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Homogeneous Schrödinger Operators
on Half-Line

Laurent Bruneau, Jan Dereziński and Vladimir Georgescu

Abstract. The differential expression Lm = −∂2
x + (m2 − 1/4)x−2 defines

a self-adjoint operator Hm on L2(0, ∞) in a natural way when m2 ≥ 1.
We study the dependence of Hm on the parameter m show that it has a
unique holomorphic extension to the half-plane Re m > −1, and analyze
spectral and scattering properties of this family of operators.

1. Introduction

For m ≥ 1 real, the differential operator Lm = −∂2
x + (m2 − 1/4)x−2 with

domain C∞
c = C∞

c (0,∞) is essentially self-adjoint and we denote by Hm its
closure. Let Uτ be the group of dilations on L2, that is (Uτf)(x) = eτ/2f(eτx).
Then Hm is clearly homogeneous of degree −2, i.e. UτHmU

−1
τ = e−2τHm. The

following theorem summarizes the main results of our paper.

Theorem 1.1. There is a unique holomorphic family {Hm}Re m>−1 such that
Hm coincides with the previously defined operator if m ≥ 1. The operators
Hm are homogeneous of degree −2 and satisfy H∗

m = Hm̄. In particular, Hm

is self-adjoint if m is real. The spectrum and the essential spectrum of Hm are
equal to [0,∞[ for each m with Rem > −1. On the other hand, for non real
m the numerical range of Hm depends on m as follows:
i) If 0 < argm ≤ π/2, then Num(Hm) = {z | 0 ≤ arg z ≤ 2 argm},
ii) If −π/2 ≤ argm < 0, then Num(Hm) = {z | 2 argm ≤ arg z ≤ 0},
iii) If π/2 < | argm| < π, then Num(Hm) = C.
If Rem > −1,Re k > −1 and λ /∈ [0,∞[, then (Hm − λ)−1 − (Hk − λ)−1 is a
compact operator.

In the above theorem arg ζ is defined for ζ ∈ C\]−∞, 0] by −π < arg ζ <
π. We note that if 0 ≤ m < 1 the operator Lm is not essentially self-adjoint.
If 0 < m < 1 this operator has exactly two distinct homogeneous extensions
which are precisely the operators Hm and H−m defined in the theorem: they
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are the Friedrichs and Krein extension of Lm respectively. Theorem 1.1 thus
shows that we can pass holomorphically from one extension to the other. Note
also that L0 has exactly one homogeneous extension, the operator H0 which
is at the same time the Friedrichs and the Krein extension of L0. We obtain
these results via a rather complete analysis of the extensions (not necessarily
self-adjoint) of the operator Lm for complex m.

We are not aware of a similar analysis of the holomorphic family
{Hm}Re m>−1 in the literature. Most of the literature seems to restrict itself to
the case of real m and self-adjoint Hm. A detailed study of the case m > 0 can
be found in [1]. The fact that in this case the operator Hm is the Friedrichs
extension of Lm is of course well known. However, even the analysis of the
case −1 ≤ m ≤ 0 seems to have been neglected in the literature.

We note that similar results concerning the holomorphic dependence in
the parameter α of the operator Hα = (−Δ+1)1/2 −α/|x| have been obtained
in [4] by different techniques.

Besides the results described in Theorem 1.1, we prove a number of other
properties of the Hamiltonians Hm. Among other things, we treat the spectral
and scattering theory of the operators Hm for real m, see Sects. 5 and 6: we
obtain explicit formulas for their spectral representation and the corresponding
wave and scattering operators.

Concerning scattering theory, we shall prove that the wave operators
Ω±

m,k for the pair (Hm,Hk) exist for any real m, k > −1. Since both Hm and
Hk are homogeneous of the same degree, an easy abstract argument shows
that Ω±

m,k = θ±
m,k(D), where D is the generator of the dilation group and θ±

m,k

are functions of modulus one, cf. Proposition 2.9. We explicitly compute these
functions in Sect. 6 and obtain

Ω±
m,k = e±i(m−k)π/2 Γ(k+1+iD

2 )Γ(m+1−iD
2 )

Γ(k+1−iD
2 )Γ(m+1+iD

2 )
.

Essentially identical formulas in the closely related context of the Aharonov–
Bohm Hamiltonians were obtained independently by Pankrashkin and
Richard in a recent paper [5].

The scattering theory for Hm suggests a question, which we were not able
to answer. We pose this question as an interesting open problem in Remark 6.5:
can the holomorphic family {Re (m) > −1} � m �→ Hm be extended to the
whole complex plane? To understand why it is not easy to answer this ques-
tion let us mention that for Re (m) > −1, the resolvent set is non-empty,
being equal to C\[0,∞[. Therefore, to prove that {Re (m) > −1} � m �→ Hm

is a holomorphic family, it suffices to show that its resolvent is holomorphic.
However, one can show that if an extension of this family to C exists, then for
{m | Rem = −1,−2, . . . , Imm 	= 0} the operator Hm will have an empty
resolvent set. Therefore, on this set we cannot use the resolvent of Hm.

Let us describe the organization of the paper. In Sect. 2 we recall some
facts concerning holomorphic families of closed operators and make some gen-
eral remarks on homogeneous operators and their scattering theory in an
abstract setting. Section 3 is devoted to a detailed study of the first order
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homogeneous differential operators. We obtain there several results, which are
then used in Sect. 4 containing our main results. In Sect. 5 we give explicitly
the spectral representation of Hm for real m and in Sect. 6 we treat their scat-
tering theory. In the first appendix we recall some technical results on second
order differential operators. Finally, as an application of Theorem 1.1, in the
second appendix we consider the Aharonov–Bohm Hamiltonian Mλ depending
on the magnetic flux λ and describe various holomorphic homogeneous rota-
tionally symmetric extensions of the family λ → Mλ. For a recent review on
Aharonov–Bohm Hamiltonians we refer to [5] and references therein.

To sum up, we believe that the operators Hm are interesting for many
reasons.
• They have several interesting physical applications, eg. they appear in the

decomposition of the Aharonov–Bohm Hamiltonian.
• They have rather subtle and rich properties, illustrating various concepts of

the operator theory in Hilbert spaces (eg. the Friedrichs and Krein exten-
sions, holomorphic families of closed operators). Surprisingly rich is also
the theory of the first order homogeneous operators Aα, that we develop
in Sect. 3, which is closely related to the theory of Hm.

• Essentially all basic objects related toHm, such as their resolvents, spectral
projections, wave and scattering operators, can be explicitly computed.

• A number of nontrivial identities involving special functions find an appeal-
ing operator-theoretical interpretation in terms of the operators Hm. Eg.
the Barnes identity (6.4) leads to the formula for wave operators. Let us
mention also the Weber-Schafheitlin identity [3], which can be used to
describe the distributional kernel of powers of Hm.

2. Preliminaries

2.1. Notation

For an operator A we denote by D(A) its domain, sp(A) its spectrum, and
rs(A) its resolvent set. We denote by Num(A) the (closure of the) numerical
range of an operator A, that is

Num(A) := {〈f,Af〉 | f ∈ D(A), ‖f‖ = 1}.
If H is a self-adjoint operator then Q(H) will denote its form domain: Q(H) =
D(|H|1/2).

We set R+ = ]0,∞[. We denote by 1l+ the characteristic function of the
subset R+ of R.

We write L2 for the Hilbert space L2(R+). We abbreviate C∞
c = C∞

c

(R+),H1 = H1(R+) and H1
0 = H1

0 (R+). Note that H1 and H1
0 are the form

domains of the Neumann and Dirichlet Laplacian respectively on R+. If −∞ ≤
a < b ≤ ∞ we set L2(a, b) = L2(]a, b[) and similarly for C∞

c (a, b), etc.
Capital letters decorated with a tilde will denote operators acting on dis-

tributions. For instance, let Q̃ and P̃ be the position and momentum operators
on R+, so that (Q̃f)(x) = xf(x) and (P̃ f)(x) = −i∂xf(x), acting in the sense
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of distributions on R+. The operator Q̃ restricted to an appropriate domain
becomes a self-adjoint operator on L2, and then it will be denoted Q. The
operator P̃ has two natural restrictions to closed operators on L2, Pmin with
domain H1

0 and its extension Pmax with domain H1. We have (Pmin)∗ = Pmax.
The differential operator D̃ := 1

2 (P̃ Q̃+ Q̃P̃ ) = P̃ Q̃+ i/2, when consid-
ered as an operator in L2 with domain C∞

c , is essentially self-adjoint and its
closure D has domain equal to {f ∈ L2 | PQf ∈ L2}. The unitary group gen-
erated by D is the group of dilations on L2, that is (eiτDf)(x) = eτ/2f(eτx).

We recall the simplest version of the Hardy estimate.

Proposition 2.1. For any f ∈ H1
0 ,

‖Pminf‖ ≥ 1
2
‖Q−1f‖.

Hence, if f ∈ H1 then Q̃−1f ∈ L2 if and only if f ∈ H1
0 .

Proof. For any a ∈ R, as a quadratic form on C∞
c we have

0 ≤ (P̃ + iaQ̃−1)∗(P̃ + iaQ̃−1)

= P̃ 2 + ia[P̃ , Q̃−1] + a2Q̃−2 = P̃ 2 + a(a− 1)Q̃−2.

Since a(a − 1) attains its minimum for a = 1
2 , one gets ‖P̃ f‖ ≥ 1

2‖Q̃−1f‖
for f ∈ C∞

c . By the dominated convergence theorem and Fatou lemma this
inequality will remain true for any f ∈ H1

0 . �

2.2. Holomorphic Families of Closed Operators

In this subsection we recall the definition of a holomorphic family of closed
operators. We refer the reader to [2, Ch. 7] for details.

The definition (or actually a number of equivalent definitions) of a holo-
morphic family of bounded operators is quite obvious and does not need to be
recalled. In the case of unbounded operators the situation is more subtle.

Suppose that Θ is an open subset of C,H is a Banach space, and
Θ � z �→ H(z) is a function whose values are closed operators on H. We
say that this is a holomorphic family of closed operators if for each z0 ∈ Θ
there exists a neighborhood Θ0 of z0, a Banach space K and a holomorphic
family of bounded injective operators Θ0 � z �→ A(z) ∈ B(K,H) such that
RanA(z) = D(H(z)) and

Θ0 � z �→ H(z)A(z) ∈ B(K,H)

is a holomorphic family of bounded operators.
We have the following practical criterion:

Theorem 2.2. Suppose that {H(z)}z∈Θ is a function whose values are closed
operators on H. Suppose in addition that for any z ∈ Θ the resolvent set of
H(z) is nonempty. Then z �→ H(z) is a holomorphic family of closed opera-
tors if and only if for any z0 ∈ Θ there exists λ ∈ C and a neighborhood Θ0

of z0 such that λ ∈ rs(H(z)) for z ∈ Θ0 and z �→ (H(z) − λ)−1 ∈ B(H) is
holomorphic on Θ0.
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The above theorem indicates that it is more difficult to study holomorphic
families of closed operators that for some values of the complex parameter have
an empty resolvent set.

To prove the analyticity of the resolvent, the following elementary result
is also useful

Proposition 2.3. Assume λ ∈ rs(H(z)) for z ∈ Θ0. If there exists a dense set
of vectors D such that z �→ 〈f, (H(z) − λ)−1g〉 is holomorphic on Θ0 for any
f, g ∈ D and if z �→ (H(z) − λ)−1 ∈ B(H) is locally bounded on Θ0, then it is
holomorphic on Θ0.

2.3. Homogeneous Operators

Some of the properties of homogeneous Schrödinger operators follow by general
arguments that do not depend on their precise structure. In this and the next
subsections, we collect such arguments. These two subsections can be skipped,
since all the results that are given here will be proven independently.

Let Uτ be a strongly continuous one-parameter group of unitary opera-
tors on a Hilbert space H. Let S be an operator on H and ν a non zero real
number. We say that S is homogeneous (of degree ν) if UτSU

−1
τ = eντS for

all real τ . More explicitly this means UτD(S) ⊂ D(S) and UτSU
−1
τ f = eντSf

for all f ∈ D(S) and all τ . In particular, we get UτD(S) = D(S).
We are really interested only in the case H = L2 and Uτ = eiτD the

dilation group, but it is convenient to state some general facts in an abstract
setting. Then, since we assumed ν 	= 0, there is no loss of generality if we con-
sider only the case ν = 1 (the general case is reduced to this one by working
with the group Uτ/ν).

Let T be a homogeneous operator. If T is closable and densely defined
then T ∗ is homogeneous too. If S ⊂ T then S is homogeneous if and only if
its domain is stable under the operators Uτ .

Let S be a homogeneous closed hermitian (densely defined) operator. We
are interested in finding homogeneous self-adjoint extensions H of S. Because
self-adjoint extension satisfies S ⊂ H ⊂ S∗, we see that we need to find sub-
spaces E with D(S) ⊂ E ⊂ D(S∗) such that UτE ⊂ E for all τ and such
subspaces will be called homogeneous.

Set 〈S∗f, g〉 − 〈f, S∗g〉 =: i{f, g}. Then {f, g} is a hermitian continu-
ous sesquilinear form on D(S∗) which is zero on D(S) and a closed subspace
D(S) ⊂ E ⊂ D(S∗) is the domain of a closed hermitian extension of S if and
only if {f, g} = 0 for f, g ∈ E and such subspaces will be called hermitian.
Note the following obvious fact: for f ∈ D(S∗) we have {f, g} = 0 for any
g ∈ D(S∗) if and only if f ∈ D(S).

If T is a homogeneous operator and λ ∈ C is an eigenvalue of T , then
eτλ is also an eigenvalue of T for any real τ . In particular, a homogeneous
self-adjoint operator cannot have non-zero eigenvalues and its spectrum is R,
or R+, or −R+, or {0}. (Note that, since Uτ is a strongly continuous one-
parameter group, the least closed subspace which contains an eigenvector and
is stable under all the Uτ and all functions of the operator is separable).

The following result, due to von Neumann, is easy to prove:



552 L. Bruneau et al. Ann. Henri Poincaré

Proposition 2.4. Let S be a positive hermitian operator with deficiency indices
(n, n) for some finite n ≥ 1. Then for each λ < 0 there is a unique self-
adjoint extension Tλ of S such that λ is an eigenvalue of multiplicity n of
Tλ. Moreover, the negative spectrum of Tλ is equal to {λ}. In particular, if
S is homogeneous, then Tλ is not homogeneous, so S has non-homogeneous
self-adjoint extensions.

Proof. It suffices to take D(Tλ) = D(S) + ker(S∗ − λ). �

Recall that the Friedrichs and Krein extensions of a positive hermitian
operator S are positive self-adjoint extensions F and K of S uniquely defined
by the following property: any positive self-adjoint extension H of S satisfies
K ≤ H ≤ F (in the sense of quadratic forms). Then a self-adjoint operator H
is a positive self-adjoint extension of S if and only if K ≤ H ≤ F .

Proposition 2.5. If S is as in Proposition 2.4 and if the Friedrichs and Krein
extensions of S coincide, then any other self-adjoint extension of S has a
strictly negative eigenvalue.

Proof. Indeed, such an extension will not be positive and its strictly negative
spectrum consists of eigenvalues of finite multiplicity. �

It is clear that any homogeneous positive hermitian operator has homo-
geneous self-adjoint extensions.

Proposition 2.6. If S is a homogeneous positive hermitian operator then the
Friedrichs and Krein extensions of S are homogeneous.

Proof. For any T we set Tτ = e−τUτTU
−1
τ . Thus homogeneity means Tτ = T .

Then from S ⊂ T ⊂ S∗ we get S ⊂ Tτ ⊂ S∗. Clearly, Fτ is a self-adjoint opera-
tor and is a positive extension of S, hence Fτ ≤ F . Then we also have F−τ ≤ F
or eτU−τFU

−1
−τ ≤ F hence F ≤ Fτ , i.e. F = Fτ . Similarly K = Kτ . �

2.4. Scattering Theory for Homogeneous Operators

In this subsection we continue with the abstract framework of Subsect. 2.3.
We shall consider couples of self-adjoint operators (A,H) such that H is

homogeneous with respect to the unitary group Uτ = eiτA generated by A, i.e.
UτHU

−1
τ = eτH for all real τ . We say that H is a homogeneous Hamiltonian

(with respect to A). This can be formally written as [iA,H] = H. It is clear
that H is homogeneous if and only if Uτϕ(H)U−1

τ = ϕ(eτH) holds for all
real τ and all bounded Borel functions ϕ : σ(H) → C. In addition, it suffices
that this be satisfied for only one function ϕ which generates the algebra of
bounded Borel functions on the spectrum of H, for example for just one con-
tinuous injective function. If we set Vσ = eiσH then another way of writing the
homogeneity condition is UτVσ = Veτ σUτ for all real τ, σ.

We shall call (A,H) a homogeneous Hamiltonian couple. We say that this
couple is irreducible if there are no nontrivial closed subspaces of H invariant
under A and H, or if the von Neumann algebra generated by A and H is
B(H). A direct sum (in a natural sense) of homogeneous couples is clearly a
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homogeneous couple. Below H > 0 means that H is positive and injective and
similarly for H < 0.

Proposition 2.7. A homogeneous Hamiltonian couple (A,H) is unitarily
equivalent to a direct sum of copies of homogeneous couples of the form (P, eQ)
or (P,−eQ) or (A0, 0) with A0 an arbitrary self-adjoint operator. If H > 0,
then only couples of the first form appear in the direct sum. A homogeneous
Hamiltonian couple is irreducible if and only if it is unitarily equivalent to one
of the couples (P, eQ) or (P,−eQ) on L2(R), or to some (A0, 0) with A0 a real
number considered as operator on the Hilbert space C. A homogeneous couple
is irreducible if and only if one of the operators A or H has simple spectrum
(i.e. the von Neumann algebra generated by it is maximal Abelian), and in this
case both operators have simple spectrum.

Proof. By taking above ϕ equal to the characteristic function of the set R+,
then −R+, and finally {0}, we see that the closed subspaces H+,H−,H0

defined by H > 0,H < 0,H = 0, respectively, are stable under Uτ . So we
have a direct sum decomposition H = H+ ⊕ H− ⊕ H0 which is left invariant
by A and H. Hence, A = A+ ⊕A− ⊕A0 and similarly for H, the operator H+

being homogeneous with respect to A+, and so on. Since H0 = 0 the operator
A0 can be arbitrary. The reduction in H− is similar to the reduction in H+,
it suffices to replace H− by −H−.

Thus to understand the structure of an arbitrary homogeneous Hamil-
tonian H, it suffices to consider the case when H > 0. If we set S = lnH
then by taking ϕ = ln above we get UτSU

−1
τ = τ + S for all real τ . Hence,

the couple (A,S) satisfies the canonical commutation relations, and so we may
use the Stone–von Neumann theorem: H is a direct sum of subspaces invariant
under A and S and the restriction of this couple to each subspace is unitarily
equivalent to the couple (P,Q) acting in L2(R). Because H = eS , we see that
the restriction of (A,H) is unitarily equivalent to the couple (P, eQ) acting in
L2(R). �

Remark 2.8. Thus, an irreducible homogeneous couple with H > 0 is unitarily
equivalent to the couple (P, eQ) on H = L2(R). A change in variables gives
also the unitary equivalence with the couple (D,Q) acting in L2(R+), where
D = (PQ+QP )/2.

In the next proposition we fix a self-adjoint operator A with simple spec-
trum on a Hilbert space H and assume that there is a homogeneous operator
H with H > 0. Then, the spectrum of A is purely absolutely continuous and
equal to the whole real line by the preceding results. Moreover, the spectrum
of H is simple, purely absolutely continuous and equal to R+. Homogeneity
refers always to A.

Proposition 2.9. Assume that H1,H2 are homogeneous Hamiltonians such that
Hk > 0. Then, there is a Borel function θ : R → C with |θ(x)| = 1 for all x such
that H2 = θ(A)H1θ(A)−1. If θ′ is a second function with the same properties,
then there is λ ∈ C such that |λ| = 1 and θ′(x) = λθ(x) almost everywhere.
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If the wave operator Ω+ = s − limt→+∞ eitH2e−itH1 exists, then there is a func-
tion θ as above such that Ω+ = θ(A) and this function is uniquely determined
almost everywhere. If the wave operator Ω− = s − limt→−∞ eitH2e−itH1 also
exists then there is a uniquely determined complex number ξ such that ξΩ− =
Ω+. In particular, the scattering matrix given by S = Ω∗

−Ω+ = ξ is indepen-
dent of the energy.

Proof. As explained above the couples (A,H1) and (A,H2) are unitarily equiv-
alent, hence there is a unitary operator V on H such that V AV −1 = A and
V H1V

−1 = H2. The spectrum of A is simple and V commutes with A so there
is a function θ as in the statement of the proposition such that V = θ(A). If W
is another unitary operator with the same properties as V then WV −1 com-
mutes with A and H2. From the irreducibility of (A,H2), it follows that WV −1

is a complex number of modulus one. Uniqueness almost everywhere is a con-
sequence of the fact that the spectrum of A is purely absolutely continuous
and equal to R.

Assume that Ω+ exists. If we denote σ = e−τ then

eitH2e−itH1Uτ = eitH2Uτe−iσtH1 = UτeiσtH2e−iσtH1 ,

hence Ω+Uτ = UτΩ+ for all real τ . So the isometric operator Ω+ belongs to
the commutant {A}′, but {A}′′ is a maximal Abelian algebra by hypothesis, so
equal to {A}′. Hence, Ω+ must be a function θ(A) of A, in particular it must
be a normal operator, hence unitary. Now we repeat the arguments above.
Since the spectrum of A is equal to R and is purely absolutely continuous, we
see that |θ(x)| = 1 and is uniquely determined almost everywhere. Similarly, if
Ω− exists, then it is a unitary operator in {A}′′. Thus S = Ω∗

−Ω+ is a unitary
operator in {A}′′, but also has the property H1S = SH1. Since the couple
(A,H1) is irreducible, we see that S must be a number. �

3. Homogeneous First-Order Operators

In this section, we prove some technical results on homogeneous first-order dif-
ferential operators which, besides their own interest, will be needed later on.

For each complex number α, let ˜Aα be the differential expression

˜Aα := P̃ + iαQ̃−1 = −i∂x + i
α

x
= −ixα∂xx

−α, (3.1)

acting on distributions on R+, where xα := eα log x with log x ∈ R. Its restric-
tion to C∞

c is a closable operator in L2 whose closure will be denoted Amin
α .

This is the minimal operator associated with ˜Aα. The maximal operator Amax
α

associated with ˜Aα is defined as the restriction of ˜Aα to D(Amax
α ) := {f ∈ L2 |

˜Aαf ∈ L2}.
The following properties of the operators Amin

α and Amax
α are easy to

check:
(i) Amin

α ⊂ Amax
α ,

(ii) (Amin
α )∗ = Amax

−α and (Amax
α )∗ = Amin

−α ,
(iii) Amin

α and Amax
α are homogeneous of degree −1.
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A more detailed description of the domains of the operators Amin
α and

Amax
α is the subject of the next proposition. We fix ξ ∈ C∞

c ([0,+∞[) such that
ξ(x) = 1 for x ≤ 1 and ξ(x) = 0 for x ≥ 2 and set ξα(x) = xαξ(x).

Proposition 3.1. (i) We have Amin
α = Amax

α if and only if |Reα| ≥ 1/2.
(ii) If Reα 	= 1/2, then D(Amin

α ) = H1
0 .

(iii) If Reα = 1/2, then H1
0 � H1

0 + Cξα � D(Amin
α ) and H1

0 is a core for
Amin

α = Amax
α .

(iv) If |Reα| < 1/2, then D(Amax
α ) = H1

0 +Cξα. In particular, if |Reα| < 1/2
and |Reβ| < 1/2 then D(Amax

α ) 	= D(Amax
β ).

To prove these facts we first need to discuss the resolvent families. Let
C± = {λ ∈ C | ±Imλ > 0}. The holomorphy of families of unbounded opera-
tors is discussed in Subsect. 2.2.

Proposition 3.2. (1) Let Reα > −1/2. Then
(i) rs(Amax

α ) = C−.
(ii) If Imλ < 0, then the resolvent (Amax

α − λ)−1 is an integral operator
with kernel

(Amax
α − λ)−1(x, y) = −ieiλ(x−y)

(

x

y

)α

1l+(y − x). (3.2)

(iii) The map α �→ Amax
α is holomorphic in the region Reα > −1/2.

(iv) Each complex λ with Imλ > 0 is a simple eigenvalue of Amax
α with

xαeiλx as associated eigenfunction.
(2) Let Reα < 1/2. Then

(i) rs(Amin
α ) = C+.

(ii) If Imλ > 0 then the resolvent (Amin
α − λ)−1 is an integral operator

with kernel

(Amin
α − λ)−1(x, y) = ieiλ(x−y)

(

x

y

)α

1l+(x− y). (3.3)

(iii) The map α �→ Amin
α is holomorphic in the region Reα < 1/2.

(iv) The operator Amin
α has no eigenvalues.

In some cases Amin
α and Amax

α are generators of semigroups. We define
the generator of a semigroup {Tt}t≥0 such that formally Tt = eitA. Note that
in (3.5) the function f is extended to R by the rule f(y) = 0 if y ≤ 0.

Proposition 3.3. If Reα ≥ 0, then iAmax
α is the generator of a C0-semigroup

of contractions

(eitAmax
α f)(x) = xα(x+ t)−αf(x+ t), t ≥ 0, (3.4)

whereas if Reα ≤ 0, the operator −iAmin
α is the generator of a C0-semigroup

of contractions

(e−itAmin
α f)(x) = xα(x− t)−αf(x− t), t ≥ 0. (3.5)

The operators iAmax
α for −1/2 < Reα < 0 and −iAmin

α for 0 < Reα < 1/2 are
not generators of C0-semigroups of bounded operators.
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The remaining part of this section is devoted to the proof of these three
propositions. We begin with a preliminary fact.

Lemma 3.4. If R and S are closed operators such that 0 ∈ rs(R), then the
operator RS defined on the domain D(RS) := {f ∈ D(S)|Sf ∈ D(R)} is
closed.

Proof. Let un ∈ D(RS) such that un → u and RSun → v. Then un ∈ D(S)
and Sun ∈ D(R), so that Sun = R−1RSun → R−1v, because R−1 is contin-
uous. Since S is closed, we thus get that u ∈ D(S) and Su = R−1v. Hence
Su ∈ D(R), i.e. u ∈ D(RS), and v = RSu. �

Note that the Hardy estimate (Proposition 2.1) gives ‖ ˜Aαf‖ ≤ (1 +
2|α|)‖Pf‖ for all f ∈ H1

0 . Since C∞
c is dense in H1

0 , we get H1
0 ⊂ D(Amin

α ) for
any α. Our next purpose is to show that D(Amin

α ) = H1
0 if Reα 	= 1/2, which

is part (ii) of Proposition 3.1.

Lemma 3.5. If Reα 	= 1/2, then D(Amin
α ) = H1

0 .

Proof. We set β = i(1/2 − α) and observe that it suffices to prove that the
restriction of ˜Aα to H1

0 is a closed operator in L2 if Imβ 	= 0. For this we
shall use Lemma 3.4 with R = D− β and S equal to the self-adjoint operator
associated to Q−1 in L2. Then it suffices to show that ˜Aα|H1

0
= RS.

The equality ˜Aα = ( ˜D−β)Q−1, where ˜D = (PQ+QP )/2 is the extension
to distributions of D, holds on the space of all distributions on R+, so we only
have to check that the domain of the product RS is equal to H1

0 (because β is
not in the spectrum of the self-adjoint operator D). As discussed before, if f ∈
H1

0 then Q−1f ∈ L2, so f ∈ D(S), and PQQ−1f = Pf ∈ L2, so Sf ∈ D(D).
Thus H1

0 ⊂ D(RS). Reciprocally, if f ∈ D(RS) then f ∈ L2, Q−1f ∈ L2, and
˜DQ−1f ∈ L2. But ˜DQ−1f ∈ L2 is equivalent to Pf ∈ L2, so f ∈ H1. Since
Q−1f ∈ L2 we get f ∈ H1

0 . �

Our next step is the proof of part (1) of Proposition 3.2. Assume Reα >
− 1

2 . The last assertion of part (1) of Proposition 3.2 is obvious, so sp(Amax
α )

contains the closure of the upper half plane. We now show that if Imλ < 0
then λ ∈ rs(Amax

α ) and the resolvent (Amax
α −λ)−1 is an integral operator with

kernel as in (3.2).
The differential equation (Aα − λ)f = g is equivalent to d

dx (x−αe−iλx

f(x)) = ix−αe−iλxg(x). Assume g ∈ L2(0,∞). We look for a solution f ∈
L2(0,∞) of the previous equation. Since Im (λ) < 0, the function x−αe−iλx

g(x) is square integrable at infinity. We thus can define an operator Rmax
α on

L2 by

(Rmax
α g)(x) = −i

∞
∫

x

(

x

y

)α

eiλ(x−y)g(y)dy,

i.e. Rmax
α is the integral operator with kernel given by (3.2).

Lemma 3.6. Rmax
α is a bounded operator in L2.
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Proof. For shortness, we write R for Rmax
α . In the sequel, we denote λ = μ+iν

and a = Reα. By our assumptions, we have ν < 0 and a > −1/2. If a ≥ 0
then the proof of the lemma is particularly easy, because

∞
∫

0

|R(x, y)|dy = xae−νx

∞
∫

x

y−aeνydy ≤ e−νx

∞
∫

x

eνydy = −ν−1,

and similarly
∫ ∞
0

|R(x, y)|dx ≤ −ν−1. Then the boundedness of R follows
from the Schur criterion. To treat the case −1/2 < a < 0 we split the integral
operator R in two parts R0 and R1 with kernels

R0(x, y) = 1l]0,1[(x)R(x, y), R1(x, y) = 1l[1,∞[(x)R(x, y).

We shall prove that R1 is bounded and R0 is Hilbert–Schmidt. For R1 we use
again the Schur criterion. If x < 1, then

∫ ∞
0

|R1(x, y)|dy = 0 while if x ≥ 1
then

∞
∫

0

|R1(x, y)|dy = xae−νx

∞
∫

x

y−aeνydy.

We then integrate by parts twice to get
∞
∫

0

|R1(x, y)|dy = −ν−1 − a

ν2x
+
a(a+ 1)
ν2

xae−νx

∞
∫

x

eνyy−a−2dy. (3.6)

Then, using a > −1/2, we estimate

xae−νx

∞
∫

x

eνyy−a−2dy ≤ xa

∞
∫

x

y−a−2dy =
1

(a+ 1)x
,

which, together with (3.6), proves that supx≥1

∫ ∞
0

|R1(x, y)|dy < +∞. Simi-
larly

∫ ∞
0

|R1(x, y)|dx = 0 if y < 1, and for y ≥ 1
∞
∫

0

|R1(x, y)|dx = y−aeνy

y
∫

1

xae−νxdy

is estimated similarly. We now prove that the operator R0 is Hilbert-Schmidt.
We have

∞
∫

0

dx

∞
∫

0

dy|R0(x, y)|2 =

1
∫

0

dxx2ae−2νx

∞
∫

x

dy y−2ae2νy.

Since a and ν are strictly negative, the integral
∫ ∞
0
y−2ae2νydy converges.

Hence
∞
∫

0

dx

∞
∫

0

dy|R0(x, y)|2 ≤ C

1
∫

0

x2ae−2νxdx,

which is convergent because a > −1/2. �
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So we proved that for Im (λ) < 0 the operator R defines a bounded
operator on L2 such that ( ˜Aα − λ)Rg = g for all g ∈ L2. Hence, R : L2 →
D(Amax

α ) and (Amax
α − λ)R = 1lL2 .

Reciprocally, let f ∈ D(Amax
α ) and set g := (Amax

α − λ)f ∈ L2. The pre-
ceding argument shows that (Amax

α −λ)(f−Rg) = 0. But Amax
α −λ is injective.

Indeed, if (Amax
α −λ)h = 0, then there exists C ∈ C such that h(x) = Cxαeiλx

which is not in L2 near infinity unless C = 0 (recall that Imλ < 0).
We have therefore proven that each λ ∈ C− belongs to the resolvent

set of Amax
α and that (Amax

α − λ)−1 = R. If we fix such a λ and look at
R = R(α) as an operator valued function of α defined for Reα > −1/2, then
from the preceding estimates on the kernel of R it follows that ‖R(α)‖ is a
locally bounded function of α. On the other hand, it is clear that if f, g ∈ C∞

c ,
then α �→ 〈f,R(α)g〉 is a holomorphic function. Thus, by Proposition 2.3,
α �→ (Amax

α − λ)−1 is holomorphic on Reα > −1/2. This finishes the proof of
point (1) of Proposition 3.2. The second part of the proposition follows from
the first part by using the relation Amin

α = (Amax
−α )∗.

We now complete the proof of Proposition 3.1 and consider first the most
difficult case when Re (α) = 1/2. The function ξα is of class C∞ on R+, is
equal to zero on x > 2, we have ξα ∈ L2, and ˜Aαξα = 0 on x < 1. Hence
ξα ∈ D(Amax

α ). On the other hand ξ′
α /∈ L2 (it is not square integrable at the

origin) so ξα /∈ H1
0 .

Lemma 3.7. Let Re (α) ≥ 1/2. Then ξα ∈ D(Amin
α ).

Proof. The case Reα > 1/2 is obvious since ξα ∈ H1
0 . Now for Reα = 1/2

we prove that ξα belongs to the closure of H1
0 in D(Amax

α ) which is precisely
D(Amin

α ). For 0 < ε < 1/2 we define ξα,ε as

ξα,ε(x) =

{

x
εx

α if x < ε,

ξα(x) if x ≥ ε.

For x < ε one has ξ′
α,ε(x) = α+1

ε xα. Hence ξ′
α,ε ∈ L2 so that ξα,ε ∈ H1

0 .
Moreover ‖ξα,ε − ξα‖L2 → 0 as ε → 0. We then have

˜Aαξα,ε(x) =

{

− i
εx

α if x < ε,

0 if ε ≤ x < 1,
and ˜Aαξα(x) = 0 if x < 1,

while ˜Aαξα,ε(x) = ˜Aαξα(x) if x ≥ 1. Therefore

‖ ˜Aαξα,ε‖2
L2 =

ε
∫

0

∣

∣

∣

∣

xα

ε

∣

∣

∣

∣

2

dx+ ‖ ˜Aαξα‖2
L2 =

1
2

+ ‖ ˜Aαξα‖2
L2 .

Thus ξα,ε → ξα in L2, ξα,ε ∈ H1
0 ⊂ D(Amax

α ), and there is C > 0 such that
‖ ˜Aαξα,ε‖L2 ≤ C for any ε. Since Amax

α is closed, this proves that ξα belongs
to the closure of H1

0 in D(Amax
α ), i.e. ξα ∈ D(Amin

α ).

Lemma 3.8. Let Re (α) ≥ 1/2. Then D(Amin
α ) = D(Amax

α ).
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Fix λ ∈ C such that Im (λ) < 0, e.g. λ = −i, and let R = (Amax
α +i)−1. R

is continuous from L2 onto D(Amax
α ), hence R(C∞

c ) is dense in D(Amax
α ). Let

now g ∈ C∞
c and 0 < c < d < ∞ such that supp g ⊂ [c, d]. Then for any x < c,

f(x) = (Rg)(x) = −ixαex

d
∫

c

y−αe−yg(y)dy

∼ Cxα + Cxα(ex − 1) ∼ Cxα +Dxα+1

as x → 0. Hence f ∈ Cξα + H1
0 . Therefore R(C∞

c ) ⊂ Cξα + H1
0 ⊂ D(Amin

α ).
Since R(C∞

c ) is dense in D(Amax
α ), the same is true for D(Amin

α ). But Amin
α is

a closed operator, and so D(Amin
α ) = D(Amax

α ). �
Lemma 3.9. If Reα = 1/2, then Cξα +H1

0 	= D(Amax
α ).

Proof. Let R be as above and let g(y) = y−ᾱ| ln(y)|−γ1l]0, 1
2 [(y) where γ > 1/2.

Then g ∈ L2, hence Rg ∈ D(Amax
α ). On the other hand, for x ≤ 1/2 we have

Rg(x) = −ixαex

1
2

∫

x

e−y

y| ln(y)|γ dy ∼ Cxα| ln(x)|1−γ

as x → 0. In particular, if γ < 1, then Rg /∈ Cξα +H1
0 . �

All the assertions related to the case Reα = 1/2 of Proposition 3.1 have
been proved. Since

Amin
α = Amax

α =⇒ Amin
−ᾱ = Amax

−ᾱ (3.7)

holds for any α, we get Amin
α = Amax

α , and so D(Amax
α ) = H1

0 if Reα = −1/2.
We now turn to the case |Re (α)| > 1/2 and show D(Amax

α ) = D(Amin
α ) = H1

0 .
Due to (3.7) it suffices to consider the case Reα > 1/2, which is precisely the
statements of Lemmas 3.5 and 3.8. Now we prove (iv) of Proposition 3.1.

Lemma 3.10. If |Reα| < 1/2, then Cξα +H1
0 = D(Amax

α ).

Proof. Clearly, ξα /∈ H1
0 . We easily show that ξα ∈ D(Amax

α ).
Once again, let R = (Amax

α + i)−1 and let f ∈ D(Amax
α ). There exists

g ∈ L2 such that f = Rg, or

f(x) = −ixαex

∞
∫

x

e−yy−αg(y)dy.

We show that f ∈ Cξα +H1
0 . Clearly, only the behaviour at the origin matters.

For x < 1 decompose f as

f(x) = −ixαex

∞
∫

0

e−yy−αg(y)dy + ixαex

x
∫

0

e−yy−αg(y)dy =: f0(x) + f1(x).

Note that the first integral makes sense because |Re (α)| < 1/2, so e−yy−α is
square integrable. Clearly

f0(x) = Cxαex = Cxα + Cxα(ex − 1) ∈ Cξα +H1
0
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near the origin. We then prove that f1 ∈ H1
0 near the origin. By construction,

(Aα + i)f1 = g ∈ L2, so if we prove that Q−1f1 is in L2 near the origin, we
will get f1 ∈ H1 near the origin, and hence f1 ∈ H1

0 near the origin.
For any 0 < x < 1 we can estimate (with a = Reα as before)

1
x

|f1(x)| =
1
x

∣

∣

∣

∣

∣

∣

x
∫

0

ex−y

(

x

y

)α

g(y)dy

∣

∣

∣

∣

∣

∣

≤ C

+∞
∫

1

ta−2|g(x
t
)|dt. (3.8)

For any t ≥ 1 let τt be the map in L2 defined by (τtg)(x) = g(x/t), and let
T =

∫ ∞
1
ta−2τtdt. We have ‖τt‖L2→L2 =

√
t hence T is a bounded operator

on L2 with ‖T‖ ≤ ∫ ∞
1
ta−3/2dt which converges since a < 1/2. Together with

(3.8), this proves that 1
xf1(x) is square integrable on ]0, 1[. This completes the

proof of Proposition 3.1.
It remains to prove Proposition 3.3. Since this is just a computation, we

shall only sketch the argument. Note that it suffices to consider the case of
Amax

α , because then we get the result concerning Amin
α by taking adjoints. Let

us denote Amax
0 = Pmax, so Pmax is the restriction to the Sobolev space H1 of

the operator P . It is well-known and easy to check that Pmax is the generator of
the contraction semigroup (eitPmaxf)(x) = f(x+ t) for t ≥ 0 and f ∈ L2. Now
if we write (3.1) as ˜Aα = QαPQ−α, then (3.4) is formally obvious, because it
is equivalent to

eitAmax
α = QαeitPmaxQ−α.

For a rigorous justification, we note that the right hand side here or in (3.4)
clearly defines a C0-semigroup of contractions if (and only if) Reα ≥ 0, and
then a straightforward computation shows that its generator is Amax

α . One may
note that C∞

c + Cξα is a core for Amax
α for all such α.

4. Homogeneous Second-Order Operators

4.1. Formal Operators

For an arbitrary complex number m we introduce the differential expression

L̃m = P̃ 2 + (m2 − 1/4)Q̃−2 = −∂2
x +

m2 − 1/4
x2

(4.1)

acting on distributions on R+. Let Lmin
m and Lmax

m be the minimal and max-
imal operators associated to it in L2 (see Appendix A). It is clear that they
are homogeneous operators (of degree −2, we shall not specify this anymore).
The operator Lmin

m is hermitian if and only if m2 is a real number, i.e. m is
either real or purely imaginary, and then (Lmin

m )∗ = Lmax
m . In general, we have

(Lmin
m )∗ = Lmax

m̄ .

Note that (4.1) does not make any difference between m and −m. We will
however see that m, not m2, is the natural parameter. In particular this will
be clear in the construction of other L2 realizations of Lm, i.e. operators H
such that Lmin

m ⊂ H ⊂ Lmax
m .
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Observe also that one can factorize L̃m as

L̃m =
(

P̃ + i
m̄+ 1

2

Q̃

)∗ (
P̃ + i

m+ 1
2

Q̃

)

= ˜A∗
m̄+ 1

2

˜Am+ 1
2

(4.2)

where ˜A∗
m̄+ 1

2
is the formal adjoint of the differential expression ˜Am̄+ 1

2
. The

above expression makes a priori a difference between m and −m, since L̃m

does not depend on the sign of m, whereas the factorizations corresponding to
m and −m are different. These factorizations provide one of the methods to
distinguish between the various homogeneous extensions of Lmin

m . However, as
we have seen in the previous section, one has to be careful in the choice of the
realization of ˜Am+ 1

2
.

4.2. Homogeneous Holomorphic Family

If m is a complex number we set

ζm(x) = x1/2+m if m 	= 0 and ζ0(x) ≡ ζ+0(x) =
√
x, ζ−0(x) =

√
x lnx.

(4.3)

The notation is chosen in such a way that for any m the functions ζ±m are
linearly independent solutions of the equation Lmu = 0. Note that ζ±m are
both square integrable at the origin if and only if |Rem| < 1.

We also choose ξ ∈ C∞(R+) such that ξ = 1 on [0, 1] and 0 on [2,∞[.

Definition 4.1. For Re (m) > −1, we define Hm to be the operator Lmax
m

restricted to D(Lmin
m ) + Cξζm.

Clearly,Hm does not depend on the choice of ξ. Our first result concerning
the family of operators Hm is its analyticity with respect to the parameter m.

Theorem 4.2. {Hm}Re m>−1 is a holomorphic family of operators. More pre-
cisely, the number −1 belongs to the resolvent set of Hm for any such m and
m �→ (Hm + 1)−1 ∈ B(L2) is a holomorphic map.

Before we prove the above theorem, let us analyze the eigenvalue problem
for L̃m. The latter is closely related to Bessel’s equation. In the sequel, Jm will
denote the Bessel functions of the first kind, i.e.

Jm(x) :=
∞
∑

j=0

(−1)j(x/2)2j+m

j!Γ(j +m+ 1)
, (4.4)

and Im and Km the modified Bessel functions [7]

Im(x) = i−mJm(ix), Km(x) =
π

2
I−m(x) − Im(x)

sin(mπ)
. (4.5)

Lemma 4.3. For any m such that Re (m) > −1, the functions
√
xIm(x),√

xKm(x) form a basis of solutions of the differential equation −∂2
xu+ (m2 −

1
4 ) 1

x2u = −u such that
√
xIm(x) ∈ L2(]0, 1[) and

√
xKm(x) ∈ L2(]1,+∞[).

Besides, the Wronskian of these two solutions equals 1.
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Proof. If we introduce w(x) = x−1/2v(x), then v satisfies ˜Lmv = −v iff w
satisfies

x2w′′(x) + xw(x) − (x2 +m2)w = 0,

which is modified Bessel’s differential equation. Linearly independent solutions
of this equation are (Im,Km). Therefore, a basis of solution for the equation
˜Lmu = −u is (

√
xIm(x),

√
xKm(x)) =: (u0, u∞).

One has I ′
m(x)Km(x) − Im(x)K ′

m(x) = − 1
x (see [7]), and hence W =

u′
0u∞ − u0u

′
∞ = 1. Moreover, Im(x) ∼ 1

Γ(m+1)

(

x
2

)m as x → 0 [7]. There-
fore, u0(x) is square integrable near the origin iff Re (m) > −1. On the other
hand, Km(x) ∼ √

π
2xe−x as x → ∞, so that u∞ is always square integrable

near ∞. �

Note that
√
xIm(x) belongs to the domain of Hm for all Re (m) > −1.

Therefore, the candidate for the inverse of the operator Hm +1 has kernel (cf.
Proposition A.1)

Gm(x, y) =

{√
xyIm(x)Km(y) if x < y,

√
xyIm(y)Km(x) if x > y.

We still need to prove that Gm is bounded, which will be proven in the next
lemma.

Lemma 4.4. The map m �→ Gm is a holomorphic family of bounded operators
and it does not have a holomorphic extension to a larger subset of the complex
plane.

Proof. We prove thatGm is locally bounded and thatm �→ 〈f,Gmg〉 is analytic
for f, g in a dense set of L2, so that the result follows from Proposition 2.3.

The modified Bessel functions depend analytically in m. Therefore, the
Green function Gm(x, y) is an analytic function of the parameter m, and it is
easy to see that for any f, g ∈ C∞

c (]0,+∞[), the quantity 〈f, (Hm + 1)−1g〉 =
∫

f̄(x)Gm(x, y)g(y)dxdy is analytic in m. Since C∞
c (]0,+∞[) is dense in

L2(0,+∞), it remains to prove that (Hm + 1)−1 is locally bounded in m.
We shall split this resolvent as Gm = G−−

m +G−+
m +G+−

m +G++
m , where

G±±
m is the operator that has kernel G±±

m (x, y) with

G−−
m (x, y) = G(x, y)1l]0,1](x)1l]0,1](y),

G−+
m (x, y) = G(x, y)1l]0,1](x)1l]1,∞[(y),

G+−
m (x, y) = G(x, y)1l]1,∞[(x)1l]0,1](y),

G++
m (x, y) = G(x, y)1l]1,∞[(x)1l]1,∞[(y).

We control the norm of G++
m using Schur’s Theorem (see [8]), whereas for the

other terms, we estimate the L2 norm of the kernel. (This means in particular
that G−−

m , G−+
m and G+−

m are actually Hilbert–Schmidt).
For that purpose, we use the explicit expression given in Lemma 4.3

together with the following estimates on the modified Bessel functions (see
e.g. [7]):



Vol. 12 (2011) Homogeneous Schrödinger Operators on Half-Line 563

• as x → 0,

Im(x) ∼ 1
Γ(m+ 1)

(x

2

)m

, m 	= −1,−2, . . . , (4.6)

Km(x) ∼

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Re
(

Γ(m)
(

2
x

)m)

if Rem = 0, m 	= 0,

− ln
(

x
2

) − γ if m = 0,
Γ(m)

2

(

2
x

)m if Rem > 0,
Γ(−m)

2

(

x
2

)m if Rem < 0.

(4.7)

• as x → ∞,

Im(x) ∼ 1√
2πx

ex, (4.8)

Km(x) ∼
√

π

2x
e−x. (4.9)

The various constants which appear in (4.6)–(4.9) are locally bounded in m,
except Γ(m) as m goes to zero, so that we may estimate the G±±

m (x, y) by

|G−−
m (x, y)| ≤ Cm|Γ(m)|

(

x1/2−|ν|y1/2+ν1l0<y<x<1(x, y)

+x1/2+νy1/2−|ν|1l0<x<y<1(x, y)
)

,

|G+−
m (x, y)| ≤ Cme−xyν+1/21l]1,∞[(x)1l]0,1](y), (4.10)

|G−+
m (x, y)| ≤ Cmx

ν+1/2e−y1l]0,1](x)1l]1,∞[(y),

|G++
m (x, y)| ≤ Cme−|x−y|1l]1,∞[(x)1l]1,∞[(y),

where ν = Re (m) and Cm are constants which depend on m but are locally
bounded in m. The only problem is when m = 0, where we shall replace
(4.10) by

|G−−
0 (x, y)| ≤ C

(

y1/2| ln(x)|1l0<y<x<1(x, y) + x1/2| ln(y)|1l0<x<y<1(x, y)
)

.

(4.11)

Note also that the constant appearing in (4.10) blows up as m goes to zero
due to the factor |Γ(m)|.

Straightforward computations lead to the following bounds:

‖G−−
m ‖2

L2 ≤ Cm|Γ(m)|
(ν + 1)(4 + 2ν − 2|ν|) , m 	= 0,

‖G−+
m ‖2

L2 ≤ Cm

4(1 + ν)
,

‖G+−
m ‖2

L2 ≤ Cm

4(1 + ν)
,

‖G++
m ‖L∞

x (L1
y) ≤ 2Cm,

‖G++
m ‖L∞

y (L1
x) ≤ 2Cm.
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This proves that G−−
m , G−+

m and G+−
m are Hilbert-Schmidt operators whose

norm is locally bounded in m (except maybe for G−−
m near 0). Using Schur’s

Theorem G++
m is bounded with ‖G++

m ‖ ≤ 2C(m).
It remains to prove that G−−

m is locally bounded around 0. To this end
we use |Km(z)| < C |xm−x−m|

|m| and estimate the Hilbert–Schmidt norm, where
we set ν := Rem:

∫

0<x<y<1

|G−−
m (x, y)|2dxdy

≤ C

|m|2
∫

0<x<y<1

xy|xm|2|ym − y−m|2

≤ C ′

|m|2
(

1
4ν + 2

+
1
4

− 2
2ν + 4

)

=
C ′

4(ν + 1)(ν + 2)
.

As a conclusion, Gm is locally bounded in m for all m such that Re (m) > −1.
We finally prove that Gm does not extend to a holomorphic family of

bounded operators beyond the axis Rem = −1. Fix g ∈ C∞
c (]0,∞[). The

function m �→ Gmg with values in L2
loc(]0,∞[) is entire analytic. If Gm could

be extended to a holomorphic family of bounded operators, when applied to
the function g this extension should coincide with Gmg. For x below the sup-
port of g we clearly have

(Gmg)(x) =
√
xIm(x)

∞
∫

0

√
yKm(y)g(y)dy = Cm

√
xIm(x)

which is not in L2 if Rem ≤ −1. �

This proves that for Re (m) > −1 the number −1 belongs to the resolvent
set of Hm, we have Gm = (Hm + 1)−1, and Hm is a holomorphic family of
operators, cf. Proposition 2.3. This proves Theorem 4.2.

The next theorem gives more properties of the operators Hm. The main
technical point is that the differences of the resolvents Rm′(λ) − Rm′′(λ) are
compact operators, where we set Rm(λ) = (Hm − λ)−1 for λ in the resolvent
set of Hm. For the proof we need the following facts.

Lemma 4.5. Let Ω be an open connected complex set, X a Banach space, Y a
closed linear subspace of X, and F : Ω → X a holomorphic map. If F (z) ∈ Y
for z ∈ ω, where ω ⊂ Ω has an accumulation point in Ω, then F (z) ∈ Y for
z ∈ Ω.

Proof. All the derivatives of F at an accumulation point of ω in Ω can be
computed in terms of F |ω, hence belong to the closed subspace generated by
the F (z) with z ∈ ω. �

Lemma 4.6. Let S, T be two closed operators on a Banach space H and let
K(λ) = (S−λ)−1 − (T −λ)−1. If K(λ) is compact for some λ ∈ rs(S) ∩ rs(T )
then K(λ) is compact for all λ ∈ rs(S) ∩ rs(T ).
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Proof. We denote Sλ = (S − λ)−1 and Sλμ = (S − λ)(S − μ)−1 and use
similar notation when S is replaced by T . Then Sλ = SμSμλ, hence K(λ) =
K(μ)Sμλ +Tμ(Sμλ −Tμλ). If K(μ) is compact then the first term on the right
hand side is compact. For the second term we note that

Sμλ − Tμλ = S−1
λμ − T−1

λμ

= (1 + (μ− λ)Sμ)−1 − (1 + (μ− λ)Tμ)−1

= (μ− λ)SμλK(μ)Tμλ,

and the last expression is a compact operator. �

Theorem 4.7. For any Re (m) > −1 we have sp(Hm) = R̄+, and if λ ∈ C\R̄+

then Rm(λ) − R1/2(λ) is a compact operator. If Rm(λ;x, y) is the integral
kernel of the operator Rm(λ), then for Re k > 0 we have

Rm(−k2;x, y) =
{√

xyIm(kx)Km(ky) if x < y,√
xyIm(ky)Km(kx) if x > y.

(4.12)

Proof. We first show that Gm −G1/2 is compact for all m. From Lemma 4.5
it follows that it suffices to prove this for 0 < m < 1/2 (take X the space
of bounded operators, Y the subspace of compact operators, ω =]0, 1/2[ and
Ω = {z ∈ C,Re z > −1}). In this case Hm is a positive operator and we have
Hm = H1/2 +V in the form sense, where V (x) = ax−2 with a = m2 − 1/4,
hence −1/4 < a < 0. The Hardy estimate (Proposition 2.1) implies ±V ≤
4|a|H1/2, and 4|a| < 1, so if we set S = (H1/2 + λ)−1/2 with λ > 0 we get

±SV S ≤ 4|a|H1/2(H1/2 + λ)−1 ≤ 4|a| < 1.

Thus ‖SV S‖ < 1. From Hm + λ = S−1(1 + SV S)S−1 we obtain

(Hm + λ)−1 = S(1 + SV S)−1S

= (H1/2 + λ)−1/2

+
∑

n>0

(−1)nS(SV S)n−1SV S2

where the series is norm convergent. Hence Rm(−λ) −R1/2(−λ) is compact if
SV S2 is compact (recall that we assume 0 < m < 1/2).

We now prove that SV S2 is a compact operator. Note that S2 = (H1/2 +
λ)−1 and H1/2 is the Dirichlet Laplacian, so that S2L2 = H1

0 ∩H2 and SL2 =
H1

0 . Thus we have to show that V when viewed as operator H1
0 ∩H2 → H−1

is compact. Clearly this operator is continuous, in fact V is continuous as
operator H1

0 → H−1. Moreover, H2
0 is the subspace of H1

0 ∩ H2 defined by
f ′(0) = 0, hence is a closed subspace of codimension one of H1

0 ∩ H2. Thus
it suffices to prove that V : H2

0 → H−1 is compact. Let θ be a C∞ function
which is equal to one for x < 1 and equal to zero for x > 2. Clearly (1− θ)V is
a compact operator H2

0 → L2, and so it suffices to prove that θV : H2
0 → H−1

is compact. Again it is clear that θ : L2 → H−1 is compact, so it suffices to
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show that V : H2
0 → L2 is continuous. If f ∈ C∞

0 , then

V (x)f(x) = x2V (x)

x
∫

0

x− y

x2
f ′′(y)dy = x2V (x)

1
∫

0

(1 − t)f ′′(tx)dt.

So if c = supx |x2V (x)|, then

‖V f‖ ≤ c

1
∫

0

(1 − t)‖f ′′(t·)‖dt = c

1
∫

0

(1 − t)t−1/2dt‖f ′′‖ =
4c
3

‖f ′′‖,

hence V : H2
0 → L2 is continuous.

Thus we proved that Rm(−1) − R1/2(−1) is a compact operator if
Re (m) > −1. From Lemma 4.6 it follows that Rm(λ) − R1/2(λ) is compact
if λ is in the resolvent set of Hm and of H1/2. We have sp(H1/2) = R̄+ and
we now show that sp(Hm) = R̄+. Clearly the operator G1/2 is self-adjoint, its
spectrum is the interval [0, 1], and we have Gm = G1/2 +K for some compact
operator K. Thus if z 	∈ [0, 1], we have

Gm − z = (G1/2 − z)
[

1 + (G1/2 − z)−1K
] ≡ (G1/2 − z) [1 +K(z)]

where K(·) is a holomorphic compact operator valued function on C\[0, 1]
such that ‖K(z)‖ → 0 as z → ∞. From the analytic Fredholm alternative it
follows that there is a discrete subset N of C\[0, 1] such that 1 + K(z) is a
bijective map L2 → L2 if z 	∈ [0, 1] ∪N . Thus Gm − z is a bijective map in L2

if z 	∈ N ∪ [0, 1]. The function z �→ λ = z−1 − 1 is a homeomorphism of C\{0}
onto C\{−1} which sends ]0, 1] onto R̄+, hence the image of N through it is a
set M whose accumulation points belong to R̄+ ∪{−1}. If λ 	∈ R̄+ ∪{−1}∪M ,
then

(λ+ 1)−1 − (Hm + 1)−1 = (λ+ 1)−1(Hm − λ)(Hm + 1)−1

and the left hand side is a bijection in L2, hence Hm − λ is a bijective map
D(Hm) → L2. So λ belongs to the resolvent set of Hm. Thus the spectrum of
Hm is included in R̄+ ∪ {−1} ∪M . But Hm is homogeneous, so sp(Hm) must
be a union of half-lines. Since it is not empty, it has to be equal to R̄+.

The explicit form of the kernel of Rm(λ) given in (4.12) can be proven
by a minor variation of the arguments of the proof of Theorem 4.2 based on
more refined estimates for the modified Bessel functions. Since we shall not
need this formula, we do not give the details. �

Remark 4.8. We describe here in more abstract terms the main fact behind
the preceding proof. Let H0 be a self-adjoint operator on a Hilbert space H
with form domain K = D(|H0|1/2) and let V be a continuous symmetric ses-
quilinear form on K. If V , when viewed as operator K → K∗, is compact, then
it is easy to prove that the form sum H = H0 + V is well defined, and that
(H − z)−1 − (H0 − z)−1 is a compact operator on H (in fact, also as operator
K∗ → K). This compactness condition on V is never satisfied if H0 and V are
homogeneous of the same orders, so this criterion is useless in our context. But
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our argument requires only that V be compact as operator D(H0) → K∗, and
this property holds in the case of interest here.

4.3. Domain of the Minimal and Maximal Operator

In this subsection we analyze the operators Lmin
m and Lmax

m .

Proposition 4.9. If |Rem| < 1, then Lmin
m � Lmax

m and D(Lmin
m ) is a closed

subspace of codimension two of D(Lmax
m ).

Proof. In this case, we have two solutions of Lmu = 0 that are in L2 around
0. Hence, the result follows from Proposition A.5. �

Proposition 4.10. If |Rem| ≥ 1, then Lmin
m = Lmax

m . Hence, for Re (m) ≥ 1,
Hm = Lmin

m = Lmax
m .

Proof. We use the notation of the proof of Lemma 4.3. We know that the
operator Gm is continuous in L2, that the functions u0 and u∞ are uniquely
defined modulo constant factors, and there are no solutions in L2 of the equa-
tion (L̃m + 1)u = 0. Lemma A.1 says that (L̃m + 1)Gmg = g for all g ∈ L2,
hence (Lmax

m + 1)Gm = 1 on L2. In particular, Gm : L2 → D(Lmax
m ) is contin-

uous. More explicitly, we have

(Gmg)(x) = u0(x)

∞
∫

x

u∞(y)g(y)dy + u∞(x)

x
∫

0

u0(y)g(y)dy.

Now we shall use the following easily proven fact.
Let E be a normed space and let ϕ,ψ be linear functionals on E such

that a linear combination aϕ + bψ is not continuous unless it is zero. Then
kerϕ ∩ kerψ is dense in E.

We take E = C∞
c equipped with the L2 norm and ϕ(g)=

∫ ∞
0
u0(x)g(x)dx,

ψ(g) =
∫ ∞
0
u∞(x)g(x)dx. The linear combination aϕ+bψ is given by a similar

expression with u = au0 + bu∞ as integrating function. Since (L̃m + 1)u = 0
we have u ∈ L2 only if u = 0. Thus E0 = kerϕ∩ kerψ is dense in E. It is
clear that GmE0 ⊂ C∞

c . Hence by continuity we get GmL
2 ⊂ D(Lmin

m ), and
thus (Lmin

m + 1)Gm = 1 on L2. On the other hand it is easy to show that
Gm(L̃m + 1)f = f if f ∈ C∞

c , hence Gm(Lmin
m + 1) = 1 on D(Lmin

m ). Thus
Lmin

m + 1 : D(Lmin
m ) → L2 is a bijective map. Since Lmax

m + 1 is an extension of
Lmin

m + 1 and is injective, we must have Lmin
m = Lmax

m . �

If m = 1/2, then clearly D(Lmin
m ) = H2

0 . If m 	= 1/2 then D(Lmin
m ) 	= H2

0 .
However, the functions from D(Lmin

m ) behave at zero as if they were in H2
0

with the exception of the case m = 0.

Proposition 4.11. Let f ∈ D(Lmin
m ).

(i) If m 	= 0, then f(x) = o(x3/2) and f ′(x) = o(x1/2) as x → 0.
(ii) If m = 0, then f(x) = o(x3/2 lnx) and f ′(x) = o(x1/2 lnx) as x → 0.
(iii) For any m,D(Lmin

m ) ⊂ H1
0 .
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Proof. Since L̃m does not make any difference between m and −m, we may
assume Rem ≥ 0.

Assume first Rem ≥ 1. If f ∈ D(Lmin
m ) and g = (Lmin

m + 1)f , then
f = Gmg, and hence f = u0g∞ + u∞g0 and f ′ = u′

0g∞ − u′
∞g0 with g0(x) =

∫ x

0
u0(y)g(y)dy and g∞(x) =

∫ ∞
x
u∞(y)g(y)dy. The functions u0 and u∞ are

of Bessel type and their behaviour at zero is known, see (4.7). More precisely,
if we set μ = Rem, then we have

u0(x) = O(xμ+1/2), u′
0(x) = O(xμ−1/2),

u∞(x) = O(x−μ+1/2), u′
∞(x) = O(x−μ−1/2).

Then for x < 1 we have

|u0(x)g∞(x)| ≤ Cxμ+1/2

⎛

⎝

1
∫

x

y−μ+1/2|g(y)|dy +

∞
∫

1

|u∞(y)g(y)|dy
⎞

⎠

≤ Cxμ+1/2

(

(

x2−2μ − 1
2μ− 2

)1/2

+ ‖u∞‖L2(1,∞)

)

‖g‖,

which is O(x3/2). We have u∞g0 = o(x3/2) by a simpler argument. Let F be
the Banach space consisting of continuous functions on I = ]0, 1[ such that
‖h‖F ≡ supx∈I x

−3/2|h(x)| < ∞. For g ∈ L2 let Tg be the restriction of
Gmg to I. By what we have shown we have TL2 ⊂ F , hence, by the closed
graph theorem, T : L2 → F is a continuous operator. With the notation of
the proof of Proposition 4.10, if g ∈ E0, then Tg is equal to zero near zero,
so T sends the dense subspace E0 of L2 into the closed subspace F0 of F
consisting of functions such that x−3/2h(x) → 0 as x → 0. By continuity,
we get TL2 ⊂ F0, hence f(x) = o(x3/2). A similar argument based on the
representation f ′ = u′

0g∞ − u′
∞g0 gives f ′(x) = o(x1/2).

We treat now the case 0 ≤ Rem < 1. Now all the solutions of the equation
Lmu = 0 are square integrable at the origin, hence we may use Proposition A.7
with v± proportional to ζ±m. A straightforward computation gives for m 	= 0

|v+(x)|‖v−‖x + |v−(x)|‖v+‖x ≤ Cx3/2,

|v′
+(x)|‖v−‖x + |v′

−(x)|‖v+‖x ≤ Cx1/2

while if m = 0 then

|v+(x)|‖v−‖x + |v−(x)|‖v+‖x ≤ Cx3/2(| lnx| + 1),

|v′
+(x)|‖v−‖x + |v′

−(x)|‖v+‖x ≤ Cx1/2(| lnx| + 1).

This finishes the proof. �

We describe now some consequences of the representations (A.5) and
(A.6) in the present context. We say that a function h is in D(Lmin

m ) near
the origin if for some (hence any) function ξ ∈ C∞

c (R) which is one on a
neighbourhood of the origin we have ξh ∈ D(Lmin

m ). Assume |Rem| < 1 and
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let f ∈ D(Lmax
m ). Then there are constants a, b and a function f0 which is in

D(Lmin
m ) near the origin such that

f(x) = ax1/2−m + bx1/2+m + f0(x) if m 	= 0, (4.13)

f(x) = ax1/2 lnx+ bx1/2 + f0(x) if m = 0. (4.14)

These relations give by differentiation representations of f ′. By Proposition
4.11, it is clear that f0 decays more rapidly at zero than the other two terms,
in particular the constants a, b and the function f0 are uniquely determined
by f . This allows one to state assertions converse to that of Proposition 4.11,
for example:

Proposition 4.12. We have the following characterization of the domain of the
minimal operator:

0 < Rem ≤ μ ≤ 1 ⇒ D(Lmin
m ) = {f ∈ D(Lmax

m ) | f(x) = o(xμ+1/2)}
= {f ∈ D(Lmax

m ) | f ′(x) = o(xμ−1/2)},
0 ≤ Rem < μ ≤ 1 ⇒ D(Lmin

m ) = {f ∈ D(Lmax
m ) | f(x) = O(xμ+1/2)}

= {f ∈ D(Lmax
m ) | f ′(x) = O(xμ−1/2)}.

4.4. Strict Extensions of Lmin
m

Now we study the closed extensions of Lmin
m for |Rem| < 1. The first result

is a particular case of Proposition A.5. We recall that by a strict extension
of Lmin

m we mean an operator H such that Lmin
m � H � Lmax

m . We denote by
Wx(f, g) := f(x)g′(x) − f ′(x)g(x) the Wronskian of two functions f and g at
point x, and take ξ as in Sect. 3.

Proposition 4.13. Assume that |Rem| < 1. Let u be a non-zero solution of
L̃mu = 0. Then W0(u, f) = limx→0Wx(u, f) exists for each f ∈ D(Lmax

m ), and
the operator Lu

m defined as the restriction of Lmax
m to the set of f ∈ D(Lmax

m )
such that W0(u, f) = 0 is a strict extension of Lmin

m . Reciprocally, each strict
extension of Lmin

m is of the form Lu
m for some non-zero solution u of L̃mu =

0, which is uniquely defined modulo a constant factor. We have D(Lu
m) =

D(Lmin
m ) + Cξu.

We shall describe now the homogeneous strict extensions of Lmin
m . The

case |Rem| ≥ 1 is trivial because Lmin
m = Lmax

m is homogeneous.

Proposition 4.14. If −1 < Rem < 1, then Hm is the restriction of Lmax
m to the

subspace defined by

lim
x→0

xm+1/2

(

f ′(x) − m+ 1/2
x

f(x)
)

= 0. (4.15)

Proof. Observe that

Wx(ζm, f) = xm+1/2f ′(x) − (m+ 1/2)xm−1/2f(x)

= xm+1/2

(

f ′(x) − m+ 1/2
x

f(x)
)

,
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so the limit from the left hand side of (4.15) exists for all f ∈ D(Lmax) if
|Rem| < 1. Hence, with the notation of Proposition 4.13, we have Hm = Lζm

m ,
where ζm is defined in (4.3). �
Proposition 4.15. If |Rem| < 1 and m 	= 0, then Lmin

m has exactly two homoge-
neous strict extensions, namely the operators H±m. If m = 0 then the operator
H0 is the unique homogeneous strict extension of Lmin

m .

Proof. Thanks to Proposition 4.13 it suffices to see when the extension Lu
m is

homogeneous. If (Utf)(x) = et/2f(etx), then it is clear that Lu
m is homoge-

neous if and only if its domain is stable under the action of Ut for each real t.
We have

W0(u,Utf) = lim
x→0

(

u(x)et/2 d

dx
f(etx) − u′(x)et/2f(etx)

)

= et/2 lim
x→0

(

etu(x)f ′(etx) − u′(x)f(etx)
)

= e3t/2 lim
x→0

(

u(e−tx)f ′(x) − e−tu′(e−tx)f(x)
)

.

Thus we obtain

W0(u,Utf) = e2tW0(U−tu, f).

Let ut = e2tU−tu. From Proposition 4.13 we see that D(Lu) = D(Lut
) for all

real t if and only if ut is proportional to u for all t, which means that the
function u is homogeneous. Thus it remains to see which are the homogeneous
solutions of the equation Lmu = 0. Clearly u±m are both homogeneous and
only they are so if m 	= 0, and if m = 0 then only u+0 is homogeneous. �
Proposition 4.16. For Rem > 0, we have the following alternative character-
izations of the domain of Hm:

0 < μ ≤ Rem < 1 ⇒ D(Hm) = {f ∈ D(Lmax
m ) | f(x) = o(x−μ+1/2)},

0 ≤ μ < Rem < 1 ⇒ D(Hm) = {f ∈ D(Lmax
m ) | f(x) = O(x−μ+1/2)}.

Proof. We use Propositions 4.11, and the representations (4.13) and (4.14). �
4.5. The Hermitian Case

We shall consider now the particular case when Lmin
m is hermitian, i.e. m2 is a

real number. Everything follows immediately from the preceding propositions
and from the last assertion of Proposition A.5. If m is real or m = iμ with μ
real it suffices to consider the cases m ≥ 0 and μ > 0, because Lmin

m = Lmin
−m.

Proposition 4.17. The operator Hm = Lmin
m is self-adjoint and homogeneous

for m2 ≥ 1. When m2 < 1 the operator Lmin
m has deficiency indices (1, 1) and

therefore admits a one-parameter family of self-adjoint extensions.
1. If 0 < m < 1 and 0 ≤ θ < π, let uθ be the function on R+ defined by

uθ(x) = x1/2−m cos θ + x1/2+m sin θ. (4.16)

Then each self-adjoint extension of Lmin
m is of the form Hθ

m = Luθ
m for

a unique θ. There are exactly two homogeneous strict extensions, namely
the self-adjoint operators Hm = H

π/2
m and H−m = H0

m.
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2. If m = 0 and 0 ≤ θ < π, let uθ be the function on R+ defined by

uθ(x) = x1/2 lnx cos θ + x1/2 sin θ. (4.17)

Then, each self-adjoint extension of Lmin
0 is of the form Hθ

0 = Luθ
0 for a

unique θ. The operator Lmin
0 has exactly one homogeneous strict extension:

this is the self-adjoint operator H0 = H
π/2
0 .

3. Let m2 < 0 so that m = iμ with μ > 0. For 0 ≤ θ < π let uθ be the
function given by

uθ(x) = x1/2 cos(μ lnx) cos θ + x1/2 sin(μ lnx) sin θ. (4.18)

Then each self-adjoint extension of Lmin
m is of the form Hθ

m = Luθ
m for

a unique θ. The operator Lmin
m does not have homogeneous self-adjoint

extensions but has two homogeneous strict extensions, namely the opera-
tors Hm and H−m.

We shall now study the quadratic forms associated to the self-adjoint
operators Hθ

m for 0 < m < 1.
We recall that Amin

1/2+m = Amax
1/2+m if Rem ≥ 0, and Amin

1/2−m = Amax
1/2−m if

Rem ≥ 1, see Proposition 3.1. Let us abbreviate Aα = Amin
α = Amax

α when the
minimal and maximal realizations of ˜Aα coincide.

Recall also that for 0 < m < 1,

D(Amax
1/2−m) = H1

0 + Cξζ−m.

By Proposition 3.1, the operator Amax
1/2−m is closed in L2 and H1

0 is a closed sub-
space of its domain (for the graph topology), because Amax

1/2−m �H1
0
= Amin

1/2−m is
also a closed operator. Note that for f ∈ H1

0 , we have f(x) = o(
√
x), because

|f(x)| ≤
x
∫

0

|f ′(x)|dx ≤ √
x‖f ′‖L2(0,x).

Thus ξζ−m /∈ H1
0 and the sum H1

0 + Cξζm is a topological direct sum in
D(Amax

1/2−m). Hence, each f ∈ D(Amax
1/2−m) can be uniquely written as a sum

f = f0 + cξζ−m, and the map f �→ c is a continuous linear form on D(Amax
1/2−m).

We shall denote κm this form and observe that

κm(f) = lim
x→0

xm−1/2f(x), f ∈ D(Amax
1/2−m).

Note also that from Proposition 3.1, we get (Amax
1/2−m)∗ = Amin

m−1/2, in particular

D
(

(Amax
1/2−m)∗

)

= H1
0 .

Proposition 4.18. Let 0 < m < 1 and 0 ≤ θ < π.

1. If θ = π/2, then D(Hπ/2
m ) is a dense subspace of H1

0 and if f ∈ D(Hπ/2
m ),

then

〈f,Hπ/2
m f〉 = ‖A1/2+mf‖2 = ‖Amax

1/2−mf‖2. (4.19)

Thus, Q(Hπ/2
m ) = H1

0 . Moreover, we have Hπ/2
m = (A1/2+m)∗A1/2+m =

(Amin
1/2−m)∗Amin

1/2−m.
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2. Assume θ 	= π/2. Then, D(Hθ
m) is a dense subspace of D(Amax

1/2−m), and
for each f ∈ D(Hθ

m) we have

〈f,Hθ
mf〉 = ‖Amax

1/2−mf‖2 +m sin(2θ)|κm(f)|2. (4.20)

Thus, Q(Hθ
m) = D(Amax

1/2−m), and the right hand side of (4.20) is equal to
the quadratic form of Hθ

m.

Proof. From Proposition 4.11, the definition of Hm and (4.16), we get

D(Hθ
m) = D(Lmin

m ) + Cξuθ ⊂ H1
0 + Cξuθ = H1

0 + C cos θ ξζ−m,

because ξζm ∈ H1
0 if m > 0. However, C∞

c ⊂ D(Lmin
m ), so D(Hθ

m) is a dense
subspace of H1

0 + C cos θ ξζ−m. Thus if θ = π/2 we get D(Hπ/2
m ) ⊂ H1

0 , and if
θ 	= π/2, then D(Hθ

m) ⊂ D(Amax
1/2−m) densely in both cases.

The relation ‖Amax
1/2−mf‖2 = ‖A1/2+mf‖2 for f ∈ H1

0 holds, because both
terms are continuous onH1

0 by Hardy inequality and they are equal to 〈f, L̃mf〉
if f ∈ C∞

c .
It remains to establish (4.20). Let f = f0 + cξuθ with f0 ∈ D(Lmin

m ) and
c ∈ C. Then Amax

1/2−mf ∈ L2 and

Hθ
mf = L̃mf = ˜A∗

1/2−mA
max
1/2−mf ∈ L2

due to (4.2). Denote 〈·, ·〉a the scalar product in L2(a,∞). Then 〈f,Hθ
mf〉 =

lima→0〈f,Hθ
mf〉a and

〈f,Hθ
mf〉a = 〈f,−i(∂x + (1/2 −m)Q−1)Amax

1/2−mf〉a

= 〈Amax
1/2−mf,A

max
1/2−mf〉a + if̄(a)Amax

1/2−mf(a).

On a neighborhood of the origin we have

iAmax
1/2−mf(x)

=
(

∂x +
m− 1/2

x

)

(

cx1/2−m cos θ + cx1/2+m sin θ + f0(x)
)

=
(

∂x +
m− 1/2

x

)

(

cx1/2+m sin θ + f0(x)
)

= 2mc sin θxm−1/2 + o(
√
x)

by Proposition 4.11. Then by the same proposition we get

if̄(x)Amax
1/2−mf(x)

= (f̄0(x) + c̄uθ(x))(2mc sin θxm−1/2 + o(
√
x))

= 2m|c|2 sin θ
(

x1/2−m cos θ + x1/2+m sin θ
)

xm−1/2 + o(
√
x)

= 2m|c|2 sin θ cos θ + o(1).

Hence lima→0 if̄(a)Amax
1/2−mf(a) = m|c|2 sin 2θ. �

Proposition 4.19. Let 0 < m < 1. Then Lmin
m is a positive hermitian operator

with deficiency indices (1, 1). The operators Hm = H
π/2
m and H−m = H0

m are
respectively the Friedrichs and the Krein extensions of Lmin

m . If 0 ≤ θ ≤ π/2,
then Hθ

m is a positive self-adjoint extension of Lmin
m . If π/2 < θ < π then the
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self-adjoint extension Hθ
m of Lmin

m has exactly one strictly negative eigenvalue
and this eigenvalue is simple.

Proof. We have, by Hardy inequality and Proposition 4.11, Lmin
m ≥ m2Q−2

as quadratic forms on H1
0 , so Lmin

m is positive. The operators Hθ
m have the

same form domain if θ 	= π/2, namely D(Amax
1/2−m), and H

π/2
m has H1

0 as form
domain, which is strictly smaller.

Thus to finish the proof it suffices to show the last assertion of the
proposition. Recall the modified Bessel function Km (see (4.5)). It is easy
to see that um,k :=

√
kxKm(kx) solves Lmax

m um,k = k2um,k. Using (4.6), one
gets that

um,k ∼ π

2 sinπm

(

1
Γ(1 −m)

(kx/2)−m+1/2 − 1
Γ(1 +m)

(kx/2)m+1/2

)

,

so that if (k/2)2m = − tan θΓ(1 + m)/Γ(1 − m), then um,k ∈ D(Lθ
m). This

proves that Lθ
m has a negative eigenvalue for π/2 < θ < π. It cannot have more

eigenvalues, since Lmin
m is positive and its deficiency indices are just (1, 1). �

Remark 4.20. The fact that H±m are the Friedrichs and the Krein extensions
of Lmin

m also follows from Proposition 2.6, because we know that these are the
only homogeneous extensions of Lmin

m .

Proposition 4.21. Lmin
0 is a positive hermitian operator with deficiency indi-

ces (1, 1). Its Friedrichs and Krein extensions coincide and are equal to H0 =
H

π/2
0 . The domain of H0 is a dense subspace of D(A1/2), and for f ∈ D(H0) we

have 〈f,H0f〉 = ‖A1/2f‖2. Thus the quadratic form of H0 equals A∗
1/2A1/2. If

0 ≤ θ < π and θ 	= π/2, then the self-adjoint extension Hθ
0 of Lmin

0 has exactly
one strictly negative eigenvalue.

Proof. Since Lmin
0 has only one homogeneous self-adjoint extension, this fol-

lows from Proposition 2.6 and Remark 2.5. For the assertions concerning the
quadratic form, it suffices to apply Proposition 3.1. �

We can summarize our results in the following theorem:

Theorem 4.22. Let m > −1. Then the operators Hm are positive, self-adjoint,
homogeneous of degree 2 with spHm = R̄+. Besides we have the following table:
m ≥ 1: Hm = A∗

1/2+mA1/2+m = A∗
1/2−mA1/2−m,

H1
0 = Q(Hm),

Hm = Lmin
m = Lmax

m ;

0 < m < 1: Hm = A∗
1/2+mA1/2+m =

(

Amin
1/2−m

)∗
Amin

1/2−m

H1
0 = Q(Hm),

Hm is the Friedrichs ext. of Lmin
m ;
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m = 0: H0 = A∗
1/2A1/2,

H1
0 + Cξζ0 dense in Q(H0),

H0 is the Friedrichs and Krein ext. of Lmin
0 ;

−1 < m < 0: Hm =
(

Amax
1/2+m

)∗
Amax

1/2+m,
H1

0 + Cξζm = Q(Hm),
Hm is the Krein ext. of Lmin

m .

In the region −1 < m < 1 (which is the most interesting one), it is quite
remarkable that for strictly positive m one can factorize Hm in two different
ways, whereas for m ≤ 0 only one factorization appears.

As an example, let us consider the case of the Laplacian −∂2
x, i.e. m2 =

1/4. The operators H1/2 and H−1/2 coincide with the Dirichlet and Neumann
Laplacian respectively. One usually factorizes them as H1/2 = P ∗

minPmin and
H−1/2 = P ∗

maxPmax, where Pmin and Pmax denote the usual momentum oper-
ator on the half-line with domain H1

0 and H1 respectively. The above analysis
says that, whereas for the Neumann Laplacian this is the only factorization of
the form S∗S with S homogeneous, in the case of the Dirichlet Laplacian one
can also factorize it in a rather unusual way:

H1/2 =
(

Pmin + iQ−1
)∗ (

Pmin + iQ−1
)

.

Proposition 4.23. The family Hm has the following property:

0 ≤ m ≤ m′ ⇒ Hm ≤ Hm′ ,

0 ≤ m < 1 ⇒ H−m ≤ Hm.

4.6. The Non-Hermitian Case: Numerical Range and Dissipativeness

In this section we come back to the non hermitian case. We study the numeri-
cal range of the operators Hm in terms of the parameter m. As a consequence
we obtain dissipative properties of Hm.

Proposition 4.24. Let m 	= 0.
i) If 0 ≤ argm ≤ π/2, then Num(Hm) = {z | 0 ≤ arg z ≤ 2 argm}. Hence

Hm is maximal sectorial and iHm is dissipative.
ii) If −π/2 ≤ argm ≤ 0, then Num(Hm) = {z | 2 argm ≤ arg z ≤ 0}. Hence

Hm is maximal sectorial and −iHm is dissipative.
iii) If | argm| ≤ π/4, then −Hm is dissipative.
iv) If π/2 < | argm| < π, then Num(Hm) = C.

Remark 4.25. For m = 0 and argm = π,Hm is selfadjoint so that Num(Hm) =
sp(Hm) = [0,+∞[.

Proof. First note that since Hm is homogeneous, if a point z is in the numerical
range R+z is included in the numerical range. Thus the numerical range is a
closed convex cone. Moreover, since H∗

m = Hm̄ it suffices to consider the case
Im (m) > 0.

Let us recall that for Rem > −1 the operator Hm is defined by

Hmf = −f ′′ + (m2 − 1/4)x−2f, f ∈ D(Hm) = D(Lmin
m ) + Cξζm.
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Thus C∞
c + Cξζm is a core for Hm. Let 0 < a < 1, c ∈ C, and f a function of

class C2 on R+ such that f(x) = cxm+1/2 for x < a and f(x) = 0 for large x.
By what we just said the set of functions of this form is a core for Hm. We set
V (x) = (m2 − 1/4)x−2 and note that for any f ∈ D(Hm)

〈f,Hmf〉 = lim
b→0

∞
∫

b

(−(f̄f ′)′ + |f ′|2 + V |f |2)dx

= lim
b→0

⎛

⎝f̄(b)f ′(b) +

∞
∫

b

(|f ′|2 + V |f |2) dx

⎞

⎠ .

If f is of the form indicated above, we have f̄(b) = c̄bm̄+1/2 and f ′(b) =
(m+1/2)cbm−1/2 for b < a, hence f̄(b)f ′(b) = |c|2(m+1/2)b2Re m. To simplify
notations we set m = μ+ iν with μ, ν real. Thus we get

〈f,Hmf〉

= lim
b→0

⎛

⎝|c|2(m+ 1/2)b2μ +

∞
∫

b

(|f ′|2 + V |f |2) dx

⎞

⎠

= lim
b→0

⎛

⎝|c|2(m+ 1/2)b2μ +

a
∫

b

(|f ′|2 + V |f |2) dx

⎞

⎠ +

∞
∫

a

(|f ′|2 + V |f |2) dx.

But for b < a we have
a
∫

b

(|f ′|2 + V |f |2) dx

= |c|2
a
∫

b

(|m+ 1/2|2x2μ−1 + (m2 − 1/4)x−2x2μ+1
)

dx

= |c|2(m+ 1/2)

a
∫

b

(m̄+ 1/2 +m− 1/2)x2μ−1dx

= |c|2(m+ 1/2)

a
∫

b

(x2μ)′dx = |c|2(m+ 1/2)
(

a2μ − b2μ
)

.

Thus we get

〈f,Hmf〉 = |c|2(m+ 1/2)a2μ +

∞
∫

a

(|f ′|2 + V |f |2) dx =: Ψ(a, c, f). (4.21)

So the numerical range of Hm coincides with the closure of the set of numbers
of the form Ψ(a, c, f) with 0 < a < 1, c ∈ C, and f a function of class C2 on
x ≥ a which vanishes for large x and such that the derivatives f (i)(a) coincide
with the corresponding derivatives of cxm+1/2 at x = a for 0 ≤ i ≤ 2. The
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map f �→ ∫ ∞
a

(|f ′|2 + V |f |2) dx is continuous on H1(]a,+∞[), the functions
of class C2 on [a,∞[ vanishing for large x are dense in this space, and the
functionals f �→ f ′(a) and f �→ f ′′(a) are not continuous in the H1 topology.
Hence we can consider in the definition of Ψ(a, c, f) functions f ∈ H1(]a,+∞[)
such that f(a) = cam+1/2 without extending the numerical range.

Let γ < 1
2 , δ < − 1

2 and R > a, and let

f(x) =

⎧

⎨

⎩

xm+1/2 if x < a,
am+1/2−γxγ if a ≤ x < R,
am+1/2−γRγ−δxδ if R ≤ x.

Then one can explicitly compute

(m+ 1/2)a2μ +

∞
∫

a

(|f ′|2 + V |f |2) dx

=
a2μ

1 − 2γ
(m+ 1/2 − γ)2 + a2μ+1−2γR2γ−1

×
(

δ2 +m2 − 1/4
1 − 2δ

− γ2 +m2 − 1/4
1 − 2γ

)

.

For γ < 1
2 , the argument of the first term is 2 arg(m+ 1

2 − γ) and the second
term vanishes as R → +∞. Using the fact that the numerical range is a convex
cone, we thus have

1. If μ ≥ 0, then {z | 0 ≤ arg z ≤ 2 argm} ⊂ Num(Hm),
2. If −1 < μ < 0, then Num(Hm) = C.

It remains to prove the reverse inclusion of 1.
We first consider the case μ > 0. Observe that in (4.21) a can be taken

as small as we wish. Hence we can make a → 0, and we get

〈f,Hmf〉 =

∞
∫

0

(|f ′|2 + V |f |2) dx = ‖Pf‖2 + (m2 − 1/4)‖Q−1f‖2,

and the result follows from Proposition 2.1.
On the other hand, if μ = 0, then the formula is different:

〈f,Hmf〉 = (m+ 1/2)|c(f)|2 + ‖Pf‖2 + (m2 − 1/4)‖Q−1f‖2,

where c(f) = limx→0 x
−(m+1/2)f(x) is a continuous linear functional on

D(Hm) which is nontrivial except in the case m = 0, cf. (4.13) and (4.14).
In particular we have

Im 〈f,Hmf〉 = ν

⎛

⎝|c|2a2μ + 2μ

∞
∫

a

x−2|f |2dx
⎞

⎠ ≥ 0.

Since we have established the last two identities for f in a core of Hm, they
remain valid on D(Hm). �
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As a last result, let us mention that the factorization obtained in Theo-
rem 4.22 can be extended to the complex case (see also (4.2), and can thus be
used as an alternative definition of Hm:

Proposition 4.26. For Rem > −1 we have

D(Hm) :=
{

f ∈ D(Amax
m+ 1

2
) | Amax

m+ 1
2
f ∈ D(Amax∗

m+ 1
2
)
}

,

Hmf := Amax∗
m+ 1

2
Amax

m+ 1
2
f, f ∈ D(Hm).

Proof. Using Proposition 3.1 and 4.12 we have D(Hm) ⊂
{

f ∈ D(Amax
m+ 1

2
)

| Amax
m+ 1

2
f ∈ D(Amax∗

m+ 1
2
)
}

. One then prove the reverse inclusion using Proposi-
tion 3.1 and 4.14. �

5. Spectral Projections of Hm and the Hankel Transformation

In this section, we provide an explicit spectral representation of the operator
Hm in terms of Bessel functions.

Recall that the (unmodified) Bessel equation reads

x2w′′(x) + xw′(x) + (x2 −m2)w = 0.

It is well known that the Bessel function of the first kind, Jm and J−m (see
(4.4), solve this equation. Other solutions of the Bessel equations are the so-
called Bessel functions of the third kind ([7]) or the Hankel functions:

H±
m(z) =

J−m(z) − e∓imπJm(z)
±i sin(mπ)

.

(When m is an integer, one replaces the above expression by their limits). We
have the relations

Jm(x) = e±iπ m
2 Im(∓ix), H±(x) = ∓2i

π
e∓iπ m

2 Km(∓ix).

We know that Hm has no point spectrum. Hence, for any a < b the Stone
formula says

1l[a,b](Hm) = s − lim
ε↘0

1
2πi

b
∫

a

(Gm(λ+ iε) −Gm(λ− iε)) dλ. (5.1)

Using (4.12), we can express the boundary values of the integral kernel
of the resolvent at λ ∈ ]0,∞[ by solutions of the standard Bessel equation:

Gm(λ± i0;x, y) := lim
ε↘0

Gm(λ± iε;x, y)

=
{±πi

2

√
xyJm(

√
λx)H±

m(
√
λy) if x < y,

±πi
2

√
xyJm(

√
λy)H±

m(
√
λx) if x > y.
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Now
1

2πi
(Gm(λ+ i0;x, y) −Gm(λ− i0;x, y))

=

⎧

⎨

⎩

1
4

√
xyJm(

√
λx)

(

H+
m(

√
λy) +H−

m(
√
λy)

)

if x < y,

1
4

√
xyJm(

√
λy)

(

H+
m(

√
λy) +H−

m(
√
λy)

)

if x > y;

=
1
2
Jm(

√
λx)Jm(

√
λy).

Together with (5.1), this gives an expression for the integral kernel of the
spectral projection of Hm, valid, say, as a quadratic form on C∞

c (R).

Proposition 5.1. For 0 < a < b < ∞, the integral kernel of 1l[a,b](Hm) is

1l[a,b](Hm)(x, y) =

b
∫

a

1
2
√
xyJm(

√
λx)Jm(

√
λy)dλ

=

√
b

∫

√
a

√
xyJm(kx)Jm(ky)kdk.

Let Fm be the operator on L2(0,∞) given by

Fm : f(x) �→
∞
∫

0

Jm(kx)
√
kxf(x)dx. (5.2)

Up to an inessential factor, Fm is the so-called Hankel transformation.

Theorem 5.2. Fm is a unitary involution on L2(0,∞) diagonalizing Hm, more
precisely

FmHmF−1
m = Q2.

It satisfies FmeitD = e−itDFm for all t ∈ R.

Proof. Obviously, Fm is hermitian. Proposition 5.1 can be rewritten as

1l[a,b](Hm) = Fm1l[a,b](Q2)F∗
m.

Letting a → 0 and b → ∞ we obtain 1l = FmF∗
m. This implies that Fm is iso-

metric. Using again the fact that it is hermitian we see that it is unitary. �

6. Scattering Theory of Hm

Let us now give a short and self-contained description of the scattering theory
for the operators Hm with real m.

Theorem 6.1. If m, k > −1 are real then the wave operators associated to the
pair Hm,Hk exist and

Ω±
m,k := lim

t→±∞ eitHme−itHk = e±i(m−k)π/2FmFk.
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In particular the scattering operator Sm,k for the pair (Hm,Hk) is a scalar
operator: Sm,k = eiπ(m−k)1l.

Proof. Note that Ω±
m,k := e±i(m−k)π/2FmFk is a unitary operator in L2 such

that e−itHmΩ±
m,k = Ω±

m,ke−itHk for all t. Thus to prove the theorem it suffices
to show that (Ω±

m.k − 1)e−itHk → 0 strongly as t → ±∞. Let πa be the oper-
ator of multiplication by the characteristic function of the interval ]0, a[ and
π⊥

a = 1−πa. Then from Theorem 5.2, it follows easily that πae−itHm → 0 and
πae−itHk → 0 strongly as t → ±∞ for any a > 0. Thus, we are reduced to
proving

lim
a→∞ sup

±t>0
‖π⊥

a (Ω±
m,k − 1)e−itHkf‖ = 0 for all f ∈ L2.

By using again Theorem 5.2, we get

(Ω±
m,k − 1)e−itHk = e∓ikπ/2(e±imπ/2Fm − e±ikπ/2Fk)e−itQ2Fk,

hence it will be sufficient to show that

lim
a→∞ sup

±t>0
‖π⊥

a (e±ikπ/2Fk − e±imπ/2Fm)e−itQ2
g‖ = 0

for all g ∈ C∞
c (R+). (6.1)

Let us set jm(x) =
√
xJm(x) and τm = mπ/2 + π/4. Then (Fmh)(x) =

∫ ∞
0
jm(xp)h(p)dp, and from the asymptotics of the Bessel functions we get

√

π

2
jm(y) = cos(y − τm) + j◦

m(y) where j◦
m(y) ∼ O(y−1). (6.2)

If we set gt(p) = (π/2)1/2e−itp2
g(p) and G±

t = (e±ikπ/2Fk − e±imπ/2Fm)gt,
then

G±
t (x) =

∫

(e±ikπ/2 cos(xp− τk) − e±imπ/2 cos(xp− τm))gt(p)dp

+
∫

(j◦
k(xp) − j◦

m(xp))gt(p)dp.

The second contribution to this expression is obviously bounded by a constant
time |x|−1

∫ |gt(p)/p|dp, and the L2(dx) norm of this quantity over [a,∞[ is
less than Ca−1/2 for some number C independent of t. Thus we may forget
this term in the proof of (6.1).

Finally, we consider the first contribution to G+
t , for example. Since

eikπ/2 cos(xp− τk) − eimπ/2 cos(xp− τm) = e−ixp+iπ/4(eikπ − eimπ)/2,

we get an integral of the form
∫

e−ip(xp+tp)g(p)dp, which is rapidly decaying in
x uniformly in t > 0, because g ∈ Cc(R+) and there are no points of stationary
phase. This finishes the proof of (6.1). �

Since Hm and Hk are homogeneous of degree −2 with respect to the
operator D, which has simple spectrum, we can apply Proposition 2.9 with
A = D and deduce that the wave operators are functions of D. Our next goal
is to give explicit formulas for these functions.
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Let J : L2 → L2 be the unitary involution

J f(x) =
1
x
f

(

1
x

)

.

Clearly J eiτD = e−iτDJ for all τ ∈ R, and JQ2J = Q−2. In particular, the
operator

Gm := J Fm (6.3)

is a unitary operator on L2 which commutes with all the eiτD. Hence there
exists Ξm : R → C, |Ξm(x)| = 1 a.e. and Gm = Ξm(D). Moreover, we have

FmFk = FmJ J Fk = G∗
mGk,

so that

Ω±
m,k = e±i(m−k)π/2G∗

mGk = e±i(m−k)π/2 Ξk(D)
Ξm(D)

.

Note that GmHmG∗
m = JQ2J = Q−2.

Theorem 6.2. For m > −1,

Gm = ei ln(2)D Γ(m+1+iD
2 )

Γ(m+1−iD
2 )

.

Therefore, for m, k > −1, the wave operators for the pair (Hm,Hk) are equal to

Ω±
m,k = e±i(m−k)π/2 Γ(k+1+iD

2 )Γ(m+1−iD
2 )

Γ(k+1−iD
2 )Γ(m+1+iD

2 )
.

For the proof we need the following representation of Bessel functions:

Lemma 6.3. For any m such that Re (m) > −1 the following identity holds in
the sense of distributions:

Jm(x) =
1
4π

+∞
∫

−∞

Γ(m+it+1
2 )

Γ(m−it+1
2 )

(x

2

)−it−1

dt.

Proof. If Re (m) > 0 one has the following representation of the Bessel function
Jm(x), cf. [7, ch. VI.5]:

Jm(x) =
1

2πi

c+i∞
∫

c−i∞

Γ(z)
Γ(m− z + 1)

(x

2

)m−2z

dz

=
1
4π

+∞
∫

−∞

Γ(c+ i t
2 )

Γ(m+ 1 − c− i t
2 )

(x

2

)m−2c−it

dt, (6.4)

where c ∈ ]0, Re m
2 [. Note that the subintegral function is everywhere analytic

except for the poles at z = 0,−1,−2, . . ., all of them on the left hand side of
the contour. By the Stirling asymptotic formula, the subintegral function can
be estimated by |z|−1−Re m+2c at infinity, hence it is integrable.
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We shall extend the formula (6.4) for Rem > −1 and c ∈]0,Re (m) + 1[.
For that purpose we have to understand it in the distributional sense, that is
after smearing it with a function of x belonging to C∞

c .
Let ϕ ∈ C∞

c and φ(z) := 1
4π

∫ +∞
0

(x
2 )zϕ(x)dx. For Rem > 0 and 0 < c <

Re m
2 we thus have

∞
∫

0

Jm(x)ϕ(x)dx =

+∞
∫

−∞

Γ(c+ i t
2 )

Γ(m+ 1 − c− i t
2 )
φ(m− 2c− it)dt. (6.5)

Since ϕ ∈ C∞
c , the function φ is holomorphic and for any K ⊂ C compact

and n ∈ N there exists CK,n such that

|φ(z + it)| ≤ CK,n〈t〉−n, ∀z ∈ K, ∀t ∈ R, (6.6)

where 〈t〉 =
√

1 + t2. Likewise, the function z �→ θ(z) = Γ(z)
Γ(m+1−z) is holomor-

phic in the strip 0 < Re (z) < Re (m) + 1, and for any compact K ⊂ C there
exists CK > 0 such that

|θ(z + it)| ≤ Ck〈t〉2Re (z)−Re (m)−1, ∀z ∈ K, ∀t ∈ R. (6.7)

Combining (6.6)–(6.7), this proves that the function

c �→
+∞
∫

−∞

Γ(c+ i t
2 )

Γ(m+ 1 − c− i t
2 )
φ(m− 2c− it)dt

is holomorphic in the strip 0 < Re (c) < Re (m)+1. Moreover, (6.5) shows that
this function is constant equal to

∫ ∞
0
Jm(x)ϕ(x)dx for c ∈ ]

0, Re m
2

[

. Hence
(6.5) extends to any c such that 0 < Re (c) < Re (m) + 1. In particular, if we
chose c = Re (m)+1

2 , we get for any m with Re (m) > 0

∞
∫

0

Jm(x)ϕ(x)dx =
1
4π

∞
∫

0

dx

+∞
∫

−∞
dt

Γ(m+it+1
2 )

Γ(m−it+1
2 )

(x

2

)−it−1

ϕ(x). (6.8)

Using (6.6)–(6.7) once more, one gets that the right-hand side of the above
identity is holomorphic for Re (m) > −1. Since the Bessel function Jm also
depends on m in an holomorphic way, the left-hand side is holomorphic as
well, and hence (6.8) extends to any m such that Re (m) > −1, which ends
the proof of the lemma. �

The next lemma will also be needed.

Lemma 6.4. For a given distribution ψ, the operator ψ(D) from C∞
c to (C∞

c )′

has integral kernel

ψ(D)(x, y) =
1

2π
√
xy

+∞
∫

−∞
ψ(t)

y−it

x−it
dt.
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Proof. We use the Mellin transformation M : L2(0,∞) → L2(R). We recall
the formula for M and M−1:

(Mf)(s) :=
1√
2π

∞
∫

0

dx x− 1
2 −isf(x)

(M−1g)(x) :=
1√
2π

∞
∫

−∞
ds x− 1

2+isg(s).

The Mellin transformation diagonalizes the operator of dilations, so that
Mψ(D)M−1 is the operator of multiplication by ψ(s). �

Proof of Theorem 6.2. Using (5.2), (6.3) and Lemma 6.3 we get that the oper-
ator Gm has the integral kernel

Gm(x, y) =
1
x
Jm

(y

x

)

√

y

x

=
1

2π
√
xy

+∞
∫

−∞

Γ(m+it+1
2 )

Γ(m−it+1
2 )

(

1
2

)−it
y−it

x−it
dt.

Hence by Lemma 6.4, the unitary operator Gm coincides with Ξm(D) on C∞
c ,

where

Ξm(t) = ei ln(2)t Γ(m+1+it
2 )

Γ(m+1−it
2 )

.

Since |Ξm(t)| = 1 for m ∈ R, the operator Ξm(D) is a unitary operator on L2

which coincides with Gm on the dense subspace C∞
c , and hence Gm = Ξm(D)

on L2. �

Remark 6.5. It is interesting to note that Ξm(D) is a unitary operator for all
real values of m and

Ξ−1
m (D)Q−2Ξm(D) (6.9)

is a function with values in self-adjoint operators for all real m. Ξm(D) is
bounded and invertible also for all m such that Rem 	= −1,−2, . . .. Therefore,
the formula (6.9) defines an operator for all {m | Rem 	= −1,−2, . . . } ∪ R.
Clearly, for Rem > −1, this operator function coincides with the operator Hm

studied in this paper. Its spectrum is always equal to [0,∞[ and it is analytic
in the interior of its domain.

One can then pose the following question: does this operator function
extend to a holomorphic function of closed operators (in the sense of the defi-
nition of Subsect. 2.2) on the whole complex plane?
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Appendix A. Second-Order Differential Operators

To make this paper self-contained we summarize in this appendix some facts
on second order differential operators. We are especially interested in the case
when the potential is complex and/or singular at the origin.

A.1. Green Functions

We consider an arbitrary complex potential V ∈ L2
loc and a complex number

λ. Let L̃ be the distribution valued operator defined on L2
loc by

L̃ = −∂2
x + V (x). (A.1)

We recall that the Wronskian of two functions f, g of class C1 on R+ is the func-
tion W (f, g) whose value at a point x > 0 is given by Wx(f, g) = f(x)g′(x) −
f ′(x)g(x). If f, g are solutions of an equation u′′ = V u then W (f, g) is a
constant which is not zero if and only if f, g are linearly independent.

We recall a standard method for constructing the Green function of a
differential operator. An elementary computation gives

Proposition A.1. Suppose that u0 and u∞ are solutions of L̃u = λu, which are
square integrable near 0 and ∞ respectively, and such that W (u∞, u0) = 1.
Let g ∈ L2, and define

f0 = u0g∞ + u∞g0 with g0(x) =

x
∫

0

u0(y)g(y)dy,

g∞(x) =

∞
∫

x

u∞(y)g(y)dy.

Then the function f0 satisfies (L̃−λ)f0 = g and f ′
0 = u′

0g∞−u′
∞g0. The general

solution of the equation (L̃−λ)f = g can be written as f = c0u0 + c∞u∞ + f0
with c0, c∞ ∈ C. We have

f0(x) =

∞
∫

0

G(x, y)g(y)dy with G(x, y) =
{

u0(x)u∞(y) if 0 < x < y,
u0(y)u∞(x) if 0 < y < x.

A.2. Maximal and Minimal Operators

We denote Lmin and Lmax the minimal and maximal operator associated to the
differential expression (A.1). More precisely, Lmax is the restriction of L̃ to the
space D(Lmax) := {f ∈ L2 | L̃f ∈ L2} considered as operator in L2, and Lmin

is the closure of the restriction of Lmax to C∞
c . Lmax is a closed operator on

L2, because it is a restriction of the continuous operator L̃ : L2
loc → D′(R+).

From now on we assume that supb>a

∫ b+1

b
|V (x)|dx < ∞ for each a > 0.

Then the following is true (cf. [6]):
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Proposition A.2. If f ∈ D(Lmax), then f and f ′ are continuous functions on
R+ which tend to zero at infinity. For f, g ∈ D(Lmax),

lim
x→0

Wx(f, g) =: W0(f, g) (A.2)

exists and we have
∞
∫

0

(Lmaxfg − fLmaxg)dx = −W0(f, g). (A.3)

In particular, W0 is a continuous bilinear antisymmetric form on D(Lmax)
(equipped with the graph topology), and if one of the functions f or g belongs
to D(Lmin), then W0(f, g) = 0.

Remark A.3. Note that the so defined W0(f, g) depends only on the restriction
of f and g to an arbitrary neighborhood of zero. Hence if f, g are continuous
square integrable functions on an interval ]0, a[ such that the distributions Lf
and Lg are square integrable on ]0, a[, then the limit in (A.3) exists and defines
W0(f, g).

If V is a real function, the operator Lmin is hermitian and L∗
min = Lmax.

From (A.3) we get

〈Lmaxf, g〉 − 〈f, Lmaxg〉 = −W0(f̄ , g) ≡ {f, g}
for all f, g ∈ D(Lmax). Here {f, g} is a continuous hermitian sesquilinear form
on D(Lmax) which is zero on D(Lmin). Moreover, an element f ∈ D(Lmax)
belongs to D(Lmin) if and only if {f, g} = 0 for all g ∈ D(Lmax). A subspace
E ⊂ D(Lmax) will be called hermitian if it is closed, contains D(Lmin), and
the restriction of {·, ·} to it is zero. It is clear that H is a closed hermitian
extension of Lmin if and only if H is the restriction of Lmax to a hermitian
subspace.

Now we consider the case of complex V .

Lemma A.4. Let f ∈ D(Lmax). Then f ∈ D(Lmin) if and only if W0(f, g) = 0
for all g ∈ D(Lmax).

Proof. One implication is obvious. To prove the inverse assertion let us denote
˜̄L = −∂2

x+V̄ acting on continuous functions, and let L̄min, L̄max be the minimal
and maximal operators associated to ˜̄L. It is trivial to show that L∗

min = L̄max,
hence Lmin = L̄∗

max because Lmin is closed. Thus f ∈ L2 belongs to D(Lmin) if
and only if there is h ∈ L2 such that 〈L̄maxg, f〉 = 〈g, h〉 for all g ∈ D(L̄max).
But g ∈ D(L̄max) if and only if ḡ ∈ D(Lmax), so for f ∈ D(Lmax) we get from
(A.3)

〈L̄maxg, f〉 =

∞
∫

0

L̃ḡfdx =

∞
∫

0

ḡL̃fdx−W0(ḡ, f) = 〈g, L̃f〉 −W0(ḡ, f).

Hence if W0(ḡ, f) = 0 for all g ∈ D(L̄max), then f ∈ D(Lmin). �
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We denote L = {u | L̃u = 0}, this is a two dimensional subspace of
∈ C1(R+) and if u, v ∈ L then W (f, g) is a constant which is not zero if and
only if u, v are linearly independent. By the preceding comments, if u ∈ L
and

∫ 1

0
|u|2dx < ∞ then f �→ W0(u, f) defines a linear continuous form �u

on D(Lmax) which vanishes on D(Lmin). Let Lu be the restriction of Lmax to
ker �u. Clearly Lu is a closed operator on L2 such that Lmin ⊂ Lu ⊂ Lmax.

A.3. Extensions of Lmin

Below by strict extension of Lmin we mean an operator T such that Lmin �

T � Lmax. We denote ξ a function in C∞
c such that ξ(x) = 1 for x ≤ 1 and

ξ(x) = 0 for x ≥ 2.
Until the end of the subsection we assume that all the solutions of the

equation L̃u = 0 are square integrable at the origin.

Proposition A.5. D(Lmin) is a closed subspace of codimension two of D(Lmax)
and

D(Lmin) = {f ∈ D(Lmax) | W0(u, f) = 0 ∀u ∈ L} =
⋂

u∈L ker �u. (A.4)

If u 	= 0 then Lu is a strict extension of Lmin and, reciprocally, each strict
extension of Lmin is of this form. More explicitly, D(Lu) = D(Lmin) + Cξu.
We have Lu = Lv if and only if v = cu with c ∈ C\{0}. If V is real, then
the operator Lmin is hermitian, has deficiency indices (1, 1), and if u ∈ L\{0}
then Lu is hermitian (hence self-adjoint) if and only if u is real (modulo a
constant factor).

Proof. We first show that �u = 0 if and only if u = 0. Indeed, if u 	= 0
then, the equation Lv = 0 has a solution linearly independent from u, so that
W (u, v) 	= 0. But there is g ∈ D(Lmax) such that g = v on a neighborhood of
zero, and then �u(g) = W (u, v) 	= 0. This also proves the last assertion of the
proposition.

Assume for the moment that (A.4) is known. If u, v are linearly indepen-
dent elements of L, then they are a basis of the vector space L, hence we have
D(Lmin) = ker �u ∩ ker �v, and so D(Lmin) is of codimension two in D(Lmax).
Moreover, if u 	= 0, then D(Lmin) is of codimension one in ker �u, we have
ξu ∈ D(Lmax)\D(Lmin) and ξu ∈ ker �u, hence D(Lu) = D(Lmin) + Cξu.

If V is real, the deficiency indices of Lmin are (1, 1), because D(Lmin)
has codimension two in D(Lmax). The space ker �u is hermitian if and only if
{f, f} = 0 for all f ∈ ker �u. But ker �u = D(Lmin)+ Cξu, so we may write f =
f0 + λξu, and then clearly {f, f} = {λξu, λξu} = |λ|2{u, u} = −|λ|2W0(ū, u).
So ker �u is hermitian if and only if W0(ū, u) = 0. But ū and u are solutions of
the same equation Lf = 0, and W (ū, u) = W0(ū, u) = 0. Thus ū and u must
be proportional, i.e. there is a complex number c such that ū = cu. Clearly
|c| = 1, so we may write c = e2iθ, and then we see that the function eiθu is
real.

Thus it remains to prove (A.4), and for this we need some preliminary
considerations which will be useful in another context later on. Let v± ∈ L
such that W (v+, v−) = 1. If g is a function on R+ such that

∫ a

0
|g|2dx < ∞ for
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all a > 0, we set g±(x) =
∫ x

0
v±(y)g(y)dy. It is easy to check that if Lf = g,

then there is a unique pair of complex numbers a± such that

f = (a+ + g−)v+ + (a− − g+)v− (A.5)

and, reciprocally, if f is defined by (A.5), then Lf = g. Since g′
± = v±g, we

also have

f ′ = (a+ + g−)v′
+ + (a− − g+)v′

−. (A.6)

Now assume h ∈ D(Lmax) and W0(u, h) = 0 for all u ∈ L. This is equivalent
to �v±(h) = 0. We shall prove that W0(f, h) = 0 for all f ∈ D(Lmax), and
this will imply h ∈ D(Lmin) by Lemma A.4. If we set v = a+v+ + a−v− and
f0 = g−v+ − g+v−, then we get W0(f, h) = W0(f0, h). Then

W0(f0, h) = W0(g−v+ − g+v−, h)
= lim

x→0
((g−v+ − g+v−)(x)h′(x) − (g−v+ − g+v−)′(x)h(x)) .

For a fixed x we rearrange the last expression as follows:

g−v+h′ − (g−v+)′h− g+v−h′ + (g+v−)′h
= g−Wx(v+, h) − g+Wx(v−, h) − g′

−v+h+ g′
+v−h.

When x → 0 the first two terms on the right hand side clearly converge to zero.
The last two become −gv−v+h+ gv+v−h = 0. This finishes the proof. �

Remark A.6. If zero is a regular endpoint, i.e.
∫ 1

0
|V (x)|dx < ∞, then for each

f ∈ D(Lmax) the limits limx→0 f(x) ≡ f(0) and limx→0 f
′(x) ≡ f ′(0) exist. If

V is real we easily get the classification of the self-adjoint realizations of L in
terms of boundary conditions of the form f(0) sin θ − f ′(0) cos θ = 0.

We point out now some consequences of the preceding proof. We denote
‖h‖x the L2 norm of a function h on the interval ]0, x[. Then we get |g±(x)| ≤
‖v±‖x‖g‖x for all x > 0, where the numbers ‖v±‖x are finite and tend to zero
as x → 0. Note that in general ‖v′

±‖x = ∞ for all x for at least one of the
indices ±. Anyway, we have

|f(x) − (a+v+(x) + a−v−(x))| ≤ (|v+(x)|‖v−‖x + |v−(x)|‖v+‖x) ‖g‖x,

|f ′(x) − (a+v
′
+(x) + a−v′

−(x))| ≤ (|v′
+(x)|‖v−‖x + |v′

−(x)|‖v+‖x

) ‖g‖x.

In other terms: if f is a solution of Lf = g, then there are complex numbers
a± such that, as x → 0,

f(x) = a+v+(x) + a−v−(x) + o(1) (|v+(x)|‖v−‖x + |v−(x)|‖v+‖x) , (A.7)
f ′(x) = a+v

′
+(x) + a−v′

−(x) + o(1)
(|v′

+(x)|‖v−‖x + |v′
−(x)|‖v+‖x

)

, (A.8)

In the next proposition we continue to assume that all the solutions of
the equation Lu = 0 are square integrable at the origin and keep the notations
introduced in the proof of Proposition A.5.
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Proposition A.7. A function f ∈ D(Lmax) belongs to D(Lmin) if and only if
f = v+g− − v−g+ with g = Lf . In particular, if f ∈ D(Lmin), then for x → 0
we have

f(x) = o(1) (|v+(x)|‖v−‖x + |v−(x)|‖v+‖x),
f ′(x) = o(1)

(|v′
+(x)|‖v−‖x + |v′

−(x)|‖v+‖x

)

.

Proof. We take above g = Lf and we get the relations (A.5), (A.6), (A.7) and
(A.8) for some uniquely determined numbers a±. If we set v = a+v+ + a−v−
and f0 = v+g−−v−g+, then f = v+f0. We know that f ∈ D(Lmin) if and only
if W0(u, f) = 0 for all u ∈ L. Since v± form a basis in L, it suffices in fact to
have this only for u = v±. We have W0(v±, f0) = 0 because f ′

0 = v′
+g− −v′

−g+,
so that

v±f ′
0 − v′

±f0 = v±(v′
+g− − v′

−g+) − v′
±(v+g− − v−g+) = −g±,

and g±(x) → 0 as x → 0. Hence W0(v±, f) = W0(v±, v) + W0(v±, f0) =
W0(v±, v) = ±a∓, and so f ∈ D(Lmin) if and only if a± = 0, or if and only
if f = v+g− − v−g+ with g = Tf . Thus, if f ∈ D(Lmin), then we have the
relations (A.7) and (A.8) with a± = 0, so we have the required asymptotic
behaviours of f and f ′. �

Appendix B. Aharonov–Bohm Hamiltonian

Consider the Hilbert space L2(R2). We will use simultaneously the polar coor-
dinates, r, φ, which identify this Hilbert space with L2(0,∞) ⊗ L2(−π, π) by
the unitary transformation

L2(R2) � f �→ Uf ∈ L2(0,∞) ⊗ L2(−π, π)

given by Uf(r, φ) =
√
rf(r cosφ, r sinφ).

Let λ ∈ R. We consider the magnetic hamiltonian associated to the mag-
netic potential ( λy

x2+y2 ,− λx
x2+y2 ). The curl of this potential equals zero away

from the origin of coordinates and the corresponding Hamiltonian (at least
for real λ) is called the Aharonov-Bohm Hamiltonian. More precisely, let Mλ

denote the minimal operator associated to the differential expression

Mλ := −
(

−i∂x − λy

x2 + y2

)2

−
(

−i∂y +
λx

x2 + y2

)2

, (B.1)

a priori defined on C∞
c (R2\{0}). Clearly, Mλ is a positive hermitian operator,

homogeneous of degree −2. In polar coordinates, Mλ becomes

Mλ = −∂2
r +

1
r2

[

(−i∂φ + λ)2 − 1
4

]

. (B.2)

Let L := −ix∂y + iy∂x be the angular momentum. L = −i∂φ in polar coordi-
nates. Then L commutes with Mλ (or equivalently, Mλ is rotation symmetric).
L is a self-adjoint operator with the spectrum sp(L) = Z. Therefore, we have a
direct sum decomposition L2(R2) = ⊕l∈Z Hl where Hl is the spectral subspace
of L for the eigenvalue l. With the help of U we can identify Hl with L2(R+).
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Using (B.2), one immediately gets that

UMλU
∗ = ⊕

l∈Z

Lmin
l+λ. (B.3)

Using general arguments, see Proposition 2.6, one easily gets that the
Friedrichs and the Krein extensions of Mλ, denoted MFF

λ and MKK
λ respec-

tively, are also homogeneous and rotation symmetric. (The reason for the dou-
ble superscript will become apparent later).

Proposition B.1. (i) If λ ∈ Z, then Mλ has deficiency indices (1, 1). We have
MFF

λ = MKK
λ , and Mλ has no other homogeneous extension.

(ii) If λ /∈ Z, then Mλ has deficiency indices (2, 2). We have MFF
λ 	= MKK

λ ,
and Mλ has two other (distinct) homogeneous and rotation symmetric
self-adjoint extensions MFK

λ and MKF
λ .

Remark B.2. When λ /∈ Z,Mλ has also many homogeneous self-adjoint exten-
sions which are not rotation symmetric.

Remark B.3. If V denotes the unitary operator such that V = eiφ in polar
coordinates, then

V ∗MλV = Mλ+1. (B.4)

Proof. Using (B.3), the deficiency indices of Mλ are (n, n) where n =
∑

l∈Z
nl,

and (nl, nl) are the deficiency indices of Lmin
l+λ. By Proposition 4.17, we have

nl = 0 unless |l + λ| < 1, in which case nl = 1. Thus, if λ ∈ Z, only the term
with l = −λ has nonzero deficiency indices, namely n−λ = 1, and if λ /∈ Z,
then nl = 1 only when l = −[λ]−1 and l = −[λ], where [λ] denotes the integer
part of λ. This proves the assertions concerning the deficiency indices.

Using (B.4), we can then restrict ourselves to the case 0 ≤ λ < 1. The
result follows from the analysis of Sect. 4.4. If λ = 0, the only term which is
not self-adjoint in the decomposition of M0 is Lmin

0 . Using Proposition 4.15,
we see that M0 has a unique homogeneous self-adjoint extension. Since MFF

0

and MKK
0 are both homogeneous, they necessarily coincide.

We then turn to the case 0 < λ < 1. Only the terms Lmin
λ−1 and Lmin

λ are
not self-adjoint. Using Proposition 4.15 again, each of these term has exactly
two homogeneous extensions H±(λ−1) and H±λ respectively, those with a +
sign corresponding to the Friedrichs extension and those with a − sign to the
Krein extension. HenceMλ has 4 distinct homogeneous and rotation symmetric
self-adjoint extensions. The super indices FF,KK,FK and KF correspond to
the choice of the two extensions (the first index for the extension of Lmin

λ−1). �

We can then apply the results of Sect. 4.2 to study the analyticity prop-
erties of the various homogeneous extensions of Mλ.

Theorem B.4. Let n∈Z. For any #∈{FF,KK,FK,KF} the map ]n, n+1[ �
λ �→ M#

λ extends to a holomorphic family M#
z on the strip {n < Re (z) <

n+ 1}. Moreover,
(i) the family z �→ MFF

z can be extended to a holomorphic family on the
strip {n− 1 < Re (z) < n+ 2}.



Vol. 12 (2011) Homogeneous Schrödinger Operators on Half-Line 589

(ii) the family z �→ MFK
z can be extended to a holomorphic family on the

strip {n− 2 < Re (z) < n+ 1}.
(iii) the family z �→ MKF

z can be extended to a holomorphic family on the
strip {n < Re (z) < n+ 3}.

Proof. Using Proposition B.1, for any λ ∈ ]n, n+ 1[, we have

M#
λ = ⊕

l≤−n−2
H−l−λ ⊕H±(λ−n−1) ⊕H±(λ−n) ⊕

l≥−n+1
Hl+λ. (B.5)

Using Theorem 4.2, the components H−l−λ (for l ≤ −n − 2) have an ana-
lytic extension to the half-plane Re (z) < −l + 1, the components Hl+λ (for
l ≥ −n + 1) have an analytic extension to the half-plane Re (z) > −l − 1.
Similarly, Hλ−n−1 (the Krein extension of Lmin

λ−n−1) has an extension to the
half-plane Re (z) > n,H−λ+n+1 to the half-plane Re (z) < n+ 2,Hλ−n to the
half-plane Re (z) > n − 1 and H−λ+n to the half-plane Re (z) < n + 1. The
result then easily follows. �
Remark B.5. The value at z = n of both families MFK

z and MFF
z coincides

with the unique homogeneous extension of Mn.
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