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Nonlinear Elliptic Equations
with Singular Terms
and Combined Nonlinearities

Leszek Gasiński and Nikolaos S. Papageorgiou

Abstract. We consider nonlinear elliptic Dirichlet problems with a sin-
gular term, a concave (i.e., (p − 1)-sublinear) term and a Carathéodory
perturbation. We study the cases where the Carathéodory perturbation
is (p − 1)-linear and (p − 1)-superlinear near +∞. Using variational tech-
niques based on the critical point theory together with truncation argu-
ments and the method of upper and lower solutions, we show that if the
L∞-coefficient of the concave term is small enough, the problem has at
least two nontrivial smooth solutions.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we

study the following nonlinear Dirichlet problem:{
−Δpu(z) = a(z)u(z)−η +m(z)u(z)q−1 + f

(
z, u(z)

)
in Ω,

u|∂Ω = 0, u > 0,
(1.1)

with 1 < q < p, η > 0. Here Δp denotes the p-Laplacian differential operator,
defined by

Δpu = div
(‖∇u‖p−2∇u) ∀u ∈ W 1,p

0 (Ω),

with p ∈ (1,+∞).
We observe that problem (1.1) has a singular term a(·)u(·)−η and a

(p− 1)-sublinear term (concave term) m(·)u(·)q−1, 1 < q < p. The function f
is Carathéodory and concerning its growth properties, we consider two distinct
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cases. First, we assume that for almost all z ∈ Ω, f(z, ·) is (p − 1)-linear near
+∞. Subsequently, we examine the case where f(z, ·) exhibits a (p− 1)-super-
linear growth near +∞. So, in this second case in problem (1.1) we have the
combined effects of concave and convex terms.

Problems with singular terms were studied primarily in the context of
semilinear equations (i.e., p = 2). In this connection, we mention the works of
Coclite and Palmieri [7], Egnell [11], Hsu and Lin [22], Lair and Shaker [23],
Shi and Yao [29], Sun et al. [30], Terracini [31], Zhang [33]. From the afore-
mentioned works, Egnell [11], Hsu and Lin [22] and Terracini [31] consider
perturbations with critical growth. In addition, Hsu and Lin [22] have also a
concave term of the form

λg(z)u(z)q−1, 1 � q < 2, λ > 0.

In these works, the singularity has the form of an inverse square coefficient.
Coclite and Palmieri [7] investigate the case of superlinear and subcritical per-
turbation. More precisely, they assume that

f(z, ζ) = f(ζ) = λζr−1,

with

2 < r < 2∗ =
{

2N
N−2 if N > 2,
+∞ if N = 1, 2,

with λ > 0 being a parameter. They do not have a concave term (i.e., m ≡ 0).
Shi and Yao [29] consider the complementary case, namely they have a sub-
linear perturbation of the form

f(z, ζ) = f(ζ) = λζr−1, 1 < r � 2.

In both papers, the authors show that there exists λ∗ > 0, such that for every
λ ∈ (0, λ∗) the problem admits a nontrivial positive solution. Lair and Shaker
[23] have

f ≡ m = 0 and a ∈ L2(Ω)

and they establish the existence of a unique positive weak solution. Sun et al.
[30] use the Ekeland variational principle to produce two positive solutions
for certain superlinear perturbations with m ≡ 0 (no concave term). Finally,
Zhang [33] extended the work of Sun et al. [30] to more general nonnegative
superlinear perturbations using the critical point theory on closed convex sets.
Recently, there appeared some works dealing with singular equations driven
by p-Laplacian. In this connection, we mention the papers of Agarwal et al.
[1,3], Agarwal and O’Regan [2], Giacomoni et al. [19], Giacomoni and Saoudi
[18], Hernández and Mancebo [21], Perera and Silva [27], Perera and Zhang
[28]. In Agarwal et al. [1] and Agarwal and O’Regan [2] the authors consider
ordinary differential equations (i.e., N = 1). Agarwal et al. [3] consider the
nonresonant coercive case with m ≡ 0 and prove an existence theorem. Perera
and Silva [27] and Perera and Zhang [28] consider parametric problems with
m ≡ 0 (i.e., the perturbation of the singular term has the form λf(z, ζ), λ > 0);
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they assume that f(z, ·) is (p− 1)-superlinear and more precisely that it satis-
fies the well-known Ambrosetti–Rabinowitz condition. They show that there
exists λ∗ > 0, such that for all λ ∈ (0, λ∗) the parametric problem has two
positive weak solutions. In Perera and Zhang [28] it is assumed that p � 2.
In Giacomoni et al. [19] the authors have a singular term of the form 1

ζδ with
δ ∈ (0, 1] and a p-superlinear perturbation of the form

f(z, ζ) = f(ζ) = ζq,

with p < q < p∗ − 1. They prove a result relating C1(Ω) and W 1,p
0 (Ω)-mini-

mizers and also have multiplicity results. In Giacomoni and Saoudi [18], the
authors consider more general singular terms and also a more general p-super-
linear perturbation, permitting also critical growth. They focus on the relation
between C1 and Sobolev minimizers and present a simpler proof based on an
Lp-minimization (an approach already present in the work of Brock et al. [6]).
We also mention the work of Giacomoni et al. [17] who have a similar result for
critical problems in R

N . In Hernández and Mancebo [21] we find a comprehen-
sive overview of singular elliptic and parabolic equations. To the best of our
knowledge, there are no works in the literature dealing with p-Laplacian equa-
tions with singular terms and combined nonlinearities (i.e., with the combined
effects of concave and convex terms or of concave and linear terms). For equa-
tions without singular terms, such problems were investigated by Ambrosetti
et al. [4] and Li et al. [24] (semilinear case, i.e., p = 2) and by de Figueiredo
et al. [9], Garćıa Azorero et al. [13], Guo and Zhang [20], de Paiva and Massa
[10], Perera [26] (nonlinear case, i.e., p > 1).

Our approach is variational based on the critical point theory and we
also use truncation techniques and the method of upper and lower solutions.
In the next section, for the convenience of the reader, we briefly recall the
mathematical tools we use in the study of problem (1.1).

2. Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗,X). Let ϕ ∈ C1(X). We say that ϕ satisfies
the Cerami condition at the level c ∈ R (the Cc-condition, for short), if the
following is true: “Every sequence {xn}n�1 ⊆ X, such that

ϕ(xn) −→ c in R

and (
1 + ‖xn‖)

ϕ′(xn) −→ 0 in X∗,

has a strongly convergent subsequence.” We say that ϕ satisfies the Cerami
condition (the C-condition, for short), if it satisfies the Cc-condition at every
level c ∈ R.

This compactness type condition on ϕ is weaker than the usual Palais–
Smale condition. However, as it was shown in Bartolo et al. [5], the deforma-
tion theorem and consequently the minimax theory of the critical values of ϕ
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is still valid if the Palais–Smale condition is replaced by the Cerami condition.
In particular, we have the following form of the well-known “mountain pass
theorem” (see e.g., Gasiński and Papageorgiou [14, p. 140, Theorem 2.1.3]).

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X), x0, x1 ∈ X, � > 0,
‖x1 − x0‖ > �,

max
{
ϕ(x0), ϕ(x1)

}
� inf

{
ϕ(x) : ‖x− x0‖ = �

}
= η,

c = inf
γ∈Γ

max
0�t�1

ϕ
(
γ(t)

)
,

where

Γ =
{
γ ∈ C

(
[0, 1];X

)
: γ(0) = x0, γ(1) = x1

}
and ϕ satisfies the Cc-condition, then c � η and c is a critical value of ϕ.
Moreover, if c = η, then there exists a critical point x ∈ X of ϕ with ϕ(x) = c
and ‖x− x0‖ = �.

The notion of a map of (S)+ type is useful in proving that a C1-func-
tional satisfies the C-condition. We say that a map A : X −→ X∗ is of type
(S)+, if for every sequence {xn}n�1 ⊆ X, such that

xn −→ x weakly in X and lim sup
n→+∞

〈
A(xn), xn − x

〉
� 0,

we have

xn −→ x in X.

Let X = W 1,p
0 (Ω) and X∗ = W−1,p′

(Ω) (where 1
p + 1

p′ = 1). We consider
the map A : W 1,p

0 (Ω) −→ W−1,p′
(Ω) corresponding to the p-Laplacian, defined

by 〈
A(u), y

〉
=

∫
Ω

‖∇u‖p−2(∇u,∇y)
RN

dz ∀u, y ∈ W 1,p
0 (Ω) (2.1)

We have the following properties of A (see Gasiński and Papageorgiou
[15]):

Proposition 2.2. The map A : W 1,p
0 (Ω) −→ W−1,p′

(Ω) defined by (2.1) is of
type (S)+.

As we have already mentioned, our approach uses the method of upper
and lower solutions. So, next we recall the definitions of upper and lower solu-
tions for problem (1.1).

Definition 2.3. (a) We say that u ∈ W 1,p(Ω) is an upper solution for problem
(1.1), if⎧⎪⎨
⎪⎩

∫
Ω

‖∇u‖p−2
(∇u,∇h)

RN
dz �

∫
Ω
a u−ηhdz +

∫
Ω
muq−1dz +

∫
Ω
f(z, u)hdz

∀h ∈ C1
c (Ω), h � 0,

u|
∂Ω

� 0.

We say that u is a strict upper solution, if it is an upper solution for (1.1) but
not a solution.
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(b) We say that u ∈ W 1,p(Ω) is a lower solution for problem (1.1), if⎧⎪⎨
⎪⎩

∫
Ω

‖∇u‖p−2
(∇u,∇h)

RN
dz �

∫
Ω
a u−ηhdz +

∫
Ω
muq−1dz +

∫
Ω
f(z, u)hdz

∀h ∈ C1
c (Ω), h � 0,

u|
∂Ω

� 0.

We say that u is a strict lower solution, if it is a lower solution for (1.1) but
not a solution.

In the study of problem (1.1), in addition to the Sobolev space W 1,p
0 (Ω)

we will also use the space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u|

∂Ω = 0
}
.

This is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

0 (Ω) : u(z) � 0 for all z ∈ Ω
}
.

This cone has a nonempty interior, given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
,

(here n(·) denotes the outward unit normal on ∂Ω).
The next result will be helpful in our arguments and its proof can be

found in Perera and Zhang [28].

Theorem 2.4. If h ∈ Ls(Ω)+\{0} with N < s � +∞, then the Dirichlet prob-
lem {−Δpu(z) = h(z) in Ω,

u|∂Ω = 0

has a unique strong solution u ∈ intC+.

Finally, let us briefly recall some basic facts about the spectrum of the
negative Dirichlet p-Laplacian (denoted by

(−Δp,W
1,p
0 (Ω)

)
). So, we consider

the following nonlinear eigenvalue problem:{
−Δpu(z) = λ

∣∣u(z)∣∣p−2
u(z) in Ω,

u|∂Ω = 0.
(2.2)

A number λ∈R for which problem (2.2) has a nontrivial solution is said to be
an eigenvalue of

(−Δp,W
1,p
0 (Ω)

)
. The smallest eigenvalue λ1 of

(−Δp,W
1,p
0 (Ω)

)
is positive, isolated, simple and admits the following variational characteriza-
tion:

λ1 = inf
{‖∇u‖p

p

‖u‖p
p

: u ∈ W 1,p
0 (Ω), u �= 0

}
. (2.3)

The infimum in (2.3) is attained on the corresponding one-dimensional eigen-
space. In what follows, by û1 we denote the Lp-normalized (i.e., ‖û1‖p = 1)
eigenfunction corresponding to λ1 > 0. From (2.3) it is clear that û1 does not
change sign and so we set û1 � 0. The nonlinear regularity theory (see e.g.,
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Gasiński and Papageorgiou [15, pp. 737–738]) implies that û1 ∈ C+. In fact
the nonlinear maximum principle of Vázquez [32] implies that û1 ∈ intC+.

The Ljusternik–Schnirelmann theory provides a whole sequence {λn}n�1

of strictly increasing eigenvalues of
(−Δp,W

1,p
0 (Ω)

)
, such that λn → +∞.

These eigenvalues are known as the Ljusternik–Schnirelmann eigenvalues. If
p = 2 (linear eigenvalue problem), then these are all the eigenvalues of(−Δ,H1

0 (Ω)
)
. If p �= 2 (nonlinear eigenvalue problem) we do not know if

this is the case. However, since λ1 > 0 is isolated, we can define

λ∗
2 = inf

{
λ : λ is an eigenvalue of

(−Δp,W
1,p
0 (Ω)

)
, λ > λ1

}
> λ1.

Because the set σ(p) of eigenvalues of
(−Δp,W

1,p
0 (Ω)

)
is closed, λ∗

2 > 0 is
an eigenvalue, the second eigenvalue of

(−Δp,W
1,p
0 (Ω)

)
. We have λ∗

2 = λ2,
i.e., the second Ljusternik–Schnirelmann eigenvalue and the second eigenvalue
coincide.

In what follows, we use the notation r± = max{±r, 0} for all r ∈ R. By
‖ · ‖r we denote the norm of Lr(Ω) and by ‖ · ‖ the norm of the Sobolev space
W 1,p

0 (Ω) or of R
N—it will always be clear from the context. Finally, by p∗ we

denote the critical Sobolev exponent, defined by

p∗ =

{
Np

N−p if N > p

+∞ if N � p.

3. (p − 1)-Linear Perturbations

In this section we consider the case where the Carathéodory perturbation
f(z, ζ) exhibits a (p− 1)-linear growth near +∞. More precisely, the hypoth-
eses on f are the following:

H(f)1 f : Ω × R −→ R is a function, such that

(i) for all ζ ∈ R, the function z 
−→ f(z, ζ) is measurable;
(ii) for almost all z ∈ Ω, the function ζ 
−→ f(z, ζ) is continuous and we have

f(z, 0) = 0;
(iii) for almost all z ∈ Ω and all ζ ∈ R, we have∣∣f(z, ζ)

∣∣ � a(z) + c|ζ|p−1,

with a ∈ L∞(Ω)+, c > 0;
(iv) if F (z, ζ) =

∫ ζ

0
f(z, s) ds, then there exist ϑ0 ∈ (λ1, λ2), β0 > 0 and

τ ∈ [1, p], such that

λ1 � lim inf
ζ→+∞

pF (z, ζ)
ζp

� lim sup
ζ→+∞

pF (z, ζ)
ζp

� ϑ0,

uniformly for almost all z ∈ Ω and

lim inf
ζ→+∞

pF (z, ζ) − f(z, ζ)ζ
ζτ

� β0

uniformly for almost all z ∈ Ω;
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(v) there exists ϑ ∈ L∞(Ω)+, such that ϑ(z) � λ1 for almost all z ∈ Ω, with
the strict inequality on a set of positive measure, and

lim inf
ζ→0+

pF (z, ζ)
ζp

� ϑ(z)

uniformly for almost all z ∈ Ω and

m(z)ζq−1 + f(z, ζ) � 0 for almost all z ∈ Ω and all ζ � 0.

Remark 3.1. Since we are interested in positive solutions and the asymptotic
conditions (hypotheses H(f)1(iv) and (v)) concern only the positive semiaxis,
we may (and will) assume that

f(z, ζ) = 0 for almost all z ∈ Ω and all ζ � 0.

Hypothesis H(f)1(iv) implies that for almost all z ∈ Ω, the potential func-
tion F (z, ·) is p-linear near +∞. In particular, this is the case if for almost
all z ∈ Ω, f(z, ·) is (p − 1)-linear near +∞. Note that hypothesis H(f)1(iv)
permits resonance at +∞ with respect to λ1. For this reason we need addi-
tional conditions on the asymptotic behaviour at +∞ (see the second part of
hypothesis H(f)1(iv)).

Example 3.2. The following function f satisfies hypotheses H(f)1 (for the sake
of simplicity we drop the z-dependence):

f(ζ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ζ � 0,

βζp−1 + cζμ−1 if 0 < ζ < 1,

ξζp−1 + ζϑ−1 if 1 � ζ,

with ξ ∈ [λ1, λ2), β < λ1, 1 < ϑ < p < μ and c = ξ + 1 − β.

The hypothesis on the singular term are the following:

H(η, a)1 η > 0, a(z) � 0 for almost all z ∈ Ω and there exist v̂ ∈ C+ and
s > N , such that av̂−η ∈ Ls(Ω).

Remark 3.3. In particular, this hypothesis implies that a ∈ Ls(Ω)+ (see the
proof of Lemma 3.4 below). Note that we do not require that η < 1, a restric-
tion that appears often in the literature (see, e.g., Lair and Shaker [23], Sun
et al. [30], Zhang [33]).

Finally for the coefficient m(z) of the concave term, we assume the fol-
lowing:

H(m) m ∈ L∞(Ω)+,m �= 0.

We will generate lower and upper solutions for problem (1.1). First we
produce a lower solution:

Lemma 3.4. If hypotheses H(f)1,H(η, a)1 and H(m) hold, then problem (1.1)
admits a lower solution: u ∈ intC+.
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Proof. Note that by virtue of hypothesis H(η, a)1, we can find M > 0, such
that

a(z)
Mη

� a(z)
v̂(z)η

= a(z)v̂(z)−η for almost all z ∈ Ω,

so a ∈ Ls(Ω)+ (since av̂−η ∈ Ls(Ω)+).
We consider the following auxiliary Dirichlet problem:{−Δpv(z) = m(z)a(z) in Ω,

v|∂Ω = 0. (3.1)

By Theorem 2.4 this problem has a unique strong solution v ∈ intC+. Choose

t ∈ (
0,

(
1

‖m‖∞

) 1
p−1

)
small enough, such that

u(z) = tv(z)∈ [0, 1) ∀z ∈ Ω.

Then, using (3.1), the facts that t ∈ (
0,

(
1

‖m‖∞

) 1
p−1

)
, a � 0, u(z) ∈ (0, 1) for

all z ∈ Ω and hypothesis H(f)1(v), we have

−Δpu(z) = tp−1m(z)a(z) � a(z) � a(z)u(z)−η

� a(z)u(z)−η +m(z)u(z)q−1 + f
(
z, u(z)

)
,

for almost all z ∈ Ω, so u ∈ intC+ is a lower solution for problem (1.1). �
Lemma 3.5. If hypotheses H(f)1,H(η, a)1 and H(m) hold, then there exists
ξ∗ > 0 such that, if ‖m‖∞ < ξ∗, then problem (1.1) has an upper solution:
u ∈ intC+, u � u.

Proof. We consider the following auxiliary Dirichlet problem:{−Δpu(z) = m(z)a(z)ũ(z)−η +m(z)u(z)q−1 + f
(
z, u(z)

)
in Ω,

u|∂Ω = 0, u > 0, (3.2)

where ũ = m(z)
1
η u. The Euler functional ψ : W 1,p

0 (Ω) −→ R for problem (3.2)
is defined by

ψ(u) =
1
p
‖∇u‖p

p − 1
q

∫
Ω

m(u+)q dz −
∫
Ω

F (z, u) dz −
∫
Ω

au−ηu dz

∀u ∈ W 1,p
0 (Ω).

Clearly ψ ∈ C1
(
W 1,p

0 (Ω)
)
.

Claim 1. ψ satisfies the C-condition.

Let {un}n�1 ⊆ W 1,p
0 (Ω) be a sequence, such that∣∣ψ(un)

∣∣ � M1 ∀n � 1, (3.3)

for some M1 > 0 and (
1 + ‖un‖)

ψ′(un) −→ 0. (3.4)

So, we have ∣∣〈ψ′(un), h
〉∣∣ � εn‖h‖

1 + ‖un‖ ∀h ∈ W 1,p
0 (Ω),
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with εn ↘ 0. Choosing h = −u−
n ∈ W 1,p

0 (Ω), we see that

u−
n −→ 0 in W 1,p

0 (Ω).

Next choose h = u+
n ∈ W 1,p

0 (Ω). Then

‖∇u+
n ‖ −

∫
Ω

m(u+
n )q dz −

∫
Ω

f(z, u+
n )u+

n dz −
∫
Ω

au−ηu+
n dz � εn ∀n � 1.

(3.5)

Also, form (3.3), we have

−‖∇u+
n ‖ +

p

q

∫
Ω

m(u+
n )q dz +

∫
Ω

pF (z, u+
n ) dz

+
∫
Ω

pau−ηu+
n dz � M2 ∀n � 1, (3.6)

for some M2 > 0. Adding (3.5) and (3.6), we obtain(
p

q
− 1

)∫
Ω

m(u+
n )q dz + (p−1)

∫
Ω

au−ηu+
n dz +

∫
Ω

(
pF (z, u+

n ) − f(z, u+
n )u+

n

)
dz

� M2 + εn � M3 ∀n � 1, (3.7)

for some M3 > 0. Hypotheses H(f)1(iii) and (iv) imply that

β(ζ+)τ −M4 � pF (z, ζ) − f(z, ζ)ζ for almost all z ∈ Ω all ζ ∈ R,

for some β,M4 > 0. Using this estimate in (3.7), we obtain that the sequence
{u+

n }n�1 ⊆ Lτ (Ω) is bounded. If p < N or N < p, let r = p∗ and if p = N , let
r > p. Then we can find t ∈ [0, 1), such that

1
p

=
1 − t

τ
+
t

r
. (3.8)

Using the interpolation inequality and the Sobolev embedding theorem (see,
e.g., Gasiński and Papageorgiou [15]), we obtain

‖∇u+
n ‖p

p � ĉ
(
1 + ‖∇u+

n ‖tp
p + ‖∇u+

n ‖q
p + ‖∇u+

n ‖p

) ∀n � 1,

for some ĉ > 0, so the sequence {u+
n }n�1 ⊆ W 1,p

0 (Ω) is bounded (since t ∈
[0, 1), q < p and p > 1) and thus the sequence {un}n�1 ⊆ W 1,p

0 (Ω) is bounded.
So, we may assume that

un −→ u weakly in W 1,p
0 (Ω),

un −→ u in Lr(Ω)

and so from (3.4), we have

lim
n→+∞

〈
A(un), un − u

〉
= 0

and using Proposition 2.2, we infer that

un −→ u in W 1,p
0 (Ω).

This proves Claim 1.
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Claim 2. There exists ξ∗ > 0, such that, if ‖m‖∞ < ξ∗, then we can find
� = �(‖m‖∞) > 0, such that

inf
∂B�

ψ = η+ > 0.

Hypotheses H(f)1(iii) and (v) imply that for a given ε > 0, we can find
M5 = M5(ε) > 0, such that

F (z, ζ) � 1
p

(
ϑ(z) + ε

)
(ζ+)p +M5(ζ+)r for almost all z ∈ Ω all ζ ∈ R,

with r > p (recall that f(z, ζ) = F (z, ζ) = 0 for ζ � 0). Hence, for every
u ∈ W 1,p

0 (Ω), we have

ψ(u) � 1
p
‖∇u‖p

p − ‖m‖∞
q

‖u‖q
q − 1

p

∫
Ω

ϑ|u|p dz − ε

p
‖u‖p

p −M6

(‖u‖ + ‖u‖r
)

� ξ0 − ε

p
‖u‖p − M7‖m‖∞

q
‖u‖q −M7

(‖m‖∞‖u‖ + ‖u‖r
)
,

for some ξ0,M6,M7 > 0 (cf. e.g., Gasiński and Papageorgiou [16, p. 87, Lemma
3.1]). Choosing ε ∈ (0, ξ0), we have

ψ(u) �
(
M8 −M9

(‖m‖∞
q

‖u‖q−p + ‖m‖∞‖u‖1−p + ‖u‖r−p

))
‖u‖p,

for some M8,M9 > 0. Let

μ(t) =
‖m‖∞
q

tq−p + ‖m‖∞t1−p + tr−p ∀t > 0.

Evidently, μ is continuous on (0,+∞) and

lim
t→0+

μ(t) = lim
t→+∞μ(t) = +∞.

So, we can find t0 ∈ (0,+∞), such that

0 < μ(t0) = inf
{
μ(t) : t � 0

}
,

hence,

μ′(t0) = 0 and t0 = t0(‖m‖∞).

We have
‖m‖∞
q

(p− q)tq−p−1
0 + ‖m‖∞(p− 1)t−p

0 = (r − p)tr−p−1
0 ,

so
‖m‖∞
q

(p− q)tq−1
0 + ‖m‖∞(p− 1) = (r − p)tr−1

0 . (3.9)

If t0 ∈ (0, 1), then from (3.9), we have

‖m‖∞
q

(p− q) + ‖m‖∞(p− 1) � (r − p)tr−1
0 ,
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so [‖m‖∞(p
q + p− 2)

r − p

] 1
r−1

� t0(‖m‖∞)

and finally,

t0(‖m‖∞) −→ 0 as ‖m‖∞ ↘ 0.

If t0 > 1, then from (3.9), we have

‖m‖∞
q

(p− q)tq−1
0 + ‖m‖∞(p− 1)tq−1

0 � (r − p)tr−1
0 ,

so [‖m‖∞(p
q + p− 2)

r − p

] 1
r−q

� t0(‖m0‖∞)

and finally,

t0(‖m0‖∞) −→ 0 as ‖m‖∞ ↘ 0.

If t0 = 1, then from (3.9), we have

‖m‖∞
q

(p− q) + ‖m‖∞(p− 1) � r − p

and for ‖m‖∞ small enough this cannot happen.
If we consider μ(t0(‖m‖∞)), then

μ(t0) −→ 0 as ‖m‖∞ ↘ 0.

and so we can find ξ∗ � 1, such that

‖m‖∞ < ξ∗ =⇒ μ(t0) <
M8

M9
,

so there exists � = �(‖m‖∞) = t0, such that

inf
∂B�

ψ = η+ > 0.

This proves claim 2.

Claim 3. ψ(tû1) −→ −∞ as t → +∞.

Without any loss of generality, we can assume that τ < p. By virtue of
hypothesis H(f)1(iv), we can find M10 > 0, such that

d
dζ

F (z, ζ)
ζp

=
f(z, ζ)ζ − pF (z, ζ)

ζp+1

� −β0ζ
τ−p−1 for almost all z ∈ Ω all ζ � M10.

Integrating over [ξ, ζ], ζ � ξ � M10 and letting ζ → +∞, we obtain
λ1

p
ξp − F (z, ξ) � − β0

p− τ
ξτ for almost all z ∈ Ω all ξ � M10,

so
λ1

p
ξp − F (z, ξ) � − β0

p− τ
ξτ +M11 for almost all z ∈ Ω all ξ � 0,
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for some M11 > 0. Using this estimate, we have

ψ(tû1) � − tq

q

∫
Ω

mûq
1 dz − β0t

τ

p− τ
‖û1‖τ

τ +M12,

for some M12 > 0, so

ψ(tû1) −→ −∞ as t → +∞
and this proves Claim 3.

Claims 1, 2 and 3 permit the use of the mountain pass theorem (see The-
orem 2.1) which gives u ∈ W 1,p

0 (Ω), u �= 0, a critical point of ψ. Acting on
(3.2) with −u− ∈ W 1,p

0 (Ω), we obtain that u � 0, u �= 0 and from nonlinear
regularity theory (see e.g., Gasiński and Papageorgiou [15, pp. 737–738]) and
the Vázquez maximum principle, we have that u ∈ intC+.

Using the definition of ũ and the fact that ξ∗ � 1, we have

−Δpu � m(z)a(z)ũ(z)−η = a(z)u(z)−η

� m(z)a(z)u(z)−η � m(z)a(z) � −Δpu(z),

so u � u. Then

−Δpu = m(z)a(z)ũ(z)−η +m(z)u(z)q−1 + f
(
z, u(z)

)
= a(z)u(z)−η +m(z)u(z)q−1 + f

(
z, u(z)

)
� a(z)u(z)−η +m(z)u(z)q−1 + f

(
z, u(z)

)
,

so u ∈ intC+ is an upper solution. �

Using u, u ∈ intC+ obtained in Lemmata 3.4 and 3.5, truncation tech-
niques and variational methods based on the critical point theory, we will prove
the first multiplicity theorem for problem (1.1).

Theorem 3.6. If hypotheses H(f)1,H(η, a)1 and H(m) hold, then there exists
m∗ > 0, such that, if ‖m‖∞ < m∗, problem (1.1) has two positive smooth
solutions:

u0, û ∈ intC+ with u0 � û.

Proof. Using u, u ∈ intC+, from Lemma 3.4 and Lemma 3.5, we consider the
following truncation of the reaction term in (1.1):

g(z, ζ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a(z)u(z)−η +m(z)u(z)q−1 + f
(
z, u(z)

)
if ζ � u(z),

a(z)ζ−η +m(z)ζq−1 + f(z, ζ) if u(z) < ζ < u(z),

a(z)u(z)−η +m(z)u(z)q−1 + f
(
z, u(z)

)
if u(z) � ζ.

(3.10)

Evidently g(z, ζ) is a Carathéodory function. We set

G(z, ζ) =

ζ∫
0

g(z, s) ds (3.11)
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and consider the C1-functional ϕ̂ : W 1,p
0 (Ω) −→ R, defined by

ϕ̂(u) =
1
p
‖∇u‖p

p −
∫
Ω

G
(
z, u(z)

)
dz ∀u ∈ W 1,p

0 (Ω). (3.12)

From (3.10), it is clear that ϕ̂ is coercive. Moreover, exploiting the compactness
of the embedding W 1,p

0 (Ω) ⊆ Lp(Ω), we can easily verify that ϕ̂ is sequentially
weakly lower semicontinuous. Hence by the Weierstrass theorem, we can find
u0 ∈ W 1,p

0 (Ω), such that

ϕ̂(u0) = inf
{
ϕ̂(u) : u ∈ W 1,p

0 (Ω)
}
,

so

ϕ̂′(u0) = 0,

and thus

A(u0) = Ng(u0), (3.13)

where A is given by (2.1) and Ng(u)(·) = g
(·, u(·)) for all u ∈ W 1,p

0 (Ω).
On (3.13) we act with (u0 −u)+ ∈ W 1,p

0 (Ω) and using (3.10) and Lemma
3.5, we obtain〈

A(u0), (u0 − u)+
〉

=
∫

{u0>u}

g(z, u0)(u0 − u) dz

=
∫
Ω

(
au−η +muq−1 + f(z, u)

)
(u0 − u)+dz

�
〈
A(u), (u0 − u)+

〉
,

so ∫
{u0>u}

(‖∇u0‖p−2∇u0 − ‖∇u‖p−2∇u, ∇u0 − ∇u)
RN

dx � 0,

hence ∣∣{u0 > u}∣∣
N

= 0, i.e., u0 � u. (3.14)

In a similar fashion, acting on (3.13) with (u−u0)+ ∈ W 1,p
0 (Ω) and using this

time Lemma 3.4, we obtain

u � u0. (3.15)

From (3.10), (3.14) and (3.15), it follows that

A(u0) = au−η
0 +muq−1

0 +Nf (u0),

with Nf (u)(·) = f
(·, u(·)) for all u ∈ W 1,p

0 (Ω), so{−Δpu0(z) = a(z)u0(z)−η +m(z)u0(z)q−1 + f
(
z, u0(z)

)
in Ω,

u0|∂Ω = 0
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and thus, by the nonlinear regularity theory (see e.g., Gasiński and Papageor-
giou [15, pp. 737–738]), we have u0 ∈ intC+ and it is a (strong) solution of
(1.1).

Using u0 ∈ intC+, we introduce the following truncation of the reaction
in (1.1):

g0(z, ζ) =

⎧⎨
⎩
a(z)u0(z)−η +m(z)u0(z)q−1 + f

(
z, u0(z)

)
if ζ � u0(z),

a(z)ζ−η +m(z)ζq−1 + f(z, ζ) if u0(z) < ζ.

(3.16)

Evidently g0(z, ζ) is a Carathéodory function. We set

G0(z, ζ) =

ζ∫
0

g0(z, s) ds (3.17)

and consider the C1-functional ϕ0 : W 1,p
0 (Ω) −→ R, defined by

ϕ0(u) =
1
p
‖∇u‖p

p −
∫
Ω

G0

(
z, u(z)

)
dz ∀u ∈ W 1,p

0 (Ω). (3.18)

Claim 1. ϕ0 satisfies the C-condition.

Let {un}n�1 ⊆ W 1,p
0 (Ω) be a sequence, such that∣∣ϕ0(un)

∣∣ � M13 ∀n � 1, (3.19)

for some M13 > 0 and(
1 + ‖un‖)

ϕ′
0(un) −→ 0 in W−1,p′

(Ω). (3.20)

From (3.20), we have∣∣∣∣〈A(un), h
〉 −

∫
Ω

g0(z, un)hdz
∣∣∣∣ � εn‖h‖

1 + ‖un‖ ∀h ∈ W 1,p
0 (Ω), (3.21)

with εn ↘ 0. In (3.21), we choose h = un ∈ W 1,p
0 (Ω). Then

‖∇un‖p
p −

∫
Ω

g0(z, un)un dz � εn ∀n � 1. (3.22)

On the other hand, from (3.19), we have

− ‖∇un‖p
p +

∫
Ω

pG0(z, un) dz � pM1 ∀n � 1. (3.23)

Adding (3.22) and (3.23), we obtain∫
Ω

(
pG0(z, un) − g0(z, un)un

)
dz � M14 ∀n � 1, (3.24)
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for some M14 > 0. Note that, using (3.16), we have∫
{un<u0}

(
pG0(z, un) − g0(z, un)un

)
dz � M15 ∀n � 1, (3.25)

for some M15 > 0. If η �= 1, then∫
{un�u0}

(
pG0(z, un) − g0(z, un)un

)
dz

=
∫

{un�u0}

[
pau1−η

0 +
pa

1 − η
(u1−η

n − u1−η
0 ) + pmuq

0

+
p

q
m(uq

n − uq
0) + pf(z, u0)u0

+p
(
F (z, un) − F (z, u0)

) − a u1−η
n −muq

n − f(z, un)un

]
dz

� −M16 +
∫

{un�u0}

a

(
p

1 − η
− 1

)
u1−η

n dz +
∫

{un�u0}

(
p

q
− 1

)
muq

n dz

+
∫

{un�u0}

(
pF (z, un) − f(z, un)un

)
dz ∀n � 1, (3.26)

for some M16 > 0.
If η = 1, then∫

{un�u0}

(
pG0(z, un) − g0(z, un)un

)
dz

=
∫

{un�u0}

[
pa+ pa(lnun − lnu0) + pmuq

0 +
p

q
m(uq

n − uq
0) + pf(z, u0)u0

+p
(
F (z, un) − F (z, u0)

) − a−muq
n − f(z, un)un

]
dz

� −M17 + p

∫
{un�u0}

a
(
lnun − lnu0

)
dz +

∫
{un�u0}

(
p

q
− 1

)
muq

n dz

+
∫

{un�u0}

(
pF (z, un) − f(z, un)un

)
dz ∀n � 1, (3.27)

for some M17 > 0.
If η ∈ (0, 1), then

(
p

1−η − 1
)
> 0. Also

lnu0(z) � lnun(z) for almost all z ∈ {un � u0}
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and since q ∈ (1, p), we have∫
Ω

(
p

q
− 1

)
muq

n dz � 1 ∀n � 1.

Therefore, if η ∈ (0, 1], then (3.26) and (3.27) become∫
{un�u0}

(
pG0(z, un) − g0(z, un)un

)
dz

� −M18 +
∫

{un�u0}

(
pF (z, un) − f(z, un)un

)
dz ∀n � 1,

(3.28)

for some M18 > 0 (M18 = M16 or M18 = M17). Returning to (3.24) and using
(3.25) and (3.28), we infer that, if η ∈ (0, 1], then∫

{un�u0}

(
pF (z, un) − f(z, un)un

)
dz � M19 ∀n � 1, (3.29)

for some M19 > 0.
If η > 1, then∣∣∣∣

∫
{un�u0}

a

(
p

1 − η
− 1

)
u1−η

n dz
∣∣∣∣ � c1

∫
{un�u0}

a u1−η
n dz

� c1

∫
{un�u0}

a u0u
−η
0 dz ∀n � 1,

(3.30)

with c1 =
∣∣ p
1−η − 1

∣∣ > 0.
Since u0 ∈ intC+, we can find ϑ ∈ (0, 1) small enough, such that ϑv̂ � u0

(v̂ ∈ C+ as in hypothesis H(η, a)1). Hence from (3.30), we have∣∣∣∣
∫

{un�u0}

a

(
p

1 − η
− 1

)
u1−η

n dz � c2

∫
{un�u0}

ϑ−η a v̂−η dz

� c2 ϑ
−η‖a v̂−η‖1. ∀n � 1, (3.31)

with c2 = c1‖u0‖∞. Returning to (3.24) and using (3.25), (3.26) and (3.31),
we infer that, if η > 1, then∫

{un�u0}

(
pF (z, un) − f(z, un)un

)
dz � M20 ∀n � 1, (3.32)

for some M20 > 0.
From (3.29) and (3.32), it follows that for all η > 0, we have∫

{un�u0}

(
pF (z, un) − f(z, un)un

)
dz � M21 ∀n � 1, (3.33)
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for some M21 > 0 (M21 = M19 or M21 = M20). By virtue of hypothesis
H(f)1(iv), we can find β1 ∈ (0, β0) and M22 > 0, such that

β1ζ
τ � pF (z, ζ) − f(z, ζ)ζ for almost all z ∈ Ω, all ζ � M22. (3.34)

Moreover, hypothesis H(f)1(iii) implies that∣∣pF (z, ζ) − f(z, ζ)ζ
∣∣ � M23 for almost all z ∈ Ω, all ζ < M22, (3.35)

for some M23 > 0 (recall that F (z, ζ) = f(z, ζ) = 0 for almost all z ∈ Ω and
all ζ � 0). From (3.34) and (3.35), it follows that

β1(ζ+)τ −M24 � pF (z, ζ) − f(z, ζ)ζ for almost all z ∈ Ω, all ζ ∈ R,

(3.36)

for some M24 > 0. Returning to (3.33) and using (3.36), we obtain∫
{un�u0}

(u+
n )τ dz � M25 ∀n � 1,

for some M25 > 0, so

the sequence {u+
n }n�1 ⊆ Lτ (Ω) is bounded. (3.37)

On the other hand, if in (3.21) we choose h = −u−
n ∈ W 1,p

0 (Ω), then

‖∇u−
n ‖p

p � M26 ∀n � 1,

for some M26 > 0 (see (3.16)) and so the sequence {u−
n }n�1 ⊆ W 1,p

0 (Ω) is
bounded; thus finally

the sequence {u−
n }n�1 ⊆ Lτ (Ω) is bounded (3.38)

(recall that τ ∈ [1, p]; see hypothesis H(f)1(iv)).
From (3.37) and (3.38), it follows that

the sequence {un}n�1 ⊆ Lτ (Ω) is bounded (3.39)

For p < N or p > N , let r = p∗ and for p = N , let r > p. We can find t ∈ [0, 1),
such that

1
p

=
1 − t

τ
+
t

r
. (3.40)

Invoking the interpolation inequality (see e.g., [15, Theorem A.2.28, p. 905])
and the Sobolev embedding theorem, we have

‖un‖p � ‖un‖1−t
τ ‖un‖t

r ∀n � 1,

so

‖un‖p
p � M27‖un‖tp ∀n � 1, (3.41)

for some M27 > 0. From hypothesis H(f)1(iii), we have∣∣f(
z, un(z)

)
un(z)

∣∣ � c3
(
1 + |un(z)|p) for almost all z ∈ Ω, all n � 1,

(3.42)
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for some c3 > 0. Returning to (3.22) and using (3.41), (3.42) and (3.16), we
obtain

‖∇un‖p
p � c4

(
1 + ‖∇un‖tp

p

) ∀n � 1,

for some c4 > 0 and so the sequence {un}n�1 ⊆ W 1,p
0 (Ω) is bounded (recall

that t ∈ [0, 1)).
Therefore, we may assume that

un −→ u weakly in W 1,p
0 (Ω), (3.43)

un −→ u in Lp(Ω). (3.44)

If in (3.21) we choose h = un − u ∈ W 1,p
0 (Ω), then∣∣∣∣〈A(un), un − u

〉 −
∫
Ω

g0(z, un)(un − u) dz
∣∣∣∣ � εn‖un − u‖

1 + ‖un‖ ∀n � 1,

so

lim
n→+∞

〈
A(un), un − u

〉
= 0

and using also Proposition 2.2, we have

un −→ u in W 1,p
0 (Ω),

so finally ϕ0 satisfies the C-condition and this proves Claim 1.

Claim 2. ϕ0(tû1) −→ −∞ as t → +∞.

Clearly in hypothesis H(f)1(iv) without any loss of generality, we may
assume that τ < p. We have

d
dζ

F (z, ζ)
ζp

=
f(z, ζ)ζ − pF (z, ζ)

ζp+1

� −β1ζ
τ−p−1 for almost all z ∈ Ω, all ζ � M22

(see (3.34)), so

F (z, ζ)
ζp

− F (z, ξ)
ξp

� β1

p− τ

(
1

ζp−τ
− 1
ξp−τ

)
for almost all z ∈ Ω, all ζ � ξ � M22.

Let ζ → +∞. Recalling that τ < p and using hypothesis H(f)1(iv), we obtain

λ1

p
ξp − F (z, ξ) � − β1

p− τ
ξτ for almost all z ∈ Ω, all ξ � M22,

so

λ1

p
ξp − F (z, ξ) � − β1

p− τ
ξτ + c5 for almost all z ∈ Ω, all ξ � 0,
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for some c5 > 0. Then, using hypothesis H(f)1(v), the fact that ‖∇û1‖p
p =

λ1‖û1‖p
p and (3.16), we have

ϕ0(tû1) � tp

p
λ1‖û1‖p

p −
∫

{tû1�u0}

G0(z, tû1) dz

� tp

p
λ1

∫
{tû1<u0}

ûp
1 dz +

tp

p
λ1

∫
{tû1�u0}

ûp
1 dz −

∫
{tû1�u0}

F (z, tû1) dz

�
∫

{tû1�u0}

[
λ1

p
(tû1)p − F (t, tû1)

]
dz + c6

� − β1t
τ

p− τ

∫
{tû1�u0}

ûτ
1 dz + c7, (3.45)

for some c6, c7 > 0. Since

χ{tû1�u0}(z) −→ χΩ(z) ≡ 1 for almost all z ∈ Ω as t → +∞,

from (3.45), we infer that

ϕ0(tû1) −→ −∞ as t → +∞.

This proves Claim 2.
We consider the following auxiliary Dirichlet problem:{−Δpu(z) = g0

(
z, u(z)

)
in Ω,

u|∂Ω = 0. (3.46)

Note that u0 ∈ intC+ is a solution of (3.46) (see (3.16)). Moreover, since
u0 � u, from (3.16), we see that u ∈ intC+ is still an upper solution for
problem (3.46). We consider the order interval

[u0, u] =
{
u ∈ W 1,p

0 (Ω) : u0(z) � u(z) � u(z) for almost all z ∈ Ω
}
.

Note that ϕ0 is coercive and sequentially weakly lower semicontinuous. So, we
can find ũ ∈ [u0, u], such that

ϕ0(ũ) = inf
{
ϕ0(u) : u ∈ [u0, u]

}
. (3.47)

For y ∈ [u0, u], let

σ0(t) = ϕ
(
ty + (1 − t)ũ

) ∀t ∈ [0, 1].

From (3.47), we have

σ0(0) � σ0(t) ∀t ∈ [0, 1],

so

0 � σ′
0(0)

and thus

0 �
〈
A(ũ), y − ũ

〉 −
∫
Ω

g0(z, ũ)(y − ũ) dz ∀y ∈ [u0, u]. (3.48)
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Let h ∈ W 1,p
0 (Ω) and ε > 0. We set

y(z) =

⎧⎪⎪⎨
⎪⎪⎩
u0(z) if z ∈ {

ũ+ εh � u0

}
,

ũ(z) + εh(z) if z ∈ {
u0 < ũ+ εh < u

}
,

u if z ∈ {
u � ũ+ εh

}
.

Evidently y ∈ [u0, u] and we can use it as a test function in (3.48). We obtain

0 � ε

∫
Ω

‖∇ũ‖p−2(∇ũ,∇h)
RN

dz − ε

∫
Ω

g0(z, ũ)hdz

−
∫

{u�ũ+εh}

[‖∇u‖p−2
(∇u, ∇(ũ+ εh− u)

)
RN

−g0(z, u)(ũ+ εh− u)
]
dz

+
∫

{ũ+εh�u0}

[‖∇u0‖p−2
(∇u0, ∇(u0 − ũ− εh)

)
RN

−g0(z, u0)(u0 − ũ− εh)
]
dz

+
∫

{u�ũ+εh}

(
g0(z, u) − g0(z, ũ)

)
(u− ũ− εh) dz

+
∫

{ũ+εh�u0}

(
g0(z, u0) − g0(z, ũ)

)
(u0 − ũ− εh) dz

−
∫

{ũ+εh�u0}

(‖∇ũ‖p−2∇ũ− ‖∇u0‖p−2∇u0, ∇(ũ− u0)
)

RN

−ε
∫

{ũ+εh�u0}

(‖∇ũ‖p−2∇ũ− ‖∇u0‖p−2∇u0, ∇h)
RN

+
∫

{u�ũ+εh}

(‖∇u‖p−2∇u− ‖∇ũ‖p−2∇ũ, ∇(ũ− u)
)

RN

+ε
∫

{u�ũ+εh}

(‖∇u‖p−2∇u− ‖∇ũ‖p−2∇ũ, ∇h)
RN
. (3.49)

Recall that u ∈ intC+ is an upper solution for problem (3.46). Hence

−
∫

{u�ũ+εh}

[‖∇u‖p−2
(∇u, ∇(ũ+ εh− u)

)
RN

−g0(z, u)(ũ+ εh− u)
]
dz � 0. (3.50)
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Also u0 ∈ intC+ solves problem (3.46). Hence

∫
{ũ+εh�u0}

[‖∇u0‖p−2
(∇u0, ∇(u0 − ũ− εh)

)
RN

−g0(z, u0)(u0 − ũ− εh)
]
dz = 0. (3.51)

From the monotonicity of the map R
N � ξ 
−→ ‖ξ‖p−2ξ, we have

−
∫

{ũ+εh�u0}

(‖∇ũ‖p−2∇ũ− ‖∇u0‖p−2∇u0, ∇(ũ− u0)
)

RN
dz � 0. (3.52)

and

∫
{u�ũ+εh}

(‖∇u‖p−2∇u− ‖∇ũ‖p−2∇ũ, ∇(ũ− u)
)

RN
dz � 0. (3.53)

Note that since ũ � u, we have

h(z) � 0 for almost all z ∈ {u � ũ+ εh}.

Hence using hypothesis H(f)1(iii) and recalling that ũ � u, we have

∫
{u�ũ+εh}

(
g0(z, u) − g0(z, ũ)

)
(u− ũ− εh) dz

� −c8
∫

{u�ũ+εh}

(u− ũ− εh) dz

� εc8

∫
{ũ<u�ũ+εh}

hdz (3.54)

for some c8 > 0. In a similar fashion, we obtain

∫
{ũ+εh�u0}

(
g0(z, u0) − g0(z, ũ)

)
(u0 − ũ− εh) dz � −εc9

∫
{ũ+εh�u0<ũ}

hdz

(3.55)

for some c9 > 0.
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We return to (3.49) and use (3.50)–(3.55). Then

0 �
∫
Ω

‖∇ũ‖p−2(∇ũ,∇h)
RN

−
∫
Ω

g0(z, ũ)hdz

+c8
∫

{ũ<u�ũ+εh}

hdz − c9

∫
{ũ+εh�u0<ũ}

hdz

−
∫

{ũ+εh�u0}

(‖∇ũ‖p−2∇ũ− ‖∇u0‖p−2∇u0, ∇h)
RN

dz

+
∫

{u�ũ+εh}

(‖∇u‖p−2∇u− ‖∇ũ‖p−2∇ũ, ∇h)
RN

dz. (3.56)

Stampacchia’s theorem (see, e.g., Gasiński and Papageorgiou [15, p. 195])
implies that

∇ũ(z) = ∇u0(z) for almost all z ∈ {ũ = u0},
∇ũ(z) = ∇u(z) for almost all z ∈ {ũ = u}.

Therefore, if in (3.56) we let ε ↘ 0, then

0 �
∫
Ω

‖∇ũ‖p−2(∇ũ,∇h)
RN

dz −
∫
Ω

g0(z, ũ)hdz ∀h ∈ W 1,p
0 (Ω),

so

A(ũ) = Ng0(ũ), (3.57)

with Ng0(u)(·) = g0
(·, u(·)) for all u ∈ W 1,p

0 (Ω).
If ũ �= u0, then from (3.57) we infer that ũ solves (1.1) (see (3.16)) and

ũ ∈ intC+ (nonlinear regularity theory; see e.g., Gasiński and Papageorgiou
[15, pp. 737–738]).

If ũ = u0, then we may assume that u0 is an isolated critical point of
ϕ0 (otherwise we have a whole sequence of distinct positive smooth solutions
of (1.1) converging in W 1,p

0 (Ω) to u0, since the critical points u of ϕ0 sat-
isfy u � u0; see (3.16)). Arguing as in Motreanu et al. [25] (see the proof of
Proposition 6), we can find � ∈ (0, 1) small enough, such that

ϕ0(u0) < inf
{
ϕ0(u) : ‖u− u0‖ = �

}
= η	. (3.58)

Because of (3.58) and Claims 1 and 2, we can apply the mountain pass theorem
(see Theorem 2.1) and obtain û ∈ W 1,p

0 (Ω), such that

ϕ0(u0) < η	 � ϕ0(û) (3.59)

(see (3.58)) and

ϕ′
0(û) = 0. (3.60)

From (3.58), we have that û �= u0. From (3.59), we have

A(û) = Ng0(û) and û � u0. (3.61)
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From (3.61) it follows that û is a solution of (1.1), û ∈ intC+ (nonlinear
regularity theory) and û � u0, û �= u0. �

4. (p − 1)-Superlinear Perturbation

In this section we investigate the case where f(z, ·) is (p− 1)-superlinear near
+∞. However, we do not employ the usual in such cases Ambrosetti–Rabino-
witz condition. We recall that the Ambrosetti–Rabinowitz condition says that
there exist μ > p and M > 0, such that

f(z, ζ)ζ � μF (z, ζ) for almost all z ∈ Ω, all ζ � M. (4.1)

Here, we state the Ambrosetti–Rabinowitz condition on the positive semiaxis
since in our problem f(z, ζ) = F (z, ζ) = 0 for almost all z ∈ Ω and all ζ � 0.
Integrating (4.1), we obtain the weaker condition

c10ζ
μ � F (z, ζ) for almost all z ∈ Ω, all ζ � M, (4.2)

for some c10 > 0. Then (4.2) implies the much weaker condition

lim
ζ→+∞

F (z, ζ)
ζp

= +∞ for almost all z ∈ Ω.

The precise hypotheses on the nonlinearity f are the following:
H(f)2 f : Ω × R −→ R is a function, such that

(i) for all ζ ∈ R, the function z 
−→ f(z, ζ) is measurable;
(ii) for almost all z ∈ Ω, the function ζ 
−→ f(z, ζ) is continuous and we

have f(z, 0) = 0;
(iii) for almost all z ∈ Ω and all ζ ∈ R, we have∣∣f(z, ζ)

∣∣ � a(z) + c|ζ|r−1,

with a ∈ L∞(Ω)+, c > 0, p < r < p∗;

(iv) if F (z, ζ) =
ζ∫
0

f(z, s) ds, then

lim
ζ→+∞

F (z, ζ)
ζp

= +∞,

uniformly for almost all z ∈ Ω and there exist β̂0 > 0 and τ > q, τ ∈(
(r − p)max

{
1, N

p

}
, p∗), such that

lim inf
ζ→+∞

f(z, ζ)ζ − pF (z, ζ)
ζτ

� β̂0

uniformly for almost all z ∈ Ω;
(v) we have

lim
ζ→0+

f(z, ζ)
ζp−1

= 0

uniformly for almost all z ∈ Ω and

m(z)ζq−1 + f(z, ζ) � 0 for almost all z ∈ Ω and all ζ � 0.
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Remark 4.1. Note that the first part of hypothesis H(f)2(iv) implies that for
almost all z ∈ Ω, F (z, ·) is p-superlinear near +∞. This is true if for almost all
z ∈ Ω, f(z, ζ) is (p− 1)-superlinear near +∞. However, instead of the Ambro-
setti–Rabinowitz condition (4.1), we use a weaker condition (see the second
part of hypothesis H(f)2(iv). Similar conditions can be found in Costa and
Magalhães [8] and Fei [12]).

Example 4.2. The following function f satisfies hypotheses H(f)2 (again for
the sake of simplicity we drop the z-dependence):

f(ζ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ζ � 0,

ζr−1 if 0 < ζ < 1,

ζp−1
(
ln ζ + 1

p

)
+ p−1

p if 1 � ζ,

with p < r < p∗ Note that this f does not satisfy the Ambrosetti–Rabinowitz
condition.

Hypothesis H(η, a)1 is strengthened as follows:

H(η, a)2 η > 0, a(z) � 0 for almost all z ∈ Ω and there exist v̂ ∈ C+ and
s > N, s � τ ′ (with 1

τ + 1
τ ′ = 1, where τ is as in hypothesis H(f)2(iv)), such

that av̂−η ∈ Ls(Ω).

Theorem 4.3. If hypotheses H(f)2,H(η, a)2 and H(m) hold, then there exists
m∗ > 0, such that, if ‖m‖∞ < m∗, problem (1.1) has two positive smooth
solutions:

u0, û ∈ intC+ with u0 � û.

Proof. A careful reading of the proofs of Lemmata 3.4 and 3.5 reveals that
u, u ∈ intC+ are still lower and upper solutions for problem (1.1) under the
new hypotheses H(f)2. Again, we truncate the reaction term of (1.1) at the
pair {u, u}, produce the Carathéodory function g(z, ζ) (see (3.10)), set G(z, ζ)
as in (3.11) and then introduce the C1-functional ϕ̂ : W 1,p

0 (Ω) −→ R, defined by

ϕ̂(u) =
1
p
‖∇u‖p

p −
∫
Ω

G
(
z, u(z)

)
dz ∀u ∈ W 1,p

0 (Ω).

(cf. (3.12)). This functional is coercive and sequentially weakly lower semicon-
tinuous. So, we can find u0 ∈ W 1,p

0 (Ω), such that

ϕ̂(u0) = inf
{
ϕ̂(u) : u ∈ W 1,p

0 (Ω)
}

and ϕ̂′(u0) = 0.

We obtain u0 ∈ [u, u] and so u0 ∈ intC+ solves (1.1) (see the proof of
Theorem 3.6).

Then as earlier truncate the reaction term at u0 and produce the Cara-
théodory function g0(z, ζ) (see (3.16)). We setG0(z, ζ) as in (3.17) and consider
the C1-functional ϕ0 : W 1,p

0 (Ω) −→ R, defined by
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ϕ0(u) =
1
p
‖∇u‖p

p −
∫
Ω

G0

(
z, u(z)

)
dz ∀u ∈ W 1,p

0 (Ω).

(cf. (3.18)).

Claim 1. ϕ0 satisfies the C-condition.

Let {un}n�1 ⊆ W 1,p
0 (Ω) be a sequence, such that∣∣ϕ0(un)

∣∣ � M28 ∀n � 1, (4.3)

for some M28 > 0 and(
1 + ‖un‖)

ϕ′
0(un) −→ 0 in W−1,p′

(Ω). (4.4)

From (4.4), we have∣∣∣∣〈A(un), h
〉 −

∫
Ω

g0(z, un)hdz
∣∣∣∣ � εn‖h‖

1 + ‖un‖ ∀h ∈ W 1,p
0 (Ω), (4.5)

with εn ↘ 0. In (4.5), we choose h = −u−
n ∈ W 1,p

0 (Ω). Then∣∣∣∣‖∇u−
n ‖p

p −
∫
Ω

a u−η
0 (−u−

n ) dz −
∫
Ω

muq−1
0 (−u−

n ) dz −
∫
Ω

f(z, u0)(−u−
n ) dz

∣∣∣∣
� εn ∀n � 1

(see (3.16)). Thus

‖∇u−
n ‖p

p � c11
(
1 + ‖∇u−

n ‖p

) ∀n � 1,

for some c11 > 0 and so

the sequence {u−
n }n�1 ⊆ Lτ (Ω) is bounded. (4.6)

Next in (4.5), we choose h = u+
n ∈ W 1,p

0 (Ω). Then

− ‖∇u+
n ‖p

p +
∫
Ω

g0(z, un)u+
n dz � εn ∀n � 1. (4.7)

Also, from (4.3) and (4.6), we have

‖∇u+
n ‖p

p −
∫
Ω

pG0(z, u+
n ) dz � M29 ∀n � 1, (4.8)

for some M29 > 0. We add (4.7) and (4.8) and obtain∫
Ω

(
g0(z, u+

n )u+
n − pG0(z, u+

n )
)
dz � M30 ∀n � 1, (4.9)
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for some M30 > 0. We proceed similarly as in the proof of Theorem 3.6. First
assume that η �= 1. Then

∫
Ω

(
g0(z, u+

n )u+
n − pG0(z, u+

n )
)
dz

� −M31 +
∫

{un�u0}

a

(
1 − p

1 − η

)
u1−η

n dz +
∫

{un�u0}

(
1 − p

q

)
muq

n dz

+
∫

{un�u0}

(
f(z, un)un − pF (z, un)

)
dz ∀n � 1, (4.10)

for some M31 > 0.

If η > 1, then a
(
1 − p

1−η

)
> 0 and so from (4.9) and (4.10), we have

∫
{un�u0}

(
f(z, un)un − pF (z, un)

)
dz

� M32 +
(
p

q
− 1

) ∫
{un�u0}

muq
n dz ∀n � 1, (4.11)

with M32 = M30 +M31 > 0.

By virtue of hypothesis H(f)2(iv), we can find β̂1 ∈ (0, β̂0) and M33 > 0,
such that

β̂1ζ
τ � f(z, ζ)ζ − pF (z, ζ) for almost all z ∈ Ω, all ζ � M33.

Combining this estimate with hypothesis H(f)2(iii), we obtain

β̂1ζ
τ − c12 � f(z, ζ)ζ − pF (z, ζ) for almost all z ∈ Ω, all ζ ∈ R, (4.12)

for some c12 > 0. Using (4.12) in (4.11), we obtain

β̂1

∫
{un�u0}

uτ
n dτ � M34 +

(
p

q
− 1

)
‖m‖∞

∫
{un�u0}

uq
n dτ ∀n � 1,

(4.13)

for some M34 > 0.
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Now suppose that η ∈ (0, 1). Then, since ϑv̂ � u0 for some ϑ ∈ (0, 1) and
recalling that τ � s′ (see hypothesis H(η, a)2), we have

∣∣∣∣
∫

{un�u0}

a

(
1 − p

1 − η

)
u1−η

n dz
∣∣∣∣ � c13

∫
{un�u0}

a u1−η
n dz

� c13

∫
{un�u0}

a u−η
0 un dz

� c13

∫
{un�u0}

ϑ−η a v̂−ηun dz

� c14‖u+
n ‖τ ∀n � 1. (4.14)

with c13 =
∣∣1 − p

1−η

∣∣ > 0 and for some c14 > 0. Using (4.9), (4.12) and (4.14)
in (4.10), we obtain

β̂1

∫
{un�u0}

uτ
n dz � M35 + c14‖u+

n ‖τ

+
(
p

q
− 1

)
‖m‖∞

∫
{un�u0}

uq
n dz ∀n � 1, (4.15)

for some M35 > 0 (recall that η ∈ (0, 1)).
Finally let η = 1. Then

∫
Ω

(
g0(z, u+

n )u+
n − pG0(z, u+

n )
)
dz

� −M36 + p

∫
{un�u0}

a
(
lnu0 − lnun

)
dz +

∫
{un�u0}

(
1 − p

q

)
muq

n dz

+
∫

{un�u0}

(
f(z, un)un − pF (z, un)

)
dz ∀n � 1, (4.16)

for some M36 > 0.
From (4.9) and (4.16), we have

M37 + p

∫
{un�u0}

a lnun dz +
(
p

q
− 1

)
‖m‖∞

∫
{un�u0}

uq
n dz

�
∫

{un�u0}

(
f(z, un)un − pF (z, un)

)
dz ∀n � 1,
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for some M37 > 0, so

M38 + p

∫
{un�u0}

a un dz +
(
p

q
− 1

)
‖m‖∞

∫
{un�u0}

uq
n dz

� β̂1

∫
{un�u0}

uτ
n dz ∀n � 1, (4.17)

for some M38 > 0 (recall that η = 1 and see (4.12)).
From (4.13), (4.15), (4.17) and since q < p, τ > q, we infer that

the sequence {u+
n }n�1 ⊆ Lτ (Ω) is bounded. (4.18)

It is clear from hypothesis H(f)2(iv) that we can always assume that τ � r <
p∗. Then for p < N or p > N , we can find t ∈ [0, 1), such that

1
r

=
1 − t

τ
+

t

p∗ . (4.19)

Invoking the interpolation inequality, we have

‖u+
n ‖r � ‖u+

n ‖1−t
τ ‖u+

n ‖t
p∗ ,

so

‖u+
n ‖r

r � M39‖u+
n ‖tr

p∗ ∀n � 1, (4.20)

for some M39 > 0. From (4.5), by choosing h = u+
n ∈ W 1,p

0 (Ω), we have

‖∇u+
n ‖p

p −
∫

{un�u0}

a u1−η
n dz −

∫
{un�u0}

muq
n dz

−
∫

{un�u0}

f(z, un)un dz � M40 ∀n � 1, (4.21)

for some M40 > 0.
From hypotheses H(f)2(iii) and (iv), we see that for a given ε > 0, we

can find c15 = c15(ε) > 0, such that∣∣f(z, ζ)ζ
∣∣ � ε|ζ|p + c15|ζ|r for almost all z ∈ Ω, all ζ ∈ R. (4.22)

Combining (4.20), (4.21), (4.22) and the Sobolev embedding theorem, we have

‖∇u+
n ‖p

p � c16
(
1 + ‖u+

n ‖ + ‖u+
n ‖q + ε‖u+

n ‖p
p + ‖u+

n ‖tr
) ∀n � 1, (4.23)

for some c16 > 0.
If p = N , then we may assume that τ < r. Also let μ > r. We have

1
r

=
1 − t

τ
+
t

μ
,

for some t ∈ (0, 1), so

tr =
μ(r − τ)
μ− τ

.
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Note that
μ(r − τ)
μ− τ

−→ r − τ as μ → +∞ = p∗

and by hypothesis H(f)2(iv), we have r − τ < p. Therefore, for μ > r large
enough, we have μ(r−τ)

μ−τ < p and so tr < p. We repeat the argument of the
case p < N or N < p, with p∗ replaced by this large μ > r. Using the Sobolev
embedding theorem, we reach again (4.23).

Suppose that ‖u+
n ‖ −→ +∞ and set

yn =
u+

n

‖u+
n ‖ ∀n � 1.

Then

‖yn‖ = 1 ∀n � 1

and so we may assume that

yn −→ y weakly in W 1,p
0 (Ω), (4.24)

yn −→ y in Lp(Ω). (4.25)

From (4.23), we have

‖∇yn‖p
p � c16

(
1

‖u+
n ‖p

+
1

‖u+
n ‖p−1

+
1

‖u+
n ‖p−q

+ ε‖yn‖p
p +

1
‖u+

n ‖p−tr

)
.

The hypothesis on τ (see hypothesis H(f)2(iv)) implies that tr < p. So, if we
pass to the limit as n → +∞, then

‖∇y‖p
p � εc16‖y‖p

p � ε

λ1
c16

(see (4.24) and note that ‖y‖p
p � 1

λ1
‖∇y‖p

p = 1
λ1

; see (2.3)).
Since ε > 0 is arbitrary, we let ε ↘ 0 and obtain y = 0. Then

∇yn −→ 0 in Lp(Ω; RN ),

so

yn −→ 0 in W 1,p
0 (Ω),

a contradiction to the fact that ‖yn‖ = 1 for all n � 1. This proves that the
sequence {u+

n }n�1 ⊆ W 1,p
0 (Ω) is bounded, which combined with (4.6) implies

that the sequence {un}n�1 ⊆ W 1,p
0 (Ω) is bounded. So, we may assume that

un −→ u weakly in W 1,p
0 (Ω), (4.26)

un −→ u in Lr(Ω). (4.27)

If in (4.5) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and

use (4.26), then

lim
n→+∞

〈
A(un), un − u

〉
= 0,
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so from (4.26) and Proposition 2.2, we have

un −→ u in W 1,p
0 (Ω)

and so ϕ0 satisfies the C-condition.
This proves Claim 1.

Claim 2. ϕ0(tû1) −→ −∞ as t → +∞.

By virtue of the first part of hypothesis H(f)2(iv), for a given ξ > 0, we
can find M41 = M41(ξ) > 0, such that

F (z, ζ) � ξ

p
ζp for almost all z ∈ Ω, all ζ � M41. (4.28)

Since û1 ∈ intC+, for t > 0 large enough, we have tû1 � u0. Hence for such
large t > 0, we have

ϕ0(tû1) � tp

p
λ1 −

∫
Ω

F (z, tû1) dz + c17 � tp

p
λ1 − tp

p
ξ + c17,

for some c17 > 0 (see (3.16) and (4.28)). So

ϕ0(tû1) � tp

p
(λ1 − ξ) + c17. (4.29)

Choose ξ > λ1. Then from (4.29), it is clear that

ϕ0(tû1) −→ −∞ as t → +∞.

As in the proof of Theorem 3.6, we consider the auxiliary Dirichlet problem
(3.46). Recall that u0 ∈ intC+ is a solution of (3.46) (see (3.16)) and u ∈ intC+

is an upper solution of (3.46). We proceed as in the proof of Theorem 3.6 and
using Claims 1, 2 and the mountain pass theorem (see Theorem 3.6), we obtain
û ∈ intC+, u0 � û, u0 �= û, a second positive solution of (1.1). �
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[4] Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and con-
vex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543
(1994)

[5] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and
applications to some nonlinear problems with “strong” resonance at infinity.
Nonlinear Anal. 7, 981–1012 (1983)

[6] Brock, F., Itturiaga, L., Ubilla, P.: A multiplicity result for the p-Laplacian
involving a parameter. Ann. Henri Poincaré 9, 1371–1386 (2008)
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Institute of Computer Science
Jagiellonian University
ul. �Lojasiewicza 6
30-348 Kraków, Poland
e-mail: Leszek.Gasinski@ii.uj.edu.pl

Nikolaos S. Papageorgiou
Department of Mathematics
National Technical University
Zografou Campus
Athens 15780, Greece
e-mail: npapg@math.ntua.gr

Communicated by Rafael D. Benguria.

Received: June 25, 2010.

Accepted: July 4, 2011.


	Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities
	Abstract
	1. Introduction
	2. Mathematical Background
	3. (p-1)-Linear Perturbations
	4. (p-1)-Superlinear Perturbation
	Acknowledgements
	Open Access
	References


