Spectral Theory for a Mathematical Model of the Weak Interaction: The Decay of the Intermediate Vector Bosons $W^{ \pm}$, II

Walter H. Aschbacher, Jean-Marie Barbaroux, Jérémy Faupin and Jean-Claude Guillot

In memory of Pierre Duclos

Abstract

We do the spectral analysis of the Hamiltonian for the weak leptonic decay of the gauge bosons $W^{ \pm}$. Using Mourre theory, it is shown that the spectrum between the unique ground state and the first threshold is purely absolutely continuous. Neither sharp neutrino high-energy cutoff nor infrared regularization is assumed.

1. Introduction

We study a mathematical model for the weak decay of the intermediate vector bosons $W^{ \pm}$into the full family of leptons. The full family of leptons involves the electron e^{-}and the positron e^{+}, together with the associated neutrino ν_{e} and antineutrino $\bar{\nu}_{e}$, the muons μ^{-}and μ^{+}together with the associated neutrino ν_{μ} and antineutrino $\bar{\nu}_{\mu}$, and the tau leptons τ^{-}and τ^{+}together with the associated neutrino ν_{τ} and antineutrino $\bar{\nu}_{\tau}$. The model is patterned according to the Standard Model in Quantum Field Theory (see [19,25]).

A representative and well-known example of this general process is the decay of the gauge boson W^{-}into an electron and an antineutrino of the electron that occurs in β-decay,

$$
\begin{equation*}
W^{-} \rightarrow e^{-}+\bar{\nu}_{e} \tag{1}
\end{equation*}
$$

If we include the corresponding antiparticles in the process (1), the interaction described in the Schrödinger representation is formally given by
(see $[19,(4.139)]$ and $[25,(21.3 .20)])$

$$
\begin{aligned}
I= & \int \mathrm{d}^{3} x \overline{\Psi_{e}}(x) \gamma^{\alpha}\left(1-\gamma_{5}\right) \Psi_{\nu_{e}}(x) W_{\alpha}(x) \\
& +\int \mathrm{d}^{3} x \overline{\Psi_{\nu_{e}}}(x) \gamma^{\alpha}\left(1-\gamma_{5}\right) \Psi_{e}(x) W_{\alpha}(x)^{*}
\end{aligned}
$$

where $\gamma^{\alpha}, \alpha=0,1,2,3$, and γ_{5} are the Dirac matrices, $\Psi .(x)$ and $\bar{\Psi}(x)$ are the Dirac fields for $e_{ \pm}, \nu_{e}$, and $\bar{\nu}_{e}$, and W_{α} are the boson fields (see [24, §5.3]) given by

$$
\begin{aligned}
\Psi_{e}(x)= & (2 \pi)^{-\frac{3}{2}} \sum_{s= \pm \frac{1}{2}} \int \mathrm{~d}^{3} p\left(b_{e,+}(p, s) \frac{u(p, s)}{\left(2\left(|p|^{2}+m_{e}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}} \mathrm{e}^{i p \cdot x}\right. \\
& \left.+b_{e,-}^{*}(p, s) \frac{v(p, s)}{\left(2\left(|p|^{2}+m_{e}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}} \mathrm{e}^{-i p \cdot x}\right), \\
\Psi_{\nu_{e}}(x)= & (2 \pi)^{-\frac{3}{2}} \sum_{s= \pm \frac{1}{2}} \int \mathrm{~d}^{3} p\left(c_{e,+}(p, s) \frac{u(p, s)}{(2|p|)^{\frac{1}{2}}} \mathrm{e}^{i p \cdot x}+c_{e,-}^{*}(p, s) \frac{v(p, s)}{(2|p|)^{\frac{1}{2}}} \mathrm{e}^{-i p \cdot x}\right), \\
\overline{\Psi_{e}}(x)= & \Psi_{e}(x)^{\dagger} \gamma^{0}, \quad \overline{\Psi_{\nu_{e}}}(x)=\Psi_{\nu_{e}}(x)^{\dagger} \gamma^{0},
\end{aligned}
$$

and

$$
\begin{aligned}
W_{\alpha}(x)= & (2 \pi)^{-\frac{3}{2}} \sum_{\lambda=-1,0,1} \int \frac{\mathrm{~d}^{3} k}{\left(2\left(|k|^{2}+m_{W}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}}\left(\epsilon_{\alpha}(k, \lambda) a_{+}(k, \lambda) \mathrm{e}^{i k \cdot x}\right. \\
& \left.+\epsilon_{\alpha}^{*}(k, \lambda) a_{-}^{*}(k, \lambda) \mathrm{e}^{-i k \cdot x}\right)
\end{aligned}
$$

Here, $m_{e}>0$ is the mass of the electron and $u(p, s) /\left(2\left(|p|^{2}+m_{e}^{2}\right)^{1 / 2}\right)^{1 / 2}$ and $v(p, s) /\left(2\left(|p|^{2}+m_{e}^{2}\right)^{1 / 2}\right)^{1 / 2}$ are the normalized solutions to the Dirac equation (see [19, Appendix]), $m_{W}>0$ is the mass of the bosons $W^{ \pm}$and the vectors $\epsilon_{\alpha}(k, \lambda)$ are the polarizations of the massive spin 1 bosons (see [24, Sect. 5.2]), and as follows from the Standard Model, neutrinos and antineutrinos are considered to be massless particles.

The operators $b_{e,+}(p, s)$ and $b_{e,+}^{*}(p, s)$ (respectively $c_{\nu_{e},+}(p, s)$ and $\left.c_{\nu_{e},+}^{*}(p, s)\right)$, are the annihilation and creation operators for the electrons (respectively, for the neutrinos associated with the electrons), satisfying the anticommutation relations. The index $-\operatorname{in} b_{e,-}(p, s), b_{e,-}^{*}(p, s), c_{\nu_{e},-}(p, s)$ and $c_{\nu_{e},-}^{*}(p, s)$ are used to denote the annihilation and creation operators of the corresponding antiparticles. The operators $a_{+}(k, \lambda)$ and $a_{+}^{*}(k, \lambda)$ (respectively, $a_{-}(k, \lambda)$ and $\left.a_{-}^{*}(k, \lambda)\right)$ are the annihilation and creation operators for the bosons W^{-}(respectively, W^{+}) satisfying the canonical commutation relations.

If one considers the full interaction describing the decay of the gauge bosons $W^{ \pm}$into leptons (see [19, (4.139)]) and if one formally expands this interaction with respect to products of creation and annihilation operators, we are left with a finite sum of terms associated with kernels of the form

$$
\delta\left(p_{1}+p_{2}-k\right) g\left(p_{1}, p_{2}, k\right)
$$

The δ-distributions that occur here shall be approximated by square integrable functions. Therefore, in this article, the interaction for the weak decay of
$W^{ \pm}$into the full family of leptons will be described in terms of annihilation and creation operators together with kernels which are square integrable with respect to momenta (see (2.2) and (2.3)-(2.5)).

Under this assumption, the total Hamiltonian, which is the sum of the free energy of the particles (see (2.1)) and of the interaction, is a well-defined self-adjoint operator in the Fock space for the leptons and the vector bosons (Theorem 2.2). This allows us to study its spectral properties.

Among the four fundamental interactions known up to now, the weak interaction does not generate bound states, which is not the case for the strong, the electromagnetic, and the gravitational interactions. Thus, we are expecting that the spectrum of the Hamiltonian associated with every model of weak decays is purely absolutely continuous above the ground state energy.

With additional assumptions on the kernels that are fulfilled by the model described in theoretical physics, we can prove (Theorem 3.2; see also [9, Theorem 3.3]) that the total Hamiltonian has a unique ground state in Fock space for a sufficiently small coupling constant, corresponding to the dressed vacuum. The strategy for proving existence of a unique ground state dates back to the early works of Bach et al. [5] and Griesemer et al. [20], for the Pauli-Fierz model of non-relativistic QED. Our proofs follow these techniques as adapted to a model of quantum electrodynamics $[6,7,13]$ and a model of the Fermi weak interactions [2].

Moreover, under natural regularity assumptions on the kernels, we establish a Mourre estimate (Theorem 5.1) and a limiting absorption principle (Theorem 7.1) for any spectral interval above the energy of the ground state and below the mass of the electron, for small enough coupling constants. As a consequence, the spectrum between the unique ground state and the first threshold is shown to be purely absolutely continuous (Theorem 3.3).

To achieve the spectral analysis above the ground state energy, our methods are taken largely from $[4,10,14]$. More precisely, we begin with approximating the total Hamiltonian H by a cutoff Hamiltonian H_{σ} which has the property that the interaction between the massive particles and the neutrinos or antineutrinos of energies $\leq \sigma$ has been suppressed. The restriction of H_{σ} to the Fock space for the massive particles together with the neutrinos and antineutrinos of energies $\geq \sigma$ is denoted by H^{σ} in this paper. Adapting the method of [4], we prove that, for some suitable sequence $\sigma_{n} \rightarrow 0$, the Hamiltonian $H^{\sigma_{n}}$ has a gap of size $c \sigma_{n}$ in its spectrum above its ground state energy for all $n \in \mathbb{N}$. In contrast to [9], we do not require a sharp neutrino high-energy cutoff here.

Next, as in $[9,10,14]$, we use the gap property in combination with the conjugate operator method developed in $[3,23]$ in order to establish a limiting absorption principle near the ground-state energy of H. In [9], the chosen conjugate operator is the generator of dilatations in the Fock space for neutrinos and antineutrinos. As a consequence, an infrared regularization is assumed in [9] in order to be able to implement the strategy of [14]. Let us mention that no infrared regularization is required in [14] since, for the model of nonrelativistic QED with a fixed nucleus which is studied in that paper, a unitary

Pauli-Fierz transformation can be applied with the effect of regularizing the infrared behavior of the interaction.

In the present paper, we choose a conjugate operator which is the generator of dilatations in the Fock space for neutrinos and antineutrinos with a cutoff in the momentum variable. Hence, our conjugate operator only affects the massless particles of low energies. A similar choice is made in [10], where the Pauli-Fierz model of non-relativistic QED for a free electron at a fixed total momentum is studied. Due to the complicated structure of the interaction operator in this context, the authors in [10] make use of some Feshbach-Schur map before proving a Mourre estimate for an effective Hamiltonian. Here we do not need to apply such a map, and we prove a Mourre estimate directly for H. Compared with [14], our method involves further estimates, which allows us to avoid any infrared regularization.

As mentioned earlier, some of the basic results of this article have been previously stated and proved, under stronger assumptions, in $[8,9]$. The main achievement of this paper in comparison with [9] is that no sharp neutrino high-energy cutoff and no infrared regularization are assumed here.

The nature of the spectrum above the first threshold and the scattering theory of this model remain to be studied elsewhere.

The paper is organized as follows: In the next section, we give a precise definition of the Hamiltonian. Section 3 is devoted to the statements of the main spectral properties. In Sects. 4 to 7, we establish the results necessary to apply Mourre theory, namely, we derive a gap condition, a Mourre estimate, local C^{2} regularity of the Hamiltonian, and a limiting absorption principle. Section 8 details the proof of Theorem 3.3 on absolute continuity of the spectrum. Eventually, in Appendix B, we state and prove several technical lemmata. For the sake of clarity, all proofs in Sects. 4 to 8 and in Appendix B are given for the particular process depicted in (1). The general situation can be recovered by a straightforward generalization.

2. Definition of the Model

According to the Standard Model, the weak decay of the intermediate bosons W^{+}and W^{-}involves the full family of leptons together with the bosons themselves (see [19, Formula (4.139)] and [25]). As mentioned in the Introduction, the full family of leptons consists of the electron e^{-}, the muon μ^{-}, the tau lepton τ^{-}, their associated neutrinos $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ and all their antiparticles $e^{+}, \mu^{+}, \tau^{+}, \bar{\nu}_{e}, \bar{\nu}_{\mu}$, and $\bar{\nu}_{\tau}$. In the Standard Model, neutrinos and antineutrinos are massless particles with helicity $-1 / 2$ and $+1 / 2$, respectively. Here we shall assume that both neutrinos and antineutrinos have helicity $\pm 1 / 2$.

The mathematical model for the weak decay of the vector bosons $W^{ \pm}$ is defined as follows. The index $\ell \in\{1,2,3\}$ denotes each species of leptons: $\ell=1$ denotes the electron e^{-}, the positron e^{+}and the associated neutrinos $\nu_{e}, \bar{\nu}_{e} ; \ell=2$ denotes the muons μ^{-}, μ^{+}and the associated neutrinos ν_{μ} and $\bar{\nu}_{\mu}$; and $\ell=3$ denotes the tau-leptons and the associated neutrinos ν_{τ} and $\bar{\nu}_{\tau}$.

Let $\xi_{1}=\left(p_{1}, s_{1}\right)$ be the quantum variables of a massive lepton, where $p_{1} \in \mathbb{R}^{3}$ and $s_{1} \in\{-1 / 2,1 / 2\}$ is the spin polarization of particles and antiparticles. Let $\xi_{2}=\left(p_{2}, s_{2}\right)$ be the quantum variables of a massless lepton, where $p_{2} \in \mathbb{R}^{3}$ and $s_{2} \in\{-1 / 2,1 / 2\}$ is the helicity of particles and antiparticles, and, finally, let $\xi_{3}=(k, \lambda)$ be the quantum variables of the spin 1 bosons W^{+} and W^{-}, where $k \in \mathbb{R}^{3}$ and $\lambda \in\{-1,0,1\}$ accounts for the polarization of the vector bosons (see [24, Sect. 5.2]).

Moreover, we set $\Sigma_{1}=\mathbb{R}^{3} \times\{-1 / 2,1 / 2\}$ for the configuration space of the leptons and $\Sigma_{2}=\mathbb{R}^{3} \times\{-1,0,1\}$ for the bosons. Thus $L^{2}\left(\Sigma_{1}\right)$ is the Hilbert space of each lepton and $L^{2}\left(\Sigma_{2}\right)$ is the Hilbert space of each boson. In the sequel, we shall use the notations $\int_{\Sigma_{1}} \mathrm{~d} \xi=\sum_{s=+\frac{1}{2},-\frac{1}{2}} \int \mathrm{~d}^{3} p$ and $\int_{\Sigma_{2}} \mathrm{~d} \xi=$ $\sum_{\lambda=0,1,-1} \int \mathrm{~d}^{3} k$.

The Hilbert space for the weak decay of the vector bosons $W^{ \pm}$is the Fock space for leptons and bosons describing the set of states with indefinite number of particles or antiparticles which we define below.

For every $\ell, \mathfrak{F}_{\ell}$ is the fermionic Fock space for the corresponding species of leptons including the massive particle and antiparticle together with the associated neutrino and antineutrino, i.e., for $\ell=1,2,3$,

$$
\mathfrak{F}_{\ell}=\bigotimes_{\bigotimes}^{4} \mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right)=\bigotimes^{4}\left(\oplus_{n=0}^{\infty} \otimes_{a}^{n} L^{2}\left(\Sigma_{1}\right)\right)
$$

where \otimes_{a}^{n} denotes the antisymmetric n-th tensor product and $\otimes_{a}^{0} L^{2}\left(\Sigma_{1}\right)=\mathbb{C}$. The fermionic Fock space \mathfrak{F}_{L} for the leptons is

$$
\mathfrak{F}_{L}=\otimes_{\ell=1}^{3} \mathfrak{F}_{\ell},
$$

and the bosonic Fock space \mathfrak{F}_{W} for the vector bosons W^{+}and W^{-}reads

$$
\mathfrak{F}_{W}=\bigotimes_{\bigotimes}^{2} \mathfrak{F}_{s}\left(L^{2}\left(\Sigma_{2}\right)\right)=\bigotimes^{2}\left(\oplus_{n=0}^{\infty} \otimes_{s}^{n} L^{2}\left(\Sigma_{2}\right)\right)
$$

where \otimes_{s}^{n} denotes the symmetric n-th tensor product and $\otimes_{s}^{0} L^{2}\left(\Sigma_{2}\right)=\mathbb{C}$. Finally, the Fock space for the weak decay of the vector bosons W^{+}and W^{-} is thus

$$
\mathfrak{F}=\mathfrak{F}_{L} \otimes \mathfrak{F}_{W}
$$

Furthermore, for each $\ell=1,2,3, b_{\ell, \epsilon}\left(\xi_{1}\right)$ (resp. $\left.b_{\ell, \epsilon}^{*}\left(\xi_{1}\right)\right)$ is the annihilation (resp. creation) operator for the corresponding species of massive particle if $\epsilon=+$ and for the corresponding species of massive antiparticle if $\epsilon=-$. Similarly, for each $\ell=1,2,3, c_{\ell, \epsilon}\left(\xi_{2}\right)$ (resp. $\left.c_{\ell, \epsilon}^{*}\left(\xi_{2}\right)\right)$ is the annihilation (resp. creation) operator for the corresponding species of neutrino if $\epsilon=+$ and for the corresponding species of antineutrino if $\epsilon=-$. Finally, the operator $a_{\epsilon}\left(\xi_{3}\right)$ (resp. $a_{\epsilon}^{*}\left(\xi_{3}\right)$) is the annihilation (resp. creation) operator for the boson W^{-}if $\epsilon=+$, and for the boson W^{+}if $\epsilon=-$. The operators $b_{\ell, \epsilon}\left(\xi_{1}\right), b_{\ell, \epsilon}^{*}\left(\xi_{1}\right), c_{\ell, \epsilon}\left(\xi_{2}\right)$, and $c_{\ell, \epsilon}^{*}\left(\xi_{2}\right)$ fulfil the usual canonical anticommutation relations (CAR), whereas $a_{\epsilon}\left(\xi_{3}\right)$ and $a_{\epsilon}^{*}\left(\xi_{3}\right)$ fulfil the canonical commutation relation (CCR), see, e.g. [24]. Moreover, the a 's commute with the b 's and the c 's. In addition, following the convention described in [24, Sect. 4.1] and
[24, Sect. 4.2], we will assume that fermionic creation and annihilation operators of different species of leptons anticommute (see, e.g., [9] arXiv for explicit definitions). Therefore, the following canonical anticommutation and commutation relations hold:

$$
\begin{gathered}
\left\{b_{\ell, \epsilon}\left(\xi_{1}\right), b_{\ell^{\prime}, \epsilon^{\prime}}^{*}\left(\xi_{1}^{\prime}\right)\right\}=\delta_{\ell \ell^{\prime}} \delta_{\epsilon^{\prime}} \delta\left(\xi_{1}-\xi_{1}^{\prime}\right), \\
\left\{c_{\ell, \epsilon}\left(\xi_{2}\right), c_{\ell^{\prime}, \epsilon^{\prime}}^{*}\left(\xi_{2}^{\prime}\right)\right\}=\delta_{\ell \ell^{\prime}} \delta_{\epsilon^{\prime}} \delta\left(\xi_{2}-\xi_{2}^{\prime}\right), \\
{\left[a_{\epsilon}\left(\xi_{3}\right), a_{\epsilon^{\prime}}^{*}\left(\xi_{3}^{\prime}\right)\right]=\delta_{\epsilon \epsilon^{\prime}} \delta\left(\xi_{3}-\xi_{3}^{\prime}\right),} \\
\left\{b_{\ell, \epsilon}\left(\xi_{1}\right), b_{\ell^{\prime}, \epsilon^{\prime}}\left(\xi_{1}^{\prime}\right)\right\}=\left\{c_{\ell, \epsilon}\left(\xi_{2}\right), c_{\ell^{\prime}, \epsilon^{\prime}}\left(\xi_{2}^{\prime}\right)\right\}=0, \\
{\left[a_{\epsilon}\left(\xi_{3}\right), a_{\epsilon^{\prime}}\left(\xi_{3}^{\prime}\right)\right]=0,} \\
\left\{b_{\ell, \epsilon}\left(\xi_{1}\right), c_{\ell^{\prime}, \epsilon^{\prime}}\left(\xi_{2}\right)\right\}=\left\{b_{\ell, \epsilon}\left(\xi_{1}\right), c_{\ell^{\prime}, \epsilon^{\prime}}^{*}\left(\xi_{2}\right)\right\}=0, \\
{\left[b_{\ell, \epsilon}\left(\xi_{1}\right), a_{\epsilon^{\prime}}\left(\xi_{3}\right)\right]=\left[b_{\ell, \epsilon}\left(\xi_{1}\right), a_{\epsilon^{\prime}}^{*}\left(\xi_{3}\right)\right]=\left[c_{\ell \ell \epsilon}\left(\xi_{2}\right), a_{\epsilon^{\prime}}\left(\xi_{3}\right)\right]} \\
=\left[c_{\ell, \epsilon}\left(\xi_{2}\right), a_{\epsilon^{\prime}}^{*}\left(\xi_{3}\right)\right]=0,
\end{gathered}
$$

where $\left\{b, b^{\prime}\right\}=b b^{\prime}+b^{\prime} b$ and $\left[a, a^{\prime}\right]=a a^{\prime}-a^{\prime} a$. Moreover, we recall that, for $\varphi \in L^{2}\left(\Sigma_{1}\right)$, the operators

$$
\begin{array}{ll}
b_{\ell, \epsilon}(\varphi)=\int_{\Sigma_{1}} b_{\ell, \epsilon}(\xi) \overline{\varphi(\xi)} \mathrm{d} \xi, & c_{\ell, \epsilon}(\varphi)=\int_{\Sigma_{1}} c_{\ell, \epsilon}(\xi) \overline{\varphi(\xi)} \mathrm{d} \xi, \\
b_{\ell, \epsilon}^{*}(\varphi)=\int_{\Sigma_{1}} b_{\ell, \epsilon}^{*}(\xi) \varphi(\xi) \mathrm{d} \xi, & c_{\ell, \epsilon}^{*}(\varphi)=\int_{\Sigma_{1}} c_{\ell, \epsilon}^{*}(\xi) \varphi(\xi) \mathrm{d} \xi,
\end{array}
$$

are bounded operators on \mathfrak{F} satisfying

$$
\left\|b_{\ell, \epsilon}^{\sharp}(\varphi)\right\|=\left\|c_{\ell, \epsilon}^{\sharp}(\varphi)\right\|=\|\varphi\|_{L^{2}},
$$

where $b^{\sharp}\left(\right.$ resp. $\left.c^{\sharp}\right)$ is b (resp. c) or b^{*} (resp. $\left.c^{*}\right)$.
The free Hamiltonian H_{0} is given by

$$
\begin{align*}
H_{0}= & \sum_{\ell=1}^{3} \sum_{\epsilon= \pm} \int w_{\ell}^{(1)}\left(\xi_{1}\right) b_{\ell, \epsilon}^{*}\left(\xi_{1}\right) b_{\ell, \epsilon}\left(\xi_{1}\right) \mathrm{d} \xi_{1} \\
& +\sum_{\ell=1}^{3} \sum_{\epsilon= \pm} \int w_{\ell}^{(2)}\left(\xi_{2}\right) c_{\ell, \epsilon}^{*}\left(\xi_{2}\right) c_{\ell, \epsilon}\left(\xi_{2}\right) \mathrm{d} \xi_{2} \\
& +\sum_{\epsilon= \pm} \int w^{(3)}\left(\xi_{3}\right) a_{\epsilon}^{*}\left(\xi_{3}\right) a_{\epsilon}\left(\xi_{3}\right) \mathrm{d} \xi_{3} \tag{2.1}
\end{align*}
$$

where the free relativistic energy of the massive leptons, the neutrinos, and the bosons are, respectively, given by
$w_{\ell}^{(1)}\left(\xi_{1}\right)=\left(\left|p_{1}\right|^{2}+m_{\ell}^{2}\right)^{\frac{1}{2}}, \quad w_{\ell}^{(2)}\left(\xi_{2}\right)=\left|p_{2}\right|, \quad$ and $\quad w^{(3)}\left(\xi_{3}\right)=\left(|k|^{2}+m_{W}^{2}\right)^{\frac{1}{2}}$.
Here m_{ℓ} is the mass of the lepton ℓ and m_{W} is the mass of the bosons, with $m_{1}<m_{2}<m_{3}<m_{W}$.

The interaction H_{I} is described in terms of annihilation and creation operators together with kernels $G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}(., .,).(\alpha=1,2)$.

As emphasized previously, each kernel $G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$, computed in theoretical physics, contains a δ-distribution because of the conservation of the momentum (see [19], [24, Sect. 4.4]). Here, we approximate the singular kernels by square integrable functions. Therefore, we assume the following:

Hypothesis 2.1. For $\alpha=1,2, \ell=1,2,3, \epsilon, \epsilon^{\prime}= \pm$, we assume

$$
\begin{equation*}
G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in L^{2}\left(\Sigma_{1} \times \Sigma_{1} \times \Sigma_{2}\right) \tag{2.2}
\end{equation*}
$$

Based on $[19$, p 159, (4.139)] and [25, p 308, (21.3.20)], we define the interaction as

$$
\begin{equation*}
H_{I}=H_{I}^{(1)}+H_{I}^{(2)} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
H_{I}^{(1)}= & \sum_{\ell=1}^{3} \sum_{\epsilon \neq \epsilon^{\prime}} \int G_{\ell, \epsilon, \epsilon^{\prime}}^{(1)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) b_{\ell, \epsilon}^{*}\left(\xi_{1}\right) c_{\ell, \epsilon^{\prime}}^{*}\left(\xi_{2}\right) a_{\epsilon}\left(\xi_{3}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3} \\
& +\sum_{\ell=1}^{3} \sum_{\epsilon \neq \epsilon^{\prime}} \int \overline{G_{\ell, \epsilon, \epsilon^{\prime}}^{(1)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} a_{\epsilon}^{*}\left(\xi_{3}\right) c_{\ell, \epsilon^{\prime}}\left(\xi_{2}\right) b_{\ell, \epsilon}\left(\xi_{1}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3}, \tag{2.4}\\
H_{I}^{(2)}= & \sum_{\ell=1}^{3} \sum_{\epsilon \neq \epsilon^{\prime}} \int G_{\ell, \epsilon, \epsilon^{\prime}}^{(2)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) b_{\ell, \epsilon}^{*}\left(\xi_{1}\right) c_{\ell, \epsilon^{\prime}}^{*}\left(\xi_{2}\right) a_{\epsilon}^{*}\left(\xi_{3}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3} \\
& +\sum_{\ell=1}^{3} \sum_{\epsilon \neq \epsilon^{\prime}} \int \overline{G_{\ell, \epsilon, \epsilon^{\prime}}^{(2)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} a_{\epsilon}\left(\xi_{3}\right) c_{\ell, \epsilon^{\prime}}\left(\xi_{2}\right) b_{\ell, \epsilon}\left(\xi_{1}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3} . \tag{2.5}
\end{align*}
$$

The operator $H_{I}^{(1)}$ describes the decay of the bosons W^{+}and W^{-}into leptons, and $H_{I}^{(2)}$ is responsible for the fact that the bare vacuum will not be an eigenvector of the total Hamiltonian, as expected from physics.

For $\ell=1,2,3$, all terms in $H_{I}^{(1)}$ and $H_{I}^{(2)}$ are well defined as quadratic forms on the set of finite particle states consisting of smooth wave functions. According to [22, Theorem X.24] (see details in [9]), one can construct a closed operator associated with the quadratic form defined by (2.3)-(2.5).

The total Hamiltonian is thus (g is a coupling constant),

$$
H=H_{0}+g H_{I}, \quad g>0
$$

Theorem 2.2. Let $g_{1}>0$ be such that

$$
\frac{6 g_{1}^{2}}{m_{W}}\left(\frac{1}{m_{1}^{2}}+1\right) \sum_{\alpha=1,2} \sum_{\ell=1}^{3} \sum_{\epsilon \neq \epsilon^{\prime}}\left\|G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}\right\|_{L^{2}\left(\Sigma_{1} \times \Sigma_{1} \times \Sigma_{2}\right)}^{2}<1
$$

Then, for every g satisfying $g \leq g_{1}, H$ is a self-adjoint operator in \mathfrak{F} with domain $\mathcal{D}(H)=\mathcal{D}\left(H_{0}\right)$.

This result has been proven in [9, Theorem 2.6] (with a prefactor 2 missing).

3. Location of the Spectrum, Existence of a Ground State, Absolutely Continuous Spectrum, and Dynamical Properties

In the sequel, we shall make some of the following additional assumptions on the kernels $G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}$.

Hypothesis 3.1. There exist $\tilde{K}(G)$ and $\tilde{\tilde{K}}(G)$ such that for $\alpha=1,2, \quad \ell=$ $1,2,3, \epsilon, \epsilon^{\prime}= \pm, i, j=1,2,3$, and $\sigma \geq 0$,

$$
\begin{equation*}
\int_{\Sigma_{1} \times \Sigma_{1} \times \Sigma_{2}} \frac{\left|G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|^{2}}{\left|p_{2}\right|^{2}} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3}<\infty \tag{i}
\end{equation*}
$$

(ii)

$$
\left(\int_{\Sigma_{1} \times\left\{\left|p_{2}\right| \leq \sigma\right\} \times \Sigma_{2}}\left|G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3}\right)^{\frac{1}{2}} \leq \tilde{K}(G) \sigma
$$

(iii-a)

$$
\begin{gathered}
\left(p_{2} \cdot \nabla_{p_{2}}\right) G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}(., ., .) \in L^{2}\left(\Sigma_{1} \times \Sigma_{1} \times \Sigma_{2}\right) \quad \text { and } \\
\int_{\Sigma_{1} \times\left\{\left|p_{2}\right| \leq \sigma\right\} \times \Sigma_{2}}\left|\left[\left(p_{2} \cdot \nabla_{p_{2}}\right) G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}\right]\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3}<\tilde{\tilde{K}}(G) \sigma, \\
\int_{\Sigma_{1} \times \Sigma_{1} \times \Sigma_{2}} p_{2, i}^{2} p_{2, j}^{2}\left|\frac{\partial^{2} G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}}{\partial p_{2, i} \partial p_{2, j}}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2} \mathrm{~d} \xi_{3}<\infty .
\end{gathered}
$$

Remark 3.1. Note that Hypothesis 3.1. (i) is stronger than Hypothesis 3.1. (ii), of course.

Our first main result is devoted to the existence of a ground state for H together with the location of the spectrum of H and of its absolutely continuous spectrum.
Theorem 3.2. Assume that the kernels $G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}$ satisfy Hypotheses 2.1 and 3.1(i). Then, there exists $g_{2} \in\left(0, g_{1}\right]$ such that H has a unique ground state for $g \leq g_{2}$. Moreover, for

$$
E=\inf \operatorname{Spec}(H),
$$

the spectrum of H fulfills

$$
\operatorname{Spec}(H)=\operatorname{Spec}_{\mathrm{ac}}(H)=[E, \infty),
$$

with $E \leq 0$.
Proof. The proof of Theorem 3.2 is done in [9]. The main ingredients of this proof are the cutoff operators and the existence of a gap above the groundstate energy for these operators (see (4.7) and Proposition 4.1 below and [9, Proposition 3.5]). Note that a more general proof of the existence of a ground state can also be achieved by mimicking the proof given in [7].

Let b be the operator in $L^{2}\left(\Sigma_{1}\right)$ accounting for the position of the neutrino

$$
b=i \nabla_{p_{2}}
$$

and let

$$
\langle b\rangle=\left(1+|b|^{2}\right)^{\frac{1}{2}} .
$$

Its second quantized version $\mathrm{d} \Gamma(\langle b\rangle)$ is self-adjoint in $\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right)$. We thus define the "total position" operator B for all neutrinos and antineutrinos by

$$
\begin{aligned}
B_{\ell} & =\mathbf{1} \otimes \mathbf{1} \otimes \mathrm{d} \Gamma(\langle b\rangle) \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathrm{d} \Gamma(\langle b\rangle) \quad \text { on } \mathfrak{F} \ell, \\
B & =\left(B_{1} \otimes \mathbf{1} \otimes \mathbf{1}+\mathbf{1} \otimes B_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1} \otimes B_{3}\right) \otimes(\mathbf{1} \otimes \mathbf{1}) \quad \text { on } \mathfrak{F} .
\end{aligned}
$$

Theorem 3.3. Assume that the kernels $G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)}$ satisfy Hypotheses 2.1 and 3.1(ii)-(iii). For any $\delta>0$ satisfying $0<\delta<m_{1}$, there exists $g_{\delta}>0$ such that for $0<g \leq g_{\delta}$:
(i) The spectrum of H in $\left(E, E+m_{1}-\delta\right]$ is purely absolutely continuous.
(ii) For $s>1 / 2, \varphi \in \mathfrak{F}$, and $\psi \in \mathfrak{F}$, the limits

$$
\lim _{\epsilon \downarrow 0}\left(\varphi,(B+1)^{-s}(H-\lambda \pm i \epsilon)(B+1)^{-s} \psi\right)
$$

exist uniformly for λ in every compact subset of $\left(E, E+m_{1}-\delta\right)$.
(iii) For $s \in(1 / 2,1)$ and $f \in C_{0}^{\infty}\left(\left(E, E+m_{1}-\delta\right)\right)$, we have

$$
\left\|(B+1)^{-s} \mathrm{e}^{-i t H} f(H)(B+1)^{-s}\right\|=\mathcal{O}\left(t^{-(s-1 / 2)}\right)
$$

The assertions (i), (ii), and (iii) of Theorem 3.3 are based on a limiting absorption principle stated in Sect. 7, obtained by a positive commutator estimate, called Mourre estimate (Sect. 5), and a regularity property of H (Sect. 6).

The proof of Theorem 3.3 is detailed in Sect. 8 .
Remark 3.2. As a representative example of the general process described above, we consider the decay (1) of the intermediate vector boson W^{-}into an electron and an electron antineutrino. All Theorems stated in Sects. 2 and 3 will obviously remain true for this simplified model, as well as for any other reduced model involving only one species of leptons, i.e., for a fixed value of $\ell \in\{1,2,3\}$, and with or without the inclusion of their corresponding antiparticles $\left(\epsilon= \pm\right.$ and $\left.\epsilon^{\prime}= \pm\right)$. Moreover, the proofs of these results, based on the theorems stated in Sects. 4, 5, 6, and 7, follow exactly the same arguments and estimates in the general case as in the case of fixed ℓ, ϵ and ϵ^{\prime}. For this reason, and for the sake of clarity, we shall fix $\ell=1, \epsilon=+$ and $\epsilon^{\prime}=-$ in the next sections, and we shall adopt the following obvious notations:

$$
\begin{equation*}
b^{\sharp}\left(\xi_{1}\right)=b_{1,+}^{\sharp}\left(\xi_{1}\right), \quad c^{\sharp}\left(\xi_{2}\right)=c_{1,-}^{\sharp}\left(\xi_{2}\right), \quad a^{\sharp}\left(\xi_{3}\right)=a_{+}^{\sharp}\left(\xi_{3}\right), \quad G^{(\alpha)}=G_{\ell, \epsilon, \epsilon^{\prime}}^{(\alpha)} . \tag{3.1}
\end{equation*}
$$

Remark 3.3. Let us comment on two alternative approaches. The first one consists in confining the interaction to a large box. This is actually exactly the first step in the procedure introduced by Glimm and Jaffe in their attempt to define a Hamiltonian in Fock space. In our case, this approach has been described in the introduction of Barbaroux and Guillot [9]. It is well known that such a simple confinement is unfortunately not sufficient to make the Hamiltonian well defined in Fock space (see the reference [16] to the work of Glimm and Jaffe
given in [9]). In order to achieve this goal, one is obliged to introduce ultraviolet cutoffs in the momentum variables. In this way, one then gets square integrable interaction kernels which is exactly the setup we are using in the present paper. The second approach consists in fibering out total momentum. Indeed, some time ago, two of the authors tried to implement this approach but, unfortunately, the obstacles appearing in the estimates which were supposed to lead to a well-defined setup in Fock space could not be surmounted and, hence, the main theorem of the present paper could not be established. This problem remains an open and difficult question, and we intend to come back to its study in near future. In conclusion, to the best of our knowledge, the conditions on the interaction kernels given in the present paper constitute the most general criterion for our main theorem to hold true.

Remark 3.4. We would like to underline the importance of our result and to position it w.r.t. similar results on the absolute continuity of the spectrum above the ground state. Fröhlich, Griesemer, and Sigal have recently proved absolute continuity of the spectrum between the ground-state energy and the first threshold for a system of confined atoms interacting with a quantized electromagnetic field (see [14]). In order to do so, they used the Pauli-Fierz transformation (called the Power-Zienau-Woolley transformation by the physicists) which is of great use for the study of the infrared problem. Unfortunately, this transformation does not have an analogue for the quantum field theoretical models we are studying. Hence, although our paper is strongly inspired by [14], and the overall scheme of [14] and ours are similar, our method yields a more general approach to this class of problems leading to an alternative proof of the results by the above-mentioned authors. Very recently, Chen et al. [10] studied the same problem as ours in the case of a model describing an electron which interacts with a quantized electromagnetic field. They showed absolute continuity of the spectrum of the corresponding Hamiltonian at fixed total momentum by using the Feshbach-Schur map. We have verified that the same approach can be used for our case. But the proof we give in our paper is much simpler than the one using the Feshbach-Schur map. However, the use of the Feshbach-Schur map seems not to be avoidable in the work of the above-mentioned authors.

4. Spectral Gap for Cutoff Operators

A key ingredient of the proof of Theorem 3.2 and Theorem 3.3 is the study of cutoff operators associated with infrared cutoff Hamiltonians with respect to the momenta of the neutrinos. The main result of this section is Proposition 4.1 where we prove that the cutoff operators have a gap in their spectrum above the ground-state energy. This property was already derived in [9] in the case of a sharp ultraviolet cutoff. We show here that this result remains true in the present case where no sharp ultraviolet cutoff assumption is made. According to Remark 3.2, for the sake of clarity, we will consider only the case of one species $\ell=1$ of leptons, and pick $\epsilon=+$, and $\epsilon^{\prime}=-$. We thus use the notations (3.1).

Let us first define the cutoff operators which are the Hamiltonians with infrared cutoff with respect to the momenta of the neutrinos. For that purpose, let $\chi_{0}(.) \in C^{\infty}(\mathbb{R},[0,1])$ with $\chi_{0}=1$ on $(-\infty, 1]$, and, for $\sigma>0$ and $p \in \mathbb{R}^{3}$, we set

$$
\begin{gather*}
\chi_{\sigma}(p)=\chi_{0}(|p| / \sigma) \tag{4.1}\\
\tilde{\chi}^{\sigma}(p)=1-\chi_{\sigma}(p)
\end{gather*}
$$

Moreover, the operator $H_{I, \sigma}$ is the interaction given by (2.3), (2.4), and (2.5) associated with the kernels $\tilde{\chi}^{\sigma}\left(p_{2}\right) G^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$. We then set

$$
\begin{equation*}
H_{\sigma}=H_{0}+g H_{I, \sigma} \tag{4.2}
\end{equation*}
$$

Next, let

$$
\begin{aligned}
& \Sigma_{1, \sigma}=\Sigma_{1} \cap\left\{\left(p_{2}, s_{2}\right) ;\left|p_{2}\right|<\sigma\right\}, \quad \Sigma_{1}{ }^{\sigma}=\Sigma_{1} \cap\left\{\left(p_{2}, s_{2}\right) ;\left|p_{2}\right| \geq \sigma\right\} \\
& \mathfrak{F}_{2, \sigma}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1, \sigma}\right)\right), \quad \mathfrak{F}_{2}^{\sigma}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}{ }^{\sigma}\right)\right)
\end{aligned}
$$

The space $\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right)$ is the Fock space for the massive leptons and $\left(\mathfrak{F}_{2, \sigma} \otimes \mathfrak{F}_{2}{ }^{\sigma}\right)$ is the Fock space for the antineutrinos. Now, we set

$$
\mathfrak{F}_{L}^{\sigma}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right) \otimes \mathfrak{F}_{2}^{\sigma}, \quad \text { and } \quad \mathfrak{F}_{L, \sigma}=\mathfrak{F}_{2, \sigma},
$$

and, we thus have

$$
\mathfrak{F}_{L} \simeq \mathfrak{F}_{L}^{\sigma} \otimes \mathfrak{F}_{L, \sigma} .
$$

Moreover, with

$$
\mathfrak{F}^{\sigma}=\mathfrak{F}_{L}^{\sigma} \otimes \mathfrak{F}_{W}, \quad \text { and } \quad \mathfrak{F}_{\sigma}=\mathfrak{F}_{L, \sigma},
$$

we can write

$$
\mathfrak{F} \simeq \mathfrak{F}^{\sigma} \otimes \mathfrak{F}_{\sigma}
$$

Next, we set

$$
\begin{aligned}
H_{0}^{(1)} & =\int w^{(1)}\left(\xi_{1}\right) b^{*}\left(\xi_{1}\right) b\left(\xi_{1}\right) \mathrm{d} \xi_{1} \\
H_{0}^{(2)} & =\int w^{(2)}\left(\xi_{2}\right) c^{*}\left(\xi_{2}\right) c\left(\xi_{2}\right) \mathrm{d} \xi_{2} \\
H_{0}^{(3)} & =\int w^{(3)}\left(\xi_{3}\right) a^{*}\left(\xi_{3}\right) a\left(\xi_{3}\right) \mathrm{d} \xi_{3},
\end{aligned}
$$

and

$$
\begin{align*}
H_{0}^{(2) \sigma} & =\int_{\left|p_{2}\right|>\sigma} w^{(2)}\left(\xi_{2}\right) c^{*}\left(\xi_{2}\right) c\left(\xi_{2}\right) \mathrm{d} \xi_{2} \tag{4.3}\\
H_{0, \sigma}^{(2)} & =\int_{\left|p_{2}\right| \leq \sigma} w^{(2)}\left(\xi_{2}\right) c^{*}\left(\xi_{2}\right) c\left(\xi_{2}\right) \mathrm{d} \xi_{2}
\end{align*}
$$

Then, on $\mathfrak{F}^{\sigma} \otimes \mathfrak{F}_{\sigma}$, we have

$$
H_{0}^{(2)}=H_{0}^{(2) \sigma} \otimes \mathbf{1}_{\sigma}+\mathbf{1}^{\sigma} \otimes H_{0, \sigma}^{(2)}
$$

where $\mathbf{1}^{\sigma}$ (resp. $\mathbf{1}_{\sigma}$) is the identity operator on \mathfrak{F}^{σ} (resp. \mathfrak{F}_{σ}). Next, using the definitions

$$
H^{\sigma}=\left.H_{\sigma}\right|_{\mathfrak{F}^{\sigma}} \quad \text { and } \quad H_{0}^{\sigma}=\left.H_{0}\right|_{\mathfrak{F}^{\sigma}},
$$

we get

$$
H^{\sigma}=H_{0}^{(1)}+H_{0}^{(2) \sigma}+H_{0}^{(3)}+g H_{I, \sigma} \quad \text { on } \mathfrak{F}^{\sigma}
$$

and

$$
\begin{equation*}
H_{\sigma}=H^{\sigma} \otimes \mathbf{1}_{\sigma}+\mathbf{1}^{\sigma} \otimes H_{0, \sigma}^{(2)} \quad \text { on } \mathfrak{F}^{\sigma} \otimes \mathfrak{F}_{\sigma} \tag{4.4}
\end{equation*}
$$

Moreover, for $\delta \in \mathbb{R}$ with $0<\delta<m_{1}$, we define the sequence $\left(\sigma_{n}\right)_{n \geq 0}$ by

$$
\begin{align*}
\sigma_{0} & =2 m_{1}+1 \\
\sigma_{1} & =m_{1}-\frac{\delta}{2} \tag{4.5}\\
\sigma_{n+1} & =\gamma \sigma_{n} \quad \text { for } n \geq 1,
\end{align*}
$$

where

$$
\begin{equation*}
\gamma=1-\frac{\delta}{2 m_{1}-\delta} \tag{4.6}
\end{equation*}
$$

For $n \geq 0$, we then define the cutoff operators on $\mathfrak{F}^{n}=\mathfrak{F}^{\sigma_{n}}$ by

$$
\begin{equation*}
H^{n}=H^{\sigma_{n}}, \quad H_{0}^{n}=H_{0}^{\sigma_{n}} \tag{4.7}
\end{equation*}
$$

and we denote, for $n \geq 0$,

$$
\begin{equation*}
E^{n}=\inf \operatorname{Spec}\left(H^{n}\right) \tag{4.8}
\end{equation*}
$$

Furthermore, we set

$$
\begin{equation*}
\tilde{D}_{\delta}(G)=\max \left\{\frac{4\left(2 m_{1}+1\right) \gamma}{2 m_{1}-\delta}, 2\right\} \tilde{K}(G)\left(2 m_{1} \tilde{C}_{\beta \eta}+\tilde{B}_{\beta \eta}\right) \tag{4.9}
\end{equation*}
$$

where $\tilde{K}(G)$ is given by Hypothesis 3.1 (iii-a) and $\tilde{B}_{\beta \eta}$ and $\tilde{C}_{\beta \eta}$ are defined for given $\eta>0$ and $\beta>0$ as in $[9,(3.29)]$ by the relations

$$
\begin{gather*}
C_{\beta \eta}=\left(\frac{3}{m_{W}}\left(1+\frac{1}{m_{1}^{2}}\right)+\frac{3 \beta}{m_{W} m_{1}^{2}}+\frac{12 \eta}{m_{1}^{2}}(1+\beta)\right)^{\frac{1}{2}} \\
B_{\beta \eta}=\left(\frac{3}{m_{W}}\left(1+\frac{1}{4 \beta}\right)+12\left(\eta\left(1+\frac{1}{4 \beta}\right)+\frac{1}{4 \eta}\right)\right)^{\frac{1}{2}} \tag{4.10}\\
\tilde{C}_{\beta \eta}=C_{\beta \eta}\left(1+\frac{g_{1} K(G) C_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\right) \\
\tilde{B}_{\beta \eta}=\left(1+\frac{g_{1} K(G) C_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\left(2+\frac{g_{1} K(G) B_{\beta \eta} C_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\right)\right) B_{\beta \eta}
\end{gather*}
$$

and

$$
\begin{equation*}
K(G)=\left(\sum_{\alpha=1,2}\left\|G^{(\alpha)}\right\|^{2}\right)^{\frac{1}{2}} \tag{4.11}
\end{equation*}
$$

Finally, let $g_{\delta}^{(1)}$ be such that

$$
\begin{equation*}
0<g_{\delta}^{(1)}<\min \left\{1, g_{1}, \frac{\gamma-\gamma^{2}}{3 \tilde{D}_{\delta}(G)}\right\} \tag{4.12}
\end{equation*}
$$

We then have
Proposition 4.1. Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.1 and 3.1(ii). Then, there exists $\tilde{g}_{\delta}^{(2)}>0$ with $\tilde{g}_{\delta}^{(2)} \leq g_{\delta}^{(1)}$ such that, for $g \leq \tilde{g}_{\delta}^{(2)}, E^{n}$ is a simple eigenvalue of H^{n} for $n \geq 1$, and H^{n} does not have spectrum in the interval $\left(E^{n}, E^{n}+\left(1-3 g \tilde{D}_{\delta}(G) / \gamma\right) \sigma_{n}\right)$.

Proof. The proof of Proposition 4.1 is a slight modification of the proof of [9, Proposition 3.5] which was based on the method develop in [4]. The only difference to the proof of [9, Proposition 3.5] is that we have to deal with the absence of the sharp ultraviolet cutoff. To do so, we define, for $n \geq 0$,

$$
\Sigma_{n}^{n+1}=\Sigma_{1} \cap\left\{\left(p_{2}, s_{2}\right) ; \sigma_{n+1} \leq\left|p_{2}\right|<\sigma_{n}\right\}
$$

and

$$
\mathfrak{F}_{n}^{n+1}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{n}^{n+1}\right)\right),
$$

and we get

$$
\mathfrak{F}^{n+1} \simeq \mathfrak{F}^{n} \otimes \mathfrak{F}_{n}^{n+1}
$$

Now, let Ω^{n} (respectively Ω_{n}^{n+1}) be the vacuum state in \mathfrak{F}^{n} (respectively in \mathfrak{F}_{n}^{n+1}), and set

$$
H_{0, n}^{n+1}=\int_{\sigma_{n+1} \leq\left|p_{2}\right|<\sigma_{n}} w^{(2)}\left(\xi_{2}\right) c^{*}\left(\xi_{2}\right) c\left(\xi_{2}\right) \mathrm{d} \xi_{2}
$$

which is self-adjoint in \mathfrak{F}_{n}^{n+1}. Moreover, we denote by H_{I}^{n} and $H_{I, n}^{n+1}$ the operators defined as the interaction H_{I} given by (2.3)-(2.5) (for $\ell=1, \epsilon=+$ and $\epsilon^{\prime}=-$), but associated, respectively, with the kernels

$$
\tilde{\chi}^{\sigma_{n}}\left(p_{2}\right) G^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)
$$

and

$$
\left(\tilde{\chi}^{\sigma_{n+1}}\left(p_{2}\right)-\tilde{\chi}^{\sigma_{n}}\left(p_{2}\right)\right) G^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)
$$

where $\tilde{\chi}^{\sigma_{n}}$ and $\tilde{\chi}^{\sigma_{n+1}}$ are defined as in (4.1). We also consider

$$
\begin{aligned}
& H_{+}^{n}=H^{n}-E^{n} \\
& \tilde{H}_{+}^{n}=H_{+}^{n} \otimes \mathbf{1}_{n}^{n+1}+\mathbf{1}_{n} \otimes H_{0, n}^{n+1}
\end{aligned}
$$

which are self-adjoint operators in \mathfrak{F}^{n} and \mathfrak{F}^{n+1}, respectively. Combining (A.12) of Lemma A. 5 with (4.10) and (4.11), we obtain, for $n \geq 0$ and $\psi \in \mathcal{D}\left(H_{0}^{n}\right) \subset \mathfrak{F}^{n}$,

$$
\begin{equation*}
g\left\|H_{I}^{n} \psi\right\| \leq g K(G)\left(C_{\beta \eta}\left\|H_{0} \psi\right\|+B_{\beta \eta}\|\psi\|\right) \tag{4.13}
\end{equation*}
$$

It then follows from [21, Section V, Theorem 4.11] that

$$
\begin{aligned}
H^{n} & \geq-\frac{g K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}} \geq-\frac{g_{1} K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}} \\
E^{n} & \geq-\frac{g K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}
\end{aligned}
$$

Since we have

$$
\left(\Omega^{n}, H^{n} \Omega^{n}\right)=0,
$$

we get

$$
\begin{equation*}
E^{n} \leq 0, \quad \text { and } \quad\left|E^{n}\right| \leq \frac{g K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}} \tag{4.14}
\end{equation*}
$$

Let now

$$
\begin{equation*}
K_{n}^{n+1}(G)=K\left(\mathbf{1}_{\sigma_{n+1} \leq\left|p_{2}\right| \leq 2 \sigma_{n}} G\right) \tag{4.15}
\end{equation*}
$$

Combining (A.12) with (4.10) and (4.15), we obtain, for $n \geq 0$ and $\psi \in$ $\mathcal{D}\left(H_{0}^{n+1}\right) \subset \mathfrak{F}^{n+1}$,

$$
g\left\|H_{I, n}^{n+1} \psi\right\| \leq g K_{n}^{n+1}(G)\left(C_{\beta \eta}\left\|H_{0}^{n+1} \psi\right\|+B_{\beta \eta}\|\psi\|\right) .
$$

Moreover, we have

$$
\begin{equation*}
H_{0}^{n+1} \psi=\tilde{H}_{+}^{n} \psi+E^{n} \psi-g\left(H_{I}^{n} \otimes \mathbf{1}_{n}^{n+1}\right) \psi, \tag{4.16}
\end{equation*}
$$

and by (4.13),

$$
\begin{equation*}
g\left\|\left(H_{I}^{n} \otimes \mathbf{1}_{n}^{n+1}\right) \psi\right\| \leq g K(G)\left(C_{\beta \eta}\left\|H_{0}^{n+1} \psi\right\|+B_{\beta \eta}\|\psi\|\right) . \tag{4.17}
\end{equation*}
$$

In view of (4.14) and (4.16), it follows from (4.17) that

$$
\begin{aligned}
& g\left\|\left(H_{I}^{n} \otimes \mathbf{1}_{n}^{n+1}\right) \psi\right\| \\
& \quad \leq \frac{g K(G) C_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\left\|\tilde{H}_{+}^{n} \psi\right\|+\frac{g K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\left(1+\frac{g K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\right)\|\psi\| .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
g\left\|H_{I, n}^{n+1} \psi\right\| \leq g K_{n}^{n+1}(G)\left(\tilde{C}_{\beta \eta}\left\|\tilde{H}_{+}^{n} \psi\right\|+\tilde{B}_{\beta \eta}\|\psi\|\right) . \tag{4.18}
\end{equation*}
$$

Moreover, due to Hypothesis 3.1(ii), we have

$$
\begin{equation*}
K_{n}^{n+1}(G) \leq 2 \sigma_{n} \tilde{K}(G) \tag{4.19}
\end{equation*}
$$

Now, recall that for $n \geq 0$, we have $\sigma_{n+1}<m_{1}$. Therefore, by (4.18) and (4.19), we get

$$
g\left\|H_{I, n}^{n+1} \psi\right\| \leq g K_{n}^{n+1}(G)\left(\tilde{C}_{\beta \eta}\left\|\left(\tilde{H}_{+}^{n}+\sigma_{n+1}\right) \psi\right\|+\left(\tilde{C}_{\beta \eta} m_{1}+\tilde{B}_{\beta \eta}\right)\|\psi\|\right)
$$

and, for $\phi \in \mathfrak{F}$,

$$
\begin{align*}
g\left\|H_{I, n}^{n+1}\left(\tilde{H}_{+}^{n}+\sigma_{n+1}\right)^{-1} \phi\right\| & \leq g K_{n}^{n+1}(G)\left(\tilde{C}_{\beta \eta}+\frac{m_{1} \tilde{C}_{\beta \eta}+\tilde{B}_{\beta \eta}}{\sigma_{n+1}}\right)\|\phi\| \\
& \leq \frac{g}{\gamma} \tilde{K}(G)\left(2 m_{1} \tilde{C}_{\beta \eta}+\tilde{B}_{\beta \eta}\right)\|\phi\| \tag{4.20}
\end{align*}
$$

Thus, by (4.20), the operator $H_{I, n}^{n+1}\left(\tilde{H}_{+}^{n}+\sigma_{n+1}\right)^{-1}$ is bounded and

$$
g\left\|H_{I, n}^{n+1}\left(\tilde{H}_{+}^{n}+\sigma_{n+1}\right)^{-1}\right\| \leq g \frac{\tilde{D}_{\delta}(G)}{\gamma}
$$

where $\tilde{D}_{\delta}(G)$ is given by (4.9). This yields, for $\psi \in \mathcal{D}\left(\tilde{H}_{+}^{n}\right)$,

$$
g\left\|H_{I, n}^{n+1} \psi\right\| \leq g \frac{\tilde{D}_{\delta}(G)}{\gamma}\left\|\left(\tilde{H}_{+}^{n}+\sigma_{n+1}\right) \psi\right\|
$$

Hence, it follows from [21, $\S \mathrm{V}$, Theorems 4.11 and 4.12] that

$$
\begin{equation*}
g\left|\left(H_{I, n}^{n+1} \psi, \psi\right)\right| \leq g \frac{\tilde{D}_{\delta}(G)}{\gamma}\left(\left(\tilde{H}_{+}^{n}+\sigma_{n+1}\right) \psi, \psi\right) \tag{4.21}
\end{equation*}
$$

For $g_{\delta}^{(1)}$ given by (4.12), let $g_{\delta}^{(2)}>0$ be such that

$$
g_{\delta}^{(2)} \frac{\tilde{D}_{\delta}(G)}{\gamma}<1 \quad \text { and } \quad g_{\delta}^{(2)} \leq g_{\delta}^{(1)}
$$

By (4.21), we then get, for $g \leq g_{\delta}^{(2)}$,

$$
\begin{equation*}
H^{n+1}=\tilde{H}_{+}^{n}+E^{n}+g H_{I, n}^{n+1} \geq E^{n}-\frac{g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1}+\left(1-\frac{g \tilde{D}_{\delta}(G)}{\gamma}\right) \tilde{H}_{+}^{n} \tag{4.22}
\end{equation*}
$$

Because $\left(1-g \tilde{D}_{\delta}(G) / \gamma\right) \tilde{H}_{+}^{n} \geq 0$, it follows from (4.22) that, for $n \geq 0$,

$$
\begin{equation*}
E^{n+1} \geq E^{n}-\frac{g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1} \tag{4.23}
\end{equation*}
$$

Suppose now that $\psi^{n} \in \mathfrak{F}^{n}$ with $\left\|\psi^{n}\right\|=1$ satisfies, for $\epsilon>0$,

$$
\begin{equation*}
E^{n} \leq\left(\psi^{n}, H^{n} \psi^{n}\right) \leq E^{n}+\epsilon \tag{4.24}
\end{equation*}
$$

Then, for

$$
\begin{equation*}
\tilde{\psi}^{n+1}=\psi^{n} \otimes \Omega_{n}^{n+1} \in \mathfrak{F}^{n+1} \tag{4.25}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
E^{n+1} \leq\left(\tilde{\psi}^{n+1}, H^{n+1} \tilde{\psi}^{n+1}\right) \leq E^{n}+\epsilon+g\left(\tilde{\psi}^{n+1}, H_{I, n}^{n+1} \tilde{\psi}^{n+1}\right) \tag{4.26}
\end{equation*}
$$

By (4.21), (4.24), (4.25), and (4.26) we get, for every $\epsilon>0$,

$$
E^{n+1} \leq E^{n}+\epsilon\left(1+\frac{g \tilde{D}_{\delta}(G)}{\gamma}\right)+\frac{g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1}
$$

where $g \leq g_{\delta}^{(2)}$. This yields

$$
\begin{equation*}
E^{n+1} \leq E^{n}+\frac{g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1} \tag{4.27}
\end{equation*}
$$

and by (4.23), we obtain

$$
\left|E^{n}-E^{n+1}\right| \leq \frac{g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1}
$$

Let us first check that, for σ_{0} given by (4.5), E^{0} is a simple isolated eigenvalue of H^{0} with

$$
\begin{equation*}
\inf \operatorname{Spec}\left(H^{0}\right) \backslash\left\{E^{0}\right\} \geq m_{1} \tag{4.28}
\end{equation*}
$$

Since

$$
\begin{aligned}
g\left\|H_{I}\left(\mathbf{1}_{\sigma_{0} \leq\left|p_{2}\right|} G\right) \psi\right\| & \leq g K(G)\left(C_{\beta \eta}\left\|H_{0}^{0} \psi\right\|+B_{\beta \eta}\|\psi\|\right) \\
& \leq g K(G)\left(C_{\beta \eta}\left\|\left(H_{0}^{0}+1\right) \psi\right\|+\left(C_{\beta \eta}+B_{\beta \eta}\right)\|\psi\|\right)
\end{aligned}
$$

we get

$$
\begin{equation*}
g\left\|H_{I}\left(\mathbf{1}_{\sigma_{0} \leq\left|p_{2}\right|} G\right) \psi\right\| \leq g K(G)\left(2 C_{\beta \eta}+B_{\beta \eta}\right)\left\|\left(H_{0}^{0}+1\right) \psi\right\|, \tag{4.29}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left|\left(\psi, H_{I}\left(\mathbf{1}_{\sigma_{0} \leq\left|p_{2}\right|} G\right) \psi\right)\right| \leq g K(G)\left(2 C_{\beta \eta}+B_{\beta \eta}\right)\left(\psi,\left(H_{0}^{0}+1\right) \psi\right) \tag{4.30}
\end{equation*}
$$

Set now

$$
\begin{equation*}
\mu_{2}=\sup _{\substack{\phi \in \mathfrak{F}^{0} \\ \phi \neq 0}} \inf _{\substack{\psi \in \mathcal{D}\left(H^{0}\right) \\(\psi, \phi)=0 \\\|\psi\|=1}}\left(\psi, H^{0} \psi\right) . \tag{4.31}
\end{equation*}
$$

By (4.30) and (4.31), we have, for Ω^{0} being the vacuum state in \mathfrak{F}^{0},

$$
\mu_{2} \geq \inf _{\substack{\psi \in \mathcal{D}\left(H^{0}\right) \\\left(\psi, \Omega^{0}\right)=0 \\\|\psi\|=1}}\left(\psi, H^{0} \psi\right) \geq \sigma_{0}-g K(G)\left(2 C_{\beta \eta}+B_{\beta \eta}\right)\left(\sigma_{0}+1\right)
$$

Using the definition

$$
g_{3}=\frac{1}{2 K(G)\left(2 C_{\beta \eta}+B_{\beta \eta}\right)},
$$

we get, for $g \leq g_{3}$,

$$
\mu_{2} \geq \frac{\sigma_{0}-1}{2} \geq E^{0}+m_{1},
$$

since $\sigma_{0}=2 m_{1}+1$ and $E^{0} \leq 0$. Therefore, by the min-max principle, E^{0} is a simple eigenvalue of H^{0} and (4.28) holds true. We now conclude the proof of Proposition 4.1 by induction in $n \in \mathbb{N}$. Suppose that E^{n} is a simple isolated eigenvalue of H^{n} such that, for $n \geq 1$,

$$
\inf \left(\operatorname{Spec}\left(H_{+}^{n}\right) \backslash\{0\}\right) \geq\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}\right) \sigma_{n}
$$

Due to (4.5)-(4.12), we have, for $0<g \leq g_{\delta}^{(1)}$ and $n \geq 1$,

$$
0<\sigma_{n+1}<\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}\right) \sigma_{n}
$$

Therefore, for $g \leq g_{\delta}^{(2)}, 0$ is also a simple isolated eigenvalue of \tilde{H}_{+}^{n} such that

$$
\begin{equation*}
\inf \left(\operatorname{Spec}\left(\tilde{H}_{+}^{n}\right) \backslash\{0\}\right) \geq \sigma_{n+1} \tag{4.32}
\end{equation*}
$$

We now prove that E^{n+1} is a simple isolated eigenvalue of H^{n+1} such that

$$
\inf \left(\operatorname{Spec}\left(H_{+}^{n+1}\right) \backslash\{0\}\right) \geq\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}\right) \sigma_{n+1}
$$

To this end, let

$$
\lambda^{(n+1)}=\sup _{\substack{\psi \in \mathfrak{F}^{n+1} \\ \psi \neq 0}} \inf _{\substack{(\phi, \psi)=0 \\ \phi \in \mathcal{D}\left(H^{n+1}\right) \\\|\phi\|=1}}\left(\phi, H_{+}^{n+1} \phi\right) .
$$

By (4.22) and (4.27), we obtain, in \mathfrak{F}^{n+1},

$$
\begin{align*}
H_{+}^{n+1} & \geq E^{n}-E^{n+1}-\frac{g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1}+\left(1-\frac{g \tilde{D}_{\delta}(G)}{\gamma}\right) \tilde{H}_{+}^{n} \\
& \geq\left(1-\frac{g \tilde{D}_{\delta}(G)}{\gamma}\right) \tilde{H}_{+}^{n}-\frac{2 g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1} \tag{4.33}
\end{align*}
$$

By (4.25), $\tilde{\psi}^{n+1}$ is the unique ground state of \tilde{H}_{+}^{n} and by (4.32) and (4.33), we have, for $g \leq g_{\delta}^{(2)}$,

$$
\begin{aligned}
\lambda^{(n+1)} & \geq \inf _{\substack{\left(\phi, \tilde{\psi}^{n+1}\right)=0 \\
\phi \in \mathcal{D}\left(H^{n+1}\right) \\
\|\phi\|=1}}\left(\phi, H_{+}^{n+1} \phi\right) \\
& \geq\left(1-\frac{g \tilde{D}_{\delta}(G)}{\gamma}\right) \sigma_{n+1}-\frac{2 g \tilde{D}_{\delta}(G)}{\gamma} \sigma_{n+1}=\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}\right) \sigma_{n+1}>0 .
\end{aligned}
$$

This concludes the proof of Proposition 4.1, if one proves that for

$$
\tilde{g}_{\delta}^{(2)}=\min \left\{g_{\delta}^{(2)}, g_{3}\right\}
$$

the operator H^{1} satisfies the gap condition

$$
\begin{equation*}
\inf \left(\operatorname{Spec}\left(H_{+}^{1}\right) \backslash\{0\}\right) \geq\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}\right) \sigma_{1} \tag{4.34}
\end{equation*}
$$

By noting that 0 is a simple isolated eigenvalue of \tilde{H}_{+}^{0} with $\inf \left(\operatorname{Spec}\left(\tilde{H}_{+}^{0}\right) \backslash\{0\}\right)$ $\geq \sigma_{1}$, we prove that E^{1} is indeed an isolated simple eigenvalue of H^{1} such that (4.34) holds, by mimicking the proof given above for H_{+}^{n+1}.

5. Mourre Inequality

Let us set

$$
\tau=1-\frac{\delta}{2\left(2 m_{1}-\delta\right)}
$$

According to (4.6), we have

$$
\begin{equation*}
0<\gamma<\tau<1 \quad \text { and } \quad \frac{\tau-\gamma}{2}<\gamma \tag{5.1}
\end{equation*}
$$

Moreover, let $\chi^{(\tau)} \in C^{\infty}(\mathbb{R},[0,1])$ be such that

$$
\chi^{(\tau)}(\lambda)= \begin{cases}1 & \text { for } \lambda \in(-\infty, \tau] \\ 0 & \text { for } \lambda \in[1, \infty)\end{cases}
$$

With the definition (4.5) of $\left(\sigma_{n}\right)_{n \geq 0}$, we set, for all $p_{2} \in \mathbb{R}^{3}$ and $n \geq 1$,

$$
\begin{gather*}
\chi_{n}^{(\tau)}\left(p_{2}\right)=\chi^{(\tau)}\left(\frac{\left|p_{2}\right|}{\sigma_{n}}\right) \\
a_{n}^{(\tau)}=\chi_{n}^{(\tau)}\left(p_{2}\right) \frac{1}{2}\left(p_{2} \cdot i \nabla_{p_{2}}+i \nabla_{p_{2}} \cdot p_{2}\right) \chi_{n}^{(\tau)}\left(p_{2}\right), \tag{5.2}
\end{gather*}
$$

and

$$
\begin{equation*}
A_{n}^{(\tau)}=\mathbf{1} \otimes \mathrm{d} \Gamma\left(a_{n}^{(\tau)}\right) \otimes \mathbf{1}, \tag{5.3}
\end{equation*}
$$

where $\mathrm{d} \Gamma($.$) refers to the usual second quantization of one particle operators.$ The operators $a_{n}^{(\tau)}$ and $A_{n}^{(\tau)}$ are self-adjoint, and we also have

$$
\begin{equation*}
a_{n}^{(\tau)}=\frac{1}{2}\left(\chi_{n}^{(\tau)}\left(p_{2}\right)^{2} p_{2} \cdot i \nabla_{p_{2}}+i \nabla_{p_{2}} \cdot p_{2} \chi_{n}^{(\tau)}\left(p_{2}\right)^{2}\right) . \tag{5.4}
\end{equation*}
$$

Next, let N be the smallest integer such that

$$
\begin{equation*}
N \gamma \geq 1 \tag{5.5}
\end{equation*}
$$

Due to (4.5)-(4.12), we have, for $0<g \leq g_{\delta}^{(1)}$,

$$
\begin{equation*}
0<\gamma<\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}\right) \tag{5.6}
\end{equation*}
$$

Therefore, according to (5.6) and (5.5), we have

$$
\begin{equation*}
\gamma<\gamma+\frac{1}{N}\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}-\gamma\right)<1-\frac{3 g \tilde{D}_{\delta}}{\gamma} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\gamma}{N} \leq \gamma-\frac{1}{N}\left(1-\frac{3 g \tilde{D}_{\delta}(G)}{\gamma}-\gamma\right)<\gamma \tag{5.8}
\end{equation*}
$$

Let us next define

$$
\begin{equation*}
\epsilon_{\gamma}=\min \left\{\frac{1}{2 N}\left(1-\frac{3 g \tilde{D}_{\delta}}{\gamma}-\gamma\right), \frac{\tau-\gamma}{4}\right\} \tag{5.9}
\end{equation*}
$$

and choose $f \in C_{0}^{\infty}(\mathbb{R})$ such that $0 \leq f \leq 1$ and

$$
f(\lambda)=\left\{\begin{array}{l}
1 \text { if } \lambda \in\left[\left(\gamma-\epsilon_{\gamma}\right)^{2}, \gamma+\epsilon_{\gamma}\right], \tag{5.10}\\
0 \text { if } \lambda>\gamma+2 \epsilon_{\gamma}, \\
0 \text { if } \lambda<\left(\gamma-2 \epsilon_{\gamma}\right)^{2} .
\end{array}\right.
$$

Note that using the definition (5.9) of ϵ_{γ}, (5.7), (5.1), and (5.8), we have, for $g \leq g_{\delta}^{(1)}$,

$$
\gamma+2 \epsilon_{\gamma}<1-\frac{3 g \tilde{D}_{\delta}}{\gamma}
$$

where $g_{\delta}^{(1)}$ is defined by (4.12). Moreover, we also have $\gamma+2 \epsilon_{\gamma}<\tau$, and

$$
\begin{equation*}
\gamma-\epsilon_{\gamma}>\frac{\gamma}{N} \tag{5.11}
\end{equation*}
$$

Next, for $n \geq 1$, we define

$$
\begin{equation*}
f_{n}(\lambda)=f\left(\frac{\lambda}{\sigma_{n}}\right) \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n}=H_{\sigma_{n}}, \quad E_{n}=\inf \operatorname{Spec}\left(H_{n}\right) \quad \text { and } \quad H_{0, n}^{(2)}=H_{0, \sigma_{n}}^{(2)} \tag{5.13}
\end{equation*}
$$

where we used the definitions (4.3) and (4.4) for $H_{0, \sigma_{n}}^{(2)}$ and $H_{\sigma_{n}}$. Note that $E_{n}=E^{n}$, where E^{n} is defined by (4.8). Let P^{n} denote the ground state projection of H^{n}. It follows from Proposition 4.1 that, for $n \geq 1$ and $g \leq \tilde{g}_{\delta}^{(2)}$,

$$
\begin{equation*}
f_{n}\left(H_{n}-E_{n}\right)=P^{n} \otimes f_{n}\left(H_{0, n}^{(2)}\right) \tag{5.14}
\end{equation*}
$$

For $E=\inf \operatorname{Spec}(H)$ being the ground-state energy of H defined in Theorem 3.2, and any interval Δ, let $E_{\Delta}(H-E)$ be the spectral projection for the operator $(H-E)$ onto Δ. Consider, for $n \geq 1$,

$$
\begin{equation*}
\Delta_{n}=\left[\left(\gamma-\epsilon_{\gamma}\right)^{2} \sigma_{n},\left(\gamma+\epsilon_{\gamma}\right) \sigma_{n}\right] \tag{5.15}
\end{equation*}
$$

We are now ready to state the Mourre inequality.
Theorem 5.1 (Mourre inequality). Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.1, 3.1(ii), and 3.1(iii.a). Then, there exist $C_{\delta}>0$ and $\tilde{g}_{\delta}^{(3)}>0$ with $\tilde{g}_{\delta}^{(3)}<\tilde{g}_{\delta}^{(2)}$ such that, for $g<\tilde{g}_{\delta}^{(3)}$ and $n \geq 1$,

$$
\begin{equation*}
E_{\Delta_{n}}(H-E)\left[H, i A_{n}^{(\tau)}\right] E_{\Delta_{n}}(H-E) \geq C_{\delta} \frac{\gamma^{2}}{N^{2}} \sigma_{n} E_{\Delta_{n}}(H-E) \tag{5.16}
\end{equation*}
$$

Proof. Let us define

$$
\begin{align*}
\mathfrak{D}_{1}= & \left\{\psi \in \mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right) \mid \psi^{(n)} \in C_{0}^{\infty} \text { for all } n \in \mathbb{N},\right. \\
& \left.\quad \text { and } \psi^{(n)}=0 \text { for almost all } n\right\}, \\
\mathfrak{D}_{2}= & \mathfrak{D}_{1}, \tag{5.17}\\
\mathfrak{D}_{W}= & \left\{\psi \in \mathfrak{F}_{W} \mid \psi^{(n)} \in C_{0}^{\infty} \text { for all } n \in \mathbb{N}\right. \\
& \left.\quad \text { and } \psi^{(n)}=0 \text { for almost all } n\right\},
\end{align*}
$$

and consider the algebraic tensor product

$$
\mathfrak{D}=\mathfrak{D}_{1} \hat{\otimes} \mathfrak{D}_{2} \hat{\otimes} \mathfrak{D}_{W} .
$$

According to [11, Lemma 28] and [12, Theorem 13] (see also [1, Proposition 2.11]), one easily shows that the sesquilinear form defined on $\mathfrak{D} \times \mathfrak{D}$ by

$$
(\varphi, \psi) \mapsto\left(H \varphi, i A_{n}^{(\tau)} \psi\right)-\left(A_{n}^{(\tau)} \varphi, i H \psi\right)
$$

is the one associated with the following symmetric operator denoted by $\left[H, i A_{n}^{(\tau)}\right]:$

$$
\begin{equation*}
\left[H, i A_{n}^{(\tau)}\right] \psi=\left(\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right)+g H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right)\right) \psi \tag{5.18}
\end{equation*}
$$

Let us prove that $\left[H, i A_{n}^{(\tau)}\right]$ is continuous for the graph topology of H. Combining (A.12) of Lemma A. 5 with (4.10) and (4.11), we get, for $g \leq g_{1}, n \geq 1$, and for $\psi \in \mathfrak{D}$,

$$
\begin{equation*}
g\left\|H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right) \psi\right\| \leq g K\left(-i a_{n}^{(\tau)} G\right)\left(C_{\beta \eta}\left\|H_{0} \psi\right\|+B_{\beta \eta}\|\psi\|\right) \tag{5.19}
\end{equation*}
$$

It follows from Hypothesis 3.1 (iii-a) that there exists a constant $\tilde{C}(G)$ such that, for $n \geq 1$,

$$
\begin{equation*}
K\left(-i\left(a_{n}^{(\tau)} G\right)\right) \leq \tilde{C}(G) \sigma_{n} \tag{5.20}
\end{equation*}
$$

Moreover, we have, for $g \leq g_{1}$,

$$
\begin{align*}
\left\|H_{0} \psi\right\| & \leq\|H \psi\|+g\left\|H_{I}(G) \psi\right\| \\
& \leq\|H \psi\|+g K(G)\left(C_{\beta \eta}\left\|H_{0} \psi\right\|+B_{\beta \eta}\|\psi\|\right) \tag{5.21}
\end{align*}
$$

and, by definition of g_{1},

$$
\begin{equation*}
g_{1} K(G) C_{\beta \eta}<1 \tag{5.22}
\end{equation*}
$$

Using (5.21) and (5.22), we get

$$
\begin{equation*}
\left\|H_{0} \psi\right\| \leq \frac{1}{1-g_{1} K(G) C_{\beta \eta}}\left(\|H \psi\|+g_{1} K(G) B_{\beta \eta}\|\psi\|\right) \tag{5.23}
\end{equation*}
$$

Therefore, for $\psi \in \mathfrak{D}$,

$$
\begin{align*}
\left\|\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) \psi\right\| & \leq\left\|H_{0} \psi\right\| \\
& \leq \frac{1}{1-g_{1} K(G) C_{\beta \eta}}\left(\|H \psi\|+g_{1} K(G) B_{\beta \eta}\|\psi\|\right) . \tag{5.24}
\end{align*}
$$

By (5.19), (5.20), and (5.23), we get, for $g \leq g_{1}, n \geq 1$ and $\psi \in \mathfrak{D}$,

$$
\begin{align*}
& g\left\|H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right) \psi\right\| \\
& \quad \leq g \tilde{C}(G) \sigma_{n}\left(\frac{C_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\|H \psi\|+\left(\frac{g_{1} K(G) C_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}+1\right) B_{\beta \eta}\|\psi\|\right) . \tag{5.25}
\end{align*}
$$

Since \mathfrak{D} is a core for H, (5.24) and (5.25) are fulfilled for $\psi \in \mathcal{D}(H)$. Moreover, it follows from [9, Proposition 3.6(iii)] that H is of class $C^{1}\left(A_{n}^{(\tau)}\right)$ (see [3, Theorem 6.3.4] and condition (M') in [15]) for $g \leq g_{1}$ and $n \geq 1$. Therefore, (5.18) holds for $\psi \in \mathcal{D}(H)$.

Recall from (5.12) that $f_{n}(\lambda)=f\left(\lambda / \sigma_{n}\right)$, where f is given by (5.10). Let $\tilde{f}($.$) be an almost analytic extension of f($.$) satisfying$

$$
\begin{equation*}
\left|\frac{\partial \tilde{f}}{\partial \bar{z}}(x+i y)\right| \leq C y^{2} \tag{5.26}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\tilde{f}(x+i y) \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \tag{5.27}
\end{equation*}
$$

and that

$$
f(s)=\int \frac{\mathrm{d} \tilde{f}(z)}{z-s}, \quad \mathrm{~d} \tilde{f}(z)=-\frac{1}{\pi} \frac{\partial \tilde{f}}{\partial \bar{z}} \mathrm{~d} x \mathrm{~d} y
$$

It follows from (5.14) that, for $g \leq \tilde{g}_{\delta}^{(2)}$,

$$
\begin{aligned}
\left\|\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{n}-E_{n}\right)\right\| & =\left\|P^{n} \otimes \mathrm{~d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{0, n}^{(2)}\right)\right\| \\
& \leq\left\|H_{0, n}^{(2)} f_{n}\left(H_{0, n}^{(2)}\right)\right\|
\end{aligned}
$$

Therefore, there exists $C_{1}^{f}>0$, depending on f, such that for $g \leq \tilde{g}_{\delta}^{(2)}$,

$$
\begin{equation*}
\left\|\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{n}-E_{n}\right)\right\| \leq C_{1}^{f} \sigma_{n} \tag{5.28}
\end{equation*}
$$

Recall (see (4.2) and (5.13)) that $H_{n}=H_{0}+g H_{I, n}$, where $H_{I, n}=H_{I, \sigma_{n}}$ is the interaction given by (2.3), (2.4), and (2.5) associated with the kernels $\tilde{\chi}^{\sigma_{n}}\left(p_{2}\right) G^{(\alpha)}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$. Now, in (4.14), it is stated

$$
\begin{equation*}
\left|E^{n}\right| \leq \frac{g K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}} \tag{5.29}
\end{equation*}
$$

Moreover, for $z \in \operatorname{supp}(\tilde{f})$, we have

$$
\begin{align*}
& \left(H_{0}+1\right)\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1}=1+\left(E_{n}+z \sigma_{n}\right)\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1} \\
& \quad-g H_{I, n}\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1}+\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1} \tag{5.30}
\end{align*}
$$

Mimicking the proof of (5.23) and (5.25) and using (5.29), we get for $g \leq g_{1}$,

$$
\begin{align*}
& g\left\|H_{I, n}\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1}\right\| \leq \frac{g_{1} K(G) C_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}} \\
& \quad \times\left(1+\left(\frac{g_{1} K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}+|z| \sigma_{n}+\frac{g_{1} K(G) B_{\beta \eta}}{1-g_{1} K(G) C_{\beta \eta}}\right) \frac{1}{|\operatorname{Im} z| \sigma_{n}}\right) \\
& \quad+\frac{g_{1} K(G) B_{\beta \eta}}{|\operatorname{Im} z| \sigma_{n}} . \tag{5.31}
\end{align*}
$$

It follows from (5.29), (5.30), and (5.31) that there exists $\tilde{C}_{2}(G)>0$ such that, for $g \leq g_{1}$ and $n \geq 1$,

$$
\begin{equation*}
\left\|\left(H_{0}+1\right)\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1}\right\| \leq \tilde{C}_{2}(G) \frac{1+|z| \sigma_{n}}{|\operatorname{Im} z| \sigma_{n}} \tag{5.32}
\end{equation*}
$$

Mimicking the proof of (5.32), we show that there exists $\tilde{C}_{3}(G)>0$ such that, for $g \leq g_{1}$ and $n \geq 1$,

$$
\begin{equation*}
\left\|\left(H_{0}+1\right)\left(H-E-z \sigma_{n}\right)^{-1}\right\| \leq \tilde{C}_{3}(G) \frac{1+|z| \sigma_{n}}{|\operatorname{Im} z| \sigma_{n}} \tag{5.33}
\end{equation*}
$$

Furthermore, we have

$$
\begin{align*}
& g H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right) f_{n}\left(H_{n}-E_{n}\right) \\
& \quad=-\sigma_{n} \int \mathrm{~d} \tilde{f}(z) H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right)\left(H_{0}+1\right)^{-1}\left(H_{0}+1\right)\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1} . \tag{5.34}
\end{align*}
$$

By (5.21), (5.25), (5.32), and (5.34), there exists $\tilde{C}_{4}^{f}(G)>0$ depending on f, such that for $g \leq g_{1}$,

$$
\begin{equation*}
g\left\|H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right) f_{n}\left(H_{n}-E_{n}\right)\right\| \leq g \tilde{C}_{4}^{f}(G) \sigma_{n} . \tag{5.35}
\end{equation*}
$$

Similarly, by (5.33), we easily show that there exists $\tilde{C}_{5}^{f}(G)>0$, depending on f, such that, for $g \leq g_{1}$,

$$
\begin{equation*}
g\left\|H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right) f_{n}(H-E)\right\| \leq g \tilde{C}_{5}^{f}(G) \sigma_{n} . \tag{5.36}
\end{equation*}
$$

By (5.14), we have, for $g \leq \tilde{g}_{\delta}^{(2)}$,

$$
\begin{align*}
& f_{n}\left(H_{n}-E_{n}\right) \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{n}-E_{n}\right) \\
& \quad=P^{n} \otimes f_{n}\left(H_{0, n}^{(2)}\right) \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{0, n}^{(2)}\right) \tag{5.37}
\end{align*}
$$

Since $\chi_{n}^{(\tau)}(\lambda)=1$ if $\lambda \leq\left(\gamma+2 \epsilon_{\gamma}\right) \sigma_{n}$, we have

$$
\begin{equation*}
f_{n}\left(H_{0, n}^{(2)}\right) \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{0, n}^{(2)}\right)=f_{n}\left(H_{0, n}^{(2)}\right) H_{0, n}^{(2)} f_{n}\left(H_{0, n}^{(2)}\right) . \tag{5.38}
\end{equation*}
$$

Now, by (5.10), (5.11), (5.37), and (5.38), we obtain, with $g \leq \tilde{g}_{\delta}^{(2)}$ and $n \geq 1$,

$$
\begin{align*}
f_{n}\left(H_{n}-E_{n}\right) \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{n}-E_{n}\right) & \geq\left(\inf \operatorname{supp}\left(f_{n}\right)\right) f_{n}\left(H_{n}-E_{n}\right)^{2} \\
& \geq \frac{\gamma^{2}}{N^{2}} \sigma_{n} f_{n}\left(H_{n}-E_{n}\right)^{2} \tag{5.39}
\end{align*}
$$

Note that

$$
\begin{equation*}
\left\|f_{n}\left(H_{n}-E_{n}\right)\right\|=\left\|f_{n}(H-E)\right\|=\sup _{\lambda}\left|f_{n}(\lambda)\right|=1 \tag{5.40}
\end{equation*}
$$

By (5.35) and (5.40) we get, for $g \leq g_{1}$,

$$
\begin{equation*}
f_{n}\left(H_{n}-E_{n}\right) g H_{I}\left(-i\left(a_{n}^{(\tau)}\right) G\right) f_{n}\left(H_{n}-E_{n}\right) \geq-g \tilde{C}_{4}^{f}(G) \sigma_{n} . \tag{5.41}
\end{equation*}
$$

Thus, using (5.39) and (5.41), we get, for $g \leq \tilde{g}_{\delta}^{(2)}$,

$$
\begin{equation*}
f_{n}\left(H_{n}-E_{n}\right)\left[H, i A_{n}^{(\tau)}\right] f_{n}\left(H_{n}-E_{n}\right) \geq \frac{\gamma^{2}}{N^{2}} \sigma_{n} f_{n}\left(H_{n}-E_{n}\right)^{2}-g \tilde{C}_{4}^{f}(G) \sigma_{n} \tag{5.42}
\end{equation*}
$$

Next, let us make the decomposition

$$
\begin{align*}
& f_{n}(H-E)\left[H, i A_{n}^{(\tau)}\right] f_{n}(H-E) \\
& \quad=f_{n}\left(H_{n}-E_{n}\right)\left[H, i A_{n}^{(\tau)}\right] f_{n}\left(H_{n}-E_{n}\right) \\
& \quad+\left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right)\left[H, i A_{n}^{(\tau)}\right] f_{n}\left(H_{n}-E_{n}\right) \\
& \quad+f_{n}(H-E)\left[H, i A_{n}^{(\tau)}\right]\left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right) . \tag{5.43}
\end{align*}
$$

Using (5.28) and Lemma A.3, we get, for $g \leq \tilde{g}_{\delta}^{(2)}$,

$$
\begin{align*}
& \left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right) \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) f_{n}\left(H_{n}-E_{n}\right) \\
& \quad \geq-g C_{1}^{f} \tilde{C}_{6}^{f}(G) \sigma_{n} \tag{5.44}
\end{align*}
$$

By (5.35) and Lemma A.3, we obtain, for $g \leq g_{2}$,

$$
\begin{align*}
& g\left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right) H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right) f_{n}\left(H_{n}-E_{n}\right) \\
& \quad \geq-g g_{2} \tilde{C}_{4}^{f}(G) \tilde{C}_{6}^{f}(G) \sigma_{n} . \tag{5.45}
\end{align*}
$$

Thus, it follows from (5.44) and (5.45) that, for $g \leq \inf \left(g_{2}, \tilde{g}_{\delta}^{(2)}\right)$,

$$
\begin{align*}
& \left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right)\left[H, i A_{n}^{(\tau)}\right] f_{n}\left(H_{n}-E_{n}\right) \\
& \quad \geq-g \tilde{C}_{6}^{f}(G)\left(C_{1}^{f}+g_{2} \tilde{C}_{4}^{f}(G)\right) \sigma_{n} \tag{5.46}
\end{align*}
$$

Similarly, by Lemma A. 4 and (5.39), we obtain, for $g \leq \inf \left(g_{2}, \tilde{g}_{\delta}^{(2)}\right)$,

$$
\begin{equation*}
f_{n}(H-E) \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right)\left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right) \geq-g \tilde{C}_{7}^{f}(G) \sigma_{n} \tag{5.47}
\end{equation*}
$$

Moreover by (5.36) and Lemma A. 3 we get, for $g \leq g_{2}$,

$$
\begin{align*}
& g f_{n}(H-E) H_{I}\left(-i\left(a_{n}^{(\tau)} G\right)\right)\left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right) \\
& \quad \geq-g g_{1} \tilde{C}_{5}^{f}(G) \tilde{C}_{6}^{f}(G) \sigma_{n} \tag{5.48}
\end{align*}
$$

Thus, it follows from (5.47) and (5.48) that, for $g \leq \inf \left(g_{2}, \tilde{g}_{\delta}^{(2)}\right)$,

$$
\begin{align*}
& f_{n}(H-E)\left[H, i A_{n}^{(\tau)}\right]\left(f_{n}(H-E)-f_{n}\left(H_{n}-E_{n}\right)\right) \\
& \quad \geq-g\left(\tilde{C}_{7}^{f}(G)+g_{1} \tilde{C}_{5}^{f}(G) \tilde{C}_{6}^{f}(G)\right) \sigma_{n} \tag{5.49}
\end{align*}
$$

Furthermore, by Lemma A. 3 and (5.40), we easily get, for $g \leq g_{2}$,

$$
\begin{align*}
f_{n}\left(H_{n}-E_{n}\right)^{2}= & f_{n}(H-E)^{2}+\left(f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right)^{2} \\
& +f_{n}(H-E)\left(f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right) \\
& +\left(f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right) f_{n}(H-E) \\
\geq & f_{n}(H-E)^{2}-g \tilde{C}_{6}^{f}(G)\left(g_{2} \tilde{C}_{6}^{f}(G)+2\right) . \tag{5.50}
\end{align*}
$$

It then follows from (5.42) and (5.50) that, for $g \leq \inf \left(g_{2}, \tilde{g}_{\delta}^{(2)}\right)$,

$$
\begin{align*}
& f_{n}\left(H_{n}-E_{n}\right)\left[H, i A_{n}^{(\tau)}\right] f_{n}\left(H_{n}-E_{n}\right) \\
& \quad \geq \frac{\gamma^{2}}{N^{2}} \sigma_{n} f_{n}(H-E)^{2}-g \sigma_{n}\left(\tilde{C}_{4}^{f}(G)+\frac{\gamma^{2}}{N^{2}} \tilde{C}_{6}^{f}(G)\left(g_{2} \tilde{C}_{6}^{f}(G)+2\right)\right) \tag{5.51}
\end{align*}
$$

Combining (5.43) with (5.46), (5.49), and (5.51), we obtain, for $g \leq$ $\inf \left(g_{2}, \tilde{g}_{\delta}^{(2)}\right)$,

$$
\begin{equation*}
f_{n}(H-E)\left[H, i A_{n}^{(\tau)}\right] f_{n}(H-E) \geq \frac{\gamma^{2}}{N^{2}} \sigma_{n} f_{n}(H-E)^{2}-g \sigma_{n} \tilde{C}_{\delta} \tag{5.52}
\end{equation*}
$$

with $\tilde{C}_{\delta}=\tilde{C}_{6}^{f}(G)\left(C_{1}^{f}+g_{1} \tilde{C}_{4}^{f}(G)\right)+\tilde{C}_{7}^{f}(G)+g_{1} \tilde{C}_{5}^{f}(G) \tilde{C}_{6}^{f}(G)+\tilde{C}_{4}^{f}(G)+$ $\gamma^{2} / N^{2} \tilde{C}_{6}^{f}(G)\left(g_{1} \tilde{C}_{6}^{f}(G)+2\right)$. Multiplying both sides of (5.52) with $E_{\Delta_{n}}(H-E)$, we get

$$
E_{\Delta_{n}}(H-E)\left[H, i A_{n}^{(\tau)}\right] E_{\Delta_{n}}(H-E) \geq\left(\frac{\gamma^{2}}{N^{2}}-g \tilde{C}_{\delta}\right) \sigma_{n} E_{\Delta_{n}}(H-E) .
$$

Picking a constant $\tilde{g}_{\delta}^{(3)}$ such that

$$
\begin{equation*}
\tilde{g}_{\delta}^{(3)}<\min \left\{g_{2}, \tilde{g}_{\delta}^{(2)}, \frac{\gamma^{2}}{N^{2}} \frac{1}{\tilde{C}_{\delta}}\right\} \tag{5.53}
\end{equation*}
$$

Theorem 5.1 is proved, for $g \leq \tilde{g}_{\delta}^{(3)}$ and $n \geq 1$, with $C_{\delta}=\gamma^{2}$ $\left(1-N^{2} \tilde{C}_{\delta} \tilde{g}_{\delta}^{(3)} / \gamma^{2}\right) / N^{2}$.

6. $C^{2}\left(A_{n}^{(\tau)}\right)$-Regularity

Theorem 6.1. Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.1 and 3.1(iii). Then, H is locally of class $C^{2}\left(A_{n}^{(\tau)}\right)$ in $\left(-\infty, m_{1}-\frac{\delta}{2}\right)$ for every $n \geq 1$.

Proof. The proof is achieved by substituting $A_{n}^{(\tau)}$ for A_{σ} in the proof of Theorem 3.7 in [9].
Remark 6.1. It is likely that the operator H is of class $C^{2}\left(A_{n}^{(\tau)}\right)$, i.e., not only locally.

7. Limiting Absorption Principle

For $A_{n}^{(\tau)}$ defined by (5.3), we set

$$
\left\langle A_{n}^{(\tau)}\right\rangle=\left(1+\left(A_{n}^{(\tau)}\right)^{2}\right)^{\frac{1}{2}}
$$

Recall that $\left[\sigma_{n+2}, \sigma_{n+1}\right] \subset \Delta_{n}=\left[\left(\gamma-\epsilon_{\gamma}\right)^{2} \sigma_{n},\left(\gamma+\epsilon_{\gamma}\right) \sigma_{n}\right]$ for $n \geq 1$.
Theorem 7.1 (Limiting Absorption Principle). Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.1, 3.1(ii), and 3.1(iii). Then, for any $\delta>0$ satisfying $0<\delta<m_{1}$, there exists $g_{\delta}>0$ such that, for $0<g \leq g_{\delta}$, for $s>1 / 2, \varphi, \psi \in \mathfrak{F}$ and for $n \geq 1$, the limits

$$
\lim _{\epsilon \rightarrow 0}\left(\varphi,\left\langle A_{n}^{(\tau)}\right\rangle^{-s}(H-\lambda \pm i \epsilon)\left\langle A_{n}^{(\tau)}\right\rangle^{-s} \psi\right)
$$

exist uniformly for $\lambda \in \Delta_{n}$. Moreover, for $1 / 2<s<1$, the map

$$
\lambda \mapsto\left\langle A_{n}^{(\tau)}\right\rangle^{-s}(H-\lambda \pm i 0)^{-1}\left\langle A_{n}^{(\tau)}\right\rangle^{-s}
$$

is Hölder continuous of degree $s-1 / 2$ in Δ_{n}.
Proof. Theorem 7.1 follows from the $C^{2}\left(A_{n}^{(\tau)}\right)$-regularity in Theorem 6.1 and the Mourre inequality in Theorem 5.1 with $g_{\delta}=\tilde{g}_{\delta}^{(3)}$ (defined by (5.53)), according to Theorems 0.1 and 0.2 in [23] (see also [14,16,18]).

8. Proof of Theorem 3.3

- We first prove (i) of Theorem 3.3. According to (4.5) we have

$$
\left[\sigma_{n+2}, \sigma_{n+1}\right] \subset\left[\left(\gamma-\epsilon_{\gamma}\right)^{2} \sigma_{n},\left(\gamma+\epsilon_{\gamma}\right) \sigma_{n}\right]=\Delta_{n}
$$

thus $\bigcup_{n} \Delta_{n}$ is a covering by open sets of any compact subset of $(\inf \operatorname{Spec}(H)$, $\left.m_{1}-\delta\right)$. Therefore, [23, Theorem 0.1 and Theorem 0.2] together with the Mourre inequality (5.16) in Theorem 5.1 and the local $C^{2}\left(A_{n}^{(\tau)}\right)$ regularity in Theorem 6.1 imply that (i) of Theorem 3.3 holds true.

- For the proof of (ii) of Theorem 3.3, let us first note that since $\bigcup_{n} \Delta_{n}$ is a covering by intervals of $\left(E, E+m_{1}-\delta\right)$, using subadditivity, it suffices to prove the result for any $n \geq 1$ and $f \in C_{0}^{\infty}\left(\Delta_{n}\right)$.

For $a_{n}^{(\tau)}=\chi_{n}^{(\tau)}\left(p_{2}\right) \frac{1}{2}\left(p_{2} \cdot i \nabla_{p_{2}}+i \nabla_{p_{2}} \cdot p_{2}\right) \chi_{n}^{(\tau)}\left(p_{2}\right)$ as given by (5.2), and $b=i \nabla_{p_{2}}$, we have, for all $\varphi \in \mathcal{D}(b)$,

$$
\begin{aligned}
\left\|a_{n}^{(\tau)} \varphi\right\| & =\left\|\chi_{n}^{(\tau)}\left(p_{2}\right) \frac{1}{2}\left(p_{2} \cdot i \nabla_{p_{2}}+i \nabla_{p_{2}} \cdot p_{2}\right) \chi_{n}^{(\tau)}\left(p_{2}\right) \varphi\right\| \\
& \leq \frac{1}{2}\left(\left\|\chi_{n}^{(\tau)}\left(p_{2}\right) p_{2}\right\|+\left\|p_{2} \chi_{n}^{(\tau)}\left(p_{2}\right)\right\|\right)\left\|i \nabla_{p_{2}} \varphi\right\|+\frac{1}{2}\left\|i \nabla_{p_{2}} p_{2} \chi_{n}^{(\tau)}\right\|\|\varphi\|
\end{aligned}
$$

Therefore, there exists $c_{n}>1$ such that

$$
\left|a_{n}^{(\tau)}\right|^{2} \leq c_{n}\langle b\rangle^{2}
$$

Since $\langle b\rangle$ is a nonnegative operator, [17, Proposition 3.4 (ii)] implies

$$
\mathrm{d} \Gamma\left(a_{n}^{(\tau)}\right)^{2} \leq c_{n} \mathrm{~d} \Gamma(\langle b\rangle)^{2}
$$

and thus

$$
\left(A_{n}^{(\tau)}\right)^{2} \leq c_{n} B^{2}
$$

This implies

$$
\begin{equation*}
\left\|(B+1)^{-1}\left\langle A_{n}^{(\tau)}\right\rangle\right\|<\infty \quad \text { and } \quad\left\|\left\langle A_{n}^{(\tau)}\right\rangle(B+1)^{-1}\right\|<\infty . \tag{8.1}
\end{equation*}
$$

The map

$$
F(z)=\mathrm{e}^{-z \ln (B+1)} \mathrm{e}^{z \ln \left\langle A_{n}^{(\tau)}\right\rangle} \phi
$$

is analytic on the strip $S=\{z \in \mathbb{C} \mid 0<\operatorname{Re} z<1\}$ for all $\phi \in \mathcal{D}(B) \subset$ $\mathcal{D}\left(\left\langle A_{n}^{(\tau)}\right\rangle\right)$. For $\operatorname{Re} z=0$, the operator $F(z)$ is bounded by $\|\phi\|$ and, for $\operatorname{Re} z=$ 1, according to (8.1), $F(z)$ is bounded by $\left\|(B+1)^{-1}\left\langle A_{n}^{(\tau)}\right\rangle\right\|\|\phi\|$. Therefore, due to Hadamard's three-line theorem, $F(z)$ is a bounded operator on the strip S. In particular, for all $s \in(0,1)$, we obtain

$$
\begin{equation*}
\left\|(B+1)^{-s}\left\langle A_{n}^{(\tau)}\right\rangle^{s}\right\|<\infty \quad \text { and } \quad\left\|\left\langle A_{n}^{(\tau)}\right\rangle^{s}(B+1)^{-s}\right\|<\infty . \tag{8.2}
\end{equation*}
$$

Using (8.2), we can write

$$
\begin{aligned}
& \left(\varphi,(B+1)^{-s}(H-\lambda \pm \epsilon)^{-1}(B+1)^{-s} \psi\right) \\
& \left(\left\langle A_{n}^{(\tau)}\right\rangle^{s}(B+1)^{-s} \varphi,\left\langle A_{n}^{(\tau)}\right\rangle^{-s}(H-\lambda \pm \epsilon)^{-1}\left\langle A_{n}^{(\tau)}\right\rangle^{-s}\left\langle A_{n}^{(\tau)}\right\rangle^{s}(B+1)^{-s} \psi\right)
\end{aligned}
$$

We thus conclude the proof of Theorem 3.3 (ii) by using Theorem 7.1.

- We finally prove (iii) of Theorem 3.3. For that sake, we first need to establish the following lemma:

Lemma 8.1. Suppose that $s \in(1 / 2,1)$ and that for some $n, f \in C_{0}^{\infty}\left(\Delta_{n}\right)$. Then,

$$
\left\|\left\langle A_{n}^{(\tau)}\right\rangle^{-s} \mathrm{e}^{-i t H} f(H)\left\langle A_{n}^{(\tau)}\right\rangle^{-s}\right\|=\mathcal{O}\left(t^{-\left(s-\frac{1}{2}\right)}\right) .
$$

Proof. The proof is the same as the one in [14, Theorem 25] for the PauliFierz model of non-relativistic QED. It makes use of the local Hölder continuity stated in Theorem 7.1.

We now prove (iii) of Theorem 3.3 by using (8.2), Lemma 8.1, and writing

$$
\begin{aligned}
& \left\|(B+1)^{-s} \mathrm{e}^{i t H} f(H)(B+1)^{-s}\right\| \\
& \quad \leq\left\|(B+1)^{-s}\left\langle A_{n}^{(\tau)}\right\rangle^{s}\right\|\left\|\left\langle A_{n}^{(\tau)}\right\rangle^{-s} \mathrm{e}^{i t H} f(H)\left\langle A_{n}^{(\tau)}\right\rangle^{-s}\right\|\left\|\left\langle A_{n}^{(\tau)}\right\rangle^{s}(B+1)^{-s}\right\| .
\end{aligned}
$$

Acknowledgements

The work was done partially while J.-M. B. was visiting the Institute for Mathematical Sciences, National University of Singapore in 2008. The visit was supported by the Institute. The authors also gratefully acknowledge the Erwin Schrödinger International Institute for Mathematical Physics, where part of this work was done. W.H. A. is supported by the German Research Foundation (DFG). J.-M. B. gratefully acknowledges financial support from Agence Nationale de la Recherche, via the project HAM-MARK ANR-09-BLAN-0098-01

Appendix A

In this section, we establish several lemmata that are useful for the proof of the Mourre estimate in Sect. 5.

Lemma A.1. Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.1 and 3.1(ii). Then, there exists a constant $D_{1}(G)$ such that, for $g \leq g_{2}$ and $n \geq 1$,

$$
\left|E-E_{n}\right| \leq g D_{1}(G) \sigma_{n}
$$

Proof. For $g \leq g_{2}$, where $0<g_{2}$ is given by [9, Theorem 3.3], we consider ϕ (respectively ϕ_{n}), the unique normalized ground state of H (respectively H_{n}) (see again [9, Theorem 3.3]). We thus have

$$
\begin{align*}
& E-E_{n} \leq\left(\phi_{n},\left(H-H_{n}\right) \phi_{n}\right), \\
& E_{n}-E \leq\left(\phi,\left(H_{n}-H\right) \phi\right), \tag{A.1}
\end{align*}
$$

with

$$
\begin{equation*}
H-H_{n}=g H_{I}\left(\chi_{\sigma_{n} / 2}\left(p_{2}\right) G\right) \tag{A.2}
\end{equation*}
$$

where

$$
\chi_{\sigma_{n} / 2}(p)=\chi_{0}\left(\frac{|p|}{\sigma_{n} / 2}\right)
$$

and $\chi_{0}(.) \in C^{\infty}(\mathbb{R},[0,1])$ is fixed. Combining (A.12) of Lemma A. 5 with (4.10) and (4.11), we get, together with (A.2), for $g \leq g_{2}$,

$$
\left\|\left(H-H_{n}\right) \phi_{n}\right\| \leq g K\left(\chi_{\sigma_{n} / 2}\left(p_{2}\right) G\right)\left(C_{\beta \eta}\left\|H_{0} \phi_{n}\right\|+B_{\beta \eta}\right)
$$

and

$$
\left\|\left(H-H_{n}\right) \phi\right\| \leq g K\left(\chi_{\sigma_{n} / 2}\left(p_{2}\right) G\right)\left(C_{\beta \eta}\left\|H_{0} \phi\right\|+B_{\beta \eta}\right) .
$$

It follows from Hypothesis 3.1(ii), [9, (4.9)], and with (5.29) that there exists a constant $D_{1}(G)>0$ depending on G, such that, for $n \geq 1$ and $g \leq g_{2}$,

$$
\begin{equation*}
\sup \left(\left\|\left(H-H_{n}\right) \phi_{n}\right\|,\left\|\left(H-H_{n}\right) \phi\right\|\right) \leq g D_{1}(G) \sigma_{n} \tag{A.3}
\end{equation*}
$$

By (A.1), this proves Lemma A.1.
Lemma A.2. We have

$$
\begin{align*}
& \left\|\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right)\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1}\right\| \\
& \quad \leq\left\|\left(H_{n}-E_{n}\right)\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1}\right\| \leq 1+\frac{|z|}{|\operatorname{Im} z|} \tag{A.4}
\end{align*}
$$

Proof. We have

$$
\begin{equation*}
\mathbf{1} \otimes \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) \leq \mathbf{1} \otimes H_{0, n}^{(2)} \leq H_{n}-E_{n} \tag{A.5}
\end{equation*}
$$

Set
$M_{1}=\mathbf{1} \otimes H_{0, n}^{(2)}, \quad M_{2}=\left(H^{n}-E^{n}\right) \otimes \mathbf{1}, \quad$ and $\quad M=M_{1}+M_{2}=H_{n}-E_{n}$, and let ψ be in the algebraic tensor product $\mathfrak{D}\left(M_{1}\right) \hat{\otimes} \mathfrak{D}\left(M_{2}\right)$. We obtain

$$
\begin{aligned}
& \left\|\left(M_{1} \otimes \mathbf{1}+\mathbf{1} \otimes M_{2}\right) \psi\right\|^{2} \\
& \quad=\left\|\left(M_{1} \otimes \mathbf{1}\right) \psi\right\|^{2}+\left\|\left(\mathbf{1} \otimes M_{2}\right) \psi\right\|^{2}+2 \operatorname{Re}\left(\psi,\left(M_{1} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes M_{2}\right) \psi\right) \\
& \quad=\left\|\left(M_{1} \otimes \mathbf{1}\right) \psi\right\|^{2}+\left\|\left(\mathbf{1} \otimes M_{2}\right) \psi\right\|^{2}+2\left(\left(M_{1}^{\frac{1}{2}} \otimes \mathbf{1}\right) \psi,\left(\mathbf{1} \otimes M_{2}\right)\left(M_{1}^{\frac{1}{2}} \otimes \mathbf{1}\right) \psi\right) \\
& \quad \geq\left\|\left(M_{1} \otimes \mathbf{1}\right) \psi\right\|^{2} .
\end{aligned}
$$

Thus, we get

$$
\begin{equation*}
\left\|\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) \psi\right\| \leq\left\|\left(H_{n}-E_{n}\right) \psi\right\| \tag{A.6}
\end{equation*}
$$

The set $\mathfrak{D}\left(M_{1}\right) \hat{\otimes} \mathfrak{D}\left(M_{2}\right)$ is a core for M, thus (A.6) is satisfied for every $\psi \in$ $\mathcal{D}\left(H_{n}-E_{n}\right)=\mathfrak{D}\left(H_{0}\right)$. Setting

$$
\psi=\left(H_{n}-E_{n}-z \sigma_{n}\right)^{-1} \phi,
$$

in (A.6), we immediately get (A.4).
Lemma A.3. Suppose that the kernels $G^{(\alpha)}$ verify Hypotheses 2.1 and 3.1(ii). Then, there exists a constant $\tilde{C}_{6}^{f}(G)>0$ such that, for $g \leq g_{2}$ and $n \geq 1$,

$$
\begin{equation*}
\left\|f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right\| \leq g \tilde{C}_{6}^{f}(G) \tag{A.7}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
& f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E) \\
& \quad=\sigma_{n} \int \frac{1}{H_{n}-E_{n}-z \sigma_{n}}\left(H_{n}-H+E-E_{n}\right) \frac{1}{H-E-z \sigma_{n}} \mathrm{~d} \tilde{f}(z) . \tag{A.8}
\end{align*}
$$

Combining (A.12) of Lemma A.5, (4.10), (4.11), and Hypothesis 3.1(ii), we obtain, for every $\psi \in \mathcal{D}\left(H_{0}\right)$ and for $g \leq g_{2}$,

$$
\begin{equation*}
g\left\|H_{I}\left(\chi_{\sigma_{n} / 2} G\right) \psi\right\| \leq g \sigma_{n} \tilde{K}(G)\left(C_{\beta \eta}\left\|\left(H_{0}+1\right) \psi\right\|+\left(C_{\beta \eta}+B_{\beta \eta}\right)\|\psi\|\right) \tag{A.9}
\end{equation*}
$$

This yields

$$
\begin{equation*}
g\left\|H_{I}\left(\chi_{\sigma_{n} / 2} G\right)\left(H_{0}+1\right)^{-1}\right\| \leq g D_{2}(G) \sigma_{n} \tag{A.10}
\end{equation*}
$$

for some constant $D_{2}(G)$ and for $g \leq g_{2}$. Combining Lemma A. 1 with (5.33) and (A.8)-(A.10), we obtain, for $g \leq g_{2}$,

$$
\begin{align*}
& \left\|f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right\| \\
& \quad \leq g D_{2}(G) \tilde{C}_{3}(G) \int \frac{\left|\frac{\partial \tilde{f}}{\partial \tilde{z}}(x+i y)\right|}{y^{2}}\left(1+|z| m_{1}\right) \mathrm{d} x \mathrm{~d} y . \tag{A.11}
\end{align*}
$$

Using (5.26) and (5.27), we conclude the proof of Lemma A. 3 with

$$
\tilde{C}_{6}^{f}(G)=D_{2}(G) \tilde{C}_{3}(G) \int \frac{\left|\frac{\partial \tilde{f}}{\partial \tilde{z}}(x+i y)\right|}{y^{2}}\left(1+|z| m_{1}\right) \mathrm{d} x \mathrm{~d} y
$$

Lemma A.4. Suppose that the kernels $G^{(\alpha)}$ satisfy Hypotheses 2.1 and 3.1(ii). Then, there exists a constant $\tilde{C}_{7}^{f}(G)>0$ such that, for $g \leq g_{2}$ and $n \geq 1$,

$$
\left\|\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right)\left(f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right)\right\| \leq g \tilde{C}_{7}^{f} \sigma_{n}
$$

Proof. We have

$$
\begin{aligned}
& \mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right)\left(f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right)=\sigma_{n} \int \mathrm{~d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right) \\
& \quad \times \frac{1}{H_{n}-E_{n}-z \sigma_{n}}\left(H_{n}-H+E_{n}-E\right) \frac{1}{H-E-z \sigma_{n}} \mathrm{~d} \tilde{f}(z) .
\end{aligned}
$$

Combining Lemmata A. 1 and A. 2 with (5.33) and (A.8)-(A.10), we obtain

$$
\begin{aligned}
& \left\|\mathrm{d} \Gamma\left(\left(\chi_{n}^{(\tau)}\right)^{2} w^{(2)}\right)\left(f_{n}\left(H_{n}-E_{n}\right)-f_{n}(H-E)\right)\right\| \\
& \quad \leq g D_{2}(G) \tilde{C}_{3}(G) \sigma_{n} \int\left|\frac{\partial \tilde{f}}{\partial \bar{z}}(x+i y)\right|\left(1+\frac{|z|}{y}\right)\left(\frac{1+|z| m_{1}}{y}\right) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Using (5.26) and (5.27), we conclude the proof of Lemma A. 4 with

$$
\tilde{C}_{7}^{f}(G)=D_{2}(G) \tilde{C}_{3}(G) \int\left|\frac{\partial \tilde{f}}{\partial \bar{z}}(x+i y)\right|\left(1+\frac{|z|}{y}\right)\left(\frac{1+|z| m_{1}}{y}\right) \mathrm{d} x \mathrm{~d} y
$$

The following lemma was proved in [9, (2.53)-(2.54)], and gives explicitly the relative bound for H_{I} with respect to H_{0}. Note that this bound holds for any interaction operator H_{I} of the form (2.3)-(2.5), as soon as the kernels $G^{(\alpha)}$ fulfil Hypothesis 2.1.

Lemma A.5. For any $\eta>0, \beta>0$, and $\psi \in \mathcal{D}\left(H_{0}\right)$, we have

$$
\begin{align*}
& \left\|H_{I} \psi\right\| \\
& \leq \\
& \quad 6 \sum_{\alpha=1,2}\left\|G^{(\alpha)}\right\|^{2}\left(\frac{1}{2 m_{W}}\left(\frac{1}{m_{1}^{2}}+1\right)+\frac{\beta}{2 m_{W} m_{1}^{2}}+\frac{2 \eta}{m_{1}^{2}}(1+\beta)\right)\left\|H_{0} \psi\right\|^{2} \tag{A.12}\\
& \quad+\left(\frac{1}{2 m_{W}}\left(1+\frac{1}{4 \beta}\right)+2 \eta\left(1+\frac{1}{4 \beta}\right)+\frac{1}{2 \eta}\right)\|\psi\|^{2} .
\end{align*}
$$

Appendix B

Intervals/sequences

$$
\begin{aligned}
\gamma & =1-\delta /\left(2 m_{1}-\delta\right) \\
\sigma_{0} & =2 m_{1}+1, \sigma_{1}=m_{1}-\delta / 2, \sigma_{n+1}=\gamma \sigma_{n}(n \geq 1) \\
\tau & =1-\delta /\left(2\left(2 m_{1}-\delta\right)\right)
\end{aligned}
$$

Functions

$$
\begin{aligned}
& w^{(1)}\left(\xi_{1}\right)=\left(\left|p_{1}\right|^{2}+m_{1}^{2}\right)^{\frac{1}{2}}, \quad w^{(2)}\left(\xi_{2}\right)=\left|p_{2}\right|, \quad w^{(3)}\left(\xi_{3}\right)=\left(|k|^{2}+m_{W^{2}}^{2}\right)^{\frac{1}{2}} \\
& \chi_{0} \in C^{\infty}(\mathbb{R},[0,1]), \chi_{0}=1 \quad \text { on }(-\infty, 1] . \\
& \chi_{\sigma}(p)=\chi_{0}(|p| / \sigma), \quad \tilde{\chi}^{\sigma}(p)=1-\chi_{\sigma}(p) \\
& \chi^{(\tau)}(\lambda)= \begin{cases}1 & \text { for } \lambda \in(-\infty, \tau] \\
0 & \text { for } \lambda \in[1, \infty)\end{cases} \\
& \chi_{n}^{(\tau)}\left(p_{2}\right)=\chi^{(\tau)}\left(\left|p_{2}\right| / \sigma_{n}\right) \\
& f(\lambda)=\left\{\begin{array}{ll}
1 & \text { if } \lambda \in\left[\left(\gamma-\epsilon_{\gamma}\right)^{2}, \gamma+\epsilon_{\gamma}\right] \\
0 & \text { if } \lambda>\gamma+2 \epsilon_{\gamma} \\
0 & \text { if } \lambda<\left(\gamma-2 \epsilon_{\gamma}\right)^{2}
\end{array}, \quad f_{n}(\lambda)=f\left(\lambda / \sigma_{n}\right)\right.
\end{aligned}
$$

Spaces

$$
\begin{array}{ll}
\Sigma_{1}=\mathbb{R}^{3} \times\{-1 / 2,1 / 2\} & \Sigma_{2}=\mathbb{R}^{3} \times\{-1,0,1\} \\
\Sigma_{1}^{\sigma}=\Sigma_{1} \cap\left\{\left(p_{2}, s_{2}\right) ;\left|p_{2}\right| \geq \sigma_{2}\right\}, & \Sigma_{1, \sigma}=\Sigma_{1} \cap\left\{\left(p_{2}, s_{2}\right) ;\left|p_{2}\right|<\sigma\right\} \\
\Sigma_{n}^{n+1}=\Sigma_{1} \cap\left\{\left(p_{2}, s_{2}\right) ; \sigma_{n+1} \leq\left|p_{2}\right| \leq \sigma_{n}\right\} &
\end{array}
$$

Electron Fock space: $\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right)$
Neutrino Fock space: $\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right)$
Boson Fock space: $\mathfrak{F}_{s}\left(L^{2}\left(\Sigma_{2}\right)\right)$

$$
\begin{array}{ll}
\mathfrak{F}_{2}^{\sigma}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}^{\sigma}\right)\right), & \mathfrak{F}_{2, \sigma}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1, \sigma}\right)\right) \\
\mathfrak{F}^{\sigma}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{1}\right)\right) \otimes \mathfrak{F}_{2}^{\sigma} \otimes \mathfrak{F}_{W}, & \mathfrak{F}_{\sigma}=\mathfrak{F}_{2, \sigma} \\
\mathfrak{F}_{n}^{n+1}=\mathfrak{F}_{a}\left(L^{2}\left(\Sigma_{n}^{n+1}\right)\right) &
\end{array}
$$

Hamiltonians

$$
\begin{aligned}
H_{0}^{(2) \sigma} & =\int_{\left|p_{2}\right|>\sigma} w^{(2)}\left(\xi_{2}\right) c^{*}\left(\xi_{2}\right) c\left(\xi_{2}\right) \mathrm{d} \xi_{2} \\
H_{0, \sigma}^{(2)} & =\int_{\left|p_{2}\right| \leq \sigma} w^{(2)}\left(\xi_{2}\right) c^{*}\left(\xi_{2}\right) c\left(\xi_{2}\right) \mathrm{d} \xi_{2} \\
H_{0}^{\sigma} & =\left.H_{0}\right|_{\mathfrak{F}} \\
H_{I, \sigma}(G) & =H_{I}\left(\tilde{\chi}^{\sigma}\left(p_{2}\right) G\right) \\
H_{\sigma} & =H_{0}+g H_{I, \sigma} \\
H^{\sigma} & =H_{0}^{(1)}+H_{0}^{(2) \sigma}+H_{0}^{(3)}+g H_{I, \sigma} \\
H_{n} & =H_{\sigma_{n}} \\
H^{n} & =H^{\sigma_{n}} \\
H_{0}^{n} & =H_{0}^{\sigma_{n}} \\
H_{+}^{n} & =H^{n}-E^{n}=H^{n}-\inf \operatorname{Spec}\left(H^{n}\right) \\
H_{0, n}^{n+1} & =\int w^{(2)}\left(\xi_{2}\right) c^{*}\left(\xi_{2}\right) c\left(\xi_{2}\right) \mathrm{d} \xi_{2} \\
& \sigma_{n+1} \leq\left|p_{2}\right|<\sigma_{n} \\
\tilde{H}_{+}^{n} & =H_{+}^{n} \otimes \mathbf{1}_{n}^{n+1}+\mathbf{1}_{n} \otimes H_{0, n}^{n+1} \\
H_{I, n}^{n+1} & =H_{I}\left(\left(\left(\tilde{\chi}^{\sigma_{n+1}}\left(p_{2}\right)-\tilde{\chi}^{\sigma_{n}}\left(p_{2}\right)\right) G\right)\right.
\end{aligned}
$$

Conjugate operators

$$
\begin{aligned}
& a_{n}^{(\tau)}=\chi_{n}^{(\tau)}\left(p_{2}\right) \frac{1}{2}\left(p_{2} \cdot i \nabla_{p_{2}}+i \nabla_{p_{2}} \cdot p_{2}\right) \chi_{n}^{(\tau)}\left(p_{2}\right) \\
& A_{n}^{(\tau)}=\mathbf{1} \otimes \mathrm{d} \Gamma\left(a_{n}^{(\tau)}\right) \otimes \mathbf{1}
\end{aligned}
$$

References

[1] Ammari, Z.: Scattering theory for a class of fermionic Pauli-Fierz model. J. Funct. Anal. 208(2), 302-359 (2004)
[2] Amour, L., Grébert, B., Guillot, J.-C.: A mathematical model for the Fermi weak interactions. Cubo 9(2), 37-57 (2007)
[3] Amrein, W.O., Boutet de Monvel, A., Georgescu, V.: C_{0}-groups, commutator methods and spectral theory of N-body Hamiltonians. In: Progress in Mathematics, vol. 135. Birkhäuser Verlag, Basel (1996)
[4] Bach, V., Fröhlich, J., Pizzo, A.: Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Commun. Math. Phys. 264(1), 145-165 (2006)
[5] Bach, V., Fröhlich, J., Sigal, I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207(2), 249-290 (1999)
[6] Barbaroux, J.-M., Dimassi, M., Guillot, J.-C.: Quantum electrodynamics of relativistic bound states with cutoffs II. Contemp. Math. 307(6), 9-14 (2002)
[7] Barbaroux, J.-M., Dimassi, M., Guillot, J.-C.: Quantum electrodynamics of relativistic bound states with cutoffs. J. Hyperbolic Differ. Equ. 1(2), 271-314 (2004)
[8] Barbaroux, J.-M., Guillot, J.-C.: Limiting absorption principle at low energies for a mathematical model of weak interactions: the decay of a boson. C. R. Acad. Sci. Paris Ser. I 347(17-18), 1087-1092 (2009)
[9] Barbaroux, J.-M., Guillot, J.-C.: Spectral theory for a mathematical model of the weak interaction: the decay of the intermediate vector bosons $W^{ \pm}$. I. Adv. Math. Phys. ID 978903 (2009). arXiv:0904.3171
[10] Chen, T., Faupin, J., Fröhlich, J., Sigal, I.M.: Local decay in non-relativistic QED. Commun. Math. Phys. (to appear)
[11] Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11(4), 383-450 (1999)
[12] Dereziński, J.: Introduction to representations of the canonical commutation and anticommutation relations. In: Large Coulomb Systems. Lecture Notes in Physics, vol. 695, pp. 63-143. Springer, Berlin (2006)
[13] Dimassi, M., Guillot, J.C.: The quantum electrodynamics of relativistic states with cutoffs I. Appl. Math. Lett. 16(4), 551-555 (2003)
[14] Fröhlich, J., Griesemer, M., Sigal, I.M.: Spectral theory for the standard model of non-relativistic QED. Commun. Math. Phys. 283(3), 613-646 (2008)
[15] Georgescu, V., Gérard, C.: On the virial theorem in quantum mechanics. Commun. Math. Phys. 208, 275-281 (1999)
[16] Gérard, C.: A proof of the abstract limiting absorption principles by energy estimates. J. Funct. Anal. 254(11), 2707-2724 (2008)
[17] Georgescu, V., Gérard, C., Møller, J.S.: Spectral theory of massless Pauli-Fierz models. Commun. Math. Phys. 249(1), 29-78 (2004)
[18] Golénia, S., Jecko, T.: A new look at Mourre's commutator theory. Complex Oper. Theory 1(3), 399-422 (2007)
[19] Greiner, W., Müller, B.: Gauge Theory of Weak Interactions. Springer, Berlin (1989)
[20] Griesemer, M., Lieb, E.H., Loss, M.: Ground states in non-relativistic quantum electrodynamics. Inv. Math. 145, 557-595 (2001)
[21] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften, vol. 132, 1st edn. Springer, Berlin (1966)
[22] Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)
[23] Sahbani, J.: The conjugate operator method for locally regular Hamiltonians. J. Oper. Theory 38(2), 297-322 (1997)
[24] Weinberg, S.: The Quantum Theory of Fields, vol. I. Foundations. Cambridge University Press, Cambridge (2005)
[25] Weinberg, S.: The Quantum Theory of Fields, vol. II. Modern Applications. Cambridge University Press, Cambridge (2005)

Walter H. Aschbacher and Jean-Claude Guillot
Centre de Mathématiques Appliquées
UMR 7641
École Polytechnique-CNRS
Route de Saclay
91128 Palaiseau Cedex, France
e-mail: walter.aschbacher@polytechnique.edu;
aschbacher@ma.tum.de;
jean-claude.guillot@polytechnique.edu
Jean-Marie Barbaroux
Centre de Physique Théorique
Luminy Case 907
13288 Marseille Cedex 9, France
and
Département de Mathématiques
Université du Sud Toulon-Var
83957 La Garde Cedex, France
e-mail: barbarou@univ-tln.fr
Jérémy Faupin
Institut de Mathématiques de Bordeaux
UMR-CNRS 5251
Université de Bordeaux 1
351 cours de la Libération
33405 Talence Cedex, France
e-mail: jeremy.faupin@math.u-bordeaux1.fr

Communicated by Volker Bach.
Received: July 25, 2010.
Accepted: April 11, 2011.

