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Resolvent Estimates for Normally
Hyperbolic Trapped Sets

Jared Wunsch and Maciej Zworski

Abstract. We give pole free strips and estimates for resolvents of semi-
classical operators which, on the level of the classical flow, have normally
hyperbolic smooth trapped sets of codimension two in phase space. Such
trapped sets are structurally stable and our motivation comes partly from
considering the wave equation for Kerr black holes and their perturba-
tions, whose trapped sets have precisely this structure. We give applica-
tions including local smoothing effects with epsilon derivative loss for the
Schrödinger propagator as well as local energy decay results for the wave
equation.

1. Introduction and Statement of Results

We give pole-free strips and estimates for resolvents of semiclassical opera-
tors which, on the level of the classical flow, have normally hyperbolic smooth
trapped sets of codimension two in phase space. Such trapped sets are structur-
ally stable—see Sect. 1.2—and our motivation comes partly from considering
the wave equation for slowly rotating Kerr black holes, whose trapped pho-
ton spheres have precisely that dynamical structure—see Sect. 2. From the
semiclassical point of view, an example to keep in mind is given by

P (z) = −h2Δ + V (x) − 1 − z, V ∈ C∞
c (Rn; R),

with the classical flow described by Newton’s equations:

x′(t) = 2ξ(t), ξ′(t) = −V ′(x(t)), ϕt(x(0), ξ(0)) def= (x(t), ξ(t)).

The incoming and outgoing tails, Γ±, and the trapped set, K, are defined by

Γ± = {(x, ξ) : ∃M, |ϕt(x, ξ)| ≤ M, t → ∓∞}, K
def= Γ+ ∩ Γ−.

As explained in Sect. 2, it is important to consider more general families of
operator pencils. The general assumptions will be given in Sect. 1.1, but the
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result is already non-trivial in the case presented above: X = R
n, and P (z) =

P − z, P = −h2Δ + V (x) − 1.

Theorem 1. Suppose that P (z) is a family of operators satisfying the assump-
tions in Sect. 1.1, with a trapped set K which is smooth and normally hyperbolic
in the sense of Sect. 1.2 and contained in U1 � X.

If the symbol of ∂zP (0) is strictly negative near p−1(0) ∩ T ∗
U2
X and W ∈

C∞(X; R) satisfies

W ≥ 0, W�U1= 0, W�X\U2= 1,

where π(K) ⊂ U1 ⊂ U2 � X, then there exist δ0, ν0 > 0 such that for |z| < δ0
we have

‖(P (z) − iW )−1‖L2→L2 �

⎧
⎨

⎩

1/ Im z, Im z > 0,
h−1 log(1/h), Im z = 0,
h−k, Im z > −ν0h,

(1.1)

and in particular, z �→ (P (z) − iW )−1 is holomorphic in {|z| < δ0, Im z >
−ν0h}.

This result is related to the general principle in scattering theory which
in mathematics goes back at least to the work of Lax-Phillips and Morawetz:
the nature of trapping of rays is related to the distance of resonances, which is
to say poles of the analytic continuation of the resolvent, to the real axis. That
in turn is related to energy decay, local smoothing and other properties of the
propagators. The closeness of these resonances to the real axis is in particular
related to the stability of the trapped trajectories, with stable trapping giv-
ing rise to resonances close to the axis—heuristically, these are close to being
eigenvalues. By contrast, trapped orbits near which the dynamics is hyperbolic
leads to resonances bounded away from the axis—see [47] for a general intro-
duction. In [30,32], a gap was established when hyperbolic trapped sets are
fractal and a certain topological pressure condition is satisfied. In Theorem 1,
the trapped set is smooth and has the maximal dimension. We assume that
the flow is r-normally hyperbolic for every r on this trapped manifold in the
sense of Hirsch et al. [28] and Fenichel [21]. That assumption is structurally
stable—see Sect. 1.2.

The proof of Theorem 1 is based on a positive commutator argument
with an escape function (4.6) in a slightly exotic symbolic class described
in Sects. 3.2–3.4. A similar logarithmically flattened escape function for more
complicated (fractal) trapped sets was used in [40]. For the semiclassical analy-
sis near closed hyperbolic orbits, similar escape functions were used by
Christianson in [12,13]. In a way, the situation here is simpler as we assume
that the trapped set has codimension two. However, following our arguments
might simplify the treatment of closed orbits as well.

In Theorem 2 in Sect. 5 we present a closely related result for resonances.
For operators P (z) = −h2Δ+V (x)−1−z with V (x) holomorphic and decaying
in a conic neighborhood of R

n in C
n (in fact, for a larger class of operators with

real analytic coefficients in R
n—[27]), a more precise resonance-free region was
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obtained by Gérard-Sjöstrand [26]. The novelty in Theorems 1 and 2 lies in
the resolvent bounds and the applicability to C∞ coefficients. The estimates
in microlocally weighted spaces of holomorphic functions in [26] do not imme-
diately imply polynomial bounds in h, in the resonance-free strips. For more
recent results involving scattering with hyperbolic trapped sets, we refer to
[1,5,32–34] and references given there.

As examples of immediate applications of Theorem 1 we give the follow-
ing corollaries which follow immediately from the results of [15]:

Corollary 1. Suppose that X is a scattering manifold (that is a manifold with
an asymptotically conic metric) and −Δg is the non-negative Laplace–Beltrami
operator on X. Suppose that the trapped set for the geodesic flow on S∗X is
normally hyperbolic in the sense of Sect. 1.2. If r(x) = (1 + d(x, x0)2)

1
2 , where

d(x, x0) is the distance function to any fixed point x0 ∈ X, then for λ > 1

‖r− 1
2 −0(−Δg − λ± i0)−1r− 1

2 −0‖L2(X)→L2(X) ≤ C log λ
λ

.

This implies local smoothing for the Schrödinger equation with a tiny
loss of regularity:

Corollary 2. Under the assumptions of Corollary 1 we have the following esti-
mate valid for any T > 0 (large) and ε, δ > 0 (small):

T∫

0

‖r− 1
2 −δ exp(itΔg)u‖2

H
1
2 −ε(X)

dt ≤ CT,ε,δ‖u‖2
L2(X).

Based on this, and assuming that the curvature of the asymptotically
conic manifold is negative (in every compact set), the results of [8] show that
Strichartz estimates hold with no loss at all.

Our motivation for considering this geometric set-up comes from the Kerr
black hole. This is a family of Lorentzian metrics which solve the Einstein
equations and describe rotating black holes. We refer to [14] for a survey of
mathematical progress on the wave equation for these metrics and to [43] for
some more recent results and references. In the physics literature, the decay of
waves has been studied in terms of quasinormal modes which are the analogues
of scattering resonances in this setting—see [31] for a physics introduction and
[4] for a recent mathematical result which provided an expansion of waves in
the Schwarzschild–De Sitter background in terms of resonances.

Obstructions to rapid energy decay occur, heuristically, due to separate
mechanisms at high and low frequencies. At high frequencies, it is expected
that the geometry of the trapped set plays a key role, and it is on this geom-
etry that we focus our attention. As recalled below, the trapped set of Kerr is
indeed an r-normally hyperbolic manifold (within the energy surface) for all
r, diffeomorphic to T ∗S2 (or S∗S2 if we restrict to fixed energy). It is thus of
interest to explore the limits placed on exponential local energy decay by this
trapping mechanism, and this is exactly the role of resonances. That is to say,
as the Kerr metric is stationary, we may Fourier transform away the “time”
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variable and try to study the poles of the putative analytic continuation of the
resulting stationary operator across its continuous spectrum. This motivates
considering general operator pencils P (z) in place of P − z.

In the case of Kerr the principal obstacle, compared to the Schwarzschild
analysis [4] is the failure of ellipticity of the stationary operator P (z) near
the event horizon of the black hole, within the so-called “ergo-region.” This
failure reflects the failure of our timelike Killing field (with respect to which
we have Fourier transformed) to be timelike in the region in question. Thus,
we reduce our question to a simpler model problem by cutting away the ergo-
region. To do this, we modify our stationary operator by considering only the
form of the operator near its trapped set and then adding a complex absorb-
ing potential to damp waves propagating outward from it. We then consider
the complex eigenvalues of the resulting non-self-adjoint operator as a proxy
for resonances. Such a construction is rigorously known to approximate res-
onances in certain cases [41]. Thus, Theorem 1 yields a gap in the spectrum
of the operator P (z) − iW near the real axis, at high frequency (i.e., in the
semiclassical limit). Recently, a meromorphic continuation of P (z)−1 and a
rigorous definition of quasinormal modes for Kerr–De Sitter black holes have
been obtained by Dyatlov [19].

Our paper is concerned only with the analysis near the trapped set. Unlike
in most other mathematical works on Schwarzschild and Kerr black holes—
see for instance [4,2,17,18,22–24,35,44]—this analysis of the trapped set does
not use separation of variables and properties of the Regge-Wheeler potential.
It is carried out in a way applicable to the perturbations of the metric. The
structure of the trapped set does not change under those perturbations, but
one cannot separate variables anymore—see the end of Sects. 1.2 and 2 for
more details.

To indicate how the local results near the trapped set can be used to
obtain energy decay, we present Theorem 3 in Sect. 5. Here is its simplest
version:

Corollary 3. Suppose that X = X0 
 (Rn\B(0, R))
 · · · 
 (Rn\B(0, R)), where
X0 is a smooth compact Riemannian manifold with boundary, with the metric
g equal to the usual Euclidean metric in the infinite ends, R

n\B(0, R). If n is
odd and the trapped set for the geodesic flow on S∗X is normally hyperbolic
in the sense of Sect. 1.2, then the local energy decays exponentially: for any
ε > 0, there exists α = α(ε) > 0, such that if

(∂2
t − Δg)u = 0, u�t=0= u1, ∂tu�t=0= u1, suppuj ⊂ U � X,

then for any V � X we have
∫

V

(|u(t, x)|2 + |∂tu(t, x)|2
)
dx ≤ Ce−αt(‖u0‖2

H1+ε + ‖u1‖2
Hε), (1.2)

where C depends on U, V , and ε.

Comments on notation. For a set A, we denote by neigh(A) a small open neigh-
borhood of A. For V , a Banach space, f = OV (g) means that ‖f‖V ≤ C|g|,
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with the similar notation for operators: T = O(g) : V → W means ‖Tu‖W ≤
C|g|‖u‖V . Unless specified by a subscript C denotes a constant the value of
which may vary throughout the paper. The notation a � b means that a ≤ Cb.

1.1. Global Assumptions on P (z)

We make abstract assumptions on P (z) in order to allow very general end
structures. The assumptions are in some sense the reversal of the black box
assumptions of [10,38]: we specify the operator in the compact interaction
region but allow an almost arbitrary structure outside. That is natural since
we are adding the complex absorbing potential. Many results about resonances
can be rephrased in this setting. In some cases, they can then be “glued” to
obtain global results as was done for scattering manifolds in [15]. Some infin-
ities appear remarkably resilient to that approach, in particular the ends of
conformally compact, that is asymptotically hyperbolic, manifolds. However,
we expect that the Kerr metrics can be “glued” to our local construction.

For a concrete example of operators satisfying the abstract assumptions
presented here see Sect. 5.

We consider a holomorphic family of operators,

z �−→ P (z), z ∈ D(0, δ1),

depending implicitly on the semiclassical parameter h. These operators act
on H, a complex Hilbert space with an orthogonal decomposition

H = L2(X0) ⊕ H1,

where X0 � X is an open submanifold of X with a smooth boundary.
The corresponding orthogonal projections are denoted by 1l0u and 1l1u,

respectively, where u ∈ H. The operators

P (z) : H −→ H
with the domain D, independent of z (and of the implicit parameter h), and
satisfying

1l0D = H2(X0), ∂zP (z) : D −→ H,
see [38] for a more precise meaning of the first statement.

We also assume that

1l0P (z)u = P0(z)(u�X0), for u ∈ D, (1.3)

where P0(z) ∈ Ψ2,0
h (X), for real values of z, P0(z) is a formally self-adjoint

operator on L2(X) given by

P = p(x, hD) + hp1(x, hD;h), p1(x, hD) ∈ Ψ2,0
h (X), p(x, ξ) ≥ 〈ξ〉2/C−C;

see Sect. 3.1 for the definition of the classes of operators, and for the conditions
on X.

We assume that P (z) is self-adjoint for z ∈ R, and that P (z) is holomor-
phic for z ∈ C, |z| < δ1. Hence,

P (z) = P (z̄)∗, |z| < δ1, (P (z) − i)−1 : H −→ D, Im z = 0, |z| < δ1.
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This implies boundedness in a complex neighborhood since P (z)−P (Re z)=
O(| Im z|) : D → H:

(P (z) − i)−1 : H −→ D, for |z| < δ2. (1.4)

The assumption that

1l0(P − i)−1 : H −→ H is a compact operator,

and estimates in Sect. 4.1 imply that (P (z)− iW )−1 : H → H is meromorphic
in D(0, δ1). However, we do not make this assumption and prove the estimates
on the resolvent directly.

As stated in Theorem 1, we further make local assumptions near the
trapped set as follows: the symbol of ∂zP (0) is strictly negative near p−1(0) ∩
T ∗
U2
X, and W ∈ C∞(X; R) satisfies

W ≥ 0, W�U1= 0, W�X\U2= 1,

where π(K) ⊂ U1 ⊂ U2 � X. Our dynamical assumptions near K follow in
the next section.

Finally, we will consider the operator with complex absorbing potential
given by

P (z) − iW,

where we define the operator W by

1l0Wu = W (x)u�X0

with W (x) a smooth function equal to 0 on U1 and 1 on X0\U2, and

1l1Wu = 1l1u.

1.2. Dynamical Assumptions

We now discuss the dynamical hypotheses for Theorem 1. We first state the
minimal hypotheses needed for the proof of the theorem to apply.

Let ϕt denote the flow generated by the Hamilton vector field Hp. Let
r denote the distance function to a fixed point in X and locally define the
backward/forward trapped sets by:

Γ± =
{

ρ ∈ π−1(U2) : lim
t→∓∞ r(ϕt(ρ)) �= ∞

}

.

Let Γλ± = Γ± ∩ p−1(λ). We can then define the trapped set

K = Γ+ ∩ Γ−

and let Kλ = K ∩ p−1(λ).

Dynamical Hypotheses. 1. There exists δ > 0 such that dp �= 0 on p−1(λ)
for |λ| < δ.

2. Γ± are codimension-one smooth manifolds intersecting transversely at
K (It is not difficult to verify that Γ± must then be coisotropic and K
symplectic).
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3. The flow is hyperbolic in the normal directions to K within the energy
surface: there exist subbundles1 E± of TKλ

(Γλ±) such that

TKλ
Γλ± = TKλ ⊕ E±,

where

dϕt : E± → E±

and there exists θ > 0 such that for all |λ| < δ,

‖dϕt(v)‖ ≤ Ce−θ|t|‖v‖ for all v ∈ E∓, ±t ≥ 0. (1.5)

These assumptions can be verified directly for the trapped set of a slowly
rotating Kerr black hole (i.e., when a is small), but they are not stable under
perturbations, hence do not obviously apply to perturbations of Kerr. How-
ever, we will show that Kerr in fact satisfies a more stringent and well-studied
hypothesis that is stable under perturbation, and that implies the Dynamical
Hypotheses above. In particular, the standard dynamical notion of r-normal
hyperbolicity implies items (2) and (3), and is stable under perturbations,
modulo possible loss of derivatives:

Recall that the flow in the energy surface p−1(λ) near Kλ is eventually
absolutely r-normally hyperbolic for every r in the sense of [28, Definition 4] if
its time-one flow is a Cr map preserving a manifold Kλ (which a priori need
only lie C1 but is then automatically in Cr) such that for all ρ ∈ Kλ, there
exists a splitting of the tangent bundle into subbundles stable under the flow

Tρp
−1(λ) = TρKλ ⊕ E+

ρ ⊕ E−
ρ , dϕtρ(E

±
ρ ) = E±

ϕt(ρ),

and for each r ∈ N there exist θ0 > 0 and C > 0 (both depending on r) such
that for t > 0,

sup
ρ∈Kλ

∥
∥dϕtρ�TKλ

∥
∥r ≤ Ce−tθ0 inf

ρ∈Kλ

∥
∥dϕ−t

ρ �E+

∥
∥−1

,

(1.6)
inf
ρ∈Kλ

∥
∥dϕ−t

ρ �TKλ

∥
∥−r ≥ C−1etθ0 sup

ρ∈Kλ

∥
∥dϕtρ�E−

∥
∥

with ‖•‖ some (indeed, any) fixed Finsler metric. This assumption thus entails
not merely that there is expansion and contraction in the normal direction to
K but also that this expansion/contraction is considerably stronger than any
expansion and contraction occurring in the flow on K itself. We remark that
one may easily check that (1.6) is stronger than (1.5) by noting that since ϕt

are all diffeomorphisms, fixing a Riemannian metric gives

sup
ρ∈TKλ

∥
∥dϕt(ρ)

∥
∥ ≥ 1

for all t; hence, for instance, the first line of (1.6) gives the estimate (1.5) for
the bundle E+.

We may replace hypotheses (2) and (3) with the assumption that for
|λ| < δ, the trapped set Kλ has the property that the flow near it in p−1(λ) is

1 The bundles E± may of course depend on λ, but we omit this dependence from the nota-
tion.
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eventually absolutely r-normally hyperbolic for every r. The existence of man-
ifolds Γ± tangent to E± and satisfying the Dynamical Hypotheses, as well as
the structural stability of these assumptions, are classical theorems of Feni-
chel [21] and Hirsch–Pugh–Shub [28]. The resulting perturbed stable/unstable
and trapped manifolds are only finitely differentiable in general, as r-normal
hyperbolicity for each r is the structurally stable property, and this only entails
Cr regularity; on the other hand, this r can be chosen as large as desired. While
we stated the theorems above with C∞ hypotheses for simplicity, it is manifest
from the proofs that the hypotheses could be reduced to insisting that Γ±
be in CK for sufficiently large K; hence, those results apply to the perturbed
trapped sets arising here.

Thus, once we show in the following section that the trapped set for Kerr
satisfies the r-normal hyperbolicity assumptions, we will know that pertur-
bations of Kerr continue to satisfy the Dynamical Hypotheses, with as much
differentiability as is required.

2. Trapping for Kerr Black Holes

The hypotheses in the preceding sections are motivated by the example of the
slowly rotating Kerr black hole. In this family of examples, describing the
geometry of a rotating black hole, the structure of the trapped set is as
described above, while the global structure of the space-time is more com-
plex. The proof that the Kerr trapped set is r-normally hyperbolic might be
a new contribution.

We now recall the Kerr geometry and verify that the hypotheses from the
preceding section hold in a spatial neighborhood of the trapped set, at least
for small values of the parameter a describing the angular momentum per unit
mass of the black hole.

The Kerr metric is a metric given in “Boyer-Lindquist” coordinates by

g =
Δ
ρ2

(
dt− a sin2 θdϕ

)2 − ρ2

(
dr2

Δ
+ dθ2

)

− sin2 θ

ρ2

(
adt− (r2 + a2) dϕ

)2
,

with

ρ2 = r2 + a2 cos2 θ,
Δ = r2 − 2Mr + a2.

We study this metric on R × (r+,∞) × S2 with

r+
def= M + (M2 − a2)1/2.

in this region, outside the “event horizon” r = r+, the metric is a nonsingu-
lar Lorentzian metric. The parameter a ∈ [0,M) is the rotational parameter
(angular momentum per unit mass), and M is the mass. When a = 0 we have
spherical symmetry, and the Kerr metric reduces to the Schwarzschild metric.
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The d’Alembertian in the Kerr metric is given by

� =
(

(r2 + a2)2

Δ
− a2 sin2 θ

)

∂2
t

+
4Mar

Δ
∂t∂ϕ +

(
a2

Δ
− 1

sin2 θ

)

∂2
ϕ − ∂rΔ∂r − 1

sin θ
∂θ sin θ∂θ.

Thus, setting �u = 0, if u is of the form eiEtvE(r, θ, ϕ), we find that vE
satisfies PEvE = 0, where PE is given by

−E2

(
(r2 + a2)2

Δ
− a2 sin2 θ

)

+ iE
4Mar

Δ
∂ϕ

−
(

−a2

Δ
+

1
sin2 θ

)

∂2
ϕ − ∂rΔ∂r − 1

sin θ
∂θ sin θ∂θ.

Setting E = (1 + hw)/h (and dropping the subscript on v) we have
(

(1 + 2hw)
(

− (r2 + a2)2

Δ
+ a2 sin2 θ

)

− (1 + hw)
4Mar

Δ
hDϕ

+
(

−a2

Δ
+

1
sin2 θ

)

(hDϕ)2 + (hDr)Δ(hDr)

+
1

sin θ
(hDθ) sin θ(hDθ) +O(h2)

)

v = 0. (2.1)

Thus, if we set

P̃ =
(

− (r2 + a2)2

Δ
+ a2 sin2 θ

)

− 4Mar

Δ
(hDϕ)

+
(

−a2

Δ
+

1
sin2 θ

)

(hDϕ)2 + (hDr)Δ(hDr)

+
1

sin θ
(hDθ) sin θ(hDθ) +O(h2) (2.2)

and

Q̃ = 2
(

(r2 + a2)2

Δ
− a2 sin2 θ

)

+
4Mar

Δ
(hDϕ),

we are dealing with the equation

(P̃ − hwQ̃)u = 0.

The operator P̃ has disagreeable asymptotics near the ends r = r+,∞; how-
ever, we thus choose to multiply our equation through by Δ/r4. Thus, we let
P = (Δ/r4)P̃ and Q = (Δ/r4)Q̃, so that

P =
(

− (r2 + a2)2

r4
+
a2Δ
r4

sin2 θ

)

− 4Ma

r3
(hDϕ)

+
(

−a2

r4
+

Δ
r4 sin2 θ

)

(hDϕ)2 +
Δ
r4

(hDr)Δ(hDr)

+
Δ

r4 sin θ
(hDθ) sin θ(hDθ) +O(h2) (2.3)
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and

Q = 2
(

(r2 + a2)2

r4
− Δ
r4
a2 sin2 θ

)

+
4Ma

r3
(hDϕ),

and we are now interested to solutions of P (z)u = 0, with

P (z) = P − zQ, z = hw.

We are in the situation covered by Theorem 1 provided that we can verify the
hypotheses on P and P ′(0) = −Q. We note that P and Q are now self-adjoint
with respect to the volume form

r4

Δ

√
|g|dr dθ dϕ.

To see this, we write

P̃ =
(

− (r2 + a2)2

r4
+
a2

Δ
r4 sin2 θ

)

− 4Ma

r3
(hDϕ) + P ′

where P ′ is our original, formally self-adjoint operator �, applied to functions
independent of the t variable (i.e., on the quotient of the space-time by the ∂t
flow); the Dϕ terms are self-adjoint by axial symmetry of g.

The hypotheses are, we claim, satisfied in a subset {r > r0} (for some
r0 > r+) that includes the trapped set and the r → +∞ end. The hypothe-
ses are not globally satisfied, however, owing to the structure of P near the
event horizon: not only is this end not asymptotically Euclidean, but the oper-
ator P is not even elliptic in a uniform neighborhood of r = r+ : inside the
“ergosphere” where

−a2

Δ
+

1
sin2 θ

< 0,

P is not elliptic (i.e., the Killing vector field ∂t for the Kerr metric fails to be
timelike). Thus, we do not at this time know how to fit the global structure
of the Kerr metric into the assumptions made in Sect. 1.1; for the moment,
we would instead have to consider a Kerr metric glued to a Euclidean end in
place of the r → r+ end.

In what follows, we verify that the structure of the Kerr trapped set, at
least, is of the desired form. Letting

ξ dr + α dθ + β dϕ

denote the canonical one-form on T ∗X, we find that the semiclassical principal
symbol of P̃ = (r4/Δ)P is2

p = Δξ2 + α2 +
(

1
sin2 θ

− a2

Δ

)

β2 − 4Mar

Δ
β −

(
(r2 + a2)2

Δ
− a2 sin2 θ

)

(2.4)

2 In our analysis of the null bicharacteristics, we study the operator (r4/Δ)P , which of course
has no effect on the dynamics on Kλ.
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and the Hamilton vector field is given by

(1/2)H = ξΔ∂r + α∂θ −
(
a(aβ + 2Mr) − βΔcsc2 θ

)

Δ
∂ϕ

+
(
β2 cot θ csc2 θ − a2 sin θ cos θ

)
∂α

+

(

(M−r)ξ2+

(
aβ(M−r)+rΔ+M(a2−r2)) (aβ+(a2+r2))

Δ2

)

∂ξ.

(2.5)

We note (following Carter [11]) that the quantities

p, β, and K = α2 +
(

a sin θ − β

sin θ

)2

are all conserved under the H-flow, and in involution, both on and off the
energy surface {p = 0}.

Under the H-flow, for each fixed β, the sets of variables (θ, α) and (r, ξ)
evolve autonomously, with K describing a conserved quantity in the (θ, α)
plane. This demonstrates that the motion in the (θ, α) variables is periodic.
Moreover,

K − p = −2aβ − Δξ2 +
a2β2 + 4Marβ + (r2 + a2)2

Δ

is conserved and (for β fixed) dependent solely on (r, ξ). This last observa-
tion means that in fact under the rescaled flow, generated by (1/2Δ)H, the
quantity

−ṙ2 − 2aβ +
a2β2 + 4Marβ + (r2 + a2)2

Δ

is constant. For a = 0, this quantity is simply

−ṙ2 +
r4

Δ
.

The “potential” − r4

Δ has a nondegenerate local maximum at r = 3M ; this is its
only critical point outside the event horizon. Thus, this rescaled flow tends to
r = +∞ or r = r+ except when r = 3M, where it has an (unstable) invariant
set (r = 3M, ξ = 0). More generally, for a small, the structure is more or less
the same: for each given β, there is a unique local maximum of the potential

vβ(r) = 2aβ − a2β2 + 4Marβ + (r2 + a2)2

Δ

outside r = r+. Thus, the trapped set K consists of a family of orbits on which
r = r(β), ξ = 0, with r(β) given by the critical point of vβ in the exterior of
the black hole. The invariance of p and β on the four-dimensional trapped set
r = r(β), ξ = 0 with coordinates (θ, ϕ, α, β) yields the desired integrability.
(Note that p and β are manifestly in involution.)
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To verify the hypothesis (1.5), we note that since the center manifold is
given by r = r(β), ξ = 0, we need only verify that the flow in r, ξ is hyperbolic
near these points. The linearization of this flow is simply

(
0 Δ(r)

B′(r) 0

)

,

where, by (2.5),

B(r) =

(
aβ(M − r) + rΔ +M(a2 − r2)

)
(aβ + (a2 + r2))

Δ2

The positivity of B′(r) at r = r(β) is equivalent to the positivity of A′(r),
where

A(r) =
(
aβ(M − r) + rΔ +M(a2 − r2)

)
(aβ + (a2 + r2)).

When a = 0, strict positivity is easily verified at r = r(β) = 3M ; again by
perturbation, it persists for small a.

We note that in the special case of the Schwarzschild metric (a = 0) we
can simply compute from (2.5) that at the trapped set r = 3M, ξ = 0 :

(
(r − 3M)′

ξ′

)

=
(

0 3M2

9 0

)(
r − 3M

ξ

)

+ O ((r − 3M)2 + ξ2
)
,

where primes denote derivatives under the flow generated by (1/2)H. Thus,
the unstable Liapunov exponent under the H-flow is 6

√
3M.

For any given β, let γ±
β denote the subsets of R

2
r,ξ given by the stable

and unstable manifolds of the fixed point (r = r(β), ξ = 0). As β is conserved
under the flow, the fibration

{(r, ξ, θ, ϕ, α, β) : (r, ξ) ∈ γ±
β } �→ (r = r(β), ξ = 0, θ, ϕ, α, β)

gives smooth fibrations of the stable and unstable manifolds of the flow (The
fibration is conserved under the flow since γ± and β are).

To check the hypotheses on Q = −P ′(0), we note that

σ(Q̃) + p =

(
(r2 + a2)2

Δ
− a2 sin2 θ

)

+

(

−a2

Δ
+

1

sin2 θ

)

β2 + nonnegative terms.

The first term on the right is bounded below by

r4 + a2r2 + 2Ma2r

Δ
while the second is bounded below by

β2 r
2 − 2Mr

Δ
. (2.6)

Hence, we obtain the positivity of σ(Q̃) (hence negativity of P ′(0)) in a spatial
neighborhood of the trapped set, provided a is not too large; recall that for
a = 0, the trapped set lies over r = 3M, where the latter term in (2.6) is safely
positive.

We now show that the hypotheses of Theorem 1 are indeed satisfied near
the trapped set not just for the slowly rotating Kerr metric itself, but for
smooth perturbations of such Kerr metrics. The crucial observation is that for
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a small, the Kerr metric is r-normally hyperbolic for every r, and that these
properties are structurally stable, so that an invariant manifold diffeomorphic
to S∗(S2) persists, with the flow near it remaining normally hyperbolic. We
recall that the perturbed trapped set may cease to be infinitely differentiable:
for any r, a sufficiently small perturbation gives a trapped set in Cr, but the
required perturbation size may shrink as r → ∞. In practice, this need not
concern us as the proof of Theorem 1 only uses a finite (albeit unspecified)
number of derivatives.

Proposition 2.1. For a sufficiently small, there exists a neighborhood of K, such
that the flow generated by H is r-normally hyperbolic for each r, i.e., satisfies
(1.6). Hence, by the results of [28], for each r, any sufficiently small perturba-
tion of the Kerr metric also gives rise to an r-normally hyperbolic trapped set
(in Cr) satisfying the hypotheses of Sect. 1.2.

Proof. We have verified above that dϕt�E± satisfies

‖dϕtρ(v)‖ ≤ Ce−θ|t|‖v‖ for all v ∈ E∓
ρ , ±t ≥ 0,

for some θ > 0. To further verify (1.6), we also require estimates on dϕt�TK .
Recall that the flow on K is integrable for the simple reason that p and β
are both conserved (i.e., we only use axial symmetry here, not preservation of
K as well). Fixing the values of p, β foliates K into invariant tori on which
the flow is necessarily quasi-periodic. As a consequence of the quasi-period-
icity, away from any possible degenerate tori, we have action-angle variable
(I1, . . . , In) ∈ R

n, (θ1, . . . θn) ∈ (S1)n such that H =
∑
ωj(I)∂θj

, hence

d(ϕt(ρ), ϕt(ρ′))2 ∼
∑

(Ij − I ′
j)

2 +
(
θj − θ′

j + (ωj(I) − ωj(I ′)) t
)2

� d(ρ, ρ′)2(1 + 〈t〉2).
Thus,

∥
∥dϕt�TK

∥
∥ ≤ C〈t〉.

Near degenerate invariant tori, this argument breaks down and could in
principle fail (e.g., there can be hyperbolic closed orbits on surfaces of rota-
tion). However, we claim that the same estimate in fact holds globally on K;
it thus remains to check it near degenerate tori. Restricting p given by (2.4)
to the trapped set, where ξ = 0 and r = r(β), we find that dp and dβ are
linearly dependent only at α = 0, θ = π/2, i.e., at the equatorial orbits. (A
separate computation shows that orbits passing through the poles, i.e., with
β = 0 are not degenerate, even though the coordinate system employed here is
not valid near the poles.) Put another way, the functions β restricted to the set
K∩p−1(λ) has its only critical points along the set α = 0, θ = π/2, ϕ ∈ S1. In
the case of the Schwarzschild metric (a = 0), there are two values of β at which
this can occur, ±(E + r2/Δ), and they are respectively maxima and minima
nondegenerate in the sense of Morse-Bott. In particular, we may use coordi-
nates α, θ, ϕ on K ∩ p−1(λ), and for the Schwarzschild case, K = {r = 3M}
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and

β = ± sin θ
(

λ+
r4

Δ
− α2

)1/2

,

hence at the critical manifold θ = π/2, α = 0 we compute

β′′
αα = ∓(λ+ 27M2)−1/2, β′′

θθ = ∓(λ+ 27M2)1/2, β′′
αθ = 0.

This establishes nondegeneracy, which extends by continuity of second partial
derivatives for the Kerr case when a is small.

The behavior of an invariant torus in a three-dimensional energy sur-
face near a Morse-Bott maximum or minimum of a conserved quantity is well
understood (see, e.g., [3]): it must be an invariant circle surrounded by non-
degenerate invariant tori shrinking down to it; in particular, if β takes on a
maximum values βM , along an equatorial orbit, then any sufficiently nearby
orbit is constrained to lie for all time in β−1((βM − ε, βM )), and this is a
solid torus S1

ϕ × B2 in the energy space surrounding the equatorial orbit S1
ϕ,

whose diameter can be made as small as desired by shrinking ε → 0. Taking
a cross-section of this solid torus, we observe that the Poincaré return map
is thus a twist map preserving the value of β, under whose iterations the dis-
tances between points grows linearly in time. Additionally, we of course have
ϕ′ = β along the flow; therefore, the difference between β values can grow at
worst linearly along the orbit. Thus, we again obtain linear growth of distances
along the orbit; hence, dϕt�TK grows at most linearly. This implies (1.6) for
every r. �

We have thus established the dynamical hypotheses for the Hamilton vec-
tor field H, associated with p. As z ∈ R varies, this is not all of the real part of
the symbol of P − zQ; by structural stability, however, the hypotheses persist
for the principal symbol of P − zQ for z ∈ R sufficiently small.

Finally, we observe that in the end of the manifold r → +∞, the assump-
tions on P (z) can be routinely verified by use of the semi-classical scattering
calculus of pseudodifferential operators [45], as P (z) − iW is elliptic in that
setting.

3. Analytic Preliminaries

In this section we recall facts from semiclassical analysis referring to [16,20]
for background material.

3.1. Semiclassical Calculus

Because of our assumptions, except in Sect. 5, we will only use semiclassical
calculus on a compact manifold. Thus, let X be a C∞ manifold which agrees
with R

n outside a compact set, or more generally has finitely many ends dif-
feomorphic to R

n :

X=X0
X1 
· · ·
XN , where Xj=R
n\B(0, R) for j > 0, and X0 � X.

(3.1)
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We introduce the class of semiclassical symbols on X (see for instance
[20, Sect. 9.7]):

Sm,k(T ∗X) = {a ∈ C∞(T ∗X × (0, 1]) : |∂αx ∂βξ a(x, ξ;h)| ≤ Cα,βh
−k〈ξ〉m−|β|},

where outside X0 we take the usual R
n coordinates in this definition. The cor-

responding class of pseudodifferential operators is denoted by Ψm,k
h (X), and

we have the quantization and symbol maps:

Opwh : Sm,k(T ∗X) −→ Ψm,k
h (X)

σh : Ψm,k
h (X) −→ Sm,k(T ∗X)/Sm−1,k−1(T ∗X),

with both maps surjective, and the usual properties

σh(A ◦B) = σh(A)σh(B),
(3.2)

0 → Ψm−1,k−1(X) ↪→ Ψm,k(X) σh→ Sm,k(T ∗X)/Sm−1,k−1(T ∗X) → 0,

a short exact sequence, and

σh ◦ Opwh : Sm,k(T ∗X) −→ Sm,k(T ∗X)/Sm−1,k−1(T ∗X),

the natural projection map. The class of operators and the quantization map
are defined locally using the definition on R

n:

Opwh (a)u(x) =
1

(2πh)n

∫∫

a

(
x+ y

2
, ξ

)

ei〈x−y,ξ〉/hu(y)dydξ. (3.3)

We remark only that when we consider the operators acting on half-densities
we can define the symbol map, σh, onto

Sm,k(T ∗X)/Sm−2,k−2(T ∗X).

We keep this in mind but for notational simplicity we suppress the half-density
notation.

For future reference, and to illustrate the uses of the calculus, we present
the following application:

Proposition 3.1. Suppose P ∈ Ψ2,0
h (X) satisfies P = p(x, hD) + hp1(x, hD;h),

p1 ∈ Ψ2,0
h , p(x, ξ) ≥ 〈ξ〉2/C − C.

(i) Let ψj ∈ C∞
b (T ∗X; [0, 1]), j = 1, 2, satisfy

ψj = 1 in p−1([−jδ, jδ])) = 1, suppψj ⊂ p−1([−(j + 1/2)δ, (j + 1/2)δ]).

Then there exists E1 ∈ Ψ−2,0
h (X), such that

E1 ◦ P = I +R1, R1 ∈ Ψ0,0
h (X),

and

(1 − ψw2 (x, hD))R1 ∈ Ψ−∞,−∞
h (X), ψw1 (x, hD)E1 ∈ Ψ−∞,−∞

h (X).

(ii) Suppose f ∈ C∞
b (X, [0, 1]), satisfies f ≡ 1 on U ⊂ X, U open. Then there

exists E2 ∈ Ψ−2,0
h (X), such that

E2 ◦ (P − if) = I +R2, R2 ∈ Ψ0,0
h (X),
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and

χR2, R2χ ∈ Ψ−∞,−∞
h (X), for any χ ∈ C∞

c (X), suppχ � U .

3.2. S 1
2

Spaces with Two Parameters

As in [40, Sect. 3.3] we define the following symbol class:

a ∈ Sm,m̃,k
1
2

(T ∗
R

n) ⇐⇒ |∂α
x ∂β

ξ a(x, ξ)| ≤ Cαβh−mh̃−m̃

(
h̃

h

) 1
2 (|α|+|β|)

〈ξ〉k−|β|,

(3.4)

where in the notation we suppress the dependence of a on h and h̃. When
working on R

n or in fixed local coordinates we will use a simpler class

a ∈ S̃ 1
2
(T ∗

R
n) ⇐⇒ |∂αa| ≤ Cα,N

(
h̃/h

) 1
2 |α|

〈ξ〉−N . (3.5)

Then standard results (see [20, §9.3]) show that if a ∈ Sm,m̃,k1
2

and b ∈ Sm
′,m̃′,k′

1
2

then

a(x, hDx) ◦ b(x, hDx) = c(x, hDx) with c ∈ Sm+m′,m̃+m̃′,k+k′
1
2

.

The presence of the additional parameter h̃ allows us to conclude that

c ≡
∑

|α|<M

1
α!
∂αξ aD

α
x b mod Sm+m′,m̃+m̃′−M,k+k′−M

1
2

,

i.e., we have a symbolic expansion in powers of h̃. We denote our class of
operators by Ψm,m̃,k

1
2

(T ∗
R
n), or in the case of symbols in S̃ 1

2
, Ψ̃ 1

2
.

A standard rescaling shows that this class of pseudodifferential operators
is essentially equivalent to the calculus with a new Planck constant h̃: put

(x̃, ξ̃) = (h̃/h)
1
2 (x, ξ), (3.6)

and define the following unitary operator on L2(Rn):

Uh,h̃u(x̃) = (h̃/h)
n
4 u((h/h̃)

1
2 x̃).

The one easily checks that

a(x, hDx) = U−1

h,h̃
ah,h̃(x̃, h̃Dx̃)Uh,h̃, ah,h̃(x̃, ξ̃) = a((h/h̃)

1
2 (x̃, ξ̃)).

Clearly, a satisfies (3.5) if and only if ah,h̃ ∈ S(T ∗
R
n), with estimates uniform

with respect to h and h̃.
We recall [40, Lemma 3.6] which provides explicit error estimates on

remainders.

Lemma 3.2. Suppose that a, b ∈ S̃ 1
2
, and that cw = aw ◦ bw. Then

c(x, ξ) =
N∑

k=0

1
k!

(
ih

2
σ(Dx,Dξ;Dy,Dη)

)k

a(x, ξ)b(y, η)�x=y,ξ=η +eN (x, ξ),

(3.7)
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where for some M

|∂αeN | ≤ CNh
N+1

∑

α1+α2=α

sup
(x,ξ)∈T∗Rn

(y,η)∈T ∗Rn

sup
|β|≤M,β∈N2d

×
∣
∣
∣(h

1
2 ∂(x,ξ;y,η))β(iσ(D)/2)N+1∂α1a(x, ξ)∂α2b(y, η)

∣
∣
∣ , (3.8)

where σ(D) = σ(Dx,Dξ;Dy,Dη).

As a particular consequence, we notice that if a ∈ S̃ 1
2
(T ∗

R
n) and b ∈

S(T ∗
R
n) then

c(x, ξ) =
N∑

k=0

1
k!

(ihσ(Dx,Dξ;Dy,Dη))
k
a(x, ξ)b(y, η)�x=y,ξ=η

+OS̃ 1
2

(h
N+1

2 h̃
N+1

2 ). (3.9)

3.3. The Ψ̃ 1
2

Calculus on a Manifold

On a manifold of the type defined in the beginning of Sect. 3.1 we consider
the following class S̃ 1

2
:

S̃ 1
2

= S̃ 1
2
(T ∗X) def= {a ∈ C∞(T ∗X) : ∂α(x,ξ)a = (h/h̃)−|α|/2O(〈ξ〉−∞)},

where outside of a compact set we use Euclidean coordinates, determined by
the infinite ends of X.

We first observe that this class is invariant under symplectic lifting of
diffeomorphisms of X, constant outside of a compact set. To define Ψ̃ 1

2
(X),

we need to check invariance of S̃ 1
2
(T ∗

R
n) under local changes of coordinates.

Towards that we have the following lemma:

Lemma 3.3. Suppose that a ∈ S̃ 1
2
(T ∗

R
n), Uj ⊂ R

n, j = 1, 2 are open, and f :

U1 → U2 is a diffeomorphism. Let χ ∈ C∞
c (U1). Then A2

def= χaw(x, hD)χ =
aχ(x, hD), where aχ ∈ S̃ 1

2
, aχ = χaχ + OS̃ 1

2

(h
1
2 h̃

1
2 ). For A1

def= (f−1)∗Af∗,

we have

A1 = awf (x, hD), af ∈ S̃ 1
2
(T ∗

R
n),

and

af (x, ξ) = χ(f−1(x))a(f−1(x), tf ′(x)ξ)χ(f−1(x)) + OS̃ 1
2

(h
1
2 h̃

1
2 ). (3.10)

Remark. It seems important that we use the Weyl quantization. In the case
of the right quantization

a1(x, hD)u =
1

(2πh)n

∫ ∫

a1(x, ξ)ei〈x−y,ξ〉/hu(y)dydξ,

we have the exact formula

a1
f (f(x), η) = e−i〈f(x),η〉/ha1

χ(x, hD)ei〈f(x),η〉/h,
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see [29, (18.1.28)]. The asymptotic expansion [29, (18.1.30)],

a1
f (f(x), η) ∼

∑

α∈Nn

1
α!

(∂αξ a
1
χ)(x,t f ′(x)η)(hDy)αei〈ρx(y),η〉/h�x=y,

ρx(y)
def= f(y) − f(x) − f ′(x)(y − x),

is valid in our case as an expansion in h̃ only. In fact, due to the second order
of vanishing of ρx at x,

(hDy)αei〈ρx(y),η〉/h�x=y= O(h|α|/2〈η〉|α|/2),

and

(∂αξ a
1)(x, tf ′(x)η) = O((h/h̃)−|α|/2〈η〉−∞.

Hence, the terms in the expansion are in

h̃|α|/2S̃ 1
2

(the term with |α| = 1 vanishes).
The Weyl quantization will also be important in local arguments in

Sect. 4.2. Finally, we remark that for this class of symbols the improvement in
the error occurs only in h̃ when the action of half-densities is considered—see
[39, Appendix] or [20, Theorem 9.12].

Proof. The statement about aχ follows from Lemma 3.2. For the change of vari-
ables we consider the Schwartz kernels of A2 = a2

χ(x, hD) and A1 = awf (x, hD)
as densities:

Kb(x, y)|dy| def=
1

(2πh)n

∫

b

(
x+ y

2
, ξ

)

ei〈x−y,ξ〉/hdξ|dy|, (3.11)

which means we seek af such that

Kaχ
(x, y)|dy| = Kaf

(x̃, ỹ)|dỹ|, x̃ = f(x), ỹ = f(y). (3.12)

We rewrite the right-hand side as by changing variables

1
(2πh)n

∫

af

(
f(x) + f(y)

2
, ξ̃

)

ei〈f(x)−f(y),ξ̃〉/hdξ̃|f ′(y)||dy|.

Writing,

f(x) − f(y) = F (x, y)(x− y), F (x, y) = f ′
(
x+ y

2

)

+ O((x− y)2),

f(x) + f(y) = f

(
x+ y

2

)

+ O((x− y)2). (3.13)
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we apply the “Kuranishi trick” by changing variables in the integral, ξ =
F (x, y)tξ̃:

1
(2πh)n

∫ (

af

(

f

(
x+ y

2

)

, (F (x, y)t)−1ξ

)

+ OS̃ 1
2

(
h̃

1
2h− 1

2 (x− y)2
))

× ei〈x−y,ξ〉/hdξ|F (x, y)t|−1|f ′(y)||dy|

=
1

(2πh)n

∫
⎛

⎝af

⎛

⎝f

(
x+ y

2

)

,

(

f ′
(
x+ y

2

)t
)−1

ξ

⎞

⎠

+OS̃ 1
2

(
h̃

1
2h− 1

2 (x− y)2
))

ei〈x−y,ξ〉/hdξ|f ′((x+ y)/2)|−1|f ′(y)||dy|.

We now observe that

|f ′((x+ y)/2)| = |f ′(y)| + O(|x− y|),
and consequently

Kaf
(x̃, ỹ)|dỹ| =

1
(2πh)n

∫
⎛

⎝af

⎛

⎝f

(
x+ y

2

)

,

(

f ′
(
x+ y

2

)t
)−1

ξ

⎞

⎠

+OS̃ 1
2

(
h̃

1
2h− 1

2 (x− y)2 + |x− y|
))

ei〈x−y,ξ〉/hdξ|dy|.

The terms

OS̃ 1
2

(
h̃

1
2h− 1

2 (x− y)2
)

contribute terms OS̃ 1
2

(h̃
3
2h

1
2 ) to the symbol: we use integration by parts based

on

(x− y) exp(〈x− y, ξ〉/h) = hDξ exp(〈x− y, ξ〉/h).
Similarly, smooth terms of the form OS̃ 1

2

(|x− y|) give contributions of the

form OS̃ 1
2

(h̃
1
2h

1
2 ). Here, in dealing with the “big-Oh” terms, we use the fact

that for b = b(x, y, ξ) ∈ S̃ 1
2

(with the definition modified to include derivatives
with respect to y),

1
(2πh)n

∫

b(x, y, ξ)ei〈x−y,ξ〉/hdξ =
1

(2πh)n

∫

bw

(
x+ y

2
, ξ

)

ei〈x−y,ξ〉/hdξ,

where

bw(x, ξ) = b(x, x, ξ) + OS̃ 1
2

(h̃),

which follows from the standard pseudodifferential calculus and the rescaling
(3.6).
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This shows that

Kaf
(x̃, ỹ)|dỹ| =

1

(2πh)n

∫ (

af

(

f

(
x + y

2

)

,

(

f ′
(

x + y

2

)t)−1

ξ

)

+ OS̃ 1
2

(
h̃

1
2 h

1
2 )
)
)

× ei〈x−y,ξ〉/hdξ|dy|;
hence, af can be chosen in the form (3.10) so that this matches Ka(x, y)|dy|.

�

We need one more lemma which shows that away from the diagonal the
symbol contribution is negligible in h (rather than merely in the h̃ sense). This
does not contradict the rescaling (3.6) which eliminates h, as the distance to
the diagonal then grows proportionally to h−1/2 (see [20, Theorem 4.18]).

Lemma 3.4. Suppose that χj ∈ C∞
c (Rn) are independent of h, and suppχ1 ∩

suppχ2 = ∅. If a ∈ S̃ 1
2
(T ∗

R
n) then

χ1a
w(x, hD)χ2 = OS′→S(h∞).

Proof. We can apply Lemma 3.2 as in the composition formula for a ∈ S̃ 1
2

and
b ∈ S presented in (3.9): in the composition χ1a

wχ2 all terms in the expansion
vanish and the error becomes arbitrarily smoothing and bounded by hN , for
any N . �

Using Lemmas 3.3 and 3.4 we obtain an invariantly defined symbol map
for the class Ψ̃ 1

2
(X) defined using local coordinates, as in [29, Sect. 18.2] (see

[20, Sect. E.2] for the semiclassical case). The symbol map occurs in the fol-
lowing short exact sequence:

0 −→ h
1
2 h̃

1
2 Ψ̃ 1

2
(X) −→ Ψ̃ 1

2
(X)

σ̃ 1
2−→ S̃ 1

2
(T ∗X)/h

1
2 h̃

1
2 S̃ 1

2
(T ∗X) −→ 0.

This means that if we start with a ∈ h−mS̃ 1
2
(T ∗X), then the operator

aw(x, hD) ∈ h−mΨ̃ 1
2
(X) is well defined, and its symbol is determined in any

local coordinates up to terms in h−m+ 1
2 h̃

1
2 S̃ 1

2
. We will be particularly inter-

ested in the case

a ∈ S̃−
1
2
(T ∗X) def=

⋂

m>0

h−mS̃ 1
2
(T ∗X), (3.14)

in which case the local symbols will be determined up to terms of size h
1
2 h̃

1
2 S̃−

1
2
.

3.4. Exponentiation and Quantization

As in [12,40] it will be important to consider operators expGw(x, hD), where
G ∈ S̃−

1
2
. To understand conjugated operators,

exp(−Gw(x, hD))P exp(Gw(x, hD)),

we will use a special case of a result of Bony and Chemin [6, Théoréme 6.4]—see
[40, Appendix] or [20, Sect. 9.6]. Because of the invariance properties estab-
lished in Sect. 3.3, we discuss only the case of R

n in the next two subsections.
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Let m(x, ξ) be an order function in the sense of [16]:

m(x, ξ) ≤ Cm(y, η)〈(x− y, ξ − η)〉N . (3.15)

The class of symbols, S(m), corresponding to m is defined as

a ∈ S(m) ⇐⇒ |∂αx ∂βξ a(x, ξ)| ≤ Cαβm(x, ξ).

If m1 and m2 are order functions in the sense of (3.15), and aj ∈ S(mj), then
(we put h = 1 here),

aw1 (x,D)aw2 (x,D) = bw(x,D), b ∈ S(m1m2),

with b given by the usual formula,

b(x, ξ) = a1 # a2(x, ξ)

def
= exp(iσ(Dx1 , Dξ1 ; Dx2 , Dξ2)/2)a1(x

1, ξ1)a2(x
2, ξ2)�x1=x2=x,ξ1=ξ2=ξ .

(3.16)

A special case of [6, Théoréme 6.4] (see [40, Appendix]) gives

Proposition 3.5. Let m be an order function in the sense of (3.15) and suppose
that G ∈ C∞(T ∗

R
n; R) satisfies

G(x, ξ) − logm(x, ξ) = O(1), ∂αx ∂
β
ξG(x, ξ) = O(1), |α| + |β| ≥ 1. (3.17)

Then

exp(tGw(x,D)) = Bwt (x,D), Bt ∈ S(mt). (3.18)

Here, exp(tGw(x,D)) is constructed by solving ∂tu = Gw(x,D)u, u ∈ S. The
estimates on Bt ∈ S(mt) depend only on the constants in (3.17) and in (3.15).
In particular, they are independent of the support of G.

Since mt is the order function exp(t logm(x, ξ)), we can say that on the
level of order functions “quantization commutes with exponentiation”.

3.5. Conjugation by Exponential Weights

Let m be an order function for the S̃ 1
2

class:

m(ρ) ≤ Cm(ρ′)
〈
ρ− ρ′

(h/h̃)
1
2

〉N

,

for some N . We will consider order functions satisfying

m ∈ S̃ 1
2
(m),

1
m

∈ S̃ 1
2

(
1
m

)

. (3.19)

This is equivalent to m(ρ) = expG(ρ) with

expG(ρ)
expG(ρ′)

≤ C

〈
ρ− ρ′

(h/h̃)
1
2

〉N

, ∂αG = O((h/h̃)−|α|/2, |α| ≥ 1. (3.20)
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Using the rescaling (3.6), we see that Proposition 3.5 implies that

exp(sGw(x, hD)) = Fws (x, hD), Fs ∈ S̃ 1
2
(ms), s ∈ R,

A = Opwh (a), a ∈ S̃ 1
2
(ms)⇐⇒A = exp(sGw(x, hD))Opwh (a0), a0 ∈ S̃ 1

2
.

(3.21)

For P ∈ Ψ0,0
h (X), we consider

PsG
def= e−sGw(x,hD)/hPeG

w(x,hD) = e− adsGw(x,hD)P ∈ Ψ̃ 1
2
, (3.22)

where used Proposition 3.5 as described above. In particular, we have an expan-
sion

e−sGw(x,hD)/hPesG
w(x,hD)/h ∼

∞∑

�=0

(−1)�

�!
(
s adGw(x,hD)

)�
P, (3.23)

where

ad�Gw(x,hD) P ∈ hh̃�−1Ψ̃ 1
2
. (3.24)

3.6. Escape Function Away from the Trapped Set

Here, we recall the escape function from [25, Appendix]. Suppose that U, V
are open neighborhoods of K ∩ p−1([−δ, δ]),

U � V � T ∗X.

There exists G1 ∈ C∞(T ∗X), such that

G1�U≡ 0, HpG1 ≥ 0, HpG1�p−1([−2δ,2δ])≤ C, HpG1�p−1([−δ,δ])\V ≥ 1.
(3.25)

Since HpG1 ≥ 0, G1 is an escape function in the sense of [27]. It is strictly
increasing along the flow of Hp on p−1([−δ, δ]), away from the trapped set
K. Moreover, HpG is bounded in a neighborhood of p−1([−2δ, 2δ]). Such an
escape function G1 is necessarily of unbounded support.

4. Proof of Theorem 1

In Sects. 4.1–4.3, we identify P (z) with P0(z) and assume that u is supported in
X0. In Sect. 4.4, we will show how the assumptions on P (z) in Sect. 1.1 give a
global estimate on the inverse. Since we have not assumed that 1l0(P (z)− i)−1

is a compact operator, we do not prove that (P (z) − iW )−1 is a meromorphic
family of operators. We prove that the inverse exists for Im z > −ν0h by direct
estimates.
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4.1. Estimates for Im z > 0

To obtain the first estimate in (1.1), we adapt the proof of [39, Lemma 6.1] to
our setting.

For that let ψw = ψw(x, hD), ψ ∈ C∞
c (T ∗X, [0, 1]), be a microlocal cut-off

to a small neighborhood of p−1(0) ∩ T ∗
U2
X, and suppose that

v = (P (z) − iW )u.

Semi-classical elliptic regularity gives

‖(1 − ψw)u‖ ≤ C‖v‖ + O(h∞)‖u‖ (4.1)

(see part (i) of Proposition 3.1). The assumption that ∂zP (0) has a negative
symbol on the characteristic set of p in the region where 0 < W < 1 implies
that

P (z) = P (Re z) − i Im z Q(z),

where P (Re z) is self-adjoint and σ(Q(z)) > 1/C > 0 near p−1(0) ∩ T ∗
U2
X.

This shows that

−Im〈(P (z)−iW )ψwu, ψwu〉 = Im z Re〈Q(z)ψwu, ψwu〉 + 〈Wψwu, ψwu〉
≥ Im z

(‖ψwu‖2/C−O(h∞)‖u‖2
)
+〈Wψwu, ψwu〉,

(4.2)

where we used the semi-classical G̊arding inequality (see [16, Theorem 7.12]
or [20, Theorem 4.21]). We also write

Im〈P (z)u, u〉 − Im〈P (z)ψwu, ψwu〉 = Im z (〈Q(z)u, u〉 − 〈Q(z)ψwu, ψwu〉)
= Im z O(1)‖(1 − ψw)u‖‖u‖
= Im z O(1)

(‖v‖‖u‖ + O(h∞)‖u‖2
)
,

where we used elliptic regularity (4.1) in the last estimate. Then applying
(4.2),

‖u‖‖v‖ ≥ − Im〈(P (z) − iW )u, u〉
= − Im〈(P (z) − iW )ψwu, ψwu〉 − Im z O(1)

(‖v‖‖u‖ + O(h∞)‖u‖2
)

+〈(W − ψwWψw)u, u〉 − O(h)‖u‖2

≥ Im z
(‖ψwu‖2/C − O(1)‖v‖‖u‖ − O(h)‖u‖2

)
.

Here, W − ψwWψw ≥ −O(h) follows from the semi-classical sharp G̊arding
inequality.

For small Im z the term ‖v‖‖u‖ on the left-hand side can be absorbed in
the right hand side, and by adding Im z‖(1 − ψw)u‖2 to both sides we obtain

Im z‖u‖2/C ≤ ‖u‖‖v‖ + O(h) Im z‖u‖2,

and that gives

‖u‖ ≤ C

Im z
‖v‖.
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Combined with the estimates in Sect. 4.4 this proves

‖(P (z) − iW )−1‖L2→L2 � 1
Im z

, for Im z > 0, |z| < δ0.

4.2. Estimates on the Real Axis

In this section, we will use a commutator argument to obtain an estimate on the
real axis. In fact, this bound automatically gives holomorphy of (P (z)−iW )−1

in Im z > −ν1h/ log(1/h).
In this and the following section,s we will assume that z = O(h), so that

we can work at a fixed energy level. That means that

P (z) = P − zQ+ OH2
h→L2(h2), (4.3)

P and Q are self-adjoint, and where Q = qw(x, hD) ∈ Ψ2,0
h (X) is elliptic and

has a positive symbol in a neighborhood of T ∗
U2
X∩p−1([−δ, δ]). The estimates

are uniform when we shift the energy level within |Re z| < δ0, and hence, we
obtain the estimates in Theorem 1.

For simplicity of the presentation, we assume that Γ± have global defin-
ing functions, i.e., Γ± are orientable. The only object that needs to be globally
defined, however, is the escape function G given in (4.6). That involves only
squares of defining functions, i.e., d(•,Γ±)2, near K, and these are well defined
and smooth.

We start with the following

Lemma 4.1. Let ϕ± be any defining functions of Γ±:

Γ± = {ρ : ϕ±(ρ) = 0}, dϕ±�Γ± �= 0.

Then there exist c± ∈ C∞(T ∗X; R) such that

Hpϕ± = ∓c2±ϕ±, c± > 0 in neigh(K0), (4.4)

and we can choose the sign of ϕ± so that

{ϕ+, ϕ−}�K> c0 > 0. (4.5)

Proof. SinceHp is tangent to Γ± we haveHpϕ± = α±ϕ± andHpϕ
2
± = 2α±ϕ2

±.
To see that ∓α± > 0, we need to check that

Hpd(•,Γ±)2 =
d

dt
exp(tHp)∗d(•,Γ±)2 | t=0 ∼ ∓d(•,Γ±)2, in neigh(K0).

But this follows from the assumption (1.5) which implies that

d(exp(±tHp)(ρ),Γ±)2 ≤ C exp(−θt)d(ρ,Γ±)2, 0 ≤ t ≤ T,

for ρ in a T -dependent neighborhood of K0—see [36, Lemma 5.2].
To see (4.5) we note that dϕ±(ρ), ρ ∈ K0, are linearly independent and

vanish on TρK0 ⊂ Tρ(T ∗X) which is a symplectic manifold of codimension 2.
Hence, (Hϕ±)ρ are linearly independent and transversal to TρK0, and

{ϕ−, ϕ+}(ρ) = ωρ(Hϕ+ ,Hϕ−) �= 0,

because of the non-degeneracy of ω, the symplectic form. If necessary by
switching the sign of one of the ϕ± we can then obtain (4.5). �
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We define

G(ρ) = χ(ρ) log
ϕ2

−(ρ) + h/h̃

ϕ2
+(ρ) + h/h̃

+ C1 log
(

1
h

)

χ1(ρ)G1(ρ), (4.6)

where χ ∈ C∞
c (T ∗X) is supported near K0, with χ = 1 on the set V in (3.25);

G1 is described in Sect. 3.6; χ1 ∈ C∞
c (T ∗X),

χ1(ρ) ≡ 1, ρ ∈ p−1([−2δ, 2δ]) ∩ T ∗
B(0,2R)X;

supp∇χ ⊂ {χ1 = 1}; and C1 is a large constant. Writing Gw = Gw(x, hD) we
observe that

‖Gwu‖Hk
h

≤ log(1/h)‖u‖L2 , ∀ k. (4.7)

We also recall an elliptic estimate:

‖(P − iW )u‖L2 ≥ ‖(1 − ψw1 )(P − iW )u‖
≥ 1
C

‖(1 − ψw2 )u‖H2
h

− O(h∞)‖u‖L2 , (4.8)

where ψj ∈ C∞
b (T ∗X; [0, 1]) are as in Proposition 3.1. In fact, if E1 has the

properties given in that proposition,

‖(1 − ψw2 )u‖H2
h

= ‖(1 − ψw2 )E1(P − iW )u‖H2
h

+ O(h∞)‖u‖
= ‖(1 − ψw2 )E1(1 − ψw1 )(P − iW )u‖H2

h
+ O(h∞)‖u‖

≤ C‖(1 − ψw1 )(P − iW )u‖L2 + O(h∞)‖u‖,
which is (4.8).

The elliptic estimate shows that we only need to prove

‖(P (z) − iW )u‖ ≥ h

log(1/h)
,

for u satisfying

χ̃w(x, hD)u = u+ OHk
h
(h∞), ‖u‖ = 1, (4.9)

where χ̃ has properties of, say, ψ1 in (4.8). That is because the commutator
terms appearing after this localization can be estimated using (4.8).

Hence, from now on we assume that u satisfies (4.9) with the support of
χ in a small neighborhood of the energy surface p−1(0).

We now proceed with the positive commutator estimate. LetM0 > 0, R �
z = O(h) and calculate

−2 Im〈(P (z) − iW )u, (Gw +M0 log(1/h))u〉
= −2 Im〈(P − zQ− iW )u, (Gw +M0 log(1/h))u〉 − O(h2)‖u‖2

= −i〈[P,Gw]u, u〉 + 2M0 log(1/h)〈Wu, u〉 + 2〈Wu,Gwu〉 − O(h2)‖u‖2

≥ h〈(HpG)wu, u〉 + 2M0 log(1/h)〈Wu, u〉 − 2‖Wu‖‖Gwu‖−O(h
3
2 h̃

3
2 )‖u‖2

≥ h〈(HpG)wu, u〉 +M0 log(1/h)‖W 1
2u‖2 − O(h

3
2 h̃

3
2 )‖u‖2, (4.10)

where we used the fact that 0 ≤ W ≤ √
W and chose M0 large enough.

To analyze (HpG)w(x, hD) we proceed locally using the invariance prop-
erties described in Sect. 3.3: the resulting errors are of lower order. To keep the
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notation simple, we write the argument as if ϕ± were defined globally (which
is the case when Γ± are orientable).

The crucial calculation is based on Lemma 4.1:

HpG =
(c+ϕ+)2

ϕ2
+ + h/h̃

+
(c−ϕ−)2

ϕ2− + h/h̃
+R0 +R1 ∈ S̃ 1

2
, in neigh(K0);

here, R0 is the term arising from Hp(χ) and R1 from Hp(χ1).
Put

Φ±
def= ϕ̂w±(x, hD) ∈ Ψ̃ 1

2
, ϕ̂±

def=
c±ϕ±

√

ϕ2± + h/h̃
.

We now recall the properties of G1 enumerated in Sect. 3.6; note further that
suppR0 ⊂ {HpG1 ≥ 1}; hence for C1 � 0, we may absorb the R0 term into
the term arising from HpG1 and obtain the following global description of
HpG :

HpG = ϕ̂2
+ + ϕ̂2

− +R1 + C1 log(1/h)a, (4.11)

where a ∈ S(T ∗X) and

a(ρ) ≥ 1/2, d(ρ,K) > ε > 0, ρ ∈ neigh(p−1(0)), ρ ∈ U2.

We should now remember that using the rescaling (3.6) we are now in
the semiclassical calculus with the h̃ Planck constant. That means that the
Weyl quantization is equivalent to the h̃ quantization.

Then (4.11) and the fact that we are using the Weyl quantization show
that

(HpG)w(x, hD) = Φ2
+ + Φ2

− + C1 log(1/h)aw(x, hD) +Rw1 + OΨ̃ 1
2

(h̃2).

We now write

Φ2
+ + Φ2

− = Φ∗Φ + i[Φ+,Φ−], Φ def= Φ+ − iΦ−

so that, without writing the terms involving aw(x, hD) and Rw1 ,

〈(HpG)w(x, hD)u, u〉
≥ 〈(Φ2

+ + Φ2
−)u, u〉 − O(h̃2)‖u‖2

≥ ‖Φu‖2
2 + 〈i[Φ+,Φ−]u, u〉 − O(h̃2)‖u‖2

≥ Mh̃‖Φu‖2
2 + h〈{ϕ̂+, ϕ̂−}w(x, hD)u, u〉 − O(h̃2)‖u‖2

≥ 〈(Mh̃(ϕ̂2
+ + ϕ̂2

−) + h{ϕ̂+, ϕ̂−})w(x, hD)u, u〉 − O(h̃2)‖u‖2, (4.12)

where M is some large constant. Putting

ϕ̃±
def= (h̃/h)

1
2ϕ±,
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we calculate

h{ϕ̂+, ϕ̂−} =
h̃c+c−{ϕ+, ϕ−}

(1 + ϕ̃2
+)

3
2 (1 + ϕ̃2−)

3
2

+
(hh̃)

1
2 ϕ̃+{c+, ϕ−}

(1 + ϕ̃2
+)

1
2 (1 + ϕ̃2−)

3
2

+
(hh̃)

1
2 ϕ̃+{c−, ϕ+}

(1 + ϕ̃2
+)

3
2 (1 + ϕ̃2−)

1
2

+
hϕ̃+ϕ̃−{c+, c−}

(1 + ϕ̃2
+)

3
2 (1 + ϕ̃2−)

3
2

=
h̃c+c−{ϕ+, ϕ−}

(1 + ϕ̃2
+)

3
2 (1 + ϕ̃2−)

3
2

− OS̃ 1
2

((hh̃)
1
2 )

Hence,

ϕ̃
def= Mh̃(ϕ̂2

+ + ϕ̂2
−) + h{ϕ̂+, ϕ̂−}

satisfies

ϕ̃ ∈ h̃S̃ 1
2
,

and using (4.5), we obtain near K0,

ϕ̃ = h̃

(

M(ϕ̃2
+ + ϕ̃2

−) +
c+c−{ϕ+, ϕ−}

(1 + ϕ̃2
+)

3
2 (1 + ϕ̃2−)

3
2

− OS̃ 1
2

((h/h̃)
1
2 )

)

≥ h̃

(

M(ϕ̃2
+ + ϕ̃2

−) +
c0

(1 + ϕ̃2
+)

3
2 (1 + ϕ̃2−)

3
2

− OS̃ 1
2

((h/h̃)
1
2 )

)

≥ c1h̃, c1 > 0.

We now return to (4.10) which combined with (4.7), (4.11), and the above
definition of ϕ̃ gives, for some large constant M1, and R � z, u satisfying (4.9),

M1 log(1/h)‖(P (z) − iW )u‖‖u‖
≥ 〈(hϕ̃w + hRw1 + C1 log(1/h)aw +M0 log(1/h)W )u, u〉
≥ h〈(ϕ̃w +Rw1 + log(1/h)bw)u, u〉

where, as W ≥ 0,

b
def= C1a+M0W ≥ 0 =⇒ bw(x, hD) ≥ −Ch,

with the implication due to the sharp G̊arding inequality. We also observe that

h̃S̃ 1
2

� ϕ̃+ h̃b ≥ c1h̃, c1 > 0,

near p−1((−δ, δ)). Furthermore, since u is assumed to satisfy (4.9), and as we
have Rw1 = O(h∞) on such distributions, we obtain

M1 log(1/h)‖(P (z) − iW )u‖‖u‖ ≥ h〈(ϕ̃w + h̃bw)u, u〉 − O(h2 log(1/h))‖u‖2

≥ c3h̃h‖u‖2, c3 > 0,

which proves the bound (1.1) for Im z = 0.
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4.3. Estimates for Im z > −ν0h

To prove the estimates deeper in the complex plane, we will use exponentially
weighted estimates which use the same escape function G given in (4.6). We
start with a lemma which is based on [40, Proposition 7.4]:

Lemma 4.2. Let G be given by (4.6) above. Then for ρ, ρ′ in any compact
neighborhood of K0 we have

expG(ρ)
expG(ρ′)

≤ C

〈
ρ− ρ′

(h/h̃)
1
2

〉N

, N > 0.

In particular,

m(ρ) def= expG(ρ)

is an order function for the Ψ̃ 1
2

calculus, that is, satisfies (3.20).

Proof. For the reader’s convenience, we recall the slightly modified argument.
We first claim that

ϕ±(ρ)2 + h/h̃

ϕ±(ρ′)2 + h/h̃
≤ C1

〈
ρ− ρ′

(h/h̃)
1
2

〉2

: (4.13)

Since ϕ2
± ∼ d(•,Γ±)2, we have

ϕ±(ρ)2 + h/h̃ ≤ C(d(ρ,Γ±)2 + h/h̃) ≤ C(d(ρ′,Γ±)2 + |ρ′ − ρ|2 + h/h̃)

≤ C ′(ϕ±(ρ′)2 + h/h̃+ |ρ′ − ρ|2)
= C ′(ϕ±(ρ′)2 + h/h̃+ (h/h̃)〈(ρ− ρ′)/(h/h̃)

1
2 〉2)

≤ 2C ′(ϕ±(ρ′)2 + h/h̃)〈(ρ− ρ′)/(h/h̃)2〉2.
which proves (4.13). In other words, for

Ĝ(ρ) def= log
ϕ2

−(ρ) + ε2

ϕ2
+(ρ) + ε2

, ε =
(
h

h̃

) 1
2

,

we have

|Ĝ(ρ) − Ĝ(ρ′)| ≤ C + 2 log〈(ρ− ρ′)/ε〉.
For χ ∈ C∞

c ,

|χ(ρ)Ĝ(ρ) − χ(ρ′)Ĝ(ρ′)| ≤ C|ρ− ρ′| log(1/ε) + C log〈(ρ− ρ′)/ε〉.
Moreover,

|χ1(ρ)G1(ρ) − χ1(ρ′)G1(ρ′)| ≤ C|ρ− ρ′| log(1/ε),

with G1 as in Sect. 3.6; thus to prove the lemma we need

|ρ− ρ′| log
1
ε

≤ C log〈(ρ− ρ′)/ε〉 + C, ρ, ρ′ ∈ Q � R
2n.

If we put t = |ρ− ρ′|/(Cε), this becomes

ε log
1
ε

≤ log〈t〉 + 1
t

, 0 < t ≤ 1
ε
,

which is acceptable as the function t �→ (log〈t〉 + 1)/t is decreasing. �
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We now consider (P (z)− iW )sG defined by (3.22) using this weight func-
tion G. Then using (3.24) and Lemma 3.2 (to understand adsGw P ),

P (z)sG = P − ish(HpG)w(x, hD) − zQ+ OΨ̃ 1
2

(s2h̃h+ sh
3
2 h̃

3
2 + h2),

and

WsG = W + ish log(1/h)(Hρ1G1W )w(x, hD) + OΨh
(s2(h log(1/h))2),

where G1 and ρ1 are as in (4.6). Hence,

− Im〈(P (z) − iW )sGu, u〉 = 〈(HpG)w +W − Im z Q)u, u〉
+OΨ̃ 1

2

(s2h̃h+ sh
3
2 h̃

3
2 + h2).

For u satisfying (4.9), s > 0 small, Im z > −ν0h for a sufficiently small ν0, we
can now proceed as at the end of Sect. 4.2 to obtain invertibility:

c1hh̃‖u‖ ≤ ‖(P (z) − iW )sGu‖, Im z > −c0hh̃, |z| ≤ Ch.

Since

exp(±sGw(x, hD)) = OL2→L2(h−k),

that means that

hk1‖u‖ ≤ C1‖(P (z) − iW )u‖, Im z > −c0hh̃, |z| ≤ Ch.

4.4. A Global Estimate

Here, we show how the assumption (1.4) and part (ii) of Proposition 3.1 give
a global estimate; recall that the estimates of Sects. 4.1–4.3 applied to u sup-
ported in X0. We fix a partition of unity on the interior of X0

1 = χ2
0 + χ2

1

such that χ0 = 1 on U2, suppχ1 ⊂ {W = 1}, and with suppχi ⊂ {W > 0} for
i = 1, 2.

The results of Sects. 4.1–4.3 show that, in the notation of Sect. 1.1,

γ(z, h)‖χ0u‖ ≤ C‖(P0(z) − iW )χ0u‖,

γ(z, h) def=

⎧
⎨

⎩

Im z, Im z > 0,
h/ log(1/h), Im z = 0,
hk, Im z > −ν0h,

(4.14)

and since χ1W = 1,

c0‖χ1u‖ ≤ ‖(P (z) − iW )χ1u‖, (4.15)

as implied by the hypothesis (1.4).
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Now, writing P̃ (z) = P (z) − iW ,

‖P̃ (z)u‖2

= ‖χ0P̃ (z)u‖2 + ‖χ1P̃ (z)u‖2

≥ ‖P̃ (z)χ0u‖2 + ‖P̃ (z)χ1u‖2 − ‖[χ0, P̃ (z)]u‖2 − ‖[χ1, P̃ (z)]u‖2

− 2
(
‖χ0P̃ (z)u‖‖[χ0, P̃ (z)]u‖ + ‖χ1P̃ (z)u‖‖[χ1, P̃ (z)]u‖

)

≥ ‖P̃ (z)χ0u‖2 + ‖P̃ (z)χ1u‖2 − 2C(‖[χ0, P̃ (z)]u‖2 + ‖[χ1, P̃ (z)]u‖2)

−‖P̃ (z)u‖2/C

Since on the support of the commutator terms W = 1 and P (z) = P0(z), we
have obtained

C0‖(P (z) − iW )u‖2 ≥ ‖(P0(z) − iW )χ0u‖2 + ‖(P (z) − i)χ1u‖2

−C1(‖[χ0, (P0(z) − i)]u‖2 + ‖[χ1, (P0(z) − i)]u‖2).

Using (ii) of Proposition 3.1 we obtain

‖[χj , (P (z) − i)]u‖2 ≤ Ch2‖ψ(P0(z) − i)u‖2 − O(h∞)‖u‖2
2

≤ Ch2‖(P (z) − iW )u‖2 − O(h∞)‖u‖2
2,

where ψ ∈ C∞
c (X0) satisfies

W�suppψ≡ 1, ψ�supp dχj
≡ 1.

We apply this estimate, (4.14), and (4.15), to get

C2‖(P (z) − iW )u‖2

≥ ‖(P0(z) − iW )χ0u‖2 + ‖(P (z) − i)χ1u‖2 − O(h∞)‖u‖2

≥ γ(z, h)‖χ0u‖2 + c0‖χ1u‖2 − O(h∞)‖u‖2

≥ γ(z, h)(‖χ0u‖2 + ‖χ1u‖2) − O(h∞)‖u‖2

≥ (γ(z, h)/2)‖u‖2.

which completes the proof of Theorem 1.

5. Results for Resonances

Here, we briefly indicate how the proof presented in Sect. 4 adapts to give
a resonance-free strip. First, we need to make additional assumptions on the
operator guaranteeing meromorphic continuation of the resolvent.

Suppose that X is given by (3.1) with N ≥ 1. For simplicity, we will
assume that N = 1, with obvious modifications required when for N > 1.

We make the same assumptions3 as in [40, (1.5), (1.6)] and [32, Sect. 3.2]:
P = P (h) = P (h)∗,

P (h) = pw(x, hD) + hpw1 (x, hD;h), p1 ∈ S1,0(T ∗X),
|ξ| ≥ C =⇒ p(x, ξ) ≥ 〈ξ〉2/C, p = E =⇒ dp �= 0, (5.1)
∃ R0, ∀ u ∈ C∞(X\X0), P (h)u(x) = P∞(h)u(x),

3 We assume that p1 is of order 1 in ξ to make the case of h = 1 easier to state.
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where in X\X0 = R
n\B(0, R)

P∞(h) =
∑

|α|≤2

aα(x;h)(hDx)
α
, (5.2)

with aα(x;h) = aα(x) independent of h for |α| = 2, aα(x;h) ∈ C∞
b (Rn) uni-

formly bounded with respect to h (here C∞
b (Rn) denotes the space of C∞

functions with bounded derivatives of all orders), and
∑

|α|=2

aα(x)ξα ≥ (1/c)|ξ|2, ∀ξ ∈ R
n, for some constant c > 0,

(5.3)∑

|α|≤2

aα(x;h)ξα −→ ξ2, as |x| → ∞,uniformly with respect to h.

We further take the dilation analyticity assumption to hold in a neighborhood
of infinity: there exist θ0 ∈ [0, π), ε > 0 such that the coefficients aα(x;h) of
P∞(h) extend holomorphically in x to

{rω : ω ∈ C
n, dist(ω,Sn) < ε, r ∈ C, |r| > R0, arg r ∈ [−ε, θ0 + ε)},

with (5.3) valid also in this larger set of x’s.
We note that more general assumptions are possible. We could assume

that X is a scattering manifold which is analytic near infinity and satisfies the
conditions introduced in [45].

Theorem 2. Suppose P is an operator satisfying the dilation analyticity ass-
umptions above and such that P (z) = P − z satisfies the assumptions of
Theorem 1. Then for any χ ∈ C∞

c (X), χ(P − z)−1χ, continues analytically
from Im z > 0 to Im z > −ν0h, |z| < δ0, and

‖χ(P − z)−1χ‖L2→L2 ≤
{
Cχh

−1 log(1/h), Im z = 0,

Cχh
−k, Im z > −ν0h,

(5.4)

for |z| < δ0. In other words, there are no resonances in a strip of width pro-
portional to h.

Sketch of the proof. The proof follows the same strategy as the proof of the
estimate O(h−k) for Im z > −ν0h in Theorem 1 but with W replaced by
complex scaling with angle θ ∼ h log(1/h). That requires a finer version of
Lemma 4.2 which is given in [40, Proposition 7.4]. In particular, the choice
of the cut-off function χ1 has to be coordinated with complex scaling (see
also [40, Sect. 4.2]). The same exponential weight can then be used, following
the arguments of [40, Sect. 8.4], but without the complications due to second
microlocalization needed there.

This provides the bound O(h−k) for the norm of the analytically contin-
ued cut-off resolvent, χ(P − z)−1χ, for Im z > −ν0h. To obtain the bound on
the real axis, we can proceed either as in Sect. 4.2, or using the “semiclassical
maximum principle”—see for instance [7, Lemma 4.7] or [10, Lemma A.2]. �
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Ideas used in the semi-classical case provide results in the case of the
classical wave equation. We first note that if P = P (1) satisfies the assump-
tions above then the resonances are defined as poles of the meromorphic con-
tinuation of (P − λ2)−1 from Imλ > 0 to Imλ > −c0|Reλ|—see [37]. When
P∞ = −Δ and the dimension, n, is odd, the meromorphic continuation extends
to the entire complex plane (that is why we use the parametrization z = λ2,
and when n is even we pass to the infinitely sheeted logarithmic plane)—see
[38]. Theorem 2 implies that for χ ∈ C∞

c (X),

‖χ(P − λ2)−1χ‖L2→L2 ≤ Cχ|λ|k, Imλ > −α1, |Reλ| > α0, α, β > 0.
(5.5)

To relate this to energy decay we proceed in the spirit of [9]. Suppose that the
operator P satisfies the assumptions above with h = 1 and consider the wave
equation for P with compactly supported initial data:

(D2
t − P )u = 0, u�t=0= u0, Dtu�t=0= u1, suppuj ⊂ V � X. (5.6)

The local energy decay results are different depending on finer assumptions on
P which we state as three cases:

Case 1 P |Rn\B(0,R0) = −Δ|Rn\B(0,R0) n odd

Case 2 P |Rn\B(0,R0) = −Δ|Rn\B(0,R0) n even

Case 3 P |Rn\B(0,R0) = P∞|Rn\B(0,R0) any n

where P∞ is an elliptic operator close to the Laplacian at infinity—see (5.2)
and (5.3)—with h = 1.

Theorem 3. Let P be an operator satisfying the assumptions above with h = 1.
Let U, V ⊂ X be bounded open sets, and let Ψ ∈ C∞ (R) be an even function
such that

Ψ (x) = 1
{

for x ∈ R in cases 1 and 2
for x ≥ 1 in case 3 , Ψ (x) = 0 near 0 in case 3. (5.7)

Suppose that P has neither discrete spectrum nor a resonance at 0. Then there
exists K > 0 such that the solutions of (5.6) with

‖u0‖HK+1 ≤ 1, ‖u1‖HK ≤ 1, Ψ(
√
P )uj = uj

satisfy the following local energy decay estimates:
∫

V

(|u(t, x)|2 + |∂tu(t, x)|2
)
dx ≤

⎧
⎨

⎩

C exp(−αt), in case 1,
Ct−n+1 log t, in case 2,
CM t

−M , ∀M > 0, in case 3,
(5.8)

where the constant C (CM ) depends on U and V (and M) only.

Proof. We first note that it is enough to obtain the estimates χU(t)χ :
HK → L2 where χ ∈ C∞

c (X) and

U(t) def=
sin t

√
P√

P
.
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To do that we follow the standard procedure (see [42],[9, Sect. 4] and reference
given there) and perform a contour deformation in the integral:

χU(t)(P + i)−K/2Ψ(
√
P )χ

=
i

2π

+∞∫

−∞
e−itλχ(R(λ) −R(−λ))(λ2 + i)−K/2Ψ(λ)χdλ, (5.9)

for t > 0. The contribution of R(−λ) in the spectral projection can be elimi-
nated by contour deformation when t > 0—see [42, Sect. 4]. Hence,

χU(t)(P + i)−K/2Ψ(
√
P )χ

=
i

2π

+∞∫

−∞
e−itλχR(λ)(λ2 + i)−K/2Ψ(λ)χdλ, t > 0. (5.10)

In case 1, i.e., odd dimensions and P = −Δ in the exterior of a (large)
ball, we use the estimate (5.5) to deform the contour to Γ = R−iγ, 0 < γ < α1.
This gives (5.8) in that case.

In the case of a compactly supported perturbation of −Δ and n even, we
have to modify this argument because the resolvent has a branching point at
λ = 0. Thus, we deform the contour near 0 to

{λ = x− ic1x, x ≥ 0} ∪ {z = x+ ic1x, x ≤ 0}, for c1 > 0, small.

We use the usual estimate for the resolvent near 0:

‖χR(λ)χ‖ ≤ CM |λ|n−2| log λ|
in any sector | arg λ| < M—see for instance [46, §3]. The dominant part of the
integral (5.10) comes from the contour near 0 which gives

1∫

0

xn−2 log x e−xtdx ≤ Ct−n+1 log t,

which is the estimate in case 2.
For case 3, that is the case of Ψ �≡ 1, we consider the analytic extension of

that function, Ψ̃, with the property that ∂̄Ψ̃ = O(| Im z|∞) (the defining prop-
erty of the almost analytic extension—see [16, Chapter 8]) is supported in a set
where P has no resonances—see Fig. 1. We deform (5.10) to a contour which
for |z| > 1 is the same as before, and for |z| < 1 is as in Fig. 1. By Stokes’s
formula, we get exactly the same contributions as in case 1 (since near 0, Ψ̃ =
0) with an additional term

i

2π

∫

Ω

∂̄Ψ̃ (z) e−itzχ(R(z)(z2 + i)−Lχdz (5.11)

where Ω is the support of ∂̄Ψ̃ between the real axis and the new contour
(shaded in Fig. 1). Since ∂̄Ψ̃ (z) = O (| Im z|∞), a repeated integration by
parts shows that this last term is O (t−∞) (in the energy norm). �
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Figure 1. The contour deformation in case 3 and the
support properties of the almost analytic extension of Ψ

Proof of Corollary 3. We follow the argument of Burq [7]. The left-hand side
of (5.8) is bounded by the same quantity at t = 0, and in particular by
‖u0‖2

H1 + ‖u1‖2
L2 . The estimate (5.8) shows that, in case 1 (i.e., the case con-

sidered in Corollary 3), it is also bounded by e−αt‖u0‖HK+1 + ‖u1‖HK . Inter-
polation between these two estimates gives (1.2). �
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[4] Bony, J.-F., Häfner, D.: Decay and non-decay of the local energy for the wave
equation on the De Sitter-Schwarzschild metric. Commun. Math. Phys. 282, 697–
719 (2008)

[5] Bony, J.-F., Fujiie, S., Ramond, T., Zerzeri, M.: Spectral projection, residue
of the scattering amplitude, and Schrodinger group expansion for barrier-top
resonances. arXiv:0908.3444

[6] Bony, J.-M., Chemin, J.-Y.: Espaces fonctionnels associés au calcul de Weyl-
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