
Ann. Henri Poincaré 12 (2011), 591–620
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Dimension Theory for Multimodal Maps

Godofredo Iommi and Mike Todd

Abstract. This paper is devoted to the study of dimension theory, in
particular multifractal analysis, for multimodal maps. We describe the
Lyapunov spectrum and study the multifractal spectrum of pointwise
dimension. The lack of regularity of the thermodynamic formalism for
this class of maps is reflected in the phase transitions of the spectra.

1. Introduction

The dimension theory of dynamical systems has flourished remarkably over the
last 15 years. The main goal of the field is to compute the size of dynamically
relevant subsets of the phase space. For example, sets where the complicated
dynamics is concentrated (repellers or attractors). Usually, the geometry of
these sets is rather complicated. That is why, there are several notions of size
that can be used. One could say that a set is large if it contains a great deal of
disorder on it. Formally, one would say that the dynamical system restricted
to that subset has large entropy. Another way of measuring the size of a set
is using geometric tools, namely Hausdorff dimension. There are usually two
conditions required on the dynamical system (X, f) for the dimension theory
to be carried out. First, a certain amount of hyperbolicity enables us to use
Markov partitions and the thermodynamic formalism machinery associated
with the Markov setting. Second, the geometric nature of Hausdorff dimen-
sion means that it is convenient to assume that the map f is conformal. In
this case, the elements of a Markov partition are almost balls and hence can
be used to compute Hausdorff dimension (see [2,35] and references therein).

In this paper, we consider smooth one-dimensional maps. This implies
that the map is conformal. Nevertheless, we study dynamical systems for which
the hyperbolicity is rather weak (these maps have critical points and so have
regions of strong contraction). The class of maps we will consider is defined
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as follows. Let F be the collection of C3 multimodal interval maps f : I → I,
where I = [0, 1], satisfying:
a) the critical set Cr = Cr(f) consists of finitely many critical points c with

critical order 1 < �c < ∞, i.e., there exists a neighbourhood Uc of c and a
C3 diffeomorphism gc : Uc → gc(Uc) with gc(c) = 0 f(x) = f(c)±|gc(x)|�c ;

b) f has no parabolic cycles;
c) f is topologically transitive on I;
d) fn(Cr) ∩ fm(Cr) = ∅ for m �= n.

Note that by [46, Theorem C], given condition a), condition b) then allows
us to apply the Koebe distortion theorem. Alternatively, we could assume that
maps in F have negative Schwarzian derivative since this added to the transi-
tivity assumption implies that there are no parabolic cycles. We refer to [22,
Remarks 1.1 and 1.2] for more information on this type of family of maps.
The thermodynamic formalism for these maps was studied in [22]. We proved
that in an interval of the form (−∞, t+) for some t+ > 0, the pressure func-
tion t → P (−t log |Df |) is strictly convex, C1 and the ‘natural/geometric’
potential x �→ −t log |Df(x)| has a unique equilibrium state (see Sect. 3.1 for
precise definitions and statements). In particular, in the interval (−∞, t+), the
thermodynamic formalism has similar properties to the uniformly hyperbolic
case. In the interval (t+,∞), the pressure function is linear. Therefore, at the
point t = t+ it exhibits a so-called first-order phase transition, that is a point
where the pressure is not smooth. This lack of regularity is closely related to
the different modes of recurrence of the system (see [42,43]).

We will be interested in a particular class of maps belonging to F . Indeed,
let Fg ⊂ F be the collection of maps f : I → I satisfying the growth condition

lim
n→∞

|Dfn(f(c))| → ∞ (1)

for all critical points c. By [8], maps satisfying this condition have an abso-
lutely continuous invariant probability measure (acip) μ 	 m wherem denotes
Lebesgue measure; we will often denote this measure by μac.

This paper is devoted to the study of the dimension theory for maps in
Fg. In particular, we are interested in its multifractal analysis (see Sect. 2 for
precise definitions). Our first goal was to describe the Lyapunov spectrum (see
Sect. 2 for precise definitions). Making use of the thermodynamic formalism,
we are able to describe the size (Hausdorff dimension) of the level sets deter-
mined by the Lyapunov exponent of these maps. We denote by J(λ) the set
of points having λ as Lyapunov exponent. Dynamical and geometric features
are captured in this decomposition. We next state our first main theorem: the
set A is defined in Sect. 4.

Theorem A. Suppose that f ∈ Fg. Then for all λ ∈ R\A,

L(λ) := dimH(J(λ)) =
1
λ

inf
t∈R

(P (−t log |Df |) + tλ) .

As we will see later, the definition of the set A means that if in addi-
tion, the map f ∈ Fg is unimodal, then the above formula holds for every
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λ �= 0. Theorem A implies that the function λ �→ λdimH(J(λ)) is the
Legendre-Fenchel transform of the pressure function t �→ P (−t log |Df |). The
lack of hyperbolicity of f ∈ Fg is reflected in the lack of regularity of the pres-
sure functions (i.e., the presence of phase transitions). Therefore, the Lyapunov
spectrum keeps track of all the changes in the recurrence modes of the system
(see [43]).

Theorem A has been proved in different settings with different assump-
tions on the hyperbolicity of the system. For example, for the Gauss map
it was proved by Kesseböhmer and Stratmann [27]; for maps with parabolic
fixed points, related results were shown in [3,15,23,27,32,37]; and for maps
with countably many branches and parabolic fixed points, this was shown
by Iommi [20]. For rational maps on the complex plane, a similar result was
recently shown by Gelfert et al. [14].

We also study the multifractal spectrum of the pointwise dimension of
equilibrium measures for Hölder potentials. The first thing that needs to be
proved is that in this non-uniformly hyperbolic setting, Hölder potentials have
unique equilibrium states. We study the pointwise dimension for equilibrium
states for ϕ through the analysis of potentials of the form −t log |Df | + sϕ.
See [35] for a general account of this approach. So for example, as shown in
Sect. 6, using [22], we obtain:

Theorem 1.1. Suppose f ∈ Fg and ϕ : I → R is a Hölder potential with
ϕ < P (ϕ). Then there exists ε > 0 such that for each t ∈ (−ε, ε) there
is a unique equilibrium state μϕ+t log |Df | for (I, f, ϕ + t log |Df |). Moreover
h(μϕ+t log |Df |) > 0.

This theorem was proved by Bruin and Todd [9] for a narrower range of
potentials ϕ: potentials not too far from the constant function. Therefore, in
some ways, the above theorem is an improvement on Bruin and Todd’s results.
However, we note that the statistical properties of the equilibrium states in [9]
and the relevant properties of the pressure function are stronger.

Remark 1.1. Existence of a ‘conformal measure’ for the Hölder potential ϕ
as in Theorem 1.1 follows from [12] as well as [24], and uniqueness of both
the conformal measure and its accompanying equilibrium state follow as in
[13, Theorem 8]; see also [22]. For a discussion of the different classes of smooth-
ness of potentials required to guarantee the existence of equilibrium states see
[9, Sect. 1].

We describe the multifractal decomposition induced by the pointwise
dimension of equilibrium measures for Hölder potentials (see Sect. 2 for pre-
cise definitions). When considering uniformly hyperbolic dynamical systems
and Hölder potentials, the multifractal spectrum of pointwise dimension is
very regular, indeed it has bounded domain, it is strictly concave and real
analytic (see [35, Chapter 7]). In our setting, the multifractal spectrum can
exhibit different behaviour. Not only can it have unbounded domain, but it
can also have points where it is not analytic and sub-intervals where it is
not strictly concave. This is a consequence of the lack of hyperbolicity of our
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dynamical systems and of the following result (see Sect. 7). Given (I, f, ϕ) we
let μϕ be the equilibrium state and denote

Tϕ(q) := inf{t ∈ R : P (−t log |Df | + qϕ) = 0}.
We show in Sect. 6 that this function is C1 and strictly convex in an interval
(q−

ϕ , q
+
ϕ ). The size of this interval is discussed in Sect. 6 and in Remark 7.1. We

let Dμϕ
(α) be the multifractal spectrum of pointwise dimension (see Sect. 5

for definitions). Note that in [47, Theorem A] it was necessary to restrict the
results to points with positive pointwise upper Lyapunov exponent. In the next
result, we are able to remove this restriction by results of [41]. For further dis-
cussion of the condition that μϕ is not absolutely continuous with respect to
the Lebesgue measure see Sect. 7.

Theorem B. Suppose that f ∈ Fg and ϕ : I → R is a Hölder potential with
ϕ < P (ϕ) = 0. If μϕ is not absolutely continuous with respect to the Lebesgue
measure, then the dimension spectrum satisfies

Dμϕ
(α) = inf

q∈R

(Tϕ(q) + qα)

for all α ∈ (−DTϕ(q+ϕ ),−D+Tϕ(q−
ϕ )).

This formula for the dimension spectrum was first rigorously proved by
Olsen [34] and by Pesin and Weiss [36] for uniformly hyperbolic maps and
for Gibbs measures. The case of the Manneville Pomeau map (non-uniformly
hyperbolic map) was studied by Nakaishi [32], Pollicott and Wiess [37], and
Jordan and Rams [23]. The case of Horseshoes with a parabolic fixed point
was considered in Barreira and Iommi [3]. Multifractal analysis of pointwise
dimension was also considered in the countable Markov shift setting by Hanus
et al. [16] and Iommi [19]. For general piecewise continuous maps, analysis of
this type was addressed in [18]. For multimodal maps, the multifractal analysis
of pointwise dimension study began with the work of Todd [47].

As in [47], the main tool we use to prove our results is a family of so-called
inducing schemes, which are explained in Sect. 3.2 and in greater detail in the
Appendix. These are dynamical systems associated with f which on the one
hand have better expansion and hyperbolicity properties but on the other, are
defined on a non-compact space. We translate our problems to this setting,
solve it there and then push the results back into the original system. We use
the fact that f ∈ Fg to ensure that this process does not miss too many points.

The structure of the paper. In Sect. 2, we define the notions we will use from
dimension theory. In Sect. 3, we define the ideas we need from thermodynamic
formalism, introduce our inducing schemes and then discuss thermodynamic
formalism for inducing schemes. In Sect. 4, we prove Theorem A. We give
some basic ideas for the dimension spectrum in Sect. 5. We set up the proof of
Theorem B in Sect. 6 and then prove the theorem in Sect. 7. In the Appendix,
we give the necessary results from [47].
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2. Preliminaries: Dimension Theory

Here, we recall basic definitions and results from dimension theory (see [35,40]
for details). A countable collection of sets {Ui}i∈N is called a δ-cover of F ⊂ R

if F ⊂ ⋃i∈N
Ui, and Ui has diameter |Ui| at most δ for every i ∈ N. Let s > 0,

we define

Hs(F ) := lim
δ→0

inf

{ ∞∑

i=1

|Ui|s : {Ui}i a δ-cover of F

}

.

The Hausdorff dimension of the set F is defined by

dimH(F ) := inf {s > 0 : Hs(F ) = 0} .
Given a finite Borel measure μ in F , the pointwise dimension of μ at the point
x is defined by

dμ(x) := lim
r→0

log μ(B(x, r))
log r

,

whenever the limit exists, where B(x, r) is the ball at x of radius r. This
function describes the power law behaviour of μ(B(x, r)) as r → 0, i.e.

μ(B(x, r)) ∼ rdμ(x).

The pointwise dimension quantifies how concentrated a measure is around a
point: the larger it is the less concentrated the measure is around that point.
Note that if μ is an atomic measure supported at the point x0 then dμ(x0) = 0
and if x1 �= x0 then dμ(x1) = ∞.

The following propositions relating the pointwise dimension with the
Hausdorff dimension can be found in [35, Chapter 2, p. 42].

Proposition 2.1. Given a finite Borel measure μ, if dμ(x) ≤ d for every x ∈ F ,
then dimH(F ) ≤ d.

The Hausdorff dimension of the measure μ is defined by

dimH(μ) := inf {dimH(Z) : μ(Z) = 1} .
Proposition 2.2. Given a finite Borel measure μ, if dμ(x) = d for μ-almost
every x ∈ F , then dimH(μ) = d.

In this paper, we will be interested in several types of multifractal spec-
tra. In order to give a unified definition of the objects and of the problem,
we will present the general concept of multifractal analysis as developed by
Barreira et al. [4] (see also [2, Chapter 7]).

Consider a function g : Y → [−∞,+∞], where Y is a subset of the space
X. The level sets induced by the function g are defined by

Kg(α) = {x ∈ Y : g(x) = α} .
Since they are pairwise disjoint they induce the multifractal decomposition

X = (X\Y ) ∪
⋃

α∈[−∞,+∞]

Kg(α).
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Let G be a real function defined on the set of subsets of X. The multifractal
spectrum S : [−∞,+∞] → R is the function that encodes the decomposition
given by g by means of the function G, that is

S(α) = G(Kg(α)).

We stress that in this definition no dynamical system is involved. The functions
g that we will consider are related to the dynamics of a certain systems and
are, in general, only measurable functions. Hence, the multifractal decomposi-
tion is rather complicated. Given a multimodal map f : I → I (our dynamical
system) the functions g that we will consider in this paper are:

1. The Lyapunov exponent, that is the function defined by

λ(x) = lim
n→∞

1
n

log |Dfn(x)|,

whenever the limit exits.
2. The pointwise dimension of an equilibrium state μ.

The function G we will consider here is the Hausdorff dimension. Note
that we could also use entropy as a way of measuring the size of sets.

3. Preliminaries: Thermodynamic Formalism
and Inducing Schemes

In this section, we will introduce some ideas from thermodynamic formalism.
Then we will discuss inducing schemes, and finally, we bring these together in
thermodynamic formalism for countable Markov shifts.

3.1. Thermodynamic Formalism

Let f be a map of a metric space (I, d), denote by Mf the set of f -invariant
probability measures. Let ϕ : I → [−∞,∞] be a potential. The topological
pressure of ϕ with respect to f is defined by

Pf (ϕ) = P (ϕ) = sup
{

h(μ) +
∫

ϕ dμ : μ ∈ Mf and −
∫

ϕ dμ < ∞
}

,

where h(μ) denotes the measure theoretic entropy of f with respect to μ.
The pressure function t → P (tϕ) is convex, being the supremum of convex
functions (see [48, Chapter 9] and [26] for other properties of the pressure).

A measure μϕ ∈ Mf is called an equilibrium state for ϕ if it satisfies:

P (ϕ) = h(μϕ) +
∫

ϕ dμϕ.

For μ ∈ Mf , we define the Lyapunov exponent of μ as

λ(μ) = λf (μ) :=
∫

log |Df | dμ.
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We say that a measure m is ϕ-conformal if for any Borel set A such that
f : A → f(A) is injective,

m(f(A)) =
∫

A

e−ϕ dm.

The following two theorems regarding existence and uniqueness of equilibrium
states and the regularity of the pressure function are Theorems A and B of
[22].

Theorem 3.1. Let f ∈ F . Then there exists t+ ∈ (0,+∞] such that if
t ∈ (−∞, t+) there exists a unique equilibrium measure μt for the potential
−t log |Df |. Moreover, the measure μt has positive Lyapunov exponent.

We define the pressure function p(t) := P (−t log |Df |).
Theorem 3.2. Let f ∈ F . Then for t+ as in Theorem 3.1, if t ∈ (−∞, t+) then
the pressure function t �→ p(t) is strictly convex, decreasing and C1.

Remark 3.1. The constant t+ can be defined as

t+ := sup{t : p(t) > −λmt},
where λm is the minimal Lyapunov exponent of measures defined below in
Eq. (4). As in [22, Sect. 9], f ∈ Fg implies t+ ≥ 1.

3.2. Inducing Schemes

A strategy used to study multimodal maps f ∈ F , considering that they lack
Markov structure and expansiveness, is to consider a generalisation of the
first return map. These maps are expanding and are Markov (although over
a countable alphabet). The price one has to pay is to lose compactness. The
idea is to study the inducing scheme and then to translate the results into the
original system.

We say that (X,F, τ) is an inducing scheme for (I, f) if
• X is an interval containing a finite or countable collection of disjoint inter-

vals Xi such that F maps each Xi diffeomorphically onto X, with bounded
distortion (i.e. there exists K > 0 so that for all i and x, y ∈ Xi, 1/K ≤
DF (x)/DF (y) ≤ K);

• τ |Xi
= τi for some τi ∈ N and F |Xi

= fτi . If x /∈ ∪iXi then τ(x) = ∞.
The function τ : ∪iXi → N is called the inducing time. It may happen that
τ(x) is the first return time of x to X, but that is certainly not the general case.
For ease of notation, we will frequently write (X,F ) = (X,F, τ). We denote the
set of points x ∈ I for which there exists k ∈ N such that τ(Fn(fk(x))) < ∞
for all n ∈ N by (X,F )∞.

Given (I, f) and a potential ϕ, the next definition gives us the relevant
potentials for an inducing scheme for f .

Definition 3.1. Let (X,F, τ) be an inducing scheme for the map f . Then for a
potential ϕ : I → R, the induced potential Φ for (X,F, τ) is given by

Φ(x) = ΦF (x) := ϕ(x) + · · · + ϕ ◦ fτ(x)−1(x).
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For example, for the geometric potential log |Df |, the induced potential
for a scheme (X,F ) is log |DF |.

Given an inducing scheme (X,F, τ), we say that a measure μF is a lift of
μ if for all μ-measurable subsets A ⊂ I,

μ(A) =
1

∫
X
τ dμF

∑

i

τi−1∑

k=0

μF

(
Xi ∩ f−k(A)

)
. (2)

Conversely, given a measure μF for (X,F, τ), we say that μF projects to μ if
(2) holds. We call a measure μ compatible to the inducing scheme (X,F, τ) if
• μ(X) > 0 and μ (X\(X,F )∞) = 0 and
• there exists a measure μF which projects to μ by (2): in particular∫

X
τ dμF < ∞.

The following result can be proved using [47] (see also [10]). We provide
a proof in the Appendix for completeness.

Theorem 3.3. Let f ∈ F . There exist a countable collection {(Xn, Fn)}n of
inducing schemes with ∂Xn /∈ (Xn, Fn)∞ such that:
a) any ergodic invariant probability measure μ with λ(μ) > 0 is compatible

with one of the inducing schemes (Xn, Fn). In particular there exists an
ergodic Fn-invariant probability measure μFn

which projects to μ as in (2);
b) any equilibrium state for −t log |Df | where t ∈ R with λ(μ) > 0, or for a

Hölder continuous potential ϕ : I → R with ϕ < P (ϕ), is compatible with
all inducing schemes (Xn, Fn).

c) if f ∈ Fg then

dimH (I\ (∪∞
n=1(X

n, Fn)∞)) = 0.

If (X,F, τ) is an inducing scheme for the map f with ∂X /∈ (X,F )∞,
then the system F : (X,F )∞ → (X,F )∞ is topologically conjugated to the
full-shift on a countable alphabet. Hence, we can transfer our study to those
shifts. We explain this in the next subsection.

3.3. Countable Markov Shifts

Let σ : Σ → Σ be a one-sided Markov shift with a countable alphabet S. We
equip Σ with the topology generated by the cylinder sets

Ci0···in
= {x ∈ Σ : xj = ij for 0 ≤ j ≤ n}.

Given a function ϕ : Σ → R, for each n ≥ 1 we set

Vn(ϕ) = sup {|ϕ(x) − ϕ(y)| : x, y ∈ Σ, xi = yi for 0 ≤ i ≤ n− 1} .
We say that ϕ has summable variation if

∑∞
n=2 Vn(ϕ) < ∞. Clearly, if ϕ has

summable variation then it is continuous. The so-called Gurevich pressure of
ϕ was defined by Sarig [42] as

PG(ϕ) := lim
n→∞

1
n

log
∑

x:σnx=x

exp

(
n−1∑

i=0

ϕ(σix)

)

χCi0
(x),
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where χCi0
(x) is the characteristic function of the cylinder Ci0 ⊂ Σ. We con-

sider a special class of invariant measures. We say that μ ∈ Mσ is a Gibbs
measure for the function ϕ : Σ → R if for some constants P,C > 0 and every
n ∈ N and x ∈ Ci0···in

we have

1
C

≤ μ(Ci0···in
)

exp(−nP +
∑n

i=0 ϕ(σkx))
≤ C. (3)

It was proved by Mauldin and Urbański [30] and by Sarig in [44] that if (Σ, σ)
is a full-shift and the function ϕ is of summable variations with finite Gurevich
pressure, then it has a unique ϕ-conformal Gibbs measure mΦ along with a
unique invariant Gibbs measure μΦ, where dμΦ

dmΦ
is uniformly bounded away

from 0 and ∞. Moreover, if ϕ is weakly Hölder (see [44] for precise definition)
then the function

t �→ PG(tϕ)

is real analytic for every t ≥ 1 (see [43]) whenever PG(tϕ) is finite.

Remark 3.2. Since the system F : (X,F )∞ → (X,F )∞ is topologically con-
jugated to the full-shift on a countable alphabet. In particular, every poten-
tial Φ : X → R has a symbolic version, Φ : Σ → R. In all the cases of
induced systems we consider in this paper we have, by the Variational Principle
[42, Theorem 3], P (Φ) = PG(Φ). Therefore, in order to simplify the notation,
we will denote the pressure by P (Φ) when the underlying system is the induced
system and when it is the full-shift on a countable alphabet.

4. The Lyapunov Spectrum

In this section, we consider the multifractal decomposition of the interval
obtained by studying the level sets associated with the Lyapunov exponent
for maps f ∈ F . In recent years, a great deal of attention has been paid to this
decomposition. This is partly due to the fact that the Lyapunov exponent is
a dynamical characteristic that captures important features of the dynamics.
It is closely related to the existence of absolutely continuous (with respect to
Lebesgue) invariant measures.

The lower/upper pointwise Lyapunov exponent at x ∈ I is defined by

λf (x) := lim inf
n→∞

1
n

n−1∑

j=0

log
∣
∣Df

(
f j(x)

)∣
∣ ,

and λf (x) := lim sup
n→∞

1
n

n−1∑

j=0

log
∣
∣Df

(
f j(x)

)∣
∣ ,

respectively. If λf (x) = λf (x), then the Lyapunov exponent of the map f at x
is defined by λ(x) = λf (x) = λf (x) = λf (x).

The associated level sets for α ≥ 0 are defined by,

J(α) =
{

x ∈ I : lim
n→∞

1
n

log |(fn)′(x)| = α

}

.
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Note that for some values of α we have J(α) = ∅, a trivial example being for
α > log(supx∈I |Df(x)|). Let

J ′ =
{

x ∈ I : the limit lim
n→∞

1
n

log |(fn)′(x)| does not exist
}

.

The unit interval can be decomposed in the following way (the multifractal
decomposition),

[0, 1] = J ′ ∪ (∪αJ(α)) .

The function that encodes this decomposition is called multifractal spectrum
of the Lyapunov exponents and is defined by

L(α) := dimH(J(α)).

This function was first studied by Weiss [49] in the context of axiom A
maps. The study of the multifractal spectrum of the Lyapunov exponent for
multimodal maps began with the work of Todd [47].

We define

λm := inf {λ(μ) : μ ∈ M} and λM := sup {λ(μ) : μ ∈ M} . (4)

We next show that the range of values that the Lyapunov exponent can attain
is an interval contained in [λm, λM ].

We define

λinf := inf{λ(x) : x ∈ I and this value is defined}
and

λsup := sup{λ(x) : x ∈ I and this value is defined}.
Lemma 4.1. λm ≥ λinf and λM = λsup.

Proof. The fact that λm ≥ λinf follows from the fact that for an ergodic mea-
sure μ ∈ M we have λ(x) = λ(μ) for μ-a.e. x ∈ I. Similarly λsup ≥ λM . To
show that λsup ≤ λM , suppose x ∈ I is such that λ(x) is well defined. Then
let

μn :=
1
n

n−1∑

k=0

δfk(x)

where δy is the Dirac mass on y. Let μ be a weak∗ limit of this sequence. Since
log |Df | is upper semicontinuous,

λM ≥ λ(μ) ≥ lim
n→∞

λ(μn) = λ(x)

as required. �

Remark 4.1. We expect that λm = λinf , which is proved in the complex case
in [14, Lemma 6]. The argument there is that if there is a point x such that
λ(x) exists and is in (−∞, λm) then this point can be closely approximated by
a periodic point with Lyapunov exponent arbitrarily close to λ(x). The Dirac
measure on this periodic cycle must have Lyapunov exponent larger than λm,
so taking limits they obtain λ(x) ≥ λm. The main issue in this argument is to
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show that points in the orbit of x can be pulled back with bounded distortion
by suitable inverse branches of the complex map. In [41, Theorem B], it is
shown that for C3 maps in F the points which cannot be suitably pulled back
have zero Hausdorff dimension; therefore, putting these arguments together,
we can conclude that the set {x : λ(x) < λm} has zero Hausdorff dimension.

Note that in the case λm = 0 then λinf is also equal to zero by [38].

We define

λ̃m := inf {λ(μ) : μ ∈ M ergodic and λ(μ) > 0}
and

A :=
{

[λinf ,−D−p(t+)) if λ̃m > 0,
{0} if λ̃m = 0.

Remark 4.2. Clearly λm > 0 implies λ̃m = λm. Moreover, the case that f ∈ Fg

is unimodal, λm = 0 implies λ̃m = 0 by [33]. For complex maps, this is proved
in [39]. We believe that this should hold in the real multimodal case also.

It can be shown by Theorem 3.1 that for every λ ∈ (−D−p(t+), λM ]
there exists a unique parameter tλ ∈ R such that for μλ, the unique equilib-
rium measure μλ corresponding to −tλ log |Df | has

λ(μλ) = λ.

However, as in [7, Lemma 5.5] there are maps f ∈ F with no measure μ ∈ Mf

with λ(μ) = λm = 0.

Theorem 4.1. Suppose that f ∈ Fg. Let λ ∈ R\A. The Lyapunov spectrum
satisfies the following relation

L(λ) =
1
λ

inf
t∈R

(p(t) + tλ) . (5)

If λ ∈ (−D−p(t+), λM ) then we also have

L(λ) =
1
λ

(p(tλ) + tλλ) =
h(μλ)
λ

. (6)

If λm > 0 and λ ∈ A then

L(λ) ≥ 1
λ

inf
t∈R

(p(t) + tλ) .

Moreover, the irregular set J ′ has full Hausdorff dimension.

Theorem A follows immediately from this.

Remark 4.3. Theorem 4.1 along with Remark 4.2 implies that if f ∈ Fg is uni-
modal with λm = 0 then for every λ ∈ (0,−D−p(1)) we have that L(λ) = 1
(see also Lemma 4.2 for a detailed proof of this fact). In the unimodal case, as
in [33], λm = 0 implies that the Collet-Eckmann condition fails. In the multi-
modal case, as well as in the unimodal case where λm > 0, we expect that the
formula L(λ) = 1

λ inft∈R (p(t) + tλ) still holds for λ ∈ [λm,−D−p(t+)), but we
do not find an upper bound on this value in this paper.
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Remark 4.4. The above formula (5) for L(λ) does not imply that the Lyapu-
nov spectrum is concave. For a discussion on that issue see the work of Iommi
and Kiwi [21].

Proof of the lower bound for Theorem 4.1. Let λ ∈ (−D−p(t+), λM ). In order
to prove the lower bound on the formula (5), consider the equilibrium measure
μλ corresponding to −tλ log |Df | such that λ(μλ) = λ. We have

1. μλ(I\J(λ)) = 0;
2. the measure μλ is ergodic;
3. by [17], the pointwise dimension is μλ- almost everywhere equal to

lim
r→0

log μλ(B(x, r))
log r

=
h(μλ)
λ

,

where B(x, r) is the ball of radius r > 0 centred at x ∈ [0, 1].

Therefore, Proposition 2.2 implies

dimH(J(λ)) ≥ h(μλ)
λ

.

We next consider λ ∈ (λm,−D−p(t+)). The following lemma applies when
λm = 0.

Lemma 4.2. Suppose that f ∈ Fg has λ̃m = 0. Then for any α ∈ (0,−D−p(1))
and ε > 0 there exists an ergodic measure μ ∈ M with λ(μ) = α and
dimH(μ) ≥ 1 − ε.

The proof follows by approximating (I, f) by hyperbolic sets on which
we have equilibrium states with small Lyapunov exponent and large Haus-
dorff dimension. The hyperbolic sets are invariant sets for truncated inducing
schemes.

Proof. We may assume that D−p(t+) < 0, otherwise there is nothing to prove.
Let ε′ ∈ (0, α). Since in this case λ̃m = 0, we can choose α′ ∈ (0, ε′/(1 + ε′)]
and an ergodic measure μ ∈ M with λ(μ) ∈ (0, α′]. We can then choose an
inducing scheme (X ′, F ′, τ ′) as in Theorem 3.3 compatible with μ and with
distortion sufficiently low that on one of the domains Xi, log |DF (x)| ≤ α′τi
for all x ∈ X ′

i. In particular, there is a fixed point of F in X ′
i with this prop-

erty. Let p = τi and call this fixed point xp. Note that this is a periodic point
for f with period ≤ p and is such that λ(x) ≤ α′. Now take the first return
map by F ′ to X ′

i as our inducing scheme (X,F, τ). Note that τ(x) ≥ p for all
x ∈ X. We can truncate (X,F, τ) to a scheme with N branches (X̃N , F̃N , τ̃N )
and define

pN (t) := sup
{

h(μ) − tλ(μ) − p(t) : μ ∈ M and μ is compatible with (X̃N , F̃N )
}

.

Claim 1. There exist δ(N) > 0 where δ(N) → 0 as N → ∞ such that for
t ∈ (1 − ε′, 1], pN (t) ≥ −δ(N) and for t ∈ (1, 1 + ε′), pN (t) ≥ −tα′.
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Proof. By Theorem 3.3, P (−t log |DF | − τp(t)) = 0 and indeed pN (t) → p(t)
for all t ≤ 1, so the first part of the claim follows.

We now suppose that t ≥ 1. For any N ≥ 1 the Dirac measure μxp
on

the orbit of xp lifts to (X̃N , F̃N , τ̃N ) so

pN (t) ≥ h(μxp
) − t

∫

log |Df | dμxp
≥ −tα′,

as required. �

The claim implies that DpN (t) → Dp(t) for t < 1 also. Since for t < 1
we have −Dp(t) = λ(μ) > α for μ the equilibrium state for −t log |Df |, the
claim also implies that for ε′ > 0 as above there exists N such that there is
t ∈ [1, 1 + ε′) with −DpN (t) = α and also pN (t) > −ε′. Therefore, there is an
equilibrium state μα which is a projection of (X,F,−t log |DF̃N |) such that

h(μα) − α ≥ −ε′.

Hence L(α) ≥ dimH(μα) = h(μα)/α ≥ 1 − ε′/α. The proof of the lemma
concludes by setting ε′ := εα. �

For the case where λm > 0, and so t+ ∈ (1,∞), and p is not C1 at
t = t+ we can apply a similar argument. We showed in [22, Remark 9.2] that
t+ ∈ (1,∞) implies that λ(μ) �= λm for all μ ∈ M. Therefore, we can use the
fact that for any ε′ > 0 there exists μ ∈ M such that λ(μ) ∈ (λm, λm + ε′). In
this case, we obtain the lower bound:

L(α) ≥ t+ +
p(t+)
α

,

as required. �

Proof of the upper bound for Theorem 4.1. In the case λm = 0 and α ∈
(0,−D−p(1)) we showed L(α) ≥ 1, so in fact L(α) = 1. Therefore, to com-
plete the proof of Theorem 4.1, we will prove the upper bound for L(α) when
α ∈ [−D−p(1), λM ] and λm is any value.

Let (X,F, τ) be an inducing scheme for the map f . Note that the (X,F )
is topologically conjugated to the full-shift on a countable alphabet. Recall
that (see Sect. 3.3) every potential ϕ : X → R of summable variations and
finite pressure has a Gibbs measure [44].

Remark 4.5. Note that if μt is the equilibrium measure for −t log |Df | then
the lifted measure μF,t is the Gibbs measure corresponding to the potential
Φt = −t log |DF |−P (−t log |Df |)τ . Note that Φt has summable variations by,
for example, [10, Lemma 8].

For an inducing scheme (Xn, Fn, τn) constructed as in the proof of The-
orem 3.3, consider the level set

Jn(λ) :=

⎧
⎨

⎩
x ∈ Xn : lim

k→∞

∑k−1
j=0 log

∣
∣DFn

(
F j

n(x)
)∣
∣

∑k−1
j=0 τn

(
F j

nx
) = λ

⎫
⎬

⎭
.
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Note that if y ∈ I has λ(y) = λ and f j(y) ∈ (Xn, Fn)∞ for some j ≥ 0,
then f j(y) ∈ Jn(λ).

Remark 4.6. If μt is the equilibrium measure for −t log |Df | and λ(μt) = λ
then the lifted measure μFn,t has

μFn,t (I\Jn(λ)) = 0.

Denote by In
k (x) the cylinder (with respect to the Markov dynamical sys-

tem (Xn, Fn)) of length k that contains the point x ∈ X and by |In
k (x)| its

Euclidean length. By definition, there exists a positive constant K > 0 such
that for every x ∈ X which is not the preimage of a boundary point and every
k ∈ N we have

1
K

≤ |In
k (x)|

|DF k
n (x)| ≤ K.

Definition 4.1. For an inducing scheme (Xn, Fn) and a point x ∈ Xn not a pre-
image of a boundary point of Xn, we define the Markov pointwise dimension
of μFn,t at the point x as

δμFn,t
(x) := lim

k→∞

log μFn,t (In
k (x))

log |In
k (x)|

if this limit exists.

Lemma 4.3. The Hausdorff dimension of Jn(λ) is given by

dimH(Jn(λ)) =
h(μt)
λ

= δμFn,t
(x)

for μFn,t-a.e. x ∈ Xn.

Proof. Let x ∈ Jn(λ) and μFn,t be the Gibbs measure with respect to
Φt,n := −t log |DFn|−P (−t log |Df |)τn. Since we have bounded distortion, the
Markov pointwise dimension of μFn,t at the point x ∈ Xn, if it exists, is

δμFn,t
(x) = lim

k→∞

log μFn,t (In
k (x))

log |In
k (x)| = lim

k→∞

∑k−1
i=0 Φt,n

(
F i

n(x)
)

− log |DF k
n (x)|

= lim
k→∞

−t log
∣
∣DF k

n (x)
∣
∣− P (−t log |Df |)∑k−1

i=0 τn
(
F i

n(x)
)

− log |DF k
n (x)|

= t+ P (−t log |Df |) lim
k→∞

∑k−1
i=0 τn

(
F i

n(x)
)

log |DF k
n (x)|

= t+
(

h(μt) − t

∫

log |Df |dμt

)

lim
k→∞

∑k−1
i=0 τn

(
F i

n(x)
)

log |DF k
n (x)| .

But since x ∈ Jn(λ) we have that

lim
k→∞

∑k−1
i=0 τn(F i

n(x))
log |DF k

n (x)| =
1
λ
.

Therefore,

δμFn,t
(x) = t+

h(μt) − tλ

λ
=
h(μt)
λ

.
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The following result was proved by Pollicott and Weiss [37, Proposition 3].
Suppose that δμFn,t

(x) and λ(x) exist, then

dμFn,t
(x) = δμFn,t

(x).

Therefore, we have that for every point x ∈ Jn(λ) the pointwise dimension is
given by

dμFn,t
(x) =

h(μt)
λ

.

Since μFn,t(Xn\Jn(λ)) = 1 we have that

dimH(Jn(λ)) =
h(μt)
λ

,

as required. �

Note that the projection map πn : Xn → I from each inducing scheme
(Xn, Fn) into the interval I is a bilipschitz map. Therefore,

dimH(πn(Jn(λ))) =
h(μt)
λ

.

Similarly, dimH

(∪k≥0f
−k (πn(Jn(λ)))

)
= h(μt)

λ . By the above arguments, plus
Theorem 3.3 c), J(λ) is contained in ∪n ∪k≥0 f

−k (πn(Jn(λ))) up to a set of
Hausdorff dimension 0. Hence, we obtain the desired upper bound,

dimH(J(λ)) ≤ dimH

(∪n ∪k≥0 f
−k (πn(Jn(λ)))

)

= sup
n

{dimH (πn(Jn(λ)))} =
h(μt)
λ

.

�

Remark 4.7. Note that, as we did in Lemma 4.2, we can truncate (X,F, τ)
to a scheme with N branches (X̃N , F̃N , τ̃N ). The Hausdorff dimension of
X is approximated by those of X̃N (see for example [29, Theorem 3.15] or
[19, Theorem 3.1]). It is then a direct consequence of the results of Barreira
and Schmeling [5] that the irregular set for X has full Hasudorff dimension. It
follows then that the set J ′ has full Hausdorff dimension.

5. The Pointwise Dimension Spectrum

In this section, we explain the multifractal spectrum of the pointwise dimen-
sion of equilibrium states. As in [47], this can be seen as a generalisation of
the results on the Lyapunov spectrum. As in Sect. 2, the pointwise dimension
of the measure μ at the point x ∈ I is defined by

dμ(x) := lim
r→0

log μ((x− r, x+ r))
log r

,

provided the limit exists. This function describes the power law behaviour of
the measure of an interval,

μ((x− r, x+ r)) ∼ rdμ(x).
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The pointwise dimension induces a decomposition of the space into level sets:

K(α) = {x ∈ Σ : dμ(x) = α},K ′ = {x ∈ Σ : the limit dμ(x) does not exist}.
The set K ′ is called the irregular set. The decomposition:

I =

(
⋃

α

K(α)

)
⋃
K ′

is called the multifractal decomposition. The multifractal spectrum of pointwise
dimension is defined by

Dμ(α) = dimH(K(α)).

Note that for maps f ∈ F , points which are not ‘seen’ by inducing scheme
(i.e. not in any set (Xn, Fn)∞ for an inducing scheme (Xn, Fn) from Theo-
rem 3.3) are beyond our analysis. However, as in Theorem 3.3 c), our inducing
schemes capture all sets of positive Hausdorff dimension.

In order to describe the function Dμ we will study an auxiliary function:
the so-called temperature function is defined in terms of the thermodynamic
formalism and shown to be the Legendre-Fenchel transform of the multifractal
spectrum.

6. The Temperature Function

In this section, we study the temperature function which allows us to describe
the multifractal spectrum. First, we need to establish the existence of the
measures that we are going to analyse. The measures we will study will be
equilibrium states. The class of potentials that we consider is

P := {ϕ : I → [ϕmin, ϕmax] for some ϕmin, ϕmax ∈ (−∞, 0) and P (ϕ) = 0} .
Note that any bounded potential ϕ′ with ϕ′ < P (ϕ′) can be translated into this
class by setting ϕ := ϕ′ −P (ϕ′). Any equilibrium state for ϕ′ is an equilibrium
state for ϕ.

We let PH ⊂ P be the set of Hölder potentials on I. It is well known
(see for example [26, Section 4]) that potentials in P have (potentially many)
equilibrium states with positive entropy. Theorem 1.1 shows this.

Theorem 1.1 is a corollary of Theorem 6.1 below. It follows using the
inducing techniques as in [22, Section 5]. Note that the Hölder condition
on ϕ guarantees the summable variations for the inducing schemes; see the
Appendix.

As in the introduction, the temperature function with respect to ϕ is the
function Tϕ : R → R ∪ {∞} implicitly defined, for q ∈ R, by the equation

Tϕ(q) = inf{t ∈ R : P (−t log |Df | + qϕ) = 0}.
If for a fixed q and for every t ∈ R we have that P (−t log |Df | + qϕ) > 0 then
Tϕ(q) = ∞. If there exists a finite number

q∞ := sup{q ∈ R : Tϕ(q) = ∞},
then we say that Tϕ has an infinite phase transition at q∞.



Vol. 12 (2011) Dimension Theory for Multimodal Maps 607

Remark 6.1. Note that for ϕ ∈ P we have Tϕ(1) = 0, since by defini-
tion P (ϕ) = 0. Moreover, Tϕ(0) is the smallest root of the Bowen equation
P (−t log |Df |) = 0. It follows from the statement of [1, Theorem 10.5] that
there are unimodal maps in F with critical order �c > 2 for which Tϕ(0) < 1.
This phenomenon is associated with the presence of a ‘wild attractor’. For
any unimodal map with quadratic critical point (i.e. �c = 2), there is no wild
attractor and we have Tϕ(0) = 1. This is also true for any map in Fg.

Remark 6.2. Note that q′ ≤ q implies Tϕ(q′) ≥ Tϕ(q). Therefore if Tϕ has an
infinite phase transition at q∞ then T (q) = ∞ for all q < q∞.

Example 6.1. (Regular) Let f : I → I be a Collet-Eckmann unimodal map.
Then the pressure function t → p(t) is strictly decreasing as in Theorem 3.2.
Moreover, p is C1 in an interval (−∞, t+) ⊃ [0, 1]. Consider the potential
ϕ = −htop(f) (i.e. minus the topological entropy of the map f). In this case,
the function Tϕ(q) is obtained by the equation in the variable t ∈ R given by

P (−t log |Df |) = qhtop(f).

For every q ∈ R this equation has a unique solution. Moreover, for q in a neigh-
bourhood of [0, 1], by Theorem 3.1 there exists a unique equilibrium state μϕq

corresponding to the potential ϕq = −Tϕ(q) log |Df | − qhtop(f).

Example 6.2. (Infinite phase transition) If f ∈ F is a unimodal map which is
not Collet-Eckmann, then results in [33] imply

P (−t log |Df |) =
{

positive if t < 1,
0 if t ≥ 1.

If we consider the constant potential ϕ := −htop(f) then for every q < 0 we
have that

P (−t log |Df | − qhtop(f)) = P (−t log |Df |) + |q|htop(f) ≥ |q|htop(f) > 0.

i.e.

Tϕ(q) =
{

infinite if q < 0,
finite if q ≥ 0.

In this case, the function Tϕ(q) has an infinite phase transition.

We stress that infinite phase transitions can only occur at q = 0. This is
contained in the following proposition where we collect some basic properties
of Tϕ.

Proposition 6.1. Suppose that f ∈ F and ϕ ∈ P. Then
a) Tϕ(q) ∈ R for all q ≥ 0;
b) the function Tϕ(q) can only have an infinite phase transition at q∞ = 0;
c) Tϕ, when finite, is strictly decreasing.

We will use the following two Lemmas.

Lemma 6.1. Suppose that f ∈ F and ϕ ∈ P. If q ≥ 0 then the function Tϕ(q)
is finite.
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Proof. If q ≥ 0 then qϕ ≤ 0. Therefore,

P (−t log |Df | + qϕ) ≤ P (−t log |Df |).
Since P (− log |Df |) ≤ 0 and t �→ P (−t log |Df |) is decreasing, this implies
that Tϕ(q) ≤ 1. It remains to check Tϕ(q) �= −∞.

We have

P (−t log |Df | + qϕ) ≥ P (−t log |Df | + qϕmin) = P (−t log |Df |) + qϕmin.

Since

lim
t→−∞

P (−t log |Df |) = ∞,

there exists t0 < 0 such that

P (−t0 log |Df |) − qϕmin > 0.

i.e.

P (−t0 log |Df | + qϕ) > 0.

Since the function t → P (−t log |Df | + qϕ) is continuous, the Intermediate
Value Theorem implies that there exists Tϕ(q) ∈ (t0, 1] such that

Tϕ(q) = inf{t ∈ R : P (−t log |Df | + qϕ) = 0},
as required. �

Lemma 6.2. Suppose that f ∈ F and ϕ ∈ P. If

lim
t→+∞

P (−t log |Df |) = −∞
then Tϕ(q) is finite for every q ∈ R.

Proof. We will show that Tϕ(q) must lie in a finite interval. First note that if
q < 0 then

P (−t log |Df | + qϕ) ≤ P (−t log |Df |) + qϕmin.

Therefore, by assumption if we take t1 > 0 large enough we have that

P (−t1 log |Df | + qϕ) ≤ 0.

From the other side, as in the proof of Lemma 6.1 we can find t0 ∈ R such
that

P (−t0 log |Df | + qϕ) > 0.

Hence Tϕ(q) lies in the finite interval (t0, t1].
The case of positive q is handled by Lemma 6.1. �

Proof of Proposition 6.1. Part a): This follows immediately from Lemma 6.1.
Part b): Lemma 6.2 implies that if limt→+∞ P (−t log |Df |) = −∞

then we cannot have an infinite phase transition. Therefore, adding this to
Lemma 6.1, to prove part 1 of the proposition we only need to examine the
case when the limit is finite: limt→+∞ P (−t log |Df |) > −∞ and q < 0.

By definition, Dp(t) ≤ −λmt; therefore, the only way that we can have
limt→+∞ P (−t log |Df |) > −∞ is if λm = 0 (note that λ(μ) ≥ 0 for all μ ∈ M
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by [38]). This implies P (−t log |Df |) ≥ 0 for all t ∈ R. Now suppose that
q < 0. Then

P (−T (q) log |Df | + qϕ) ≥ P (−T (q) log |Df |) + qϕmax ≥ qϕmax > 0.

Hence T (q) = ∞. Since this holds for all negative q, the infinite phase transi-
tion must occur at 0.

Part c): Let q ∈ R and δ > 0. Then

P (−Tϕ(q) log |Df | + (q + δ)ϕ) ≤ P (−Tϕ(q) log |Df | + qϕ) + δϕmax

< P (−Tϕ(q) log |Df | + qϕ).

Hence, there is no way that Tϕ(q) can be Tϕ(q + δ), proving part c). �
In the next theorem, we establish the existence of equilibrium measures

for the potential

ϕq := −T (q) log |Df | + qϕ

for a maximal range of values of the parameter q ∈ R. The strategy of the proof
follows the arguments developed in [22] to prove the existence and uniqueness
of equilibrium measures for the geometric potential −t log |Df |.

We define the constants q−
ϕ ≤ q+ϕ as follows:

• q+ϕ is defined, if possible, to be the infimum of q ≥ 1 such that there exists
εq > 0 such that for all ε ∈ (0, εq) there exists δ > 0 such that for any
μ ∈ M,

∣
∣
∣
∣h(μ) +

∫

ϕq dμ
∣
∣
∣
∣ < δ implies h(μ) > ε.

If there is no such value, then q+ϕ := ∞.
• If Tϕ has an infinite phase transition then q−

ϕ := 0. If not then, if possible,
it is defined as being the supremum of q ≤ 1 such that there exists εq > 0
such that for all ε ∈ (0, εq) there exists δ > 0 such that for any μ ∈ M,

∣
∣
∣
∣h(μ) +

∫

ϕq dμ
∣
∣
∣
∣ < δ implies h(μ) > ε.

If there is no such value then q−
ϕ := −∞.

Lemma 6.3. If f ∈ F and ϕ ∈ P then q−
ϕ ≤ 0 and q+ϕ ≥ 1.

Proof. Suppose q ∈ (0, 1). Then Tϕ(q) ≥ 0. Suppose that there is an equilib-
rium state μϕq

∈ M for ϕq. Then by definition

Tϕ(q)λ(μϕq
) = h(μϕq

) + q

∫

ϕ dμϕq
≥ 0

since by [38], λ(μϕq
) ≥ 0. Since q

∫
ϕ dμϕq

< 0, we must have h(μϕq
) > 0.

The lemma then follows by extending this argument to the case of measures
μ with h(μ) +

∫
ϕq dμ close to 0. �

For here on, we assume that f ∈ Fg to ensure that Hölder potentials ϕ
yield induced potentials Φ for our inducing schemes which are locally Hölder
continuous; see the Appendix.
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Remark 6.3. By [9, Theorem 6], if f ∈ Fg and ϕ ∈ PH and ϕmax − ϕmin <
htop(f) then q+ϕ > 1.

Theorem 6.1. Suppose that f ∈ Fg and ϕ ∈ PH . Then for every q ∈ (q−
ϕ , q

+
ϕ )

the potential ϕq has a unique equilibrium measure μϕq
. Moreover, it is a mea-

sure of positive entropy.

Since the proof of this theorem goes along the same lines as the proof of
Theorem A given in [22], we only sketch it here. Note that Theorem 1.1 is a
corollary of this.

Proof. Proposition 6.1 implies that there exists q̃−
ϕ ∈ [−∞, 0] such that for

every q ∈ (q̃−
ϕ ,∞) there exists a unique root T (q) ∈ R of the equation

P (−t log |Df | + qϕ) = 0.
Lemma 6.3 implies that for q ∈ (q−

ϕ , q
+
ϕ ) and any measure μ ∈ M with

h(μ) +
∫
ϕq dμ close to 0 must have strictly positive entropy.

The rest of the proof follows as in [22, Sect. 5]. The steps are as follows:

Approximation of the pressure with compatible measures. The first step in the
proof is to construct an inducing scheme, such that there exists a sequence of
measures that approximate the pressure and are all compatible with it. More
precisely:

Proposition 6.2. Suppose that f ∈ Fg and ϕ ∈ PH . Let q ∈ (q−
ϕ , q

+
ϕ ), then there

exists an inducing scheme (X,F ) and a sequence of measures (μn)n ⊂ M all
compatible with (X,F ) such that

h(μn) − T (q)
∫

log |Df | dμn + q

∫

ϕ dμn → 0 and inf
n
h(μn) > 0.

Moreover, if Φq denotes the induced potential of ϕq then P (Φq) = 0.

The proof of this results follows from two observations: the first is that
by definition there exist ε, δ > 0 such that any measure μ with

∣
∣
∣
∣h(μ) +

∫

ϕq dμ
∣
∣
∣
∣ < δ

is such that h(μ) > ε. The other result used in the proof is that, given ε > 0
there exists a finite number of inducing schemes, such that any ergodic mea-
sure with h(μ) > ε is compatible with one of these schemes and has integrable
return time (this was first proved in [10, Remark 6]; see also [22, Lemma 4.1]).
Combining the previous two observations we obtain that P (Φq) ≥ 0. The fact
that P (Φq) ≤ 0 follows from an approximation argument (see [22, Lemma 3.1]).
We note here that the potential Φq has summable variations by combining [9,
Lemma 4] and [10, Lemma 8]; see the Appendix for further details.

Since the inducing system (X,F ) can be coded by a full-shift on a count-
able alphabet, as in Sect. 3.3 we have a Gibbs measure μΦq

corresponding
to Φq.

The Gibbs measure has integrable inducing time. The next step is to show that
the inducing time is integrable with respect to the Gibbs measure μΦq

. This
follows as in [22, Proposition 5.2].
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Uniqueness of the equilibrium measure. This follows as in [22, Proposition
6.1]. �

A detailed study of the temperature function will allow us to describe
the multifractal spectrum. In order to study the regularity properties of the
function Tϕ(q), we need to understand the thermodynamic formalism for the
potential ϕq.

Theorem 6.2. Suppose that f ∈ Fg and ϕ ∈ PH . If q ∈ (q−
ϕ , q

+
ϕ ) then

a) the temperature function, q �→ Tϕ(q) is differentiable;

b) DTϕ(q) =
∫

ϕ dμϕq∫
log |Df | dμϕq

;
c) Tϕ(q) = dimH(μϕq

) + qDTϕ(q);
d) Tϕ is convex;
e) if f ∈ Fg and μac �= μϕ then Tϕ is strictly convex;
f) Tϕ is linear in (−∞, q−

ϕ ) and (q+ϕ ,∞);
g) Tϕ is C1 at q+ϕ .

Proof. Part a). It is a consequence of Theorem 6.1 and [22, Proposition 8.1]
that given q ∈ (q−

ϕ , q
+
ϕ ) there exists ε > 0 such that if t ∈ (Tϕ(q)− ε, Tϕ(q)+ ε)

the pressure function

(t, q) �→ P (t, q) = P (−t log |Df | + qϕ)

is differentiable in each variable. Therefore, by the implicit function theorem
we obtain that Tϕ(q) is differentiable.

Part b). This has been proved in several settings (see [35, Proposition
21.2]). Consider the pressure function on two variables

(t, q) → P (t, q) = P (−t log |Df | + qϕ).

There exists ε > 0 such that P (t, q) is differentiable on each variable in the
range t ∈ (Tϕ(q) − ε, Tϕ(q) + ε) and q ∈ R satisfying the hypothesis of the
theorem. As in for example [40, Chapter 8], [36, Section II] or [35, Chapter 7,
p.211],

DTϕ(q) =
∂P (q, t)
∂t

∣
∣
∣
∣
t=Tϕ(q)

(
∂P (q, t)
∂q

∣
∣
∣
∣
t=Tϕ(q)

)−1

.

Furthermore, formulas for the derivative of the pressure (recall that it is dif-
ferentiable in this range) give

DTϕ(q) =

∫
ϕ dμϕq∫

log |Df | dμϕq

as required. Note that in the above references the analogues of the remaining
parts of the proof of this theorem would be proved using higher derivatives
of Tϕ. However, we do not have information on these; hence, we have to use
other methods in the rest of this proof to get convexity, etc.
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Part c). Using b) and [17],

Tϕ(q) =
h(μϕq

)
∫

log |Df | dμϕq

+ q

∫
ϕ dμϕq

log |Df |dμϕq

= dimH(μϕq
) + q

∫
ϕ dμϕq

log |Df |dμϕq

= dimH(μϕq
) + qDTϕ(q).

Part d). Given q ∈ (q−
ϕ , q

+
ϕ ) there is an equilibrium state μϕq

for ϕq. We
can write

Tϕ(q) =
h(μϕq

) + q
∫
ϕ dμϕq

λ(μϕq
)

.

By the definitions of Tϕ and pressure, for κ ∈ R,

Tϕ(q + κ) ≥ h(μϕq
) + (q + κ)

∫
ϕ dμϕq

λ(μϕq
)

= Tϕ(q) +
κ
∫
ϕ dμϕq

λ(μϕq
)

= Tϕ(q) + κDTϕ(q).

Whence Tϕ is convex in (q−
ϕ , q

+
ϕ ).

Part e). To show strict convexity, we use an improved version of the argu-
ment in [47, Lemma 6]. There it is shown that if the graph of Tϕ is not strictly
convex then it must be affine. Similarly, in this case suppose that DTϕ has
slope −γ in the interval [q1, q2] ⊂ [q−

ϕ , q
+
ϕ ]. It can be derived from the above

computations that the equilibrium state for ϕq is the same for all q ∈ [q1, q2]
(see also, for example, the proof of [47, Lemma 6]).

We will show that if Tϕ is not strictly convex then γ = 1 and μϕ is
equivalent to the acip. Let (X,F ) be an inducing scheme as in Theorem 3.3 to
which μϕq

is compatible. By the Gibbs property of μΦq
for q, q + δ ∈ [q1, q2],

and for ‘�dis’ meaning ‘equal up to a distortion constant’ we must have

|Xi|Tϕ(q)eqΦi �dis |Xi|Tϕ(q+δ)e(q+δ)Φi = |Xi|Tϕ(q)−δγe(q+δ)Φi

where Φi := supx∈Xi
Φ(x). This implies |Xi|γ �dis e

Φi . We can extend this
argument from 1-cylinders to any k-cylinder. This implies that we have a Gibbs
measure μΦ/γ for the potential Φ/γ, and indeed that μ− log |DF | ≡ μΦ/γ . This
also shows that P (Φ/γ) = 0. Since f has an acip,

∫
τ dμΦ/γ < ∞ and μΦ/γ

projects to a measure μϕ/γ . By Theorem 3.3(b), μϕ/γ must be an equilibrium
state for ϕ/γ as well as for − log |Df |, i.e. μϕ/γ = μac. Moreover, P (ϕ/γ) = 0.
Since ϕ < 0,

γ > 1 implies P (ϕ) < P (ϕ/γ) and γ < 1 implies P (ϕ) > P (ϕ/γ).

Since P (ϕ) = P (ϕ/γ) = 0, we must have γ = 1, so μϕ = μac contradicting our
assumption.

Part f). We may assume that q−
ϕ < 0. Since the entropy of measures

around q−
ϕ is vanishingly small, we must have

Tϕ(q) = lim
q↘q−

ϕ

q−
ϕ

∫
ϕ dμϕq

λ(μϕq
)

.
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If Tϕ was not linear in (−∞, q−
ϕ ), we must have measures μ with

∫
ϕ dμ
λ(μ) >

∫
ϕ dμϕq

λ(μϕq ) . This contradicts the definition of the value of Tϕ(q−
ϕ ). A similar

argument follows for q+ϕ .
Part g). For q ≥ q+ϕ , we have Tϕ(q) < 0 and so ϕq is upper semicontin-

uous and there is an equilibrium state for ϕq. Using part f) we can show any
equilibrium state μϕ+ for ϕq for q ≥ q+ϕ is an equilibrium state for ϕq for any
other q ≥ q+ϕ . Since −Tϕ(q)λ(μϕ−) + qϕ = 0, and ϕ < 0, we have λ(μϕ−) > 0.
If Tϕ was not C1 at q−

ϕ then we could take a limit μ of the measures μϕq
where

q → q−
ϕ . As in the proof of [22, Theorem B], μ must be an equilibrium state

for ϕq−
ϕ

with λ(μ) > 0, and not equal to μϕ− . As in [22, Proposition 6.1], there
can be at most one equilibrium state for ϕq−

ϕ
of positive Lyapunov exponent.

Hence Tϕ is C1 at q−
ϕ , as required. �

7. Multifractal Spectrum of Pointwise Dimension

In this section, we prove that the dimension spectrum of pointwise dimension
D̃μ is the Legendre-Fenchel transform of the temperature function Tϕ. The
following is a slightly embellished version of Theorem B.

Theorem 7.1. Suppose that f ∈ Fg and ϕ ∈ PH . If μϕ �= μac then the dimen-
sion spectrum satisfies the following equations

Dμϕ
(α) = inf

q∈R

(Tϕ(q) + qα)

for all α ∈ (−DTϕ(q+ϕ ),−D+Tϕ(q−
ϕ )). Or equivalently,

Dμϕ
(−DTϕ(q)) = Tϕ(q) − qDTϕ(q)

for q ∈ (q−
ϕ , q

+
ϕ ].

Remark 7.1. As in Remark 4.3, we expect that Dμ(α) = infq∈R (Tϕ(q) + qα)
for α ∈ [−D+Tϕ(q−

ϕ ),−D−Tϕ(q−
ϕ )]. Similarly, if q /∈ [q−

ϕ , q
+
ϕ ] then any equi-

librium state μ for ϕq must have h(μ) = 0. In this case dimH(μ) = 0. This
suggests that Dμ(α) = 0 for α /∈ (−DTϕ(q+ϕ ),−D−Tϕ(q−

ϕ )].

Proof of Theorem B. We begin by getting information for both the upper and
lower bounds from our inducing schemes.

As in Lemma 4.2, for an inducing scheme (Xn, Fn), for x ∈ (Xn, Fn)∞,
we can define δμFn,Φ(x) and show that for x ∈ KΦn

(α), we have δμFn,Φ(x) =
dμΦ(x). By Propositions B.2 and B.1, for any y ∈ (Xn, Fn)∞, there is some
k ≥ 0 such that x := fk(y) ∈ Xn and dμΦ(x) = dμϕ

(x) = dμϕ
(y). Hence, for

x ∈ Kϕ(α) ∩ (Xn, Fn)∞, we have

dμΦ(x) = dμϕ
(x) = δμFn,Φ(x).

We first prove the lower bound on Dμϕ
. The above argument along with

that of Lemma 4.3 implies that for μϕq
-a.e. x ∈ X and any inducing scheme
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with x ∈ (X,F )∞,

dμϕq
(x) = dμΦq

(x) =
− ∫ Φ dμΦq

λ(μΦq
)

=
− ∫ ϕ dμϕq

λ(μϕq
)

.

Therefore,

μϕq

(

I
∖
Kϕ

( − ∫ ϕ dμϕq∫
log |Df |dμϕq

))

= 0.

Hence by Theorem 6.2 c),

Dμϕ

(

Kϕ

( − ∫ ϕ dμϕq∫
log |Df |dμϕq

))

≥ dimH(μϕq
) = Tϕ(q) − qDTϕ(q).

By Theorem 6.2 b) we obtain the lower bounds for Dμϕ
for any α in the range

of the derivative of Tϕ.
Similarly for the upper bound, as in Lemma 4.2 we obtain

dimH(Kϕ(α)) ≤ max
{

sup
n

{dimH(KΦn
(α))},dimH (I\ (∪n(Xn, Fn)∞))

}

.

By [19], dimH(KΦn
(α)) = TΦn

(q) − qDTΦn
(q). By the final part of Proposi-

tion 6.2, TΦn
(α) = Tϕ(α) for q ∈ (q−

ϕ , q
+
ϕ ). Since dimH (I\ (∪n(Xn, Fn)∞))=0,

we thus obtain dimH(Kϕ(α)) ≤ Tϕ(α) − qDTϕ as required. �

The following result is a consequence of the Legendre-Fenchel relation
between the temperature function and the dimension spectrum. Let us stress
that there is strong contrast between the behaviour of the dimension spectrum
described in Theorem 7.2 and the dimension spectrum for equilibrium states in
hyperbolic systems (see for example [35, Chapter 7]). The lack of hyperbolicity
of the map f is reflected in the regularity properties of the spectrum.

Theorem 7.2. Suppose that f ∈ Fg, ϕ ∈ PH and μac �= μϕ. Assume that the
temperature function is such that

Tϕ(q) =
{

infinite if q < 0,
finite if q ≥ 0.

Then the domain of Dμϕ
is unbounded. Moreover, D+Tϕ(0) =

∫
ϕ dμac

λ(μac)
and

for every α ≥ −D+Tϕ(0) we have that Dμϕ
(α) = Tϕ(0) = 1.

Proof. The usual derivative formulas imply that if there exists a measure μϕ0

for the potential ϕ0 then D+Tϕ(0) =
∫

ϕ dμϕ0
λ(μϕ0 ) . Since ϕ0 := − log |Df |, as in

[28], μϕ0 = μac the acip. The fact that Dμϕ
(α) = Tϕ(0) for α ≥ −D+Tϕ(0)

follows as in Lemma 4.2. �

We finish this section by giving a proposition which gives further infor-
mation on the condition μϕ �= μac imposed in the above theorems. One way
that μϕ can be equal to μac is if ϕ is cohomologous to − log |Df |, i.e. if there
exists a solution ψ : I → R to the equation

ϕ = − log |Df | + ψ ◦ f − ψ. (7)
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It is unknown if this is the only way that μϕ can be equal to μac. The study
of such equations, and their smoothness is part of Livšic theory, studied for
interval maps with critical points in [6].

Let F ′
g ⊃ Fg be the class of maps as above, but allowing preperiodic

critical points. The following result is proved using ideas from [6].

Proposition 7.1. Let f ∈ F ′
g be a unimodal map. If ϕ : I �→ R is a Hölder

function then the only way (7) can have a solution is if the critical point is
preperiodic.

Proof. Theorem 6 of [6] holds for f ∈ F ′
g. Therefore, the potential ϕ′ :=

ϕ+log |Df | satisfies the conditions in [6, Theorem 6]: in particular, it satisfies
condition (2) of [6, Section 3.1] for example. By that theorem, any solution ψ
to the equation ϕ′ = ψ◦f−ψ must be Hölder continuous. Letting c be the crit-
ical point, we may assume that f(c) is a maximum for f . As in [6, Corollary 3],
ψ must be bounded on any interval compactly contained in [f2(c), f(c)]. But
by construction, ψ must be unbounded on any element of ∪n≥1f

n(c). In the
case of transitive unimodal maps, this can only occur when f2(c) = 0 and 0 is
a fixed point. �
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Appendix A. The Proof of Theorem 3.3

In this section, we explain the essential parts the proof of Theorem 3.3, which
can otherwise be found in [47]. The theorem is the same as [22, Theorem 6.1]
except for the inclusion of equilibrium states for Hölder continuous potentials
in the second part and, most importantly, the final assertion. The generalisa-
tion of the second part of [22, Theorem 6.1] for such equilibrium states follows
immediately from the arguments in [22]. To prove the final assertion, we will
need to revisit the method of producing the inducing schemes. This involves
the Hofbauer extension, sometimes also known as a Hofbauer tower, whose
construction we give below.

We first consider the dynamically defined cylinders. We let P0 := I and
Pn denote the collection of maximal intervals Cn so that fn : Cn → fn(Cn)
is a homeomorphism. We let Cn[x] denote the member of Pn containing x. If
x ∈ ∪n≥0f

−n(Cr) there may be more than one such interval, but this ambigu-
ity will not cause us any problems here.
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The Hofbauer extension is defined as

Î :=
⊔

k≥0

⊔

Ck∈Pk

fk(Ck)/ ∼

where fk(Ck) ∼ fk′
(Ck′) as components of the disjoint union Î if fk(Ck) =

fk′
(Ck′) as subsets in I. Let D be the collection of domains of Î and π : Î → I

be the natural inclusion map. A point x̂ ∈ Î can be represented by (x,D)
where x̂ ∈ D for D ∈ D and x = π(x̂). Given x̂ ∈ Î, we can denote the domain
D ∈ D it belongs to by Dx̂.

The map f̂ : Î → Î is defined by

f̂(x̂) = f̂(x,D) = (f(x),D′)

if there are cylinder sets Ck ⊃ Ck+1 such that x ∈ fk(Ck+1) ⊂ fk(Ck) = D
and D′ = fk+1(Ck+1). In this case, we write D → D′, giving (D,→) the
structure of a directed graph. Therefore, the map π acts as a semiconjugacy
between f̂ and f :

π ◦ f̂ = f ◦ π.
We denote the ‘base’ of Î, the copy of I in Î by D0. For D ∈ D, we define
lev(D) to be the length of the shortest path D0 → · · · → D starting at the
base D0. For each R ∈ N, let ÎR be the compact part of the Hofbauer extension
defined by the disjoint union

ÎR := �{D ∈ D : lev(D) ≤ R}.
For maps in F , we can say more about the graph structure of (D,→)

since Lemma 1 of [10] implies that if f ∈ F then there is a closed primitive
subgraph DT of D, i.e. for any D,D′ ∈ DT there is a path D → · · · → D′;
and for any D ∈ DT , if there is a path D → D′ then D′ ∈ DT too. We can
denote the disjoint union of these domains by ÎT . The same lemma says that
if f ∈ F then π(ÎT ) = Ω and f̂ is transitive on ÎT .

Given μ ∈ Merg, we say that μ lifts to Î if there exists an ergodic f̂ -
invariant probability measure μ̂ on Î such that μ̂ ◦ π−1 = μ. For f ∈ F , if
μ ∈ Merg and λ(μ) > 0 then μ lifts to Î; see [7,25].

We let ι := π|−1
D0

. Note that there is a natural distance function dÎ within
domains D ∈ D (but not between them) induced from the Euclidean metric
on I.

We obtain our inducing scheme as a first return map in the Hofbauer
extension, i.e. we choose X̂ ⊂ ÎT and use a first return map to X̂ to give the
inducing scheme on X := π(X̂). We will always choose X to be a cylinder in
Pn, for various values of n ∈ N.

The set X̂ is an interval in a single domain D ∈ DT . Then for x ∈ X
there exists a unique x̂ ∈ X̂ so that π(x̂) = x. Then τ(x) is defined as the
first return time of x̂ to X̂. We choose X̂ so that X ∈ Pn for some n, and
X̂ is compactly contained in D. These properties mean that (X,F, τ) is an
inducing scheme which is extendible. That is to say, letting X ′ = π(D), for
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any domain Xi of (X,F ) there is an extension of fτi to X ′
i ⊃ Xi so that

fτi : X ′
i → X ′ is a homeomorphism. By [46, Theorem C(2)], this means that

(X,F ) has uniformly bounded distortion, with distortion constant depending
on δ := dÎ(X̂, ∂D). In this way, we can cover Î\∂Î with a countable number
of sets X̂. Since any ergodic measure with positive Lyapunov exponent lifts
to Î, this means that there is some X̂ chosen in this way for which μ̂(X̂) > 0
and so μ is compatible with the corresponding inducing scheme. The fact that
our equilibrium states are compatible to all inducing schemes follows from [22,
Section 6].

The main difference between Theorem 3.3 and Theorem 6.1 of [22] is that
we are able to show that the following type of points are in ∪n(Xn, Fn)∞.

Definition A.1. Let f ∈ F and ε > 0. We say that x ∈ I goes to ε-large scale
at time n if the interval (fn(x) − ε, fn(x) + ε) can be pulled back diffeomor-
phically by the branch of f−n corresponding to the orbit of x. We say that
x goes to large scale infinitely often if there exists ε > 0 such that x goes to
ε-large scale for infinitely many times n ∈ N.

The argument of [25, Theorem 5] implies that for any ε > 0 there exists
R ∈ N such that if x goes to ε-large scale infinitely often then ιx maps into
ÎR by f̂ infinitely often. Therefore, such an x is contained in ∪∞

n=1(X
n, Fn)∞:

indeed there exists N = N(ε) ∈ N such that ιx ∈ ∪N
n=1(X

n, Fn)∞. The final
part of the argument for c) is provided by Rivera-Letelier and Shen [41, Corol-
lary 6.3]. This implies that for a map in Fg for all η > 0 there exists ε > 0
such that the set of points which do not go to ε-large scale infinitely often has
Hausdorff dimension less than η. Note that c) also follows for any f ∈ F which
is ‘backward contracting’; see [41] for the definition (in [8] it is shown that all
f ∈ Fg satisfy this condition).

Appendix B. The Dimension of Induced Measures

In this section, we give the relation between pointwise dimension of a measure
and its induced version, which can also be found in [47]. As in [9, Lemma 4],
if ϕ is Hölder then the induced potential Φ for any of our inducing schemes
has summable variations. Note that there was an error in that proof, pointed
out to the authors by W. Shen and J. Rivera-Letelier. The proof is corrected
by using [41, Theorem A].

The following proposition is proved in [24]. A more general version is
proved in [47]. Note that the uniqueness of the measures here is shown in [22,
Section 6]; see also for example [13, Theorem 8].

Proposition B.1. Given f ∈ F and a Hölder potential ϕ ∈ P, then there exists
an equilibrium state μϕ and a ϕ-conformal measure mϕ and Cϕ > 0 so that
dμϕ

dmϕ
is uniformly bounded away from 0 and ∞.

Notice that this implies that dmϕ
= dμϕ

and, by the conformality of
mϕ, dμϕ

(x) = dμϕ
(fn(x)) for all n ∈ N.
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Proposition B.2. Suppose that f ∈ F satisfies (1) and ϕ ∈ P is a Hölder
potential. For any inducing scheme (X,F ) as in Theorem 3.3 with induced
potential Φ : X → R, for the equilibrium states μϕ for (I, f, ϕ) and μΦ for
(X,F,Φ), there exists CΦ > 0 so that

1
CΦ

≤ dμΦ

dμϕ
≤ CΦ.

Proof of Proposition B.2. Suppose that (X,F ) is an inducing scheme as in the
statement, with induced potential Φ. Since mϕ is ϕ-conformal, the measure
mϕ|X
mϕ(X) is Φ-conformal. Since the Φ-conformal measure is unique, mΦ = mϕ|X

mϕ(X) .

Since by Proposition B.1, dμϕ

dmϕ
is bounded above and below, and since dμΦ

dmΦ
is

uniformly bounded above and below, this implies that dμΦ
dμϕ

is also uniformly
bounded above and below. �

We use the above proposition in the proof of Theorem B to show that
dμϕ

(x) = dμΦ(x) for a full Hausdorff dimension set of points in Kϕ(α).
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[12] Denker, M., Urbański, M.: On the existence of conformal measures. Trans. Am.
Math. Soc. 328, 563–587 (1991)



Vol. 12 (2011) Dimension Theory for Multimodal Maps 619

[13] Dobbs, N.: Measures with positive Lyapunov exponent and conformal measures
in rational dynamics. Trans. Am. Math. Soc. (arXiv:0804.3753) (to appear)

[14] Gelfert, K., Przytycki, F., Rams, M.: Lyapunov spectrum for rational maps.
Math. Ann. 348, 965–1004 (2010)

[15] Gelfert, K., Rams, M.: The Lyapunov spectrum of some parabolic systems.
Ergod. Theory Dyn. Syst. 29, 919–940 (2009)

[16] Hanus, P., Mauldin, R.D., Urbański, M.: Thermodynamic formalism and
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[40] Przytycki, F., Urbański, M.: Fractals in the Plane, Ergodic Theory Meth-
ods. Cambridge University Press, Cambridge (2010)

[41] Rivera-Letelier, J., Shen, W.: Statistical properties of one-dimensional maps
under weak hyperbolicity assumptions. Preprint, arXiv:1004.0230

[42] Sarig, O.: Thermodynamic formalism for countable Markov shifts. Ergod. The-
ory Dyn. Syst. 19, 1565–1593 (1999)

[43] Sarig, O.: Phase transitions for countable Markov shifts. Commun. Math.
Phys. 217, 555–577 (2001)

[44] Sarig, O.: Existence of Gibbs measures for countable Markov shifts. Proc. Am.
Math. Soc. 131, 1751–1758 (2003)

[45] Schmeling, J.: On the completeness of multifractal spectra. Ergod. Theory Dyn.
Syst. 19, 1595–1616 (1999)

[46] van Strien, S., Vargas, E.: Real bounds, ergodicity and negative Schwarzian for
multimodal maps. J. Am. Math. Soc. 17, 749–782 (2004)

[47] Todd, M.: Multifractal analysis for multimodal maps. Preprint, arXiv:
0809.1074 (2008)

[48] Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathemat-
ics 79. Springer, Berlin (1981)

[49] Weiss, H.: The Lyapunov spectrum for conformal expanding maps and Axiom
a surface diffeomorphisms. J. Stat. Phys. 95, 615–632 (1999)

Godofredo Iommi
Facultad de Matemáticas
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