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Homogeneous Schrodinger Operators
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Abstract. The differential expression L,, = —92 4+ (m? — 1/4)z~2 defines
a self-adjoint operator H,, on L?(0,00) in a natural way when m? > 1.
We study the dependence of H,, on the parameter m show that it has a
unique holomorphic extension to the half-plane Rem > —1, and analyze
spectral and scattering properties of this family of operators.

1. Introduction

For m > 1 real, the differential operator L,, = —92 + (m? — 1/4)x~2 with
domain C° = C°(0,00) is essentially self-adjoint and we denote by H,, its
closure. Let U, be the group of dilations on L?, that is (U, f)(z) = e™/2f(e"x).
Then H,, is clearly homogeneous of degree —2, i.e. UTHmUT_1 =e 27H,,. The
following theorem summarizes the main results of our paper.

Theorem 1.1. There is a unique holomorphic family {Hpy,}rem>—1 such that
H,, coincides with the previously defined operator if m > 1. The operators
H,, are homogeneous of degree —2 and satisfy H), = Hp,. In particular, H,,
1s self-adjoint if m is real. The spectrum and the essential spectrum of H,, are
equal to [0, 00 for each m with Rem > —1. On the other hand, for non real
m the numerical range of H,, depends on m as follows:

i) If0 <argm < /2, then Num(H,,) = {z | 0 < argz < 2argm},

i) If —m/2 < argm < 0, then Num(H,,) = {z | 2argm < argz < 0},
iii) If7/2 <|argm| < m, then Num(H,,) = C.
IfRem > —1,Rek > —1 and X\ ¢ [0,00], then (Hpy, — A" — (Hy —A) " Lisa
compact operator.

In the above theorem arg ¢ is defined for ¢ € C\]—o00,0] by —7 < arg( <
m. We note that if 0 < m < 1 the operator L,, is not essentially self-adjoint.
If 0 < m < 1 this operator has exactly two distinct homogeneous extensions
which are precisely the operators H,, and H_,, defined in the theorem: they
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are the Friedrichs and Krein extension of L,, respectively. Theorem 1.1 thus
shows that we can pass holomorphically from one extension to the other. Note
also that Ly has exactly one homogeneous extension, the operator Hy which
is at the same time the Friedrichs and the Krein extension of Lg. We obtain
these results via a rather complete analysis of the extensions (not necessarily
self-adjoint) of the operator L,, for complex m.

We are not aware of a similar analysis of the holomorphic family
{Hm}Rem>—1 in the literature. Most of the literature seems to restrict itself to
the case of real m and self-adjoint H,,. A detailed study of the case m > 0 can
be found in [1]. The fact that in this case the operator H,, is the Friedrichs
extension of L,, is of course well known. However, even the analysis of the
case —1 < m < 0 seems to have been neglected in the literature.

We note that similar results concerning the holomorphic dependence in
the parameter « of the operator H, = (—A+1)'/2 —a/|z| have been obtained
in [4] by different techniques.

Besides the results described in Theorem 1.1, we prove a number of other
properties of the Hamiltonians H,,,. Among other things, we treat the spectral
and scattering theory of the operators H,, for real m, see Sects. 5 and 6: we
obtain explicit formulas for their spectral representation and the corresponding
wave and scattering operators.

Concerning scattering theory, we shall prove that the wave operators
Qik for the pair (H,,, Hy) exist for any real m,k > —1. Since both H,, and
Hj, are homogeneous of the same degree, an easy abstract argument shows
that thk = Qfm(D), where D is the generator of the dilation group and Q:T,k
are functions of modulus one, cf. Proposition 2.9. We explicitly compute these
functions in Sect. 6 and obtain

1—\( k+12+iD )F( m+12—iD )

Qi L= e:i:i(m—k)‘n’/Q

F( k+12fiD )F( m+12+iD ) '

Essentially identical formulas in the closely related context of the Aharonov—
Bohm Hamiltonians were obtained independently by Pankrashkin and
Richard in a recent paper [5].

The scattering theory for H,, suggests a question, which we were not able
to answer. We pose this question as an interesting open problem in Remark 6.5:
can the holomorphic family {Re (m) > —1} > m — H,, be extended to the
whole complex plane? To understand why it is not easy to answer this ques-
tion let us mention that for Re (m) > —1, the resolvent set is non-empty,
being equal to C\[0, co[. Therefore, to prove that {Re (m) > —1} > m +— H,,
is a holomorphic family, it suffices to show that its resolvent is holomorphic.
However, one can show that if an extension of this family to C exists, then for
{m | Rem = —1,-2,..., Imm # 0} the operator H,, will have an empty
resolvent set. Therefore, on this set we cannot use the resolvent of H,,.

Let us describe the organization of the paper. In Sect. 2 we recall some
facts concerning holomorphic families of closed operators and make some gen-
eral remarks on homogeneous operators and their scattering theory in an
abstract setting. Section 3 is devoted to a detailed study of the first order
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homogeneous differential operators. We obtain there several results, which are
then used in Sect. 4 containing our main results. In Sect. 5 we give explicitly
the spectral representation of H,, for real m and in Sect. 6 we treat their scat-
tering theory. In the first appendix we recall some technical results on second
order differential operators. Finally, as an application of Theorem 1.1, in the
second appendix we consider the Aharonov—Bohm Hamiltonian M) depending
on the magnetic flux A and describe various holomorphic homogeneous rota-
tionally symmetric extensions of the family A — M. For a recent review on
Aharonov-Bohm Hamiltonians we refer to [5] and references therein.

To sum up, we believe that the operators H,, are interesting for many
reasons.

e They have several interesting physical applications, eg. they appear in the
decomposition of the Aharonov-Bohm Hamiltonian.

e They have rather subtle and rich properties, illustrating various concepts of
the operator theory in Hilbert spaces (eg. the Friedrichs and Krein exten-
sions, holomorphic families of closed operators). Surprisingly rich is also
the theory of the first order homogeneous operators A, that we develop
in Sect. 3, which is closely related to the theory of H,,.

e Essentially all basic objects related to H,,, such as their resolvents, spectral
projections, wave and scattering operators, can be explicitly computed.

e A number of nontrivial identities involving special functions find an appeal-
ing operator-theoretical interpretation in terms of the operators H,,. Eg.
the Barnes identity (6.4) leads to the formula for wave operators. Let us
mention also the Weber-Schafheitlin identity [3], which can be used to
describe the distributional kernel of powers of H,,.

2. Preliminaries

2.1. Notation

For an operator A we denote by D(A) its domain, sp(A) its spectrum, and
rs(A) its resolvent set. We denote by Num(A) the (closure of the) numerical
range of an operator A, that is

Num(4) :={({f, Af) [ f € D(A), |l =1}

If H is a self-adjoint operator then Q(H ) will denote its form domain: Q(H) =
D(|H[?).

We set Ry =)0, 00[. We denote by 1 the characteristic function of the
subset Ry of R.

We write L? for the Hilbert space L*(R;). We abbreviate C° = C°
(Ry),H' = HY(R;) and Hi = H(R4). Note that H' and H} are the form
domains of the Neumann and Dirichlet Laplacian respectively on R If —oco <
a <b< oo weset L?(a,b) = L*(]a, b]) and similarly for C°(a,b), etc.

Capital letters decorated with a tilde will denote operators acting on dis-
tributions. For instance, let Q and P be the position and momentum operators
on Ry, so that (Qf)(z) = xf(z) and (Pf)(x) = —id, f(x), acting in the sense
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of distributions on R,. The operator Q restricted to an appropriate domain
becomes a self-adjoint operator on L2, and then it will be denoted @. The
operator P has two natural restrictions to closed operators on L2, Py, with
domain H} and its extension Pay with domain H'. We have (Ppin)* = Puax-
The differential operator D := %(]5@—1—@15) = 15@—1—1/2, when consid-
ered as an operator in L? with domain C2°, is essentially self-adjoint and its
closure D has domain equal to {f € L? | PQf € L?}. The unitary group gen-
erated by D is the group of dilations on L?, that is ('"P f)(z) = ™/ f(e"z).
We recall the simplest version of the Hardy estimate.

Proposition 2.1. For any f € H{,

1,
|Puin 1) 2 51@7 1L
Hence, if f € H' then Q='f € L? if and only if f € H}.
Proof. For any a € R, as a quadratic form on C2° we have
0<(P+iaQ V)" (P +iaQ™")
= P?+ia[P,Q Y +a’Q % =P? +ala—1)Q2

Since a(a — 1) attains its minimum for a = 1, one gets |Pf|| > 3|Q~*f||
for f € C°. By the dominated convergence theorem and Fatou lemma this
inequality will remain true for any f € Hg. g

2.2. Holomorphic Families of Closed Operators

In this subsection we recall the definition of a holomorphic family of closed
operators. We refer the reader to [2, Ch. 7] for details.

The definition (or actually a number of equivalent definitions) of a holo-
morphic family of bounded operators is quite obvious and does not need to be
recalled. In the case of unbounded operators the situation is more subtle.

Suppose that © is an open subset of C,H is a Banach space, and
O 5 z — H(z) is a function whose values are closed operators on H. We
say that this is a holomorphic family of closed operators if for each zp € ©
there exists a neighborhood © of 2y, a Banach space K and a holomorphic
family of bounded injective operators ©g > z — A(z) € B(K,H) such that
Ran A(z) = D(H(z)) and

©p 3z H(2)A(z) € B(K,H)

is a holomorphic family of bounded operators.
We have the following practical criterion:

Theorem 2.2. Suppose that {H(z)}.co is a function whose values are closed
operators on H. Suppose in addition that for any z € © the resolvent set of
H(z) is nonempty. Then z — H(z) is a holomorphic family of closed opera-
tors if and only if for any zy € © there exists A € C and a neighborhood ©
of zo such that \ € rs(H(z)) for z € ©g and z — (H(z) — A\)~' € B(H) is
holomorphic on ©g.
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The above theorem indicates that it is more difficult to study holomorphic
families of closed operators that for some values of the complex parameter have
an empty resolvent set.

To prove the analyticity of the resolvent, the following elementary result
is also useful

Proposition 2.3. Assume A € rs(H(z)) for z € ©q. If there exists a dense set
of vectors D such that z — (f,(H(z) — \)~1g) is holomorphic on ©¢ for any
f,9 €D and if z— (H(z) — \)~1 € B(H) is locally bounded on Oy, then it is
holomorphic on ©.

2.3. Homogeneous Operators

Some of the properties of homogeneous Schrodinger operators follow by general
arguments that do not depend on their precise structure. In this and the next
subsections, we collect such arguments. These two subsections can be skipped,
since all the results that are given here will be proven independently.

Let U, be a strongly continuous one-parameter group of unitary opera-
tors on a Hilbert space H. Let S be an operator on H and v a non zero real
number. We say that S is homogeneous (of degree v) if U.SU ! = "™ S for
all real 7. More explicitly this means U,D(S) C D(S) and U, SU-'f = e Sf
for all f € D(S) and all 7. In particular, we get U, D(S) = D(S5).

We are really interested only in the case H = L? and U, = 7" the
dilation group, but it is convenient to state some general facts in an abstract
setting. Then, since we assumed v # 0, there is no loss of generality if we con-
sider only the case v = 1 (the general case is reduced to this one by working
with the group U, /,).

Let T be a homogeneous operator. If T is closable and densely defined
then T™ is homogeneous too. If S C T then S is homogeneous if and only if
its domain is stable under the operators U..

Let S be a homogeneous closed hermitian (densely defined) operator. We
are interested in finding homogeneous self-adjoint extensions H of S. Because
self-adjoint extension satisfies S C H C S™*, we see that we need to find sub-
spaces & with D(S) € € C D(S*) such that U.E C & for all 7 and such
subspaces will be called homogeneous.

Set (S*f,g) — (f,S*g) =: i{f,g}. Then {f,g} is a hermitian continu-
ous sesquilinear form on D(S*) which is zero on D(S) and a closed subspace
D(S) C € C D(S*) is the domain of a closed hermitian extension of S if and
only if {f,g} = 0 for f,g € £ and such subspaces will be called hermitian.
Note the following obvious fact: for f € D(S*) we have {f,g} = 0 for any
g € D(S*) if and only if f € D(S5).

If T is a homogeneous operator and A € C is an eigenvalue of 7', then
e” )\ is also an eigenvalue of T for any real 7. In particular, a homogeneous
self-adjoint operator cannot have non-zero eigenvalues and its spectrum is R,
or Ry, or =Ry, or {0}. (Note that, since U, is a strongly continuous one-
parameter group, the least closed subspace which contains an eigenvector and
is stable under all the U, and all functions of the operator is separable).

The following result, due to von Neumann, is easy to prove:
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Proposition 2.4. Let S be a positive hermitian operator with deficiency indices
(n,n) for some finite n > 1. Then for each X < 0 there is a unique self-
adjoint extension T\ of S such that X is an eigenvalue of multiplicity n of
Tx. Moreover, the negative spectrum of Ty is equal to {\}. In particular, if
S is homogeneous, then Ty is not homogeneous, so S has non-homogeneous
self-adjoint extensions.

Proof. Tt suffices to take D(Ty) = D(S) + ker(S* — \). O

Recall that the Friedrichs and Krein extensions of a positive hermitian
operator S are positive self-adjoint extensions F' and K of S uniquely defined
by the following property: any positive self-adjoint extension H of S satisfies
K < H < F (in the sense of quadratic forms). Then a self-adjoint operator H
is a positive self-adjoint extension of S if and only if K < H < F.

Proposition 2.5. If S is as in Proposition 2.4 and if the Friedrichs and Krein
extensions of S coincide, then any other self-adjoint extension of S has a
strictly negative eigenvalue.

Proof. Indeed, such an extension will not be positive and its strictly negative
spectrum consists of eigenvalues of finite multiplicity. O

It is clear that any homogeneous positive hermitian operator has homo-
geneous self-adjoint extensions.

Proposition 2.6. If S is a homogeneous positive hermitian operator then the
Friedrichs and Krein extensions of S are homogeneous.

Proof. For any T we set T, = e~ "U,TU'. Thus homogeneity means T, = T.
Then from S C T C S* we get S C T, C S*. Clearly, F is a self-adjoint opera-
tor and is a positive extension of S, hence F, < F. Then we also have F_, < F
or eTU,TFU:T1 < F hence F < F.,ie. F = F,. Similarly K = K. O

2.4. Scattering Theory for Homogeneous Operators

In this subsection we continue with the abstract framework of Subsect. 2.3.

We shall consider couples of self-adjoint operators (A, H) such that H is
homogeneous with respect to the unitary group U, = €74 generated by A4, i.e.
U.HU-! = eTH for all real 7. We say that H is a homogeneous Hamiltonian
(with respect to A). This can be formally written as [14, H] = H. It is clear
that H is homogeneous if and only if U,p(H)U-' = (e"H) holds for all
real 7 and all bounded Borel functions ¢ : o(H) — C. In addition, it suffices
that this be satisfied for only one function ¢ which generates the algebra of
bounded Borel functions on the spectrum of H, for example for just one con-
tinuous injective function. If we set V,, = ' then another way of writing the
homogeneity condition is U,V, = Ve-,U, for all real 7, 0.

We shall call (A, H) a homogeneous Hamiltonian couple. We say that this
couple is irreducible if there are no nontrivial closed subspaces of H invariant
under A and H, or if the von Neumann algebra generated by A and H is
B(H). A direct sum (in a natural sense) of homogeneous couples is clearly a
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homogeneous couple. Below H > 0 means that H is positive and injective and
similarly for H < 0.

Proposition 2.7. A homogeneous Hamiltonian couple (A, H) is wunitarily
equivalent to a direct sum of copies of homogeneous couples of the form (P,e®)
or (P,—e®) or (Ag,0) with Ay an arbitrary self-adjoint operator. If H > 0,
then only couples of the first form appear in the direct sum. A homogeneous
Hamiltonian couple is irreducible if and only if it is unitarily equivalent to one
of the couples (P,e?) or (P,—e®?) on L*(R), or to some (Ag,0) with Ay a real
number considered as operator on the Hilbert space C. A homogeneous couple
1s irreducible if and only if one of the operators A or H has simple spectrum
(i.e. the von Neumann algebra generated by it is maximal Abelian), and in this
case both operators have simple spectrum.

Proof. By taking above ¢ equal to the characteristic function of the set R,
then —Ry, and finally {0}, we see that the closed subspaces H.,H_,Ho
defined by H > 0,H < 0, H = 0, respectively, are stable under U,.. So we
have a direct sum decomposition H = Hy & H_ & Hy which is left invariant
by A and H. Hence, A = A, @ A_ & Ay and similarly for H, the operator H
being homogeneous with respect to A, and so on. Since Hy = 0 the operator
A can be arbitrary. The reduction in H_ is similar to the reduction in H,
it suffices to replace H_ by —H_.

Thus to understand the structure of an arbitrary homogeneous Hamil-
tonian H, it suffices to consider the case when H > 0. If we set S = In H
then by taking ¢ = In above we get U,SU-! = 7 + S for all real 7. Hence,
the couple (A, S) satisfies the canonical commutation relations, and so we may
use the Stone—von Neumann theorem: H is a direct sum of subspaces invariant
under A and S and the restriction of this couple to each subspace is unitarily
equivalent to the couple (P, Q) acting in L?(R). Because H = ¢, we see that
the restriction of (A4, H) is unitarily equivalent to the couple (P,e%) acting in
L?(R). O

Remark 2.8. Thus, an irreducible homogeneous couple with H > 0 is unitarily
equivalent to the couple (P,e?) on H = L?(R). A change in variables gives
also the unitary equivalence with the couple (D, Q) acting in L?(R, ), where
D= (PQ+QP)/2.

In the next proposition we fiz a self-adjoint operator A with simple spec-
trum on a Hilbert space H and assume that there is a homogeneous operator
H with H > 0. Then, the spectrum of A is purely absolutely continuous and
equal to the whole real line by the preceding results. Moreover, the spectrum
of H is simple, purely absolutely continuous and equal to R, . Homogeneity
refers always to A.

Proposition 2.9. Assume that H1, Ho are homogeneous Hamiltonians such that
Hy, > 0. Then, there is a Borel function 6 : R — C with |6(z)| = 1 for all x such
that Hy = 0(A)H,10(A)~t. If 0 is a second function with the same properties,
then there is X € C such that |\ = 1 and ¢'(xz) = AN(z) almost everywhere.
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If the wave operator Q. = s — lim;_, o e*2e 1 eyists, then there is a func-
tion 0 as above such that Qy = 0(A) and this function is uniquely determined
almost everywhere. If the wave operator Q_ = s — limy_,_o e*f2e 1 glso
exists then there is a uniquely determined complex number & such that £Q_ =
Q. In particular, the scattering matriz given by S = Q* Qy = £ is indepen-
dent of the energy.

Proof. As explained above the couples (A, Hy) and (A, Hs) are unitarily equiv-
alent, hence there is a unitary operator V on H such that VAV ! = A and
VH,V~! = H,. The spectrum of A is simple and V commutes with A so there
is a function 6 as in the statement of the proposition such that V' = 0(A). If W
is another unitary operator with the same properties as V then WV =1 com-
mutes with A and H,. From the irreducibility of (4, Hy), it follows that WV 1
is a complex number of modulus one. Uniqueness almost everywhere is a con-
sequence of the fact that the spectrum of A is purely absolutely continuous
and equal to R.
Assume that 1 exists. If we denote 0 = e™" then
eitHag=itHi)  _ GitHay o=iotHy _ [ oiotHg—iotH:

hence Q U, = U, for all real 7. So the isometric operator {24 belongs to
the commutant {A}', but {A}” is a maximal Abelian algebra by hypothesis, so
equal to {A}'. Hence, 2 must be a function §(A) of A, in particular it must
be a normal operator, hence unitary. Now we repeat the arguments above.
Since the spectrum of A is equal to R and is purely absolutely continuous, we
see that |6(z)| = 1 and is uniquely determined almost everywhere. Similarly, if
Q_ exists, then it is a unitary operator in {A}”. Thus S = Q* Q. is a unitary
operator in {A}”, but also has the property H;S = SH;. Since the couple
(A, Hy) is irreducible, we see that S must be a number. O

3. Homogeneous First-Order Operators

In this section, we prove some technical results on homogeneous first-order dif-
ferential operators which, besides their own interest, will be needed later on.
For each complex number «, let A, be the differential expression

Ay =P +iaQ ' = —i0, + pag —ix®0,x~ <, (3.1)
x

acting on distributions on R, where 2% := e*!°8? with logz € R. Its restric-
tion to C° is a closable operator in L? whose closure will be denoted A",
This is the minimal operator associated with A,. The mazimal operator AR
associated with A, is defined as the restriction of A, to D(A™™) .= {f € L? |
Anf € L?}. ‘
The following properties of the operators AM"™ and AL®* are easy to

check:

(i) Amin C A,

(i) (Apin)* = A™max and (Apa)* = A™i,

(iii) A™n and AMaX are homogeneous of degree —1.
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A more detailed description of the domains of the operators A™™ and
Amax ig the subject of the next proposition. We fix £ € C2°(]0, +o00[) such that
E(x)=1for x <1 and &(z) =0 for x > 2 and set &, (x) = x*&(x).

Proposition 3.1. (i) We have A™IN = AM2% if and only if |[Rea| > 1/2.
(i) If Rea # 1/2, then D(A™M) = H{.
(iii) If Rea = 1/2, then H} € H} + C&, € D(A™™) and H} is a core for
Aglin — Agax.
(iv) If [Rea| < 1/2, then D(Am**) = H} + C&,,. In particular, if [Rea| < 1/2
and [Re B| < 1/2 then D(AJ™) # D(AF™).

To prove these facts we first need to discuss the resolvent families. Let
Ci ={X e C| £ImA > 0}. The holomorphy of families of unbounded opera-
tors is discussed in Subsect. 2.2.

Proposition 3.2. (1) Let Rea > —1/2. Then
(i) rs(AM™x)=C_.
(i) IfIm A\ < 0, then the resolvent (A™** — X)~1 is an integral operator
with kernel

(A =0 o) = e (£) - ), (32)

(iii) The map a — AT** is holomorphic in the region Rea > —1/2.
(iv) Each complex A\ with Im A > 0 is a simple eigenvalue of AR** with
e g5 associated eigenfunction.
(2) Let Rea < 1/2. Then
(i) rs(Amin) =C,.
(ii) IfTm A > 0 then the resolvent (A™" — \)~! is an integral operator
with kernel

(AZ™ — \) 7 (2, y) = ieN@Y) (5) 1y (z —y). (3-3)

(iii) The map o +— A™M js holomorphic in the region Rea < 1/2.
(iv)  The operator A™™ has no eigenvalues.

In some cases A™M and A8 are generators of semigroups. We define
the generator of a semigroup {7} };>0 such that formally T, = el™4 Note that
in (3.5) the function f is extended to R by the rule f(y) =0 if y < 0.

Proposition 3.3. If Rea > 0, then iA™®* s the generator of a C°-semigroup
of contractions

(42 F) () = 2%z +t) " f(x + 1), t>0, (3.4)

whereas if Rea < 0, the operator —iA™™ is the generator of a C°-semigroup
of contractions

(e 4" ) (@) = a%(x — 1) f(a — 1), t>0. (3:5)

The operators iAR* for —1/2 < Rea < 0 and —iA™™® for 0 < Rea < 1/2 are
not generators of C°-semigroups of bounded operators.
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The remaining part of this section is devoted to the proof of these three
propositions. We begin with a preliminary fact.

Lemma 3.4. If R and S are closed operators such that 0 € rs(R), then the
operator RS defined on the domain D(RS) = {f € D(5)|Sf € D(R)} is
closed.

Proof. Let u, € D(RS) such that u, — v and RSu, — v. Then u,, € D(S)
and Su, € D(R), so that Su,, = R~'RSu,, — R~ 'v, because R~! is contin-
uous. Since S is closed, we thus get that u € D(S) and Su = R~'v. Hence
Su € D(R), i.e. u € D(RS), and v = RSu. O

Note that the Hardy estimate (Proposition 2.1) gives ||ﬁafH < (14
2la|)||Pf| for all f € H}. Since C2° is dense in H}, we get H} C D(A™™®) for
any a. Our next purpose is to show that D(A™") = H} if Rea # 1/2, which
is part (ii) of Proposition 3.1.

Lemma 3.5. If Rea # 1/2, then D(AD) = H}.

Proof. We set 8 = i(1/2 — «) and observe that it suffices to prove that the
restriction of A, to H} is a closed operator in L? if Im 3 # 0. For this we
shall use Lemma 3.4 with R = D — 3 and S equal to the self-adjoint operator
associated to Q! in L2. Then it suffices to show that ZQ\H& = RS.

The equality A, = (D—B)Q~", where D = (PQ+QP)/2 is the extension
to distributions of D, holds on the space of all distributions on R, so we only
have to check that the domain of the product RS is equal to H (because 3 is
not in the spectrum of the self-adjoint operator D). As discussed before, if f €
H} then Q71f € L?, so f € D(S), and PQQ~'f = Pf € L? s0o Sf € D(D).
Thus H} C D(RS). Reciprocally, if f € D(RS) then f € L?,Q~'f € L?, and
DQ~'f € L?. But DQ™'f € L? is equivalent to Pf € L2, so f € H'. Since
Q'f € L? weget f € HL. O

Our next step is the proof of part (1) of Proposition 3.2. Assume Re a >
— 2. The last assertion of part (1) of Proposition 3.2 is obvious, so sp(AZ¥)
contains the closure of the upper half plane. We now show that if ImA < 0
then \ € rs(A™8*) and the resolvent (A2#* — X)~! is an integral operator with
kernel as in (3.2).

The differential equation (A, — A)f = g is equivalent to (2=~ A*
f(x)) = iz~ Mg(x). Assume g € L?(0,00). We look for a solution f €
L?(0,00) of the previous equation. Since Im () < 0, the function z~%e~'*%
g(x) is square integrable at infinity. We thus can define an operator R2'®* on
L? by

(R2™g)(x) = —i/oo (5) ) NV g(y)dy,

x

i.e. R is the integral operator with kernel given by (3.2).

Lemma 3.6. R™* js a bounded operator in L*.
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Proof. For shortness, we write R for R2**. In the sequel, we denote A\ = p+iv
and a = Rea. By our assumptions, we have v < 0 and a > —1/2. If a > 0
then the proof of the lemma is particularly easy, because

o0 o0 o0
/WRCayndyzaﬂawm/}rﬂdeyserw{/ery:-ﬂr%
0 x x

and similarly [ |R(z,y)|dz < —v~'. Then the boundedness of R follows
from the Schur criterion. To treat the case —1/2 < a < 0 we split the integral
operator R in two parts Ry and R, with kernels

Ro(ff,y) = ﬂ]O,l[(x)R(‘rvy)v Rl(x7y) = ]1[1700[(33)R(x7y)

We shall prove that R; is bounded and Ry is Hilbert—Schmidt. For R, we use
again the Schur criterion. If # < 1, then [~ [Ry(z,y)|dy = 0 while if z > 1
then

/\Rl(w,y)ldy= m“e_””c/y‘“e”ydz»/-
0 x

We then integrate by parts twice to get

_ —1 a a’(a’ + 1) a,_ —vx vy, —a—2
[1riply = - = o A D geee [y aay. (30
0 T
Then, using a > —1/2, we estimate
xae—uz/euyy—a—Qdy < xa/y—a—2dy _ 1
- (a+1)x’

which, together with (3.6), proves that sup,; [, [Ri(z,y)|dy < +oc. Simi-
larly [°|Ri(z,y)|dz =0if y <1, and for y > 1

Yy
/|R1($»y)|dw =y_“e”y/m“e‘”dy
1

is estimated similarly. We now prove that the operator Ry is Hilbert-Schmidt.
We have

oo

/dx/dy\Ro x,y)|° = /dmea _QVI/dyy_QaeQ”y.

T

Since a and v are strictly negative, the integral fooo y~2%e2¥¥dy converges.

Hence
1
/dx/dy|R0 x,y)] / Zag=2ve g,
0

which is convergent because a > —1/2. O
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So we proved that for Im (A\) < O the operator R defines a bounded
operator on L? such that (Za — M)Rg = g for all g € L?. Hence, R : L?> —
D(AR*) and (AP — AR = 1pe.

Reciprocally, let f € D(AD#) and set g := (A" — \)f € L?. The pre-
ceding argument shows that (A2?* —\)(f — Rg) = 0. But A2** — ) is injective.
Indeed, if (A3 — X\)h = 0, then there exists C' € C such that h(x) = Cz%e**
which is not in L? near infinity unless C' = 0 (recall that Im X\ < 0).

We have therefore proven that each A € C_ belongs to the resolvent
set of A and that (Ama* — \)~! = R. If we fix such a A and look at
R = R(«) as an operator valued function of « defined for Rea > —1/2, then
from the preceding estimates on the kernel of R it follows that |R(c)]| is a
locally bounded function of a. On the other hand, it is clear that if f, g € Cg°,
then a +— (f, R(«)g) is a holomorphic function. Thus, by Proposition 2.3,
a— (Amax — X\)~1 is holomorphic on Re« > —1/2. This finishes the proof of
point (1) of Proposition 3.2. The second part of the proposition follows from
the first part by using the relation AMIn = (Amax)*,

We now complete the proof of Proposition 3.1 and consider first the most
difficult case when Re () = 1/2. The function &, is of class C* on Ry, is
equal to zero on z > 2, we have &, € L?, and /Tafa = 0 on x < 1. Hence
£o € D(AM®). On the other hand ¢/, ¢ L? (it is not square integrable at the
origin) so &, ¢ H}.

Lemma 3.7. Let Re (o) > 1/2. Then &, € D(A™D).

Proof. The case Rea > 1/2 is obvious since &, € Hj. Now for Rea = 1/2
we prove that &, belongs to the closure of H} in D(A22X) which is precisely
D(ARM), For 0 < £ < 1/2 we define &, . as

£ () = Zx*  if w <e,
s = o) ifz>e

For z < ¢ one has ¢, (z) = “FHa®. Hence ¢, . € L? so that &. € Hj.
Moreover ||€n,e — &allrz — 0 as € — 0. We then have
~ _{—;z”‘ if x <e,

Anéa = d Aula(z)=0 ifa<l,
Sanc () 0 if e <z <1, o fa(®) ne

while Zafa,s(x) = Zlafa(:r) if z > 1. Therefore
~ xa
Aatocle = [ |2

0

Thus &c — & in L&y € Hy C D(AY™), and there is C' > 0 such that
|Aabacllz < C for any e. Since AZ®* is closed, this proves that &, belongs
to the closure of H} in D(AR) ie. £, € D(AMM),

2
~ 1 ~
dz + ||Aa§a||2L2 = 9 + ||Aa§a||2L2'

Lemma 3.8. Let Re (o) > 1/2. Then D(ARM) = D(Amax),



Vol. 12 (2011) Homogeneous Schrodinger Operators on Half-Line 559

Fix A € C such that Im (\) < 0, e.g. A = —i, and let R = (Am** +i)~1. R
is continuous from L? onto D(AT#*) hence R(C®) is dense in D(ATX). Let
now g € C and 0 < ¢ < d < oo such that supp g C [¢, d]. Then for any x < ¢,

d
£(0) = (Ro)(a) = —is"e” [y e g(u)dy
c
~ Oz + Cx*(e® — 1) ~ Ca®+ Dx**!
as ¢ — 0. Hence f € C&, + H}. Therefore R(C) C C&, + HE C D(ARR),
Since R(C°) is dense in D(AR2X), the same is true for D(A™"). But A™" is
a closed operator, and so D(AM™) = D(ARax), O

Lemma 3.9. If Rea = 1/2, then C&, + H} # D(AM),

Proof. Let R be as above and let g(y) = y~%| In(y)[ "o, 1((y) where v > 1/2.
Then g € L?, hence Rg € D(A™**). On the other hand, for z < 1/2 we have

1

Rg(x) = —ixo‘e’:/

T

mdy ~ Cxa| 1n(1’)|17w

as z — 0. In particular, if v < 1, then Rg ¢ C&, + Hj. O

All the assertions related to the case Rea = 1/2 of Proposition 3.1 have
been proved. Since

Amin — gmax ., gmin _ gmax (3.7)
holds for any «, we get AN = AN and so D(AD™) = H} if Rea = —1/2.
We now turn to the case [Re (a)| > 1/2 and show D(AM*X) = D(AD") = H}.
Due to (3.7) it suffices to consider the case Re« > 1/2, which is precisely the
statements of Lemmas 3.5 and 3.8. Now we prove (iv) of Proposition 3.1.

Lemma 3.10. If |Rea| < 1/2, then C&, + H} = D(AD™).

Proof. Clearly, &, ¢ H}. We easily show that &, € D(ADax).
Once again, let R = (A + i)~ and let f € D(AD*). There exists
g € L? such that f = Rg, or

f(x) = —ifc“ex/e_yy_ag(y)dy-

We show that f € C&,+ H{. Clearly, only the behaviour at the origin matters.
For x < 1 decompose f as

f(z) = —iz%e? / e Yy g (y)dy + iz%e” / ey g(y)dy = fol) + fu(2).
0 0

Note that the first integral makes sense because |Re (a)| < 1/2, so e ¥y~ is
square integrable. Clearly

fo(z) = Cx%e” = Ca® + Ca®(e” — 1) € C&, + H}
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near the origin. We then prove that f; € H{ near the origin. By construction,
(A, +1i)f1 = g € L?, so if we prove that Q' f; is in L? near the origin, we
will get f; € H! near the origin, and hence f; € H} near the origin.

For any 0 < 2 < 1 we can estimate (with a = Re « as before)

+oo

Y =1 / e (2) st < / e2g(Dlat (39

For any t > 1 let 7; be the map in L? defined by (7:9)(z) = g(z/t), and let
T = [t*2rdt. We have ||7;||r2—z2 = v/t hence T is a bounded operator
on L? with ||T|| < [ t2~3/2dt which converges since a < 1/2. Together with
(3.8), this proves that L f(z) is square integrable on ]0, 1[. This completes the
proof of Proposition 3.1.

It remains to prove Proposition 3.3. Since this is just a computation, we
shall only sketch the argument. Note that it suffices to consider the case of
Amax hecause then we get the result concerning A™" by taking adjoints. Let
us denote A§'* = Pax, S0 Ppax is the restriction to the Sobolev space H Lof
the operator P. It is well-known and easy to check that P,.x is the generator of
the contraction semigroup (eltfmex f)(z) = f(x +t) for t > 0 and f € L% Now
if we write (3.1) as A, = Q*PQ~?, then (3.4) is formally obvious, because it
is equivalent to

eitA;“HLX _ Qaeithax Qfa )

For a rigorous justification, we note that the right hand side here or in (3.4)
clearly defines a Cy-semigroup of contractions if (and only if) Rea > 0, and
then a straightforward computation shows that its generator is A%'**. One may
note that C¢° + C¢&, is a core for AL for all such a.

4. Homogeneous Second-Order Operators

4.1. Formal Operators
For an arbitrary complex number m we introduce the differential expression
m? —1/4

L= PP+ (= 1/0)Q 72 = —02 + "

(4.1)
acting on distributions on R,. Let L™ and L™** be the minimal and max-
imal operators associated to it in L? (see Appendix A). It is clear that they
are homogeneous operators (of degree —2, we shall not specify this anymore).
The operator L™ is hermitian if and only if m? is a real number, i.e. m is
either real or purely imaginary, and then (LM")* = LMaX In general, we have

(Lmin)* — [ fax
m m °
Note that (4.1) does not make any difference between m and —m. We will
however see that m, not m?, is the natural parameter. In particular this will

be clear in the construction of other L? realizations of L,,, i.e. operators H
such that L))" C H C L.
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Observe also that one can factorize im as
. _ om+ I\ /- +1 ~ .
L= (P+il2) (P+il2) =4 A,
Q Q kg

where Z; +1 is the formal adjoint of the differential expression gﬁl 41 The
above expression makes a priori a difference between m and —m, since L,,
does not depend on the sign of m, whereas the factorizations corresponding to
m and —m are different. These factorizations provide one of the methods to
distinguish between the various homogeneous extensions of L™, However, as
we have seen in the previous section, one has to be careful in the choice of the
realization of A, 1.

(4.2)

[N

4.2. Homogeneous Holomorphic Family

If m is a complex number we set

m(x) = 22T it m £ 0 and (o(z) = Cro(r) = VE, (o(w) = Vaelna,
(4.3)

The notation is chosen in such a way that for any m the functions (4, are
linearly independent solutions of the equation L,,u = 0. Note that (1, are
both square integrable at the origin if and only if |Rem| < 1.

We also choose £ € C*°(R) such that £ =1 on [0,1] and 0 on [2, o0].

Definition 4.1. For Re(m) > —1, we define H,, to be the operator LM
restricted to D(L2™) 4+ CECp-

m

Clearly, H,,, does not depend on the choice of £. Our first result concerning
the family of operators H,, is its analyticity with respect to the parameter m.

Theorem 4.2. {H,,}rem>—1 s a holomorphic family of operators. More pre-
cisely, the number —1 belongs to the resolvent set of H,, for any such m and
m v (Hp, +1)71 € B(L?) is a holomorphic map.

_ Before we prove the above theorem, let us analyze the eigenvalue problem
for L,,. The latter is closely related to Bessel’s equation. In the sequel, J,, will
denote the Bessel functions of the first kind, i.e.

o~ (=1 (x/2)m
Jm(x) = jzz(:) m7 (4'4)

and I,,, and K,, the modified Bessel functions [7]

zf_m(x) - Im(z).

I, (2) =1 Jp(iz), K,(z) = 5 sin ()

(4.5)
Lemma 4.3. For any m such that Re(m) > —1, the functions /xIy(z),
VZK,, (z) form a basis of solutions of the differential equation —d2u + (m? —
1)5u = —u such that /zl,(z) € L*(]0,1]) and zK,,(z) € L*(]1,+00]).
Besides, the Wronskian of these two solutions equals 1.
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Proof. If we introduce w(z) = x~1/2v(z), then v satisfies Lyv = —v iff w
satisfies

22w’ (z) + zw(x) — (22 + m*)w = 0,

which is modified Bessel’s differential equation. Linearly independent solutions
of this equation are (I, K,,). Therefore, a basis of solution for the equation
Lyu = —uis (Valn (@), VoK (z)) = (uo, tso).-

One has I, (2) Ky (z) — Iy (2) K}, () = —1 (see [7]), and hence W =
Uhloo — UpUh, = 1. Moreover, I, (z) ~ F(m+1 (%) as © — 0 [7]. There-
fore, ug(x ) is square integrable near the origin iff Re (m) > —1. On the other
hand, K,, \/7 e~ " as x — 00, so that u., is always square integrable
near oo. 0

Note that v/xI,,(x) belongs to the domain of H,, for all Re (m) > —1.
Therefore, the candidate for the inverse of the operator H,, + 1 has kernel (cf.
Proposition A.1)

Gn(z,y) = {\/@Im(x)Km(y) if z <y,
o \/@Im(y)Km(w) if x> 9.

We still need to prove that G,, is bounded, which will be proven in the next
lemma.

Lemma 4.4. The map m — G, is a holomorphic family of bounded operators
and it does not have a holomorphic extension to a larger subset of the complex
plane.

Proof. We prove that G, is locally bounded and that m — (f, G,,g) is analytic
for f,g in a dense set of L2, so that the result follows from Proposition 2.3.

The modified Bessel functions depend analytically in m. Therefore, the
Green function G,,(z,y) is an analytic function of the parameter m, and it is
easy to see that for any f,g € C>°(]0, +o0[), the quantity (f, (H,, +1)"1g) =
[ f(@)Gm(z,y)g(y)dady is analytic in m. Since C(]0,+oc[) is dense in
L?(0, 4+00), it remains to prove that (H,, + 1)~ is locally bounded in m.

We shall split this resolvent as G,,, = G;,~ + G, + G~ + GLT, where
G+ is the operator that has kernel GE* (z,y) with

:n (z, G(z,y) 0,11 (2) Mo, 11(y)
m(, G (2, ) Wo,1)(2) U1, 00((y) »
( G( ay)]l]l oo[( )H]O,l](y)a

(

G++( G(,y) N1 oo () N1 0o(y)-

We control the norm of G,/ using Schur’s Theorem (see [8]), whereas for the
other terms, we estimate the L? norm of the kernel. (This means in particular
that G,,~, G, 7 and G}~ are actually Hilbert—Schmidt).

For that purpose, we use the explicit expression given in Lemma 4.3
together with the following estimates on the modified Bessel functions (see

e.g. [7]):

y) =
y) =
y) =
y) =
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e asx — 0,

1 T\™
I (@) ~ TmTD) (§> . omA—1,-2,..., (4.6)
Re (T(m) (2)™) if Rem =0, m # 0,
—In(%) —~ if m =0,
Ko () ~ m 47
n () Dm) (2 if Rem >0, )
LCm) (z)™ if Rem < 0.
e as T — 00,
1 xr
I () ~ Norralk (4.8)
™ —x
Ko () ~ ¢ (4.9)

The various constants which appear in (4.6)—(4.9) are locally bounded in m,
except T'(m) as m goes to zero, so that we may estimate the G:* (x,y) by

G ()| < ConlT ()| (212 W14 Dy ()

+ $1/2+”y1/2_‘yl]10<z<y<1(35a y)) ,
G ()| < Cvmefa:yu+1/2]1]1700[(1,)]1]071](1/)’ (4.10)
|Gt (@,9)] < Co” ™ 2e Vg 1y (2) W1 o)
GEF ()] < Come™ 79y (@) 1 o)

where v = Re (m) and C,, are constants which depend on m but are locally
bounded in m. The only problem is when m = 0, where we shall replace

(4.10) by
|Gy " (z,y)| < C (91/2\ In(z)|locy<aci(z,y) + 961/2| ln(y)|]10<z<y<1($7y)> .
(4.11)

Note also that the constant appearing in (4.10) blows up as m goes to zero
due to the factor |T'(m)].
Straightforward computations lead to the following bounds:

- Cm[L(m))|
2
, <
1Gn Iz < oD T2 2y ™7
C
S 22 < m
||Gm ||L —= 4(1+V)7
C
+— 22 < m
||Gm ||L — 4(1+V)7

”G;JFHL;;O(L;) < 2Cnh,

||GTT1+||L?(L;) < 20.
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This proves that G, =, G, 7 and G~ are Hilbert-Schmidt operators whose
norm is locally bounded in m (except maybe for G; ~ near 0). Using Schur’s
Theorem G,/ T is bounded with |G} T || < 2C(m).

It remains to prove that G~ is locally bounded around 0. To this end

we use |K,(2)] < C % and estimate the Hilbert—Schmidt norm, where
we set v := Rem:

G () Pdady
O<r<y<l

c _
<o [ Py
0<z<y<1

G R S B P
T mP2\4v+2 4 2w+4) Aw+1)v+2)
As a conclusion, G, is locally bounded in m for all m such that Re (m) > —1.
We finally prove that G,, does not extend to a holomorphic family of
bounded operators beyond the axis Rem = —1. Fix g € C2°(]0,00[). The
function m — G,,g with values in L2 _(]0, 00[) is entire analytic. If G,, could
be extended to a holomorphic family of bounded operators, when applied to
the function g this extension should coincide with G,,,g. For & below the sup-
port of g we clearly have

[o0]

() @) = VELn(0) [ VTEom (0)9(0)dy = Con 1 (2)
0
which is not in L? if Rem < —1. [l

This proves that for Re (m) > —1 the number —1 belongs to the resolvent
set of H,,, we have G,, = (H,, + 1)7%, and H,, is a holomorphic family of
operators, cf. Proposition 2.3. This proves Theorem 4.2.

The next theorem gives more properties of the operators H,,. The main
technical point is that the differences of the resolvents R, (X) — Ry, (\) are
compact operators, where we set R,,(\) = (H,, — A)~! for X in the resolvent
set of H,,. For the proof we need the following facts.

Lemma 4.5. Let Q be an open connected complex set, X a Banach space, Y a
closed linear subspace of X, and F : Q — X a holomorphic map. If F(2) €Y
for z € w, where w C Q has an accumulation point in S, then F(z) € Y for
z € Q.

Proof. All the derivatives of F' at an accumulation point of w in € can be
computed in terms of F|,, hence belong to the closed subspace generated by
the F'(z) with z € w. O

Lemma 4.6. Let S, T be two closed operators on a Banach space H and let
KO\) = (S=XN)"1—(T—-X\"L. If K()\) is compact for some \ € 1s(S) Nrs(T)
then K(X) is compact for all X € rs(S) Nrs(T).
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Proof. We denote Sy = (S — A)~! and Sy, = (S — \)(S — p)~! and use
similar notation when S is replaced by 7. Then Sy = S5,,5,x, hence K(\) =
K()Sux +Tu(Sux —Tpn). If K(p) is compact then the first term on the right
hand side is compact. For the second term we note that

Sux = Tux = Sy, — Ty,
=(1+(u—NS) ' =1+ (u—NT) ™
= (,“ - )‘)S;MK(N)T#M

and the last expression is a compact operator. O

Theorem 4.7. For any Re (m) > —1 we have sp(H,,) = R, and if A € C\R,
then R, (X\) — Ri/2(N) is a compact operator. If R, (A\;x,y) is the integral
kernel of the operator Ry, (\), then for Rek > 0 we have

_ 1.2, _ \/@Im(kx)Km(ky) if r <y,
Ry (k5 2,y) = {\/g?yfm(ky)Km(kz) if > . (412)

Proof. We first show that G, — G2 is compact for all m. From Lemma 4.5
it follows that it suffices to prove this for 0 < m < 1/2 (take X the space
of bounded operators, Y the subspace of compact operators, w =]0,1/2[ and
O ={z € C,Rez > —1}). In this case H,, is a positive operator and we have
H,, = Hy/2+V in the form sense, where V(z) = az™? with a = m? — 1/4,
hence —1/4 < a < 0. The Hardy estimate (Proposition 2.1) implies £V <
4la|H, /2, and 4|a| < 1, so if we set S = (H; /2 + A)~12 with A > 0 we get

+SVS < 4lalHyjo(Hyjo+N) " < 4la| < 1.
Thus ||SVS|| < 1. From H,, + A = S~}(1 + SVS)S~! we obtain

(Hp +XN) =851+ 8SVS)™s
= (Hyjo + A2
+> (~1)"S(SVS)" TSV S

n>0

where the series is norm convergent. Hence R,,(—\) — R1/2(—A\) is compact if
SV 52 is compact (recall that we assume 0 < m < 1/2).

We now prove that SV S? is a compact operator. Note that S? = (Hyjo+
A)~t and H, /3 is the Dirichlet Laplacian, so that S?L? = HiNH? and SL? =
H{. Thus we have to show that V when viewed as operator H} N H? — H~!
is compact. Clearly this operator is continuous, in fact V is continuous as
operator H} — H~!. Moreover, H is the subspace of H} N H? defined by
f'(0) = 0, hence is a closed subspace of codimension one of H} N H2. Thus
it suffices to prove that V : H? — H~! is compact. Let 6 be a C* function
which is equal to one for z < 1 and equal to zero for x > 2. Clearly (1 —6)V is
a compact operator HZ — L%, and so it suffices to prove that 0V : H3 — H 1
is compact. Again it is clear that # : L? — H~! is compact, so it suffices to
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show that V' : HZ — L? is continuous. If f € C§°, then

T 1
V@) = Vi) [ )y = eV [(1-0f
0 0
So if ¢ = sup,, |22V (z)|, then
1 1
4
ol <e [a-olrela=c [ -0 2] = Fr
0 0

hence V : HZ — L? is continuous.

Thus we proved that R,,(—1) — Ri/3(—1) is a compact operator if
Re(m) > —1. From Lemma 4.6 it follows that R,,(\) — Ry/2(A) is compact
if A is in the resolvent set of H,, and of H;/,. We have sp(H; ;) = R, and
we now show that sp(H,,) = R. Clearly the operator G2 is self-adjoint, its
spectrum is the interval [0, 1], and we have G,,, = G /2 + K for some compact
operator K. Thus if z ¢ [0, 1], we have

G —2=(Gija—2) [14(G1j2—2) K] = (G120 — 2) [1 + K(2)]

where K (-) is a holomorphic compact operator valued function on C\[0, 1]
such that ||K(z)|| — 0 as 2z — oo. From the analytic Fredholm alternative it
follows that there is a discrete subset N of C\[0,1] such that 1 + K(z) is a
bijective map L? — L? if z ¢ [0,1] U N. Thus G,, — z is a bijective map in L?
if 2 ¢ NU|[0,1]. The function z — A = z~! — 1 is a homeomorphism of C\{0}
onto C\{—1} which sends ]0, 1] onto R, hence the image of N through it is a
set M whose accumulation points belong to Ry U{—1}. If A ¢ R, U{-1}UM,
then

A+ 1) = (Hpy + D) = A+ 1) (Hyy — A (Hy + 1)

and the left hand side is a bijection in L?, hence H,, — A is a bijective map
D(H,,) — L% So X belongs to the resolvent set of H,,. Thus the spectrum of
H,, is included in Ry U{—~1} U M. But H,, is homogeneous, so sp(H,,) must
be a union of half-lines. Since it is not empty, it has to be equal to R .

The explicit form of the kernel of R,,(\) given in (4.12) can be proven
by a minor variation of the arguments of the proof of Theorem 4.2 based on
more refined estimates for the modified Bessel functions. Since we shall not
need this formula, we do not give the details. 0

Remark 4.8. We describe here in more abstract terms the main fact behind
the preceding proof. Let Hy be a self-adjoint operator on a Hilbert space H
with form domain K = D(|Hy|'/?) and let V' be a continuous symmetric ses-
quilinear form on . If V', when viewed as operator K — K*, is compact, then
it is easy to prove that the form sum H = Hy + V is well defined, and that
(H —2)~t — (Hg — z)~! is a compact operator on H (in fact, also as operator
K* — K). This compactness condition on V' is never satisfied if Hy and V' are
homogeneous of the same orders, so this criterion is useless in our context. But
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our argument requires only that V' be compact as operator D(Hy) — K*, and
this property holds in the case of interest here.

4.3. Domain of the Minimal and Maximal Operator

In this subsection we analyze the operators L™in and LXax,

Proposition 4.9. If [Rem| < 1, then L™n C LM gnd D(LMM) is a closed
subspace of codimension two of D(L0a).

Proof. In this case, we have two solutions of L,,u = 0 that are in L? around
0. Hence, the result follows from Proposition A.5. O

Proposition 4.10. If [Rem| > 1, then L™ = LM% Hence, for Re(m) > 1,
H,, = L = [max,

Proof. We use the notation of the proof of Lemma 4.3. We know that the
operator (,, is continuous in L2, that the functions ug and s, are uniquely
defined modulo constant factors, and there are no solutions in L? of the equa-
tion (L, + 1)u = 0. Lemma A.1 says that (L,, + 1)Gg = g for all g € L?,
hence (L8 4+ 1)G,, = 1 on L2, In particular, G,, : L? — D(L™2) is contin-
uous. More explicitly, we have

(Gm) (@) = uo(2) / oo (1) ()Y + 1o (2) / wo(y)9(y)dy.
x 0

Now we shall use the following easily proven fact.

Let E be a normed space and let p,v be linear functionals on E such
that a linear combination ayp + by is not continuous unless it is zero. Then
ker o Nker is dense in E.

We take E = C2° equipped with the L? norm and ¢(g fo uo(x)g(z)dz,
¥(g) = [y too(x)g(x)dz. The linear combination ag+ by is given by a smnlar
expression with u = aug + bus, as integrating function. Since (im +Du=0
we have u € L? only if u = 0. Thus Ey = ker ¢ N ker is dense in E. It is
clear that G,,Eg C C°. Hence by continuity we get G,,,L?> C D(L™"), and
thus (L™ + 1)G,, = 1 on L% On the other hand it is easy to show that
Gm(Ly, + 1)f = fif f € C®, hence G, (L™™ + 1) = 1 on D(L™2"). Thus
Lmin 1 D(LWM) — L2 is a bijective map. Since LM + 1 is an extension of
LM 41 and is injective, we must have Lt = [max, O

m

If m = 1/2, then clearly D(L™") = H2. If m # 1/2 then D(L™n) £ H2.
However, the functions from D(L™™) behave at zero as if they were in HZ

with the exception of the case m = 0.

Proposition 4.11. Let f € D(L%in),

(i) If m # 0, then f(z) = o(z*?) and f'(z) = o(z'/?) as x — 0.

(ii) If m =0, then f(x) = o(z*/?Inz) and f'(z) = o(z'/?Inx) as x — 0.
(iii) For any m,D(L™™) C Hj.
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Proof. Since L,, does not make any difference between m and —m, we may
assume Rem > 0.

Assume first Rem > 1. If f € D(LM") and g = (L™ + 1)f, then
f= Gwﬂmwmﬁ—%%ﬁmwwmf—%%—%mWM%()
fo uo(y)g(y)dy and goo(x f Uoo (y)g(y)dy. The functions ug and u., are
of Bessel type and their behav10ur at zero is known, see (4.7). More precisely,
if we set u = Rem, then we have

uo () = O *1/2), uj(x) = O(a#~1/2),
Uoo (T) = O($7#+1/2),u:x>($) _ O(xﬂhl/z).

Then for x < 1 we have

1

o (2)goo ()| < Ci+1/? / y P2 g ()| dy + / oo (1) (5) dy

x

.1?272”—1 1/2
< Catt1? ((W) + llusell 210 | lgll

which is O(2%/2). We have uo.go = o(2*/?) by a simpler argument. Let F be
the Banach space consisting of continuous functions on I =]0, 1] such that
|hllF = supye; 732 |h(x)| < oco. For g € L? let Tg be the restriction of
Gomg to I. By what we have shown we have TL? C F, hence, by the closed
graph theorem, T : L? — F is a continuous operator. With the notation of
the proof of Proposition 4.10, if g € Ey, then Tg is equal to zero near zero,
so T sends the dense subspace Ey of L? into the closed subspace Fy of F
consisting of functions such that z=3/2h(z) — 0 as * — 0. By continuity,
we get TL? C Fy, hence f(z) = o(z*?). A similar argument based on the
representation f’ = u)g., — . go gives f'(z) = o(x/?).

We treat now the case 0 < Rem < 1. Now all the solutions of the equation
L,u = 0 are square integrable at the origin, hence we may use Proposition A.7
with vy proportional to (4. A straightforward computation gives for m # 0

s @)v- o + [v-(@)[lve ]l < C2*/2,
W @) v- e + [V (@)[lve e < C2'/?
while if m = 0 then

o (@)l[[v—]|z + [o- (@) [[v+[le < Cx*2(|Ina|+1),
[ @)l[[v—]lz + [v2 (@) o4 [le < C2'/2(|Ina] +1).

This finishes the proof. O

We describe now some consequences of the representations (A.5) and
(A.6) in the present context. We say that a function h is in D(L™™) near
the origin if for some (hence any) function & € C2°(R) which is one on a
neighbourhood of the origin we have ¢h € D(L™™). Assume |[Rem| < 1 and
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let f € D(LR#*). Then there are constants a,b and a function fy which is in
D(L™) near the origin such that

f(x) = ax'/?7™ 4 bx/2F™ 4 fo(x) if m #£ 0, (4.13)
f(@) = az'?Ina +ba'/? + fo(z) if m=0. (4.14)

These relations give by differentiation representations of f’. By Proposition
4.11, it is clear that fy decays more rapidly at zero than the other two terms,
in particular the constants a,b and the function fy are uniquely determined
by f. This allows one to state assertions converse to that of Proposition 4.11,
for example:

Proposition 4.12. We have the following characterization of the domain of the
minimal operator:

0<Rem <p<1= D(Lp") ={f € DLR™)| f(z) = o(a"*/?)}
= {f S D(L%lx) | f/ ;1;) — O(ZCM_l/Q)}’

0<Rem < p<1= DL2") ={feDUL)| f(z) =O(zF /)
= {f e D(L™™) | f'(z) = O(z""/?)}.

4.4. Strict Extensions of Lg‘li“

Now we study the closed extensions of L™ for [Rem| < 1. The first result
is a particular case of Proposition A.5. We recall that by a strict extension
of L™ we mean an operator H such that L™ C H C L3 We denote by
Wi (f,g) == f(x)g'(x) — f'(x)g(x) the Wronskian of two functions f and g at
point x, and take & as in Sect. 3.

Proposition 4.13. Assume that |Rem| < 1. Let u be a non-zero solution of
Lou = 0. Then Wo(u, f) = limy_.o Wy (u, f) ezists for each f € D(L™®), and
the operator LY, defined as the restriction of L™ to the set of f € D(L2ax)
such that Wy(u, f) = 0 is a strict extension of L™™. Reciprocally, each strict
extension of L™ is of the form LY for some non-zero solution u of Lyu =
0, which is uniquely defined modulo a constant factor. We have D(LY) =

D(L™") 4 Céu.

We shall describe now the homogeneous strict extensions of L™, The
case [Rem| > 1 is trivial because L™ = L™?* is homogeneous.

Proposition 4.14. If —1 < Rem < 1, then H,, is the restriction of L"®* to the
subspace defined by

lim 2™ *1/2 <f’(:1:) -
Proof. Observe that
WeGos £) = 2™ V/2 /() — (m -+ 1/2)2™ /2 £ ()
=2 () - ")),

T

m+1/2
x

f(a:)) — 0. (4.15)
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so the limit from the left hand side of (4.15) exists for all f € D(Lmyax) if
|[Rem| < 1. Hence, with the notation of Proposition 4.13, we have H,, = LS,
where (, is defined in (4.3). O

Proposition 4.15. If |[Rem| < 1 and m # 0, then L™ has exactly two homoge-
neous strict extensions, namely the operators Hyp,. If m = 0 then the operator
Hy is the unique homogeneous strict extension of L™,

Proof. Thanks to Proposition 4.13 it suffices to see when the extension LY, is
homogeneous. If (Uf)(x) = e*/?f(etx), then it is clear that LY is homoge-
neous if and only if its domain is stable under the action of U; for each real t.
We have

Wo(u, Utf) _ ili% (u(x)et/chfo(etx) o u/(x)et/Qf(et.’L‘))
= /2 lim (e'u(@) f'(e'x) - o/ () f(e'))
_ e315/2 a]éli% (u(e_tx)f’(ac) _ e—tu/(e_tx)f(w)) .
Thus we obtain

Wo(u, Ur f) = e Wo(U—¢u, f).

Let u; = e**U_;u. From Proposition 4.13 we see that D(L,,) = D(L,,) for all
real ¢t if and only if u; is proportional to w for all ¢, which means that the
function u is homogeneous. Thus it remains to see which are the homogeneous
solutions of the equation L,,u = 0. Clearly u4,, are both homogeneous and
only they are so if m # 0, and if m = 0 then only u,( is homogeneous. O

Proposition 4.16. For Rem > 0, we have the following alternative character-
izations of the domain of H,,:

0 < p<Rem <1 = D(Hn) = {f € DIE™) | f(z) = ofa™"1/2)},
0<pu<Rem<1= D(H,)={fecDL2)| f(x) =0 "+/?)}.
Proof. We use Propositions 4.11, and the representations (4.13) and (4.14). O

4.5. The Hermitian Case

We shall consider now the particular case when L™ is hermitian, i.e. m? is a
real number. Everything follows immediately from the preceding propositions
and from the last assertion of Proposition A.5. If m is real or m = iy with
real it suffices to consider the cases m > 0 and p > 0, because LMin = [min,

2

Proposition 4.17. The operator H,, = L™ is self-adjoint and homogeneous
for m? > 1. When m? < 1 the operator L™ has deficiency indices (1,1) and
therefore admits a one-parameter family of self-adjoint extensions.

1. If0<m<1and0<0 <, let ug be the function on Ry defined by
ug () 1/24m gin g, (4.16)

Then each self-adjoint extension of L™" is of the form HY = L% for
a unique 6. There are exactly two homogeneous strict extensions, namely
the self-adjoint operators H,, = Hg@/Q and H_,, = HY,.

=22 " cosf + x
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2. Ifm=0and0<0 <m, let ug be the function on R, defined by
ug(x) = 2/ Inz cosf + 2'/2sin 6. (4.17)
Then, each self-adjoint extension of L™ is of the form H§ = L§° for a
unique 0. The operator L™ has exactly one homogeneous strict extension:
this is the self-adjoint operator Hy = HS/Q.
3. Let m? < 0 so that m = ip with p > 0. For 0 < 6 < 7 let ug be the
function given by
ug(z) = 2'/? cos(pInz) cos 4 2'/? sin(pIn z) sin 6. (4.18)
Then each self-adjoint extension of L™™ is of the form HY = L% for
a unique 0. The operator L™™ does not have homogeneous self-adjoint

extensions but has two homogeneous strict extensions, namely the opera-
tors H,,, and H_,,.

We shall now study the quadratic forms associated to the self-adjoint
operators HY for 0 < m < 1.

We recall that A‘f‘/‘g m = Agr’/z’;m if Rem > 0, and /'1‘1“/‘;_ m= A’{%"_m if
Rem > 1, see Proposition 3.1. Let us abbreviate A, = A" = A2'** when the
minimal and maximal realizations of A, coincide.

Recall also that for 0 < m < 1,
D(AY",) = Hy + C&Cm.
By Proposition 3.1, the operator Arln/%’:m is closed in L? and H{ is a closed sub-

space of its domain (for the graph topology), because A‘ln/a;‘_m [p = Arln/i;_m is

also a closed operator. Note that for f € Hg, we have f(z) = o(1/Z), because
£@) < [ 1£@)de < VL 1.
0

Thus £¢_,, ¢ H} and the sum H{ + CE¢,, is a topological direct sum in

D(Alf‘/az’im). Hence, each f € D(Arln/a;:m) can be uniquely written as a sum

f = fo+c&(_,n, and the map f — cis a continuous linear form on D(A‘ln/aQXim).
We shall denote k,, this form and observe that

fm(f) = lim 2™ V2 f(2),  f € D(ATE,).
Note also that from Proposition 3.1, we get (Arln/‘;x_m)* = Aﬁifl /2> 100 particular
D ((Arge,)) = Hi.
Proposition 4.18. Let0 <m <1 and 0 <0 < 7.
1. If0=mn/2, then ’D(H;:,ﬂ) is a dense subspace of H} and if f € D(H%/Q),

then

(fLHE2f) = 1AL o 1P = [ATES . FI1%. (4.19)
Thug, Q(HZ;L/2) = H}. Moreover, we have HE? = (A1j24m) At jogm =
(Alin/lg—m)* Arln/lg—m :
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2. Assume 0 # 1/2. Then, D(H?) is a dense subspace of D(AYS,,), and
for each f € D(H?) we have

(f Hof) = 1T, fI1P + msin(20) [k ()] (4.20)
Thus, Q(HS) = D(AY)5,,), and the right hand side of (4.20) is equal to

the quadratic form of HY,.
Proof. From Proposition 4.11, the definition of H,, and (4.16), we get
D(HY) = D(L™™) + Céug C HY 4 Céug = Hy + CcosOEC_m,
because £¢,, € Hi if m > 0. However, C° C D(L™"), so D(HY)) is a dense
subspace of H} + Ccos@&C_,. Thus if = 7/2 we get D(H;rn/z) C Hg, and if
6 # /2, then D(HE) C D(A})5-,,) densely in both cases.
The relation ||Ar1n/‘*2’imf||2 | A1 joqm fI|? for f € H holds, because both

terms are continuous on H{ by Hardy inequality and they are equal to (f, Ly, f)
it fe .
It remains to establish (4.20). Let f = fo + cfug with fy € D(L™™) and

c € C. Then A‘ln/agX mt € L? and

Hpf = Linf = A jy_ o A5 f € 1P

due to (4.2). Denote (-, ), the scalar product in L?(a,o00). Then (f, HS f) =
hma—>0<f7 Hg@f>a and
max >

(fyHp f)a = (f,=1(0: + (1/2 = m)Q™ ") AT,
= (AV o [ AT e +if (@) AT, f(a).
On a neighborhood of the origin we have
1ATS., f (@)

—1/2
— (az + mx/> (cmlm_m cos O + cx/? T sin 6 + fo(x))

= (5:; + m_zl/Q) (cx1/2+m sin 6 + fo(a:)) = 2mesin 0™ 12 + o(V/x)
by Proposition 4.11. Then by the same proposition we get
if(2) AT, f ()

= (fo(z) + cug(x))(2mesin 022 4+ o(/x))

= 2m|c|*sin 6 (ml/Q_m cos § + xt/*+ ™ sin 9) 2™ Y2 4 o(/x)

= 2m|c|*sinf cos @ + o(1).
Hence lim, . if(a) oemf(a) = m|c|? sin 26. O
Proposition 4.19. Let 0 < m < 1. Then L™™ is a positive hermitian operator
with deficiency indices (1,1). The operators H,, = HY? and H_,, = HY are

respectively the Friedrichs and the Krein extensions of L™, If 0 < 0 < /2,
then HY is a positive self-adjoint extension of L™™. If /2 < 0 < 7 then the
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self-adjoint extension HY? of L™™ has exactly one strictly negative eigenvalue
and this eigenvalue is simple.

Proof. We have, by Hardy inequality and Proposition 4.11, L2in > m?2Q—2
as quadratic forms on Hg, so L™ is positive. The operators an have the
same form domain if 6 # 7/2, namely D(APZ* ), and H/? has H} as form
domain, which is strictly smaller.

Thus to finish the proof it suffices to show the last assertion of the
proposition. Recall the modified Bessel function K,, (see (4.5)). It is easy
to see that U, := \/ﬁKm(kx) solves LMy, . = k*uy, . Using (4.6), one
gets that

™

L —m+1/2 _
2sinTm (F(l —m) (kz/2)

Um,k

1 m+1/2
m(m/2) +/)>

so that if (k/2)?m = —tan6T'(1 +m)/T(1 — m), then u,, € D(LY). This
proves that L? has a negative eigenvalue for 7/2 < 6 < 7. It cannot have more
eigenvalues, since L™" is positive and its deficiency indices are just (1,1). O

Remark 4.20. The fact that Hy,, are the Friedrichs and the Krein extensions
of L™ also follows from Proposition 2.6, because we know that these are the
only homogeneous extensions of L.

Proposition 4.21. L™ is a positive hermitian operator with deficiency indi-
ces (1,1). Its Friedrichs and Krein extensions coincide and are equal to Hy =
Hg/2. The domain of Hy is a dense subspace of D(Ay2), and for f € D(Ho) we
have (f, Hyf) = \|A1/2f|\2, Thus the quadratic form of Hy equals AT/2A1/2. If
0 <6< mandb +#7/2, then the self-adjoint extension Hg of L™ has exactly
one strictly negative eigenvalue.

Proof. Since L™ has only one homogeneous self-adjoint extension, this fol-
lows from Proposition 2.6 and Remark 2.5. For the assertions concerning the
quadratic form, it suffices to apply Proposition 3.1. O

We can summarize our results in the following theorem:

Theorem 4.22. Let m > —1. Then the operators Hy, are positive, self-adjoint,
homogeneous of degree 2 with spH,,, = R,. Besides we have the following table:
m =1 Hy, = AT/2+mA1/2+m = Ai/zfmAl/mev
H(} = Q(Hm)7
Hm — L%ln — Lmax;
0<m<li Hy=A7 A = (AT5,,) AT,
H,, is the Friedrichs ext. of L>™;

m
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m=0: Ho = Ay A1)2,
H} + C&¢y dense in Q(Hy),
Hy is the Friedrichs and Krein ext. of L™

“l<m <0 Hyo= (A7) ATSL.

HY+ CeGp = Q(Hy),
H,, is the Krein ext. of L)™.

In the region —1 < m < 1 (which is the most interesting one), it is quite
remarkable that for strictly positive m one can factorize H,, in two different
ways, whereas for m < 0 only one factorization appears.

As an example, let us consider the case of the Laplacian —02, i.e. m? =
1/4. The operators Hy /o and H_, /2 coincide with the Dirichlet and Neumann
Laplacian respectively. One usually factorizes them as Hy o = PJ;, Puin and
H_y /3 = P .xPuax, where Pyin and Prax denote the usual momentum oper-
ator on the half-line with domain H¢ and H' respectively. The above analysis
says that, whereas for the Neumann Laplacian this is the only factorization of
the form S*S with S homogeneous, in the case of the Dirichlet Laplacian one

can also factorize it in a rather unusual way:
Hijo = (Puin +1Q )" (Panin +1Q 7).
Proposition 4.23. The family H,, has the following property:
0<m<m = H,, <H,,,
0<m<1l=H_,<H,,.

4.6. The Non-Hermitian Case: Numerical Range and Dissipativeness

In this section we come back to the non hermitian case. We study the numeri-
cal range of the operators H,, in terms of the parameter m. As a consequence
we obtain dissipative properties of H,,.

Proposition 4.24. Let m # 0.
i) If0<argm < w/2, then Num(H,,) ={z | 0 < argz < 2argm}. Hence
H,, is maximal sectorial and iH,, is dissipative.
i) If—m/2 <argm <0, then Num(H,,) = {z | 2argm < arg z < 0}. Hence
H,, is maximal sectorial and —iH,, is dissipative.
iii) If |argm| < w/4, then —H,, is dissipative.
iv) Ifn/2 <|argm| <, then Num(H,,) = C.

Remark 4.25. For m = 0 and argm = m, H,, is selfadjoint so that Num(H,,) =
sp(Hyp) = [0, +00].

Proof. First note that since H,, is homogeneous, if a point z is in the numerical
range R, z is included in the numerical range. Thus the numerical range is a
closed convex cone. Moreover, since H;, = Hp, it suffices to consider the case
Im (m) > 0.

Let us recall that for Rem > —1 the operator H,, is defined by

Hpf = —f" 4+ (m? —1/4)272f, fecD(H,)=D(L™) 4 C&¢p.
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Thus C° + C&(,y, is a core for H,,. Let 0 < a < 1,c € C, and f a function of
class C? on R, such that f(z) = cz™ /2 for £ < a and f(z) = 0 for large z.
By what we just said the set of functions of this form is a core for H,,. We set
V(z) = (m? — 1/4)x=2 and note that for any f € D(H,,)
(o Hf) =l [ (<(FF) + 5P+ VIFP) do
b

— lim ( F®)0)+ [ (574 VI7P) do
b

If f is of the form indicated above, we have f(b) = e™*t1/2 and f'(b) =

(m+1/2)cb™ /2 for b < a, hence f(b)f'(b) = |c|>(m+1/2)b*Re™. To simplify

notations we set m = p + iv with p, v real. Thus we get

(f, Hmf)
= lim [ [e[*(m +1/2) b2“+/ (IF'1? + VIfI?) dz
b

= lim | |e[*(m +1/2) b2“+/ (IF7* + VIf?) da +/(|f’|2+V\f|2)dr
b a

But for b < a we have

a

/(W LVIfP) de
b

a

- |c|2/ (Im + 17222271 4 (m? — 1/4)z =22 *1) dzx
b
= |c[*(m +1/2) /(m +1/2+m—1/2)2% 'dx
b

a

— e+ 1/2) [@Yde = [efrm -+ 1/2) (a2~ 1),
b
Thus we get

o0

(f, Hn f) = |e|*(m + 1/2)a® + / (If'? +VIfP?) do = ¥(a,c, f).  (4.21)
So the numerical range of H,, coincides with the closure of the set of numbers
of the form ¥(a,c, f) with 0 < a < 1,c¢ € C, and f a function of class C? on
x > a which vanishes for large  and such that the derivatives f(*)(a) coincide
with the corresponding derivatives of cx™ T2 gt ¢ = a for 0 < i < 2. The
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map f — [ (|f'[*+ V|f|?) dz is continuous on H'(]a, +o0[), the functions
of class C? on [a, 00| vanishing for large z are dense in this space, and the
functionals f — f/(a) and f — f”(a) are not continuous in the H' topology.
Hence we can consider in the definition of ¥(a, c, f) functions f € H'(Ja, +oc[)
such that f(a) = ca™t1/2 without extending the numerical range.

Let v < %,5 < —% and R > a, and let

zmt1/2 if < a,
flx) = amt/2=vgy if a<z<R,
a™ T/ 2=TRY=0 8 i R < g
Then one can explicitly compute
(m +1/2)a* + / (|f'12+ VI|f?) dz

a

21
— 1/2 — 2 2,u+172fyR2'y71
1—27(m+ /2—7)"+a
2+m?—-1/4 ~rP4+m?2-1/4
1-26 1—2y '

For vy < 3, the argument of the first term is 2arg(m + 3 — ) and the second
term vanishes as R — +o00. Using the fact that the numerical range is a convex
cone, we thus have
1. If >0, then {z | 0 < argz < 2argm} C Num(H,,),
2. If -1 < pu <0, then Num(H,,) =C.
It remains to prove the reverse inclusion of 1.

We first consider the case p > 0. Observe that in (4.21) a can be taken
as small as we wish. Hence we can make a — 0, and we get

(fs Hm ) = / (I P+ VIfI?) de = [[PFI* + (m* = 1/4)|Q" fII%,

0

and the result follows from Proposition 2.1.
On the other hand, if © = 0, then the formula is different:

(f, Honf) = (m +1/2)[e(£)]? + IPFI? + (m* = 1/4) Q7 f]1%,

where ¢(f) = lim,_o2z~("+1/2)f(z) is a continuous linear functional on
D(H,,) which is nontrivial except in the case m = 0, cf. (4.13) and (4.14).
In particular we have

Im (f,H,f)=v \c|2a2“+2/¢/:c*2|f|2dx > 0.

Since we have established the last two identities for f in a core of H,,, they
remain valid on D(H,,). O
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As a last result, let us mention that the factorization obtained in Theo-
rem 4.22 can be extended to the complex case (see also (4.2), and can thus be
used as an alternative definition of H,,:

Proposition 4.26. For Rem > —1 we have

D(Hy) = { f € DA, ) | A, f € D(Am) ],
H’mf = A%‘IEA;ET%JC’ f € D(H7rL)'

Proof. Using Proposition 3.1 and 4.12 we have D(H,,) C {f € D(AD)
2

| A:f% fe D(A%Zf%‘)} One then prove the reverse inclusion using Proposi-
tion 3.1 and 4.14. O

5. Spectral Projections of H,,, and the Hankel Transformation

In this section, we provide an explicit spectral representation of the operator
H,, in terms of Bessel functions.
Recall that the (unmodified) Bessel equation reads

22w (z) + zw'(z) + (22 — m?)w = 0.

It is well known that the Bessel function of the first kind, J,,, and J_,, (see
(4.4), solve this equation. Other solutions of the Bessel equations are the so-
called Bessel functions of the third kind ([7]) or the Hankel functions:

 Jom(2) — €T (2)
Hin(2) = tisin(mr)

(When m is an integer, one replaces the above expression by their limits). We
have the relations

H m 2- H m
Jm(z) = eXTF [ (Fiz), HE(z) = F—eT ™% K (Fiz).
™
We know that H,, has no point spectrum. Hence, for any a < b the Stone
formula says

b

o1 . :
Nig ) (Hpm) = s — 21\% o / (G (A +1i€) — G (A —i€)) dA. (5.1)

a

Using (4.12), we can express the boundary values of the integral kernel
of the resolvent at A €]0, co[ by solutions of the standard Bessel equation:

Gn(A£i0;2,y) := 11{1}) G (A Liez,y)

N {i’;\/@Jme)Hi(ﬁy) if © <y,
B VEIn (VA Hi (VAz) if 2>y,
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Now

1

LI (VAD) (H(Ry) + H(VAg))if @ <,
LI (VAy) (B (VN) + o (VNg) i o>

= %Jm(ﬁx),]m(ﬁy).

Together with (5.1), this gives an expression for the integral kernel of the
spectral projection of H,,, valid, say, as a quadratic form on C°(R).

Proposition 5.1. For 0 < a < b < oo, the integral kernel of Njq ) (Hyp) is

b
By (Hn)(29) = [ 5/ (VA0 I (V)N

Vb
_ / TG (k) Jom (R ol
va

Let F,, be the operator on L?(0,00) given by
Fon: f(z) = / Ton (k) VE f (z)dz. (5.2)
0

Up to an inessential factor, F,, is the so-called Hankel transformation.

Theorem 5.2. F,, is a unitary involution on L*(0,00) diagonalizing H,,, more
precisely

FHp Fib = Q2.
It satisfies FreltP = e P F, . for all t € R.
Proof. Obviously, F,, is hermitian. Proposition 5.1 can be rewritten as
o p) (Him) = Finlia 5 (Q%) Fr,-

Letting @ — 0 and b — oo we obtain 1 = F,,,F,. This implies that F,, is iso-
metric. Using again the fact that it is hermitian we see that it is unitary. [

6. Scattering Theory of H,,

Let us now give a short and self-contained description of the scattering theory
for the operators H,, with real m.

Theorem 6.1. If m,k > —1 are real then the wave operators associated to the
pair H,,, Hy exist and

Q;I:m’f — ti}inoo eithefitH;c _ eii(mfk)ﬂ'/Qfmfk'
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In particular the scattering operator Sy, for the pair (Hp,, Hy) is a scalar
operator: Sp, j = el (m=F),

Proof. Note that Qi = oFim=K)7/2F  F is a unitary operator in L? such
that e~ 1tHmOF x| = Qi e *Hx for all t. Thus to prove the theorem it suffices

to show that (Q - 1) —itHy _, ( strongly as ¢t — +00. Let 7, be the oper-
ator of multlphcatlon by the characteristic function of the interval ]0, a[ and

7t =1—m,. Then from Theorem 5.2, it follows easily that m,e~*m — 0 and

mee Hr — O strongly as t — 400 for any a > 0. Thus, we are reduced to
proving

lim sup |77 (QjE —1De e f =0 forall fe L

a—00 4150
By using again Theorem 5.2, we get
(Q;tn,k . 1)efitH;c _ e¢ikﬂ/2(eiimw/2}—m _ ej:ikﬂ/2fk)efitQ2J,__.k’
hence it will be sufficient to show that

lim sup || (eiik”/sz — eiim”/Qfm)e_itQQgH =0

400 £¢>0
for all g € C°(Ry). (6.1)

Let us set jp,(z) = VaJn(x) and 7, = mn/2 + w/4. Then (F,h)(z) =
fooo Jm(zp)h(p)dp, and from the asymptotics of the Bessel functions we get

\/?m@)cos(yfmmfn(y) where j () ~ O(y™Y).  (6.2)

If we set g¢(p) = (7r/2)1/26_itng(p) and Gf = (eiik”/g]:k - eiim”/Q}'m)gt,
then

Gti(ac) = /(eiik”/2 cos(zp — 1) — eEimm/2 cos(zp — Tim))g:(p)dp

+ / (2 (2p) — 72, (xp))g: (p)dp.

The second contribution to this expression is obviously bounded by a constant
time |27 [ |g¢(p)/p|dp, and the L?(dz) norm of this quantity over [a, co[ is
less than Ca~'/? for some number C independent of t. Thus we may forget
this term in the proof of (6.1).

Finally, we consider the first contribution to G}, for example. Since

cos(Tp — Tp) = e TPHIT/A(GIkT _ gimmy /9

we get an integral of the form f e~ iP(zpttp) g(p)dp, which is rapidly decaying in
2 uniformly in ¢ > 0, because g € C.(R) and there are no points of stationary
phase. This finishes the proof of (6.1). O

eik‘ﬂ/2 imm/2

cos(zp — 1) — e

Since H,, and Hj are homogeneous of degree —2 with respect to the
operator D, which has simple spectrum, we can apply Proposition 2.9 with
A = D and deduce that the wave operators are functions of D. Our next goal
is to give explicit formulas for these functions.
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Let J : L2 — L2 be the unitary involution

T =11 (i) |

Clearly Je'™P = ¢='"P 7 for all 7 € R, and JQ%*J = Q2. In particular, the
operator
Gm =T Fm (6.3)

is a unitary operator on L? which commutes with all the el™P . Hence there
exists Z,, : R — C, |Z,,,(z)] =1 a.e. and G,,, = E,,(D). Moreover, we have
FnFie = Fn T T Fr. = GGk,
so that
' . X = (D)
Qrin _ e:l:l(m,—lc)Tr/Qg;kng]C _ e:‘:l(m—k)ﬂ'/2'—k}( )
w En(D)
Note that G,, H,,G, = JQ*J = Q2.
Theorem 6.2. For m > —1,
F(m+12+iD)
1—\<m+12—1D)

Therefore, form,k > —1, the wave operators for the pair (H,, Hy) are equal to

G, = elln@D

F( k+12+iD )F( m+1271D )

Q:I: _ eii(mfk)ﬂ'/Q i i )
m,k F(k+12—1D)F(m+12+1D)

For the proof we need the following representation of Bessel functions:

Lemma 6.3. For any m such that Re (m) > —1 the following identity holds in
the sense of distributions:

—+o0 .
1 F(m+lt+1) T —it—1

— 00

Proof. If Re (m) > 0 one has the following representation of the Bessel function
Im (), cf. [7, ch. VL5]:

c+ioco

wi- g | et (3)

c—ioco

1 +eo T it m—2c—it
(c+15) )(x) T (6.4)

Cdm ) T(m+1-—c—il) \2
— 0o
where ¢ €]0, ReTm[ Note that the subintegral function is everywhere analytic
except for the poles at z = 0,—1,—2,..., all of them on the left hand side of
the contour. By the Stirling asymptotic formula, the subintegral function can
be estimated by |z|~17Re™+2¢ at infinity, hence it is integrable.
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We shall extend the formula (6.4) for Rem > —1 and ¢ €]0,Re (m) + 1[.
For that purpose we have to understand it in the distributional sense, that is
after smearing it with a function of x belonging to Cg°.

Let p € O and ¢(z) := f( z)dz. For Rem >0 and 0 < ¢ <
we thus have

[e'e) +oo .t
[m@etonte = [ L HEE o se- i (65)
0

Rem

m+1—c—i})

Since ¢ € C°, the function ¢ is holomorphic and for any K C C compact
and n € N there exists Ck ,, such that

|p(z +it)] < Crn(t)™™, VzeK,VteR, (6.6)
where (t) = V1 4 t2. Likewise, the function z — 0(z) = H#Zl)—d is holomor-

phic in the strip 0 < Re (z) < Re(m) + 1, and for any compact K C C there
exists Cg > 0 such that

10(z +it)| < Cp(t)2ReG)—Re(m)=1 " v, c K Vit eR. (6.7)
Combining (6.6)—(6.7), this proves that the function

i) :
CI—)/ m+1—c—1£)¢(m_26_1t)dt

is holomorphic in the strip 0 < Re (¢) < Re (m)+1. Moreover, (6.5) shows that

this function is constant equal to [ Jum(z)¢(z)dz for ¢ € |0, Rem [ Hence

(6.5) extends to any ¢ such that 0 < Re(¢) < Re(m) + 1. In particular, if we

chose ¢ = %)H, we get for any m with Re (m) > 0
e 17 e P(mttELy o i
[mt@eteiae= o [ao [ar s (3) @ 08)
0 0 oo 2

Using (6.6)—(6.7) once more, one gets that the right-hand side of the above
identity is holomorphic for Re (m) > —1. Since the Bessel function J,, also
depends on m in an holomorphic way, the left-hand side is holomorphic as
well, and hence (6.8) extends to any m such that Re(m) > —1, which ends
the proof of the lemma. O

The next lemma will also be needed.

Lemma 6.4. For a given distribution 1, the operator (D) from C° to (C°)
has integral kernel

Y(D)(z,y) =

27r,/ x ‘t
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Proof. We use the Mellin transformation M : L%(0,00) — L?(R). We recall
the formula for M and M~

A = [t
]

(M~1g)(x) : W/olsw“su

The Mellin transformation diagonalizes the operator of dilations, so that
Mi)(D)M™1 is the operator of multiplication by 1(s). O

Proof of Theorem 6.2. Using (5.2), (6.3) and Lemma 6.3 we get that the oper-
ator G,, has the integral kernel

gmw%% @M

m+1t+1 1 —it it
= o) L
B 27r\ﬁ (m= 1t+1 2)  xit
Hence by Lemma 6.4, the unitary operator G, coincides with =,,(D) on C2°,
where

m+414i
Zn(t) :eiln(Z)tu.
I\(m+21—1t)

Since |Z,,(t)| = 1 for m € R, the operator =,,(D) is a unitary operator on L?
which coincides with G, on the dense subspace C2°, and hence G,,, = =,,(D)
on L2 g

Remark 6.5. Tt is interesting to note that Z,,(D) is a unitary operator for all
real values of m and
Em (D)Q™*En(D) (6.9)

is a function with values in self-adjoint operators for all real m. E,,(D) is
bounded and invertible also for all m such that Rem # —1,—2,.... Therefore,
the formula (6.9) defines an operator for all {m | Rem # —1,-2,...} UR.
Clearly, for Rem > —1, this operator function coincides with the operator H,,
studied in this paper. Its spectrum is always equal to [0, oo[ and it is analytic
in the interior of its domain.

One can then pose the following question: does this operator function
extend to a holomorphic function of closed operators (in the sense of the defi-
nition of Subsect. 2.2) on the whole complex plane?

Acknowledgements

J.D. would like to thank H. Kalf for useful discussions. His research was sup-
ported in part by the Grant N N201 270135 of the Polish Ministry of Science



Vol. 12 (2011) Homogeneous Schrodinger Operators on Half-Line 583

and Higher Education. The research of L.B. is supported by the ANR project
HAM-MARK (ANR-09-BLAN-0098-01) of the French Ministry of Research.

Appendix A. Second-Order Differential Operators

To make this paper self-contained we summarize in this appendix some facts
on second order differential operators. We are especially interested in the case
when the potential is complex and/or singular at the origin.

A.1. Green Functions
2

We consider an arbitrary complex potential V' € Lj . and a complex number
A. Let L be the distribution valued operator defined on L2 by

loc
L=-02+V(a) (A1)

We recall that the Wronskian of two functions f, g of class C* on R is the func-
tion W (f,g) whose value at a point « > 0 is given by W, (f,g) = f(z)¢'(z) —
f'(z)g(x). If f,g are solutions of an equation w”’ = Vu then W(f,g) is a
constant which is not zero if and only if f, g are linearly independent.

We recall a standard method for constructing the Green function of a
differential operator. An elementary computation gives

Proposition A.1. Suppose that ug and ues are solutions of Lu = \u, which are
square integrable near 0 and oo respectively, and such that W(uee,uo) = 1.
Let g € L?, and define

x

Jo = U0goo + Uscgo  with go(z) = /UO(y)g(y)d%

0
oo

Joo(T) = / Uoo (¥)9(y)dy.

x

Then the function fy satisfies (L—X) fo = g and f} = u)geo—u’, go. The general
solution of the equation (L — \)f = g can be written as f = coug + Coolioo + fo
with cg, coo € C. We have

oo = [ Glaagatay it Gla,g) = {10} H D02
0

A.2. Maximal and Minimal Operators

We denote Ly, and Ly, the minimal and maximal operator associated to the
differential expression (A.1). More precisely, Liax is the restriction of L to the
space D(Lmax) = {f € L? | Lf € L?} considered as operator in L?, and Ly,
is the closure of the restriction of Lyax to C5°. Lyax is a closed operator on
L2, because it is a restriction of the continuous operator L : L2 . — D'(Ry).

From now on we assume that sup;,, fbb+1 |V (z)|dx < oo for each a > 0.
Then the following is true (cf. [6]):
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Proposition A.2. If f € D(Lyax), then [ and [’ are continuous functions on
Ry which tend to zero at infinity. For f,g € D(Lmax),

exists and we have
/(Lmaxfg - fLmaxg)dx = _WO(fa g) (A3)
0

In particular, Wy is a continuous bilinear antisymmetric form on D(Lmax)
(equipped with the graph topology), and if one of the functions f or g belongs
to D(Lyin), then Wo(f,g) = 0.

Remark A.3. Note that the so defined Wy (f, g) depends only on the restriction
of f and ¢ to an arbitrary neighborhood of zero. Hence if f, g are continuous
square integrable functions on an interval 10, a| such that the distributions Lf
and Lg are square integrable on |0, a[, then the limit in (A.3) exists and defines

WO(f7 g)

If V is a real function, the operator Ly, is hermitian and L}, = Lmax.
From (A.3) we get

<Lmaxf7 g> - <fa Ln1axg> = 7W0(f_-’ g) = {f?g}

for all f,g € D(Lmax)- Here {f, g} is a continuous hermitian sesquilinear form
on D(Lyax) which is zero on D(Lyiy). Moreover, an element f € D(Lyax)
belongs to D(Lyin) if and only if {f, g} = 0 for all g € D(Lyax). A subspace
E C D(Lmax) will be called hermitian if it is closed, contains D(Lyi,), and
the restriction of {-,-} to it is zero. It is clear that H is a closed hermitian
extension of Ly, if and only if H is the restriction of L. to a hermitian
subspace.
Now we consider the case of complex V.

Lemma A.4. Let f € D(Lmax). Then f € D(Lmin) if and only if Wo(f,g) =0
for all g € D(Liax)-

Proof. One implication is obvious. To prove the inverse assertion let us denote

L= —8%—1—‘7 acting on continuous functions, and let Liin, Lmax be the minimal

and maximal operators associated to L. Tt is trivial to show that L% = Linax,

hence Ly, = L7, because Ly, is closed. Thus f € L? belongs to D(Lgﬁn) if
and only if there is h € L? such that (Lmaxg, f) = (g, h) for all g € D(Lax)-

But g € D(Lpax) if and only if § € D(Lmax), so for f € D(Lmax) we get from
(A.3)

(Lunaxgs f) = / Lgfde = / GLfdz — Wo(g, f) = (9, Lf) — Wo(g, f).
0 0

Hence if Wy(g, f) = 0 for all g € D(Lmax), then f € D(Lyin)- O
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We denote £ = {u | Lu = 0}, this is a two dimensional subspace of
€ CY(R,) and if u,v € £ then W(f, g) is a constant which is not zero if and
only if u,v are linearly independent. By the preceding comments, if u € L
and fol |u|?dr < oo then f — Wy(u, f) defines a linear continuous form /,,
on D(Lyax) which vanishes on D(Lyi,). Let L, be the restriction of L™?* to
ker £,. Clearly L, is a closed operator on L? such that Lyin C Ly C Linax.

A.3. Extensions of L,

Below by strict extension of Ly, we mean an operator T such that L, €
T C Lpmax. We denote £ a function in C2° such that {(z) = 1 for x < 1 and
&(z) =0 for x > 2.

Until the end of the subsection we assume that all the solutions of the
equation Lu =0 are square integrable at the origin.

Proposition A.5. D(Ly,in) is a closed subspace of codimension two of D(Lmax)
and

D(Lunin) = {f € D(Lumax) | Wolu, ) = 0 Vu € L} = (e ker £, (A.4)

If u # 0 then L, is a strict extension of Ly, and, reciprocally, each strict
extension of Luyin is of this form. More explicitly, D(L,) = D(Lmin) + Cu.
We have L, = L, if and only if v = cu with ¢ € C\{0}. If V is real, then
the operator Ly, s hermitian, has deficiency indices (1,1), and if u € L\{0}
then L, is hermitian (hence self-adjoint) if and only if w is real (modulo a
constant factor).

Proof. We first show that ¢, = 0 if and only if v = 0. Indeed, if u # 0
then, the equation Lv = 0 has a solution linearly independent from w, so that
W (u,v) # 0. But there is g € D(Lmax) such that g = v on a neighborhood of
zero, and then £, (g) = W (u,v) # 0. This also proves the last assertion of the
proposition.

Assume for the moment that (A.4) is known. If u, v are linearly indepen-
dent elements of £, then they are a basis of the vector space £, hence we have
D(Lmin) = ker £, Nker £, and 80 D(Lmin) is of codimension two in D(Lpax)-
Moreover, if u # 0, then D(Lyi,) is of codimension one in ker £, we have
€u € D(Limax)\D(Lmin) and u € ker £, hence D(L,,) = D(Lin) + Céu.

If V' is real, the deficiency indices of Ly, are (1,1), because D(Lin)
has codimension two in D(Lyax). The space ker ¢, is hermitian if and only if
{f,f} =0forall f € ker £,. But ker £, = D(Luin) + C&u, so we may write f =
fo + Au, and then clearly {f, f} = {\u, Aéu} = |A*{u,u} = —|\*Wo (@, u).
So ker ¢, is hermitian if and only if Wy (u,u) = 0. But @ and u are solutions of
the same equation Lf = 0, and W(a,u) = Wy(u,u) = 0. Thus @ and w must
be proportional, i.e. there is a complex number ¢ such that @ = cu. Clearly
lc| = 1, so we may write ¢ = €*¥  and then we see that the function e*u is
real.

Thus it remains to prove (A.4), and for this we need some preliminary
considerations which will be useful in another context later on. Let vy € L
such that W (vy,v_) = 1. If g is a function on Ry such that [ |g|?dz < oo for
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all a > 0, we set g+ (x) = fow v+ (y)g(y)dy. It is easy to check that if Lf = ¢,
then there is a unique pair of complex numbers a4 such that

f=(as +g-)vs + (a- — g4 )v- (A.5)

and, reciprocally, if f is defined by (A.5), then Lf = g. Since ¢, = vyg, we
also have

F' = (ag + g+ (am — gl (A.6)

Now assume h € D(Lpyax) and Wy(u, h) = 0 for all w € £. This is equivalent
to Ly, (h) = 0. We shall prove that Wy(f,h) = 0 for all f € D(Lpax), and
this will imply h € D(Luin) by Lemma A.4. If we set v = arv; + a_v_ and
fo=g-vy — grv_, then we get Wy (f,h) = Wo(fo,h). Then

Wo(fo. h) = Wo(g-v4+ — grv—, h)
= tim ((g-vs — g0 ) @ (@) — (g-vs — g40-) (@)h(a).

For a fixed = we rearrange the last expression as follows:

g-vih = (g-vi)'h — grv_h' + (g4v-)'h
=g-Wei(vi,h) — g4 We(v—,h) — g_vih + glo_h.

When z — 0 the first two terms on the right hand side clearly converge to zero.
The last two become —gv_v;h + gvyv_h = 0. This finishes the proof. g

Remark A.6. If zero is a regular endpoint, i.e. fol |V (z)|dz < oo, then for each
f € D(Lax) the limits lim,_.o f(z) = f(0) and lim,_.o f/(x) = f/(0) exist. If
V is real we easily get the classification of the self-adjoint realizations of L in
terms of boundary conditions of the form f(0)sin — f'(0) cos§ = 0.

We point out now some consequences of the preceding proof. We denote
|h||> the L? norm of a function h on the interval |0, z[. Then we get |g+(z)| <
llvt]lz]lgll= for all 2 > 0, where the numbers ||vy ||, are finite and tend to zero
as ¢ — 0. Note that in general ||v/, ||, = oo for all x for at least one of the
indices +. Anyway, we have

[f(z) = (a1 04 (2) + a—v_(2)] < (Jos (@)[[[o-]lo + [o-(@)[[[o1]l2) 9]z,
|f'(2) = (a40) (2) + a—v’ (2))] < (W (@)l [[o-la + V@)l 2) 19

In other terms: if f is a solution of Lf = g, then there are complex numbers
a+ such that, as x — 0,

<
<

+04(2) + a-v_(2) + o(1) (Joy (@) [[[v-[lz + [o- (@) [[v4[lz) (A7)
4 (@) +a-v’ () +o(1) (|0} (@)oo + [0 (@)lv+ ), (A8)

= a
=a

In the next proposition we continue to assume that all the solutions of
the equation Lu = 0 are square integrable at the origin and keep the notations
introduced in the proof of Proposition A.5.
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Proposition A.7. A function f € D(Lmax) belongs to D(Lmin) if and only if
f=vyrg9- —v_gy with g = Lf. In particular, if f € D(Lwyin), then for x — 0
we have

f(@) = o() (Jog(@)l[[o-lle + [v-(@)[[[0+]2),
F'(@) = o) (W} @)lllv-lz + " (@)[|[v4]lz)-

Proof. We take above g = Lf and we get the relations (A.5), (A.6), (A.7) and
(A.8) for some uniquely determined numbers ay. If we set v = ajvy +a_v_
and fo =vpg- —v_gy, then f = v+ fo. We know that f € D(Ly,) if and only
if Wo(u, f) =0 for all u € L. Since vy form a basis in £, it suffices in fact to
have this only for u = v4.. We have Wy (v4+, fo) = 0 because fj = v/, g_ —v" g,
so that

v fo = vifo=ve(vhg- —vlgy) —vi(vig- —v_gy) = —gu,
and gy(x) — 0 as x — 0. Hence Wy(vy, f) = Wo(ve,v) + Wo(vg, fo) =
Wo(vs,v) = as, and so f € D(Lmin) if and only if ax = 0, or if and only
if f =wv49- —v_gy with g =Tf. Thus, if f € D(Luin), then we have the
relations (A.7) and (A.8) with ax = 0, so we have the required asymptotic
behaviours of f and f’. O

Appendix B. Aharonov—Bohm Hamiltonian

Consider the Hilbert space L?(R?). We will use simultaneously the polar coor-
dinates, r, ¢, which identify this Hilbert space with L?(0,00) ® L?(—m, ) by
the unitary transformation

L*(R*) 3 f— Uf € L*(0,00) ® L*(—m,7)
given by U f(r,¢) = /T f(rcos ¢, rsin ).

Let A € R. We consider the magnetic hamiltonian associated to the mag-
netic potential (m"’/\Tyy?’ fzfj\%yz) The curl of this potential equals zero away
from the origin of coordinates and the corresponding Hamiltonian (at least
for real A) is called the Aharonov-Bohm Hamiltonian. More precisely, let M)
denote the minimal operator associated to the differential expression

Ay 2 A\x 2

a priori defined on C2°(R?\{0}). Clearly, M, is a positive hermitian operator,
homogeneous of degree —2. In polar coordinates, M, becomes

1 1
_ 92 . 2
My, = -0+ - [(—u% + ) — 4} . (B.2)
Let L := —iz0, + iyd, be the angular momentum. L = —idy in polar coordi-

nates. Then L commutes with M) (or equivalently, M) is rotation symmetric).
L is a self-adjoint operator with the spectrum sp(L) = Z. Therefore, we have a
direct sum decomposition L?(R?) = @<z H; where H; is the spectral subspace
of L for the eigenvalue . With the help of U we can identify H; with L?(R ).
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Using (B.2), one immediately gets that
UM\U* = @ L™, B.3
A Jo, PN (B.3)

Using general arguments, see Proposition 2.6, one easily gets that the
Friedrichs and the Krein extensions of M), denoted M f Fand M f{ K respec-
tively, are also homogeneous and rotation symmetric. (The reason for the dou-
ble superscript will become apparent later).

Proposition B.1. (i) If A € Z, then My has deficiency indices (1,1). We have
MfF = M/{(K, and My has no other homogeneous extension.
(ii) If X ¢ Z, then My has deficiency indices (2,2). We have MEF £ MEK,
and M) has two other (distinct) homogeneous and rotation symmetric
self-adjoint extensions MIE and MEFE.

Remark B.2. When X\ ¢ Z, M) has also many homogeneous self-adjoint exten-
sions which are not rotation symmetric.

Remark B.3. If V denotes the unitary operator such that V = e’ in polar
coordinates, then

V*M\V = M. (B.4)

Proof. Using (B.3), the deficiency indices of M) are (n,n) where n = 3, ., ny,
and (n;,n;) are the deficiency indices of L?jriﬁ. By Proposition 4.17, we have
n; = 0 unless |l + A| < 1, in which case n; = 1. Thus, if A\ € Z, only the term
with [ = —\ has nonzero deficiency indices, namely n_ = 1, and if A ¢ Z,
then n; = 1 only when | = —[\] =1 and [ = —[)], where [\] denotes the integer
part of A\. This proves the assertions concerning the deficiency indices.

Using (B.4), we can then restrict ourselves to the case 0 < A < 1. The
result follows from the analysis of Sect. 4.4. If A = 0, the only term which is
not self-adjoint in the decomposition of My is L". Using Proposition 4.15,
we see that My has a unique homogeneous self-adjoint extension. Since M{IF
and MEE are both homogeneous, they necessarily coincide.

We then turn to the case 0 < A < 1. Only the terms L’fi“l and L’;‘in are
not self-adjoint. Using Proposition 4.15 again, each of these term has exactly
two homogeneous extensions Hy(y_1) and Hiy respectively, those with a +
sign corresponding to the Friedrichs extension and those with a — sign to the
Krein extension. Hence M) has 4 distinct homogeneous and rotation symmetric
self-adjoint extensions. The super indices F'F, KK, FK and KF correspond to
the choice of the two extensions (the first index for the extension of L), [

We can then apply the results of Sect. 4.2 to study the analyticity prop-
erties of the various homogeneous extensions of M.

Theorem B.4. Let n€Z. For any #€{FF, KK, FK, KF} the map |n,n+1[ >

A= Mf extends to a holomorphic family M¥ on the strip {n < Re(z) <
n+ 1}. Moreover,

(i) the family z — MZEF can be extended to a holomorphic family on the
strip {n —1 < Re (2) < n + 2}.
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(ii) the family z — MZIX can be extended to a holomorphic family on the
strip {n —2 < Re(z) <n + 1}.

(iii) the family = — MEF can be extended to a holomorphic family on the
strip {n < Re(z) < n + 3}.

Proof. Using Proposition B.1, for any A € n,n + 1[, we have

Mf= @& H  \®Hipn1)®Hioony ® Hyr o (B5)
1I<—n—2 1>—n+1
Using Theorem 4.2, the components H_;_ (for | < —n — 2) have an ana-
lytic extension to the half-plane Re (z) < —I 4 1, the components H; (for
I > —n + 1) have an analytic extension to the half-plane Re(z) > —I — 1.
Similarly, Hx_,—1 (the Krein extension of LY ) has an extension to the
half-plane Re (z) > n, H_x1n+1 to the half-plane Re (z) < n+ 2, Hy_, to the
half-plane Re(z) > n — 1 and H_x4,, to the half-plane Re (z) < n + 1. The

result then easily follows. O

Remark B.5. The value at z = n of both families MI'® and MFF coincides
with the unique homogeneous extension of M,,.
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