̂(k1) and φ̂(k3). However, we also have, e.g., φ �̄ (φ � φ) = (φ � φ) � φ = φ � (φ � φ). Thus, the
classical expression is also invariant under the replacement of just one of the � -products by
�̄ . In order to keep that symmetry, we use a complete symmetrization.
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Figure 3. The graphical representation of φ1

Figure 4. The graphical representation of φ2

We now want to introduce a graphical notation. The expression in curly
brackets in (7) defines the vertex factor. In the graphical notation, we would
now express φ1(k) by the graph shown in Fig. 3. In this notation, a double line
stands for the retarded propagator. An open single line stands for an uncon-
tracted free field φ0. A contraction is depicted by linking the two ends. Thus,
a single line that links two (possibly coinciding) vertices stands for a two-
point function. Higher order components of the field are obtained by replacing
a single line by the same building block, cf. the recursive formula (7). As an
example, the graphical representation of φ2 is depicted in Fig. 4. At first glance
it does not seem to matter to which side the tree grows, i.e., the three graphs
shown in Fig. 4 seem to be identical, as the vertex factor

v(k1, k2, k3) = cos
(

1
2
k1σk2

)
e− i

2 (k1+k2)σk3 + cos
(

1
2
k1σk3

)
e− i

2 (k1+k3)σk2

+ cos
(

1
2
k2σk3

)
e− i

2 (k2+k3)σk1

is invariant under permutations of the ki’s. However, we recall that open single
lines stand for free fields, and these do not necessarily commute. If one closes
a loop by a contraction, one obtains the two-point function Δ̂+(k), where k
is the momentum going from left to right. But Δ̂+ is not symmetric, so one
has to take care about the order. Another downside of our graphical notation
is that we can not distinguish between planar and nonplanar graphs in this
notation. To do that, one has to translate the graph to an analytic expression.
As an example, consider the tadpole, i.e., the graphs shown in Fig. 5 (in this
case, the three different graphs yield the same result). It is the contracted part
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Figure 5. The φ4 tadpole

Figure 6. The Yang–Feldman snowman graphs

of φ1, for which we obtain

φ̂c
1(k) = cdΔ̂R(k)φ̂0(k)

∫
ddp Δ̂+(p) {2 + cos pσk}

= cdΔ̂R(k)φ̂0(k) {2Δ+(0) + Δ1(σk)} . (8)

Here we used

Δ1(x) =
1
2

(Δ+(x) + Δ+(−x)) .

The first term in (8) diverges and corresponds to the usual tadpole. We sub-
tract it by normal ordering. The second term, however is finite and nonlocal,
so we do not subtract it (this procedure corresponds to the quasiplanar Wick
products introduced in [13]). This second term will be called the nonplanar
tadpole in the following. In the Euclidean, one would find ΔE(σp) instead of
Δ1(σp), where ΔE is the Euclidean Green’s function.

3. The Case of φ4

We consider the snowman graphs of φ4, i.e., the tadpole with one inserted
tadpole, which is part of the contracted part φc

2 of φ2. As we subtracted the
usual local divergence of the tadpole, only the nonplanar contribution, i.e., the
second term in (8), remains. Thus, we have the self-energy

Σnp(k) = Δ1(σk).

The snowman graphs of φ4 are now depicted in Fig. 6. Here the encircled Σnp

stands for the nonplanar part of the tadpole self-energy. Thus, we obtain

φ̂c
2(k) = cdΔ̂R(k)φ̂0(k)

∫
ddp Δ̂R(p)Σnp(p)Δ̂1(p) {2 + cos pσk} . (9)
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In order to separate the UV and the IR problem, we introduce an IR
cutoff. We do this rather ad hoc by replacing momentum conservation at each
vertex in the graphs in Fig. 6 by ĝ(

∑
ki), where ĝ is the Fourier transform of a

smooth function g with compact support. Later, we will consider the adiabatic
limit in which this test function is replaced by a constant. With such a cutoff,
we have, instead of (9),

φ̂c
2(k) = cdΔ̂R(k)

∫ ∏
i
ddki ĝ(k − k1 − k2 − k3)φ̂0(k1)

×Δ̂R(k2)ĝ(k2 + k3)Σnp(k3)Δ̂1(k3) {2 + cos k2σk} . (10)

We note that there is some ambiguity in giving a momentum to Σnp and
the second term in curly brackets, but the result in the adiabatic limit does
not depend on this choice. The second term in curly brackets corresponds, in
Euclidean NCQFT, to a nonplanar tadpole inserted in a nonplanar tadpole.
It turns out to be finite, as we will show below. Thus, we focus on the first
term in curly brackets in (10), which in the Euclidean setting corresponds to
the graph shown in Fig. 2 with one nonplanar insertion. Transformation to
position space leads to

φpl
2 (z) = cd

∫
ddy ΔR(z − y)g(y)φ0(y)

∫
ddx ΔR(y − x)u(x− y)g(x), (11)

where u is the inverse Fourier transform of

û(p) = Δ̂1(p)Σnp(p) = Δ̂1(p)Δ1(σp).

In the following, we will study how the second integral behaves, in par-
ticular in the adiabatic limit. As a first step, we want to establish that the
inverse Fourier transform u of û really exists. We will then discuss whether
its product with ΔR is well-defined, and finally consider the integral in the
adiabatic limit. As problems only show up in the adiabatic limit, we conclude
that we are dealing with an infrared divergence which can not be renormalized
with the usual local counterterms.

3.1. The Distribution u

As is easily checked, σp is spacelike if p is timelike. As Δ̂+(p) has singular
support on p2 = m2 and Δ+(x) on x2 = 0, the singular supports of Δ̂1(p) and
Δ1(σp) do not overlap. Thus, their product û is well-defined as an element
of D′(Rd), by Hörmanders criterion, cf. Appendix A. But it is not necessarily
an element of S ′(Rd). Hence, it is not clear whether its Fourier transform u

really exists. However, as Δ̂1(p) is supported on {p|p2 = m2}, also û(p) will
be supported on this set. Furthermore, Δ1(x) depends only on x2, is singu-
lar on {x|x2 = 0}, and is polynomially bounded (with all its derivatives) on
{x||x2| > ε} for any ε > 0. We have

(σp)2 = p2
1 − p2

0 − p2
s = −p2 − 2p2

s,

so that for p2 = m2 we have (σp)2 ≤ −m2. Thus, on the support of Δ̂1(p),
Δ1(σp) is smooth and polynomially bounded (with all its derivatives). It fol-
lows that û is tempered, as Δ̂1 is tempered and for f ∈ S(Rd) we may define
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〈û, f〉 = 〈Δ̂1, ψf〉, where ψ is smooth, polynomially bounded (with all its
derivatives), and coincides with Δ1(σ·) in a neighborhood of the support of
Δ̂1.

As û ∈ S ′(Rd), its Fourier transform u is well-defined. If either the sup-
port of Δ1 or that of Δ̂1 were compact, then from u = Δ1 × Δ̂1(σ−1·) and [14,
Theorem 8.2.14] we could conclude that the wave front set, cf. Appendix A,
of u is contained in

{(x, k)|∃y s.t. (y, k) ∈ WF(Δ1), (x− y, k) ∈ WF(Δ̂1(σ−1·))}.
As the cotangent vectors of WF(Δ̂+(σ−1·)) always point in spacelike directions
and those of WF(Δ+) in lightlike directions, cf. Appendix A, this would imply
WF(u) = ∅. But as neither of the two distributions has compact support, the
singular support may be enlarged by infrared divergences, as we will see now.
We write Δ1(x) = h(x2), where h(y) is smooth apart from y = 0 and falls off
exponentially for y → −∞. We then formally compute

u(x) = cd

∫
ddp Δ̂1(p)Δ1(σp)e−ixp

= cd

∫
dd−1p
2ωp

h(−2p2
s −m2) cos(xp+). (12)

It is tempting to interpret this as an oscillatory integral, cf. [15], but this is
not possible, as derivatives w.r.t. ps do not lower the degree of the would-be
symbol. Instead, we first carry out the p1 integration:

u(x) = cd

∫
dd−2ps h(−2p2

s −m2)eixs·ps

×
∫ ∞

−∞
dp1

cos(x0
√
p2
1 + p2

s +m2 − x1p1)
2
√
p2
1 + p2

s +m2

= cd

∫
dd−2ps h(−2p2

s −m2)eixs·psΔ(2)
1 (x0, x1;

√
p2

s +m2).

Here Δ(2)
1 (x;m) denotes Δ1(x) in two dimensions for mass m. It has singular

support on the light cone, where it diverges logarithmically. Away from the
singularity, it is bounded as a function of m for m → ∞. Thus, the remaining
integral over ps is well defined, yielding a distribution with singular support in
x0 = ±x1, where it diverges logarithmically. We emphasize that this divergence
is independent on the dimension d.

Having established that û is tempered, and thus that u exists, we may
now discuss whether the point-wise product ΔR(x)u(−x) appearing in (11) is
well-defined. As both distributions are singular at the origin and the cotangent
component of the wave front set of ΔR points in every direction at that point,
their product is not defined in the sense of Hörmander. However, we estab-
lished that u diverges logarithmically at the origin, it thus has scaling degree
0 there, cf. Appendix A. As the scaling degree of ΔR is d − 2 at the origin,
their product has scaling degree d− 2 and is thus unambiguously extendable
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to the origin. The same argument also applies to the one-dimensional subman-
ifold {x0 = ±|x1|, xs = 0} on which both distributions are singular. It follows
that the integral over x in (11) is well-defined, as long as g is a test function.
However, as we will see below, problems appear in the adiabatic limit, where
g is replaced by a constant.

3.2. The Adiabatic Limit

In the previous subsection, we established that the integral over x in (11) is
indeed well-defined as long as g is a test function. In the adiabatic limit, we
formally obtain

φpl
2 (z) = cd

∫
ddy ΔR(z − y)φ0(y)

∫
ddx ΔR(−x)u(x).

The integral over x is a formal integral, which we abbreviate by Π. As it is
formal anyway, we feel free to apply formal Fourier transformation and obtain

Π = cdΔ̂Au(0)

= cd(Δ̂A × û)(0)

= cd

∫
ddp Δ1(σp)Δ̂1(p)Δ̂R(p)

= cd

∫
ddp Δ1(σp)Δ̂+(p)

(
Δ̂R(p) + Δ̂A(p)

)
.

In the last step, we used that Δ1 is symmetric. Now formally (and rigorously
in an adiabatic limit, cf. [16]) we have

Δ̂+(p)
(

Δ̂R(p) + Δ̂A(p)
)

= cd∂m2Δ̂+(p).

Thus, we obtain

Π = cd

∫
ddp Δ1(σp)∂m2Δ̂+(p).

We have∫
ddp f(p)∂m2Δ̂+(p) = cd

∫
dd−1p

(
1

4ω3
p

f(p+) − 1
4ω2

p

∂0f(p+)
)
.

Hence, the above yields

Π = cd

∫
dd−1p

(
1

4ω3
p

h((σp+)2) +
1

2ωp
h′((σp+)2)

)
,

where we introduced again the notation Δ1(x) = h(x2). By the same argu-
ment as in the previous subsection, the second term of this integral diverges
logarithmically. As discussed above, it should be termed an IR divergence.
We emphasize that the divergence shows up in any dimension, in particular
also for d = 2. In the Euclidean framework, the problem was present only for
d ≥ 4. Furthermore, in the case d = 4, two nonplanar tadpoles had to be intro-
duced into the loop to see the divergence. In this sense, the Lorentz structure
deteriorates the situation. This divergence is an instance of the difficulty (ii)
mentioned in Sect. 1.



Vol. 13 (2012) UV–IR Mixing in NCQFT 1281

Figure 7. The nonplanar tadpole with nonplanar insertions

Figure 8. Another example of a φ4 with infrared divergence
due to UV–IR mixing in the Euclidean setting

It remains to discuss the second term in curly brackets in (10), which we
ignored up to now. In the adiabatic limit, it is given by

φnp
2 (k) = cdΔ̂R(k)φ̂0(k)

∫
d4p ∂m2Δ̂+(p)h((σp)2) cos pσk,

with h as above. This is very similar to the expression for u(x) given in (12),
the difference being that Δ̂+ is replaced by ∂m2Δ̂+ and x by σk. As above,
the first replacement does not change the asymptotic behavior. However, the
presence of φ̂0(k) forces k to the mass shell, so σk is spacelike. By the argu-
ment given in the previous subsection, the integral over p is then finite. Thus,
the nonplanar tadpole with inserted nonplanar tadpole is finite. This argu-
ment even goes through for an arbitrary number of nonplanar insertions. This
is again in contrast to the Euclidean case, where the nonplanar tadpole with
nonplanar insertions, i.e., the graph shown in Fig. 7, has the same infrared
problems as the graph shown in Fig. 2.

Finally, we consider what happens when the nonplanar tadpoles are
inserted into a fish graph, i.e., in the Euclidean setting, a graph of the form
shown in Fig. 8. The situation is then analogous to the situation discussed
in the next section, i.e., of the φ3 model. As is shown there, such a graph is
divergent for two nonplanar insertions if the nonplanar subgraph behaves for
small (σp)2 as Σnp(p) ∼ (σp)−2 or worse. This is the case for d ≥ 4.
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Figure 9. A φ3 graph exhibiting UV–IR mixing in the
Euclidean setting

Figure 10. The φ3 fish graphs in the Yang–Feldman formalism

4. The Case of φ3

We now consider the case of the φ3 model. In the Euclidean case, the UV–
IR mixing then occurs in graphs of the form shown in Fig. 9. The fish graph
in six dimensions is quadratically divergent, so in the Euclidean setting this
translates into a scaling p−2 for small momenta p in the nonplanar fish graph.
If three such nonplanar fish graphs are considered in a row, this gives a p−6

scaling, which yields a logarithmic infrared divergence.

4.1. The Fish Graph

We consider a single fish graph in the Yang–Feldman formalism in arbitrary
dimension, i.e., the graphs shown in Fig. 10. The graphs obtained by letting
the uncontracted free field leave the upper vertex to the other side, yield the
same result because of the symmetry of the vertex factor

v(k1, k2) = cos
1
2
k1σk2.

For the self-energy corresponding to these graphs, one thus finds

Σ(p) = cd

∫
ddk Δ̂1(k)Δ̂R(p− k) {1 + cos(kσp)} .

The first term in curly brackets is the usual commutative φ3 fish graph. It is
divergent for d ≥ 4 and has to be renormalized by mass and possibly (depend-
ing on the dimension) field strength counterterms. The second term in curly
brackets corresponds to the nonplanar fish graph known from the Euclidean
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theory. For timelike outer momentum 0 < p2 < 4m2 and d = 4, it was rigor-
ously defined in the sense of oscillatory integrals, cf. [15], in [17]. In this way,
it could be reduced to a one-dimensional absolutely convergent integral. This
can easily be generalized to arbitrary dimension, yielding

Σnp(p) = cd

∫
ddk Δ̂+(k)

(
Δ̂R(p− k) + Δ̂R(p+ k)

)
cos(kσp)

= cd

∞∫

0

dk
kd−2

ωk(p2 − 4ω2
k)

sin(k
√|(σp)2|)

k
√|(σp)2| .

For d > 4, this is no longer absolutely convergent, but still defined as an
oscillatory integral. In the limit (σp)2 → 0, we find a logarithmic divergence
Σnp(p) ∼ log|(σp)2| for d = 4, and a quadratic divergence Σnp(p) ∼ |(σp)2|−1

for d = 6.
In the following, it is rather the behavior for spacelike outer momentum

that is important. In that case, the loop integral can not be defined as an
oscillatory integral. However, a formal calculation is feasible. We consider the
case where p is spacelike and y = σp timelike. Under the assumption that the
self-energy of the nonplanar fish graph is well-defined, it is a function only
of p2 and y2, by Lorentz invariance. By a Lorentz transformation, we can
achieve y = (y,0). As p and y are orthogonal, we then have p = (0,p). For the
self-energy, we thus obtain

Σnp(p) = cd

∫
ddk Δ̂+(k)

(
Δ̂R(p− k) + Δ̂R(p+ k)

)
cos(k · y)

= cd

∫
dd−1k
2ωk

( −1
p2 + 2p · k − iε

+
−1

p2 − 2p · k + iε

)
cos(ωky).

For d = 2 this integral is absolutely convergent, independently of y. For d > 2,
we carry out the integration over all but the azimuthal angle and obtain

Σnp(p) = cd

∞∫

0

dk
kd−2

2ωk
cos(ωky)

×
1∫

−1

dx

(
−1

p2 + 2
√|p2|kx− iε

+
−1

p2 − 2
√|p2|kx+ iε

)

= cd

∞∫

0

dk
kd−2

2ωk

1
2
√|p2|k log

(2
√|p2|k − p2)2 + ε2

(2
√|p2|k + p2)2 + ε2

cos(ωky). (13)

For nonvanishing ε, the integrand is smooth. Interpreting the cosine as the
phase function, the remainder of the integrand is a symbol of order d− 5, as

(2
√|p2|k − p2)2 + ε2

(2
√|p2|k + p2)2 + ε2


 1 +
2
√|p2|
k

for large k.

Thus, the integral (13) is well defined as an oscillatory integral, but diverges
for small y as log y for d = 4 and as y−2 for d = 6. Hence, also for spacelike
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p and timelike σp, we find a logarithmic divergence Σnp(p) ∼ log|(σp)2| for
d = 4, and a quadratic divergence Σnp(p) ∼ |(σp)2|−1 for d = 6. We thus
see the same scaling behavior as in the Euclidean setting, with the difference
that in the present case we have a singularity not only at p = 0 but on the
hypersurface (σp)2 = 0.

As we could not define Σnp(p) as an oscillatory integral on the whole R
d,

it is not clear that it defines a distribution on R
d. In particular, it is not clear

whether the singularity in (σp)2 = 0 is regularized by some iε or principal value
description. In the following, we assume that this is the case and that its wave
front set coincides with that of the nonplanar tadpole (Σnp(p) = Δ1(σp)), i.e.,

WF(Σnp) = {(k, y)|(σk)2 = 0, y = λk, λ �= 0}. (14)

Furthermore, we assume that, as for the nonplanar tadpole, Σnp(p) falls off
exponentially as (σp)2 → −∞. In our opinion, these are the most optimistic
assumptions one can reasonably make. But even with these, one finds diver-
gences, even some that are absent in the Euclidean case.

4.2. Infrared Divergences

In the Yang–Feldman formalism, there are two possibilities to set up graphs
similar to the one shown in Fig. 9. The point is that the subgraphs consisting
just of retarded propagators are always trees. Thus, a loop can only be closed
by a two-point function. This, in turn, can be done either in the branch with-
out insertions or in the one with insertions. The graph shown in Fig. 11 is an
example for the latter case. In such a graph, the momentum in the branch
containing the insertions is confined to the mass shell, so that one does not
integrate over the singularity in (σp)2 = 0 (including the point p = 0 that
causes the trouble in the Euclidean). In addition, the integration along the
direction p1, that leads to the divergence in the φ4 model discussed in the
previous section, is not problematic, as the retarded propagator in the other
branch contributes another factor of 1

ω . As we assumed that Σnp(p) falls off
exponentially for (σp)2 → −∞, i.e., for ps → ∞, the integration over ps is
well-defined. Thus, graphs of the type shown in Fig. 11 are finite.

Problems appear, however, when the line without insertions is given by
the two-point function. It turns out that then two insertions of a nonplanar
tadpole, as in the graphs shown in Fig. 12, suffice to get a divergence. For the
self-energy of these graphs, we obtain

Σ(k) = cd

∫
ddp Δ̂1(p)Δ̂3

R(k − p)Σ2
np(k − p) {1 + cos pσk} . (15)

Here the external momentum k is confined to the upper mass shell and the
momentum p to the upper or the lower mass shell. In order to see how Σnp

(k − p) behaves in these two cases, we compute, for k = (m,0),

(σ(k − p±))2 = 2
(

−p2
s −m2 ±m

√
p2
1 + p2

s +m2

)
. (16)
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Figure 11. A φ3 graph in the Yang–Feldman formalism that
does not suffer from UV–IR mixing

Figure 12. φ3 graphs in the Yang–Feldman formalism that
diverge due to UV–IR mixing

For p on the lower mass shell, this is bounded away from zero, so that the
singularity of Σnp is not hit in (15). Furthermore, the rapid falloff of Σnp(p)
for (σp)2 → −∞ makes the integral well-defined in that case.

However, for p on the upper mass shell, there is a d− 2 dimensional sub-
manifold of R

d−1 for which σ(k − p+) is lightlike. To see this, note that (16)
with the + sign vanishes, for a given p2

s, for any p1 such that

p2
1 =

((
1
2

+
p2

s

m2

)2

− 1
4

)
m2.

Furthermore, we compute

∂p1(σ(k − p+))2 =
2mp1√

p2
1 + p2

s +m2
,

which does not vanish at the above (p1, ps) for ps �= 0, i.e., away from the
origin. For one nonplanar insertion that behaves as Σnp(p) ∼ (σp)−2 for small
(σp)2, i.e., for the nonplanar tadpole in d = 4 or the nonplanar fish graph in
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d = 6, this means that for a given ps we would have to integrate p1 over a
singularity of the form (p1 − p1(ps))−1. This seems like a logarithmic diver-
gence. However, we assumed that the singularity is regularized by some iε or
principal value description. But for two nonplanar insertions, we would need
to define the square Σ2

np(p), which is not well defined in the sense of Hörmand-
er for (pσ)2 = 0 if the wave front set is given by (14). As the scaling degree
of Σ2

np at the submanifold {p|(σp)2 = 0, p �= 0} is 2, and the submanifold
has codimension 1, this square can only be renormalized at the expense of a
momentum-dependent, i.e., nonlocal, counterterm, cf. [18] and Appendix A.
This divergence is an instance of the difficulty (i) mentioned in the intro-
duction. As it occurs at finite momentum, it should be termed an infrared
divergence. Hence, for d = 6, already the graphs shown in Fig. 12 are infrared
divergent, contrary to the Euclidean case, where three insertions of nonplanar
fish graphs are needed in order to make the graph infrared divergent.

5. Conclusion

The aim of this work was to see whether and in what form UV–IR mixing
leads to infrared divergences in the Yang–Feldman formalism. We saw that
such divergences do indeed occur, due to two different mechanisms: The diver-
gence discussed in Sect. 3 was due to the fact that, for the nonplanar tadpole,
Σnp(p) is constant on the noncompact hypersurfaces (σp)2 = const, while the
problems discussed in Sect. 4 stem from the integration over the singularity of
Σnp(p) in (σp)2 = 0. In particular the first mechanism leads to divergences in
situation that are finite in the Euclidean, e.g., in the two-dimensional case.

Thus, it seems that the introduction of nonlocal counterterms is unavoid-
able. As proposed in [19], one should try to restrict to counterterms that are
functions of (σp)2, so that one obtains local counterterms in the commutative
limit. For the Euclidean case, it was shown in [4] that the introduction of a
(σp)−2 mass counterterm suffices to renormalize the φ4

4 model. However, the
adaption of such a setting to the Lorentzian case is not straightforward. While
it is easy to see that the graphs treated above can be renormalized in that
way (if also a log|(σp)2| mass term is permitted), it is not clear whether this
works to all orders. Some difficulties show up when one tries to tackle this
problem: Because of the appearance of two propagators, the Yang–Feldman
formalism is combinatorically more complicated than a treatment in terms of
Feynman graphs. In particular, there is no obvious power counting. In general,
a cancellation of several terms has to be taken into account to get the correct
scaling. But even if there was a good notion of power counting, the introduc-
tion of terms of the form (σp)−2 would make it much more involved, as also the
infrared scaling would have to be taken into account. The multiscale analysis
employed in [4] considers the ultraviolet and the infrared regimes on the same
footing. But it is far from obvious how such a multiscale analysis should look
like in the Lorentzian case. It thus seems that one should try and find a way
to map the Lorentzian model to a Euclidean one in order to use the powerful
tools available there. However, we showed above that in the Lorentzian case
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we face infrared divergences even in cases that are finite in the Euclidean set-
ting, in particular also in the two-dimensional case. Thus, a mapping between
the Lorentzian and the Euclidean model, if it exists at all, must be rather
nontrivial.
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Appendix A. The Wave Front Set and the Scaling Degree

We provide a short introduction to the concept of the wave front set and the
scaling degree of a distribution. We recall that the singular support of a distri-
bution is the set of points for which no open neighborhood exists on which the
distribution is smooth. The wave front set generalizes this notion in that it also
gives information about the direction in which the distribution diverges. To
motivate the definition we recall that if f is smooth and compactly supported,
then its Fourier transform falls off faster than any power in momentum space,
i.e., for each N ∈ N there is a constant CN such that

|f̂(k)| ≤ CN (1 + |k|)−N .

For a distribution u with compact support, one defines Σ(u) as the set of
k ∈ Ṙ

n = R
n\{0} for which no conic neighborhood exists in which such a

bound holds. For each point x one then defines

Σx(u) = ∩f Σ(fu), f ∈ C∞
0 (Rn), f(x) �= 0.

The wave front set now collects all these into a single object:

WF(u) = {(x, k) ∈ R
n × Ṙ

n|k ∈ Σx(u)}.
This notion can be lifted to any smooth manifold, where it is then interpreted
as a subset of the cotangent bundle. Thus, we always interpret the second
component as a cotangent vector, which means that we have to take care of
the metric. We give the wave front set of some of the distributions that appear
in this article:

WF(Δ+) = {(0, k)|k2 = 0, k0 > 0} ∪ {(x, k)|x �= 0, x2 = 0, k = λx, k0 > 0},
WF(ΔR) = {(0, k)|k �= 0} ∪ {(x, k)|x2 = 0, x0 > 0, k = λx, λ �= 0},
WF(Δ̂+) = {(k, y)|k2 = m2, k0 > 0, y = λk, λ �= 0}.
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One important feature of the wave front set is that it provides a criterion for
the well-definedness of the product of two distributions, namely Hörmander’s
criterion [14, Theorem 8.2.10]. It states that the product of two distributions
u, v ∈ D′(Rn) is well-defined as an element of D′(Rn), provided that

{(x, k) ∈ WF(u)|(x,−k) ∈ WF(v)} = ∅.
Unfortunately, Hörmander’s criterion is not fulfilled for many of the prod-

ucts of distributions that arise in quantum field theory. The obstruction is
usually (in ordinary, i.e., commutative, field theory) located at the origin, i.e.,
the products are well-defined on test functions that vanish in a neighborhood
of the origin. The ambiguity in the extension to all test functions is governed
by Steinmann’s scaling degree [18,20]. For u ∈ D′(Ṙn), i.e., a distribution on
test functions vanishing in a neighborhood of the origin, it is defined as

sd(u) = sup
{
ρ ∈ R| lim

λ→∞
λρ

∫
dnx u(λx)f(x) < ∞ ∀f ∈ C∞

0 (Ṙn)
}
.

One can now prove that for sd(u) < n there is a unique extension ũ ∈ D′(Rn)
to all test functions such that sd(u) = sd(ũ). For n ≤ sd(u) < ∞, an extension
that preserves the scaling degree is still possible, but with some ambiguity:
For two such extensions u1 and u2 we have

u1 − u2 =
∑

|α|≤sd(u)−n

cα∂
αδ.

In quantum field theory, this corresponds to a finite renormalization. The
concept of the scaling degree at a point was generalized by Brunetti and
Fredenhagen [18] to the scaling degree at a submanifold. The criterion for
the existence of a unique extension to the submanifold is then that the scaling
degree is less than the codimension of the submanifold.
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[16] Döscher, C., Zahn, J.: Infrared cutoffs and the adiabatic limit in noncommuta-
tive spacetime. Phys. Rev. D 73, 045024 (2006). hep-th/0512028
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