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Topological Graph Polynomial
and Quantum Field Theory
Part II: Mehler Kernel Theories

Thomas Krajewski, Vincent Rivasseau
and Fabien Vignes-Tourneret

Abstract. We define a new topological polynomial extending the
Bollobás–Riordan one, which obeys a four-term reduction relation of the
deletion/contraction type and has a natural behaviour under partial dual-
ity. This allows to write down a completely explicit combinatorial evalua-
tion of the polynomials, occurring in the parametric representation of the
non-commutative Grosse–Wulkenhaar quantum field theory. An explicit
solution of the parametric representation for commutative field theories
based on the Mehler kernel is also provided.

0. Introduction

In [15] the relation between the parametric representation of Feynman graph
amplitude [13,18] and the universal topological polynomials of graph theory
was explicited. This was done for theories with ordinary propagators of the
Laplace type, whose parametric representation is based on the heat kernel.
These theories were defined either on ordinary flat commutative space or on
non-commutative Moyal–Weyl flat non-commutative space. The parametric
polynomials turned out to be evaluations of the multivariate version of the
Tutte polynomial (see [21]) in the commutative case and of the Bollobás–
Riordan one in the non-commutative case [16].

However, heat-kernel based non-commutative theories such as the φ�4
4

model show a phenomenon called UV/IR mixing, which usually prevents
them from being renormalizable. The first renormalizable non-commutative
quantum field theory, the Grosse–Wulkenhaar model [8,9,20], is based on a
propagator made out of the Laplacian plus a harmonic potential; hence the
parametric representation of these models involve the Mehler kernel rather
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than heat kernel. The physical interest of such theories also stems from
the fact that constant magnetic fields also induce such Mehler-type ker-
nels.

Since the Mehler kernel is quadratic in direct space, such theories have
computable parametric representations but which are more complicated than
the ordinary ones. The corresponding topological polynomials were defined
and first studied in [10], then extended to covariant theories in [19]. However,
a global expression has been found only for the leading part of these polyno-
mials under rescaling and a full explicit solution was not found until now. This
is what we provide here.

We have found that the corresponding universal polynomials, defined on
ribbon graphs with flags, are not based on the usual contraction-deletion rela-
tions on ordinary graphs but on slightly generalized notions which involve
four canonical operations which act on them, the usual deletion and contrac-
tion plus an anticontraction and a superdeletion. These last two operations are
analogous to contraction and deletion, but create extra flags. Moreover, our
new polynomial is covariant under Chmutov’s partial duality [7], thus extend-
ing the invariance property of the multivariate Bollobás–Riordan polynomial
[23].

This paper is organized as follows: In Sect. 1 the definitions of ribbon
graphs (with flags) and of partial duality are given.

Section 2 is a mathematical prelude to the study of the polynomials defin-
ing the parametric representation of the Grosse–Wulkenhaar model. There we
define bijections between several classes of sub(ribbon)graphs.

In Sect. 3 the new polynomial is defined, together with its reduction rela-
tion, relationship with other known polynomials and properties under partial
duality.

In Sect. 4 the Grosse–Wulkenhaar model and its parametric representa-
tion is recalled, following closely the notations of [10].

In Sect. 5 we prove that the corresponding topological polynomials are
particular evaluations of the topological polynomial of Sect. 3.

In Sect. 6 various limits of the model are performed. The particular case
of the commutative limit is computed, and the corresponding commutative
Mehler-based Symanzik polynomials are written down.

1. Ribbon Graphs

There are several equivalent definitions of ribbon graphs: topological, com-
binatorial, in between. We will first give the topological definition and some
basic facts about ribbon graphs. Then, we will give a purely combinatorial def-
inition which allows us to slightly generalize ribbon graphs to ribbon graphs
with flags.

Remark. In the following, and unless explicitly stated, when we write graph,
the reader should read ribbon graph.
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Figure 1. A ribbon graph

1.1. Basics

A ribbon graph G is a (not necessarily orientable) surface with boundary rep-
resented as the union of two sets of closed topological discs called vertices
V (G) and edges E(G). These sets satisfy the following:

• vertices and edges intersect by disjoint line segment,
• each such line segment lies on the boundary of precisely one vertex and

one edge,
• every edge contains exactly two such line segments.

Figure 1 shows an example of a ribbon graph. Note that we allow the edges
to twist (giving the possibility to the surfaces associated to the ribbon graphs
to be non-orientable). A priori an edge may twist more than once but the
polynomials we are going to consider only depend on the parity of the number
of twists (this is indeed the relevant information to count the boundary com-
ponents of a ribbon graph) so that we will only consider edges with at most
one twist.

Definition 1.1 (Notations). Let G be a ribbon graph. In the rest of this article,
we will use the following notations:

• v(G) = cardV (G) is the number of vertices of G,
• e(G) = cardE(G) is the number of edges of G,
• k(G) its number of components,
• for all E′ ⊂ E(G), FE′ is the spanning sub(ribbon) graph of G the edge-set

of which is E′ and
• for all E′ ⊂ E(G), E′c:=E(G)\E′.

Loops. Contrary to the graphs, the ribbon graphs may contain four different
kinds of loops. A loop may be orientable or not, a non-orientable loop being
a twisting edge (remember that those edges twist only once) with coinciding
endvertices. Let us consider the general situations of Fig. 2. The boxes A and
B represent any ribbon graph so that the picture 2a (resp. 2b) describes any
ribbon graph G with an orientable (resp. a non-orientable) loop e at vertex v.
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(a) (b)

Figure 2. Loops in ribbon graphs

A loop is said nontrivial if there is a path (i.e. an embedding of the unit inter-
val) from A to B in G − v, considered as a surface. If not the loop is called
trivial [4].

1.2. Combinatorial Maps

Based on [22], we slightly generalize Tutte’s notion of combinatorial map to
combinatorial map with flags. We will use it as a (purely combinatorial) defi-
nition for (possibly non-orientable) ribbon graphs with flags. Note that in con-
trast to Tutte’s definition, the term “combinatorial map” is usually reserved
to orientable ribbon graphs. In order to avoid any confusion, we will only use
“ribbon graph” with flags. Note also that a similar, but less general, notion
has been used by Moffat in [17], where such objects are called “arrow-marked
ribbon graphs”.

Definition 1.2 (Ribbon graph with flags). Let X be a finite set of even cardinal-
ity. Its members are called crosses. A ribbon graph with flags on X is a triple
(σ0, θ, σ1) of permutations on X which obey the following axioms:
A.1 θ2 = σ2

1 = id and θσ1 = σ1θ.
A.2 θ is fixed-point free. Moreover if x is any cross, θx and σ1x are distinct.
A.3 σ0θ = θσ−1

0 .
A.4 For each cross x, the orbits of σ0 through x and θx are distinct.

Let us now explain why such a notion describes naturally a ribbon graph
G with flags. The involution θ being fixed-point free, the set X is partitioned
into pairs of the form {x, θx}, namely the orbits of θ. The involution σ1 may
have fixed points. Note that if x is a fixed point of σ1, so is θx because θ and
σ1 commute, see axiom 1. The pairs {x, θx} of fixed points of σ1 form the set
F (G) of flags of G.

Let us denote by FX the set of fixed points of σ1. Then, X\FX=:HX has
a cardinality which is a multiple of 4. HX is partitioned into the orbits of θ.
The set H(G) of pairs {x, θx}, x ∈ HX is the set of half-edges of G. HX can
also be partitioned into the orbits of the group EG generated by θ and σ1.
Each orbit is of the form {x, θx, σ1x, σ1θx}. Thanks to axiom 2, the members
of a given orbit are all distinct. Each orbit contains two distinct half-edges and
is therefore called an edge. We write E(G) for the set of orbits of EG on HX .
It is the set of edges of G.
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Figure 3. A ribbon graph G with flags

The elements of the set HR(G):=F (G) ∪ H(G) made of the orbits of θ
on X are called half-ribbons.

Finally, we describe the vertices of G. σ0 being a permutation, X can
be partitioned into its cycles. Each cycle is of the form C(σ0, x):=(x, σ0x, . . . ,
σm−1

0 x) where m is the least integer such that σm
0 x = x. Thanks to axiom 4,

the cycles through x and θx are distinct. But they have the same length.
Indeed, σm

0 x = x ⇐⇒ θx = θσ−m
0 x ⇐⇒ θx = σm

0 θx thanks to axiom 3.
The cycle C(σ0, θx) can be formed from C(σ0, x):

C(σ0, θx) = (θx, σ0θx, . . . , σ
m−1
0 θx) (1.1)

= (θx, θσ−1
0 x, . . . , θσ−m+1

0 x) (1.2)

= (θx, θσm−1
0 x, . . . , θσ0x). (1.3)

Thus, C(σ0, θx) is formed from C(σ0, x) by reversing the cyclic order of the
elements and then premultiplying each by θ. We express this relation by saying
that C(σ0, x) and C(σ0, θx) are conjugate. A pair of conjugate orbits of σ0 is
called a vertex of G.

To draw a pair of conjugate orbits {C(σ0, x), C(σ0, θx)} as a vertex of a
ribbon graph, proceed as follows: Choose an orientation O of the plane. Draw
one of the two orbits, say C(σ0, x), as a circle marked with x, σ0x, . . . , σ

m−1
0 x

in the cyclic order of this cycle, respecting the chosen orientation. Then, mark
the circle with θx, σ0θx, . . . as follows. Place θx just after x with respect to
O, σ−1

0 θx just after σ0x etc. The final marked circle is the boundary of the
vertex corresponding to the pair {C(σ0, x), C(σ0, θx)}.

We now exemplify the previous definition with the ribbon graph G of
Fig. 3. The set of crosses is X = [1, 12] ∩ Z. Using the cyclic representation,
the three permutations defining this graph are

σ0 = (1, 3)(4, 2)(6, 9, 11, 8)(5, 7, 12, 10), (1.4a)
θ = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), (1.4b)
σ1 = (1, 5)(2, 6)(3, 8)(4, 7)(9)(10)(11)(12). (1.4c)

As noticed earlier, the set X is partitioned into pairs which are the orbits of θ.
Those pairs which are fixed by σ1 are called flags:

F (G) = {{9, 10}, {11, 12}}. (1.5)
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The half-edges of G are the orbits of θ which are not fixed by σ1:

H(G) = {{1, 2} , {3, 4} , {5, 6} , {7, 8}} (1.6)

and the edges of G are thus

E(G) = {{1, 2, 5, 6} , {3, 4, 7, 8}}. (1.7)

Finally, G has two vertices:

v1 = {(1, 3), (2, 4)} , v2 = {(6, 9, 11, 8), (5, 7, 12, 10)} . (1.8)

Remark. A ribbon graph without flag is represented by three permutations
σ0, θ and σ1 obeying Definition 1.2 with, in addition, σ1 fixed-point free.

Definition 1.3 (Subgraphs). Let G be a ribbon graph, possibly with flags.
A subgraph of G consists in a ribbon graph, the vertex-set of which is a
subset of the vertex-set V (G) of G, the edge-set of which is a subset of E(G)
and the flag-set of which is a subset of F (G). A cutting subgraph of G is a
graph the half-ribbon-set of which is a subset of HR(G). By convention, if the
half-ribbon-set of a cutting subgraph contains the two halves of an edge, the
subgraph contains this edge. The set of spanning (cutting) subgraphs of G is
S(G) (Š(G)). For any A ⊆ E(G) (resp. A ⊆ HR(G)), we note FA the spanning
(cutting) subgraph the edge-set (resp. half-ribbon-set) of which is A.

Moreover, if the edges and flags of G are labelled, the (cutting) subgraphs
of G inherit the labels of G with the following convention: the two half-edges
of a given edge of G share the same label in the cutting subgraphs of G.

In contrast to a subgraph, a cutting subgraph may have flags coming
both from the flags of G and from half-edges of G. Each edge of G is made
of two half-edges. A subgraph contains, in particular, some of the edges of G
whereas a cutting subgraph may contain a half-edge of an edge without taking
the other half, see Fig. 4 for examples.

1.3. Operations on Edges

From a ribbon graph with flags, we can define two other ribbon graphs with
flags either by deleting an edge or by cutting it:

Definition 1.4 (Operations on ribbon graphs with flags). Let G be a ribbon
graph with flags and e ∈ E(G) any of its edges. We define the two following
operations:

• the deletion of e, written G− e,
• the cut of e, written G ∨ e, which consists in replacing e by two flags

attached at the former end-vertices (or end-vertex) of e, respecting the
cyclic order at these (this) vertices (vertex).

In the combinatorial representation of a ribbon graph G, an edge e cor-
responds to a set of four crosses: e = {x1, x2, x3, x4}, ∀ 1 ≤ i ≤ 4, xi ∈ X(G).
The graph G− e has X\e as set of crosses and the restriction of σ0, θ and σ1

to X\e as defining permutations.
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(a)

(b)

Figure 4. Subgraphs

Figure 5. Cutting an edge

Let φ be any member of the group generated by σ0, θ and σ1. For any
subset E′ ⊂ X, we let φE′ be the following map:

φE′ :=
{
φ on E′,
id on X\E′=:Ē′. (1.9)

The graph G ∨ e is defined on the same crosses as G and given by σ0, θ and
σ1X′ where X ′ = X\e. For example, considering the ribbon graph of Fig. 3,
and if e = {1, 2, 5, 6}, G ∨ e is the ribbon graph, with flags, of Fig. 5.

1.4. Natural Duality

For ribbon graphs without flags, there is a well-known notion of duality, here-
after called natural duality, also known as Euler-Poincaré duality. From a given
ribbon graph G, it essentially consists in forming another ribbon graph G�,
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Figure 6. The natural dual of the graph of Fig. 5

the vertices of which are the faces of G and the faces of which are the vertices
of G. The edges of G� are in bijection with those of G.

Every ribbon graph can be drawn on a surface of minimal genus such
that no two of its edges intersect. To build the dual G� of G, first draw G
on such a surface. Then, place a vertex into each face of G. Each such face is
homeomorphic to a disk. Then, draw an edge between two vertices of G� each
time the corresponding faces of G are separated by an edge in G.

At the combinatorial level, if G = (σ0, θ, σ1), then G� = (σ0θσ1, σ1, θ),
the cycles of σ0θσ1 representing the boundaries of the faces of G. If G has flags,
we define its natural dual G� by (σ0θHX

σ1, σ1HX
θFX

, θHX
σ1FX

), see Fig. 6 for
an example.

1.5. Partial Duality

S. Chmutov introduced a new “generalised duality” for ribbon graphs which
generalises the usual notion of duality (see [7]). In [17], I. Moffatt renamed
this new duality as “partial duality”. We adopt this designation here. We now
describe the construction of a partial dual graph and give a few properties of
the partial duality.

Let G be a ribbon graph and E′ ⊂ E(G). Let F̌E′ :=G ∨ E′c be the span-
ning subgraph with flags of G, the edge-set of which is E′ and the flag-set of
which is made of the cut edges in E′c = E(G)\E′. We will construct the dual
GE′

of G with respect to the edge-set E′. The general idea is the following:
We consider the spanning subgraph with flags F̌E′ . Then, we build its natural
dual F̌ �

E′ . Finally, we reglue the edges previously cut in E′c.
More precisely, at the combinatorial level, the construction of the partial

dual GE′
of G goes as follows: By construction, σ1(F̌ �

E′) = θE′ , the restriction
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of which to E′c is the identity. The gluing operation consists in replacing
σ1(F̌ �

E′)|E′c = id by σ1|E′c . This leads to σ1(GE′
) = σ1E′cθE′ .

Figure 7 shows an example of the construction of a partial dual. The
direct ribbon graph is drawn on Fig. 7a. We choose E′ = {{3, 4, 7, 8}} and the
subgraph F̌E′ is depicted on Fig. 7b. Its natural dual F̌ �

E′ is on Fig. 7c. Finally,
the partial dual GE′

of G is shown on Fig. 7d.
S. Chmutov proved among other things the following basic properties of

the partial duality:

Lemma 1.1 ([7]). For any ribbon graph G and any subset of edges E′ ⊂ E(G),
we have

• (GE′
)E′

= G,
• GE(G) = G� and
• if e /∈ E′, then GE′∪{e} = (GE′

){e}.

His proof relies on graphical and commonsensical arguments. Here, we
would like to point out that the combinatorial point of view allows very direct
algebraic proofs.

For example, an interesting exercise consists in checking that the
partial duality is an involution, namely that (GE′

)E′
= G: (GE′

)E′
=

(σ0θE′σ1E′ (σ1E′θE′c)E′(σ1E′cθE′)E′ , (σ1E′cθE′)E′(σ1E′θE′c)E′c , (σ1E′cθE′)E′c

(σ1E′θE′c)E′) = (σ0, θ, σ1).
We can also prove that for any subset E′ ⊂ E(G) and any e ∈ E′c,

(GE′
){e} = GE′∪{e}.

Proof. We define E′′:=E′ ∪ {e}.

GE′′
= (σ0θE′′σ1E′′ , σ1E′′θE′′c , σ1E′′cθE′′) (1.10)

σ0

(
(GE′

){e}
)

= σ0θE′σ1E′(σ1E′θE′c)e(σ1E′cθE′)e = σ0θE′σ1E′θeσ1e

= σ0θE′′σ1E′′ (1.11)

θ
(
(GE′

){e}
)

= (σ1E′cθE′)e(σ1E′θE′c)ec = σ1eσ1E′θE′c\{e}

= σ1E′′θE′′c (1.12)



492 T. Krajewski et al. Ann. Henri Poincaré

(a)

(b)

(c) (d)

Figure 7. Construction of a partial dual

σ1

(
(GE′

){e}
)

= (σ1E′cθE′)ec(σ1E′θE′c)e = σ1E′c\{e}θE′θe

= σ1E′′cθE′′ (1.13)

�

Bollobás and Riordan [4] have proposed an interesting definition of the
contraction of a loop in a ribbon graph. The partial duality allows a simple
formulation:

Definition 1.1 (Contraction of an edge [4,7]). Let G be a ribbon graph and
e ∈ E(G) any of its edges. We define the contraction of e by

G/e:=G{e} − e. (1.14)

From the definition of the partial duality, one easily checks that, for an
edge incident with two different vertices, the Definition 1.1 coincides with the
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Figure 8. Contraction of an orientable loop

Figure 9. Contraction of a non-orientable loop

usual intuitive contraction of an edge. The contraction of a loop depends on
its orientability, see Figs. 8 and 9.

Different definitions of the contraction of a loop have been used in the
literature. One can define G/e :=G− e. In [12], S. Huggett and I. Moffatt give
a definition which leads to surfaces which are not ribbon graphs anymore. The
Definition 1.1 maintains the duality between contraction and deletion.

2. Bijections Between Classes of Subgraphs

This section consists in a mathematical preliminary to the study of the
HU polynomial, introduced in Sect. 4. This ribbon graph invariant is a key
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ingredient of the parametric representation of the Grosse–Wulkenhaar model
amplitudes.

Let G be a ribbon graph. For any E′ ⊂ E(G), there is a natural bijection
between E(G) and E(GE′

). This leads to a bijection between the spanning
subgraphs of G and those of GE′

. In particular, it is true for E′ = {e} with
e ∈ E(G). Representing a bijective map by the following symbol �, we have

s : S(G) � S(G{e}), |S(G)| = |S(G{e})| = 2|E(G)|. (2.1)

The map s extends trivially on ribbon graphs with flags. In the following, we
will be interested in maps between different classes of subgraphs. We are going
to generalize s to odd and even (cutting) (colored) subgraphs. A special case
of these bijections will be used in Sect. 6.1 to prove the factorization of the
polynomial HU(G; t,1).

2.1. Subgraphs of Fixed Parity

Definition 2.1 (Degree of a vertex). Let G be a ribbon graph with flags and
v ∈ V (G) be one of its vertices. The degree deg(v) of v is the number of
elements of HR(G) incident with v.

In other words, flags have to be taken into account in the degree of a
vertex.

Definition 2.2 (Odd and even graphs). A (ribbon) graph (with flags) is said
of fixed parity if all the degrees of its vertices have the same parity. It is odd
(resp. even) if all its vertices are of odd (resp. even) degrees. Given a ribbon
graph G, with or without flags, we denote by Odd(G) (resp. Even(G)) the set
of odd (resp. even) spanning subgraphs of G.

We would like to know if the bijection s of equation (2.1) preserves the
subclasses of odd (even) subgraphs. It is easy to see that it is not the case, as
the following example shows:

Let us consider the ribbon graph G made of two vertices and two edges
between those two vertices. G is sometimes called a (planar) 2-banana, see
Fig. 10a. We have Odd(G) = {{1} , {2}} , Even(G) = {∅, {1, 2}} whereas
Odd(G{1}) = ∅ and Even(G{1}) = {∅, {1} , {2} , {1, 2}}. This means that there
exist graphs and edges such that s does not preserve the classes of odd and
even subgraphs. Note, however, that there may be graphs G and/or subsets
E′ ⊂ E(G) such that the natural bijection φE′ between subgraphs of G and
GE′

let the classes Odd and Even invariant: φE′(Odd(G)) = Odd(GE′
) for

example. This is trivially the case for self-dual graphs G and E′ = E(G).
Classifying the graphs and subsets of edges such that s let some classes of
subgraphs invariant clearly deserves further study. Nevertheless, here, we will
restrict ourselves to bijections valid for any G and any e ∈ E(G).

2.2. Colored Subgraphs

Going back to the example of Fig. 10, we have |Even(G)| = 2 and
|Even(G{1})| = 4 but 2v(G)|Even(G)| = 2v(G{1})|Even(G{1})| = 23. For any
graph g, 2v(g) is the number of colorings of V (g) with two colors. This means
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(a)

(b)

Figure 10. Partial duals

that there exists a bijection between the colored even subgraphs of G and
G{1}. This is actually true for any ribbon graph with flags and any edge.

Remark. This is clearly not the case for the odd subgraphs, as shows the exam-
ple of the 2-banana. Note also that, in general, there is no bijection between
the colored subgraphs of a graph G and of its partial duals G{e}, the number
of vertices of G and G{e} being usually different.

Definition 2.3 (Colored graphs). A colored (ribbon) graphG is a (ribbon) graph
and a subset C(G) of V (G). The set of colored odd (resp. even) subgraphs of
G is denoted by Odd(G) (resp. Even(G)).

Lemma 2.1. Let G be a ribbon graph with flags. For any edge e ∈ E(G), there
is a bijection between Even(G) and Even(G{e}).

Proof.

Even(G) = {B ⊂ E(G) : FB is even} (2.2)
= {B′ ⊂ E(G) \ {e} : FB′ is even}

∪{B′ ⊂ E(G) \ {e} : FB′∪{e} is even
}

(2.3)

=
⋃

B′⊂E(G)\{e}
{B ∈ {B′, B′ ∪ {e}} : FB is even} (2.4)
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(a)

(b)

Figure 11. Bijection in case of a loop

=:
⋃

B′⊂E(G)\{e}
EvenB′(G). (2.5)

For any B′, B′′ ⊂ E(G)\ {e} , B′ = B′′, EvenB′(G) ∩ EvenB′′(G) = ∅. More-
over, EvenB′(G) may have a cardinality of 0, 1 or 2. We define EvenB′(G) as
the colored even spanning subgraphs of G, the underlying subgraphs of which
belong to EvenB′(G). We now prove that ∀B′ ⊂ E(G) \ {e} , |EvenB′(G)| =
|EvenB′(G{e})|, which would prove Lemma 2.1.

We distinguish between two cases: either e is a loop (in G) or it is not.

1. e is a loop: let v be the endvertex of e. It may be represented as in Fig. 11a.
• p and q have the same parity: v is even in FB with or without e; then,

|EvenB′(G)| = 2 and |EvenB′(G)| = 2v(G) × 2. If p and q are odd, FB

is even in G{e} iff e ∈ B, see Fig. 11b. On the contrary, if p and q are
even, FB is even in G{e} iff e /∈ B. Then, |EvenB′(G{e})| = 2v(G)+1×1.

• p and q have different parities: |EvenB′(G)| = |EvenB′(G{e})| = 0.
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2. e is not a loop: using G =
(
G{e}

){e}
, this is the same situation as in the

preceding case with G replaced by G{e}. �
It is interesting to note that Lemma 2.1 is actually also true for graphs, in

the following sense: Let G˜ and H˜ be two graphs (not ribbon graphs). If there
exist embeddings G of G˜ and H of H˜ such that there exists e ∈ E(G), G{e} =
H then |Even(G˜)| = |Even(H˜ )|. This is simply due to the fact that for any
graph G˜ and any embedding G of G˜ , Even(G˜) is in bijection with Even(G).

2.3. Cutting Subgraphs

Both from a mathematical and physical point of view, it is quite natural to con-
sider not only spanning subgraphs but also spanning cutting subgraphs of a rib-
bon graph G. For any e ∈ E(G), |Š(G)| = |Š(G{e})| = 2HR(G) = 2F (G)+2E(G).
Thus, there exists a (natural) bijection between those two sets. What about
the odd (resp. even) cutting subgraphs?

Definition 2.4. Let G be a ribbon graph with flags. We denote by ˇOdd(G)
(resp. ˇEven(G)) the set of odd (resp. even) spanning cutting subgraphs of G.

It is easy to check that there is no bijection between ˇOdd(G) (resp.
ˇEven(G)) and ˇOdd(G{e}) (resp. ˇEven(G{e})). For example, let us consider

once more the graphs of Fig. 10. We have | ˇOdd(G)| = | ˇEven(G)| = 4 whereas
| ˇOdd(G{1})| = | ˇEven(G{1})| = 8.

2.4. Colored Cutting Subgraphs

Definition 2.5. Let G be a ribbon graph with flags. The set of colored cutting
spanning subgraphs of G is Š(G). The set of odd (resp. even) colored cutting
spanning subgraphs of G is denoted by ˇOdd(G) (resp. ˇEven(G)).

As in the case of colored subgraphs, there is generally no bijection between
Š(G) and Š(G{e}), because v(G) = v(G{e}) usually. Nevertheless, we have

Lemma 2.2. Let G be a ribbon graph with flags. For any e ∈ E(G), there
is a bijection χ

{e}
G between ˇOdd(G) (resp. ˇEven(G)) and ˇOdd(G{e}) (resp.

ˇEven(G{e})).

Proof. Let us denote by
→
e and

←
e the two half-edges of e. Let us define

〈e〉:=
{→
e ,
←
e
}

. Recall that, by convention (see Definition 1.3), when both halves
of an edge e appear in a subset H ⊂ HR(G), it means that e ∈ E(FH).

ˇOdd(G) = {H ⊂ HR(G) : FH is odd} (2.6)

=
⋃

H′⊂HR(G)\〈e〉
{A ⊂ 〈e〉 : FH∪A is odd} (2.7)

=:
⋃

H′⊂HR(G)\〈e〉
ˇOddH′(G). (2.8)

We define ˇEvenH′(G) the same way. We prove that ˇOddH′(G) and ˇOddH′

(G{e}) have the same cardinality for any H ′ ⊂ HR(G) \ 〈e〉. We let the case
of even subgraphs to the reader.
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Using once more G =
(
G{e}

){e}
, it is enough to prove it in the case e is a

loop in G. The situation is thus again the one of Fig. 11, where now Fig. 11a
represents the endvertex of e in FH′∪A∪{e}.
• If p and q have the same parity, in order FH′∪A to be odd, A contains one of

the two half-edges of e: e is a flag in FH′∪A. Thus, | ˇOddH′(G)| = 2v(G) ×2.
If p and q are odd, FH′∪A is odd in G{e} iff A = ∅, see Fig. 11b. On the
contrary, if p and q are even, FH′∪A is odd in G{e} iff A =

{→
e ,
←
e
}

. Then,

| ˇOddH′(G{e})| = 2v(G)+1 × 1.
• If p and q have different parities: FH′∪A is odd iff A = ∅ or

{→
e ,
←
e
}

which

implies | ˇOddH′(G)| = 2v(G) ×2. Let us say that p is odd and q even. There
is only one possibility for A such that FH′∪A is odd. Namely, A should
only contain the half-edge of e which is hooked to the vertex incident with
the other q half-ribbons. Thus, | ˇOddH′(G{e})| = 2v(G)+1 × 1. �
We have proven the existence of a bijection between ˇOdd(G) (resp.

ˇEven(G)) and ˇOdd(G{e}) (resp. ˇEven(G{e})). To exhibit such a bijection, one
would need to choose a convention for the coloring of the vertices v1 and v2,
see Fig. 11, depending on the color of v and on the fact that e belongs or not
to A, as an edge or as a flag.

Properties of χ
{e}
G . Here, we specify the bijection χ

{e}
G of Lemma 2.2. This

will be useful in Sect. 6.

Definition 2.6 (Partitions by flags). For any ribbon graph G with flags, the set
ˇOdd(G) (resp. ˇEven(G)) can be partitioned into subsets of cutting subgraphs

labelled by their flag-set. For all F ′ ⊂ F (G) ∪ E(G), we write ˇOdd(G) � F ′

(resp. ˇEven(G) � F ′) the set of all odd (resp. even) spanning cutting subgraphs
of G with flag-set F ′.

For any F ′, F ′′ ⊂ F (G) ∪ E(G), F ′ = F ′′, we obviously have ( ˇOdd(G) �

F ′) ∩ ( ˇOdd(G) � F ′′) = ∅. Moreover,

ˇOdd(G) =
⋃

F ′⊂F (G)∪E(G)

ˇOdd(G) � F ′. (2.9)

These definitions of partitions and subsets of ˇOdd(G) can be applied, mutatis
mutandis, to ˇOdd(G), ˇEven(G) and ˇEven(G).

Let F ′ ⊂ HR(G) and F ′e be the set F ′Δ {e}. Then, just by looking at the
proof of Lemma 2.2, one sees that χ{e}G is a one-to-one map between ˇOdd(G) �

F ′ (resp. ˇEven(G) � F ′) and ˇOdd(G{e}) � F ′e (resp. ˇEven(G{e}) � F ′).

3. A New Topological Graph Polynomial

Graph polynomials are graph invariants which encode part of the information
contained in the graph structure. These polynomials allow an algebraic study
of graphs, which is usually easier than a direct approach.
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Recently, Bollobás and Riordan [4] defined such a polynomial invariant
for ribbon graphs. Here, we introduce a generalization of their polynomial,
defined for ribbon graphs with flags or external legs. It turns out that a cer-
tain evaluation of this new topological graph invariant Q enters the parametric
representation of the Feynman amplitudes of the Grosse–Wulkenhaar model.

In the following, we will denote by bold letters, sets of variables
attached to edges or vertices of a graph. For example, given a (ribbon) graph
G, x:= {xe}e∈E(G). Moreover, for any A ⊂ E(G), we use the following short
notation: xA:=

∏
e∈A xe.

Definition 3.1 (The Q polynomial). Let G be a ribbon graph with flags. We
define the following polynomial:

QG(q,x,y,z,w, r):=
∑

A⊂E(G)

∑
B⊂E(GA)

qk(FA)xAc∩Bc

yA∩Bc

zA∩BwAc∩BrV (FB),

(3.1)

where we implicitly use the canonical bijection between E(G) and E(GA), and
rV (FB):=

∏
v∈V (FB) rdeg(v).

Note that we could have defined Q without using the partial duality. In
that case, B would be considered as a subset of E(G) and the product in
rV (FB) would be replaced by a product over the faces f of FB ⊂ G, of rdeg(f)

where the degree of a face is simply the number of incident edges with this
face.

The number of terms in QG being 4e(G), we are going to give an exam-
ple of this polynomial for a graph with only one edge. We consider a ribbon
graph G made of one vertex and one orientable loop e. For A = ∅, GA = G.
For A = {e} , GA is the ribbon graph made of two vertices and one isthmus.
We have

QG(q, x, y, z, w, r) = qxr0 + qwr2 + q2yr20 + q2zr21. (3.2)

3.1. Basic Properties

Proposition 3.1. QG is multiplicative over disjoint unions and obeys the scaling
relations

QG(q, λx, λy, λμ−2z, λμ−2w, μ · r) = λ|E(G)|μ|F (G)|QG(q,x,y,z,w, r) (3.3)

where |E(G)| is the number of edges of G, |F (G)| its number of flags and μ · r
is the sequence (μnrn)n∈N.

The proof of this proposition is obvious.
In contrast with the Tutte or the Bollobás–Riordan polynomial, Q satis-

fies a four-term reduction relation. This relation generalizes the usual contrac-
tion/deletion relation and reflects the two natural operations (see Definition
1.4) one can make on a ribbon graph with flags and on any of its partial dual.



500 T. Krajewski et al. Ann. Henri Poincaré

Lemma 3.2 (Reduction relation). Let G be a ribbon graph with flags and e any
of its edges which is not an orientable loop. Then,

QG(q,x,y,z,w, r) = xeQG−e(q,xe,ye,ze,we, r)

+yeQGe−e(q,xe,ye,ze,we, r)

+zeQGe∨e(q,xe,ye,ze,we, r)

+weQG∨e(q,xe,ye,ze,we, r), (3.4)

where, for any a ∈ {x,y,z,w} and any e ∈ E(G), ae:= {ae′}e′∈E(G)\{e}.
Moreover, for a trivial orientable loop e,

QG(q,x,y,z,w, r) = xeQG−e(q,xe,ye,ze,we, r)

+q−1yeQGe−e(q,xe,ye,ze,we, r)

+q−1zeQGe∨e(q,xe,ye,ze,we, r)

+weQG∨e(q,xe,ye,ze,we, r). (3.5)

Proof. Let e be an edge of G which is not an orientable loop. Referring to the
definition (3.1) of Q, we distinguish between four cases, regardless of whether e
belongs to A or not, to B or not:

QG(q,x,y,z,w, r) = xeP1(q,xe,ye,ze,we, r) + yeP2(q,xe,ye,ze,we, r)

+zeP3(q,xe,ye,ze,we, r) + weP4(q,xe,ye,ze,we, r).
(3.6)

The polynomial P1 corresponds to the case e /∈ A and e /∈ B. There is a canon-
ical bijection ϕ− (resp. ϕ�

−) between E(G) \ {e} and E(G− e) (resp. between
E(GA) and E((G − e)ϕ−(A))). For any A ⊂ E(G) and any B ⊂ E(GA), we
have

Ac = (ϕ−(A))c ∪ {e} , Bc = (ϕ�
−(B))c ∪ {e} (3.7a)

xAc∩Bc

= xex
(ϕ−(A))c∩(ϕ�

−(B))c

yA∩Bc

= yϕ−(A)∩(ϕ�
−(B))c

(3.7b)

zA∩B = zϕ−(A)∩ϕ�
−(B) wAc∩B = w(ϕ−(A))c∩ϕ�

−(B). (3.7c)

Let us now check that rV (FB) = r
V (Fϕ�−(B)). The left-hand side of this equation

encodes the degree sequence of FB ⊂ GA. But as B does not contain e, FB

can be considered as a subgraph of GA − e = (G − e)ϕ−(A) and FB is then
isomorphic to Fϕ�

−(B). Their degree sequences are thus equal to each other.



Vol. 12 (2011) Topological Graph Polynomial 501

We have

xeP1(xe,ye,ze,we, r)

=
∑

A⊂E(G)\{e}

∑
B⊂E(GA)\{e}

qk(FA)xAc∩Bc

yA∩Bc

zA∩BwAc∩BrV (FB) (3.8)

= xe

∑
A⊂E(G)\{e}

∑
B⊂E(GA)\{e}

qk(Fϕ−(A))x(ϕ−(A))c∩(ϕ�
−(B))c

yϕ−(A)∩(ϕ�
−(B))c

× zϕ−(A)∩ϕ�
−(B)w(ϕ−(A))c∩ϕ�

−(B)r
V (Fϕ�−(B)) (3.9)

= xe

∑
A⊂E(G−e)

∑
B⊂E((G−e)A)

qk(FA)xAc∩Bc

yA∩Bc

zA∩BwAc∩BrV (FB) (3.10)

= xeQG−e(q,xe,ye,ze,we, r). (3.11)

As we have seen, the difficulty only resides in the proof of the conserva-
tion of the r-part. Thus, for the three other cases, we only focus on that. The
polynomial P2 corresponds to the case e ∈ A and e /∈ B. Let ϕ+ denote the
canonical bijection between {A ⊂ E(G) : e ∈ A} and E(G/e). As B does not
contain e, FB can also be considered as a subgraph of GA−e = (Ge−e)A\{e} =
(G/e)ϕ+(A). This proves that P2 = QGe−e.

The polynomial P4 corresponds to the case e /∈ A and e ∈ B. As e /∈
A, GA − e = (G − e)A and the vertex sets V (GA) and V (GA − e) are the
same. But as B contains e, erasing this edge would produce a different degree
sequence for Fϕ�

−(B). So, we have to keep track of the contribution of e to the
degree sequence of FB by cutting it instead of deleting it: P4 = QG∨e.

Finally, the polynomial P3 corresponds to the case e ∈ A and e ∈ B.
Such sets A are in one-to-one correspondence with the subsets of E(Ge − e).
The vertex sets V (GA) and V ((Ge − e)A\{e}) are the same but once more, as
e ∈ B, we cannot delete e but cut it instead: P3 = QGe∨e.

In the case of a trivial orientable loop e, we have to notice that if e ∈
A, k(FA) = k(Fϕ+(A)) − 1. �

Note that for q = 1, Eq. (3.4) holds for any edge of G, including orient-
able non-trivial loops. This allows to give an alternative definition of the Q
polynomial at q = 1:

Definition 3.2. Let G be a ribbon graph with flags and e any of its edges,

QG(1,x,y,z,w, r) = xeQG−e(1,xe,ye,ze,we, r)
+yeQGe−e(1,xe,ye,ze,we, r)
+zeQGe∨e(1,xe,ye,ze,we, r)
+weQG∨e(1,xe,ye,ze,we, r). (3.12)

Otherwise, G consists of isolated vertices with flags and

QG(1,x,y,z,w, r) =
∏

v∈V (G)

rdeg(v). (3.13)
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Equations (3.12) and (3.13) lead to a well-defined polynomial in the sense
that it is independent of the order in which the edges are chosen. The proof of
the existence of such a polynomial consists essentially in the proof of Lemma
3.2. The polynomial which results of this recursive process is the Q polyno-
mial of Definition 3.1 at q = 1. The uniqueness of the result is obvious since
if e ∈ E(G) then QG is uniquely determined by QG−e, QGe−e, QG∨e and
QGe∨e [3].

3.2. Relationship with Other Polynomials

• The Bollobás–Riordan polynomial: if we set z = w = 0 and x = 1 for
all edges and rn = r (independent of n), we recover the multivariate
Bollobás–Riordan polynomial, in its multivariate formulation (see [16])

QΓ(q, 1, y, 0, 0, r) =
∑

A⊂E(G)

qk(FA)

(∏
e∈A

ye

)
rv(GA) (3.14)

where v(GA) is the number of vertices of GA, i.e. the number of connected
components of the boundary of FA. Note that the evaluation y = w =
0, x = 1 and rn = r gives the same result.

• The dimer model: if we set y = z = 0, q = x = 1 and rn = 0 except r1 = 1,
then we recover, for a graph without flags, the partition function of the
dimer model on this graph

QΓ(1, 1, 0, 0, w, r) =
∑

C⊂E(G)
dimer configuration

(∏
e∈C

we

)
, (3.15)

with we = eβεe the Boltzmann weight. Here, each vertex contains a mono-
mer that can form a dimer with an adjacent monomer, if the edge e sup-
ports a dimer then its energy is −εe. A dimer configuration (also known
as a perfect matching in graph theory) is obtained when each monomer
belongs to exactly one dimer. In the recent years, the dimer model has
proven to be of great mathematical interest (see [14] for a recent review).

• The Ising model: for q = 1, y = z = 0, xe = cosh(βJe), we =
sinh(βJe), r2n = 2 and r2n+1 = 0, we recover the partition function of
the Ising model. Recall that the latter is obtained by assigning spins σv ∈
{−1,+1} to each vertex with an interaction along the edges encoded by
the Hamiltonian

H(σ) = −
∑

e=(v,v′)∈E

Jeσvσv′ , (3.16)

with Je an edge dependent coupling constant. The partition function is
the sum over all spin configurations of the Boltzmann weight

ZIsing =
∑

σ

e−βH . (3.17)

Using the identity

eβJeσvσv′ = cosh(βJe) + σvσv′ sinh(βJe) (3.18)
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for each edge, we can perform the high-temperature expansion of the par-
tition function

ZIsing =
∑

σ

{∑
C⊂E

(∏
e/∈C

cosh(βJe)

)(∏
e∈C

sinh(βJe)σvσv′

)}
(3.19)

Then, the sum over all spins vanishes unless each vertex is matched by an
even number of edges in C, so that

ZIsing = QG(1, x, 0, 0, w, r) (3.20)

with the specified value of x, w and r. Note that the extra power of 2
arising from the sum over spins corresponds to r2n = 2.

3.3. Partial Duality of Q
One of the most interesting properties of the Q polynomial is that it transforms
nicely under partial duality, at q = 1.

Theorem 3.3 (Partial duality). Let G be a ribbon graph with flags and e ∈ E(G)
be any edge of G. We have

QG{e}(1,x,y,z,w, r)
= QG(1,xE\{e}y{e},x{e}yE\{e},zE\{e}w{e},z{e}wE\{e}, r). (3.21)

Proof. Each monomial of Q is labelled by two sets of edges A ⊂ E(G) and
B ⊂ E(GA):

QG(1,x,y,z,w, r) =:
∑
A,B

M(A,B)(G;x,y,z,w, r) (3.22)

=:
∑
A,B

M(A,B)(G;x,y)N(A,B)(G;z,w)rV (FB). (3.23)

For any e ∈ E(G), let φe be the following map:

φe :
⋃

A⊂E(G)

A× E(GA) →
⋃

A′⊂E(G{e})

A′ × E
(
(G{e})A′)

(A,B) �→ (AΔ {e} , B).
(3.24)

φe is clearly a bijection for any edge e. Note that
(
G{e}

)AΔ{e}
= GA which

implies (with a slight abuse of notation) that, for any FB ⊂ GA, rV (FB) =
rV (Fφe(B)) where Fφe(B) ⊂ (G{e})φe(A). Let x�{e} be xE\{e}y{e}, y�{e} be
x{e}yE\{e}, z�{e} be zE\{e}w{e} and w�{e} be z{e}wE\{e}. To prove the the-
orem, we prove that Mφe((A,B))(G{e};x,y,z,w, r) = M(A,B)(G;x�{e},y�{e},
z�{e},w�{e}, r).

A′:=AΔ {e} =
{
A ∪ {e} if e /∈ A,
A\ {e} if e ∈ A.

(3.25)

A′c = AcΔ {e} =
{
Ac\ {e} if e /∈ A,
Ac ∪ {e} if e ∈ A.

(3.26)
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If e ∈ B, Bc ∩ A′ = Bc ∩ A and Bc ∩ A′c = Bc ∩ Ac. Thus, in this case,
Mφe((A,B))(G{e};x,y) is obviously equal to M(A,B)(G;x�{e},y�{e}). So let us
focus on the terms involving z and w.

B ∩A′ =
{

(B ∩A) ∪ {e} if e ∈ B ∩Ac,
(B ∩A)\ {e} if e ∈ B ∩A. (3.27)

B ∩A′c =
{

(B ∩Ac)\ {e} if e ∈ B ∩Ac,
(B ∩Ac) ∪ {e} if e ∈ B ∩A. (3.28)

Then, we have

N(A′,B)(G{e};z,w, r) = zB∩A′
wB∩A′c

=
{
z(B∩A)∪{e}w(B∩Ac)\{e} if e ∈ B ∩Ac,
z(B∩A)\{e}w(B∩Ac)∪{e} if e ∈ B ∩A

= N(A,B)(G;z�{e},w�{e}, r). (3.29)

If e /∈ B, we use exactly the same argument with N replaced by M, z by y
and w by x. �

Corollary 3.4. For any ribbon graph G with flags and any subset E′ ⊂ E(G),
we have

QGE′ (1,x,y,z,w, r) = QG(1,xE\E′yE′ ,xE′yE\E′ ,zE\E′wE′ ,zE′wE\E′ , r)

(3.30)

Proof. It relies on

1. for any e ∈ E′, GE′
=
(
GE′\{e}

){e}
,

2. a repeated use of Theorem 3.3. �

4. Feynman Amplitudes of the Grosse–Wulkenhaar Model

4.1. The Action Functional

The Grosse–Wulkenhaar model is defined by the action functional

S[φ] = S0[φ] + Sint[φ], (4.1)

where φ is a real-valued function on Euclidean space R
D. The free part of the

action is

S0[φ] =
1
2

∫
dDxφ(x)

(
−Δ + Ω̃2x2

)
φ(x), (4.2)

where Δ is the Laplacian on Euclidean space R
D and Ω̃ = 2Ω

θ (with Ω, θ > 0)
the frequency of the corresponding harmonic oscillator. In a system of units
such that � = c = 1, the only remaining dimension is length and Ω is dimen-
sionless.

Its kernel KΩ̃(x, y) defined by∫
dDz δD(x− z)

(
−Δz + Ω̃2z2

)
KΩ̃(z, y) = δD(x− y), (4.3)
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with δD the Dirac distribution on R
D, is the Mehler kernel

KΩ̃(x, y) =

(
Ω̃
2π

)D/2 ∞∫
0

dα[
sinh 2Ω̃α

]D/2

× exp − Ω̃
4

{
(x−y)2 coth Ω̃α+(x+y)2 tanh Ω̃α

}
. (4.4)

To avoid ultraviolet divergences, we introduce a cut-off as a lower bound on
the integral over α,

KΩ̃(x, y) →
(

Ω̃
2π

)D/2 ∞∫
1/Λ2

dα[
sinh 2Ω̃α

]D/2

× exp − Ω̃
4

{
(x− y)2 coth Ω̃α+ (x+ y)2 tanh Ω̃α

}
. (4.5)

Since this paper is not concerned with the limit Λ → ∞, we will always self-
understand that the integration over α ranges over

[
1

Λ2 ,∞
]
. Later on, it will

also prove convenient to introduce t = tanh(Ω̃α) as well as the short and long
variables

u =
1√
2
(x− y) and v =

1√
2
(x+ y), (4.6)

so that the propagator reads

KΩ̃(x, y) =

(
Ω̃
2π

)D/2 ∞∫
1/Λ2

dα
[
(1 − t2)

2t

]D/2

exp −1
2

{
Ω̃
t
u2 + Ω̃t v2

}
. (4.7)

The interaction term is derived form the Moyal product

f  g (x) =
1

πD|det Θ|
∫

dDy dDz f(x+ y)f(x+ z)e−2ıyΘ−1z, (4.8)

with Θ a real, non degenerate, antisymmetric D × D matrix, with D even.
In the sequel, we assume1 that Θ = θJ , with θ > 0 and J the antisymmetric

D×D block diagonal matrix made of 2 × 2 blocks
(

0 1
−1 0

)
. We define the

interaction term as

Sint[φ] =
∑
n≥1

gn

n

∫
dDxφ�n(x), (4.9)

where gn ∈ R are coupling constants. In the sequel, it will be necessary to
express explicitly the Moyal interaction as a functional of the fields

Sint[φ] =
∑
n≥1

gn

n

∫
dDx1 · · · dDxnVn(x1, . . . , xn)φ(x1) · · ·φ(xn). (4.10)

1 Otherwise the amplitude cannot be written as (4.25) and the hyperbolic polynomial are
not defined.
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Vn(x1, . . . , xn) is a distribution on (RD)n, invariant under cyclic permutations,

Vn(x1, x2, . . . , xn) = Vn(xn, x1, . . . , xn−1). (4.11)

In the commutative limit θ → 0, it reduces to a product of Dirac distributions

lim
θ→0

Vn(x1, . . . , xn) =
∏
j

j �=i

δ(xi − xj), (4.12)

which is invariant under all permutations of {1, 2, . . . , n}.
Turning back to the noncommutative case θ = 0, in lower degree we have

V1(x1) = 1 and V2(x1, x2) = δD(x1 − x2). The first interesting interaction
is V3

V3(x1, x2, x3) =
1

(πθ)D
exp−2ı

θ
{x1 · Jx2 + x2 · Jx3 + x3 · Jx1} . (4.13)

The last expression of V3 is very convenient since we can associate with it a
triangle with vertices x1, x2 and x3 drawn in cyclic order around its boundary,
oriented counterclockwise. In the sequel, it will be convenient to express higher
order vertices using triangles glued together in a tree-like manner.

Proposition 4.1. Let T be a plane tree (i.e. a connected acyclic graph embedded
in the plane) with all its inner vertices of degree 3 and its edges labelled using
the index set I and let i1, . . . , in be the cyclically ordered labels of some of
the edges attached to the leaves (terminal vertices), in counterclockwise order
around the tree. Then,

Vn(xi1 , . . . , xin
)

=
∫ ∏

i∈I−{i1,...,in}

×dDxi

∏
v

vertices of T

exp − 2ı
θ {xiv

· Jxjv
+ xjv

· Jxkv
+ xkv

· Jxiv
}

(πθ)D
, (4.14)

with iv, jv, kv the labels of the cyclically ordered edges incident to v.

Proof. Let us prove this result by induction on the number of inner vertices of
T . If T has a single inner vertex, then the equality for n = 3 is trivial, whereas
for n = 1, 2 it results from the identity

1
(πθ)D

∫
dDy exp−2ı

θ
{y · Jz} = δD(z). (4.15)

Next, we suppose the result valid for all trees of order less than m and consider
a tree T of order m+ 1. Cut an inner edge in T with label i0, which splits T
into T ′ and T ′′. Without loss of generality, let us assume that i1, . . . , in′ , i0 are
the labels of the leaves of T ′. Then, we separate the vertices of T into vertices
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of T ′ and T ′′ and use the induction assumption for T ′ and T ′′,
∫ ∏

i∈I−{i1,...,in}
dDxi

∏
v

vertices of T

exp − 2ı
θ {xiv

· Jxjv
+ xjv

· Jxkv
+ xkv

· Jxiv
}

(πθ)D

=
∫

dDxi0 Vn′+1(xi1 , . . . , xin′ , xi0)Vn−n′+1(xi0 , xin′+1
, . . . , xin

). (4.16)

To conclude, we need the following lemma:

Lemma 4.2. The vertices of Moyal interaction obey∫
dDy Vn′+1(xi1 , . . . , xin′ , y)Vn−n′+1(y, xin′+1

, . . . , xin
) = Vn(xi1 , . . . , xin

)

(4.17)

for any integer 1 ≤ n′ ≤ n− 1.

Proof of the lemma.∫
dDy Vn′+1(xi1 , . . . , xin′ , y)Vn−n′+1(y, xin′+1

, . . . , xin
)

=
∫

dDy dDy ′ δD(y − y′)Vn′+1(xi1 , . . . , xin′ , y)Vn−n′+1(y′, xin′+1
, . . . , xin

)

=
∫

dDk

(2π)D
dDy dDy ′ Vn′+1(xi1 , . . . , xin′ , y)ek(y)

×Vn−n′+1(y′, xin′+1
, . . . , xin

)e−k(y′) (4.18)

with ek(x) = exp ıkx. Smearing out with functions fi1 , . . . , fin
, we thus have

∫
dDy dDxi1 · · · dDxin Vn′+1(xi1 , . . . , xin′ , y)

×Vn−n′+1(y, xin′+1
, . . . , xin)fi1(xi1) . . . fin(xin)

=

∫
dDk

(2π)D

∫
dDxfi1 � · · · � fin′ � ek(x)

∫
dDx′fin′+1

� · · · � fin � e−k(x′)

=

∫
dDk

(2π)D

∫
dDxfi1 � · · · � fin′ (x)ek(x)

∫
dDx′fin′+1

� · · · � fin(x′)e−k(x′)

=

∫
dDx fi1 � · · · � fin′ (x) fin′+1

� · · · � fin(x)

=

∫
dDx fi1 � · · · � fin′ � fin′+1

� · · · � fin(x)

×
∫

dDxi1 · · · dDxin Vn(xi1 , . . . , xin) fi1(xi1) · · · fin(xin) (4.19)

where we have repeatedly used∫
dDx f  g(x) =

∫
dDxf(x)g(x). (4.20)

The lemma ends the proof of (4.14). �
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Figure 12. A heptagonal Moyal vertex

In what follows, we always assume that such a tree has been chosen for
every vertex, all choices leading to the same distribution Vn. Moreover, since
V3 is conveniently represented as a triangle, we represent the contribution of
each vertex of T as a triangle whose vertices are called corners, see Fig. 12 for
an example.

4.2. Parametric Representation and the Hyperbolic Polynomials

Formal perturbative quantum field theory can be compactly formulated
within the background field method. In this approach, the main object is
the background field effective action defined by the expansion over Feynman
graphs (we normalize the path integral in such a way that it takes the value 1
when all the coupling constants vanish)

− log
∫

[Dχ] exp−{S0[χ] + Sint[φ+ χ]} = −
∑

G connected ribbon graph
with f(G) flags

× (−g)v(G)

SGf(G)!

∫ ∏
1≤i≤f(G)

dDxiAG(x1, . . . , xf(G))
∏

1≤i≤f(G)

φ(xi). (4.21)

Since the interaction vertices are invariant under cyclic permutations (see
(4.11)), the sum runs over all orientable2 ribbon graphs. The graph also have
f(G) flags, which are half-lines that carry the labels of the field insertions

2 Unless otherwise stated, the ribbon graphs considered in the rest of the paper will always
be orientable.
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φ(x1) · · ·φ(xf(G)). SG is the symmetry factor of the graph (cardinality of
the automorphism group of the graph, leaving the flags fixed), (−g)V (G) =∏

v∈V (G)(−gdeg(v)), with deg(v) the degree of v and AG is the amplitude, to
be defined below.

In the sequel, it will prove convenient to allow edge dependent oscillator
frequencies Ωe, so that we recover the amplitude appearing in (4.21) by setting
Ωe = Ω.

Definition 4.1. Let G be a ribbon graph with flags and let us attach a vari-
able xi ∈ R

D to each flag of G and Ωe > 0 to each edge. The (generalized)
amplitude of a ribbon graph with flags is the distribution defined as

AG [Ω, x] =
∫ ∏

i/∈F (G)

dDyi

×
∏

e∈E(G)

K 2Ωe
θ

(yie,+ , yie,−)
∏

v∈V (G)

Vdeg(v)(yiv,1 , . . . , yiv. deg(v)),

(4.22)

where we integrate over variables yi ∈ R
D associated with each half-edge of

G, with the convention that for a flag we set yi = xf without integrating over
xi. yie,+ , yie,− the variables attached to the ends of e (the order does not mat-
ter since the Mehler kernel is symmetric) and yiv,1 , . . . , yiv. deg(v) the variables
attached in cyclic order around vertex v.

In the commutative case θ = 0, the vertex (4.12) enforces the identifi-
cation of all the corners (internal and external) attached to the same vertex
and is invariant under all permutations of the half-edges incoming to a vertex.
Therefore, the amplitude is assigned to ordinary (i.e. non ribbon) graphs, with
flags replaced by external vertices.

Definition 4.2. Let G = (V, Vext, E) be a graph with Vext ⊂ V the external
vertices to which variables xv ∈ R

D are assigned. Let us attach a variable
yv ∈ R

D to each vertex of G, with the convention that yv = xv for an exter-
nal vertex. The (generalized) commutative amplitude of a graph with external
vertices is defined as

Acommutative
G [Ωe, xv] =

∫ ∏
v∈V−Vext

dDyv

∏
e∈E

KΩe
(yve,+ , yve,−), (4.23)

with Ωe the edge dependent frequency and ve,+ and ve,− the vertices e is
attached.

The commutative amplitude is recovered as a limiting case.

Proposition 4.3. Let G be a ribbon graph with flags and let Vext(G) be the sub-
set of vertices of G carrying flags. Then, for the graph with external vertices
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G = (V (G), Vext(G), E(G))

Acommutative
G [Ωe, xv]

∏
v∈V ext(G)

⎧⎨
⎩
∏

f∈Fv

δ(xv − xf )

⎫⎬
⎭ = lim

θ→0
AG

[
θ
2Ωe, xf

]
,

(4.24)

with G = (E(G), V (G), Vext(G)) and Fv(G) the set of flags attached to v in G
and (xv)∈Vext(G) and (xf )f∈F (G) independent variables.

Proof. Note that in the commutative case we use oscillators of frequency Ωe

instead of 2Ωe

θ . Then, Proposition 4.3 follows immediately from (4.12). �
Even in the general non-commutative case, the integral over all the cor-

ners is Gaußian, thanks to peculiar form of the Mehler kernel (4.5) and of the
Moyal vertex (4.14). Therefore, the amplitude can be expressed in parametric
form as follows, as was first shown in [10]:

Theorem/Definition 4.1. The generalized amplitude (4.25) of the Grosse–
Wulkenhaar model for a ribbon graph G (which does not contain an isolated
vertex with an even number of flags) with e(G) edges, v(G) vertices and f(G)
flags carrying variables xi ∈ R

D is

AG(x) =
∫ ∏

edαe

[
2f(G)

∏
e Ωe(1 − t2e)

(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

× exp −1
θ

{
HVG(Ω, t, x)
HUG(Ω, t)

}
, (4.25)

where the first hyperbolic polynomial HUG(Ω, t) is a polynomial in the edge
variables Ωe and te = tanh 2Ωeαe

θ and the second hyperbolic polynomial
HVG(Ω, t, x) is a linear combination of the products xi ·xj and xi ·Jxj, whose
coefficients are polynomials in Ωe and te.

Proof. The key idea is to write the amplitude (4.23) as a Gaußian integral. To
begin with, let us first derive a more systematic expression of AG. First, we
represent each vertex using a plane tree made of triangles, as in Proposition
4.1. The corners of the triangles attached to the flags of G are the external
corners while the other corners over which we integrate are called internal cor-
ners. The internal corners come in three types: related by an edge, common to
two triangles or isolated. In this last case, the variable attached to the inter-
nal corner acts as a Lagrange multiplier, as in (4.15). Since all the triangles
are oriented counterclockwise, we define an antisymmetric adjacency matrix ζ
between the corners (internal and external) by⎧⎨

⎩
ζij = 1 if there is a triangle edge oriented from i to j,
ζij = −1 if there is a triangle edge oriented from j to i,
ζij = 0 if there is no triangle edge between i and j.

(4.26)

Let us denote by C int
v (resp. Cext

v ) the set of internal (resp. external) corners
attached to the vertex v and define the matrix α (resp. β, γ) by restricting ζ
to the lines and columns in C int

v (resp. lines in C int
v and columns in Cext

v , lines
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and columns in Cext
v ). Using (4.14), the contribution of the vertex v to AG can

be written as

1
(πθ)D|Tv| exp − ı

θ

×
⎧⎨
⎩
∑

i,j∈Cint
v

αij xi · Jxj + 2
∑

i∈Cint
v , j∈Cext

v

βij yi · Jxj +
∑

i,j∈Cext
v

γij xi · Jxj

⎫⎬
⎭ ,

(4.27)

with |Tv| the number of triangles used in the chosen tree-like representation
of v.

In order to define the short and long variables for all edges, we choose an
arbitrary orientation on the edges of G and introduce the incidence matrix ε
between the edges and the internal corners

⎧⎨
⎩
εei = 1 if e arrives at i,
εei = −1 if e leaves i,
εei = 0 if e is not attached to i.

(4.28)

The long and short variables associated with the edge e are

ue =
1√
2

(∑
i

εeiyi

)
and ve =

1√
2

(∑
i

|εei|yi

)
, (4.29)

with xi the variables attached to the corners. We enforce these relations by
inserting δ-functions with Lagrange multipliers λe and μe in the definition of
AG

∫
dλe

(πθ)D
exp −2ı

θ

{
λe · J

[
ue − 1√

2

(∑
i

εeiyi

)]}
(4.30)

and

∫
dμe

(πθ)D
exp−2ı

θ

{
μe · J

[
ve − 1√

2

(∑
i

|εei|yi

)]}
. (4.31)

Gathering all the terms together, the expression of the amplitude reads

AG =
∫ ∏

edαe
1
N ×

∫
dNX exp

{
−1

2
tXAX + ıtXB +

C

2

}
, (4.32)

where

X =

√
2
θ

(ue, ve, λe, μe, yi) (4.33)
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is a variable in R
N with N = 4e(G)D + |C int(G)|D. A is a symmetric N ×N

matrix

A

=

⎛
⎜⎜⎜⎜⎝

diag(Ωe/te) ⊗ ID 0 ıIe(G) ⊗ J 0 0
0 diag(Ωete) ⊗ ID 0 ıIe(G) ⊗ J 0

−ıIe(G) ⊗ J 0 0 0 ı√
2
ε ⊗ J

0 −ıIe(G) ⊗ J 0 0 ı√
2
|ε| ⊗ J

0 0 − ı√
2

tε ⊗ J − ı√
2
|tε| ⊗ J ıα ⊗ J

⎞
⎟⎟⎟⎟⎠ ,

(4.34)

with IM the identity M ×M matrix. B ∈ R
N and C ∈ ıR are defined by

B =

√
2
θ

⎛
⎝0, 0, 0, 0

∑
j∈Cext

v

βijJxj

⎞
⎠ and C = −2ı

θ

∑
i,j∈Cext

v

γij xi · Jxj .

(4.35)

Finally, the normalization factor is

N =
∏
e

[
2Ωe(1 − t2e)
θ × 2π × 2te

]D/2

× 1
(πθ)2e(G)D

× 1
(πθ)|T (G)|D ×

(
θ

2

)N/2

,

(4.36)

whose respective contributions are the normalization factors of the Mehler ker-
nels (4.5), the δ functions for the short and long variables, the contributions
of the vertices (|T (G)| is the total number of triangles in the representation of
all vertices of G) and the Jacobian of the change of variables to X.

We are now in a position to perform the Gaußian integration over X in
(4.32),

AG =
∫ ∏

edαe
(2π)N/2

N√
detA

×
∫

dNZ exp
{

−1
2

tBA−1B +
C

2

}
, (4.37)

where we assumed A to be invertible, as it should be the case by its construc-
tion. Alternatively, one could have replaced A by A = λIN with λ large enough
and show afterwards that the limit λ → 0 is well defined. For simplicity, we
do not do this here and will show, in Proposition 5.5, that detA > 0 provided
G does not contain an isolated graph with an even number of flags.

To simplify the normalization factor, let us first derive a topological rela-
tion between the number of triangles and internal corners of any represen-
tation of the vertices of G using triangles. In each case, the graph obtained
by joining the center of adjacent triangles is a forest (i.e. a graph without
cycles) with |T (G)| vertices and v(G) connected components, so that there
are |T (G)| − v(G) corners common to two triangles. Next, each triangle has 3
corners, which are either attached to flags or internal corners, with the inter-
nal corners common to two triangles counted twice. Accordingly, 3|T (G)| =
|C int(G)| + f(G) + (|T (G)| − v(G)), so that

2|T (G)| = |C int(G)| + f(G) − v(G). (4.38)
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Using this relation, we get

(2π)D/2

N =
(2πθ)|C

int(G)|

(2πθ)e(G)(πθ)2||T (G)||2|Cint(G)| = 2f(G)−v(G)(2πθ)v(G)−e(G)−f(G).

(4.39)

To define HUG(Ω, t) it is helpful to note that the matrix A can be written
as

A = D ⊗ ID +R⊗ ıJ, (4.40)

with D diagonal and R antisymmetric. The matrix P−1ıJP with P the D×D

block diagonal matrix made of 2 × 2 blocks

(
ı√
2

− ı√
2

1√
2

1√
2

)
is diagonal with

blocks
(

1 0
0 −1

)
. Therefore,

detA = [det(D +R)]D/2 × [det(T −R)]D/2 = [det(D +R)]D (4.41)

since det(T −R) = det t(D −R) = det(D +R). Thus,

HUG(Ω, t) = 2v(G) [
∏

e te] det(D +R) (4.42)

is a polynomial in te (because of the multiplication by
∏

e te) and in Ωe and

(2π)N/2

N√
detA

=
[

2f(G)
∏

e Ωe(1 − t2e)
(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

, (4.43)

which corresponds to the prefactor in (4.25).
Finally, taking into account (4.42), we define the second hyperbolic poly-

nomial as

HVG(Ω, t, x) = 2v(G)θ [
∏

e te] det(D +R)
[
tBA−1B + C

]
. (4.44)

The only non-trivial assertion to check is its polynomial dependence on te. The
latter follows from

A−1 = (D +R)−1 ⊗ ( 1+ıJ
2

)
+ (T −R)−1 ⊗ ( 1−ıJ

2

)
, (4.45)

so that [
∏

e te] det(D + R)A−1 is a matrix of polynomials in te since
[
∏

e te] det(D +R)(D +R)−1 and [
∏

e te] det(T −R)(T −R)−1 are. �

Remark. When expressed in term of Ω and t, both hyperbolic polynomials
HUG(Ω, t) and HVG(Ω, t, x) do not depend on θ. This is the consequence of
the use of the Mehler kernel KΩ̃ in the kinetic term, with Ω̃ = 2Ω

θ . However,
there is an implicit θ dependence in the relation between t and α.
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5. Hyperbolic Polynomials as Graph Polynomials

5.1. Reduction Relation for the First Hyperbolic Polynomial

In general, it is not very convenient to study the hyperbolic polynomials start-
ing from the relations (4.42) and (4.44). It is preferable to compute the deter-
minants by a series of successive reductions, instead of trying to manipulate
them in one go. This leads to the following reduction relation:

Theorem 5.1. The first hyperbolic polynomial HUG, defined by (4.42) for any
ribbon graph with flags, is multiplicative over disjoint unions, obeys the reduc-
tion relation

HUG = te HUG−e + teΩ2
e HUG∨e + Ωe HUGe−e + Ωet

2
e HUGe∨e (5.1)

for any edge e. Furthermore, for the graph Vn consisting of an isolated vertex
with n flags, we have

HUVn
=
{

0 if n is even,
2 if n is odd. (5.2)

Proof. Let us recall the defining relation (4.42) of the first hyperbolic polyno-
mial as a determinant,

HUG(Ω, t) = 2v(G) [
∏

e te] det(D +R). (5.3)

The multiplicativity follows readily from (4.42) since the adjacency and inci-
dence matrices of a disjoint union are block diagonal.

Although all the graphical operations appearing in the reduction rela-
tions can be performed on the lines and columns of D + R, it is much more
economical to derive them using technics from Grassmannian calculus (see
for instance [? ] for a recent overview of Grassmannian calculus). To proceed,
write the determinant as a Gaußian integral over Grassmann variables with
{ρ, σ} ∈ {ue, ve, λe, μe, yi},3

det(D +R) =
∫ ∏

ρ

dψρdψρ exp −
{∑

ρ,σ

ψρ(D +R)ρσψσ

}
. (5.4)

Next, we perform the change of variables of{
ψρ = 1√

2
(χρ − ıηρ),

ψρ = 1√
2
(χρ + ıηρ),

with Jacobian
D(ψ,ψ)
D(χ, η)

= ı. (5.5)

Because all Grassmann variables anticommute, the determinant is
expressed as

det(D +R)

=
∫ ∏

ρ

[−ıdχρdηρ] exp ı

{∑
ρ

dρχρηρ

}
exp −1

2

{∑
ρ,σ

Rρσ(χρχσ + ηρησ)

}
,

(5.6)

3 For the sake of clarity we use here the same letter for indices and the corresponding
integration variables in the previous section.
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with dρ = Ωe

te
(resp. dρ = Ωete) for ρ = ue (resp. ρ = ve) and 0 otherwise. Note

that
∫ ∏

ρ dχρ exp − 1
2

{∑
ρ,σ Rρσχρχσ

}
(or the equivalent expression using η)

is the Pfaffian of the antisymmetric matrix Rρσ.
Let us select a particular edge e from the corner i to the corner j and

expand the related exponential

det(D +R)

=
∫ ∏

ρ

[−ıdχρdηρ]
(

1 + ı
Ωe

te
ηue

χue
+ ıΩeteηve

χve
− (Ωe)2ηue

χue
ηve

χve

)

× exp ı

⎧⎨
⎩
∑

ρ�=ue,ve

dρχρηρ

⎫⎬
⎭ exp −1

2

{∑
ρ,σ

Rρσ(χρχσ + ηρησ)

}
. (5.7)

Moreover, since the operations on the variables η and χ are identical and inde-
pendent, we perform them explicitly only on η. In the sequel, we repeatedly
use the following elementary result from Grassmannian calculus:

Lemma 5.2. Let F be a function of the Grassmann variables η1, η2, . . . (i.e. an
element of the exterior algebra generated by η1, η2, . . . ). Then,∫

dη1 η1F (η1, η2, . . . ) = F (0, η2, . . . ), (5.8)

and its corollary, the integral representation of the Grassmannian δ function∫
dη0dη1 exp a {η0η1}F (η1, η2, . . . )

= dη1 aδ(η1)F (η1, η2, . . . ) = aF (0, η2, . . . ). (5.9)

It is convenient to explicit all the terms involving the edge e in the
Pfaffian∑

ρ,σ

Rρσηρησ = ηueηλe + λveημe +
1√
2
ηλe

(
ηyj − ηyi

)
+

1√
2
ημe

(
ηyj + ηyi

)
+ · · · .

(5.10)

To alleviate the expressions, we make the convention that in the following we
only represent the part of the Grasmann integral affected by the equations.

The first term in (5.7),∫
dηue

dηve
dηλe

dημe

× exp −
{
ηue

ηλe
+λve

ημe
+

1√
2
ηλe

(
ηyj

− ηyi

)
+

1√
2
ημe

(
ηyj

+ ηyi

)
+ · · ·

}
,

(5.11)

corresponds to the deletion of e in G since the integration over ηue
and ηve

sets ηλe
= ημe

= 0 by using (5.9). Then, the corners i and j remain as isolated
corners. Let us note that the factors of ı cancel since we integrate over 4 pairs
χρηρ and that no extra sign arise form the commutation of dχρ and dηρ, since
the latter are always performed pairwise on χρ and ηρ.
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Figure 13. A loop e

In the second term,∫
dηue

dηve
dηλe

dημe

×ηue
exp −

{
ηue

ηλe
+λve

ημe
+

1√
2
ηλe

(
ηyj

−ηyi

)
+

1√
2
ημe

(
ηyj

+ηyi

)
+ · · ·

}
,

(5.12)

we have ηue
= 0 and the integration over ηve

sets ημe
= 0 with an extra sign.

The remaining integration over ηλe
enforces δ(ηyi

− ηyj
) after integration over

with an extra factor of −1/
√

2 using (5.9). To relate this operation to the
deletion in the partial dual Ge, we need to distinguish two cases.
• If e is not a loop, then Ge −e results from the identification of the corners i

and j (belonging to two different vertices) to get a single vertex, as required
by ηyi

= ηyj
. Taking into account both Pfaffians and the prefactor 2v(G),

we get
(

1√
2

)2

× 2v(G) = 2v(Ge−e). After taking into account the variables
χρ and ηρ, we integrate over an odd number of pairs, so that a factor of ı
remains, which cancels with the one in (5.7).

• Let us suppose that e is a loop. Using the freedom we have in representing
the vertex using triangles, we may always assume that i and j lie on adja-
cent triangles (ikl) and (jkm) with a common corner k and related to the
remaining part of the graph by two additional corners l and m (Fig. 13).

The contribution of the two triangles to the Pfaffian is

exp −{ηyi
ηyk

+ ηyk
ηyl

+ ηyl
ηyi

+ ηyj
ηyk

+ ηyk
ηym

+ ηym
ηyj

}
. (5.13)

After the identification ηyi
= ηyj

, the contribution of the triangles ikl and
jkm reads∫

dηyi
dηyk

exp−{2ηyk
ηyi

+ (ηyi
− ηyk

)(ηyl
+ ηym

)}

=
∫

dη+dη− exp −
{

2η+η− +
√

2η−(ηyl
+ ηym

)
}
, (5.14)

using the change of variables η± = ηyi
±ηyk√
2

. Using (5.9), the integration
over η+ sets η− = 0 with an extra −2, so that the contribution of the two
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triangles is trivial. Therefore, we suppress the latter, which is nothing but

the deletion of e in Ge. Finally, the factors of 2 are
(

1√
2

)2

× 22 × 2v(G) =

2×2v(G) = 2v(Ge−e) since e is a loop. The signs and factors of ı also cancel
since we integrate over 7 pairs of variables.
The third term,∫

dηue
dηve

dηλe
dημe

×ηve
exp −

{
ηue

ηλe
+ηve

ημe
+

1√
2
ηλe

(
ηyj

−ηyi

)
+

1√
2
ημe

(
ηyj

+ηyi

)
+ · · ·

}
,

(5.15)

is very similar to the second one, except that the integration over ηue
, ηve

, ηλe

results in ∫
dημe

exp −
{

(ημe
)
ηyi

+ ηyj√
2

}
. (5.16)

Again, we distinguish two cases
• If e is not a loop, let us set a new variable ηyp

= ημe√
2

(p does not correspond
to an existing corner in G), so that∫

dημe
exp −

{
(ημe

)
ηyi

+ ηyj√
2

}
=

1√
2

∫
dηyp

exp −{ηyp
ηyi

+ ηyp
ηyj

}
.

(5.17)

This is the contribution of two triangles (piq) and (pjr) attached by a
common corner p with flags on q and r, so that there are no terms in
ηyq

= ηyr
0. Graphically, it corresponds to identifying the corners i and

j with two extra flags separating the two parts of the graph that were
attached to the corners i and j. This is the cut of e in the partial dual Ge.

• If e is a loop, then we perform the integration over ημe
which enforces

ηyi
+ ηyj

= 0 with an extra factor −1√
2
. As in the discussion of the second

case, without loss of generality we assume that i and j lie on adjacent
triangles (ikl) and (jkm) whose contribution is given by (5.13). After the
identification ηyj

= −ηyi
, we are left with∫

dηyi
dηyk

exp −{(ηyi
− ηyk

)ηyl
+ (ηyi

+ ηyk
)ηym

}

=
∫

dη+dη− exp−
{√

2η−ηyl
+

√
2η+ηym

}
, (5.18)

using the change of variables η± = ηyi
±ηyk√
2

. Using (5.9), the integration
over η+ and η− sets ηyl

= ηym
= 0 with an extra factor of 2, so that

the contribution of the two triangles is trivial. Therefore, we suppress the
latter, which is nothing but the deletion of e in Ge. As in the previous
case, all the factors of −1, 2 and ı cancel after we take into account the
contributions of both Pfaffians.



518 T. Krajewski et al. Ann. Henri Poincaré

The fourth term,∫
dηue

dηve
dηλe

dημe
ηue

ηve
exp

−
{
ηue

ηλe
+ λve

ημe
+

1√
2
ηλe

(
ηyj

− ηyi

)
+

1√
2
ημe

(
ηyj

+ ηyi

)
+ · · ·

}
,

(5.19)

represents the cut of e in G since the integration over ηue
and ηve

sets ηλe
=

ημe
= 0 by using (5.8). The remaining integrations over ηλe

and ημe
can be

written as∫
dη+dη− exp

{
η+ηyj

+ η−ηyi

}
with η± =

ημe
± ηλe√
2

, (5.20)

which imposes ηyi
= ηyj

= 0. Graphically, this means that the corners i and
j become flags, which yields G ∨ e. Here, there are neither powers of 2, nor
extra signs arising from the operations. However, we integrate over 6 pairs of
variables, so that the Jacobians yield −1, which cancel with the sign in (5.7).

Finally, let us prove the assertion concerning the isolated vertices. In this
case, D+R reduces to α, the antisymmetric adjacency matrix α of the internal
corners of the graph, defined in the proof of Theorem 4.1. For a vertex with
an even number of flags, we have an odd number of internal corners because
of the relation (4.38), so that

HUV2n
= 2det(α) = 0. (5.21)

In case of an even number of flags

HUV2n+1 = 2det(α) = 2 [Pf(α)]2 . (5.22)

Recall that the Pfaffian of a 2n× 2n antisymmetric matrix is defined as

Pf(α) =
∑

π∈Πn

(−1)sign(π)απ(1),π(2)απ(3),π(4) · · ·απ(2n−1),π(2n), (5.23)

with Πn the subset of the permutations of {1, 2 . . . , 2n} such that π(2i−1) <
π(2i) for any 1 ≤ i ≤ n and π(1) < π(3) < · · · < π(2n − 1). Accordingly, if
α is the adjacency matrix of a graph, its Pfaffian is a sum over all its perfect
matchings, with relative signs. In the case of the graph build with the edges
of the triangles pertaining to a vertex of odd degree and with all the exter-
nal corners and the triangle edges attached to them removed, it is easy to
show by induction on the number of triangles, that there is a unique perfect
matching on the triangle edges, with the convention that the empty graph has
a unique perfect matching, the empty one. Therefore, Pf(α) = ±1, so that
HUV2n+1 = 2. �

For a graph with e(G) edges, the reduction relation (5.1) involves 4e(G)

operations, many of them leading to terminal forms containing a vertex of
even degree. For E(G) ≥ 3, it is therefore not very convenient to compute
HUG using the reduction relation. However, it is instructive to see how it
works on the simplest examples with 1 and 2 edges.
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Example 5.1 (Bridge with flags). Let Bm,n be the bridge (i.e. one edge and
two vertices) with m flags on one vertex and n flags on the other one. Then,
the reduction relation reads

HUBm,n
(Ω1, t1) = t1 HUVm∪Vn

+ tΩ2
1 HUVm+1∪Vn+1 + Ω1 HUVm+n

+Ω1t
2
1 HUVm+n+2 , (5.24)

so that we obtain

HUBm,n
(Ω1, t) =

⎧⎨
⎩

4 t1Ω2
1 if m and n are even,

4 t1 if m and n are odd,
2Ω1(1 + t21) otherwise.

(5.25)

Example 5.2 (Loop with flags). Let Lm,n be the loop (i.e. one edge and one
vertex) with m flags on one face and n flags on the other one. The reduction
relation

HULm,n
(Ω1, t1) = Ω1 HUVm∪Vn

+ tHUVm+n
+ Ω1t

2
1 HUVm+1∪Vn+1

+t1Ω2
1 HUVm+n+2 , (5.26)

implies

HULm,n
(Ω1, t1) =

⎧⎨
⎩

4Ω1t
2
1 if m and n are even,

4Ω1 if m and n are odd,
2 t1(1 + Ω2

1) otherwise.
(5.27)

Example 5.3 (Cycle of length 2 without flags). Let us consider a cycle of length
two without flags. The reduction relation reads

HU cycle
2 edges, no flag

(Ω1,Ω2, t1, t2) = t1 HUB0,0(Ω2, t2)

+t1Ω2
1 HUB1,1(Ω2, t2) + Ω1 HUL0.0(Ω2, t2) + Ω1t

2
1 HUV1,1(Ω2, t2), (5.28)

and we get, using the previous two examples,

HU cycle
2 edges, no flag

(Ω1,Ω2, t1, t2) = 4
(
t21 + t22

)
Ω1Ω2 + 4

(
Ω2

1 + Ω2
2

)
t1t2. (5.29)

5.2. Some Properties of HUG as a Graph Polynomial

We are now ready to give the combinatorial expression of the first hyperbolic
polynomial.

Theorem 5.3. The first hyperbolic polynomial can be expressed as

HUG(Ω, t) = QG(1, t,Ω,Ωt2, tΩ2, r), (5.30)

with r2n+1 = 2 and r2n = 0, or explicitly,

HUG(Ω, t) =
∑

A,B⊂E(G)
admissible

×
{

2v(GA)

( ∏
e∈Ac∩Bc

te

)( ∏
e∈Ac∩B

teΩ2
e

)( ∏
e∈A∩Bc

Ωe

)( ∏
e∈A∩B

Ωet
2
e

)}
,

(5.31)
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with (A,B) admissible if each vertex of the graph obtained from GA by cutting
the edges in B and deleting those in Bc has an odd number of flags.

Proof. Recall that for ribbon graph with flags the polynomial
QG(x, y, z, w, r), depending on four variables (xe, te, ze, we) for each edge and
a sequence (rn)n∈N, is defined as

QG(q, x, y, z, w, r) =
∑

A,B⊂E(G)

qk(FA)

×
⎧⎨
⎩
⎛
⎝ ∏

v∈V (GA)

rdeg(v)

⎞
⎠
( ∏

e∈Ac∩Bc

xe

)( ∏
e∈Ac∩B

we

)( ∏
e∈A∩Bc

ye

)( ∏
e∈A∩B

ze

)⎫⎬
⎭

(5.32)

The graph polynomial QG, at q = 1, can be characterized as the unique graph
polynomial which is multiplicative over disjoint unions, that obeys the reduc-
tion relation

QG = xeQG−e + weQG∨e + yeQGe−e + zeQGe∨e, (5.33)

for any edge e ∈ E(G) and that takes the value QVn
(1, x, y, z, w, r) = rn on

a isolated vertex with n flags, see Definition 3.2. These three conditions are
precisely the content of Theorem 5.1, with xe = te, ye = Ωe, ze = Ωet

2
e, we =

teΩ2
e, r2n = 0 and r2n+1 = 2. The relation r2n = 0 reduces the summation to

admissible subsets (A,B) and r2n+1 = 2 yields a factor of 2 for each vertex
o GA. �

This formula can be used to compute HUG(Ω, t) for simple examples
that admit many symmetries. Otherwise, there are many possibilities for the
subsets A and B that have to be treated, many of them being non admissible.

Example 5.4 (Planar banana with three edges). Let us consider the plane graph
with two vertices and three edges, all of three having both ends attached to
different vertices. With A = ∅, we must have |B| odd. Thus, we get four terms

4t1t2t3(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

1Ω
2
2Ω

2
3), (5.34)

If |A| = 1, GA has a single vertex without flags, so that no cut could yield an
odd number of flags. When |A| = 2, let us suppose that A = {1, 2} for definite-
ness. Then, GA is a cycle with two edges 1 and 2 and an extra loop 3 attached
to one of the vertices. We have four possibilities for B: {1} , {2} , {1, 3} and
{2, 3}, that yield the monomials:

4Ω1Ω2(t21t3 + t22t3 + t21t3Ω
2
3 + t22t3Ω

2
3). (5.35)

By cyclic symmetry, we construct 8 other terms that correspond to A = {2, 3}
and A = {1, 3}. Finally, with |A| = 3, GA is a triangle and there is no way to
get only odd vertices after cutting. Therefore, we obtain

HU planar
3-banana

(Ω, t)

= 4
[
t1t2t3

[
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
1Ω

2
2Ω

2
3

]
+ t1Ω2Ω3

[
t22 + t23 + Ω2

1(t
2
2 + t23)

]
+t2Ω1Ω3

[
t21 + t23 + Ω2

2(t
2
1 + t23)

]
+ t3Ω1Ω2

[
t21 + t22 + Ω2

3(t
2
1 + t22)

]]
,

(5.36)
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A first consequence of Theorem 5.3 is the invariance of the first hyper-
bolic polynomial under partial duality, provided we interchange some of the
variables Ω and t.

Corollary 5.4. For any A ⊂ E(G), the first hyperbolic polynomial transforms
under partial duality as

HUGA(ΩA, tA) = HUG(Ω, t), (5.37)

with { {ΩA}e = te, {tA}e = Ωe for e ∈ A,
{ΩA}e = Ωe, {tA}e = te for e /∈ A.

(5.38)

Proof. This an immediate consequence of the relation between HUG and QG

and of the transformation of QG under partial duality, see Theorem 3.3. �
Remark. It is worth noticing that this is a rather strong result, since the dual-
ity holds with respect to any subset of edges for all graphs, in contradistinction
with the commutative case, where only the duality with respect to all edges
holds for a plane graph. Note that this property also holds for the non-com-
mutative field theories with Moyal interaction and heat-kernel propagator (see
Corollary 6.5), since in this case we obtain an evaluation of the multivariate
Bollobàs–Riodan polynomial, which is invariant under partial duality.

Let us illustrate the use of the partial duality on a simple example.

Example 5.5 (Non-planar double tadpole). The partial dual of a cycle of length
2 with respect to one of its edges is the non-planar double tadpole (i.e. the
non-planar graph with one vertex and two edges). Thus, using the result of
Example 5.3

HU non-planar
double tadpole

(t1, t2,Ω1,Ω2)

= HUC2(t1,Ω2,Ω1, t2)
= 4
(
Ω2

1 + t22
)
t1Ω2 + 4

(
t21 + Ω2

2

)
Ω1t2. (5.39)

Note that we obtain the same result if we perform the partial duality on edge
2, since they are symmetric. Partial duality with respect to both edges yields
another cycle of length 2, with variables all variables Ω and t interchanged.

Before we deal with particular classes of graphs, let us show that HUG is
not identically 0, except for the particular case of isolated vertices. Note that
an isolated vertex has no incident edge but may carry flags, so that its degree
may be non trivial.

Proposition 5.5. HUG is identically 0 only for a graph containing an isolated
vertex of even degree.

Proof. We have already seen that on a isolated vertex HUG = 0 if only if G
has an even number of flags. Using the multiplicativity over disjoint unions
(see Theorem 5.1), it remains to show that HUG is not identically zero for a
connected graph with at least one edge. To construct a monomial with a non-
zero coefficient, let us choose a spanning tree T in G and an edge e ∈ E(T ).
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The tree T/(E(T )−{e}) obtained by contracting all edges of T but e has two
vertices v1 and v2. If v1 and v2 both carry an odd number of flags, then set
A = E(T ) − {e} and B = ∅. If v1 and v2 both carry an even number of flags,
then set A = E(T ) − {e} and B = {e}. If one of the vertices carries an odd
number of flags and the other an even one, then set A = E(T ) and B = ∅.
Then, with these choices of A and B, the corresponding monomial in (5.31) is
always non zero. �

Remark. Since all the coefficients of the monomials of HUG are positive as a
consequence of the reduction relation, this shows that HUG(Ω, t) = 0 is pos-
sible for te > 0 and Ωe > 0 if and only if G contains an isolated vertex with
an even number of flags. Thus, detA > 0 in the Gaussian integration (4.37) if
there is no isolated vertex of even degree.

For trees, it is possible to obtain a formula that collects the contribution
of various subsets A and B.

Proposition 5.6. For a tree T with flags, the first hyperbolic polynomial reads

HUT (Ω, t) =
∑

A⊂E(T )

∑
B⊂E(T )−A

(B,V (T/A)) odd

×
⎧⎨
⎩2|E(T )|−|A|+1

∏
e∈A

Ωe(1 + t2e)
∏

e′∈B−A

Ω2
e′te′

∏
e′′∈E(T )−(A∪B)

te′′

⎫⎬
⎭ , (5.40)

with T/A the graph resulting from the contraction of the edges in A and a graph
is said to be odd if all its vertices have an odd number of attached half-lines,
flags included.

Proof. If e(T ) = 0, then T = Vn is an isolated vertex and A = B = ∅, so
that (B, V (T/A)) = Vn and we recover (5.2). If e(T ) = 1, then T = Bm,n is a
bridge with flags and (5.40) reproduces (5.25). Let us now prove the result by
induction on e(T ), singling out an edge e and using the reduction relation

HUT = Ωe HUT e−e + Ωet
2
e HUT e∨e + te HUT−e + teΩ2

e HUT∨e. (5.41)

The graphs T1 = T e − e and T2 = T e ∨ e are trees whereas T − e = T3 ∪ T4

and T ∨ e = T5 ∪ T6 are disjoint unions of two trees. All the trees have less
than e(T ) edges so that we may apply the induction assumption, with a sum
over Ai, Bi ⊂ E(Ti).

For the first two terms, we gather terms for which A1=A2 and define
A = A1 ∪ {e}. Then, with B = B1 or B = B2, the graph (B, V (T/A)) is odd
if only if (B1, V (T1/A1)) or (B2, V (T2/A2)) are and the powers of 2 agree,
2E(T )−|A|+1 = 2E(T e−e)−|A1|+1 = 2E(T e∨e)−|A2|+1. This reproduces the terms
in (5.40) such that e ∈ A.
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In the case of T − e, HUT−e factorizes as two independent summations
over (A3, B3) and (A4, B4) and we set A = A3 ∪ A4 and B = B3 ∪ B4. The
graph (B, V (T/A)) is odd if only if (B1, V (T1/A1)) and (B2, V (T2/A2)) are
and the powers of 2 agree, 2E(T )−|A|+1 = 2E(T1)−|A1|+12E(T2)−|A3|+1. This
reproduces in (5.40) the terms such that e /∈ A and e /∈ B.

For T ∨ e, we proceed similarly with A = A5 ∪A6 and B = B5 ∪B6 ∪{e}
and recover the terms in (5.40) for which e /∈ A and e ∈ B. �

Let us illustrate the use of Proposition 5.6 on some simple examples.

Example 5.6 (n-star tree without flags). Consider the n-star tree n is made
of one n-valent vertex, attached to n univalent ones, all without flags. Since
all the edges not in A are necessarily in B (otherwise, the leaves yield vertices
without flag),

HU�n
(Ω, t) =

∑
A⊂E(�n)
|A|+n odd

⎧⎨
⎩2n−|A|+2

∏
e∈A

Ωe(1 + t2e)
∏

e′∈E(�n)−A

Ωe′te′

⎫⎬
⎭ .

(5.42)

Using partial duality, one can compute the first hyperbolic polynomial
for every graph made of loops attached to the vertices of a tree. Indeed, the
partial duality with respect to the loops transforms the diagram into another
tree.

Example 5.7 (Dumbbell). Let us consider the dumbbell graph (an edge labelled
1 attached to two vertices, each carrying a loop labelled 2 and 3). Let us per-
form the partial duality with respect to the loops 2 and 3 to obtain a linear
tree with two three edges and no flag, for which Proposition 5.6 immediately
yields

HU linear tree
3 edges no flag

(Ω, t) = 16t1t2Ω2
2t3Ω

2
3 + 4t1Ω2

1Ω2(1 + t22)Ω3(1 + t23)

+4t2Ω2
2Ω1(1 + t21)Ω3(1 + t23) + 4t3Ω2

3Ω1(1 + t21)Ω2(1 + t22). (5.43)

Using the partial duality HUdumbbell(Ω1,Ω2,Ω3, t1, t2, t3)=HU linear tree
3 edges no flag

(t1, t2,

Ω3, t1,Ω2,Ω3) we get

HUdumbbell(Ω, t) = 16t1Ω2t
2
2Ω3t

2
3 + 4t1Ω2

1t2(1 + Ω2
2)t3(1 + Ω2

3)
+4Ω2t

2
2Ω1(1 + t21)t3(1 + Ω2

3) + 4Ω3t
2
3Ω1(1 + t21)t2(1 + Ω2

2). (5.44)

Beyond trees, it is also possible to give a useful formula for cycles, i.e. a
connected graph in which every vertex has valence 2.
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Proposition 5.7. For a cycle C with m flags in one face and n in the other
one, the first hyperbolic polynomial reads

HUC(Ω, t) = 4δ(−1)m,(−1)n

⎛
⎝ ∏

e∈E(C)

Ωe

⎞
⎠ ∑

A⊂E(C)
|A|+n odd

{∏
e′∈A

t2e′

}

+
∑

A⊂E(C)
(A,V (C)) acyclic

∑
B⊂E(C/A)

(B,V (C/A)) odd

⎧⎨
⎩2|E(C)|−|A|∏

e∈A

Ωe(1 + t2e)
∏

e′∈B

Ω2
e′te′

×
∏

e′′∈E(C)−(A∪B)

te′′

⎫⎬
⎭ , (5.45)

where a graph is acyclic if it does not contain a (non-necessarily spanning)
subgraph isomorphic to a cycle.

Proof. We prove this result by induction on the number of edges of C, starting
with e(G) = 1. In this case, C is a loop with flags and (5.45) reduces to (5.27).
Let us consider a cycle with e(G) > 1 edges, m flags on one face and n flags
on the other one and apply the reduction relation to an edge e,

HUC = Ωe HUCe−e + Ωet
2
e HUCe∨e + te HUC−e + teΩ2

e HUC∨e. (5.46)

Ce − e (resp. Ce ∨ e) are cycles with e(C) − 1 edges and m flags on one face
and n flags on the other one (resp. m + 1 and n + 1), so that we apply the
induction assumption and express both of them using subsets A′ and B′ of
E(G) − {e} as in (5.45). Setting A = A′ ∪ {e} and B′ = B, these terms can
be collected and correspond to those terms in (5.45) such that e ∈ A. The
numerical factors agree and (B, V (C/A)) is odd if only if (B′, V ((Ce−e)/A′))
and (B′, V ((Ce−e)/A′)) are because the graphs (A, V (C)) , (A′, V (Ce−e))
and (A′, V (Ce∨e)) are acyclic.

The graphs C − e and C ∨ e are trees, so that we may apply Proposition
5.6 to expand HUC−e and HUC∨e using subsets A′ and B′ of E(C)−{e}. Set-
ting A = A′ and B = B′, terms in HUC−e correspond to terms in HUC such
that neither A nor B contains e. With A = A′ and B = B′∪{e}, the expansion
of HUC∨e reproduces those terms in the expansion of HUC for which e /∈ A
and e ∈ B. �

Example 5.8 (Triangle without flags). Consider a triangle (cycle with three
edges) and no flags. Applying Proposition 5.7, we get

HU triangle
without flag

(Ω, t) = 4Ω1Ω2Ω3(t
2
1 + t22 + t23 + t21t

2
2t

2
3) + 4Ω1(1 + t21)t2t3(Ω

2
2 + Ω2

3)

+ 4Ω2(1+t22)t1t3(Ω
2
1+Ω2

3)+4Ω3(1+t23)t1t2(Ω
2
1 + Ω2

2). (5.47)

As we perform the duality with respect to all three edges, we recover the planar
banana with three edges (see Example 5.4), with Ωe ↔ te for all edges.
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Example 5.9 (Triangle with flags). For a triangle with one flag on each vertex,
all in the same face, Proposition 5.7 immediately yields

HU triangle
with flags

(Ω, t) = 8t1t2t3(1 + Ω2
1Ω

2
2Ω

2
3) + 2t1(1 + Ω2

1)Ω2(1 + t22)Ω3(1 + t23)

+2t2(1 + Ω2
2)Ω1(1 + t21)Ω3(1 + t23)

+2t3(1 + Ω2
3)Ω1(1 + t21)Ω2(1 + t22). (5.48)

Note that the first term in (5.45) vanishes, since there are three flags in one
face and none in the other one.

5.3. The Second Hyperbolic Polynomial

Let us now evaluate the second hyperbolic polynomial HVG in terms of HUG,
which is itself an evaluation of the graph polynomial QG.

Theorem 5.8. The second hyperbolic polynomial can be expressed as

HVG =
∑

i

HUGi
x2

i +
1
2

∑
i�=j

[
HU(Gij)

eij−eij
− HU(Gij)

eij∨eij

]
xi · xj

+
1
2

∑
i�=j

[
HU(Ǧij)

eij−eij
− HU(Ǧij)

eij∨eij

]
xi · Jxj , (5.49)

where Gi is the graph obtained from G by removing the flag on the corner
i, Gij by joining the external corners i and j by an extra edge eij and Ǧij by
attaching an extra flag to Gij immediately after i in counterclockwise order
around the vertex i is attached.

Proof. Let us isolate two external corners i and j and write

HVG = aii x
2
i + ajj x

2
j + 2aij xi · xj + 2ıbij xi · Jxj + · · · , (5.50)

where the dots stand for terms that vanish when xi = xj = 0. To determine
aii, we set xk = 0 for k = i and integrate over xi,∫

dDxi AG

∣∣∣xk=0
k �=i

= AGi

∣∣∣xk=0
k �=i

. (5.51)

Comparing both sides with (4.25), we readily get aii = HUGi
.

Similarly, to compute aij , we insert an extra edge eij between the flags i
and j ∫

dDxidDxj KΩ̃eij
(xi, xj)AG

∣∣∣ xk=0
k �=i,k �=j

= AGij

∣∣∣ xk=0
k �=i,k �=j

. (5.52)

The integral is Gaußian over X =
(
xi

xj

)

∫
dDxidDxj KΩ̃eij

(xi, xj)AG

∣∣∣ xk=0
k �=i,k �=j

= N
∫

d2DX exp −1
2

tXAX, (5.53)
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with a normalization factor

N =

[
Ωeij

(1 − t2eij
)

2πθ teij

]D/2

×
[ ∏

e Ωe(1 − t2e)
2v(G)−f(G)(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

(5.54)

and

A =
1

θHUG

⎛
⎝HUGΩeij

(
teij

+ 1
teij

)
+ 2aii HUGΩeij

(
teij

− 1
teij

)
+ 2aij

HUGΩeij

(
teij

− 1
teij

)
+ 2aji HUGΩeij

(
teij

+ 1
teij

)
+ 2ajj

⎞
⎠

⊗ID +
1

θHUG

(
0 2bij

−2bij 0

)
⊗ ıJ. (5.55)

This determinant can be expressed as ξD/2, with

ξ =
[

2
θHUG

]2 [
(Ωeij

HUG)2 + aiiajj − a2
ij + b2ij

+Ωeij
HUG

(
teij

+
1
teij

)(
aii + ajj

2

)
− Ωeij

HUG

(
teij

− 1
teij

)
aij

]
.

(5.56)

We perform the Gaußian integration over X to obtain AGij

∣∣∣ xk=0
k �=i,k �=j

and iden-

tify HUGij

HUGij
= (Ωeij

)2teij
HUG +

aiiajj − a2
ij + b2ij

HUG
teij

+
Ωeij

2
[
(teij

)2 + 1
]
(aii + ajj) − Ωeij

[
(teij

)2 − 1
]
aij . (5.57)

Using the reduction relation, we identify the first term with (Ωeij
)2teij

HUGeij
∨ eij , the second with teij

HUGeij
− eij (this proves that HUG divides4

aiiajj −a2
ij + b2ij) and the sum of the last two terms with Ωeij

HU(Geij
)eij−eij

+
Ωeij

(teij
)2HU(Geij

)eij∨eij
. Thus, we have

aij =
1
2

[
HU(Ǧij)

eij−eij
− HU(Ǧij)

eij∨eij

]
. (5.58)

To compute bij , we use a similar method but introduce an extra flag on the
vertex i is attached to, immediately after i in counterclockwise order. Then,
we connect i and j with an extra edge eij to obtain Ǧij . In terms of graph
amplitudes, this can be expressed as∫

dDxidDxjdDy KΩ̃eij
(y, xj)V3(xi, y, 0)AG

∣∣∣ xk=0
k �=i,k �=j

= AǦij

∣∣∣ xk=0
k �=i,k �=j

. (5.59)

4 It is a simple case of the Dodgson condensation identities.
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As before, the integral over X =

⎛
⎝ xi

y
xj

⎞
⎠ is Gaußian,

∫
dDxidDxjdDy KΩ̃eij

(y, xj)V3(xi, y, 0)AG

∣∣∣ xk=0
k �=i,k �=j

= N
∫

d2DX exp−1
2

tXAX, (5.60)

with a normalization factor

N =

[
Ωeij

(1 − t2eij
)

2πθ teij

]D/2

×
[ ∏

e Ωe(1 − t2e)
2v(G)−f(G)(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

× 1
(πθ)D

(5.61)

and

A =
1

θHUG

⎛
⎜⎜⎝

2aii 0 2aij

0 HUGΩeij

(
teij

+ 1
teij

)
HUGΩeij

(
teij

− 1
teij

)
2aij HUGΩeij

(
teij

− 1
teij

)
2ajj + HUGΩeij

(
teij

+ 1
teij

)

⎞
⎟⎟⎠

⊗ID +
1

θHUG

⎛
⎝ 0 2HUG 2bij

−2HUG 0 0
−2bij 0 0

⎞
⎠⊗ ıJ (5.62)

Its determinant is detA = ξD/2 with

ξ =
8

θ3HUG
Ωeij

(
teij

− 1
teij

)
bij + ξ1Ωeij

(
teij

+
1
teij

)
+ ξ2Ω2

eij
+ ξ3, (5.63)

with ξ1, ξ2 and ξ3 independent of Ωeij
and teij

.

We perform the Gaußian integration over X to obtain AǦij

∣∣∣ xk=0
k �=i,k �=j

and

identify the terms in Ωeij

(
t2eij

− 1
)

to obtain

2bij = HU(Ǧij)
eij−eij

− HU(Ǧij)
eij∨eij

, (5.64)

which proves our expression for the antisymmetric part of HVG.
Let us note that up to a change of sign, we could have attached the extra

flag before i or on the vertex j is attached to. �

As a consequence, the second hyperbolic polynomial is also covariant
under partial duality.

Corollary 5.9. The second hyperbolic polynomial transforms under partial
duality as

HVGA(ΩA, tA, x) = HVG(Ω, t, x), (5.65)
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with { {ΩA}e = te, {tA}e = Ωe for e ∈ A,
{ΩA}e = Ωe, {tA}e = te for e /∈ A.

(5.66)

The variables x attached to the flags are left unchanged.

Proof. This follows immediately from the invariance of HUG and the fact that
partial duality commutes with the operations we performed on the flags. �

Let us illustrate the computation of HVG on some simple examples.

Example 5.10 (Bridge). Consider the graph with a single edge, two vertices,
each with one flag, labeled 1 and 2. Thus, G1 and G2 are graphs with one
edge, two vertices and a single flag, G12 is a banana with two edges and no
flag and Ǧ12 is a banana with a single flag. This immediately leads to

HVG = 2Ω(t2 + 1)(x2
1 + x2

2) + 4Ω(t2 − 1)x1x2. (5.67)

Since we also have HUG = 4t, the amplitude reads

AG(Ω, x1, x2) =
∫

dα
[
Ω(1 − t2)

2πθt

]D/2

× exp − Ω
2θ

{(
t+

1
t

)(
x2

1 + x2
2

)
+ 2
(
t− 1

t

)
x1x2

}
. (5.68)

To compare this amplitude with the corresponding one in the commutative
theory (see Proposition 4.3), recall that we are working with an oscillator of
frequency 2Ω

θ . Therefore, we have to substitute Ω → θΩ
2 ,

AG

(
θΩ
2
, x1, x2

)
=
∫

dα
[

Ω
2π

× (1 − t2)
2t

]D/2

× exp−Ω
4

{(
t+

1
t

)(
x2

1 + x2
2

)
+2
(
t− 1

t

)
x1x2

}
, (5.69)

which is nothing but the Mehler kernel of an oscillator of frequency Ω, as it
should since there is no integration on the external flags. Strictly speaking,
the commutative amplitude is recovered after the limit θ → 0, but the latter
is trivial since the θ-dependence drops from AG

(
θΩ
2 , t, x1, x2

)
.

Example 5.11 (Tadpole). Let us now perform the partial duality on the unique
edge of the bridge treated in the last example. We obtain Ge which is a loop
with a single vertex and one flag in each of its two faces. The corresponding
amplitude reads

AGe(Ω, t, x1, x2) =
∫

dα
[
(1 − t2)
(2πθ)2

]D/2

× exp − t

2θ

{(
Ω +

1
Ω

)(
x2

1 + x2
2

)
+ 2
(

Ω − 1
Ω

)
x1x2

}
.

(5.70)

Let us note that we exchanged Ω and t in the hyperbolic polynomials, but
not in the prefactor. It is also worthwhile to point out that we have traded
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the simple graph with two 2-valent vertices for a more complicated one with
one 4-valent vertex. While a direct evaluation of the former is straightforward,
it becomes more complicated for the latter, because of the structure of the
4-valent vertex.

To compare it with the commutative case, we substitute Ω → θΩ
2 and

take the limit θ → 0, so that

AG

(
θΩ
2
, x1, x2

)
=
∫

dα
[
(1 − t2)
(2πθ)2

]D/2

exp − tΩ
4

(x1 + x2)
2

× exp − t

4Ωθ
(x1 − x2)

2
. (5.71)

Then, using

lim
σ→0

1
(2πσ2)D/2

exp− (x1 − x2)2

2σ2
= δD(x1 − x2), (5.72)

we recover

lim
θ→0

AG

(
θΩ
2
, x1, x2

)
= δD(x1 − x2)

∫
dα
[

Ω
2π

× (1 − t2)
2t

]D/2

× exp − tΩ
4

(x1 + x2)
2
. (5.73)

This is indeed the commutative amplitude, since the 4-valent vertex reduces
in the limit θ → 0 to a product of Dirac distributions (see (4.12)).

Example 5.12 (Sunset). Consider the graph with two vertices related by three
edges labeled 1,2 and 3 and one flag on each vertex, both in the face bounded
by the edges 1 and 3. It is simpler to compute the hyperbolic polynomial of
its dual, which is a cycle with three edges and two faces, each broken by a
flag on the vertex not adjacent to the edge 2, All the graphs involved in the
expression of the hyperbolic polynomial are cycles or trees with flags so that
an immediate application of propositions 5.6 and 5.7 provides us with

HUcycle with 3 edges
2 broken faces

= 4Ω1Ω2Ω3

[
1 + t21t

2
2 + t21t

2
3 + t22t

2
3

]
+ 4Ω1t2t3(1 + t21)(Ω

2
2 + Ω2

3)

+4Ω2t1t3(1 + t22)(Ω
2
1 + Ω2

3) + 4Ω3t1t2(1 + t23)(Ω
2
1 + Ω2

2) (5.74)

and

HVcycle with 3 edges
2 broken faces

(x1, x2)

=
[
x2

1 + x2
2

] [
8t1t2t3(Ω2

2 + Ω2
1Ω

2
3) + 2t1Ω2Ω3(1 + Ω2

1)(1 + t22)(1 + t23)

+2t2Ω1Ω3(1 + Ω2
2)(1 + t21)(1 + t23) + 2t3Ω1Ω2(1 + Ω2

3)(1 + t21)(1 + t22)
]

+x1 · x2

[
16t1t2t3(Ω2

1Ω
2
3 − 1) + 4t1(1 + t22)(1 + t23)Ω2Ω3(Ω2

1 − 1)

+4t2(1 + t21)(1 + t23)Ω1Ω3(Ω2
2 − 1) + 4t3(1 + t21)(1 + t22)Ω1Ω2(Ω2

3 − 1)
]

+x1 · Jx2

[
4(1 + t21)t2t3Ω1(Ω2

3 − Ω2
2)

+4(1 + t22)t1t3Ω2(Ω2
3 − Ω2

1) + 4(1 + t23)t1t2Ω3(Ω2
2 − Ω2

1)
]
. (5.75)
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We readily obtain the hyperbolic polynomials of the sunset by interchanging
Ωe and te for all edges,

HUsunset = 4t1t2t3
[
1 + Ω2

1Ω
2
2 + Ω2

1Ω
2
3 + Ω2

2Ω
2
3

]
+ 4t1(t22 + t23)Ω2Ω3(1 + Ω2

1)

+4t2(t21 + t23)Ω1Ω3(1 + Ω2
2) + 4t3(t21 + t22)Ω1Ω2(1 + Ω2

3) (5.76)

and

HVsunset(x1, x2)
=
[
x2

1 + x2
2

] [
8Ω1Ω2Ω3(t22 + t21t

2
3) + 2Ω1t2t3(1 + t21)(1 + Ω2

2)(1 + Ω2
3)

+2Ω2t1t3(1 + t22)(1 + Ω2
1)(1 + Ω2

3) + 2Ω3t1t2(1 + t23)(1 + Ω2
1)(1 + Ω2

2)
]

+x1 · x2

[
16Ω1Ω2Ω3(t21t

2
3 − 1) + 4Ω1(1 + Ω2

2)(1 + Ω2
3)t2t3(t

2
1 − 1)

+4Ω2(1 + Ω2
1)(1 + Ω2

3)t1t3(t
2
2 − 1) + 4Ω3(1 + Ω2

1)(1 + Ω2
2)t1t2(t

2
3 − 1)

]
+x1 · Jx2

[
4(1 + Ω2

1)Ω2Ω3t1(t23 − t22)

+4(1 + Ω2
2)Ω1Ω3t2(t23 − t21) + 4(1 + Ω2

3)Ω1Ω2t3(t22 − t21)
]
. (5.77)

In the commutative limit, we keep only the lowest order terms in Ω in the
hyperbolic polynomials and we recover the product of three independent
Mehler kernels for the amplitude. Moreover, if we denote by a (resp. b, c)
the coefficient of the term in (x2

1 + x2
2) (resp. half of the coefficient of x1x2,

half of the coefficient of x1Jx2), then the Dodgson condensation identity
a2 − b2 + c2 = HUsunsetHU3-banana is obeyed.

Example 5.13 (3-star tree with flags). We compute the hyperbolic polynomials
for the 3-star tree is made of one trivalent vertex, attached to three univalent
ones, each with one flag. The first hyperbolic polynomial results from a direct
application of Proposition 5.6

HU3-star tree
with flags

= 2Ω1Ω2Ω3(1 + t21)(1 + t22)(1 + t23)

+8Ω1(1 + t21)t2t3 + 8Ω2(1 + t22)t1t3 + 8Ω3(1 + t23)t1t2. (5.78)

All the graphs involved in the computation of the second hyperbolic polyno-
mial reduce to trees and cycles after a single use of the reduction relation, so
that propositions 5.6 and 5.7 yield

HV3-star tree
with flags

(x1, x2, x3) = x2
3

[
8t1t2t3Ω2

3 + 4Ω2
1t1(1 + t22)Ω2(1 + t23)Ω3

+4Ω2
2t2(1 + t21)Ω1(1 + t23)Ω3 + 4Ω2

3t3(1 + t21)Ω1(1 + t22)Ω2

]
+x1 · x2

[
8(1 − t21)(t

2
2 − 1)Ω1Ω2t3

]
+ 2 cyclic permutations

+x1 · Jx2

[
4(1 − t21)(1 − t22)Ω1Ω2Ω3

]
+ 2 cyclic permutations. (5.79)

6. Various Limiting Cases

6.1. The Critical Model Ω = 1
When we set Ωe = 1 for all edges, the hyperbolic polynomial HUG can be
factorized over the faces of G (i.e. the connected components of the bound-
ary). Before we give a combinatorial proof of a general factorization theorem
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at Ω = 1, let us present a heuristic derivation of this result for ribbon graphs
without flags, based on the matrix basis.

The Moyal algebra of Schwartz functions on R
D is isomorphic to an alge-

bra of infinite dimensional matrices Mpq whose indices p, q are elements of
N

D/2 and whose entries decrease faster than any polynomials in p, q. Using
this isomorphism φ → M , the interaction (4.9) can be written as

Sint[M ] = (2πθ)
∑
n≥1

gn

n
Tr [Mn], (6.1)

which is the standard interaction familiar from matrix models. The associated
vertex reads

Vn(pi, q1, p2, q2, . . . pn, qn) = (2πθ) δq1,p2δq2,p3 . . . δqn−1,pn
δqn,p1 . (6.2)

The quadratic term reads

S0[M ] =
1
2

∑
p,q,r,s

MpqΔpq,rsMrs. (6.3)

In the critical case Ω = 1,

Δpq,rs = (2πθ)δpsδqr
4(|p| + |q| + 1)

θ
, (6.4)

where |p| = p1 + · · · +D/2 for any multi-index p = (p1, . . . , pD/2) ∈ N
D/2.

Because of the Kronecker symbols δ, the multi-indices are identical
around each faces (as in ordinary matrix models), so that the amplitude fac-
torizes over the faces for a graph without flags,

AG =
∫ ∏

e

dαe

× 1
(2πθ)e(G)−v(G)

∏
σ faces of G

∏
e edges

bounding σ

⎧⎨
⎩
∑

ie∈ND/2

exp −4αe

θ

(
|pe| +

1
2

)⎫⎬
⎭ .

(6.5)

Summing up the geometric series and expressing the amplitudes in terms of
te = tanh 2αe

θ , we obtain

AG =
∫ ∏

e

dαe

×

⎡
⎢⎣ 1

(2πθ)e(G)−v(G)
×
∏
e

1 − te
1 + te

∏
σ faces of G

⎛
⎜⎝1 −

∏
e edges

bounding σ

1 − te
1 + te

⎞
⎟⎠
−1⎤
⎥⎦

D/2

.

(6.6)
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Then, identifying a face σ of G with a vertex v∗ of G∗,∏
e edges

bounding σ

(1 + te) −
∏

e edges
bounding σ

(1 − te) = 2
∑

A⊂Ev∗ ,
|A| odd

∏
e∈A

te, (6.7)

with Ev∗ as the set of half-edges of G∗ incident to v∗. Comparing with the
general expression of the amplitude (4.25), this suggests that

HUG(1, t) = 2v(G∗)
∏

v∗∈V (G∗)

⎧⎪⎪⎨
⎪⎪⎩
∑

A⊂Ev∗ ,
|A| odd

∏
e∈A

te

⎫⎪⎪⎬
⎪⎪⎭
. (6.8)

Example 6.1 (Dumbbell). Let us consider the dumbbell graph (an edge labelled
1 attached to vertices, each carrying a loop labelled 2 and 3). The graph has
three faces and we get

HUdumbbell(1, t) = 8t2t3
[
2t1(1 + t2t3) + (1 + t21)(t2 + t3)

]
. (6.9)

Let us now prove the factorization of HU at Ω = 1 in a completely com-
binatorial way. To this aim, we will use the bijections introduced in Sect. 2.
Moreover, the polynomial HU can be extended to ribbon graphs with flags and
we show that the factorization (6.8) holds in this case too.

Statement of the problem. Via the x-space representation, we computed the
parametric representation of the Grosse–Wulkenhaar model, see Sect. 4. This
representation involves a new ribbon graph invariant Q, see Eq. (3.1). In fact,
this is only a special evaluation HU of Q which is used in the Feynman ampli-
tudes:

HU(G; t,Ω) = Q(G; 1, t,Ω, t2Ω, tΩ2, r) (6.10)

with r2n = 0 and r2n+1 = 2. Then, with a slight abuse of notation, and using
Definition 2.3, the polynomial HU can be written:

HU(G; t,Ω) =
∑

A⊂E(G)

tA ΩAc ∑
B∈Odd(GAc )

(
tB∩Ac

)2 (
ΩB∩A

)2
. (6.11)

Note that if G is a ribbon graph with flags, HU is also well-defined.
On another side, we computed the parametric representation of the

critical (Ω = 1) Grosse–Wulkenhaar model via the matrix base. It involves
the following polynomial, see (6.8) and Definition 2.5:

U(G; t):=
∑

H∈ ˇOdd(G�)

tH . (6.12)

Uniqueness of the parametric representation implies

HU(G; t,1) = U(G; t). (6.13)

Our task is now to give a bijective proof of (6.13). To this aim, given a ribbon
graph G with flags, we are going to present a bijection χG between the colored
odd cutting subgraphs of G� and the colored odd subgraphs of all the partial
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duals of G. Finally, the monomial in HU corresponding to a subgraph g will
be proven to be equal to the monomial of χG(g) in U .

A bijection between colored odd subgraphs.

Lemma 6.1. Let G be an orientable ribbon graph with flags. For any total
order < on the set E(G) of edges of G, there is a bijection χG between
P :=

⋃
S⊂E(G) Odd(GS) and ˇOdd(G�).

Before entering into the proof of Lemma 6.1, let us first give a preliminary
definition:

Definition 6.1 (Restrictions). Let G be a ribbon graph with flags. For any
E′ ⊂ E(G), the restriction of the map χG to Odd(GE′

) is denoted by χG,E′ :
Odd(GE′

) → ˇOdd(G�).

Proof. We first explain how the map χG is defined. Let G be a colored ribbon
graph with flags. Let g ∈ ⋃S⊂E(G) Odd(GS) be a colored odd subgraph of a
partial dual of G, say GE′

for E′ ⊂ E(G). The subgraph ǧ:=χG(g) ∈ ˇOdd(G�)
has edges in E(g) ∩ E′ and flags in E′c. Here is how it is constructed from g.

Each of the maps χG,E′ is defined as the composition of |E′c| maps that
we describe now. In Sect. 2.4, we introduced bijections

χ
{e}
G : ˇOdd(G) � ˇOdd(F {e}). (6.14)

We saw that given any flag-set F ′ of G, these maps restrict to bijections

χ
{e}
G : ˇOdd(G) � F ′ � ˇOdd(G) � F ′e. (6.15)

Given any order on E(G), we can write E′c=:
{
e1, . . . , e|E′c|

}
. Then, we define

χG,E′ :=χ{e|E′c|}
G

E(G)\{e|E′c|} ◦ · · · ◦ χ{e2}
G{e1} ◦ χ{e1}

G . (6.16)

This map is well defined and is a bijection from Odd(GE′
) to ˇOdd(G�) � E′c,

as shown by the diagram. This proves Lemma 6.1. �
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Factorization of HU. Let us define the monomials of HU (for Ω ≡ 1) and U by

HU(G; t,1) =:
∑
g∈P

MHU(G; g), (6.17)

U(G; t) =:
∑

h∈ ˇOdd(G�)

MU (G�;h). (6.18)

Let g ∈ Odd(GAc

), χG(g) ∈ ˇOdd(G�) � A. Moreover, E(χG(g)) = E(g) ∩ Ac.
Thus, MU (G�;χG(g)) = tA(tE(g)∩Ac

)2 = MHU(G; g). This implies

HU(G; t,1) =
∑
g∈P

MHU(G; g) (6.19)

=
∑
g∈P

MU (G�;χG(g)) =
∑

g′∈ ˇOdd(G�)

MU (G�; g′) (6.20)

= U(G�; t). (6.21)

Example 6.2 (Triangle with flags). Consider the triangle with one flag on each
vertex, all in the same face. In this case, one face has an even number of flags
while the other has an odd number, which yields

HUtriangle
3 flags

(1, t) = 4 [t1 + t2 + t3 + t1t2t3] [1 + t1t2 + t1t3 + t2t3] , (6.22)

in accordance with (5.48).

6.2. An Algorithm for Computing HUG(Ω, t) Based on the Critical Model

The previous factorization over faces of G provides us with a useful algorithm
to compute HUG(Ω, t), for any ribbon graph with flags. HUG(1, t) has indeed
the same monomials in t as HUG(Ω, t): all its coefficients are positive and
no cancellation is possible. We only have to write each of the coefficient of
each monomial in t as a polynomial in Ω. To proceed, we first determine the
monomials in HUG(1, t) by expanding

HUG(1, t) = 2v(G∗)
∏

v∗∈V (G∗)

⎧⎪⎪⎨
⎪⎪⎩
∑

A⊂Ev∗ ,
|A| odd

∏
e∈A

te

⎫⎪⎪⎬
⎪⎪⎭
. (6.23)

Then, for each monomial (discarding the prefactor)
• perform the partial duality with respect to the set A of edges with an even

power of te and multiply the monomial by
∏

e Ωe,
• cut in GA the edges with a factor t2e (edges in A∩B) and delete those with

t0e (edges in A ∩Bc),
• sum over all possibilities of cutting the edges not in A, with a factor Ω2

e,
or deleting, with a factor 1,

• multiply by 2v(GA).
At the end, it is useful to check the result by evaluating it at Ω = 1. The interest
of this algorithm is that we are performing the operations only on the subsets
A and B that are admissible, in contradistinction with the general expansion
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formula (5.31), where the admissibility can be tested only after having per-
formed the partial duality and the cuts. Therefore, we avoid non-admissible
sets right from the beginning.

Example 6.3 (Non-planar 3-banana). In the case of the non-planar banana,
the critical model yields

HUnon planar
3-banana

(1, t)

= 2
[
8t1t2t3 + 2t1(1 + t22)(1 + t23) + 2t2(1 + t21)(1+t23)+2t3(1+t21)(1 + t23)

]
.

(6.24)

Applying the algorithm, we deduce

HUnon planar
3-banana

(Ω, t) = 4
[
t1t2t3

[
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
1Ω

2
2Ω

2
3

]
+t1Ω2Ω3

[
t22 + t23 + Ω2

1(t
2
2 + t23)

]
+ t2Ω1Ω3

[
t21 + t23 + Ω2

2(t
2
1 + t23)

]
+t3Ω1Ω2

[
t21 + t22 + Ω2

3(t
2
1 + t22)

]]
. (6.25)

6.3. The Non-Commutative Heat Kernel Limit Ω → 0
In this section, we study the amplitude (4.22) and the first hyperbolic polyno-
mial HUG(Ω, t) in the limit of vanishing oscillator frequency. In order to avoid
a lengthy discussion of the second hyperbolic polynomial, we restrict ourselves
to graphs without flags. The general case can be treated along the same lines.
Without further loss of generality, we also assume the graph to be connected.

In the limit Ω → 0, the Mehler kernel reduces to the heat kernel,

lim
Ω̃→0

KΩ̃(x, y) = K0(x, y) =
1

(4π)D/2

∞∫
1/Λ2

dα
αD/2

exp − (x− y)2

4α
. (6.26)

Notice that K0(x, y) only depends on x−y, so that it is invariant under trans-
lations, K0(x + a, y + a) = K0(x, y). Because the heat kernel and the vertex
are both invariant under translations, the integrand in (4.22) only depends on
2e(G)−1 variables for a connected graph without flags. Therefore, the integral
over the variables attached to the half-lines is trivially divergent and the limit
Ω → 0 of the amplitude is not defined.

In order to cure this problem, graph amplitudes with heat kernel prop-
agators are usually defined by an integration over all variables associated to
the half-lines, save one.

Definition 6.2. Let G be a connected ribbon graph without flags and let us
attach a variable yi ∈ R

D to each half-edge of G, with the convention that
yi0 = 0 for a fixed half-edge i0. The (generalized) amplitude of a ribbon graph
in the heat kernel theory is defined as

Aheat kernel
G

=
∫ ∏

i�=i0

dDyi

∏
e∈E(G)

K0(yie,+ , yie,−)
∏

v∈V (G)

Vdeg(v)(yiv,1 , . . . , yiv. deg(v)),

(6.27)
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(a)

(b)

Figure 14. From G to Ĝi0

with yie,+ , yie,− the variables attached to the ends of e and yiv,1 , . . . , yiv. deg(v)

the variables attached in cyclic order around vertex v.

After the removal of one of these integration variables, the limit Ω → 0
is well defined and related to the first Symanzik polynomial UG of a non-
commutative field theory, which is itself an evaluation of the Bollobàs–Riodan
polynomial. In order to see how this results from the limit Ω → of an amplitude
with Mehler kernel, we first define a new graph whose amplitude is obtained
by integrating over all half-lines but i0.

Proposition 6.2. Let G be a connect ribbon graph without flags and i0 one of
its half-lines. We define Ĝi0 as the graph constructed by replacing the half-line
i0 by a flag on the vertex it is attached to in G and inserting a bivalent vertex
with one flag on its other end, see Fig. 14. Then, the amplitude of Ĝi0 with
variables x = 0 for the two extra flags is

AĜi0
(Ω, 0)

=
∫ ∏

i�=i0

dDyi

∏
e∈E(G)

KΩe
(yie,+ , yie,−)

∏
v∈V (G)

Vdeg(v)(yiv,1 , . . . , yiv. deg(v)),

(6.28)

with the convention yi0 = 0.

Proof. The amplitudes AĜi0
(Ω, 0) and AG only differ by the vertex and the

edge involving the half-line i0. Since the two flags of Ĝi0 carry x = 0, the
relevant variable in the interaction and in the propagator is set to 0, which
reproduces (6.28). Then, the heat kernel limit follows immediately from iso-
lating

∏
e Ωe in (4.25). �

Remark. If Ĝe0 is the graph obtained by encircling i0 by an extra loop e0, then
Ĝi0 = Ĝe0

e0
∨ e0.

Then, the heat-kernel limit can be taken as follows:
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Theorem 6.3. For a connected ribbon graph without flag,

Aheat kernel
G =

∫ ∏
e

dαe

[
1

(4π)e(G)−v(G)+1UG(α, θ)

]D
2

, (6.29)

with

UG(α, θ) =
∑

A⊂E(G)
(A,V (G)) quasi-tree

(
θ

2

)|A|−|V (G)|+1
{∏

e/∈A

αe

}
, (6.30)

where a quasi-tree is a ribbon graph whose boundary is connected.5

Proof. Using Theorem 4.1, we can express AĜi0
(Ω, 0) as

AĜi0
(Ω, 0) =

∫ ∏
edαe

⎡
⎣ 2f(Ĝi0 )

∏
e Ωe(1 − t2e)

(2πθ)e(Ĝi0 )+f(Ĝi0 )−v(Ĝi0 )HUĜi0
(Ω, t)

,

⎤
⎦

D/2

(6.31)

since the variables attached to the flags vanish. Then, using Proposition 6.2,
we take the Mehler kernel limit Ω → 0 and get

lim
Ω→0

AĜi0
(Ω, 0) = Aheat kernel

G =
∫ ∏

e

dαe

[
1

(4π)e(G)−v(G)+1UG(α, θ)

]D
2

,

(6.32)

with

UG(α, θ) =
(
θ

2

)e(G)−v(G)+1

lim
Ω→0

HUĜi0
(Ω, t)

4
∏

e Ωe
(6.33)

and te = tanh 2Ωeαe

θ . To express this limit in terms of quasi-trees, recall that
Theorem 5.3 shows that

HUĜi0
(Ω, t)∏

e Ωe

=
∑

A,B⊂E(Ĝi0 )
admissible

{
2V (ĜA

i0
)

( ∏
e∈Ac∩Bc

te
Ωe

)( ∏
e∈Ac∩B

teΩe

)( ∏
e∈A∩B

t2e

)}
.

(6.34)

In the limit Ω → 0 with te = tanh 2Ωeαe

θ , only those terms with B = ∅ do not
vanish. Accordingly,

lim
Ω→0

HUĜi0
(Ω, t)∏

e Ωe
=

∑
A⊂E(G)

(A,∅)admissible

{
2V (ĜA

i0
)

(∏
e∈Ac

αe

θ

)}
. (6.35)

5 A connected ribbon graph with a single face, in the quantum field theory terminology.
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Next, notice that (A, ∅) is admissible if and only if the boundary of (A, V (Ĝi0))
has two connected components, each carrying one of the flags. To conclude,
we need the following lemma: �

Lemma 6.4. The natural bijection between the edges of G and of Ĝi0 induces
a bijection

(A, V (G)) �→
(
A, V (Ĝi0)

)
, (6.36)

between spanning quasi-trees of G and spanning subgraphs of Ĝi0 whose
boundary has two components, each carrying one flag.

Proof. In Ĝi0 , let us call v the additional vertex, as in Fig. 14b. The set QG

of spanning quasi-trees in G is the union of two disjoint subsets, respectively,
QG,e and Qe

G, who either contain or do not contain e. Let Q ∈ Qe
G. By defi-

nition, e /∈ E(Q). In Ĝi0 , v being connected to the rest of the graph only be
e, the subgraph FE(Q) ⊂ Ĝi0 has obviously two boundaries: the boundary of
v and its flag j0, and the boundary of its other component, which is a quasi-
tree. On the contrary, let F ⊂ Ĝi0 be a subgraph with two boundaries, each
of which bearing a flag and such that e /∈ E(F ). Then, one boundary of F
is the boundary of v and its flag. The rest of the graph F has thus only one
boundary and is therefore a quasi-tree: F ⊂ G is a quasi-tree.

Let us now consider the case of subgraphs, which do contain e as an edge.
First of all, notice that the subgraphs of Ĝi0 which contain e are in one-to-
one correspondence with the subgraphs of G ∨ e, and that this map is also a
bijection on the subgraphs with two boundaries, each of which bears a flag.
So we are going to prove that QG,e is in one-to-one correspondence with the
spanning subgraphs of G ∨ e with two boundaries, one flag per boundary.

For any ribbon graph with flags G and any e ∈ E(G), (G ∨ e)� =
(G�){e} ∨ e. Let Q ∈ QG,e. Its dual Q� is a one-vertex ribbon graph. The
edge e is a loop in Q� which implies that (Q�){e} ∨ e = (Q ∨ e)� has two
vertices, each of which bears a flag. It is exactly the dual of a subgraph of
G ∨ e with two boundaries and one flag per boundary.

On the contrary, let F ⊂ G ∨ e be a subgraph with two faces, one flag
per face. Its dual has two vertices and one flag per vertex. To map it to a
subgraph of G�, one needs to uncut e that is glue the two flags together and
perform a partial duality wrt e. This new edge links the two vertices of F so
that its partial dual has only one vertex. Its (natural) dual has therefore one
boundary and is then a spanning quasi-tree of G. �

Therefore, we always have 2v(ĜA
i0

) = 4 and

lim
Ω→0

HUĜi0
(Ω, t)

4
∏

e Ωe
=

∑
A⊂E(G)

(A,V (G)) quasi−tree

{∏
e/∈A

2αe

θ

}
. (6.37)

Finally, (6.30) follows from the factorization of powers of θ
2 .
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Example 6.4 (Planar banana and non planar banana). In the case of the planar
and non-planar bananas (see Examples 5.4 and 6.3) bananas, let us remove
one of the half lines of edge 1. Then,

HU
p̂lanar

3-banana

(Ω, t) = 4Ω1(1 + t21)
[
Ω2Ω3(t22 + t23) + t2t3(1 + Ω2

2Ω
2
3)
]

+4t1
[
t2(1 + t3)2 + t3(1 + t22)

]
(6.38)

and

HU ̂non planar3-banana
(Ω, t) = 4Ω1(1 + t21)

[
Ω2Ω3(1 + t22t

2
3) + t2t3(1 + Ω2

2Ω
2
3)
]

+4t1
[
t2(1 + t3)2 + t3(1 + t22)

]
, (6.39)

from which we deduce

U planar
3-banana

(α, θ) = α1α2 + α1α3 + α2α3 (6.40)

and

Unon planar
3-banana

(α, θ) = α1α2 + α1α3 + α2α3 +
(
θ

2

)2

. (6.41)

All the terms in (6.40) and the first three terms in (6.41) correspond to the
spanning trees. The last term in (6.41) is the quasi-tree made of all edges.

In fact, UG is an evaluation of the multivariate Bollobás–Riordan poly-
nomial Z(a, q, c)

UG(α, θ) =
(
θ

2

)e(G)−v(G)+1

lim
c→0

c−1ZG(
2α
θ
, 1, c). (6.42)

Equivalently, it can be expressed in terms of the polynomial Q as

UG(α, θ) =
(
θ

2

)e(G)−v(G)+1

QG(1,
2α
θ
, 1, 0, 0, r), (6.43)

with r1 = 1 and rn = 0 for n = 1 This suggests that UG has a natural
transformation under partial duality.

Corollary 6.5. For any A ⊂ E(G), the first Symanzik polynomial transforms
under partial duality as

UGA(α, θ) =
(
θ

2

)v(G)−v(GA)
(∏

e∈A

2αe

θ

)
UG(αA, θ), (6.44)

with {αA}e = θ2

4αe
if e ∈ A and [αA]e = αe if e /∈ A.

Proof. First write (6.43) as
(

2
θ

)e(GA)−v(GA)+1

UGA(α, θ) = QGA(1, x, y, 0, 0, r), (6.45)

with xe = 2αe

θ and ye = 1. Then, partial duality for Q reads

QGA(1, x, y, 0, 0, r) = QG(1, x′, y′, 0, 0, r) (6.46)
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with x′e = 1 and y′e = 2αe

θ for e ∈ A and x′e = 2αe

θ and y′e = 1 for e /∈ A. Next,
we expand

QG(1, x′, y′, 0, 0, r) =
∑

A′⊂E(G)
(A′,V (G)) quasi-tree

{( ∏
e∈A′c∩Ac

2αe

θ

)( ∏
e∈A′∩A

2αe

θ

)}

=
∑

A′⊂E(G)
(A′,V (G)) quasi-tree

{( ∏
e∈A′c∩Ac

2αe

θ

)( ∏
e∈A′c∩A

2αe

θ

θ

2αe

)

×
( ∏

e∈A′∩Ac

2αe

θ

θ

2αe

)( ∏
e∈A′∩A

2αe

θ

)}
=

(∏
e∈A

2αe

θ

)

×
∑

A′⊂E(G)
(A′,V (G)) quasi-tree

{( ∏
e∈A′c∩Ac

2αe

θ

)( ∏
e∈A′c∩A

θ

2αe

)}

= QG(1, x′′, y′′, 0, 0, r), (6.47)

with x′′e = θ
2αe

for e ∈ A and x′′e = 2αe

θ for e /∈ A and y′′e = 1 for all e. Reverting
to the Symanzik polynomials UG and UGA , we get the announced result. �

Example 6.5 (Non-planar double tadpole in the heat kernel theory). The partial
dual of a cycle of length 2 with respect to one of its edge is the non-planar
double tadpole (see Example 5.5). For a cycle of length two, we have a sum
over 2 spanning trees

Ucycle with
2 edges

(α1, α2, θ) = α1 + α2, (6.48)

from which we deduce, using partial duality,

U non-planar
double tadpole

(α1, α2, θ) = α1α2 +
(
θ

2

)2

. (6.49)

Finally, in the commutative limit θ → 0 we recover the well-known expres-
sion of the first Symanzik polynomial as a sum over spanning trees.

Corollary 6.6.

lim
θ→0

UG(α, θ) =
∑

A⊂E(G)
(A,V (G)) tree

{∏
e/∈A

αe

}
. (6.50)

Proof. In this limit, only the subsets A such that |A| − |V | + 1 = 0 contribute
to (6.30). This condition characterizes spanning trees. �

6.4. The Commutative Mehler Kernel Limit θ → 0
In this section, we derive a combinatorial formula for the first hyperbolic poly-
nomial in the commutative limit θ → 0 in terms of trees and unicyclic graphs.
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First of all, to recover a commutative quantum field theory with the Meh-
ler kernel corresponding to an harmonic oscillator of frequency Ω instead of
Ω̃ = 2Ω

θ we have to substitute Ω → θΩ
2 in (4.25).

In order to simplify the analysis, we restrict ourselves to graphs without
flags.6 For such a graph, the commutative limit of the amplitude reads (see
Proposition 4.3)

lim
θ→0

AG( θΩ
2 ) = lim

θ→0

∫ ∏
e

dαe

[ ∏
e Ωe(1 − t2e)

(4π)e(G)(2πθ)−v(G)HUG

(
θΩ
2 , t
)
]D

2

= Acommutative
G (Ω). (6.51)

In the limit θ → 0, the only terms that survive in θ−v(G)HUG(Ωθ
2 , t) are associ-

ated with subgraphs of G having at most one cycle per connected component.

Proposition 6.7. For a ribbon graph G without flag,

lim
θ→0

θ−v(G)HUG

(
θΩ
2
, t

)

=
∑

A′⊂E(G) s.t. (A′,V (G))
commutative admissible

⎧⎪⎪⎨
⎪⎪⎩

∏
e∈E(G)−A′

te
∏

K connected components
of (A′,V (G))

WK(Ω, t)

⎫⎪⎪⎬
⎪⎪⎭
,

(6.52)

where a spanning subgraph is commutative admissible if its connected com-
ponents are trees (with a least one edge) and unicyclic graphs (i.e. connected
graphs with a single cycle). If K is a tree T , its weight is

WT (Ω, t) = 21−|T |∑
t∈T

⎧⎨
⎩ Ω2

ete
∏

e′∈T−{e}
Ωe′(1 + t2e′)

⎫⎬
⎭ (6.53)

and if K is a unicylic graph U with cycle edges C, its weight is

WU (Ω, t) = 22−|U | ∑
C′⊂C
|C′| odd

{∏
e∈C′

Ωet
2
e

∏
e′∈U−C

Ωe′(1 + t2e′)

}
. (6.54)

Proof. First recall that

HUG(Ω, t)

=
∑

A,B⊂E(G)
admissible

2V (GA)

( ∏
e∈Ac∩Bc

te

)( ∏
e∈Ac∩B

teΩ
2
e

)( ∏
e∈A∩Bc

Ωe

)( ∏
e∈A∩B

Ωet
2
e

)
,

(6.55)

with (A,B) admissible if each vertex of the graph obtained from GA by cutting
the edges in B and removing those in Bc has an even number of flags. After

6 Otherwise, there are extra powers of θ on the external corners that arise from Dirac
distribution on the flags, as we have seen on the examples in Sect. 5.13.
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the rescaling Ω → Ωθ
2 , it follows from the θ → 0 limit of (4.25) (for a graph

without flags) that only those graphs for which

|A| + 2|Ac ∩B| ≤ v(G) (6.56)

contribute to the commutative limit (6.52). Let A′ = A ∪ (Ac ∩ B) and let
{Kn} be the connected components of (A′, V (G)). We first show that each Kn

is either a unicyclic graph with no edge in B or a tree with one edge in B and
then compute its weight.

Let A′n denote the edge set of Kn, Vn its vertex set and Bn = A′n∩Ac∩B.
Thus (6.56) can be written as a sum over connected components∑

n

|A′n| − |Vn| + |Bn| ≤ 0. (6.57)

With (A,B) admissible, this implies that for each n

|A′n| − |Vn| + |Bn| = 0. (6.58)

Indeed, if this is not the case, then there is n0 such that |A′n0
|−|Vn0 |+|Bn0 | = 0.

Without loss of generality, we may assume that |A′n0
|− |Vn0 |+ |Bn0 | < 0, since

if it is strictly positive in one connected component, it has to be strictly neg-
ative in another one to obey (6.57). Then, |A′n0

| − |Vn0 | + 1 + |Bn0 | ≤ 0, but
since |A′n0

| − |Vn0 | + 1 (the dimension of the cycle space of Kn0) and |Bn0 | are
non negative, this implies that |A′n0

| − |Vn0 | + 1 = |Bn0 | = 0. Therefore, Kn0

is a tree and A′n ∩ B ⊂ A, which means that all the edges of Kn0 belong to
A and no edge in B ∩ Ac is incident to a vertex of Kn0 . In the partial dual
GA, Kn0 gives rise to a single vertex with loops and the cuts of the edges in B
always yields an even number of flags since there is no edge in B ∩Ac incident
to this vertex. This is in contradiction with the fact that (A,B) is admissible,
so that (6.58) holds.

Let us rewrite (6.58) as

|A′n| − |Vn| + 1 + |Bn| − 1 = 0. (6.59)

Because |A′n| − |Vn| + 1 ≥ 0, |Bn| ≥ 2 is impossible. With |Bn| = 1, we have
|A′n| − |Vn| + 1 = 0 so that Kn is a tree with a single edge in B. For |Bn| = 0,
we obtain |A′n| − |Vn| + 1 = 1, so that Kn is a unicyclic graph with no edge
in B.

To compute the weights, let us first note that E − A′ = Ac ∩ Bc, so
that the contributions of the connected components Kn factorize and each
e ∈ E −A′ yields a factor of te. If Kn0 is a tree, then the partial duality with
respect to A yields two vertices with loops attached joined by the edge in B.
Each loop contributes a factor of Ωe(1+t2e)

2 , the edge in B teΩ2

4 and there is an
additional factor of 4 since kn0 yields two vertices in GA. Summing terms that
only differ by the position of the edge in B on the tree, we obtain (6.53). If
Kn is a unicyclic graph, then in the partial dual it becomes two vertices with
loops, joined by the cycle edges. Each loop contributes a factor of Ωe(1+t2e)

2 and
we cut an odd number of cycle edges for (A,B) to be admissible. Finally, this
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yields two vertices in GA so that we have an additional factor of 4. This proves
(6.54). �

Example 6.6 (Dumbbell). For the dumbbell graph (see 5.7), the commutative
limit is

lim
θ→0

θ−2HUdumbbell

(
θΩ
2
, t

)
= 4t1Ω2t

2
2Ω3t

2
3 + 4t1Ω2

1t2t3

+4Ω2t
2
2Ω1(1 + t21)t3 + 4Ω3t

2
3Ω1(1 + t21)t2,

(6.60)

which corresponds to the covering by two disjoint cycles, one tree and the two
unicycles.

Example 6.7 (Planar banana and non-planar banana). For the planar and non-
planar bananas (see Examples 5.4 and 6.3) bananas, we have

lim
θ→0

θ−2 HU planar
3-banana

(
θΩ
2
, t

)
= lim

θ→0
θ−2 HUnon planar

3-banana

(
θΩ
2
, t

)

= t1t2t3
[
Ω2

1 + Ω2
2 + Ω2

3

]
+ t1Ω2Ω3

[
t22 + t23

]
+t2Ω1Ω3

[
t21 + t23

]
+ t3Ω1Ω2

[
t21 + t22

]
. (6.61)

The first term corresponds to the contribution of the three spanning trees
and the last one to the three cycles with two edges. As expected, there is no
difference between the two polynomial since the two graphs only differ by a
non-cyclic permutation of the half-lines at one of the vertices.

7. Conclusion and Outlooks

Motivated by the quest of an explicit combinatorial expression of the polyno-
mial appearing in the parametric expression of the Feynman graph amplitudes
of the Grosse–Wulkenhaar model, we have introduced a new topological poly-
nomial for ribbon graphs with flags. This polynomial is a natural extension of
the multivariate Bollobás–Riordan polynomial, with a reduction relation that
involves two additional operations and that preserves the invariance under
partial duality. This work raises the following questions:

From a purely mathematical point of view, the Bollobás–Riordan poly-
nomial is intimately tied with knot theory. This relation relies on its invariance
under partial duality so that it is natural to inquire whether our newly intro-
duced polynomial could also be related to knot invariants.

Moreover, graph theoretical techniques have proven instrumental in the
evaluation of some of the Feynman amplitude as multiple zêta functions [5,6].
This may also be the case for Grosse–Wulkenhaar model with special properties
expected to occur in the critical case Ω = 1. A first step towards a study of the
Grosse–Wulkenhaar amplitudes from the point of view of algebraic geometry
has already been taken in [2].

Finally, attempts at a quantum theory of gravity based on generalized
matrix models yield new graph polynomials, as pioneered in [11].
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Université Claude Bernard Lyon 1
43, boulevard du 11 novembre 1918
69622 Villeurbanne Cedex, France
e-mail: vignes@math.univ-lyon1.fr

Communicated by Raimar Wulkenhaar.

Received: January 28, 2010.

Accepted: December 16, 2010.

http://dx.doi.org/10.1016/j.disc.2009.04.026

	Topological Graph Polynomial and Quantum Field Theory Part II: Mehler Kernel Theories
	Abstract
	0. Introduction
	1. Ribbon Graphs
	1.1. Basics
	1.2. Combinatorial Maps
	1.3. Operations on Edges
	1.4. Natural Duality
	1.5. Partial Duality

	2. Bijections Between Classes of Subgraphs
	2.1. Subgraphs of Fixed Parity
	2.2. Colored Subgraphs
	2.3. Cutting Subgraphs
	2.4. Colored Cutting Subgraphs

	3. A New Topological Graph Polynomial
	3.1. Basic Properties
	3.2. Relationship with Other Polynomials
	3.3. Partial Duality of mathcal Q

	4. Feynman Amplitudes of the Grosse--Wulkenhaar Model
	4.1. The Action Functional
	4.2. Parametric Representation and the Hyperbolic Polynomials

	5. Hyperbolic Polynomials as Graph Polynomials
	5.1. Reduction Relation for the First Hyperbolic Polynomial
	5.2. Some Properties of mathrm HU G as a Graph Polynomial
	5.3. The Second Hyperbolic Polynomial

	6. Various Limiting Cases
	6.1. The Critical Model Omega = 1
	6.2. An Algorithm for Computing HU G (Omega, t) Based on the Critical Model
	6.3. The Non-Commutative Heat Kernel Limit Omega rightarrow 0
	6.4. The Commutative Mehler Kernel Limit theta rightarrow 0

	7. Conclusion and Outlooks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


