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Random Skew Plane Partitions
with a Piecewise Periodic Back Wall

Cedric Boutillier, Sevak Mkrtchyan, Nicolai Reshetikhin
and Peter Tingley

Abstract. Random skew plane partitions of large size distributed accord-
ing to an appropriately scaled Schur process develop limit shapes. In the
present work, we consider the limit of large random skew plane parti-
tions where the inner boundary approaches a piecewise linear curve with
non-lattice slopes, describing the limit shape and the local fluctuations
in various regions. This analysis is fairly similar to that in Okounkov
and Reshetikhin (Commun Math Phys 269:571–609, 2007), but we do
find some new behavior. For instance, the boundary of the limit shape
is now a single smooth (not algebraic) curve, whereas the boundary in
Okounkov and Reshetikhin (Commun Math Phys 269:571–609, 2007) is
singular. We also observe the bead process introduced in Boutillier (Ann
Probab 37(1):107–142, 2009) appearing in the asymptotics at the top of
the limit shape.

1. Introduction

A skew plane partition with inner boundary being given by a partition λ is
any array of positive integers π = {πi,j} defined for pairs (i, j) such that i ≥ 1
and j ≥ λi, which is non-increasing in both i and j. A skew plane partition is
called bounded by N and M if πij = 0 when i > N or j > M . An example of a
skew plane partition with inner shape λ = (3, 2, 2) is given on Fig. 1. Looking
at this picture we can also see that a bounded skew plane partition can be
regarded as monotonic piles of cubes in a certain “semi-infinite room” with no
roof (see also Fig. 2).

A natural question to ask is: what is the shape of a typical pile containing
a large number of cubes? One must first make this precise by fixing a prob-
ability distribution. One natural distribution to choose would be the uniform
distribution on all skew plane partitions with a fixed number of cubes. This
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Figure 1. A skew plane partition represented as a stepped
surface. Notice that the same picture can be viewed as a tiling
of a portion of the plane by three types of rhombi

Figure 2. An empty skew plane partition. Here the inner
shape is given by the partition (6, 3, 3, 3, 1)

is actually quite difficult to deal with, and we instead consider the follow-
ing probability measure (grand-canonical ensemble) on bounded skew plane
partitions:
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P (π) =
1
Z

q|π|, (1)

where |π| =
∑

i,j πi,j is the total number of boxes in the piles corresponding
to the plane partition π, 0 < q < 1 and

Z =
∑

π

q|π|

is the normalization factor known as the partition function in statistical
mechanics. The larger q is , the more likely it is to have many cubes. We will
study certain limits of this system as q approaches 1, the bounds M and N
approach infinity, and the partition λ defining the back wall of the room grows
in a specified way.

There are many ways to take such a limit. For instance, one can specify
that, after an appropriate rescaling, λ approaches a fixed curve. The limiting
behavior of the system will certainly depend on this curve. Some such cases
have previously been studied:
• The case when λ is empty was studied in the unbounded case in [2] and

in the bounded case in [14].
• The case when λ approaches a piecewise linear curve with lattice slopes

was studied in [15].
In this article we consider a limit where λ approaches a piecewise lin-

ear function with a (non-lattice) slope staying strictly between −1 and 1. The
large size limit is studied via correlation functions using the formalism and
notations developed in [14,15].

Before we start, let us mention some other related work. Using results
of this article, the limit where λ approaches a piecewise linear function with
arbitrary slopes has been studied in [12]. Local fluctuations and the free energy
for the partition function on a torus were first computed in [13].

1.1. Random Skew Plane Partitions and Correlation Functions

Our piles of unit cubes are in R
3 with coordinates (x, y, z) centered at points

(Z+ 1
2 , Z+ 1

2 , Z+ 1
2 ) and bounded in (x, y) directions as it was described above.

That is, the (x, y) coordinates of centers of cubes satisfy conditions:
{

1
2 ≤ x ≤ N − 1

2 ,

λx+1/2 ≤ y ≤ M.

The partition λ is given and describes the configuration of the back wall.
Denote this region of R

3 by Dλ,M,N .
The mapping

(x, y, z) �→
(

t = y − x, h = z − x + y

2

)

projects R
3 to R

2. This projection maps piles of cubes to tilings of the region

EM,N = {(t, h) | − M ≤ t ≤ N ;h ≥ max{−M − t/2, N + t/2}}
which differ from the one corresponding to the empty pile in finitely many
places. This is evident from Fig. 1.
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A convenient characterization of a system of random skew plane parti-
tions is the collection of local correlation functions ρ(t1,h1),...,(tk,hk) giving the
probability to see horizontal rhombi at (t1, h1), . . . , (tk, hk):

ρ(t1,h1),...,(tk,hk) =
∑

π

P (π)
k∏

a=1

σia,ja
(π)

where σt,h(π) = 1 when (t, h) is the position of the center of a horizontal
rhombus and σt,h(π) = 0 if not.

An explicit formula was found in [14,15] for such correlation functions.
To describe this formula, we first encode the boundary of the partition λ as a
function h = −b(t), where

b(t) =
1
2

n∑

i=1

|t − vi| − 1
2

n−1∑

i=1

|t − ui|. (2)

The points u1, . . . , un−1 (resp. v1, . . . , vn) represent the inner (resp. the outer)
corners of the back wall. See Fig. 2. It is convenient to set u0 = −M and
un = N . The lines t = u0 and t = un are limiting on the left and on the right
the region tiled by rhombi.

Then we introduce the partition of the horizontal interval Z+ 1
2 ∩(u0, un)

into D− ∪ D+ where

D+ =
{

m ∈ Z +
1
2

∩ (u0, un) | where the boundary λ in (t, h)

has slope −1
2

at m

}

,

D− =
{

m ∈ Z +
1
2

∩ (u0, un) | where the boundary λ in (t, h)

has slope +
1
2

at m

}

.

Define the functions Φ±(z, t) by:

Φ+(z, t) =
∏

m∈D+

m>t

(1 − zqm), Φ−(z, t) =
∏

m∈D−
m<t

(1 − z−1q−m).

The following holds:

Theorem 1.1. [15] Correlation functions are determinants of the correlation
kernel:

ρ(t1,h1),...,(tk,hk) = det [K ((ti, hi), (tj , hj))]1≤i,j≤k (3)

The correlation kernel K is given by

K((t1, h1), (t2, h2)) =
1

(2πi)2

∮

z∈C1

∮

w∈C2

Φ−(z, t1)Φ+(w, t2)
Φ+(z, t1)Φ−(w, t2)

×
√

zw

z − w
z−h1−b(t1)−1/2wh2+b(t2)−1/2 dzdw

zw
, (4)
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where C1 is a simple positively oriented contour around 0 such that its interior
contains none of the zeroes of Φ+(z, t1). Similarly C2 is a simple positively
oriented contour around 0 such that its exterior does not contain zeroes of
Φ−(w, t2). Moreover, if t1 < t2, then C1 is contained in the interior of C2,
and otherwise, C2 is contained in the interior of C1.

1.2. Main Results

We are interested in the behavior of random skew plane partitions sampled
according to the probability distribution (1) for large domains, meaning that
a limit of the following form is taken:

• Fix a sequence (rk) of positive real numbers such that limk→∞ rk = 0
and for all k, let qk = exp(−rk).

• Choose sequences (Mk), (Nk) and (λk) such that as k goes to infinity, the
3-dimensional domain rkDλk,Mk,Nk

converges to some region D of R
3.

• Find characteristic scales of fluctuations for large k and describe random
plane partitions at appropriate scales in the limit k → ∞.

The increasing sequence of domains where rk = 1
k and the corners u

(k)
i

and v
(k)
i describing the partition λk are given by:

u
(k)
i = kUi, v

(k)
i = kVi,

where n and U0 ≤ V1 ≤ · · · ≤ Vn ≤ Un are fixed integers was studied in [15]. As
k → ∞, the function (x, y) �→ hk(x, y) = πkx,ky/k converges in probability to
a fixed limit shape. This function is infinitely differentiable everywhere except
along a curve where the surface it defines merges with the walls. Along the
curve, its second derivative is discontinuous (the first derivative has a square
root singularity). The projection of this curve to the (t, h)-plane is called the
arctic circle or the boundary of the frozen region. Indeed outside this curve
the tiling by rhombi is “frozen”, which is to say that with probability tending
to 1, the tiles outside of the curve are of only one type.

The results in [15] are obtained using the steepest descent method to
evaluate the integrals in Eq. (4). In the limit one obtains exact formulas for
the limit shape, as well as descriptions of the behavior of local correlation
functions.

In this paper, we focus on a different type of increasing sequences of
domains. We keep rk equal to 1

k , but we assume that the partitions λk describ-
ing the back wall consist of n segments growing in length, and that each of the
segments is not straight anymore, but is a “staircase” with fixed slope. To be
precise, the jth segment of λk consists of kLj copies of the corner with sides
(aj , bj) for some Lj , aj , bj ∈ Z>0 fixed, see Fig. 3.

In the framework described above, we compute the limit shape of the
random pile of boxes as k → ∞ and correlation functions. We show that:

• The system rescaled by a factor rk converges to a deterministic limit
shape. This is a smooth transcendental function in the bulk. The frozen
boundary consists of a single smooth curve.
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Figure 3. The setup

• As in [15], correlation functions in the bulk are given by the incomplete
Beta kernel.

• For most values of t, if one fixes t and allows h to approach infinity, the
slope of the limit shape turns vertical, and the determinantal process
with the incomplete Beta kernel describing the statistics of horizontal
tiles degenerates into the bead process introduced in [1].

1.3. Relation to Dimer Models

The limit shapes for rhombi tilings of bounded domains with piecewise linear
boundary parallel to axes h = const, h± t/2 = const were studied in [9] where
it was shown that uniformly distributed tilings develop a limit shape given by
an algebraic curve. This generalizes the arctic circle theorem for large hexa-
gons [3,5]. Local correlation functions for large hexagonal domains with the
uniform distribution of rhombi tilings were studied in [4,5], and in [8].

The rhombi used in these tilings can be thought of as dimers, since they
are the union of two adjacent faces of the triangular lattice (monomers). These
random tilings are thus examples of dimer models. Dimer models have a long
history in statistical mechanics, see for example [6,11,17]. Corresponding tiling
models with height functions were first studied in the physics literature, where
many ideas about the limit shape and the structure of correlation functions in
the thermodynamical limit can be traced, see for example [13].

2. Setup: a Piecewise Periodic Back Wall

We are studying a system of random skew plane partitions, as described in
Sect. 1. The precise system is described in Sect. 1.2. Let us start by introduc-
ing some more notation.

Let τ = rt and χ = rh be the rescaled coordinates. The τ coordinates
where the slope of the back wall changes are denoted by A0, A1, . . . , An, where
A0 and An are the bounds of the shape. The t coordinates that correspond
to these corners will be A1/r, . . . , An/r. Between Ak−1/r and Ak/r we have
a succession of patterns made of ak ascending steps and bk descending steps,
repeated Lk/r times. The slope of the piece of wall between Ak−1 and Ak is
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αk = ak−bk

2(ak+bk) . It will be convenient to define α0 = − 1
2 and αn+1 = 1

2 . Let
j be the integer in {1, . . . , n} such that τ ∈ (Aj−1, Aj ]. Define the function
B(τ) by

− B(τ) = −1
2
A0 +

j−1∑

k=1

αk(Ak − Ak−1) + αj(τ − Aj−1)

= −
j−1∑

k=0

Ak(αk+1 − αk) + αjτ, (5)

if Aj−1 < τ < Aj . B(τ) is the limiting rescaled boundary function b(t) of
Eq. (2) expressed in the rescaled variables τ and χ. We can decide to define
B(τ) from the rightmost corner An instead of the leftmost one A0, yielding an
alternative expression:

− B(τ) =
1
2
An −

n∑

k=j+1

αk(Ak − Ak−1) − αj(Aj − τ)

= αjτ +
n∑

k=j

(αk+1 − αk)Ak. (6)

We are interested in the correlation functions in the scaling limit when
limr→+0 rt1 = limr→+0 rt2 and t1 − t2 = Δ(t) is a constant.

2.1. The Function Sτ,χ(z)

We want to use the steepest descent method in order to find the asymptotics
of local correlation functions as the size of the system increases and r → 0.
The first step in doing this is to rewrite the integral defining the correlation
kernel in Theorem 1.1 as

K ((t1, h1), (t2, h2)) =
1

(2iπ)2

∮ ∮

e
S
(r)
t1,h1

(z)−S
(r)
t2,h2

(w)

r
1

z − w

dz

2iπz

dw

2iπw
,

show that S
(r)
t,h (z) converges to some function Sτ,χ(z) as r → 0, rt → τ, rh → χ

and find the critical points of z �→ Sτ,χ(z).
The function S

(r)
t,h (z) is given by:

S
(r)
t,h (z) = r log

(

z−h−b(t) Φ−(z, t)
Φ+(z, t)

)

= −r(h + b(t)) log z +
∑

m<t,m∈D−,

m∈Z+
1
2

r log(1 − z−1erm)

−
∑

m>t,m∈D+,

m∈Z+
1
2

r log(1 − ze−rm). (7)
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Here and in the sequel, log denotes the branch of the logarithm with an imag-
inary part in (−π, π), with a cut along R−.

In order to find the limit Sτ,χ(z) of this quantity, we first state a lemma:

Lemma 2.1. If [C,D] corresponds to a piece of wall with parameters a, b then

lim
r→0

∑

C
r <m′<

D
r ,m′∈D−,

m′∈Z+
1
2

r log(1 − z−1erm′
) =

a

a + b

D∫

C

log(1 − z−1ev) dv (8)

and

lim
r→0

∑

C
r <m′<

D
r ,m′∈D+,

m′∈Z+
1
2

r log(1 − ze−rm′
) =

b

a + b

D∫

C

log(1 − ze−v) dv. (9)

Proof. The proof is elementary. Here is how it goes for (8):

lim
r→0

∑

C
r <m′<

D
r ,m′∈D−,

m′∈Z+
1
2

r log(1 − z−1erm′
)

= lim
r→0

∑

C<m<D,m∈D−,

m∈r(Z+
1
2 )

r log(1 − z−1em)

= lim
r→0

∑

C<m<D,

m∈r(a+b)(Z+
1
2 )

a−1∑

k=0

r log(1 − z−1em+kr)

=
1

a + b

a−1∑

k=0

lim
r→0

∑

C<m<D,

m∈r(a+b)(Z+
1
2 )

r(a + b) log(1 − z−1em+kr)

defn. of
∫

=
1

a + b

a−1∑

k=0

D∫

C

log(1 − z−1ev) dv =
a

a + b

D∫

C

log(1 − z−1ev) dv.

The convergence is uniform in z on compact sets of C \ [eC , eD]. �

Using Lemma 2.1 for each interval [Ak, Ak+1], [Aj−1, τ ], [τ,Aj ], and the
fact that

lim
rt→τ

rb(t) = B(τ),
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we get

Sτ,χ(z) := lim
r→0

S
(r)
t,h(z) = −(χ + B(τ)) log z

+

j−1∑

k=1

ak

ak + bk

Ak∫

Ak−1

log
(
1−z−1ev

)
dv+

aj

aj + bj

τ∫

Aj−1

log
(
1−z−1ev

)
dv

− bj

aj + bj

Aj∫

τ

log
(
1−ze−v

)
dv−

n∑

k=j+1

bk

ak + bk

Ak∫

Ak−1

log
(
1−ze−v

)
dv.

(10)

3. Critical Points of Sτ,χ(z)

The localization of the critical points of the function Sτ,χ is crucial in order to
apply the steepest descent method. The following proposition gives a complete
understanding of their nature.

Proposition 3.1. Fix A0 < τ < An. Then,
• there is a unique real number χ0(τ) such that

(i) For any χ > χ0(τ), Sτ,χ(z) has exactly two non-real critical points,
which are complex conjugates.

(ii) For any χ < χ0(τ), Sτ,χ(z) has only real critical points.
• If τ ∈ (Aj−1, Aj), as χ → +∞ the two non-real critical points zc, z̄c have

the following asymptotic:

zc, z̄c = eτ exp
(
−e−χρ(τ)e±iπ( 1

2+αj)
)

(1 + O(e−χ)), (11)

where

ρ(τ) =
n∏

k=0

∣
∣
∣
∣2 sinh

(
τ − Ak

2

)∣
∣
∣
∣

αk+1−αk

,

and zc is chosen to be the critical point with positive imaginary part.
• If τ = Aj + δ, χ → +∞ and δ → 0 such that

p = eχ−χ(j) |δ|1+αj−αj+1

is fixed, with

eχ(j)
= ρ(j) =

n∏

k=0
k �=j

∣
∣
∣
∣2 sinh

(
Aj − Ak

2

)∣
∣
∣
∣

αk+1−αk

,

then the pair of complex conjugate solutions behave as z = eτ−s|δ| where
s is a solution to the equation

p = e±iπ( 1
2+αj)

(s − sign(δ))(αj+1−αj)

s
. (12)

The proof is rather technical, and requires a number of intermediate
statements. It will be completed at the end of this section.
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3.1. An Expression for d
dz

Sτ,χ(z)

Using the identities

ak

ak + bk
=

1
2

+ αk,
bk

ak + bk
=

1
2

− αk,

log
(

1 − ze−v

1 − ze−u

)

= u − v + log
(

z − ev

z − eu

)

,

and the formula (5) for B(τ) , one gets the following expression for the deriv-
ative of S with respect to z:

z
d

dz
S(z) = −(χ + B(τ)) +

j−1∑

k=1

ak

ak + bk

Ak∫

Ak−1

z−1ev

1 − z−1ev
dv

+
aj

aj + bj

τ∫

Aj−1

z−1ev

1 − z−1ev
dv

+
bj

aj + bj

Aj∫

τ

ze−v

1 − ze−v
dv +

n∑

k=j+1

bk

ak + bk

Ak∫

Ak−1

ze−v

1 − ze−v
dv

= −(χ + B(τ))−
j−1∑

k=1

ak

ak + bk
log

(
z−eAk

z−eAk−1

)

− aj

aj + bj
log

(
z − eτ

z − eAj−1

)

+
bj

aj + bj
log

(
1 − ze−Aj

1 − ze−τ

)

+

n∑

k=j+1

bk

ak + bk
log

(
1 − ze−Ak

1 − ze−Ak−1

)

= −(χ+B(τ))−
j−1∑

k=1

ak

ak + bk
log

(
z−eAk

z−eAk−1

)

− aj

aj + bj
log

(
z − eτ

z − eAj−1

)

+
bj

aj + bj
log

(
z − eAj

z − eτ

)

+

n∑

k=j+1

bk

ak + bk
log

(
z − eAk

z − eAk−1

)

− bj

aj + bj
(Aj − τ) −

n∑

k=j+1

bk

ak + bk
(Ak − Ak−1)

︸ ︷︷ ︸
B(τ)+ τ

2

= −(χ − τ

2
)−

j−1∑

k=1

(
1

2
+ αk) log

(
z−eAk

z−eAk−1

)

−(
1

2
+ αj) log

(
z − eτ

z − eAj−1

)

+(
1

2
− αj) log

(
z − eAj

z − eτ

)

+

n∑

k=j+1

(
1

2
− αk

)

log

(
z − eAk

z − eAk−1

)

. (13)

Note that each of the terms log( z−eAk

z−eAk−1
) is a holomorphic function of

z on C \ [eAk−1 , eAk ]. Its imaginary part is in (−π, π) and represents the
angle between the vectors z − eAk and z − eAk−1. This angle is 0 when
z ∈ R \ [eAk−1 , eAk ], and approaches π (resp. −π) when z approaches
(eAk−1 , eAk) from above (resp. from below). See Fig. 4.
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Figure 4. Geometric representation of the imaginary part of
log( z−eAl

z−eAl−1
) as the angle between z − eAl and z − eAl−1

3.2. Asymptotic of Critical Points when χ Goes to ∞
Here we will prove the last two statements of Proposition 3.1 concerning the
asymptotics of the non real critical points when χ is large.

Lemma 3.2. Fix A0 < τ < An. Then, for sufficiently large χ, Sτ,χ(z) has
exactly two critical points, which are complex conjugates and have non-zero
imaginary parts. Their asymptotic as χ → +∞ is described by the last part of
Proposition 3.1.

Proof. First case: Aj−1 < τ < Aj .
Critical points are solutions to the equation

z
d
dz

S(z) = 0. (14)

The real part of this equation can be written as

0 = �
(

z
d
dz

S(z)
)

= −
(
χ − τ

2

)
−

j−1∑

k=1

(
1
2

+ αk) log
∣
∣
∣
∣

z − eAk

z − eAk−1

∣
∣
∣
∣− (

1
2

+ αj) log
∣
∣
∣
∣

z − eτ

z − eAj−1

∣
∣
∣
∣

+
(

1
2

− αj

)

log
∣
∣
∣
∣
z − eAj

z − eτ

∣
∣
∣
∣+

n∑

k=j+1

(
1
2

− αk) log
∣
∣
∣
∣

z − eAk

z − eAk−1

∣
∣
∣
∣

= −
(
χ − τ

2

)
− log

∣
∣1 − ze−τ

∣
∣+

n∑

k=0

(αk+1 − αk) log
∣
∣1 − ze−Ak

∣
∣ .

From here we can see that a solution z as χ → +∞ should approach
to eτ , or to eAl , for some l ∈ {1, . . . , n} with αl+1 < αl (inner corner).
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The imaginary part of Eq. (14) for the critical points is:

0 = −
j−1∑

k=0

(
1
2

+ αk

)

angle
(
z − eAk−1 , z − eAk

)

−
(

1
2

+ αj

)

angle(z − eAj−1 , z − eτ )

+
(

1
2

− αj

)

angle(z − eτ , z − eAj )

+
n∑

k=j+1

(
1
2

− αk

)

angle
(
z − eAk−1 , z − eAk

)
. (15)

Assume that z is a critical point with positive imaginary part, and z → eAl

for some l (since the equation has real coefficients, the non real solutions will
come as pairs of conjugate complex numbers). Since z approaches to the real
axis, the angle between z − eB and z − eC approaches to zero, unless B or C
is equal to Al. Therefore as χ → +∞ , two terms in Eq. (15) will dominate.
These are
⎧
⎪⎪⎨

⎪⎪⎩

( 1
2 + αl)angle(z − eAl−1 , z − eAl) + (1

2 + αl+1)angle(z − eAl , z − eAl+1)
if τ < Al,

(1
2 − αl)angle(z − eAl−1 , z − eAl) + (1

2 − αl+1)angle(z − eAl , z − eAl+1)
if τ > Al.

Thus, these expressions should vanish as χ → +∞.
But this is impossible, because the sum

angle(z − eAl−1 , z − eAl) + angle(z − eAl , z − eAl+1)

= angle(z − eAl−1 , z − eAl+1)

is positive and close to π (see Fig. 4). Therefore this option for a critical point
is impossible.

The only possibility left is that z → eτ as χ → +∞. Let z = eτ−ε, where
ε → 0 as χ → ∞ and arg ε ∈ (−π, π).

As ε → 0, we have for k �= j:

log
(

z − eAk

z − eAk−1

)

= log
(

eτ − eAk

eτ − eAk−1

)

+ O(ε)

=
Ak − Ak−1

2
+ log 2 sinh

∣
∣
∣
∣
τ − Ak

2

∣
∣
∣
∣− log 2 sinh

∣
∣
∣
∣
τ − Ak−1

2

∣
∣
∣
∣+ O(ε),

log
(

z − eτ

z − eAj−1

)

=
τ − Aj−1

2
+ log(−ε) − log 2 sinh

∣
∣
∣
∣
τ − Aj−1

2

∣
∣
∣
∣+ O(ε),

log
(

z − eAj

z − eτ

)

=
Aj − τ

2
− log(ε) + log 2 sinh

∣
∣
∣
∣
τ − Aj

2

∣
∣
∣
∣+ O(ε).
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Substitute these expressions in the equation for critical points:

0 = −
(
χ − τ

2

)
−

j−1∑

k=1

(

αk +
1
2

)(
Ak − Ak−1

2
+ log 2 sinh

∣
∣
∣
∣
τ − Ak

2

∣
∣
∣
∣

− log 2 sinh
∣
∣
∣
∣
τ − Ak−1

2

∣
∣
∣
∣

)

−
(

αj +
1
2

)(
τ − Aj−1

2
+ log(−ε) − log 2 sinh

∣
∣
∣
∣
τ − Aj−1

2

∣
∣
∣
∣

)

+
(

1
2

− αj

)(
Aj − τ

2
+ log 2 sinh

∣
∣
∣
∣
τ − Aj

2

∣
∣
∣
∣− log(ε)

)

+
n∑

k=j+1

(
1
2

− αk

)(
Ak − Ak−1

2
+ log 2 sinh

∣
∣
∣
∣
τ − Ak

2

∣
∣
∣
∣

− log 2 sinh
∣
∣
∣
∣
τ − Ak−1

2

∣
∣
∣
∣

)

+ O(ε)

= −χ − log(ε) ∓
(

αj +
1
2

)

iπ +
n∑

k=0

(αk+1 − αk) log 2 sinh
∣
∣
∣
∣
τ − Ak

2

∣
∣
∣
∣+ O(ε).

(16)

Here we used the identity

log(−ε) =
{

log ε − iπ if arg ε > 0,
log ε + iπ if arg ε < 0,

which holds for our choice of branch for log. The cancellation of the linear com-
bination of the Ai comes from the two possible expressions for −B(τ) given
by Eqs. (5) and (6).

Solving this equation for ε, we arrive to the asymptotical formula:

ε = e−χe±iπ( 1
2+αj)

n∏

k=0

∣
∣
∣
∣2 sinh

(
τ − Ak

2

)∣
∣
∣
∣

αk+1−αk

︸ ︷︷ ︸
ρ(τ)

(
1 + O(e−χ)

)
,

which implies that the asymptotic of the pair of complex conjugate solutions
is given by the formulae in the last part of Proposition 3.1.

Second case: τ becomes close to Aj for 1 ≤ j ≤ N − 1 as χ goes to +∞.
When τ = Aj + δ, δ → 0 and χ → +∞, the same arguments as above

show that complex critical points still accumulate near z = eτ but instead of
the Eq. (16) for ε, where z = eτ−ε we will have

χ − χ(j) = −
(

αj +
1
2

)

log(−ε) +
(

1
2

− αj

)

log
(

ε − δ

ε

)

−
(

1
2

− αj+1

)

log(ε − δ) + O(ε). (17)

From here we obtain Eq. (12) for s = ε/|δ|.
This completes the proof of Lemma 3.2. �
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Whereas the previous lemma describes what happens when χ goes
to +∞, the situation when χ goes to −∞ is given in the following:

Lemma 3.3. For each A0 < τ < An, and sufficiently negative χ, every critical
point of S(z) is real.

Proof. This is proven in the same way as Lemma 3.2. To have �(z d
dz S(z))=0,

z needs to be very close to eAl , for some l ∈ {0, 1, . . . , n}, such that αl+1 > αl.
Exactly as in the case χ → ∞, one can show that if l �= 0 or n, then �(z d

dz S(z))
cannot be 0. If z is near eA0 or eAn , then z is actually real and respectively z <
eA0 or z > eAn . This shows that when χ is sufficiently negative, z d

dz S(z) = 0
has no complex solutions. �
3.3. Proof of Proposition 3.1

Note that the last two parts of the proposition were proven in the previous
section. To prove the first part we first show that for fixed τ ∈ (A0, An) there
is a unique value of χ = χ0(τ) such that the number of critical points of S(z)
with non-zero imaginary part changes as χ passes through χ0. That is:

Proposition 3.4. For each τ ∈ (A0, An) there exists χ0 such that the number
of critical points of S(z) with �(z) �= 0 is the same for all χ > χ0, and it
decreases by 2 when χ passes the point χ0 into the region χ < χ0.

We prove Proposition 3.4 at the end of this section, after setting up some
technical tools.

Define f(z) = z d
dz S(z). It is clear that z = 0 is not a critical point of

S(z) and therefore critical points are zeroes of f(z) in C\{0}. It is also clear
that z is a double critical point if and only if

f(z) = f ′(z) = 0.

The following two lemmas give some information about the location of
the double critical points of S(z).

Lemma 3.5. There are no solutions to f(z) = 0 in [eA0 , eAn ].

Proof. Consider z = x + iε, where x ∈ (eAi−1 , eAi) and |ε| << 1. Looking at
the terms in f(z) in formula (13), it is easy to see that for such z we have

�
(

f(z) − c log
(

z − eAi

z − eAi−1

))

= O(ε),

where c �= 0 is the coefficient of log
(

z−eAi

z−eAi−1

)
in f(z). Since log is the branch

of the logarithm with an imaginary part in (−π, π) with a cut along R−, we
have that �

(
c log

(
z−eAi

z−eAi−1

))
= ±cπ +O(ε), which in turn implies �(f(z)) =

±cπ + O(ε). This shows that there are no solutions to f(z) = 0 in (eA0 , eAn).
The only remaining points are eAj , but the function f(z) is singular at

these points, and therefore they cannot be solutions either. �
Lemma 3.6. f ′(z) = 0 has exactly one real solution outside the interval
[eA0 , eAn ] (possibly at ∞).
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Proof. Recall that, by definition, the equation f ′(z) = 0 means

f ′(z) =

{
d
dz f(z) = 0 z �= ∞
limz→∞ z2 d

dz f(z) = 0 z = ∞.
(18)

Thus solving f ′(z) = 0 in R∪{∞}\[eA0 , eAn ] is equivalent to solving G(z) = 0
in this region, where

G(z) := (z − eAj )(z − eτ )f ′(z). (19)

When τ ∈ (Aj−1, Aj) we have

G(z) = −
j−1∑

k=1

(
1
2

+ αk

)

(eAk − eAk−1)
(z − eAj )(z − eτ )

(z − eAk)(z − eAk−1)

−
(

1
2

+ αj

)

(eτ − eAj−1)
(z − eAj )(z − eτ )

(z − eτ )(z − eAj−1)

+
(

1
2

− αj

)

(eAj − eτ )
(z − eAj )(z − eτ )
(z − eAj )(z − eτ )

+
n∑

k=j+1

(
1
2

− αk

)

(eAk − eAk−1)
(z − eAj )(z − eτ )

(z − eAk)(z − eAk−1)
. (20)

Notice that each term has the form

c
(z − u1)(z − u2)
(z − v1)(z − v2)

where

c < 0, u1, u2 > v1, v2, OR c > 0, u1, u2 < v1, v2,

and

z > u1, u2, v1, v2, OR z < u1, u2, v1, v2.

Under these conditions

d
dz

(

c log
(

(z − u1)(z − u2)
(z − v1)(z − v2)

))

= c

(
1

z − u1
+

1
z − u2

− 1
z − v1

− 1
z − v2

)

< 0,

for z ∈ R\[eA0 , eAn ], so G(z) is decreasing in z for all z ∈ R\[eA0 , eAn ]. Fur-
thermore, it is clear from formula (20) that G(z) is regular at ∞. Thus G(z)
is decreasing as one moves along (eAn ,∞], and then “wraps around infinity”
and moves from −∞ to eA0 .

The function G(z) can also be written as

G(z) = (z − eAj )(z − eτ )

(
1
2 + α1

z − eA0
−

n−1∑

k=1

αk − αk+1

z − eAk
+

1
2 − αn

z − eAn
− 1

z − eτ

)

.
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Using this formula and the fact that 1
2 +α1 > 0 and 1

2 −αn > 0, one can
see that

lim
z→eA0−

G(z) < 0, lim
z→eAn+

G(z) > 0.

this completes the proof of the Lemma. �

Proof of Proposition 3.4. As χ varies, the number of non-real critical points
can change only at the point χ0 when there is a double solution to f(z) = 0
on the real line, or at infinity. Lemma 3.5 shows that this never happens with
z ∈ [eA0 , eAn ].

Lemma 3.6 shows that f ′(z) = 0 has exactly one solution z0 ∈ R\
[eA0 , eAn ] (or possibly at ∞). Since f(z) = g(z) + χ, where g(z) does not
depend on χ, it implies that there is exactly one point χ0 = −g(z0) where
f(z) = f ′(z) = 0 and that this happens when z = z0. �

Proof of Proposition 3.1. By Lemma 3.2, for sufficiently large χ there are
exactly two critical points of Sχ,τ (z) with �(z) �= 0. By Lemma 3.3, for
sufficiently negative χ there are no such critical points. Taking into account
Proposition 3.4, this implies there is a unique value χ0 such that all critical
points of S(z) are real for χ < χ0 and there is a pair of complex conjugate
critical points zc, z̄c with �(zc) > 0 for χ > χ0. This completes the proof of
Proposition 3.1. �

3.4. The Asymptotic of Critical Points near Corners

The following proposition describes what happens in situations interpolating
the two regimes described in Proposition 3.1.

Proposition 3.7. Complex conjugate solutions to (12) have the following asymp-
totic when p → 0:

s = p
− 1

1+αj−αj+1 exp
( ±iπ( 1

2 + αj)
1 + αj − αj+1

)

(1 + O(p)).

If p → ∞ the asymptotic is different for different signs of δ:
(i) When δ → +0

s = p−1 exp
(

±iπ(
1
2

+ αj+1)
)(

1 + O

(
1
p

))

.

(ii) When δ → −0

s = p−1 exp
(

±iπ(
1
2

+ αj)
)(

1 + O

(
1
p

))

.

Proof. We will do the case when p → ∞, δ > 0. The other cases are similar.
From (12) we see that if p → ∞ then either s → 0 or, if (αj+1−αj) < 0, s → 1.
If s → 0, then s can be easily calculated to have the asymptotics given in the
statement of the proposition. We need to show that the case s → 1 is not
possible.

We have z = eτ−ε, ε → 0, and we can assume that Im(ε) ∈ (0, π).
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Write s as s = 1 + teiθ. Since Im(ε) ∈ (0, π), we can assume θ ∈ (0, π) as
well.

Let’s rewrite (17) as

χ − χ(j) + (1 + αj − αj+1) log(δ)

= −
(

αj +
1
2

)

log(−s) +
(

1
2

− αj

)

log
(

s − 1
s

)

−
(

1
2

− αj+1

)

log(s − 1) + O(δ)

= −
(

αj +
1
2

)

log(−1 − teiθ) +
(

1
2

− αj

)

log
(

teiθ

1 + teiθ

)

−
(

1
2

− αj+1

)

log
(
teiθ
)

+ O(δ).

Looking at the real part of this equation we get

χ − χ(j) + (1 + αj − αj+1) log(δ)

=
(

1
2

− αj

)

log(t) −
(

1
2

− αj+1

)

log(t)+ O(1).

From here we get

t = e
χ−χ(j)+(1+αj−αj+1) log(δ)

αj+1−αj → 0.

Let’s look at the imaginary part. We have

0 = −
(

αj +
1
2

)

(−π + O(t)) +
(

1
2

− αj

)

(θ − O(t)) −
(

1
2

− αj+1

)

θ + O(δ).

From here

θ = π
αj + 1

2

αj − αj+1
+ O(t) + O(δ).

But this is impossible because

θ ∈ (0, π)

and

0 < αj − αj+1 < αj +
1
2
.

�

These asymptotics for s as a function of p imply the following asymptot-
ical formulae for complex conjugate critical points z = eτ−ε of S(z).

• When χ → +∞ and δ → 0 such that eχ|δ|1+αj−αj+1 → 0, we have

ε = e±iπ
αj+ 1

2
1+αj−αj+1 e− χ

1+αj−αj+1 (1 + o(1)).

• When χ → +∞ and δ → +0, such that p → ∞,

ε = e±iπ(αj+
1
2 )e−χ|δ|αj+1−αj (1 + o(1)).
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Figure 5. The frozen boundary when the parameters are
A = {−8,−7, 0, 4, 6, 7}, α = {−0.1, 0.4,−0.45, 0.4,−0.25}

• When χ → +∞ and δ → −0, such that p → ∞,

ε = e±iπ(αj+1+
1
2 )e−χ|δ|αj+1−αj (1 + o(1)).

Notice that the limit χ → ∞ of complex conjugate critical points for
fixed τ given by (11) agrees with the last two asymptotics when τ → Aj ± 0.

4. Correlation Functions, the Frozen Boundary, and the Limit
Shape

In this section we will study correlation functions in the limit of the infinitely
large system. In particular, the one-point correlation function gives the mac-
roscopic density of horizontal rhombi.

In our analysis we will follow [14] and [15]. The basic idea is to use the
steepest descent method for computing the asymptotical behavior of the dou-
ble integral defining the correlation kernel.

It has been shown in [14] that if (τ, χ) is such that all critical points of
S(z) are real, the region in the vicinity of this point is frozen, i.e. in terms of
tiling by rhombi it is tiled with probability 1 by rhombi of one type (tilted to
the left, tilted to the right, or horizontal).

The region where two simple real critical points collapse into one degen-
erate critical point is a curve in the (τ, χ)-plane which separates the frozen
region from the disordered region, where the function S(z) has a pair of com-
plex conjugate simple critical points. This curve is the analogue of the arctic
circle for tilings of large regular hexagons [3].

As it follows from Proposition 3.1, and in opposition to what occurs
in [14], the boundary of the frozen region in our case projects bijectively to
the interval (A0, An) on the τ axis (Fig. 5). As we will see below, the region
above this curve is disordered, the region below is frozen.



Vol. 13 (2012) Piecewise Periodic 289

4.1. Local Correlation Functions in the Bulk of the Disordered Region

In this section we will prove the following theorem.

Theorem 4.1. In the limit when r goes to 0, the correlation functions of the sys-
tem near a point (χ, τ) in the bulk are given by determinants of the incomplete
beta kernel

Kb
τ,χ(Δt,Δh) =

∫

γ

(1 − e−τz)Δtz−Δh+Δt
2

dz

2iπz
, (21)

where the integration contour connects the two non-real critical points of
Sτ,χ(z), passing through the real line in the interval (0, 1) if Δ(t) ≥ 0 and
through (−∞, 0) otherwise.

The proof is completely parallel to the similar statements from [14,15].
Here is the outline.

Proof. The correlation functions are given by Formula (4). When r → 0, the
leading asymptotics of the integrand is given by e

Sτ,χ(z)−Sτ,χ(w)
r

1
z−w . In the

region where Sτ,χ(z) has exactly two complex conjugate critical points we cal-
culate the asymptotic of the integral by deforming the contours of integration
as follows.

The poles of Φ−(z,t1)
Φ+(z,t1)

are real and lie in the interval (ert1 ,∞). The poles

of Φ+(w,t2)
Φ−(w,t2)

are also real and lie in the interval (0, ert2). When r → 0, they
accumulate along the intervals (eτ ,∞) and (0, eτ ) respectively.

It is clear that any deformation of the contours of integration away from
the real line doesn’t change the integral, as long as the point where the z-con-
tour crosses the positive real line does not move to the right, the point where
the w-contour intersect the real line does not move to the left and the contours
do not cross one another.

Note that whether the z-contour is inside the w-contour or vice-versa,
depends on the sign of Δt = t2 − t1. Now look at the level curves of �(S(z))
passing through zc and z̄c. In the case when the z-contour is outside, we can
deform the original contours Cz, Cw, to C ′

z, C
′
w as in Fig. 6. The only poles we

cross are the poles at z = w, so we need to take into account the contribution
from the residues at z = w. We obtain

K((t1, h1), (t2, h2)) =
∫

C′
z

∫

C′
w

same as in (4)

+
∫

C

Φ−(z, t1)Φ+(z, t2)
Φ+(z, t1)Φ−(z, t2)

zh2−h1+B(t2)−B(t1)
dz

2iπz
, (22)

where C is an arc connecting points z̄c and zc which crosses the real line on
the positive side. In the case when the w-contour is inside of the z-contour,
C crosses the real line on the negative side.

Now, let’s show that in the limit r → 0 the first integral is 0. Since
limz→0 �S(z) = +∞, the gradient of the real part of S(z) looks as in Fig. 6,
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Figure 6. Deformation of contours when the z contour is
outside the w contour

which implies that everywhere along the contours C ′
z, C

′
w except when z = w =

critical points, we have �(S(z)) < �(S(w)). Because the asymptotically lead-
ing term of the integrand is e

Sτ,χ(z)−Sτ,χ(w)
r

1
z−w , we conclude that the integral

is 0 as r → 0 exponentially fast. Since z− and w− contours intersect transver-
sally, there are no problems with the integrability of 1

z−w in the neighborhood
of the critical points.

We conclude that the correlation kernel is equal to the second integral
in (22).

The second integral in (22), i.e.
∫

C

Φ−(z, t1)Φ+(z, t2)
Φ+(z, t1)Φ−(z, t2)

zh2−h1+B(t2)−B(t1)
dz

2iπz
,

is asymptotic, as r → 0, tir → τ, t1 − t2 = Δt, h1 − h2 = Δh to:

(−eτ )N−(t1)−N−(t2)
∫

C

(
1 − e−τz

)Δt
z−Δh+Δt

2
dz

2iπz
(23)

where N−(ti) is the number of descending unit pieces of back wall between the
leftmost corner A0 and ti. The prefactor in front of the integral is of the form

g(t1, h1)
g(t2, h2)

,

which disappears by multi-linearity when we compute correlation functions,
as determinants of the form det(K((ti, hi), (tj , hj))). �

The kernel Kb
χ,τ has a simple expression on the diagonal: when Δt =

Δh = 0, we have

Kb
χ,τ (0, 0) =

∫

C

dz

2iπz
=

θ

π
,



Vol. 13 (2012) Piecewise Periodic 291

where θ is the argument of the critical point zc in the upper-half plane. This
quantity is exactly the density of horizontal tiles. It is therefore the vertical
gradient of the limit shape height function.

The correlation kernel depends only on one complex parameter zc. It is
determined uniquely by coordinates (τ, χ) or by the slope of the limit shape
at this point.

Corollary 4.1. The distribution of the tiles in the neighborhood of a point (χ, τ)
converges to the translation invariant ergodic Gibbs measure on tilings of the
plane with rhombi, with activities 1, e−τ |zc| and |zc| for the three types of tiles
in absence of a magnetic field.

Indeed, from [7,10] the correlation functions for the translation invariant
probability measure with activities a, b, c on rhombus configurations (with no
external field) are given by determinants of the correlation kernel

Ka:b:c((t1, h1), (t2, h2)) =
∫ ∫

T2

z−Δh+Δt
2 wΔt

a + 1
w (b + c

z )
dz

2iπz

dw

2iπw
.

Taking the proposed choice for the activities, and computing the integral over
w by residues leads to a simple integral along a sector of the unit circle. After
a change of variable in the integral by multiplying by |zc|, one gets the same
expression as in (21), see [14]. The convergence of finite dimensional distribu-
tions follows from Theorem 4.1. Since the space of tilings is compact for the
product topology, the convergence of finite dimensional distributions implies
the convergence of the whole distribution.

This result gives a precise description of the local behavior of the sys-
tem in the neighborhood of a point inside the liquid region of the limit shape.
However, the expressions of the critical points zc and zc are not explicit for a
finite χ. In the next subsection, we investigate the asymptotic when χ → ∞.

Similar arguments can be applied to the case when all critical points are
real. In this case the integral (4) tends either to zero or to one depending
on the sign of the critical points. The steepest descent method results in the
following asymptotic:

ρ(t1,h1),...,(tk,hk) = ρ + O(e− α
r ),

where α > 0, ρ = 1 when (τ, χ) is below the segment of the boundary of the
limit shape between two points where it touches the boundary, and ρ = 0 when
(τ, χ) is below the boundary of the limit shape but above the turning points.
The local statistics near turning points has been studied in [16].

4.2. The Correlation Functions for Large χ and the Bead Model

In this section, we investigate the behavior of the high piles of cubes of the
random skew plane partition, that are close to the back wall. The asymptotic
of local correlation functions as χ → ∞ depends on whether τ is in a vicinity
of Aj or not.
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4.3. Aj−1 < τ < Aj

In this subsection we consider the case when Aj−1 < τ < Aj .
Let

ti =
τ

r
+ ηi, hi =

χ

r
+ eχξi, i = 1, 2,

so that Δη = Δt and Δξ = e−χΔh.

Theorem 4.2. In the limit where χ → ∞, such that Δη and Δξ are fixed, the
kernel Kb

τ,χ((t1, h1), (t2, h2)) of Eq. (21) divided by eχ and a factor which does
not affect the determinant (3), converges to

K(γ)((η1, ξ1), (η2, ξ2))

=

⎧
⎨

⎩

d
∫ 1

−1

(
γ + iϕ

√
1 − γ2

)η1−η2

e−iϕd(ξ1−ξ2) dϕ
2π if η1 ≥ η2,

−d
∫

R\[−1,1]

(
γ + iϕ

√
1 − γ2

)η1−η2

e−iϕd(ξ1−ξ2) dϕ
2π if η1 < η2,

where αj is the slope of the piece of the back wall between Aj−1 and Aj , γ =
sin παj, and

d = ρ(τ) cos(παj) = cos(παj)
n∏

k=0

∣
∣
∣
∣2 sinh

(
τ − Ak

2

)∣
∣
∣
∣

αk+1−αk

.

Proof. Suppose t1 ≥ t2. Recall that the two complex conjugate critical points
zc and z̄c for this value of τ have the asymptotics (11) when χ → ∞. The
curve C joining zc and z̄c can be chosen as the positively oriented arc of the
circle centered at 0, of radius |zc|. A possible parametrization of this arc is:

z = z(ϕ) = eτ exp
(
e−χρ(τ) (sin(παj) + iϕ cos(παj))

)
(1 + o(1)),

where ϕ runs from −1 to +1.
The expression of the kernel (21) becomes

Kb
χ,τ (Δt,Δh) = e−χρ(τ) cos(παj)

1∫

−1

(
1 − e−τz(ϕ)

)Δt (z(ϕ))−Δh+Δt/2 dϕ

2π
.

When χ goes to infinity, one has
(
1 − e−τz(ϕ)

)t1−t2

= (−e−χρ(τ))η1−η2 (sin(παj) + iϕ cos(παj))
η1−η2 (1 + o(1)),

(z(ϕ))−(h1−h2)

=
(
eτeχ

eρ(τ) sin(παj)
)−(ξ1−ξ2)

e−iρ(τ)ϕ cos(παj)(ξ1−ξ2)(1 + o(1)).

The factors

(e−χρ(τ))η1−η2

(
eτeχ

eρ(τ) sin(παj)
)−(ξ1−ξ2)
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are of the form g(ξ1,η1)
g(ξ2,η2)

. These factors have no effect on the computations of the
probabilities, since they cancel out when computing, in the limit, the deter-
minant det(Kχ,τ (ti − tj , hi − hj)). We can thus drop them out, and obtain a
new kernel defining the same determinantal process.

The integral converges as χ → +∞ to

ρ(τ) cos(παj)

1∫

−1

(sin(παj) + iϕ cos(παj))
η1−η2 e−iϕρ(τ) cos(παj)(ξ1−ξ2)

dϕ

2π
.

Similarly, when t1 < t2, we use the same change of variable z = z(ϕ).
But now, ϕ ∈ (− πeχ

ρ(τ) cos(παj)
,−1) ∪ (1, πeχ

ρ(τ) cos(παj)
). The same computations

as above show that Kχ,τ (Δt,Δh) divided by g(ξ1,η1)
g(ξ2,η2)

converges to

−ρ(τ) cos(παj)
∫

R\[−1,1]

(sin(παj) + iϕ cos(παj))
η1−η2

×e−iϕρ(τ) cos(παj)(ξ1−ξ2)
dϕ

2π
.

The kernel divided by e−χ and some factors g(η1,ξ1)
g(η2,ξ2)

which cancel in the
determinant, converges to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(τ) cos(παj)
∫ 1

−1
(sin(παj) + iϕ cos(παj))

η1−η2

×e−i cos(παj)ρ(τ)(ξ1−ξ2)ϕ dϕ
2π if t1 ≥ t2

−ρ(τ) cos(παj)
∫

R\[−1,1]
(sin(παj) + iϕ cos(παj))

η1−η2

×e−i cos(παj)ρ(τ)(ξ1−ξ2)ϕ dϕ
2π if t1 < t2.

This ends the proof. �

As a consequence, using the same argument as in [1], we have the
following theorem

Theorem 4.3. The point process describing the positions of horizontal rhombi
in the neighborhood of a non frozen point (τ, χ), with Aj−1 < τ < Aj in the
limit shape r → 0 converges to the bead process on Z × R with parameter
γ = sinπαj and density

1
π

ρ(τ) cos(παj) =
1
π

cos(παj)
n∏

k=0

∣
∣
∣
∣2 sinh

(
τ − Ak

2

)∣
∣
∣
∣

αk+1−αk

.

Note that the density is singular when at the corners: it tends to 0 at
inner corners (where αk+1 > αk), and goes to ∞ at outer corners. This is a
remnance of the singularities of the limit shape observed in [14]. This suggests
that the scaling has to be modified to observe a non trivial phenomenon in the
vicinity of the corners Ak.
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4.3.1. τ is in the Vicinity of Aj for 0 < j < n. Now assume that τ = Aj + δ,
and δ → 0 as χ → ∞ in such a way that p = eχ−χ(j) |δ|1+αj−αj+1 is fixed.
Recall that in this case, the critical point of Sτ,χ(z) are given by Eq. (12).
In this limit the curve C joining two complex conjugate critical points can be
parameterized as

z(φ) = eτ exp(−tβj e−βj(χ−χ(j))(s′ + is′′φ)),

where s′ and s′′ are real and imaginary parts of s respectively, and βj =
1

1+αj−αj+1
.

Theorem 4.4. Assume that χ → ∞ and δ → 0 as above, and that Δη = Δt
and Δζ = e−βjχΔh are fixed. Then the correlation kernel (21), divided by
e−βjχ and some factors not affecting the determinant, converges to the same
expression as in the previous theorem

K(γ′)((η1, ζ1), (η2, ζ2))

=

⎧
⎨

⎩

d′ ∫ 1

−1

(
γ′ + iϕ

√
1 − γ′2

)η1−η2

e−iϕd′(ζ1−ζ2) −dϕ
2π if η1 ≥ η2

−d′ ∫
R\[−1,1]

(
γ′ + iϕ

√
1 − γ′2

)η1−η2

e−iϕd′(ζ1−ζ2) dϕ
2π if η1 < η2,

with

d′ = eβjχ(j)
s′′, γ′ = − s′′

|s| .

The proof is completely parallel to the proof of the previous statement,
so we will skip it.

It is easy to see that these formulae when δ → ±0 and p → ∞ agree
with the previous result when τ → Aj ± 0. let us verify it for δ → −0, the
calculations being almost identical for δ → +0. We have in the limit δ → 0−:

s ∼ p−1eiπ(αj+
1
2 ).

From the definition of p and a simple algebra we have

(pe−χ)βj−1 = |δ|
βj−1

βj e−(βj−1)χ(j)
.

Taking into account the definition of Δξ and Δζ we obtain:

Δζeβjχ(j)
s′′ ∼ |δ|αj+1−αj eβjχ(j)

cos(παj)Δξ.

Moreover, when τ → Aj − 0

ρ(τ) ∼ ρ(j)|δ|αj+1−αj = |δ|αj+1−αj eχ(j)
,

where δ = τ − Aj . Comparing the two kernels in these regimes yields:

e−βjχK(γ′)((η1, ζ1), (η2, ζ2)) ∼ e−χK(γ)((η1, ξ1), (η2, ξ2)).

It is also easy to find the asymptotic when t → 0. In this case:

γ′ → sin
(

π

2
αj+1 + αj

1 + αj − αj+1

)

,
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and for the density we have:

eβjχ(j)
tβj s′′ → eβjχj cos

(
π

2
αj+1 + αj

1 + αj − αj+1

)

.

Again, as a corollary of Theorem 4.4 the statistics of the horizon-
tal tiles, rescaled vertically by a factor e−χβj , converge as χ → ∞ to the
bead process with parameter γ = sin

(
π(αj+1+αj)

2(1+αj−αj+1)

)
and density 1

π

(
ρ(j)
)βj

cos
(

π(αj+1+αj)
2(1+αj−αj+1)

)
.

Notice that in the vicinity of τ = Aj one can get a bead process with any
parameter in the interval [sin(παj), sin(παj+1)] by appropriately tuning p.
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