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Divergences in Quantum Field Theory

on the Noncommutative Two-Dimensional
Minkowski Space with Grosse—Wulkenhaar
Potential

Jochen Zahn

Abstract. Quantum field theory on the noncommutative two-dimensional
Minkowski space with Grosse-Wulkenhaar potential is discussed in two
ways: in terms of a continuous set of generalised eigenfunctions of the
wave operator, and directly in position space. In both settings, we find
a new type of divergence in planar graphs. It is present at and above
the self-dual point. This new kind of divergence might make the con-
struction of a Minkowski space version of the Grosse—Wulkenhaar model
impossible.

1. Introduction

The extensive study of noncommutative quantum field theories (NCQFT) that
started about 15 years ago has undergone several twists since then (for moti-
vations and an overview, we refer to the reviews [1-3]). Right from the start,
different approaches were followed. Although Filk derived modified Feynman
rules for the Euclidean case [4], Doplicher et al. [5] started on the non-
commutative Minkowski space and proposed a Hamiltonian setting for the
quantisation of field theories. In the context of Filk’s Feynman rules, the phe-
nomenon of UV/IR mixing [6] was found. For a couple of years, this was an
obstacle for a systematic treatment of renormalisation.

The Hamiltonian approach and the modified Feynman rules are equiva-
lent when time commutes with all spatial coordinates. However, when this is
not the case, the naive application of Filk’s Feynman rules to field theories on
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the non-commutative Minkowski space leads to a violation of unitarity, in the
sense that the cutting rules no longer hold [7]. As Bahns et al. [8] pointed out,
this violation of unitarity is the consequence of an inappropriate definition
of time-ordering and not present in the Hamiltonian setting [9]. As another
alternative, they proposed the Yang-Feldman approach [10]. Then, the UV /IR
mixing manifests itself as a distortion of the dispersion relations [11,12].

In recent years, the study of models with an added harmonic oscilla-
tor potential became popular and such a modification was first proposed by
Langmann and Szabo [13], who showed that in such a way the action of the
complex ¢* theory can be made invariant under Fourier transformation. This
occurs for a particular value of the harmonic oscillator frequency, the so-
called self-dual point.! For the case where the harmonic oscillator potential
is replaced by a constant magnetic field (of the same frequency), the model is
solvable (but trivial) [14]. Further evidence for the need for an added harmonic
oscillator potential came from the success of the Grosse-Wulkenhaar model.
They showed that with such a modification, the non-commutative ¢* model
is renormalisable not only in two [15], but also in four space-time dimen-
sions [16]. Even better, the model is asymptotically safe (but not free!), since
the G-function is bounded [17,18].

In this approach, one uses (Weyl symbols of) ket-bras of harmonic oscil-
lator eigenfunctions to transform the model to matrix form. Then, the inter-
action term takes a particularly simple form. It is precisely at the self-dual
point that also the propagator becomes simple (diagonal). It turns out that in
four space-time dimensions,? the self-dual point is a fixed point of the theory
[17,18].

While the study of Euclidean models with an added harmonic oscilla-
tor potential was a spectacular success, very little is known about the cor-
responding Minkowski space versions.® As we show here, the self-dual point
is a special point also on Minkowski space, but in an unexpected way: it is
at this point that a strange kind of divergence appears in planar graphs. At
first sight, this is paradoxical: usually the planar graphs are as in the com-
mutative case. But in two dimensions, all scalar field theories are superre-
normalisable. Because the degree of the singularity of the propagator only
depends on the kinetic term.? this is also true if a non-constant potential is
added. Hence, there is no divergence in the commutative case and we would
not expect to find one in the planar sector. However, the fact that planar
graphs are exactly as in the commutative case relies on the cancellation of the

1 In this work, this term does only refer to the frequency of the harmonic oscillator potential.
The models discussed here are in general not self-dual in the sense of [13].

2 In two space-time dimensions, the quadratic potential is only needed in an intermediate
step. In the limit where the cutoff in the matrix base is removed, its frequency vanishes [15].
3 In [19], first steps in this direction were taken. The relation of their approach to the ones
discussed here is clarified in Appendix A.

4 This is the case for the retarded propagator [20]. That the same is also true for the
Feynman propagator and the two-point function should rather be viewed as a condition for
suitable states. Basically this is the Hadamard, or in modern terms, the microlocal spectrum
condition for QFT on curved space-times [21].
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twisting factors. This, in turn, happens due to momentum conservation. But
momentum is not conserved because of the quadratic potential. Thus, there
is no reason to expect that the planar part is exactly as in the commutative
case.

We will find these divergences in two different ways. In the first approach,
we restrict ourselves to the self-dual point and use a continuous set of gen-
eralised eigenfunctions of the wave operator as a basis for quantisation. As
a first step, we assume naive Feynman rules and compute the fish graph in
the ¢® model. While there is some ambiguity stemming from different possi-
ble choices for the Feynman propagator, one generically finds a peculiar type
of divergence in planar graphs. It is no UV divergence in that it does not
stem from a divergent loop integral. Instead, it comes from the kinematical
factors at the vertices. If the divergence is formally removed, one also finds
a violation of unitarity, in the sense that the cutting rules are not fulfilled.
This is not surprising given that we postulated Feynman rules without car-
ing for correct time-ordering. This problem can be cured by quantising a la
Yang—Feldman. However, we will argue that this does not remove the diver-
gences.

The second approach that leads to the same conclusion is a treatment of
the model in position space. In that case, one is not restricted to the self-dual
point. To circumvent the ambiguities connected to a choice of the Feynman
propagator, we start by explicitly constructing the retarded propagator. It
turns out to be increasing like a Gaussian in some directions, so we interpret
it as a distribution on a Gelfand—Shilov space. We show that for distributions
on that space, the planar x-product at different points can not be defined via
duality if one is at or above the self-dual point. Again, this shows that the
problem is not a UV divergence, since it occurs before taking the limit of coin-
ciding points. We also show that when the planar *-product is calculated in
a formal sense, one finds a geometric series that diverges at and above the
self-dual point.

The appearance of this new kind of divergence is an interesting phenom-
enon, that, to our opinion, deserves more detailed studies. In particular, it
should be checked whether it also occurs in four space—time dimensions, since
there the self-dual point is a fixed point of the theory [17,18], at least in the
Euclidean case.

This paper is organised as follows: in the next section, we fix some nota-
tion. In Sect. 3, we introduce the continuous basis of generalised eigenfunctions.
This is used in Sect. 4 to postulate naive Feynman rules and discuss the fish
graph of the ¢? model in this setting. We find the above-mentioned violation
of unitarity and the new type of divergence in the planar sector. In order to
better understand these, we construct the retarded propagator and discuss
some of its properties in Sect. 5. It is then used to further analyse the pla-
nar divergences in Sect. 6. We conclude with a summary and an outlook. In
Appendix A, we discuss the relation to the matrix model introduced in [19].
Appendix B contains the calculation of the retarded propagator in momentum
space.
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2. Setup

We start by fixing some notation: for the commutation relations, we write

[F, 2¥] = i0" = i\2 e (2.1)

= (% 1)

Here, we introduced a length scale A,.. The product of functions of these
non-commuting coordinates can now be defined via the x-product,

with

(f % g)(x) = fe30" Drg(z), (2.2)

or by the twisted convolution

(f*g) (k) = (2m)1 / @k f(k)gl — kye~ #Ra0" e, (2.3)

where the hat denotes Fourier transformation. For analytic functions, these
are equivalent. When in doubt, we use (2.3).

The Grosse-Wulkenhaar potential can now be introduced in the following
way: We define [13,15]

D = —i9, F2907 " a” = —id, + 20 % .
Here we defined
A =02\ (2.4)
The choice 2 =1, i.e., A = Ay, corresponds to the self-dual point. Obviously,
[Dif, D] = +4iX 2.,  [Dy,DF]=0
and
DfDi“ =—0,0"F 42')\72%,,33”8“ — 4/\7433;@“.

The wave equation for a scalar field ¢ of mass u in the quadratic potential is
then given by

1
<_2 (DFD* 1 DD *) ,ﬁ) 6 = (0,0" + 43Tz, +12) 6. (25)

This is starting point for a discussion of the model in position space. The reader
who is interested in this approach may thus directly jump to Sect. 5. The next
two sections are devoted to the study of the model in terms of generalised
eigenfunctions of the above wave operator for the case A = Ac.
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3. The Eigenfunction

We want to study the eigenfunctions of the wave operator (2.5). For this, we
restrict ourselves to the self-dual point, i.e., to the case A = A,.. The impor-
tance of this restriction is that then D;‘L‘D‘H‘ and D, D™" can be represented
as x-multiplication from left, respectively right. To see this, we use the form
(2.2) of the -product. For H = —<%x,2", one obtains [19], using € ne = —1,

2 i A
Hif=toaa (1 b N5, 85555) f

2 ‘ v 1
= - (%x“ +z>\2€uu$“3 + 4)\4‘%8“) f
)\2
2

Analogously, one finds

D, D "f.

)\2
fxH="DiD"f.

Thus, if we find a complete set of orthonormal generalised eigenvectors |ks)
of the Wigner transform of H, with eigenvalues k& and a degeneracy index s,
then we have

1 . . - ;
(-2 (DfD* + D, D7) + ;ﬂ) Xi = (A2 + D +p®) xig (3.1)

where x5! is the Weyl symbol of the ket-bra operator |ks)(lt|. Furthermore, in
this basis, the x-product takes the form

X * i = 81— K8 X3, (3:2)
and because of the cyclicity of the integral we have
/d% Xih = 6(k — )6, (3.3)

Indeed, a basis with the required properties exists. As shown in [19,22] and
below, the spectrum of H is the entire real line, with a twofold degeneracy.
The eigenvalues k,[ will be called the generalised momenta in the following.

To find the eigenfunctions of H, we implement the commutation relations
(2.1) by choosing (we recall that here A\, = \)

To=Aq, T1=Ap, (3.4)

where ¢ and p = —i0, are the position and momentum operators on L?(R).
The Hamiltonian H thus becomes

9
H=—a,ah = 20> —¢*) = —((g+p)(a—p) + (¢ — p)(g +p)).
We write this as

H=-2(UV +VU),
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with

U=—=(q—p); V=—72(q+p). (3.5)

E\“
<[ -

We have
[U,V]=1.

Choosing the canonical representation for U and V', we thus have to solve the
eigenvalue equation

2i(u8y + Oy u) Yy (u) = kb (u),

or

W) = (~i% - 3 ) welw) (3:6)

Generalised eigenfunctions that solve this are given by [23]

lu|="i~2  foru =0

() = ~i4-4 o
= 221

k 2\/7 Uy

It is straightforward to prove the orthonormality relations

(Wilv) = 0%o(k — 1)

3 / dk G (u)i (') = 8(u— o)

There is a similar basis, obtained from ¢,:f by Fourier transformation, which
is given by [24]

+7 ik 1 k1
() = T )F(—z4+2>(uil€)

The change back to the p,q representation is achieved by the unitary
transformation

@ = @) [au e (T Sy (3.7a)

0 otherwise -

Ma—

1
2 .

o) = 2r) 7 [au (5P ), (3.70)

As shown in [22], the results are the parabolic cylinder functions that were used
in [19] and denoted by the same symbols (their convention is related to the
one used here by & = A~2k/4). However, we note that U and V are multiples
of the light cone coordinates, which are very convenient in two dimensions.

Defining, cf. (3.4) and (3.5),
1 1
= —_— — s = — —+ , 3.8
\/i)x(xo ), v \/5)\(% ) (38)

we obtain the Weyl symbol of the ket-bras [¢§) (1} in these coordinates as

i, v) = / dp €7 (u— p/2) (Wl + p/2).
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We compute this explicitly for the ++ component.
1 ipv —ik_1 b1
i ) = - [ dp et /27 gl
This vanishes for u < 0. For u > 0, we obtain, using [25, (13.2.1)],
2u
++ 1 ipv —ik_1 il-1
Xig (wyv) = o [ dp e (u—p/2)7472 (u + p/2)" 72
—2u
(QU)i% 4 4i k1 P11
=B [y etz gyt gz )
0
~1/2
-k 1
2u)t T —2iuv 1pUv —ik_1 1_1
:%62 /dp et (1 —p) Tt zpia e
0
Qu)'T o DL + DT(=i% + DML + 1,55 + 1, 4iuw)
dr L5k +1)

where M is Kummer’s confluent hypergeometric function of the first kind. For
the —— component, one finds a similar expression, and also the +— and —+
components can be expressed in terms of special functions, in this case Kum-
mer’s confluent hypergeometric function of the second kind. However, for the
present discussion, the explicit form of the eigenfunctions in position space is

not relevant.

4. Quantisation in Terms of the Eigenfunctions

We now want to discuss field theory at the self-dual point in terms of the
continuous set of generalised eigenfunctions. Expanding fields in terms of x;t,

6= [ anat s
st
where
kl /d2x Xkt *d%

we may write the wave operator W in matrix notation as
(Wo)ih = Wit £ o
with, cf. (3.1),
Wit b8 = (A2 (k + 1) + p2) 8(k — K')o(1 — 11)5°% 5.
This can easily be inverted to yield a propagator
—\2

o _gn\gss’ stt!
kavu?ﬂeUSt(k,Z)‘s(k K)o = 1)o™ o

st t's’
Akl Uk —

(4.1)
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Here, o4 (k,1) is a sign function which can be chosen such as to achieve the
required causality properties for the propagator. Of course, the choice of this
sign function affects the loop integrals we want to calculate later on. However,
as we will see, some properties of the loop integrals are generic in that they
do not depend on this choice. In particular, we find a divergence that is pres-
ent even before evaluating the loop integral, and thus independent of the sign
function. Hence, we will not invest too much care into a rigorous discussion of
the possible choices for the sign function.

For the graphical statement of naive Feynman rules, we use a double line
notation, similar to [15]. The two lines can be interpreted as the bra and the
ket of the eigenfunctions. According to (4.1), the propagator is given by

l%lf’ =058 5(k — K')O(1 = ) it

ks kK's'

For the sake of notational simplicity, we dispensed with the sign function.
However, we have to keep in mind that the sign of € may depend on s, t, k, [.

From (3.2) and (3.3) it follows that in the scalar ¢* model with coupling
constant g, the vertex is given by

i .,
Ut <]u
= 6% 5% 5u 5 (k — k)6(1— 1)6(j — j').
k?_/\\/ju 9 (k=& =15 = 5")
k's

As a first application, we compute the fish graph in the ¢3 model. One
finds the following graphs:

It U0t k'
ks ks ks 2%

The first one is a planar and the second one a nonplanar® graph. For the
planar part, one obtains

ig? M\ — K)o (1— )65 &'
1 1 2
jdj’ = (4.2
qu:/djd” E4 NP e 7 - g 0 Dl (42

5 In the notation of [16] it has genus g = 0, but two boundary components (B = 2), and
thus a hole.
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Here we introduced €;,5 in order to remind ourselves that the sign will in
general depend on the generalised momenta and the degeneracy indices. Due
to the presence of the square of a ¢ distribution, this expression is divergent,
already before evaluating the loop integral. It is thus no UV divergence in the
usual sense (so also a cutoff in the spirit of [15] would not help). That is does
not appear in the Euclidean version of the theory can be understood by noting
that there, the loop integral is a sum of the form

1 1

Z(;jj/(;jj' )
= n+7+A2u? 5 +m+ A2p?

Here, the square of the Kronecker d poses no problems. At the end of this and
in the next two sections, we discuss the appearance of this divergence in some
detail. But for the moment, we ignore it and formally absorb it in a divergent
constant §(0) such that §(j — j')% = §(0)6(j — j'). We can then evaluate the
loop integral in (4.2), and in particular discuss the unitarity of the model. We
may write it as a convolution:

1 1
— [ dj . 4.
/Jj+i€1k—l—j—i€2 (43)

Using

f{ 1 ](p) — V2 H (+p), (4.4)

Tt e

where F denotes the Fourier transform and H the Heaviside distribution, and®
H(%p)H(+p) = H(Lp),
H(£p)H(Fp) =0,

we find that (4.3) vanishes for €; = e2. In the case € = —ea, one obtains
21 !
T
k—1 + i€1
. 1 _ pl . . . . .
Because of — - = P —imd(z), the imaginary part of (4.2) is thus given by a

multiple of
2122 N46(0)8(k — k)6 (1 — 11)86° 6™ §(k — 1). (4.5)

The multiplicity depends on how ¢; and €5 behave for the different combina-
tions of s, ¢t and u in (4.2).

In the nonplanar graph all generalised momenta are fixed, so there is no
loop integral to evaluate. We obtain

1 1
k41— X2p2 +ier k' +1— A2p2 +ideg

ig? AN (k — D6(K — 1)8%t6°"

6 Strictly speaking, these products are not well defined in the sense of Hérmander’s product
of distributions [26]. Using Steinmann’s concept of scaling degree [27,28], one can show that
the r.h.s. is, in a certain sense, the unambiguous extension of the product on the Lh.s. to
the singularity at p = 0.
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Using again (4.4), one can show that
1 1 1
17)

ztiextie  “xtie
and that the products wiliﬁ l_;ie are not well-defined and have to be renor-
malised.” But even in that case, the product is well-defined on test functions
vanishing in a neighborhood of the origin, so renormalisation ambiguities only
affect the behavior at x = 0. We may thus conclude that for k+ &’ # A\2u? the
imaginary part of the nonplanar graph is given by

1
(k—l—k' _ )\2,u2)2'

For k + k' = /\2,u2 there are renormalisation ambiguities when €; = —ey. But
these are not relevant at the moment. The important point is that the contri-
bution (4.6) leads to a violation of unitarity.

We now want to compute two graphs when the internal lines are put on
the mass shell (and multiplied by 27). For the planar graph, we again find the
singularity due to the matching of generalised momenta at the two vertices.
Writing this as §(0) again, we obtain

PNk — Dok — 15565 (4.6)

2(2m)2 g2 X465 (0)5(k — K)o (1 — 1')§°5 / dj 6(k+ 5 — Np2)0( +1— A2pu?)

= 8722 A\5(0)5(k — k)6 (1 — 1')6°% 6" §(k — 1).

The factor 2 comes from the twofold degeneracy. This is a multiple of (4.5).
Thus, it may be possible, by a suitable choice of the sign function, to fulfil the
cutting rules. For the nonplanar part, however, we find

A2 N25(k — D)oK — 1)8%4 6%V [5(k + k' — A2u2))>.

We again find the renormalisation ambiguity at k + &’ = A2u?, but no contri-
bution of the form (4.6). Thus, unitarity is violated in a naive Feynman rules
setting.

Let us now come back to the subject of the strange divergence in the
planar fish graph. It is straightforward to see that it is not specific to the ¢?
model, but also shows up in other planar graphs, such as the self-energy in the
¢* model, or the one-loop correction to the three-point function:

S

7 For a systematic treatment of renormalisation ambiguities in the products of distributions,
we again refer to [27,28]
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In fact, every ribbon graph in which a closed loop of a single line exists,
i.e., every graph that contains a planar subgraph with a loop, is subject to
this divergence. Conversely, in completely nonplanar graphs, all generalised
momenta are fixed by the outer ones, so this problem can not occur. Never-
theless, there may still be divergences for special momenta, as the example of
the fish graph showed.

Furthermore, these divergences seem to be present also in a Yang-
Feldman quantisation of the model: Then, one of the propagators in the
loop integral is replaced by a retarded propagator, and the other one by the
Wightman two-point function of the free field [8,12]. The replacement of a
Feynman propagator by a retarded one is unessential for the present discus-
sion, since they should differ only in the ie description at the poles. Due to
the broken translation invariance, there is some ambiguity in the definition
of the free two-point function, but in any case it has to be a solution to the
free field equation and it has to be compatible with the commutator. If the
retarded propagator can be written in the form (4.1), as we assumed above,
then the commutator (which is derived from the retarded propagator) will
conserve the generalised momenta. But then the two-point function must also
have a component that conserves the generalised momenta. Thus, the strange
planar divergences can not be avoided by using the Yang—Feldman formalism.
In the following sections, we will show that they are no artefact of the use of an
inappropriate basis, but also appear when the model is discussed in position
space.

Finally, we note that the planar divergences will also show up in the
four-dimensional case. By a Lorentz transformation, one can always switch to
a coordinate system where 6 is of the form

0 — A2e 0
0 Ne )
For the two spatial coordinates that now commute with time, the quadratic

potential is the usual harmonic oscillator potential, so the generalised eigen-
functions are given by

Fimn (€) = X71(2%, 2 Smn (22, 2%),

where ¢, are Weyl symbols of ket-bras of harmonic oscillator eigenstates.
These fulfil

wzymn * wl‘zjgjm’n’ = 5(1 - k/)énmlétS/ql}zf:mn”
/d41; ngn = 6(k - l)(sanSta
instead of (3.2) and (3.3). The propagator will be of the form

AStt/S/// 'm! = 71
H A (R4 D) = 25 (m ) — g2 et (k1)

x8(k — k')S(L = U')S s O 6% 51
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Because the generalised momenta k, [ are conserved by the propagator and at
the vertices, one will again find the square of a d-distribution in the fish graph.

In the setting of the generalised eigenfunctions, the planar divergences
arise because the generalised momentum is conserved at the vertices and dur-
ing propagation. One may thus suspect that the problem is absent when one
is not at the self-dual point. In this situation, the description in terms of the
generalised eigenfunctions becomes quite complex. However, by switching to
position space, one can show that the above reasoning is at least partially cor-
rect. As shown in the following sections, the singularity is absent (far enough)
below the self-dual point, i.e., if the frequency of the potential is lower than
the self-duality frequency, but present at and above the self-dual point.

5. The Retarded Propagator

To avoid the ambiguities in the definition of a Feynman propagator,® we start
by considering the retarded propagator. It can be constructed in position space,
which avoids the use of the generalised eigenfunctions. In the massless case and
without the quadratic potential, the wave operator for a scalar field is given
by O = 49,,0,,, where we now use

u=mx9— 2T, V==To+ T, (5.1)

instead of the notation (3.8) used in Sect. 3. The retarded propagator for this
wave operator is

1
Avet (w1, v1;u2,v9) = §H(ul —ug)H (v — v2),

where H is again the Heaviside distribution. Thus, the square A%, is well-
defined without the need for any renormalisation (but see footnote 6). In the
presence of the quadratic potential, the retarded propagator will no longer
be translation invariant, and the above propagator is multiplied with a func-
tion of wuy,v1,us,vs. In the massless case, the wave operator for the Grosse—
Wulkenhaar potential is given by, cf. (2.5),

40,0, + AN v (5.2)
and we have the following

Proposition 5.1. The retarded propagator for the wave operator (5.2) is given
by

n n
2 —ud)" (02 - vd)

2n)\2np!  2n)\2np)

1 oo
Aer(ur,v1;u2,v2) = §H(U1 —uz)H(v1 — v2) Z(—l)"(
n=0

8 It depends on the quantum state, which is not unique due to the lack of translation
invariance.
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Proof. The series on the 1.h.s. has infinite convergence radius and thus yields
an analytic function V' (uq,v1; ug,v2). This function (which is in fact a Bessel
function) fulfils
V(’U/l,'Ul;Ul,'Ul) = 1a

a’ulv(uh V15 U2, vl) = 07

&Jl V(ul, V1yUy, 1)2) = O
The first equality assures that when both derivatives in 9,,0,, act on the
Heaviside distributions, then one still obtains a ¢ distribution for coinciding
points. Due to the other two equalities, the mixed terms, where one deriva-
tive acts on a Heaviside distribution and the other one on V', vanish. Thus, it
remains to show that

(Buy Ouy + A urv1)V (u, v13uz,v2) = 0,

which is straightforward. O

Before discussing the propagator in more detail, we express it in the
coordinates

Ug = U1 + U,  Up = U] — U2, (5.3a)
Vs = U1 + V2, UV =V — Vg, (5.3b)
as
1 > L (upug)™ (vpvg)™
Avet (s, Vs, ug, V1) = §H(Ut)H(Ut) > (1) NS ] (5.4)

= L H ) H(w) Jo (A2 i), (5.5)

For imaginary arguments, i.e., for usvs < 0, the Bessel function diverges as
Jo(iz) ~ e*/\2mx [25, (9.7.1)], which can be seen as the cause of the serious
problems we will encounter. Using the inequality

2lzy| < ol + |yl (5.6)
several times, one finds that the Bessel function is asymptotically bounded by
a Gaussian,

[ Jo(A"2 gavgus)| < Cem (vitultvitel),
This is also true for the derivatives. It follows that the retarded propagator is
well-defined on test functions that fulfil the bound
07 1] < Cpemelvituivined),
with a = ﬁ, where € can be chosen arbitrarily small. This is the Gelfand—

Shilov space [29] Squ,4 where a and A are the quadruples consisting of % and
V2(A—¢)

NG respectively, where € can be chosen arbitrarily small. For this, we will
simply write S, 4(R*) with o = { and A = % in the following. By the

above reasoning, A, can be interpreted as an element of S’ A(RY)
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Remark 5.2. We recall that for a massive theory (without quadratic potential)
the retarded propagator is given by

%H(ut)H(Ut)JO(M\/m>'

One thus has the very natural interpretation of the propagator (5.5) as the one
for a position dependent mass u? = A~*u,v,. This is the value of the potential
at the center of mass of the two points (u1,v1) and (usg, v2). The problems for
usvs < 0 stem from the fact that the model becomes tachyonic (and ever more
SO as Usls — —00).

The Fourier transform of (5.4) (which can be interpreted as an element
of &' (R%) with o and A as above) is

A _ Iy n(s(n) 5 ! L™
ret(k57l87 kt,lt) - _§ Z N (ks) (ls) kt 7 Z.e lt — iE .

n=0

(5.7)

Here kg /; is the Fourier dual of u,/; and [/, that of vy/;. The appearance of
derivatives of the d-distribution in ks and [, indicates that momentum is not
conserved. In Appendix B it is shown that the Fourier transform of (5.5) can
be expressed in terms of the Bessel function K.

6. Planar Divergences

Having the retarded propagator at hand, we can now discuss the origin of the
planar divergences found in Sect. 4. In the setting of the naive Feynman rules,
the planar ¢ fish graph is given by

AF(‘r7 y) *z ;yAF(x7 y)a

where * denotes the x-product with 6 replaced by —f. In the Yang-Feldman
approach we would have to compute similar products, but with one of the
propagators replaced by At and the other one by one of the two-point func-
tions A. This, however, requires the choice of a state, which we would like
to avoid for as long as possible. We thus try to compute the product

A1ret (x, l/) *x ;yAret (JJ, y) (61)

Even though it has no direct physical significance, the study of this product
helps to understand the origin of the planar divergences. We want to compute
this product in the coordinates u,/¢, vs/¢. By using [u,v] = 2iA\2_, we obtain
the commutation relations

[usavs]_ = [utavt]_ = [US7Ut]_ = [Usavt]_ = Oa [Us,'Ut]_ = [Ut,'Us]_ = 4ZA121(;7

where [-, -]~ is the commutator where the x-commutator was used in the second
argument. Thus, the correct twisting factor for our momenta is, cf. (2.3),

672i)\12lc(ksit+ktl~s*ls’~€t*ltf95). (62)
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Now the question is in which sense the product (6.1) should be defined. As
already noted, even the pointwise (commutative) product is not well-defined
in the sense of Hormander’s product of distributions. To our mind, the most
conservative approach to a definition of (6.1) is the following:® to disentan-
gle the problems connected to the *-product and the distributional character
of the retarded propagator, one begins by defining the x-product at different
points. In the next step, one checks whether the limit of coinciding points
makes sense. The definition of the x-product at different points can be done
by duality, as proposed in [30]:

<Aret ®*$iy Areta f & g> = <Aret & A1ret; f ®*T,¥y g> (63)

Here we wrote the planar x-product at different points in the form of a tensor
product. Using (6.2), we have

(f ®*l}y g)A(ksv l57 kt, lt; ffsa is7 I%h [t)
_ 6—21‘)\[2‘6(1%l~t+ktl~s—lsfw—ltfcﬂ)]?(kS7 L, Ky, lt)ﬁ(ifs, [m ];h Zt) (6.4)
Formally, this may be written as

(f ®*I§y g)(usavsautvvﬁﬁsv@saﬂtv@t)

-y 2 _ - o _ ~ ~ ~ ~
= ezlAHC(ausovt +8ut’ avs avs aut aut’ aus )f(usv Vs, Ut, Ut)g(usa Vg, Ut, Ut)' (65)

In order for the r.h.s. of (6.3) to be well-defined, we have to require the r.h.s.
of (6.4) to be an element of S*4(IR®) (or the r.h.s. of (6.5) to be an element of
Sa.4(R®)). For this, we might have to choose f and g from a suitable subset
of Sq_4(R*). That this is possible if one is far enough below the self-dual point
is the result of the following'®

Proposition 6.1. For o = £, A = % and v/eAne < (A —¢), there is a
nontrivial subset S of S a(R*), such that, for f,g € S, the r.h.s. of (6.5)
is well-defined as an element of S, a(R®). More precisely, this is the case for

_ ghB ; _ _
S_Sa,A(R4) w@thﬁ— %, B = m

Proof. According to [29], the operator f(9) for an entire function f of order
less than or equal to % and type less than % is well-defined on the space
e

Sg:f and maps it to the space Sg:feﬁ. Using (5.6), it is easy to see that the
twisting in (6.5) has order 2 and type AZ.. It follows that for 3 = 1 and
B = m, the r.h.s. of (6.5) is well-defined as an element of S, a/(R®),

provided that v/eAye < (A — &). It remains to show that the space Sg_’ﬁ(]R‘l)
is nontrivial. As can easily be seen by considering a Gaussian, this space, for
a=0= %, is nontrivial provided that AB > 1/e, which is fulfilled. O

By applying more sophisticated methods, it might be possible to get rid
of the factor y/e in the restriction on A. This would mean that to be below the
self-dual point is a sufficient condition for the possibility to define the planar

9 In [11], this strategy was pursued for the definition of quasiplanar Wick products.
10 Similar considerations on the %-product of elements of S7*5 can be found in [31].
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x-product at different points for elements of &', 4(R*). But in any case we can
show that it is a necessary condition:

Proposition 6.2. For A\, > \, a = % and A = ﬁi;‘é_a), there are no €,&' > 0

such that there are nontrivial f,§ € S®A (RY), with A’ = f()‘ e for which
the 1.h.s. of (6.4) is an element of S*4(R®).

Proof. We assume that such ¢, &’ and such functions f , g exist. Now, according
to [29], elements of S%B for 3 < 1, are entire functions that fulfil the bound

|f(a +iy)| < CetWI™7

with b = %(Be)ﬁ +0, where § can be chosen arbitrarily small. In our case,
this means that f and ¢ are entire functions that fulfil the bounds

[f(z+iy)| < ce?WF, Jo(x +iy)| < e (6.6)

with & = (A — &’)? + §'. Here z and y are elements of R, Since we assumed
that the r.h.s. of (6.4) is an element of S (R®), also the bound

(f @urs, 9) (@ + iy &+ i7)| < Cet(WI*+aT7),
with b= (A — ¢)2 + 4, has to be fulfilled. We define the matrix

0 0 0 -1
(o 0o 1 0
=10 -1 0 o0
1 0 0 0

The above inequality then leads to
e ()| f(2)gin2)| < o),
where z = x + iy. Thus, we have
F(2)(in2)] < Cem (PRl XA, (6.7)

Because of A\, > A, § can be chosen such that 2\2_ — b is positive. Thus, the
function f(z)g(ivz) falls off with order 2 and type 2)2_—b in the real direction.
On the other hand, from the bounds (6.6) on f and § g, it follows that

1£(2)4inz)| < C'e? (P +l?) (6.8)

Thus, f(2)§(ivz) has growth of order 2 and type ¥’ in the i 1mag1nary direction.
Hence, for 2A2, — b > I/, the entire function F(z) = e’ 2 F(2)§(ivz) is
bounded on the real and imaginary axes and, by (6.8), uniformly bounded
by C’ e?'2* in between the axes. By the Phragmén-Lindel6f principle
[32, Thm 2.5.2], it is thus bounded on the whole complex plane, and can
only be a constant. But since its limit in the real direction is 0, cf. (6.7), we
have F(z) = 0. Thus, nontrivial f, § can only exist for 2X\2, — b < b’. This
means 202, — (A —¢)? — (A —¢€’)? < §+ §'. It is clear that for A, > A, § and
0’ can not be chosen arbitrarily small, contrary to our assumption. O
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By this analysis, it is not possible to define the planar product of two
retarded propagators at different points at or above the self-dual point. Thus,
the problem in defining the product (6.1) does not stem from the limit of coin-
ciding points, since already the product at different points is ill-defined. In this
sense, this is no UV divergence.

The result of this rather abstract argument can be checked with a con-
crete calculation. We will do this in a formal way, i.e., we use the series form
(5.4) (or equivalently (5.7)) of the retarded propagator and compute the pla-
nar product for the individual terms. The hope is that we obtain a (power)
series that can again be summed up. The twisted convolution that we want to
compute is then'!

1 m-+n
—2002_ (kslythels—lske—liks
2§ /dkdldkztdlte e (Raluthels =loke = ><4A4)

m—+1
><6<m>(ks)6<’">(zs>( - 1.)

ke —iely — e

n+1
X6 (kg — kg )o™ (l—l)( ! — ! ) .
ki —

ki —iely — 1y — 1€

We now use

n

5 =) ) = S0 () I ).

m=0

to get rid of the twisting factor, by first applying this equality to ks and [, and
then to ks and I,. One thus obtains

555 S )6 B

m,n=0 j1,j2=0 jz,j4=0

o o 1o\ et
X(;(ern*Jl*Jz)(ks)(‘)'(er"*szﬂ)(ls)/ dktdlt<k_ . ) ( ; )

+— 1€ Iy — i€

1 n—ja+1 1 n—js+1
o) G
kt—k’t—i€ lt—lt—iG

Let us consider the integral over k;. For m —jo > 0 and n—j4 > 0, the integral
yields, in position space, a multiple of

gmtn—j2—ja

(m — j2)!(n — ja)!
For m — j2 < 0 one has n—j4 > jo —m > 0 and the integral yields, in position

space, a multiple of the product of 8@2=™=1 (y,) and H (us)u] 7*. Albeit this
product is not well-defined in the sense of Hérmander, it vamshes in the sense

H(ut)u;n—m J2— ]4

11 Since our calculation is formal anyway, we could also compute the x-product with the
formal series (2.2). The result is the same. But since a calculation in momentum space is
needed later on, we chose to present it in terms of the twisted convolution (2.3).
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of Steinmann’s scaling degree. The analogous argument works for n — j4 < 0.
We thus obtain, in position space, a multiple of

nntm!m! (2)\121C)2ji

Hw Z Z [L; git(m = ji)(n = ji)! (4/\4)”””(

)jl +Ja

X (utvs)m+n Jj2—Ja (usvt)ernfjl —J3

Apart from the factor (—1)71+J4 the summand is invariant under the exchanges
j1 < j3 and jo < j4. It follows that only terms where js + j4 and j; + j3 are
even contribute. We can thus write the above as
oo min(m,n) 4 \k+1
(4X;)
l —2k —21
H(v) Z Z Conn, mn (4xt)mFn (utvs)m+" (usvt)m-‘rn
m,n=0 k,[=0

(6.9)
with
min(2k,min(m,n)) nlm)
Cmn 2. @k ) m— ) (m =2k + ) —)in 2k 1)

j=max(0,2k—min(m,n))

For m = n = k, one finds ¢, = (—1)™. While it seems to be hard make a
statement on the convergence of the series in (6.9) for fixed but general uzv,
and usve, it is easy to show that it does not converge for us = vy, = 0. This
also shows that it does not converge as a power series, contrary to (5.4), since
the zeroth order coefficient does not converge. For us = vs = 0 we only get a
contribution for m = n = k = [, so that the above series reduces to?

f: (ﬁ)m (6.10)

m=0

Obviously, this diverges unless A, < A, so the planar product (6.1) is only
well-defined below the self-dual point. Using (2.4), the above reduces to

> 1

294771:1_94.

m=0

For ) = 1 —¢, we thus find a divergence e ! as € — 0. Note that the problem is

not that the loop integral over the momenta diverges. Thus, this is no ordinary
UV divergence, similarly to what we found previously.

Remark 6.3. Let us consider what happens in the case of a massive field. Then
the series in (5.4) will be a power series in A™*" and p%. However, at zeroth
order in z2, one finds again (5.4). Thus, when one calculates the planar prod-
uct in a formal way, then a nonvanishing mass does not help. If one does not
resort to a formal calculation, then it is to be expected that the propagator
is still only defined as an element of &', 4(R?*) with o and A as above, since

12 For the coefficient of the ususvivs component, one finds, using Crvmal = (m+1)(-1)™
the series Y, (m + 1)2(Anc/A)®™, which diverges even worse.
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in the long range the quadratic potential will always dominate the mass, cf.
Remark 5.2.

The argument given up to now is not complete in the sense that we com-
puted the planar square (6.1) of the retarded propagator, which is not what
appears in actual loop calculations. In the Yang-Feldman formalism on non-
commutative space—times, the planar fish graph loop integral is of the form
[8,12]

A+({E, y) *z ;yAret(xv y) + A*(xv y){'z *y Aret(‘ra y)v (6]—1)

where A is the Wightman two-point function and A_(z,y) = Ai(y,x).
Thus, one has to choose a state, which, however, is not unique due to the
lack of translation invariance. But usually the two-point function is defined on
the same test function space as the retarded propagator (or a subset thereof).
Thus, by the analysis in the beginning of this section (which only used the
structure of the test function space), we expect the same problems as above.
In order to be more concrete, we choose a particular two-point function and
repeat the (formal) calculation from above.

A two-point function Ay has to be compatible with the commutator,
which is defined via the retarded propagator, i.e.,

A+(ks, ls, kt,lt) - A—Q—(ks,lsa 7kta *lt)
=1 (Aret(km lsa kty lt) - Aret(ksa 157 _kt7 _lt)>

Furthermore, it has to be a solution of the field equation. Finally, some kind
of positivity would be nice. Thus, ignoring the usual infrared problems!?,

o0

A 7T 1 n n
A lks,ls, ke le) = 5 > m5( (k)™ (1)
n=0 ’

x [(kt);”*l S (1) + ()" 5(n>(kt)].

would be a suitable two-point function, cf. (5.7). Using this two-point function,
we compute the product (6.11) at us = vs = 0, i.e., we consider the component
where all derivatives of the § distributions of kg, s, ke and I, are shifted on
the twisting. For given m > n we obtain

7T(—1)7n+n ()\nc)4(m+n)/ ( 1 ) >n—m+1
TANe ) dk,dl - - i
(4m)2(m —n)! \ A N

o [y D )T ) 1)
(@ e @) ) 8 (k).

Here we used

26 (z) = (—1)"n! <’:> 5m=m) ().

13 By restricting to test functions that vanish in a neighborhood of k; = Iy = 0.
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Shifting the derivatives w.r.t. l; and k; away from the § distributions, we see
that this vanishes for m > n. For m < n, we also get a vanishing expression,
since it involves the products 16(™ (1) and k8™ (k;). Thus, only the con-
tributions with m = n survive. As above, these are independent of m,'* so we
again find the series (6.10), which diverges for A, > .

Remark 6.4. Even if one is not at the self-dual point, one still has, un-
der a suitable exchange of positions and momenta, the duality S[p, m,Q] —
028[p, mQ =1, Q71 cf. [17]. Thus, one might wonder about the compatibility
of this fact with the above finding that the model behaves well for 2 < 1 but
diverges otherwise. The point is that the above duality does not respect crucial
properties of quantum field theories on Minkowski space, such as causality or
positive energy. In particular, the retarded propagator is not invariant under
the above duality transformation.

Remark 6.5. Also on Euclidean space divergences at the self-dual point were
found, namely in planar tadpoles of the Gross-Neveu model [33, App. A.4].
Similar to the findings presented here, the singularity is present even before
the loop integral is evaluated. Also there, the origin is the behaviour of the
propagator for large spatial distances!®. It would be interesting to further
study the similarities of the two effects.

Remark 6.6. Finally, a comment on the ¢* model. The fish graph loop cal-
culated here also occurs in the four-point function of the ¢* model, so the
problem is not specific to the ¢ model. For the two-loop self-energy graph
shown in Sect. 4 one has to compute products involving a retarded propagator
and two of the two-point functions AL. If already the product of A,e; with
one of these does not exist, then neither do the higher order products.

7. Summary and Outlook

We discussed noncommutative field theory with Grosse-Wulkenhaar potential
on the the two-dimensional Minkowski space in two ways: In the first approach,
we restricted ourselves to the self-dual point and used a continuous set of gen-
eralised eigenfunctions of the wave operator. This we used to postulate naive
Feynman rules. In this setting, we found a new type of divergence in the pla-
nar sector. By considering the situation in position space, we showed that
this divergence is not due to an inappropriate choice of the basis. Instead, the
fast growth of the propagator in some directions makes the definition of the
planar x-product impossible, even before considering the limit of coinciding
points.

In our opinion, the appearance of this new type of divergences is an inter-
esting phenomenon that deserves more detailed studies. These could proceed
along the following lines: In order to relate the two approaches discussed here

14 The integral itself is UV finite, but has the usual infrared problems.
15 The author would like to thank F. Vignes-Tourneret for private communication on his
work. He would also like to thank the referee for pointing out this reference.
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(position space and generalised momenta), it would be useful to have a repre-
sentation of the retarded propagator in terms of the eigenfunctions x§f. This
would amount to find an appropriate sign function oy (k,1).

Furthermore, it would be interesting to know whether one can get rid
of the factor /e in the restriction on A in Proposition 6.1. This would mean
that the model is well-defined on the whole interval Q € [0,1). Otherwise,
the self-dual point may not be so special after all. Another (possibly re-
lated) question is the following: We have shown that at and above the self-
dual point the individual terms of a series expansion of the planar square
of the retarded propagator diverge. We conjecture that below the self-dual
point all individual terms in this expansion converge. If this is the case, it
remains to check whether the series as a whole converges below the self-dual
point.

One could also study the model in the matrix basis of Grosse and Wulken-
haar. In the Minkowski case, the propagator will then take a more complicated
form than in the Euclidean case, but it might still be possible check whether
one runs into problems similar to those discussed here.

Another important point is renormalisation. Because of the uncommon
type of the divergences, it is not clear whether such a program can be success-
ful and how one should proceed, but perhaps the formal renormalisation used
in Sect. 4 would be a good starting point.

Finally, one should treat the four-dimensional case. As discussed in
Sect. 4, the use of the generalised eigenfunctions will again lead to diver-
gences in planar (sub)graphs. Preliminary results suggest that this is also
true in position space, at least in a formal sense. In that case, it would be
important to understand why these problems are absent in the Euclidean
setting.

Appendix A. The Relation to the Matrix Model

We now want to clarify the connection to the matrix model setting proposed
by Fischer and Szabo [19]. They work at the self-dual point and also consider
the eigenfunctions x+, 1+, cf. (3.7). However, they suggest to transform the
model to matrix form by considering the Gelfand triple

S5 (R) € L*(R) C S5(RY'

where S¢(R) is a Gelfand—Shilov space [29]. For elements of this space, they
claim (their Theorem 4.2),

im (o) =0 Vo e SE(R),

lim (nf|¢) =0 V¢ e SS(R),

k—-+ioco

where the limit is taken in the lower (upper) complex half-plane. Further-
more, the eigenfunctions X’i and nft have poles at k = —2i(2n + 1) and k =



798 J. Zahn Ann. Henri Poincaré

+2i(2n + 1), respectively, for n € Ny. The corresponding residues are given by

k - +i§H —
k:_§?§n+1)[Xﬁ:(Q)] o fr (q) xe (V=iq),

2
R k + i H,(v/+i
romes (@] o fir(q) oc e™" Ha(V41q),

where H,, are the Hermite polynomials. Finally, one has
=S +
Xi (@) =, ()

From these facts they conclude (their Corollary 4.3), that, by closing the con-
tour of integration'®

b= Z/dk Y18 = SIF A 1),

Since the f, are neither elements of S¢(R) nor of L?(R), the convergence
seems to be in S¥(R)’, but it is not clear in which topology.

Now the ¢ in the above equation is still only a ket. However, for ¢ =
[o) (W] € SE(R) ® S¥(R), one obtains the expansion

Y = Z(pmnfmn
with
mn = (f10)(W|fr) € C
and

The f,,, fulfil the usual properties of a matrix base, i.e.,

fonfmn: = Onms frnrs TY fran = Omn-
One can thus use them to bring the model into matrix form and treat it

similarly to [15]. One then arrives at the following representation of the prop-
agator'® (equation (3.58) of [19] with o = §):

17

)2
Y dilm A+ 1)+ A2

However, some remarks are in order: As mentioned in [19], the use of
Gelfand—Shilov spaces as test function spaces for noncommutative field theo-
ries has been proposed by several authors [31,30]. This would imply that fields

are elements of the dual space S¢(R?)’. In the setting of [19], however, the
fields are elements of the Gelfand-Shilov spaces S%(R?). Thus, the fields are

Amn n'm’ = 5mm’5n

(A1)

16 To be precise, in the mentioned Corollary, they write ¢ = %ZS Yonlfa ) fald). The
second term seems to be added for convenience.

17 However, it is not clear in which sense these relations should be understood, since the f,zlt
are not in L2(R). Also an interpretation in a distributional sense as for (3.2), (3.3) is not
possible, since one can not interpret fT:Lt as a distribution in n, due to the discreteness of the
imaginary eigenvalues.

18 Using the basis i as a starting point, one would arrive at a similar propagator where the
denominator is replaced by its complex conjugate.
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vanishing rapidly at infinity. If the quadratic potential was absent, it would
be clear that this would not be a suitable space for the fields to live in, since
it would contain no solution of the free equation of motion. But the quadratic
potential does not change this, as can be seen from the absence of poles in the
propagator (A.1). Thus, the space of fields proposed by [19] does not contain
the solutions of the free field equation, even though such solutions exists, as
can be seen from the pole in (4.1). To disregard the solutions of the free field
equation is certainly a deviation from the principles of perturbative QFT. In
particular, it is not clear how to describe asymptotic states (and thus to allow
for a contact with experiment).

But also from a mathematical point of view, the approach followed in [19]
seems to be questionable, as their basic Theorem 4.2 is incorrect. This can be
seen by the following counterexample. In Theorem 4.2 it is stated, that

im (h]e) =0 Ve € SS(R).

In order to test this assertion, we choose ¢(q) = e*‘”‘dqz, with some real con-
stant a. We have i (q)* = ;5 (¢) and (the conventions used here are related to
those used in [19] by € = A72k/4, B’ = A\72, v = — & _ 1 "with the parameters
of [19] on the Lh.s.)

i@ =¥t (4 3) Doy GVENt)

where C' is some constant independent of k and D, is a parabolic cylinder
function. For v < 0, it is given by

o0
1
D,(z) = T )e i /dt e el
—v
0
For v < 0, we compute
o0
/dq e*a)‘ﬁqu,,(:F\/Z)\flq)
— 00
—1 o0 o
—at *%/dtei‘[qt et
—o0 0
o0 o0
dt dq e 2a+7, (q:F 2a+t )2€2iati'ie_%t_y_1
0 —00

oo

1 1
A27 2 4 2 t2 24
- dt e~ T U-mm)—v-1
T'(—v) <2a—|—i) / e
0
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1 OQ
)\ e 2 u 2a—1 v
= du e 22ariq 2!
T(—v) <4a—|—2i> / ve v
CAD(-%) ™ 12a—i\*
- T(—v) \4a+2i 22a+1i)

Here we supposed that %gz;z >0, ie.,a> % It follows that

ik 1

k )ik ik 1 120 —3\ 8 1

= s — - - '
<Xi|¢> 7 (8 _|_4> <22a+z’

It is obvious that this does not converge for k — —ioco.

Appendix B. The Retarded Propagator in Momentum Space

We compute the Fourier transform

Aret(ksa lsa kta lt)
1 )
= / dudvidugdu, eil(ktUt+ltvt+ksu5+lsvs)Aret (uty Ut, Us, 'Us)
(2m)?
of the retarded propagator. From Remark 5.2 we know that the retarded prop-
agator can be interpreted as the one for a position dependent mass. The Fourier
transform w.r.t. k; and [; is thus well-known, and we obtain

-1
; UsVs *
t ZE) AN

A 1 .
Avet(kis, s ke, 1) = —— [ dugdv, e (Fatietlevs)
t( ybsy vty t) (27T)2 / Usdvg € (kt — ’Le)(l

We now consider the cases usvs > 0 and ugsvs < 0 separately. In the first case,
we use the coordinates © = \/usvs, y = \/us/vs and obtain the integral

oo oo

2 /dx/dymcos<kxy+lsx> -1
(2m)2 / / y s Yy /) (ki —ie)(ly —ie) — %'

In the case uzvs < 0 we instead find

oo

2 Vi 2z lsx -1
— dx/d — cos (ksx — 5) .
(27r)2/ J Yy YT ) e — il — o) + 2

0

Now for a,b > 0 one has [34, (3.868.2 & 4)]

/da: cos <a2x + )
T
0

oo

2
/d:v cos <a2x - b> 1_ 2K (2ab).
x )z

0

= —7TY0(2ab)a

8
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In the case sign ks = signl; we thus obtain
o0

i‘”/obc Yo(22/Tksl)) —

(2m)2 ) (ke —ie)(ly — i€) — %

8 /°° —x
+— dz Ko(2z+/|ksls|) _ - ,
(2m)2 Jo (ky —ie)(ly —i€) + %
and in the case sign ks # signl; we get

(Qi)g /dx Ko(22/]ksls]) L

(ke —ie)(ly —i€) — 5z

0
—4m 7 —x
+ dx Yo (2x+/ |ksls - . —.
(27T)2 J O( ‘ D(lﬁ*lﬁ)(h*lﬁ)‘kfﬁ

We have the asymptotic relation [25, (9.7.2)]

K,(z)~ ,/2126_2

and may thus change the contour of integration for the integrals involving K
to 0 — —ioo. In the first case, we pick up a pole if k; +1; < 0 and in the second
one if k; +I; > 0. We may then use [25, (9.6.5)]

WYo(iZ) = Z"]TI()(Z) — 2K0(Z)
and Iy(z) = Jo(iz) to obtain

8mi )
(271.)24/\4}[(*‘1% - lt)H(ktlt)KO(*le/\Q ‘kslsktlt| + 6)
8m1 ‘
+ (27T)24A4H(—kt — L) H (= kel Ko (AN |klskely| — ie)

oo

+

—4mi z

dz Jo(2z+/ |ksls
(27)? 0/ o Ikslsl) % — (ke —i€)(ly — ie)
for sign ks = signl, and

8mi .
(2ﬂ)24)\4H(kt + 1) H (Kl Ko (4N2 /| slokyly| — i€)

8mi
(2m)?
—477 7 T

+ dz Jo(2z+/|ksls|) - -
(2m)?2 ) % + (ky —ie)(ly — te)

for sign ks # signls. We have [34, (6.532.4)]

x
/dx mJo(a:c) = Ko(ak), a>0,Rk>0.
0

+ ANYH (kg 4 1) H (= kgl Ko (—4i0* /| kslskils| + €)
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In order to solve the above integrals, we thus have to choose the root with
positive real part of F(k; — i€)(l; — i€). For sign ks = signls, we obtain

%4)\4111(—]% 1) H (kele) Ko (—4iX° /bl shele] + €)
- (277:;2 ANUH (= ke — 1) H (= kel) Ko (40 /Thl kel | — i)
; (_;:)ri ANH (el Ko (sign (ke + 10)4i0°/ololle + €)
+ (_2:2 ANUH (= kele) Ko(4N* /I likele] + e sign(ke +12).

This can be written as

(27:;; AN sign(k; + 1;) (H(ktlt)Ko(sign(k:t 4 1) 4N gLkl + )

FH (=il ) Ko(4X V/ThoToFeld] + esign(ke +11))).

For sign k, # signly, one likewise obtains

41 . ..
sz sign(ky + ;) (H(ktlt)K0(4>\2\/ |kolskely| — iesign(k, + 1;))

FH(—kyly) Ko (— sign(ky + 1) 4N/ Tkl kely] + e)).

In total, we thus obtain

N 4mi
Aret(ks; lsa ktv lt) = - (277)2

X (H(k:tltk’sls)Ko(sign(kt + 1) sign(ksls ) 4iN> /| kslskels| + €)

+H<_ktltksls)K0(4>‘2 V |kslsktlt| + e Sign(kt + lt) Sign(ksls)))'

Note that for large ks, 1z, this is bounded, but highly oscillatory in some

1
5-

4\ sign(ky 4 1) sign(kl,)

directions, as expected for an element of &’ a’A(]R4) with o =
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