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The Cauchy Problem on a Characteristic
Cone for the Einstein Equations
in Arbitrary Dimensions

Yvonne Choquet-Bruhat, Piotr T. Chruściel
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Abstract. We derive explicit formulae for a set of constraints for the
Einstein equations on a null hypersurface, in arbitrary space–time dimen-
sions n + 1 ≥ 3. We solve these constraints and show that they provide
necessary and sufficient conditions so that a spacetime solution of the
Cauchy problem on a characteristic cone for the hyperbolic system of
the reduced Einstein equations in wave-map gauge also satisfies the full
Einstein equations. We prove a geometric uniqueness theorem for this
Cauchy problem in the vacuum case.

1. Introduction

The simplest way to obtain a well-posed system for the vacuum Einstein equa-
tions is to suppose that the coordinates satisfy so-called harmonicity condi-
tions, or, more generally, to introduce a preassigned metric ĝ, called target
metric, which permits to write the Ricci tensor as the sum of two tensorial
operators, one of which is a hyperbolic operator acting on g, called the reduced
Ricci tensor, and the other a homogeneous first-order differential operator act-
ing on a vector H, called wave-map gauge vector, which vanishes when the
identity map is a wave map from (V, g) onto (V, ĝ). When the initial manifold
M0 is spacelike, classical theorems of analysis show existence and uniqueness
of solutions of so-reduced Einstein equations. The case where the initial mani-
fold is null has analogies with the spacelike case but also important differences:
First, the induced metric is degenerate, and unconstrained in the regions where
τ , the divergence of the light-cone (see (4.25) below), has no zeroes. Next, the
second fundamental forms defined on a spacelike and on a null manifold, for
which the normal is also tangent, have very different properties. Finally, null
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initial data on a light cone, or on two-intersecting null hypersurfaces, determine
the solution in one time direction only, past or future.

A complete understanding of this problem is still lacking, even in space–
time dimension four. The most exhaustive studies are for the case of two inter-
secting null surfaces [4,5,16–18,23,24,44,49,51]; compare [2,3,31]. The most
complete construction of equations satisfied by initial data has been given by
Damour and Schmidt [17], and the most satisfactory treatment of the local
evolution by Rendall [47]. The problem with data on a characteristic cone
presents new mathematical difficulties due to its singularity at the vertex, and
only partial results have been obtained before in [9,20,24,27,48].

The object of this work is to present a treatment of the Einstein equations
with data on a characteristic cone in all dimensions n+ 1 ≥ 3. We proceed as
follows:

Though the equations are geometric and the final results coordinate inde-
pendent, it is useful to introduce adapted coordinates to carry-out the analysis.
We take a C∞ manifold V diffeomorphic to Rn+1, and we consider a cone CO

in V with vertex O ∈ V and equation, in coordinates yα compatible with the
C∞ structure of V ,

y0 = r, r :=

⎧
⎨

⎩

∑

i=1,...,n

(yi)2

⎫
⎬

⎭

1
2

.

We consider the Cauchy problem with data on CO for the Einstein equations
with unknown a Lorentzian metric g, assuming that CO will be a characteristic
cone of the metric g and the lines y0 = r, yi

r = ci, where the ci are constants, its
null rays. It is well known1 that the characteristic cone of a C1,1 Lorentzian
metric admits always such a representation in a neighbourhood of its ver-
tex. We review in Sect. 3 an existence theorem which applies to the reduced
Einstein equations in wave-map gauge with Minkowski target reading in these
coordinates

ĝ = −(dy0)2 +
∑

i=1,...,n

(dyi)2. (1.1)

We introduce in Sect. 4 what we call adapted null coordinates, singular on the
line r = 0, in particular at the vertex O of CO, but C∞ elsewhere, by setting

x0 := r − y0, x1 := r,

and defining xA, A = 2, . . . n, to be local coordinates on the sphere Sn−1. In
coordinates xα the trace g on CO of the metric g we are looking for has the
form

g = g00(dx
0)2 + 2ν0dx0dx1 + 2νAdx0dxA + gABdxAdxB

︸ ︷︷ ︸
=:g̃

. (1.2)

1 This is guaranteed to hold only in a neighbourhood of the vertex, as there can be caustics.
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Remark that the question, whether x1 is an affine parameter on the null
rays xA = cA, depends on derivatives transversal to CO of the spacetime metric
g, which are usually not considered as part of the initial data for characteristic
Cauchy problems.

The adapted null, but singular at the vertex, coordinates xα are used to
solve “wave-map gauge constraints” satisfied by g.

In Sect. 5 we review the standard argument that the Bianchi identities
imply that if g satisfies the reduced Einstein equations with source a diver-
gence-free stress energy tensor, then the vector H satisfies a homogeneous
hyperbolic system; it vanishes in the future of CO if its trace H vanishes
on CO.

We show in Sects. 6 to 11 that H = 0 if the initial data g satisfy a set
of n+ 1 equations which we call the wave-map gauge constraints. These con-
straints read as a hierarchical system of ordinary differential equations along
the light rays, singular at the vertex O, if one uses the adapted null coordi-
nates xα. We write this complete system for a general ĝ and generalized wave
gauge, in arbitrary dimensions n+1 ≥ 3. We integrate them successively under
natural limit conditions on the unknowns at O. We study briefly in Sect. 6.2
the case when the degenerate metric g̃ induced on CO (i.e. the x1 dependent
quadratic gAB , see (1.2)) is prescribed.

In Sect. 7, in order to have an evolutionary equation for the divergence
τ we set, as many authors before us, gAB = Ω2γAB , with γ an arbitrarily
given x1 dependent metric on Sn−1. The first wave-map gauge constraint can
be written in a form which involves the two unknowns ν0 and Ω. Its general
solution is obtained by the introduction of an arbitrary function κ. We study
in particular the case κ = 0 which leads to the Raychaudhuri equation for τ
for which we prove global existence for a small |σ| which depends only on the
given γ. A simple integration determines then Ω; hence gAB and we are back
to the equations for ν0, νA, g00 with given g̃. We remark that the equation for
ν0 (for κ = 0) implies that the vector � is parallelly transported along the null
ray by the connection of a spacetime metric in wave-map gauge satisfying the
Einstein equations. In Sects. 8, 9, 10 and 11 we establish, and integrate, the
other constraints determining νA and g00. A theorem in Sect. 12 summarizes
our analysis of the wave-gauge constraint equations. A uniqueness theorem is
proved in Sect. 13.

A major question left open by our work is the description of the largest
class of unconstrained initial data which lead to solutions of the wave-map
gauge constraints such that the components in yα coordinates of the trace g
satisfy the (non trivial) initial conditions given in Sect. 3.1 for the existence
theorem for quasilinear wave equations. The problem is that the wave-gauge
constraint equations determine the components of g in the xα coordinates, and
these components are linked with the components in the yα coordinates by lin-
ear relations which are singular at the vertex. We simply note here that initial
data which are Minkowskian in a neighbourhood of the vertex are easily seen
to be in the class where the existence theorem holds; see also [13] for a more
general family of data. We plan to return to this problem in a near future.
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2. Definitions

2.1. Ricci Tensor and Harmonicity Functions

The Ricci tensor of any pseudo Riemannian metric is given in local coordinates
by

Rαβ := ∂λΓλ
αβ − ∂αΓλ

βλ + Γλ
αβΓμ

λμ − Γλ
αμΓμ

βλ, ∂λ :=
∂

∂xλ
, (2.1)

with Γλ
αβ the Christoffel symbols

Γλ
αβ := gλμ[μ, αβ], [μ, αβ] :=

1
2
(∂αgβμ + ∂βgαμ − ∂μgαβ). (2.2)

The Ricci tensor satisfies the identity

Rαβ ≡ R
(h)
αβ +

1
2
(gαλ∂βΓλ + gβλ∂αΓλ), (2.3)

where Ricc(h)(g), the reduced Ricci tensor, is a quasi-linear, quasi-diagonal
operator on the components of g,

R
(h)
αβ ≡ −1

2
gλμ∂λ∂μgαβ + f [g, ∂g]αβ , (2.4)

and f [g, ∂g]αβ is a quadratic form in the first derivatives ∂g of g with coeffi-
cients polynomial in g and its controvariant associate.

The Γλ’s, called harmonicity functions, are defined as

Γα := gλμΓα
λμ. (2.5)

The condition Γα = 0 expresses that the coordinate function xα satisfies the
wave equation in the metric g.

2.2. Wave-Map Gauge

The harmonicity functions are coordinate dependent and only defined locally
in general, whether in space, or time, or both. The wave-map gauge, which we
are about to define, provides conditions which are tensorial. A metric g on a
manifold V will be said to be in ĝ-wave-map gauge if the identity map V → V
is a harmonic diffeomorphism from the spacetime (V, g) onto the pseudo-Rie-
mannian manifold (V, ĝ), with ĝ a given metric on V . Recall that a mapping
f : (V, g) → (V, ĝ) is a harmonic map if it satisfies the equation, in abstract
index notation,

�̂fα := gλμ(∂2
λμf

α − Γσ
λμ∂σf

α + ∂λf
σ∂μf

ρΓ̂α
σρ) = 0. (2.6)

In a subset in which f is the identity map defined by fα(x) = xα, the above
equation reduces toH = 0, where the wave-gauge vectorH is given in arbitrary
coordinates by the formula

Hλ := gαβΓλ
αβ −Wλ, with Wλ := gαβΓ̂λ

αβ , (2.7)

where Γ̂λ
αβ are the Christoffel symbols of the target metric ĝ. See [10] for a

more complete discussion of the concepts and results in this section.
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The following identity has been proved to hold, with D̂ the Riemannian
covariant derivative in the metric ĝ [10, p. 163],

Rαβ ≡ R
(H)
αβ +

1
2
(gαλD̂βH

λ + gβλD̂αH
λ), (2.8)

where R(H)
αβ (g), called the reduced Ricci tensor of the metric g in ĝ-wave-map

gauge, is a quasi-linear, quasi-diagonal operator on g, tensor-valued, depending
on ĝ:

R
(H)
αβ ≡ −1

2
gλμD̂λD̂μgαβ + f̂ [g, D̂g]αβ , (2.9)

where f̂ [g, D̂g]αβ , independent of the second derivatives of g, is a tensor qua-
dratic in D̂g with coefficients depending upon g and ĝ, of the form (see formula
(7.7) in chapter VI of [10])

P ρσγδλμ
αβ (g)D̂ρgγδD̂σgλμ +

1
2
gλμ{gαρR̂λ

ρ
βμ + gβρR̂λ

ρ
αμ}, (2.10)

with R̂ the Riemann curvature tensor of the covariant derivative D̂. We will
frequently restrict ourselves to the case in which the target metric is the
Minkowski metric η and then denote by D the covariant derivative. In this
case, and if using coordinates such that the Minkowski metric takes the canon-
ical form (1.1), the reduced Ricci tensor in wave-map gauge coincides with the
one in harmonic coordinates.

We emphasise that, unless explicitly stated, our computations are valid
for a general ĝ.

Our main results below assume that W takes the form (2.7). However,
several results apply to a large class of W ’s of the form2

Wλ := gαβΓ̂λ
αβ + Ŵλ, (2.11)

where Ŵ is a vector which may depend upon g, ĝ and possibly some other
fields, but not upon the derivatives of g; the relevant restrictions are pointed
out in (7.6)–(7.7), (8.28)–(8.29) and (10.44)–(10.45). The reduced Ricci tensor
becomes then

R
(H,Ŵ )
αβ ≡ R

(H)
αβ +

1
2

(
gαλD̂βŴ

λ + gβλD̂αŴ
λ
)
. (2.12)

However, unless explicitly indicated otherwise we assume that Ŵ is identically
zero.

Another interesting generalization (see, e.g., [45] and references therein)
has been inspired by numerical simulations: if one uses the decomposition
(2.8), the identities Hλ ≡ 0 are only obeyed to some finite precision and Hλ

shows a generic tendency to deviate from zero. Attempts to cure that have

2 Friedrich [25] introduced generalized harmonic coordinates by adding arbitrary functions
to the harmonicity conditions.
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been made by introducing constraint damping terms [30], changing the choice
of the reduced Ricci tensor R(H)

αβ to

R
(H)
αβ +

1
2
ε(nαgβλ + nβgαλ − 2ρ

n− 1
nλgαβ)Hλ, (2.13)

or, equivalently, the reduced Einstein tensor S(H)
αβ to

S
(H)
αβ +

1
2
ε(nαgβλ + nβgαλ + (ρ− 1)nλgαβ)Hλ, (2.14)

where nμ is a vector field and ε is a small positive constant which controls the
rate of damping of the gauge conditions. (As shown in [30] the constant ρ must
also be positive to have damping.) We will show that the damping terms are
consistent with our analysis. For definiteness we will assume that nμ has been
prescribed, though certain more general situations can easily be incorporated
into our scheme.

3. Characteristic Cauchy Problem

The Einstein equations in wave-map gauge with source a given stress-energy
tensor T ,

R
(H)
αβ ≡ −1

2
gλμD̂λD̂μgαβ + f̂ [g, D̂g]αβ = ραβ , ραβ := Tαβ − trgT

n− 1
gαβ ,

(3.1)

form a quasi-diagonal, hyperquasi-linear3 system of wave equations for the
Lorentzian metric g. The Cauchy problem for such systems with data on a
spacelike n-manifold M0 is well understood, the Cauchy data are the values
of the unknown on M0 and their first transversal derivatives. When M0 is not
spacelike in the spacetime (V, g) which we are going to construct, the problem
is more delicate. It is known since Leray’s work (see [37]), 4 that the Cauchy
problem for a linear hyperbolic system on a given globally hyperbolic space-
time is well posed if M0 is “compact towards the past”; that is, is intersected
along a compact set by the past of any compact subset of V . However the
data depend on the nature of M0 and the formulation of a theorem requires
more care. In the case where M0 is a null hypersurface, except at some singular
subsets (intersection in the case of two null hypersurfaces, vertex in the case of
a null cone) the data are only the function, not its transversal derivative, with
some hypotheses which need to be made as one approaches the singular set.

In this article we concentrate on the case of the light cone, though most
of the calculations of our equations apply to any null hypersurface.

3 That is, the principal second order terms are diagonal and their coefficients depend on the
unknowns but not on their derivatives.
4 See [32,43] for a treatment of generalized solutions of a linear wave equation with data on
a achronal Lipschitz section of a spacetime with compact spacelike sections.
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3.1. The Cagnac–Dossa Theorem

To prove the local existence of solutions of Einstein equations with data on
a characteristic cone we use a wave-map gauge and an existence theorem for
solutions of quasi linear wave equations with such data.

The proof of an existence theorem for such a characteristic quasilinear
Cauchy problem is inspired by Leray’s idea of the linear case, applied to the
characteristic cone and linear wave equations in Cagnac [7] (cf. also Cagnac [6]
and Friedlander [22])and extended to the quasilinear case by Cagnac [8]. The
most complete results appear in Dossa’s thesis, the second part of which is
published in abbreviated form in [19]. One considers quasi-diagonal, quasi-
linear second-order system for a set v of scalar functions vI , I = 1, . . . , N , on
Rn+1 of the form

Aλμ(y, v)∂2
λμv + f(y, v, ∂v) = 0, y = (yλ) ∈ Rn+1, λ, μ = 0, 1, . . . , n ≥ 2,

(3.2)

v= (vI), ∂v=
(
∂vI

∂yλ

)

, ∂2
λμv=

(
∂2vI

∂yλ∂yμ

)

, f = (f I), I = 1, . . . , N.

(3.3)

The initial data

v := v|CO
= φ (3.4)

are given on a subset, including its vertex O, of a characteristic cone CO.
Throughout this work a bar over an object denotes the restriction of that
object to CO.

Cagnac and Dossa assume that there is a domain U ⊂ Rn+1 where CO

is represented by the following cone1 in Rn+1 (compare Fig. 1 below)

CO := {x0 ≡ r − y0 = 0}, r2 :=
∑

i=1,...,n

(yi)2.

The initial data φ is assumed to be defined on the domain

CT
O := CO ∩ {0 ≤ t := y0 ≤ T}. (3.5)

They denote

YO := {t := y0 > r}, the interior of CO, Y
T
O := YO ∩ {0 ≤ y0 ≤ T}. (3.6)

They also set

Στ := CO ∩ {y0 = τ}, diffeomorphic to Sn−1, (3.7)
Sτ := YO ∩ {y0 = τ}, diffeomorphic to the ball Bn−1. (3.8)

We will use the following theorem given in the first part of Dossa’s thesis:
it assumes some more differentiability of the data than the theorem in [19],
but it is simpler to apply to the Einstein equations whose initial data must
satisfy wave-map-gauge constraints and is sufficient for us here.

Observe that these results assume more regularity from the data on the
cone than the regularity obtained for the solution, a constant fact in charac-
teristic Cauchy problem already seen in other contexts.
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Theorem 3.1. Consider the problem (3.2)–(3.4). Suppose that
1. There is an open set U ×W ⊂ Rn+1 × RN , Y T

O ⊂ U where the functions
Aλμ are C2m+2 in y and v. The function f is C2m in y ∈ U and v ∈ W
and in ∂v ∈ R(n+1)N .

2. For (y, v) ∈ U × W the quadratic form Aλμ has Lorentzian signature; it
takes the Minkowskian values for y = 0 and v = 0.

3. a. The function φ takes its values in W . The cone CT
O is null for the

metric Aλμ(y, φ) and φ(O) = 0.
b. φ is the trace on CT

O of a C2m+2 function in U .
Then there is a number 0 < T0 ≤ T < +∞, T0 = T if φ is small enough in
C2m+2 norm, such that the problem (3.2)–(3.4) has one and only one solution
v in Y T0

O , such that

1. If m > n
2 +1, v ∈ Km+1(Y T0

O )∩Fm+1(Y T0
O ), in particular |∂v| is bounded.

2. If m = ∞, v can be extended by continuity to a C∞ function defined on a
neighbourhood of the origin in RN+1.

The spaces Km(Y T
O ) and Fm(Y T

O ) are Banach spaces of sets of functions
on Y T

O which together with their time and space derivatives of order less or
equal to m admit a square integrable restriction to each St and for which,
respectively, the following norms are finite:

||v||Km(Y T
O ) :=

∑

I=1,...,N

⎧
⎨

⎩

T∫

0

t−n
∑

0≤|k|≤m

||∂kvI ||2L2(St)
dt

⎫
⎬

⎭

1
2

,

||v||F m(Y T
O ) :=

∑

I=1,...,N

sup
0≤t≤T

t−
n
2

∑

0≤|k|≤m

||∂kvI ||L2(St).

The Euclidean metric, e :=
∑

i(dy
i)2, is used to define the measure on St and

as usual k denotes a multi-index, k := (k0, k1, . . . , kn), ∂k the derivation of
order |k| := k0 + k1 + · · · + kn:

∂k := (∂0)k0(∂1)k1 . . . (∂n)kn , with ∂α :=
∂

∂yα
. (3.9)

3.2. Einstein Equations in the Wave-Map Gauge

We know that the wave-map gauge reduced Einstein equations on a manifold
V are tensorial equations under coordinate changes, so that any coordinates
can be used. Note that the principal part of the wave-map reduced Einstein
equations is independent of the target manifold, and so the Einstein equations
on Rn+1 in wave-map gauge are of the form (3.2) for an unknown h, when we
set g ≡ η+h and work in the y coordinates where the Minkowski metric takes
the standard form

η ≡ −(dy0)2 +
∑

i

(dyi)2.

As an application of Theorem 3.1 we obtain (see also [20] in space-dimension
n = 3):
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Theorem 3.2 (Existence for the wave-gauge reduced Einstein equations). Let
g = η+h be a quadratic form on CT

O such that the components hμν in the coor-
dinates yμ satisfy the hypotheses of the Existence Theorem 3.1. Then, if the
source ρ is of class C2m in Y T

O , there exists T0 > 0 such that the wave-gauge
reduced Einstein equations5 R(H)

αβ = ραβ admit one and only one solution on
Y T0

O , a Lorentzian metric g(H) = η + h, with h satisfying the conclusions of
that theorem.

The following theorem is a straightforward adaptation of a theorem
proved long ago by one of us [21] for spacelike Cauchy data.

Theorem 3.3. Let g(H) be a C3 Lorentzian metric, solution on Y T
O of the

Einstein equations in wave-map gauge S(H)
αβ = Tαβ. Then, g(H) is a solution

on Y T
O of the full Einstein equations Sαβ = Tαβ if the wave-gauge vector van-

ishes on CT
O and the source T satisfies the conservation law ∇αT

αβ = 0.

Proof. The identity (2.8) implies (indices raised with g)

Sαβ ≡ Sαβ(H) +
1
2
(D̂βHα + D̂αHβ − gαβD̂λH

λ). (3.10)

Hence, the equations in wave-map gauge S(H)
αβ = Tαβ and the Bianchi iden-

tities imply that H satisfy the quasidiagonal linear homogeneous system of
second order equations

∇αD̂
αHβ + ∇αD̂

βHα − ∇βD̂αH
α = 0, (3.11)

whose principal terms are wave equations in the metric g since ∇αD̂
βHα −

∇βD̂αH
α is at most first order in H. If g is C3,H is C2, and an energy

inequality applied to this linear equation implies easily that H = 0 in Y T
O if

H := H|CT
O

= 0. �

When the support of the initial data is a spacelike manifold M0 the van-
ishing of H is guaranteed when the constraint equations (Sαβ −Tαβ)nβ |M0 = 0
are satisfied by the initial data, where nβ is the field of unit normals to M0 in
the space–time one seeks to construct. One of the main goals of this work is
to present a method to construct initial data on the light-cone which ensures
the vanishing of H.

4. Null Hypersurfaces, Adapted Coordinates

The obtention, and solution, of equations to be satisfied by initial data to
ensure the vanishing of H is simpler in coordinates adapted to the geometry
of the null initial manifold.

5 We use abstract index notation when it helps formulate properties of geometric objects.
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4.1. Adapted Coordinates

Let M0 be a hypersurface in Rn+1 which will be a null submanifold of the
spacetime (V, g) with V some domain of Rn+1. M0 is generated by geode-
sic null curves, called rays. In a manner classical for null surfaces we choose
coordinates xα so that M0 is given by the equation x0 = 0, and on M0 the
coordinate x1 is a parameter along the rays, denoting by � the tangent vector

∂
∂x1 . We assume that the subspaces Σx1 : {x1=constant, x0=0} are spacelike
and diffeomorphic to the same n− 1 manifold Σ, except possibly for Σ0 which
reduces to a point in the case of a characteristic cone. We denote by xA local
coordinates on Σ. We have �0 = 0, �1 = 1, �A = 0.

The covariant vector n := gradx0, with x0 = 0 the equation of M0, is a
null vector normal and tangent to M0 with components n0 = 1, n1 = nA = 0.
By uniqueness of null directions tangent to a light cone we have also �A = 0
and hence, using that �α = δα

1 , g1A = 0. Then, the trace on M0 of the space-
time metric reduces in the xα coordinates to (we put an overbar to denote
restriction to M0 of spacetime quantities)

g := g|x0=0 ≡ g00(dx
0)2 + 2ν0dx0dx1 + 2νAdx0dxA + gABdxAdxB, (4.1)

where

ν0 := g01, νA := g0A, (4.2)

We observe that the gAB are the non zero components of the quadratic form
g̃ induced by g on M0 by the identity map. They define an x1-dependent
Riemannian metric on Σ

g̃Σ := gABdxAdxB, A,B = 2, . . . , n. (4.3)

The following identities hold on M0, because gαβ and gαβ are inverse
matrices.

g00 ≡ g0A ≡ 0, ν0 := g01 =
1
ν0
, (4.4)

gAB ≡ g̃AB , with g̃AB the inverse matrix of gAB . (4.5)

We denote

νB := gABνA (4.6)

then

gA1 ≡ −ν0νA, g11 ≡ −(ν0)2g00 + (ν0)2νAνA. (4.7)

Remark 4.1. We use coordinates that are adapted to the initial light-cone but,
in contradistinction with other authors, we do not assume that those metric
functions that vanish on CO vanish elsewhere.

In Appendix A we collect formulae useful for explicit calculations, such
as the trace on M0 of the Christoffel symbols of g, etc.

See [28,29,34,42] for various useful results concerning null surfaces.
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4.2. Characteristic Cones

4.2.1. General Properties. It is no geometric restriction6 to assume that in
a neighbourhood of its vertex the characteristic cone7 of the spacetime we
are looking for is represented in some admissible coordinates y := (yα) ≡
(y0, yi, i = 1, . . . , n) of Rn+1 by the equation of a Minkowskian cone with
vertex O,

r − y0 = 0, r :=

{
∑

i

(yi)2
} 1

2

. (4.8)

Given the coordinates yα we can define coordinates xα on Rn+1 adapted to
the null cone CO as we did for a general null surface by setting

x0 = r − y0, x1 = r, xA = μA

(
yi

r

)

, (4.9)

with xA local coordinates8 on Sn−1. The null geodesics issued from O have
equation x0 = 0, xA =constant, so that ∂

∂x1 is tangent to those geodesics. On
CO (but not outside of it in general) the spacetime metric g that we are going
to construct takes the form (4.1), that is, such that g11 = 0 and g1A = 0.

We emphasize that there is no loss of generality in writing ḡ in the form
(4.1). However, g00, ν0, νA are not invariant under an isometry of space-time
which leaves CO invariant, they are gauge-dependent quantities (see Sects. 4.5
and 13).

We compute the relation between the components of a tensor T in the
coordinates y and x using (4.9) and its inverse:

y0 = x1 − x0, yi = x1Θi(xA), with
∑

i

(Θi)2 = 1. (4.10)

If the components of a spacetime symmetric tensor T in the coordinates
xα are denoted Tαβ and if in the coordinates yα they are denoted Tαβ , then

the transformation law for two-covariant tensors, Tλμ = Tαβ
∂yα

∂xλ
∂yβ

∂xμ , give the
identities

T00 ≡ T00, T01 ≡ −T00 − T0iΘi, T0A ≡ −T0ir
∂Θi

∂xA
, (4.11)

T11 ≡ T00 + 2T0iΘi + TijΘiΘj , T1A ≡ T0ir
∂Θi

∂xA
+ TjirΘj ∂Θi

∂xA
, (4.12)

TAB ≡ Tijr
2 ∂Θi

∂xA

∂Θj

∂xB
. (4.13)

6 See footnote 1 and details in Sect. 4.5.
7 A cone is a topological manifold but it is not differentiable at its vertex.
8 They can be angular coordinates, see e.g. [14, Chapter V, Sect. 4], or stereographic coor-
dinates, as in Christodoulou [15].
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Conversely, Tλμ = ∂xα

∂yλ
∂xβ

∂yμ Tαβ gives

T00 ≡ T00, T0i ≡ −(T00 + T01)Θi − T0A
∂xA

∂yi
, (4.14)

Tij = (T00 + 2T01 + T11)ΘiΘj + (T0A + T1A)
(

Θi ∂x
A

∂yj
+ Θj ∂x

A

∂yi

)

+TAB
∂xA

∂yi

∂xB

∂yj
, (4.15)

with

∂xA

∂yi
= r−1μA

i ,

where the μA
i ’s are C∞ functions of the xB on any subset of Sn−1 where the

xA’s are admissible local coordinates.
One checks, using the identities

∑

i

(Θi)2 = 1 and
∑

i

∂Θi

∂xA

∂Θi

∂xB
≡ sAB ,

with

sABdxAdxB ≡ sn−1, the metric of Sn−1,

that, when T = η,

−(dy0)2 +
∑

i

(dyi)2 = −(dx0)2 + 2dx0dx1 + (x1)2sn−1.

4.2.2. Case ĝ = η, the Minkowski Metric. It is natural to take as given metric
ĝ the metric of a model spacetime such as Minkowski, or de Sitter, or anti-de
Sitter. While most our formulae will be completely general, the analysis will
mainly be concerned with the case where the metric ĝ is a Minkowski metric
η given by the formula written above in the introduced coordinates yα and in
the adapted null coordinates xα. The Riemannian curvature of the Minkowski
metric η is zero. The non zero Christoffel symbols of η are in our coordinates
xα, with SA

BC the Christoffel symbols of the metric s,

Γ̂B
1A

η≡ 1
x1
δB
A , Γ̂B

AC

η≡ SB
AC , (4.16)

Γ̂0
AB

η≡ −x1sAB , Γ̂1
AB

η≡ −x1sAB . (4.17)

Equalities and identities assuming given metric ĝ = η and Wλ ≡ gαβΓ̂λ
αβ will

be denoted with symbols
η
= and

η≡, respectively, when ambiguous.
We have

W
0 η≡ −x1gABsAB

η≡ W
1
, (4.18)

W
A η≡ 2g1C Γ̂A

1C + gBC Γ̂A
BC

η≡ − 2
x1
ν0νA + gBCSA

BC . (4.19)
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4.2.3. Limits at the Vertex. We set g = η + h. The condition hαβ(O) = 0 of
Theorem 3.2 can always be satisfied by choice of an orthonormal frame for the
natural frame of the coordinates yα at the vertex. Since the coordinates xμ

cease to form a coordinate system at x1 = 0, the behaviour near x1 = 0 of
the components hαβ in x coordinates is obtained only by considering limits.
As explained above, we can, and will, choose coordinates on CO such that
h11 ≡ 0, i.e. CO : x0 = 0 is a null cone for g, and h1A = 0, i.e. the vector
� := ∂

∂x1 is on CO a null vector. Then, the components of h are

h00 ≡ h00, h0i ≡ −(h00 + h01)Θi − h0A
∂xA

∂yi

with h01 := ν0 − 1, h0A := νA,

hij = (h00 + 2h01)ΘiΘj + h0A

(

Θi ∂x
A

∂yj
+ Θj ∂x

A

∂yi

)

+ hAB
∂xA

∂yi

∂xB

∂yj
.

We see that the condition hαβ(O) = 0 is equivalent to the following
conditions in the coordinates xα:

lim
r→0

(1 + g00) = lim
r→0

(ν0 − 1) = lim
r→0

(r−1νA) = lim
r→0

(r−2hAB) = 0. (4.20)

4.2.4. A Lemma. For further use we note the following observation:

Lemma 4.2. If a C1 spacetime function f is such that on CO in the coordinates
xα it holds that

lim
r≡x1→0

∂1f = 0

then it also holds

lim
r≡x1→0

∂0f = 0.

Proof. One has the trivial identity

∂1f ≡ ∂αf
∂yα

∂x1
≡ ∂0f + ∂ifΘi.

If f is C1 in a neighbourhood of O, ∂if tends to a limit, a number ai at O and
hence the above equation implies

lim
r→0

∂0f + aiΘi = 0,

condition which can be satisfied for all xA if and only if ai = 0 and limr→0 ∂0f
= 0. Therefore,

lim
r→0

∂0f ≡ − lim
r→0

∂0f = 0.

�
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4.3. The Affine-Parameterisation Condition

The vector field � := ∂
∂x1 , tangent to the null rays in M0, obeys the geodesic

property

�α∇α�β = Γ
β

11, (4.21)

with

Γ
0

11 ≡ Γ
A

11 ≡ 0 and Γ
1

11 ≡ ν0

(

∂1ν0 − 1
2
∂0g11

)

. (4.22)

If we impose the condition Γ
1

11 = 0, then the vector � is parallelly transported
and x1 is said to be an affine parameter on the rays; this condition gives an
equation involving ν0, a metric coefficient which will appear in our first wave-
map gauge constraint. However, we stress that the equation Γ

1

11 = 0 involves
also a derivative transversal to M0, and thus cannot be made to hold just by
a gauge choice of the coordinate x1 on the cone. We will see later how we can
circumvent this problem in the wave-map gauge.

4.4. Null Extrinsic Curvature

4.4.1. General Properties. Let M0 be a null hypersurface with a field of null
tangents �. The null extrinsic curvature at x ∈ M0 is defined (see, e.g., [28]) as
the bilinear form with components ∇α�β acting on the quotient of the tangent
space toM0 at x by the direction defined by �, i.e. equivalence classes of tangent
vectors of the form X ≡X+c� with X∈ TxM0, c an arbitrary number. Indeed,
the action of the bilinear form on a pair of such tangent vectors, ∇α�βXαY β ,
depends only on the equivalence class, that is in our coordinates on the com-
ponents XA and Y A; hence it is defined by the components χAB := ∇A�B of
the bilinear form. Using �α = δα

1 and �α := gαβδ
β
1 ≡ ν0δ

0
α we have

χAB ≡ −Γ
0

ABν0 ≡ 1
2
∂1gAB . (4.23)

We denote by

χA
B := gBCχAC ≡ Γ

B

1A (4.24)

the mixed, x1-dependent, 2-tensor on Sn−1 deduced from the null second fun-
damental form. We define its trace

τ := χA
A ≡ gABχAB ≡ ∂1(log

√
det g̃Σ), (4.25)

and its traceless part

σA
B := χA

B − 1
n− 1

δB
Aτ, and we set |σ|2 := σA

BσB
A. (4.26)

See [28,29] for an analysis of the null second fundamental form through
the Weingarten map.
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4.4.2. Harmonicity Functions. In adapted coordinates, and using the notation
above, the harmonicity functions Γα ≡ gλμΓα

λμ reduce on M0 to

Γ
0 ≡ gλμΓ

0

λμ ≡ 2ν0Γ
0

01 + gABΓ
0

AB ≡ ν0(ν0∂0g11 − τ), (4.27)

Γ
A ≡ gλμΓ

A

λμ ≡ 2ν0Γ
A

01 + 2gB1Γ
A

B1 + gBCΓ
A

BC (4.28)

≡ ν0νA(τ − ν0∂0g11) + ν0gAB(∂0g1B + ∂1νB − ∂Bν0)

−2ν0νBχB
A + Γ̃A, (4.29)

Γ
1 ≡ gλμΓ

1

λμ ≡ g11Γ
1

11 + 2ν0Γ
1

01 − 2ν0νAΓ
1

A1 + gABΓ
1

AB (4.30)

≡ (ν0)2∂1g00 + g11ν0

(
1
2
∂0g11 + ∂1ν0 − τν0

)

+2(ν0)2νA(−∂1νA + νBχAB) + ν0gAB∇̃BνA − 1
2
ν0gAB∂0gAB (4.31)

≡ −∂1g
11 + g11ν0

(
1
2
∂0g11−∂1ν0−τν0

)

+ ν0gAB∇̃BνA− 1
2
ν0gAB∂0gAB .

(4.32)

We have defined

Γ̃A := gBC Γ̃A
BC , (4.33)

with Γ̃A
BC being the Christoffel symbols of the metric gAB . We shall also use

Γ1 := g1μΓ
μ

= ν0Γ
0
, (4.34)

ΓA := gABΓ
B �= gAμΓ

μ
, (4.35)

and similarly for components of W and H with subindices.

4.4.3. Vertex Limits. We set

gAB ≡ r2(sAB + fAB). (4.36)

We have seen in Sect. 4.2.3 that it is no geometric restriction for smooth met-
rics to assume

lim
r→0

(r−2gAB − sAB) = 0, i.e. lim
r→0

fAB = 0,

Then

lim
r→0

r2gAB = sAB . (4.37)

Recalling that χA
C ≡ Γ

C

A1 and using the relation between connections in
different frames gives

χA
C ≡ Γ

C

A1 ≡ ∂xC

∂yα

∂yβ

∂xA

∂yγ

∂x1
Γ

α

βγ +
∂xC

∂yα

∂

∂xA

∂yα

∂x1
.

Using

∂y0

∂x1
= 1,

∂yi

∂x1
=
yi

r
, hence

∂xC

∂yα

∂

∂xA

∂yα

∂x1
=

1
r

∂xC

∂yα

∂yα

∂xA
=

1
r
δC
A ,
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we find

χA
C ≡ 1

r
δC
A +

∂xC

∂yi

∂yj

∂xA

(

Γ
i

j0 +
yh

r
Γ

i

jh

)

.

Therefore, if the coefficients Γ
i

j0 and Γ
i

jk are bounded for 0 ≤ r ≤ a, the same

property holds for χA
C − 1

r δ
C
A , for ψ := n−1

r −τ and for σA
C := χA

C − 1
n−1δ

C
Aτ .

These quantities are then also continuous on each null ray. However, the limits
when r tends to zero are in general angle dependent.

As already said, given a C2 spacetime metric we can choose normal geode-
sic coordinates in a neighbourhood of a point O. Then the Christoffel symbols
vanish at O and it holds that

lim
r→0

Γ
C

A1 = lim
r→0

∂xC

∂yα

∂

∂xA

∂yα

∂x1
≡ 1
r

∂xC

∂yα

∂yα

∂xA
≡ 1
r
δC
A .

Hence,

lim
r→0

ψ = lim
r→0

σA
C = 0. (4.38)

See further results in the next section.

4.5. Boundary Conditions in Coordinates Normal at the Vertex

In the following sections we will give explicit expressions for the wave-map
gauge constraints. To study their solutions we will need to know the behav-
iour of the unknowns at the tip of the light cone, aiming at finding solutions
of the constraints which satisfy the Cagnac–Dossa hypotheses. The purpose
of this section is to describe this behaviour in coordinate systems useful for
the problem at hand. The analysis here is also useful for proving geometric
uniqueness of solutions.

Consider a smooth space–time (V, g). Let O ∈ V and let CO be the future
light-cone emanating from O. Let T be any unit timelike vector at O, and nor-
malize null vectors � at O by requiring that g(�, T ) = −1. The parallel trans-
port of � defines an affine parameter, denoted by s, on the future null geodesics
s �→ γ(s) with γ(0) = O and with initial tangent �. Let (zμ), μ = 0, . . . , n be
a normal coordinate system centred at O with T = ∂z0 , see, e.g. [36,50], or [10,
Chapter 12, Sect. 7]. In those coordinates the future light-cone emanating from
O is given by the equation

CO = {z0 = |�z|}, where �z := (z1, . . . , zn), |�z|2 :=
n∑

i=1

(zi)2.

As is well known, in normal coordinates at O, z = 0, the Christoffel symbols
vanish at O. Hence, for a C1,1 metric we have ∂σgμν(O) = 0, and so, for small
|z| := |z0| + |�z|,

|gμν − ημν | + |z‖∂σgμν | ≤ C|z|2, (4.39)

for some constant C.
In the coordinate system (xμ) = (x0 ≡ u, x1 ≡ r, xA), A = 2, . . . , n, where

u = |�z| − z0, r = |�z|, (4.40)
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and where the xA’s are any local coordinates on Sn−1 parameterizing the unit
vector �z/|�z|, the trace of the metric g on CO takes the desired form (4.1) as
long as the metric, and the light-cone, are smooth; assuming smoothness of g,
this will always be the case in some neighbourhood of the tip O.

Equation (4.40) shows that

dz0 = dr − du, dzi =
zi

r
dr + ∂Az

idxA,

which allows us to translate the estimates (4.39) to the asymptotic behaviour
of the objects of interest near r = 0: From

gμνdzμdzν

= (ημν +O(|z|2))dzμdzν

= (−1 +O(|z|2))(du− dr)2 +O(|z|2)(du− dr)
(
zi

r
dr + ∂Az

idxA

)

+(δj
i +O(|z|2))

(
zi

r
dr + ∂Az

idxA

)(
zj

r
dr + ∂Bz

jdxB

)

= (−1 +O(|z|2))(du)2 + (2 +O(|z|2))dudr +O(r|z|2)dudxA

+O(|z|2)(dr)2 +O(r|z|2)dxAdr + r2
(
sAB +O(|z|2)) dxAdxB

we obtain, at u = 0, for small r,

g00 = −1 +O(r2), ∂rg00 = O(r), ∂ug00 = O(r), ∂Ag00 = O(r2),
(4.41)

ν0 = 1 +O(r2), ∂rν0 = O(r), ∂ug01 = O(r), ∂Aν0 = O(r2), (4.42)

νA = O(r3), ∂rνA = O(r2), ∂ug0A = O(r2), ∂Aν0 = O(r3), (4.43)
gAB = r2

(
sAB +O(r2)

)
, ∂r(gAB − r2sAB) = O(r3), (4.44)

∂ugAB = O(r3), ∂A(gAB − r2sAB) = O(r4), (4.45)

g11 = 0, ∂rg11 = 0, ∂ug11 = O(r), ∂Ag11 = 0, (4.46)

g1A = 0, ∂rg1A = 0, ∂ug1A = O(r2), ∂Ag1A = 0. (4.47)

One also has associated second-derivative estimates,

∂u∂rgAB =O(r2), ∂2
r (gAB−r2sAB)=O(r2), ∂A∂r(gAB − r2sAB)=O(r3),

(4.48)

etc. From (4.44) and (4.48) we obtain

χA
B =

1
r
δB
A +O(r), hence τ =

n− 1
r

+O(r), σA
B = O(r), (4.49)

as well as ∂r(τ − n− 1
r

) = O(1), ∂Aτ = O(r), (4.50)

∂rσA
B = O(1), ∂CσA

B = O(r). (4.51)

Note that (4.49)–(4.51) will hold in any coordinate system which coin-
cides with the normal coordinates zμ on the light-cone. This is due to the fact
that the vectors ∂r and ∂A are tangent to the light-cone, which implies that
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Figure 1. The cross-section Σs of the light-cone CO; Cs
O is

the shaded region. Two generators γ1 and γ2 are also shown

the quadratic form g̃Σ = gABdxAdxB is intrinsically defined on the light-cone,
independently of how the coordinates are extended away from the light-cone,
and from the fact that the matrix gAB in (A.2) is the inverse of gAB .

4.6. The Light-Cone Theorem

A result closely related to our analysis here is the light-cone theorem, proved
in [12], which reads as follows: Let s be an affine parameter as defined at the
beginning of Sect. 4.5. Let Σs denote the (n− 1)-dimensional surface reached
by these geodesics after affine time s:

Σs = {γ(s)} ⊂ CO, (4.52)

where the vectors � run over all null future vectors at O normalized as above;
see Fig. 1.

We denote by Ct
O the subset of the light-cone covered by all the geodesics

up to affine time t:

Ct
O = ∪0≤s≤tΣs. (4.53)

Note that γ(s) might not be defined for all s. Further, some of the Σs’s
might not be smooth. However, there exists a maximal s0 > 0 such that Σs is
defined and smooth for all 0 < s < s0. Our considerations only apply to that
last region.

It is proved in [12] that, assuming the Einstein equations with a cosmo-
logical constant and with sources satisfying the dominant energy condition,
the areas of the Σs’s are less than or equal to the corresponding areas in
Minkowski, de Sitter, or anti-de Sitter space–time. Furthermore, if equality
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holds at some s2, then on Cs2
O we have

σAB = 0 = T 11, τ =
n− 1
r

.

(This situation will be referred to as that of the Null-Cone Theorem (NCT).)
It is further shown in [12] that, under suitably stronger energy conditions,
equality implies that the metric is that of the model space on the domain of
dependence of Cs2

O . The proofs of those facts provide a non-trivial illustration
of the formalism developed here, as specialized to the simpler problem treated
in [12].

5. Constraints and Gauge Preservation

The obvious analogue on a null submanifold M0 of the spacelike constraints
operator is Sαβ�

β , where � denotes the field of null normals to M0 normalized
in some arbitrary way. Derivatives of the metric in Sαβ�

β transversal to the
light-cone appear only at first order. Some of them9 cancel between the vari-
ous terms contributing to Sαβ�

β , and those that remain can be expressed in
terms of H and W . So, in the explicit form of Sαβ�

β , one can replace every
occurrence of ∂0g01, ∂0g0A and gAB∂0gAB by Hα,Wα, and terms containing
only derivatives along M0. We define n+ 1 operators Lα(H), α = 0, . . . , n, by
adding all the terms involving H in Sαβ�

β . One can then define n+1 operators
Cα by whatever remains; thus the Cα’s coincide with Sαβ�

β when Hα vanishes.
Explicit formulae for Cα are given in (6.13), (8.24) and in (10.41) below, while
Lα can be found in (6.14), (8.22) and (10.38).

We will prove the following theorem, which is the key element of our
analysis of the Cauchy problem for the Einstein equations on a light-cone:

Theorem 5.1. 1. The operator Sαβ�
β on a null submanifold M0 can be writ-

ten as a sum,

Sαβ�
β ≡ Lα + Cα,

where Lα vanishes when H = 0, while the operator Cα depends only
on the values g on M0 of the spacetime metric, on the choice of the
null vector �, and on W , which depends on the chosen target space of
the wave-map gauge. The operators Cα will be called Einstein-wave-map
gauge constraint operators.

2. In adapted null coordinates
(a) The operators Cα lead to a hierarchy of ordinary differential oper-

ators for the coefficients of g along the generators, all linear when
the first constraint Sαβ�

α�β = Tαβ�
α�β has been solved.

(b) The operators Lα together with the wave-gauge reduced Einstein
equations lead to a hierarchy of homogeneous first order ordinary
linear differential operators along the generators for the components

9 Compare [2,17,33,47] in space-dimension three.
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Hα if the spacetime metric g satisfies on M0 the reduced Einstein
equations.

Theorem 5.1 will be proved in Sects. 6–8 and 10.
A consequence of Theorems 3.3 and 5.1 is the following:

Theorem 5.2. A C3 Lorentzian metric g(H), solution of the Einstein equations
in wave-map gauge S(H)

αβ = Tαβ in Y T
O with ∇αT

αβ = 0, and taking an initial
value g on CT

O , is a solution of the full Einstein equations Sαβ = Tαβ if and
only if g satisfies the constraints Cα = Tαβ�

β.

Proof. Theorem 5.1 gives the following identities, with Lα a linear and homo-
geneous first-order differential operator along the null vector � for the vector
H:

Sαβ�
β ≡ S

(H)

αβ �
β +

1
2
(gαλD̂βHλ + gβλD̂αHλ − gαβD̂λHλ)�β ≡ Cα + Lα.

(5.1)

The “only if” part of the theorem results immediately from the identity
(5.1) when the metric g is a solution of the full Einstein equations and is in
wave gauge, since then only Cα remains in that identity.

The “if” part will be proved later by showing that H
α

= 0 is the only
solution, for metrics which are uniformly C1 near the tip of the cone, of the
equations

1
2
(gαλD̂βHλ + gβλD̂αHλ − gαβD̂λHλ)�β = Lα (5.2)

which result from the identity (5.1) when Cα = Tαβ�
β and S

(H)

αβ = Tαβ . �

The question of local geometric uniqueness of solutions is addressed in
Sect. 13.

6. The First Constraint

6.1. Computation of R11 ≡ S11 ≡ Sαβ�α�β

The component R11 can be separated as

R11 ≡ R
(1)
11 +R

(2)
11 ,

where R(1)
11 is linear in first derivatives of the Christoffel symbols and R

(2)
11 is

quadratic in them. They are given by, after a trivial simplification,

R
(1)
11 ≡ ∂0Γ0

11 + ∂AΓA
11 − ∂1Γ0

10 − ∂1ΓA
1A, (6.1)

R
(2)
11 ≡ Γ0

11(Γ
0
00 + Γ1

01 + ΓA
0A) + Γ1

11(Γ
0
10 + Γ1

11 + ΓA
1A)

+ ΓB
11(Γ

0
B0 + Γ1

B1 + ΓA
BA)

−Γ0
10Γ

0
10 − 2Γ1

10Γ
0
11 − Γ1

11Γ
1
11 − 2Γ1

1AΓA
11 − 2Γ0

1AΓA
10 − ΓA

1BΓB
1A. (6.2)
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We must take care when taking derivatives transversal to the cone, i.e.
∂0, that our coordinate conditions are valid only on the cone. We will then use
the trivial identity

∂λΓα
βγ ≡ gαμ(∂λ[μ, βγ]) + (∂λgαμ)[μ, βγ]. (6.3)

In R
(1)

11 only Γ
0

11 is differentiated transversally to Ca. We have, since g11 =
g1A = 0,

∂0Γ0
11 =

1
2
ν0∂1∂0g11 +

(

∂1ν0 − 1
2
∂0g11

)

∂0g00, with ∂0g00 =−(ν0)2∂0g11,

(6.4)

−∂1Γ
0

10 ≡ −∂1

(
1
2
ν0∂0g11

)

. (6.5)

By using also

Γ
A

11 = 0, Γ
A

1A =
1
2
gAB∂1gAB =: τ (6.6)

and the harmonicity function (4.27), we get

R
(1)

11 ≡ (ν0)2
1
2
∂0g11 ∂0g11 +

1
2
∂1ν

0∂0g11 − ∂1τ (6.7)

≡ 1
2
(Γ1 + τ)2 − 1

2
ν0∂1ν0(Γ1 + τ) − ∂1τ. (6.8)

The part R
(2)

11 depends only on the values of the Christoffel symbols
on CO. Using Γ

0

11 = Γ
A

11 = Γ
0

1A = 0 and trivial simplifications we find that

R
(2)

11 ≡ Γ
1

11(Γ
0

10 + Γ
A

1A) − Γ
0

10Γ
0

10 − Γ
A

1BΓ
B

1A.

In the chosen coordinates, R
(2)

11 reduces to

R
(2)

11 ≡ −1
2
(Γ1 + τ)2 +

1
2
ν0∂1ν0(Γ1 + τ) + ν0∂1ν0τ − 1

2
τ(Γ1 + τ) − χA

BχB
A.

(6.9)

Adding (6.8) and (6.9) we obtain

R11 ≡ −∂1τ + ν0∂1ν0τ − 1
2
τ(Γ1 + τ) − χA

BχB
A (6.10)

≡ −∂1τ + Γ
1

11τ − χA
BχB

A, (6.11)

6.2. The C1 Constraint Operator

By definition of the wave-gauge vector H we have Γ1 ≡ W 1 +H1, and hence,
(6.10) decomposes as

R11 ≡ C1 + L1, (6.12)

with

C1 := −∂1τ +
(

ν0∂1ν0 − 1
2
(W 1 + τ)

)

τ − |σ|2 − τ2

n− 1
, (6.13)
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where we have separated χA
B in trace-free and pure trace parts (see (4.26)),

and

L1 := −1
2
H1τ. (6.14)

As announced, (6.13) involves only the values of the metric coefficients
on the light-cone; equivalently, no derivatives of the metric transverse to the
light-cone occur there:

W 1 = 2Γ̂0
01 + ν0g

ABΓ̂0
AB

η
= −ν0x1gABsAB , (6.15)

where we have assumed that the target metric takes the adapted form in the
same coordinate system, so that Γ̂0

11 = 0 and Γ̂0
1A = 0. The Einstein equa-

tion R11 = T11 in wave-gauge provides, in this sense, a constraint equation
C1 = T 11 for the metric components gμν .

The constraint equation C1 = T 11 contains as unknowns only the com-
ponents gAB and ν0 if it is so of T 11. A simple strategy is then to prescribe
gAB (compare Bondi et al. [1]) and use the definition (4.23) to compute χAB ;
hence, also σA

B and τ . The first constraint reads then as a differential first-
order equation for ν0, linear if T 11 is independent of ν0 since W 1 is linear in ν0.
(Recall that we are assuming Ŵμ = 0 unless explicitly indicated otherwise.)
The solution will lead to a Lorentzian metric as long as ν0 is positive.

However, the equation is singular wherever τ vanishes, as the resulting
ODE for ν0 involves inverse powers of τ . For this reason it is of interest to look
for alternatives, where τ is computed from the constraint, rather than pre-
scribed in advance. Following [47] we will prescribe only the conformal class
of g̃. The wave-map gauge constraint deduced from (6.13) is then an equa-
tion for ν0 and the conformal factor Ω2. We can prescribe arbitrarily ν0 and
then determine Ω. We can also, generalizing an idea of Damour and Schmidt,
impose on ν0 to satisfy a well-chosen differential equation containing an arbi-
trarily given function κ. We treat in detail the case κ = 0, which implies that
for the obtained solution ν0 the vector � will be parallelly transported, in other
words r will be an affine parameter, in the resulting space–time.

7. Solution of the C1 Constraint for given σ

The operator C1 relates the three functions τ (which, via Eq. (4.25), essen-
tially describes the evolution of the volume element of the sections Σ), ν0 and
|σ|2 := σA

BσB
A. We recall the following well known fact:

Lemma 7.1. The tensor σ is determined by the conformal class of the induced
quadratic form g̃.

Proof. To see this, let us write

g̃ = Ω2γ,

with γ a degenerate quadratic form on CO such that γ11 ≡ γ1A ≡ 0. Then

χAB ≡ 1
2
Ω2∂1γAB + γABΩ ∂1Ω,
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and thus,

χA
C ≡ 1

2
γBC∂1γAB + δC

A ∂1 log Ω; (7.1)

hence, the trace-free part of χA
B is

σA
C ≡ 1

2
γBC∂1γAB − δC

A

∂1(log
√

det γΣ)
n− 1

, (7.2)

where γΣ denotes the positive definite x1 dependent quadratic form on Σ with
components γAB . We see that the traceless tensor σ is independent of the con-
formal factor and hence depends only on the conformal class of g̃. In particular,
σ vanishes if g̃ is conformal to a quadratic form independent of r := x1. �

If γ and its first derivatives satisfy the vertex limits spelled out for g̃ in
Sect. 4.5, then limr→0 r|σ| = 0; we say that a degenerate quadratic form γ on
CO, with γ11 ≡ γ1A ≡ 0, is admissible if it is C1 on CO − O, i.e. for r > 0,
and such that |σ|2 is C0 for r ≥ 0 and hence bounded for finite r ≥ 0. Given
σ the constraint C11 = T 11 appears as a relation between the functions τ and
ν0. Since it involves radial derivatives of both τ and ν0 (which can actually
be grouped as ∂1(ν0τ)), we could prescribe one of them and integrate for the
remaining field, or else provide an additional differential equation for either of
τ or ν0 and integrate simultaneously the coupled system of the constraint and
this new equation. In the remainder of this section we show how to solve the
constraint by prescribing ν0, either explicitly (Sect. 7.1) or through a differen-
tial condition (rest of Sect. 7).

7.1. Prescribed ν0

Suppose the function ν0 is arbitrarily prescribed, then the constraint equation
becomes a differential equation for τ . It is convenient to introduce the scalar
function (recall that g̃Σ denotes the restriction of g̃ to Σ)

ϕ :=
(

det g̃Σ
det sn−1

)1/(2n−2)

= Ω
(

det γΣ

det sn−1

)1/(2n−2)

, (7.3)

so that

τ = (n− 1) ∂1 logϕ, or ∂1ϕ =
τ

n− 1
ϕ. (7.4)

The normalization of ϕ has been chosen to have ϕ = r for Minkowski. Using
this variable the constraint reads

− ∂2
11ϕ+

(

ν0∂1ν0 − 1
2
W 1 − n− 1

2
∂1ϕ

ϕ

)

∂1ϕ =
|σ|2 + T 11

n− 1
ϕ, (7.5)

to be integrated outwards with initial data ϕ(O) = 0 and ∂1ϕ(O) = 1. As
already mentioned, W 1 contains ϕ nonlinearly, and in principle T 11 could also
depend on ϕ. In general, this scheme could be considered for a larger class of
gauges

W 1 = W 1(γAB , ϕ, ν0, r, x
A), (7.6)
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and sources of the form

T 11 = T 11(source data, γAB , ∂iγAB , ϕ, ∂1ϕ, ν0, ∂iν0, r, x
A), (7.7)

where ∂i denotes derivatives tangential to the light-cone, and by “source data”
we mean non gravitational data, for example fields determined from character-
istic initial data for scalar, or Maxwell fields. The wave-map gauge condition
(4.18) is clearly of the form (7.6). In Sect. 7.7 we show that both scalar and
Maxwell fields lead to a coefficient T 11 of the energy-momentum tensor com-
patible with (7.7).

7.2. Differential Equation for ν0

The choice made by Rendall is to assume that x1 is an affine parameter along
the null rays; in other words that the vector � = ∂

∂x1 is parallelly transported
along the null rays by the connection of the spacetime he constructs, i.e.
Γ

1

11 = 0; equivalently ∂1ν0 = (Γ1 + τ)ν0/2. Now, this last equation contains a
derivative transversal to the light-cone, which is not part of the characteristic
initial data. Extending to the cone an idea of Damour and Schmidt[17] con-
cerning two intersecting surfaces, in anticipation of the fact that our solution
will satisfy H1 = 0, we could impose on ν0 to satisfy the equation

∂1ν0 =
1
2
(W 1 + τ)ν0, (7.8)

which implies, modulo H1 = 0, that Γ
1

11 = 0. When ν0 satisfies (7.8) the
constraint C1 = T 11 reduces to a Raychaudhuri type equation for the only
unknown τ

∂1τ +
τ2

n− 1
+ |σ|2 + T 11 = 0. (7.9)

More generally, all solutions of (7.9) can be obtained by introducing an arbi-
trary function κ and solving the pair of equations

∂1τ − κτ +
τ2

n− 1
+ |σ|2 + T 11 = 0, (7.10)

whose only unknown is τ when |σ|2 and T 11 are known, and

∂1ν0 =
1
2
(W 1 + τ)ν0 + κν0. (7.11)

When ν0 satisfies this equation and H1 = 0, then Γ
1

11 = κ.
Once τ is determined we can use (7.4) to obtain ϕ and finally (7.11) to

compute ν0.

Remark 7.2. The equations derived here would be dramatically simplified if
one simultaneously imposes ν0 = 1 and κ = 0; see, e.g., [33]. However, these
two conditions together with the wave-gauge condition, which is the corner-
stone of our analysis, would impose undesirable geometrical restrictions on the
initial data.
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Equation (7.10) is, if T 11 does not depend on τ or ϕ, a Riccati differen-
tial equation on each null ray and hence can be rewritten, precisely using the
variable ϕ, as a linear second-order equation

− ∂2
11ϕ+ κ ∂1ϕ =

|σ|2 + T 11

n− 1
ϕ, (7.12)

to be integrated outwards with initial values ϕ(O) and ∂1ϕ(O). We have
assumed chosen an admissible γ; hence, |σ|2 continuous for r ≥ 0. We
assume the same holds for T 11. Observe that for a continuous tensor T , i.e.
with continuous components Tμν in the coordinates yα, we will have T 11 con-
tinuous, but limr→0 T 11 a function of angles in general since it holds that

lim
r→0

T 11 = T00(0) + 2Ti0(0)
yi

r
+ Tij(0)

yiyj

r2
.

When |σ|2+T 11 is continuous for r ≥ 0 standard ODE theory guarantees
that a solution with given initial values exists globally. However, a positive def-
inite metric gAB is only obtained from the positive part of the solution. The
relevant initial conditions are ϕ(O) = 0 and ∂1ϕ(O) = 1, so ϕ is initially
tangent to ϕ = r.

We consider the case κ = 0, that is, x1 is an affine parameter. Assuming
T 11 ≥ 0, the equation satisfied by ϕ shows that it is a concave function of
x1 on each null ray wherever positive, and hence there are two possibilities:
either ϕ is a monotone increasing function for all real r, with 0 ≤ ϕ ≤ r and
0 < τ < (n−1)/r, or else there is a first local maximum, at which ∂1ϕ = 0 and
hence the expansion τ also vanishes there. This is related to the formation of
outer-trapped surfaces on the cone CO. Once a maximum has been reached,
ϕ will necessarily vanish for some larger value of r.

We now turn to a direct analysis in terms of τ , which allows stating
results in a more geometric way.

7.3. Solution of the Raychaudhuri Equation

We continue to use a Minkowski target and we make the choice κ = 0, so that
x1 will be an affine parameter along the null rays. Equation (7.10) then reads
as a Raychauduri equation

∂1τ +
1

n− 1
τ2 + |σ|2 + T 11 = 0. (7.13)

This is a first-order ODE for τ when |σ|2 := σA
BσB

A and T 11 are known.

7.3.1. NCT Case. When |σ|2 + T 11 = 0, the equation admits the solution
corresponding to the Minkowskian cone10:

τη =
n− 1
x1

. (7.14)

The value |σ| = 0 further imposes

χA
B =

1
2x1

δB
A , i.e. ∂1gAB =

2
x1
gAB . (7.15)

10 It is the only solution such that τ−1 tends to zero at the vertex of the cone.
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With our choice of frame of coordinates at the vertex, the solution is the
Minkowskian solution

gAB = (x1)2sAB , (7.16)

as used in the null-cone theorem of [12].

7.3.2. General Case, a Global Existence Theorem. We denote x1 by r and ∂1

by a prime. In all that follows we write, and solve, differential equations in r,
with constant initial values (mostly zero) for r = 0. We do not write explicitly
the dependence on the other coordinates xA, though it occurs in the solutions
and in the coefficients.

1. In a neighbourhood of r = 0 we define a new function y by

y :=
n− 1
τ

.

Equation (7.13) becomes

y′ = 1 +
1

n− 1
f2y2, f2 := |σ|2 + T 11. (7.17)

In agreement with Sect. 4.4.3, we seek a solution such that y(0) = 0. The
equation implies that y is increasing and y ≥ r.

We assume as before that 1
n−1f

2 is continuous and bounded by a num-
ber A2. Then y exists, is of class C1, is unique, and is bounded by the solution
of the problem

z′ = 1 +A2z2, z(0) = 0,

as long as that solution exists. The solution is

z = A−1 tan(Ar). (7.18)

Hence, z is defined, C∞, and bounded, as well as all its derivatives, for 0 ≤
r ≤ a, for any a < A−1 π

2 .
For 0 ≤ r ≤ a ≤ A−1, z is such that

r ≤ z ≤ r +A2r3.

We have defined ψ as

ψ := τη − τ, τη ≡ n− 1
r

, (7.19)

and hence we have, since r < y ≤ z,

0 ≤ 1
n− 1

ψ ≡ 1
r

− 1
y

≤ 1
r

− 1
z

≤ 1
r

− 1
r +A2r3

=
A2r

1 +A2r2
≤ A2r.

(7.20)

That is

0 ≤ ψ ≤ (n− 1)A2r. (7.21)

2. For large r we use the decay of f2. Using the definition (7.19) we obtain

ψ′ +
2
r
ψ =

1
n− 1

ψ2 + f2. (7.22)
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This gives

u′ =
1

n− 1
u2

r2
+ r2f2 ≥ 0, u := r2ψ. (7.23)

Hence, u is an increasing function of r, and both u and ψ are positive as
u(0) = 0.

For r ≥ a we replace the problem to solve by the integral equation

u(r) =
1

n− 1

r∫

a

u2(ρ)
ρ2

dρ+

r∫

a

ρ2f2(ρ)dρ+ ua, (7.24)

with ua := u(a) ≡ a2ψ(a). By (7.18) and the inequality y ≤ z for r ≤ a we
have

ψ(r) ≤ τη(r) − n− 1
z(r)

= (n− 1)
(

1
r

− A

tan(Ar)

)

,

hence,

ua ≤ (n− 1)a
(

1 − Aa

tan(Aa)

)

. (7.25)

We assume that r2f2 is integrable for r ∈ [a,∞), and we set

Ca := ua +Ba, Ba :=

∞∫

a

r2f2dr.

The solution u of the integral equation (7.24) exists and is bounded by a
solution v of the equation

v(r) =
1

n− 1

r∫

a

v2(ρ)
ρ2

dρ+ Ca,

as long as such a solution v exists; equivalently, as long as the differential
equation

v′ =
1

n− 1
v2

r2

admits a solution v with v(a) = Ca. The general solution of the above
equation is

1
v

=
1

(n− 1)r
+ c, i.e. v =

(n− 1)r
1 + (n− 1)rc

.

It takes the value Ca for r = a if and only if

a(n− 1)
1 + (n− 1)ac

= Ca, i.e. c = ca :=
1
Ca

− 1
(n− 1)a

. (7.26)

The function v remains positive and bounded if

1 + (n− 1)rca > 0, (7.27)
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hence, v is defined and bounded for all r if ca ≥ 0, i.e. Ca ≤ (n− 1)a; that is,
when

ua +Ba ≤ (n− 1)a. (7.28)

It follows from (7.25) that this last inequality will hold when

Ba ≤ (n− 1)
Aa2

tan(Aa)
.

In the case where f2 ≡ 0 for 0 ≤ r ≤ a it holds also that u(r) ≡ 0 in that
interval we have ua = 0 and Ca = Ba. Condition (7.28) reduces to

Ba ≤ (n− 1)a. (7.29)

3. Assume that τ ≥ 0 exists in the interval r ∈ (0, b] and denote τb := τ(b).
If for r ≥ b, f2 = 0, the equation for τ reduces, for r ≥ b, to

τ ′ +
1

n− 1
τ2 = 0, (7.30)

with initial value

τ(b) = τb, 0 < τb ≤ τ0(b) ≡ n− 1
b

. (7.31)

The solution is
1
τ

=
r

n− 1
+

1
τb

− b

n− 1
. (7.32)

Therefore,

τ =
(n− 1)τb

(n− 1) + (r − b)τb
=

(n− 1)
r + db

, (7.33)

with

db := (n− 1)τ−1
b − b ≥ 0. (7.34)

Hence, for large r,

τ =
n− 1
r

(

1 − db

r
+ · · ·

)

. (7.35)

We have proved the following theorem.

Theorem 7.3. The equation for τ deduced from the first constraint,

τ ′ +
1

n− 1
τ2 + f2 = 0,

with f2 := |σ2| + T 11 continuous and r2f2 integrable in r for r ∈ [0,∞), has
a global solution τ(r) > 0, and the function

ψ :=
n− 1
r

− τ

is of class C1 if
1. We assume that there exists a ∈ (0,∞) such that it holds

A <
π

2a
, with A2 := sup

0≤r≤a

1
n− 1

f2. (7.36)
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In the interval 0 ≤ r ≤ a it then follows that

τ ≥ n− 1
r

z(Ar),

with

z(x) :=
x

tanx
≤ 1. (7.37)

2. In the interval a ≤ r < ∞ we assume that
∞∫

a

r2f2 dr ≤ (n− 1)a z(Aa). (7.38)

In this interval we then have

τ ≥ n− 1
r + ka

,

with

ka = (n− 1)(τa − a−2Ba)−1 − a, Ba =

∞∫

a

r2f2 dr. (7.39)

3. Regardless of point 1., if σ = 0 = T 11 for r ≥ b, and if τb := τ(b) > 0,
then the solution exists for all r ≥ b and it holds that

τ =
n− 1

r + k
(0)
b

, k
(0)
b := (n− 1)τ−1

b − b ≥ 0.

Remark 7.4. If f2 := |σ|2 + T 11 has compact support {a ≤ r ≤ b} with a > 0,
it follows from (7.28) that (7.38) can be replaced by

b∫

a

r2f2dr ≤ (n− 1)a,

which will be satisfied if, e.g.

sup
a≤r≤b

r2f2 ≤ (n− 1)a
b− a

.

Remark 7.5. It follows from the equations above (compare [12, Proposition 2.2])
that if there exists r2 > 0 such that

r2∫

0

ρ2f2(ρ, xA)dρ ≥ (n− 1)r2, (7.40)

then the expansion τ(r, xA) will become negative at some value of r strictly
smaller than r2. If this happens for all xA, then one expects existence of an
outer trapped surface in the associated space–time. (See [15,35,46] for recent
important results concerning formation of trapped surfaces.)
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7.4. Determination of gAB

Recall that we have set

gAB := Ω2γAB ≡ ϕ2

(
det sn−1

det γΣ

)1/(n−1)

γAB , (7.41)

and that ϕ satisfies the equation

∂1 logϕ =
τ

n− 1
=

1
r

− ψ

n− 1
, (7.42)

with the initial condition ϕ(0) = 0. Its integration gives

ϕ(r) = r exp

⎛

⎝−
r∫

0

ψ(ρ)
n− 1

dρ

⎞

⎠ . (7.43)

We assume that the free data T 11 and γAB are such that τ exists and
satisfies the conclusions of Theorem 7.3, with some a ∈ (0,∞). We have then

1. For small r, using the inequality (7.21), valid for r < a ≤ A−1,

0 ≤ ψ ≤ (n− 1)A2r

we conclude that in such interval we have

exp

⎛

⎝−
r∫

0

ψ(ρ)
n− 1

dρ

⎞

⎠ ≥ exp
(

−1
2
A2r2

)

,

and therefore

0 ≤ r − ϕ(r) ≤ r

(

1 − exp
(

−1
2
A2r2

))

≤ 1
2
A2r3. (7.44)

2. For r ≥ a, let ψ be as in (7.19), we use

ψ ≡ u

r2
≤ v

r2
≡ (n− 1)
r{1 + (n− 1)rca} (7.45)

to obtain

∂1 logϕ =
1
r

− ψ

n− 1
≥ (n− 1)ca

1 + (n− 1)rca
. (7.46)

This shows that ϕ is an increasing C1 function bounded below by

ϕ(a)
1 + (n− 1)rca
1 + (n− 1)aca

. (7.47)

3. In the case where one assumes that f2 = 0 for r > b it holds exactly

∂1 logϕ =
1

r + db
> 0, db = (n− 1)τ−1

b − b ≥ 0. (7.48)

Therefore, using the notation ϕb := ϕ(b),

ϕ(r) = ϕb
r + db

b+ db
> ϕb, if r > b. (7.49)

In conclusion, if γAB is admissible and T 11 is known and continuous, we
can solve (7.9) for τ on some maximal (possibly angle-dependent) interval of
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r’s. Subsequently, (7.4) can be solved with initial value ϕ(0) = 0. This provides
gAB . The quantity ϕ and hence also Ω, depend only on the conformal class of
γ; the same is true of g̃, defined by (7.41).

7.5. Determination of ν0

Once gAB is known we can integrate equation (7.11) for ν0, with the initial
condition ν0|r=0 = 1,

∂1ν0 =
1
2
(W 1 + τ)ν0 + κν0.

(Note that at this stage any “wave-gauge source” W 1 of the form

W 1(τ, gAB , ν0, r, x
A) (7.50)

with an appropriate behaviour near r = 0 could be used, though as said before,
in this section we assume κ = 0, and a Minkowski target.) The equation for
ν0 reads

∂1ν0
ν2
0

=
1
2

{

−gABrsAB +
τ

ν0

}

, (7.51)

i.e. since ν0 = 1
ν0

,

∂1ν
0 = −1

2
τν0 +

1
2
gABrsAB . (7.52)

This is a linear equation for ν0, with coefficients singular for r = 0, but con-
tinuous for r > 0. Its solution taking a given initial value for r0 > 0 exists, is
C1 and unique for r ≥ r0 as long as τ and Ω−1 exist and are continuous. Note,
however, that ν0 could go to zero in finite affine time, which would lead to a
(geometric or coordinate) singularity.

7.5.1. NCT Case. To study solutions with initial data at r = 0, we start with
the NCT case. We have then τ ≡ τη = n−1

r , and (7.52) reduces to

∂1ν
0 = −n− 1

2r
(ν0 − 1). (7.53)

The general solution is, for some constant k,

ν0 − 1 = kr− n−1
2 . (7.54)

The solution tending to one as r tends to zero corresponds to k = 0, and is
ν0 = ν0 = 1.

7.5.2. General Case. To construct a solution tending to 1 as r tends to zero
we set

Y := 1 − ν0. (7.55)

The Eq. (7.52) for ν0 becomes the linear non homogeneous equation

Y ′ = −1
2
τY + F, (7.56)
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with F a continuous function (recall the notations τ ≡ τη − ψ, τη = n−1
r =

ηABrsAB and the assumed boundary conditions (4.44) and (4.49))

F :=
1
2
(τ − gABrsAB) ≡ 1

2
{(ηAB − gAB)rsAB − ψ} = O(r), (7.57)

where ψ ≥ 0 and

(ηAB − gAB)rsAB =
n− 1
r

− rΩ−2γABsAB . (7.58)

Incidentally, this implies that F ≤ 0 for initial data such that

r2Ω−2γABsAB ≥ n− 1. (7.59)

Now, in the notation of (7.3), this can be rewritten in the form

r2Ω−2γABsAB = r2ϕ−2
[
(det γΣ)1/(n−1)γAB

] [
(det sn−1)−1/(n−1)sAB

]
,

(7.60)

such that the two expressions in square brackets have unit determinants. Using
ϕ ≤ r, hence r2ϕ−2 ≥ 1, the last equation allows one to deduce (7.59) from a
condition involving only the conformal metric γAB .

We want to find a solution Y which tends to zero with r, but this solution
will lead to data for a Lorentzian metric only if ν0 remains bounded and non
zero; that is, if Y < 1.

The homogeneous equation associated with (7.56) is

Y ′ =
(

−n− 1
2r

+
1
2
ψ

)

Y. (7.61)

Setting Y = expZ, this equation reads

Z ′ = −n− 1
2r

+
1
2
ψ. (7.62)

The general solution of (7.56) is of the form

Y = w expZ, with w′ = exp(−Z)F. (7.63)

1. Case 0 ≤ r ≤ a.
Without loss of generality we can choose

Z = −n− 1
2

log r +
1
2

r∫

0

ψ(ρ)dρ; (7.64)

hence,

Y (r) = wr− n−1
2 exp

⎛

⎝
1
2

r∫

0

ψ(ρ)dρ

⎞

⎠ ,

with w′ = r
n−1

2 exp

⎛

⎝−1
2

r∫

0

ψ(ρ)dρ

⎞

⎠F (r). (7.65)
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We find the solution Y := 1 − ν0 tending to zero with r (compare (4.42)) by
integrating w′ between 0 and r,

Y (r) = r− n−1
2 exp

⎛

⎝
1
2

r∫

0

ψ(ρ)dρ

⎞

⎠

r∫

0

ρ
n−1

2 exp

⎛

⎝−1
2

ρ∫

0

ψ(χ)dχ

⎞

⎠F (ρ)dρ.

(7.66)

Keeping in mind that there exist numbers Ca, a=1,2, such that

0 ≤ ψ ≤ C1 r, |F (r)| ≤ C2 r,

we see that for 0 ≤ r ≤ a we have

exp

⎛

⎝
1
2

r∫

0

ψ(ρ)dρ

⎞

⎠ ≤ exp
(

1
4
C1r

2

)

,

r∫

0

ρ
n−1

2 exp

⎛

⎝−1
2

ρ∫

0

ψ(χ)dχ

⎞

⎠ |F (ρ)|dρ ≤ C2

r∫

0

ρ
n+1

2 dρ =
2

n+ 3
C2 r

n+3
2 ,

leading to the bound, still for r ≤ a,

|Y | ≤ 2C2r
2

n+ 3
exp

(
1
4
C1r

2

)

.

Since Y := 1 − ν0 the function ν0 is bounded. From (A.7) the metric will
have Lorentzian signature, gAB being Riemannian, if and only if ν0 remains
bounded and non zero (hence positive since equal to 1 for r = 0). This will
hold if Y < 1, which will be true for any C2 if a is small enough. In vacuum
C2 is determined by |σ|2, so for any a it will hold that Y < 1 for r ∈ [0, a] if
σ is small enough.

Note that if F ≤ 0, then Y ≤ 0; hence ν0 ≥ 1 without restriction on the
size of a or |σ|.

2. a ≤ r < ∞.
By the same reasoning as for r ≤ a, the solution Y taking the value Y (a)

for r = a is

Y (r) = Y (a) + r− n−1
2 exp

⎛

⎝
1
2

r∫

a

ψ(ρ)dρ

⎞

⎠

×
r∫

a

ρ
n−1

2 exp

⎛

⎝−1
2

ρ∫

a

ψ(χ)dχ

⎞

⎠F (ρ)dρ.

3. Suppose that for r ≥ b we have gAB = ϕ−2sAB , hence

F (r) ≡ 1
2
{(sAB(r−2 − ϕ−2)rsAB − ψ} ≡ 1

2

{

(1 − r2ϕ−2)
n− 1
r

− ψ

}

.

We have seen that ϕ ≤ r, that is r2ϕ−2 ≥ 1 and hence F (r) ≤ 0 and ν0(r) ≥
ν0(b).
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7.6. Vanishing of H1

Consider a solution of the wave-map-reduced Einstein equations R
(H)

11 = T 11

with initial data on CO, and with Minkowski target. Suppose that the data
there satisfy the constraint C1 = T 11. The identity (see (2.8))

R11
η≡ R

(H)

11 + ν0D1H
0

shows that H
0

satisfies a linear homogeneous differential equation on CO,
namely,

D1H
0

+
1
2
H

0
τ

η
= 0. (7.67)

Keeping in mind that D is the covariant derivative of the Minkowski metric,
in our adapted coordinate system we have

D1H
0 η≡ ∂1H

0
.

For all solutions which satisfy uniform C1 bounds near the vertex in
the (yμ) coordinate system, the yμ-components of the wave-gauge vector are
bounded near the vertex. It follows that H

0
is bounded near the vertex. But

every solution of (7.67) which is not identically zero behaves, for small r, as
r−(n−1)/2 along some generators. So, in the uniformly C1 case, we can deduce
from (7.67) that

H
0

= 0, hence also H1 ≡ ν0H
0

= 0.

Remark 7.6. If we add constraint damping terms as in (2.13), we obtain instead

L1 =
(

−1
2
τ + εn1

)

H1. (7.68)

No term proportional to H
A

or H
1

appears, and hence the damping term is
compatible with this first step of the wave-map-gauge constraint hierarchy.
The new term does not change the terms which are singular in r in (7.67), and
hence H1 = 0 is still the only solution with the required behaviour.

7.7. Scalar and Maxwell Fields

We wish to check that scalar fields lead to equations compatible with the
required hierarchical structure of the equations. For this, consider a scalar field
φ coupled with the gravitational field through an energy-momentum tensor of
the form

Tμν = ∂μφ∂νφ−
(

1
2
gαβ∂αφ∂βφ+ V (φ)

)

gαβ .
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In the adapted coordinate system the components relevant for our argument
are

T 11 = (∂1φ)2, (7.69)

TA1 = ∂Aφ∂1φ, (7.70)

T 01 = −ν0 1
2
gAB∂Aφ∂Bφ+ νA∂Aφ∂1φ

−ν0 1
2
g11(∂1φ)2 − V (φ)ν0. (7.71)

Keeping in mind that the initial data for the scalar field on CO are provided
by φ := φ|CO

, we see that prescribing φ provides a T 11 which can be used in
(7.5) or in (7.10) (compare (7.7)).

Next, the relevant components of the stress-energy tensor for the
Maxwell field Fμν are

T 11 = gABFA1FB1, (7.72)

TA1 = −ν0FA1F 01 − gBCFABFC1 + ν0νBFA1FB1, (7.73)

T 01 = −1
4
ν0g

ACgBDFABFCD − gBCνAFABFC1 +
1
2
ν0νAνBFA1FB1

−1
2
ν0g

ABg11FA1FB1 − 1
2
ν0(F 01)2. (7.74)

We defer a complete discussion of the Cauchy problem for the Einstein-Max-
well equations to separate work. Here we note that if F1A is given on the null
cone, then (7.72) is not of the right form for viewing (7.10) as a first-order
equation for τ : Instead, (7.10) should be considered as a second-order equa-
tion for ϕ, using (7.4). On the other hand, (7.72) is of the form (7.7), needed
for the analysis of the problem when ν0 has been given. The remainder of our
analysis of the C1 constraint goes through as before.

For further reference, we note that the combination of stress-energy com-
ponents appearing in the final constraint C0 is

g11T 11 + 2gA1TA1 + 2g01T 01 = −1
2
gACgBDFABFCD − (g01F 01 + gA1FA1)2

(7.75)

for the Maxwell field, and

g11T 11 + 2gA1TA1 + 2g01T 01 = −gAB∂Aφ∂Bφ (7.76)

for the scalar field.

8. The CA Constraint

The CA wave-map-gauge constraint operator will be obtained from an
analysis of

S1A ≡ R1A ≡ R
(1)

1A +R
(2)

1A, (8.1)
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where we have again separated terms including derivatives of Christoffels in
R

(1)

1A from the rest in R
(2)

1A. Trivial simplification gives

R
(1)

1A ≡ ∂0Γ0
1A + ∂BΓ

B

1A − ∂1Γ
0

A0 − ∂1Γ
B

AB . (8.2)

We have by the choice of coordinates Γ
0

1A ≡ Γ
B

11 ≡ Γ
0

11 ≡ 0, and therefore

R
(2)

1A ≡ Γ
1

1A(Γ
0

10 + Γ
B

1B) + Γ
B

1A(Γ
0

B0 + Γ
1

B1 + Γ
C

BC)

−Γ
0

10Γ
0

A0 − Γ
B

10Γ
0

AB − Γ
1

1BΓ
B

A1 − Γ
B

1CΓ
C

AB . (8.3)

We find, for the terms in R
(1)

1A,

∂0Γ0
1A = ∂0g00[0, 1A] + ∂0g0B [B, 1A] +

1
2
ν0∂0∂Ag11 (8.4)

=
1
2
∂A(ν0∂0g11) − ν0χA

B∂0g1B

+
1
2
(ν0)2(∂0g1A − ∂1νA + 2νBχA

B)∂0g11, (8.5)

−∂1Γ
0

A0 ≡ −1
2
∂1{ν0(∂Aν0 + ∂0g1A − ∂1νA)}, (8.6)

∂BΓ
B

1A − ∂1Γ
B

AB ≡ ∂BχA
B − ∂1(ν0νBχA

B) − ∂Aτ. (8.7)

And for the terms in R
(2)

1A we find

Γ
1
1AΓ

B
1B ≡

{
1

2
ν0(∂1νA + ∂Aν0 − ∂0g1A) − ν0νBχA

B

}

τ, (8.8)

Γ
B
1A(Γ

0
B0 + Γ

1
B1 + Γ

C
BC) ≡ χA

B(ν0∂Bν0 + Γ̃C
BC), (8.9)

−Γ
0
10Γ

0
A0 ≡ 1

4
(ν0)2(∂1νA − ∂Aν0 − ∂0g1A)∂0g11, (8.10)

Γ
1
A1Γ

0
10 ≡ 1

4
(ν0)2(∂1νA + ∂Aν0 − ∂0g1A − 2νBχA

B)∂0g11, (8.11)

−Γ
B
10Γ

0
AB ≡ 1

2
ν0χA

B(∂0g1B + ∂1νB − ∂Bν0 − ν0νB∂0g11), (8.12)

−Γ
1
1BΓ

B
A1 − Γ

B
1CΓ

C
AB ≡ 1

2
ν0χA

B(∂0g1B − ∂1νB − ∂Bν0) − χB
C Γ̃B

AC . (8.13)

All terms in these formulae can be computed on CO, except for those that
contain ∂0g1B or ∂0g11, and whose sum simplifies to

R1A,∂0 = −1
2
∂1(ν0∂0g1A) − 1

2
τ ν0∂0g1A +

1
2
∂A(ν0∂0g11). (8.14)

(We see that all terms quadratic in ∂0 derivatives cancel out.) The rest is given
by

R1A −R1A,∂0 ≡ 1
2
ν0∂1(∂1νA − ∂Aν0 − 2νBχA

B) + ∇̃BχA
B − ν0∂A(τν0)

+
1
2
(∂1ν

0 + τν0)(∂1νA − ∂Aν0 − 2νBχA
B). (8.15)
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8.1. Use of Harmonicity Functions

From the identities (4.27) and (4.29) we get

ΓA := gABΓ
B ≡ −νAΓ

0
+ ν0(∂0g1A + ∂1νA − ∂Aν0) − 2ν0νBχA

B + Γ̃A.

(8.16)

Hence,

∂0g1A ≡ −∂1νA + ∂Aν0 + 2νBχA
B + νAΓ1 + ν0(ΓA − Γ̃A). (8.17)

On the other hand,

ΓA ≡ HA +WA, with HA := gABH
B
, (8.18)

similarly for ΓA and WA. Therefore, we have

∂0g1A ≡ −∂1νA + ∂Aν0 + 2νBχA
B + ν0fA + ν0HA + νAH1, (8.19)

with

fA := ν0νAW 1 +WA − Γ̃A, (8.20)

For a Minkowski target, using (4.18) and (4.19), this is

fA
η
= −

(

x1gCDsCD +
2ν0

x1

)

νA + gABg
CD(SB

CD − Γ̃B
CD). (8.21)

8.2. Computation of LA and CA

We see from the identities obtained that R1A is the sum of a linear homo-
geneous operator LA on HA := gABH

B
and a second-order linear operator

CA on νA, both with coefficients depending only on the x1-dependent metric
g̃ and scalar ν0 previously determined. (Strictly speaking, νA also appears in
LA, but multiplied by H

0
which, with appropriate boundary conditions and a

Minkowski target, can be shown to be zero at this stage of the argument, as
explained above.)

LA ≡ −1
2
∂1(HA + νAH

0
) − 1

2
τ(HA + νAH

0
) +

1
2
∂A(ν0H

0
). (8.22)

From (8.14),

R1A,∂0 = −1
2
ν0∂1∂0g1A − 1

2
(∂1ν

0 + τν0)∂0g1A +
1
2
∂A(ν0∂0g11),

and using the formula (8.19) we find that

R1A,∂0 − LA ≡ −1
2
ν0∂1{−∂1νA + ∂Aν0 + 2νBχA

B + ν0fA}

−1
2
(∂1ν

0 + τν0){−∂1νA + ∂Aν0 + 2νBχA
B + ν0fA}

+
1
2
∂A(W 1 + τ). (8.23)
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Finally, assembling results (8.15) and (8.23) gives

CA ≡ R1A − LA ≡ 1
2
ν0∂1{2∂1νA − 4νBχA

B − ν0fA}

+
1
2
(∂1ν

0 + τν0){2∂1νA − 4νBχA
B − ν0fA}

+∇̃BχA
B − 1

2
∂A(τ −W 1 + 2ν0∂1ν0). (8.24)

It turns out that there is a simple way of rewriting (8.24) in terms of

ξA := −2ν0∂1νA + 4ν0νBχA
B + ν0νAW 1 +WA − Γ̃A︸ ︷︷ ︸

≡fA

, (8.25)

where Γ̃A := gADg
BC Γ̃D

BC (compare (4.33)). The vector ξA equals −2Γ
1

1A after
using the harmonicity conditions Γ = W . Note that ξA vanishes when νA = 0
and gAB = ĝAB . The wave-map-gauge constraint operator CA can be expressed
in terms of ξA as

CA = −1
2
(∂1ξA + τξA) + ∇̃BχA

B − 1
2
∂A(τ −W 1 + 2ν0∂1ν0). (8.26)

Separating different orders of ∂1 derivatives we get, for a Minkowski
target,

CA
η
= ν0∂2

11νA − 2ν0χA
B∂1νB + ν0

(

τ +
1
x1

− 1
2
W 1 − ν0∂1ν0

)

∂1νA

−ν0
(
2∂1χA

B + 2(ν0∂1ν
0 + τ)χA

B
)
νB + ∇̃BχA

B

−
(

1
2
∂1W 1 +

1
2
(ν0∂1ν

0 + τ)
(

W 1 − 2
x1

)

+
1

(x1)2

)

ν0νA

−∂A

(
1
2
τ + ν0∂1ν0 − 1

2
W 1

)

− 1
2
(∂1 + τ)(gABg

CDSB
CD − Γ̃A). (8.27)

In the general case, in addition to (7.6)–(7.7) one can assume that

WA = WA(γAB , ϕ, ν0, νA, r, x
A), (8.28)

T 1A = T 1A(source data, γAB , ∂iγAB , ϕ, ∂iϕ, ν0, ∂iν0, νA, ∂1νA, ∂0g11, r, x
A),

(8.29)

where as before ∂i denotes derivatives tangential to the light-cone. This is
clearly compatible with the wave-map gauge (4.19), and with scalar fields or
Maxwell fields as sources (compare Sect. 7.7).

9. Solution of the CA Constraint

9.1. NCT Case

In the vacuum case with Minkowski target and when σA
B = 0 we have χA

B =
r−1δB

A , gAB = r2sAB (therefore Γ̃A
BC = SA

BC), ν0 = 1 and τ = −W 1 = n−1
r . It
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has been shown in [12] that the CA wave-map-gauge constraint reduces then
to

CA ≡ R1A − LA ≡ ∂2
11νA +

3n− 5
2r

∂1νA +
1
2

(n− 2)(n− 3)
r2

νA = 0. (9.1)

This is a Fuchsian type linear equation, with Fuchsian exponents p = 3−n
2

and 2 −n. Thus, the only solution satisfying (4.20), i.e. limr→0(r−1νA) = 0, is
νA ≡ 0. (In fact, the only solution νA = o(r

3−n
2 ) is zero.)

9.2. General Case

From the identity (8.26) we then find

Lemma 9.1. Assuming (7.6)–(7.7) and (8.28)–(8.29), the wave-map-gauge con-
straint operator CA ≡ S1A − LA is a first-order linear ordinary differential
operator for the field ξA, with κ as in (7.11)

CA ≡ −1
2
(∂1ξA + τξA) + ∇̃BσA

B − n− 2
n− 1

∂Aτ − ∂Aκ, (9.2)

where ξA is defined as (8.25), which particularizes for a Minkowski target as

ξA
η
:= −2ν0∂1νA + 4ν0νBχA

B +
(

W
0 − 2

r
ν0

)

νA + γABγ
CD(SB

CD − Γ̃B
CD).

(9.3)

Anticipating, we note that νA will also appear in the last wave-map-gauge
constraint C0 through ξA only.

If one assumes that T 1A is known (e.g., in vacuum, or for scalar fields,
compare (7.70)), the homogeneous part of the equation CA = T 1A reads

−1
2
(∂1ξA + τξA) = 0,

and admits as general solution, keeping in mind that τ ≡ (n− 1)∂1 logϕ,

ξA = ξ̌Aϕ
−(n−1), (9.4)

for some vector field on the sphere ξ̌A. The final solution ξA is of the form
(9.4), with ξ̌A obtained by integrating the following equation for ξ̌A

∂1ξ̌A = 2ϕn−1{∇̃BσA
B − n− 2

n− 1
∂Aτ − ∂Aκ− T 1A}, (9.5)

with the boundary condition ξ̌A = 0, deduced from the finiteness of

lim
r→0

ξA = lim
r→0

r−n+1ξ̌A

(compare (4.42)–(4.45), and(4.49)). The field νA is then obtained by integrat-
ing (9.3), with the boundary condition νA = 0 at r = 0. These equations
constitute a first-order linear system of ODEs with coefficients singular for
r = 0.

In the NCT case we have ξA ≡ 0 and W
0 η≡ −x1gABsAB , and hence

2∂1νA +
n− 3
r

νA = 0, (9.6)
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whose general solution is

νA = kAr
− n−3

2

with kA independent of x1 ≡ r. The solution tending to zero with r, and com-
patible with the boundary condition (4.43) for n ≥ 2, is νA = 0. In the general
case, but with Minkowski target, the Eq. (9.3) reads

2∂1νA +
n− 3
r

νA − 4νCσA
C +

{

rν0g
ABsAB − n− 1

r
+

4ψ
n− 1

}

νA

η
= ν0γABγ

CD(SB
CD − Γ̃B

CD) − ν0ξA. (9.7)

Setting

νA = kAr
− n−3

2

gives for kA, with kA which must tend to zero with r, a differential system
with coefficients continuous and right-hand side tending to zero like r

n−3
2 ,

∂1kA
η
= 2kCσA

C + λkA + μA

with

λ := −1
2

{

rν0g
ABsAB − n− 1

r
+

4ψ
n− 1

}

,

μA :=
1
2
r

n−3
2 {ν0γABγ

CD(SB
CD − Γ̃B

CD) − ν0ξA}.

Such a system can be solved by iterated integration starting from k
(0)
A = 0,

k
(p)
A =

r∫

0

{2k(p−1)
C σA

C + λk
(p−1)
A + μA}(ρ)dρ.

Convergence, and the bound |kA| ≤ Cr
n+1

2 , result from the bounds of σ, λ and
μ. In conclusion, in vacuum, and in the wave-map gauge, the solution of (9.5)
exists as long as τ does, with νA ∈ C1 and |νA| ≤ Cr2.

9.3. Vanishing of HA

The general identity (2.8) gives in our coordinates

CA + LA ≡ R1A ≡ R
(H)

1A +
1
2
(ν0D̂AH0 + νAD̂1H0 + gABD̂1HB), (9.8)

with D̂ the covariant derivative of the target metric, which in this subsection
will be chosen to be the Minkowski metric, and hence D̂ = D. Therefore, if a
metric solves R(H)

1A = T1A and CA = T 1A, we will have, taking H
0

= 0 (which,
for sufficiently regular solutions, and for a Minkowski target, has been justified
in Sect. 7.6) on the left-hand side,

LA = −1
2
{∂1HA + τHA} η

=
1
2
(ν0DAH0 + νAD1H0 + gABD1HB), (9.9)
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For Minkowski target these derivatives are, still for H
0

= 0,

DAH0 η
= Γ̂0

ABH
B η

= −rsABH
B
, D1H0 η

= 0, (9.10)

D1HB η
= ∂1H

B
+ Γ̂B

1CH
C η

= gBC∂1HC +HCg
CD

(
1
r
δB
D − 2χD

B

)

. (9.11)

Therefore, (9.9) reads

2∂1HA + τHA
η
=
{

ν0rsABg
BC − 1

r
δC
A + 2χA

C

}

HC . (9.12)

Taking leading orders in r near the vertex, as given in Sect. 4.5, we find

∂1HA +
(
n− 3

2r
δB
A +OB

A

)

HB
η
= 0, (9.13)

where the OB
A are O(r) functions. Hence,

HA = r− n−3
2 kA, with ∂1kA +OB

AkB = 0. (9.14)

Standard ODE arguments show that HA = 0 is the only solution of (9.12) such
that HA = O(r), which is the case for metrics having uniform C1 estimates
at the vertex.

Remark 9.2. If we add constraint damping terms as in (2.13) we obtain instead,
using again H

0
= 0,

LA = −1
2
∂1HA +

1
2
(−τ + εn1)HA. (9.15)

No term proportional to H
1

appears, and hence the constraint damping term
is compatible with this second step of the constraint hierarchy. The new term
does not change the leading orders in r of Eq. (9.13) and hence HA = 0 is still
the only regular solution.

10. The C0 Constraint

We compute S01 ≡ S0α�
α on CO. We have

S01 := R01 − 1
2
g01R, (10.1)

hence, in our coordinates

S01 ≡ −1
2
ν0g

ABRAB +R1Aν
A − 1

2
ν0g

11R11. (10.2)

We write

RAB := R
(1)

AB +R
(2)

AB , (10.3)

with

R
(1)

AB := ∂αΓα
AB − ∂AΓ

α

Bα, R
(2)

AB := Γ
α

ABΓ
λ

αλ − Γ
α

AβΓ
β

Bα. (10.4)

We will see that the C0 wave-map-gauge constraint is obtained, like the
other constraints, by decomposing the term in S01 which has not already been
computed, gABRAB , into terms defined by data of the degenerate metric on
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the cone and terms which vanish when harmonicity conditions are satisfied on
the cone.

Equations (4.27) and (4.31) allow us to express the transversal derivative
gAB∂0gAB in terms of harmonicity functions,

1
2
ν0gAB∂0gAB ≡ −Γ

1
+ (ν0)2∂1g00 + g11

(

ν0∂1ν0 − 1
2
τ +

1
2
Γ1

)

+ 2(ν0)2νA(−∂1νA + νBχA
B) + ν0gAB∇̃BνA (10.5)

≡ −Γ
1 − ∂1g

11 + g11

(

−ν0∂1ν0 − 1
2
τ +

1
2
Γ1

)

+ ν0gAB∇̃BνA.

(10.6)

10.1. Computation of gABR
(1)

AB

We have

gABR
(1)

AB := gAB
{
∂0Γ0

AB + ∂1Γ
1

AB + ∂CΓ
C

AB − ∂AΓ
α

Bα

}
. (10.7)

To compute we proceed in a straightforward way, using the values of the
Christoffel symbols of the first kind and elementary algebraic relations in our
coordinates on the cone. Equations (A.36) and (A.37) of Appendix A are useful
for the calculations that follow.

We set

gAB∂0Γ0
AB ≡ I1 + II1, (10.8)

with

I1 := gABν0∂0[1, AB] ≡ −1
2
gABν0∂1∂0gAB + gABν0∂A∂0g1B , (10.9)

II1 := gAB∂0g0α[α,AB] ≡ (ν0)2∂0g11g
AB

(
1
2
∂0gAB − ∂AνB

)

−∂0g01τ + ∂0g0C Γ̃C , (10.10)

and

∂0g01 = −(ν0)2∂0g01 − ν0g11∂0g11 + (ν0)2νC∂0g1C , (10.11)

∂0g0C = (ν0)2νC∂0g11 − ν0gCA∂0g1A. (10.12)

Grouping terms gives

gAB∂0Γ0
AB ≡ −1

2
ν0gAB∂1∂0gAB + ν0gAB∇̃A∂0g1B

+(ν0)2∂0g11

{
1
2
gAB∂0gAB − ∇̃Aν

A + ν0τg
11

}

+(ν0)2∂0g01τ − (ν0)2νA∂0g1Aτ. (10.13)

We now separate

gAB∂1Γ1
AB ≡ III1 + IV1, (10.14)
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with

III1 ≡ gAB
{
ν0∂1[0, AB] + g11∂1[1, AB] + g1C∂1[C,AB]

}

= −1
2
gABν0∂1∂0gAB + gABν0∂1∂AνB − g11gAB∂1χAB

−ν0νCgAB∂1[C,AB], (10.15)

IV1 := gAB∂1g
1α[α,AB]

≡ gAB∂1ν
0(∂AνB − 1

2
∂0gAB) − τ∂1g

11 − gAB∂1(ν0νC)[C,AB]. (10.16)

Grouping terms gives

gAB∂1Γ1
AB ≡ −1

2
∂1(ν0gAB∂0gAB) − ν0χAB∂0gAB + gAB∂1(ν0∇̃AνB)

−g11gAB∂1χAB − τ∂1g
11. (10.17)

Finally, we have

gAB∂CΓ
C

AB ≡ gABνCν0∂CχAB + τ∂C(νCν0) + gAB∂C Γ̃C
AB , (10.18)

−gAB∂AΓ
α

Bα ≡ −gAB∂2
AB(log

√
det g) ≡ −gAB∂2

AB{log(ν0
√

det g̃)}
≡ −gAB{∂Aν

0∂Bν0 + ν0∂2
ABν0 + ∂AΓ̃C

BC}. (10.19)

10.2. Computation of gABR
(2)

AB

We set

gABR
(2)

AB := gAB{Γ
α

ABΓ
β

αβ − Γ
α

AβΓ
β

Bα} ≡ (I2 + II2 + III2 + IV2 + V2 + V I2),

(10.20)

with

I2 := gABΓ
0

ABΓ
β

0β , II2 := gABΓ
1

ABΓ
β

1β . (10.21)

We find by straightforward computation

I2 ≡ −ν0τ

{

ν0∂0g01 +
1
2
g11∂0g11 − ν0νA∂0g1A +

1
2
gAB∂0gAB

}

, (10.22)

II2 ≡
{

ν0∇̃Aν
A − 1

2
ν0gAB∂0gAB − g11τ

}

(ν0∂1ν0 + τ). (10.23)

Then we have, recalling that Γ̃ denotes Christoffel symbols of the metric g̃,

III2 := gABΓ
C

ABΓ
β

Cβ ≡ (ν0νCτ + gABΓ̃C
AB)(Γ̃D

CD + ν0∂Cν0), (10.24)

Next,

IV2 := −gAB{Γ
0

A0Γ
0

B0 + Γ
1

A1Γ
1

B1}. (10.25)

Furthermore,

Γ
1

1A ≡ −Γ
0

0A − ν0νBχA
B + ν0∂Aν0, (10.26)

with (ζA is sometimes called the torsion form)

Γ
0

0A ≡ 1
2
ν0ζA, ζA := ∂0g1A + ∂Aν0 − ∂1νA. (10.27)
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Hence, using (8.19),

ζA = 2∂Aν0 − 2∂1νA + 2νBχA
B + ν0(fA +HA + νAH

0
). (10.28)

In terms of this object we have

IV2 ≡ −gAB(ν0)2

×
{

1
2
ζAζB+ζA(νCχB

C −∂Bν0) + (νCχA
C − ∂Aν0)(νDχB

D − ∂Bν0)
}

.

(10.29)

We set

V2 := −2gAB(Γ
0

ACΓ
C

B0 + Γ
1

ACΓ
C

B1)

= χAB{−(ν0)2νAζB + 2ν0∂0gAB − 2ν0∇̃AνB + 2g11χAB}. (10.30)

Finally,

V I2 ≡ −gABΓ
C

ADΓ
D

BC ≡ −gAB(ν0νCχAD + Γ̃C
AD)(ν0νDχBC + Γ̃D

BC)

= −(ν0)2νCνDχC
AχAD − 2Γ̃C

ADν
0νDχC

A − gABΓ̃C
ADΓ̃D

BC . (10.31)

10.3. Final Computation of gABRAB

Adding the results of Sects. 10.1 and 10.2, we get the final result

gABRAB ≡ 2(∂1 + Γ
1

11)
2g11 + 3τ(∂1 + Γ

1

11)g
11 + (∂1τ + τ2)g11

+2(∂1 + Γ
1

11 + τ)Γ
1

+ R̃− 2gABΓ
1

1AΓ
1

1B − 2gAB∇̃AΓ
1

1B (10.32)

≡ 2(∂1 + Γ
1

11 + τ)
[
(∂1 + Γ

1

11 +
τ

2
)g11 + Γ

1
]

+R̃− 2gABΓ
1

1AΓ
1

1B − 2gAB∇̃AΓ
1

1B (10.33)

(an explicit expression for Γ
1

11 can be found in (4.22)), where

− 2Γ
1

1A = ν0∂0g1A − ν0∂1νA + 2ν0νBχA
B − ν0∂Aν0. (10.34)

In this way we have isolated the transversal derivatives in Γ
1

11,Γ
1

and the
vector Γ

1

1A. Decomposing ΓA = WA +HA we find the relation

− 2Γ
1

1A = ξA +HA + ν0νAH1, (10.35)

with ξA defined in (8.25).
We note the interesting fact that both the second and third constraints

naturally break into two first-order equations, with the intermediate variable
being a Christoffel, respectively, Γ

1

1A and gABΓ
1

AB .

Remark 10.1. The expression in square brackets in (10.33) can be rewritten
as
(
∂1 + Γ

1

11 +
τ

2

)
g11 + Γ

1
= −τ

2
g11 + ν0gAB

(

∇̃BνA − 1
2
∂0gAB

)

= gABΓ
1

AB .

(10.36)

This shows that gABRAB originally contains only a first-order radial deriva-
tive of g11, if we keep the radial derivative of gAB∂0gAB . It is precisely the
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elimination of the latter object using the harmonicity condition (10.6) that
introduces the second-order radial derivative of g11. Hence, our C0 constraint
operator below will contain such second-order derivative.

This leads to the following lemmata:

Lemma 10.2. All terms in gABRAB involving the derivatives ∂0g01 and
χAB∂0gAB cancel out. The only new remaining transversal derivative is
gAB∂0gAB, which can be eliminated using Γ

1 ≡ H
1

+W
1
.

Lemma 10.3. It holds that

S01 ≡ −1
2
ν0g

ABRAB +R1Aν
A − 1

2
ν0g

11R11 ≡ C0 + L0, (10.37)

where C0 depends only on the quadratic form g̃ on the cone and the W
α
, while

L0 is obtained by replacing Γ
α

by H
α
.

The explicit formula for L0 reads

2ν0L0 = −2g1ALA − g11L1 − 2∂1H
1 −

(
τ + 2ν0∂1ν0 − ν0W

0
)
H

1

−∇̃AH
A

+ ξAH
A

+ ν0g
11∂1H

0 − νA∂AH
0

+
(

g00W
0

+ ν0W
1

+ νAW
A

+
1
2
ν0τg

11

−g11∂1ν0 − 2ν0∂1g00 − gAB∂AνB + 2ν0νA∂1νA

)

H
0

+
1
2

{
g00(H

0
)2 + 2ν0H

0
H

1
+ 2νAH

0
H

A
+ gABH

A
H

B
}
. (10.38)

Note that the last line in the previous equation is quadratic in the wave-gauge
vector H, and equals

1
2
gμνH

μ
H

ν
. (10.39)

All other terms are linear in H.

10.4. Constraint

To write the wave-map-gauge constraint C0 − T 01 = 0 as an equation for g11,
we use the other constraints, which have been satisfied since L1 = LA = 0 =
H1 = HA,

R1A = T 1A, R11 = T 11. (10.40)

We find

− 2ν0(C0 − T 01) ≡ 2(∂1 + κ)2g11 + 3τ(∂1 + κ)g11 + (∂1τ + τ2)g11

+2(∂1 + κ+ τ)W
1

+ R̃− 1
2
gABξAξB + gAB∇̃AξB

+g11T 11 + 2g1AT 1A + 2g01T 01

= 0, (10.41)



464 Y. Choquet-Bruhat et al. Ann. Henri Poincaré

where ξA is the vector (8.25) and recall that

κ ≡ ν0∂1ν0 − 1
2
(W 1 + τ).

To avoid ambiguities, we emphasise that the right-hand-side of (10.41) vanishes
identically in wave-map gauge when Tμν there is replaced by the Einstein ten-
sor Sμν . This fact reflects the identity, valid for any dimension with our choice
of coordinates,

gABRAB + g11S11 + 2g1AS1A + 2g01S01 = 0. (10.42)

A slightly simplified form of the differential part of the constraint is, using
(10.33),

− 2ν0(C0 − T 01) ≡ 2(∂1 + κ+ τ)
[
(∂1 + κ+

τ

2
)g11 +W

1
]

+R̃− 1
2
gABξAξB + gAB∇̃AξB

+g11T 11 + 2g1AT 1A + 2g01T 01

= 0. (10.43)

Suppose that in addition to (7.6)–(7.7) and (8.28)–(8.29) it holds that

W 0 = W 0(γAB , ϕ, ν0, νA, g
11, r, xA), (10.44)

T 11 = T 11(. . . , ∂0g1A, g
11, ∂1g

11), (10.45)

where . . . in (10.45) denotes the collection of fields already occurring in (8.29).
This is clearly compatible with the wave-map gauge (4.18), and with scalar
fields or Maxwell fields as sources (compare Sect. 7.7). Then, (10.41) becomes
a second-order ODE for g11, linear when the vacuum Einstein equations and
the wave-map gauge have been assumed.

11. Solution of the C0 Constraint

Throughout this section we assume that the target metric is Minkowski, κ = 0
and that the relevant components of the tensor T are known (e.g., zero). Using
the C1 constraint,

T 11 = −
(

∂1τ +
1

n− 1
τ2 + |σ|2

)

, (11.1)

we find that the C0 wave-map-gauge constraint operator can be written as

ν0C0 ≡ −∂2
11g

11 − 3
2
τ∂1g

11 − 1
2

(
n− 2
n− 1

τ2 − |σ|2
)

g11

−∂1W
1 − τW

1 − 1
2
R̃+

1
4
gABξAξB − 1

2
gAB∇̃AξB + ν0T 1Aν

A. (11.2)

Hence, setting g11 ≡ 1 − α and using previous notations, the equation for the
C0 wave-map-gauge constraint, C0 − T 01 = 0, reads as the linear second-order
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ODE for α

L(α) ≡ α′′ +
3
2
τα′ +

1
2

(
n− 2
n− 1

τ2 − |σ|2
)

α = Φ, (11.3)

with Φ the function known from the previous sections

Φ : =
1
2

(
n− 2
n− 1

τ2 − |σ|2
)

+ ∂1W
1

+ τW
1

+
1
2
R̃− 1

4
gABξAξB +

1
2
gAB∇̃AξB − ν0T 1Aν

A + ν0T 01. (11.4)

L(α) simplifies to

L(α) ≡ α′′ +
3
2

(
n− 1
r

− ψ

)

α′

+
1
2

(
(n− 1)(n− 2)

r2
− 2

(n− 2)
r

ψ +
n− 2
n− 1

ψ2 − |σ|2
)

α. (11.5)

This linear equation has smooth coefficients for r > 0; it has a global solution
with initial data given for r = a > 0.

We proceed to the study of solutions starting from r = 0.

11.1. NCT Case

In the NCT case it holds that ν0 = 1, fA = 0, νA = 0, τ = n−1
r = −W 1, ∂1W

1
+

τW
1

= −(n − 1)(n − 2)/r2 = −R̃ and Tαβ = 0. Hence Φ = 0. The C0 wave-
map-gauge constraint for α = 1 − g11 reduces to

2α′′ +
3(n− 1)

r
α′ +

(n− 1)(n− 2)
r2

α = 0, (11.6)

it is a Fuchsian equation with characteristic polynomial

2p(p− 1) + 3(n− 1)p+ (n− 1)(n− 2).

The zeroes of this polynomial are

p+ =
1 − n

2
, p− = 2 − n;

both negative or zero for n ≥ 2. The general solution of (11.6) is

α := a+r
(1−n)/2 + a−r2−n,

with a± independent of r. The only member of this general solution where α
tends to zero as r tends to zero is α ≡ 0.

11.2. General Case

We look for a solution starting from r = 0 and such that

lim
r→0

α = lim
r→0

(r∂1α) = 0.

We set ∂1α = α′ and decompose L as follows:

L(α) ≡ L0(α) + L1(α), (11.7)
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where L0 is the Fuchsian operator appearing in the NCT case,

L0(α) ≡ α′′ +
a0

r
α′ +

b0
r2
α := α′′ +

3(n− 1)
2r

α′ +
(n− 1)(n− 2)

2r2
α, (11.8)

and

L1(α) ≡ a1α
′ + b1α := −3

2
ψα′ +

{

− (n− 2)
r

ψ +
1
2

(
n− 2
n− 1

ψ2 − |σ|2
)}

α.

(11.9)

In order to use the idea of the Fuchs theorem,11 we write the second-order
equation (11.3) as a first-order system for a pair of unknowns v := (v1, v2) by
setting v1 := α, v2 ≡ rα′; hence rα′′ = −r−1v2 + v′

2. The system reads

rv′
1 − v2 = 0,

rv′
2 + (a0 − 1)v2 + b0v1 + r(a1v2 + b1rv1 − rΦ) = 0.

It is of the form

rv′ +Av = r{F1(r)v + F0(r)}, (11.10)

with A the constant linear operator

A ≡
(

0 −1
b0 a0 − 1

)

whose eigenvalues μ± are found by solving the equation

det
(

0 − μ −1
b0 a0 − 1 − μ

)

≡ μ2 + μ(1 − a0) + b0 = 0.

The solutions are the opposites, −p±, of the characteristic indices computed
in the NCT case; hence nonnegative. Further

F1(r)v ≡
(

0
−a1v2 − rb1v1

)

, F0(r) ≡
(

0
rΦ

)

,

where

a1 ≡ −3
2
ψ, rb1 ≡ −(n− 2)ψ +

r

2

(
n− 2
n− 1

ψ2 − |σ|2
)

are bounded functions smooth away from r = 0, as well as rΦ. What has been
said shows that F0 and F1 are continuous at r = 0 for admissible γAB .

Lemma 11.1. Let

rv′ +Av = r{F1(r)v + F0(r)}, (11.11)

be a linear differential system with A a constant linear operator with non-
negative eigenvalues. Let F1 be a continuous linear map and F2 a continuous
function, for 0 ≤ r ≤ r0. The system admits one and only one solution in
C1([0, r0]) which vanishes at r = 0.

11 See e.g. [10, Appendix V].
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Proof. We set v = Mw, with M a 2 × 2 matrix satisfying the homogeneous
equation

rM ′ +AM = 0.

We choose for M the matrix

M = r−A ≡ e−A log r.

The Eq. (11.10) reads then

w′ = rA{F1(r)v + F0(r)}. (11.12)

Hence, the Eq. (11.11) together with the condition v|r=0 = 0 is equivalent to
the integral equation

v(r) =

r∫

0

(r−1ρ)A{F1(ρ)v(ρ) + F0(ρ)}dρ. (11.13)

We have

sup
0≤ρ≤r

|(r−1ρ)A| ≤ 1. (11.14)

We set, with a an arbitrary positive number,

C1 := sup
0≤r≤a

|F1(r)|, C0 := sup
0≤r≤a

|F0(r)|. (11.15)

The integral equation (11.13) can then be solved by iteration, setting

v0(r) =

r∫

0

(r−1ρ)AF0(ρ)dρ.

Hence, for r ≤ a

|v0(r)| ≤ rC0,

v1(r) :=

r∫

0

(r−1ρ)AF1(ρ)v0(ρ)dρ+ v0(r),

and so

|v1(r) − v0(r)| ≤ 1
2
r2 C1C0,

vn+1(r) :=

r∫

0

(r−1ρ)AF1(ρ)vn(ρ)dρ+ v0(r),

|vn+1(r) − vn(r)| ≤
r∫

0

C1|vn(ρ) − vn−1(ρ)|dρ.

Assume that, as satisfied for n = 1,

|vn(ρ) − vn−1(ρ)| ≤ 1
(n+ 1)!

rn+1Cn
1 C0,
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Then the same inequality is satisfied when replacing n by n+1. The sequence
vn converges therefore in uniform norm to a limit v, solution of the inte-
gral equation (11.13); hence of the differential equation (11.11). This solution
v := (α, rα′), α(0) = (rα′)(0) = 0, is defined, continuous and bounded for any
finite r. �

We deduce from this lemma the following theorem:

Theorem 11.2. In the interval of r ≥ 0, possibly angle dependent, where the C1

constraint has a global solution and ν0 > 0, the C0 wave-map-gauge constraint
with coefficients deduced from the solutions of the C1 and CA constraints admits
a solution g11 ≡ 1 − α with α(0) = (rα′)(0) = 0, α and rα′ which are C1 in r.
The solution is global when it is so of the solution of the previous constraints,
since the system is linear.

11.3. Vanishing of H0

In previous sections we have seen how to achieve H
0

= H
A

= 0, and hence
L1 = LA = 0. Specializing equation (10.38) to this case we get (with H0 :=
ν0H

1
)

L0 ≡ −∂1H0 +
1
2
(W 1 − τ)H0. (11.16)

On the other hand, the identity

S01 ≡ S
(H)
01 +

1
2
(g0αD̂1H

α + g1αD̂0H
α − g01D̂αH

α) (11.17)

reduces on CO to

S01 ≡ S
(H)

01 +
1
2
(g00D̂1H0 + νAD̂1HA − ν0D̂AHA). (11.18)

Using again the conditions H
0

= H
A

= 0 we have, for an arbitrary target
space in adapted coordinates,

D̂1H0 = 0, D̂1HA = 0, D̂AHA = Γ̂A
A1H

1
, (11.19)

and hence (11.18) further reduces to

S01 ≡ S
(H)

01 − 1
2
Γ̂A

A1H0. (11.20)

For a solution of the Einstein equations in wave-map gauge it holds then
that

S01 ≡ C0 + L0 = T 01 − 1
2
Γ̂A

A1H0. (11.21)

Therefore, whenH
0

= H
A

= 0 and the initial data satisfy the wave-map-gauge
constraint

C0 − T 01 = 0, (11.22)

then H0 satisfies the equation

∂1H0 =
1
2
(W 1 − τ + Γ̂A

A1)H0. (11.23)
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For a Minkowski target, and using the boundary conditions (4.20), we have

Γ̂A
A1

η
=
n− 1
r

, lim
r→0

(rW 1)
η≡ lim

r→0
(−r2gABsAB) = −(n− 1),

lim
r→0

(rτ) = n− 1, (11.24)

and hence Eq. (11.23) takes a Fuchsian form

r∂1H0 +
n− 1

2
H0 + rMH0

η
= 0. (11.25)

with M a continuous function up to r = 0.
We want to prove that H0 = 0 when the spacetime metric is a C2 solu-

tion of the Einstein equations in Minkowski-wave-ap gauge; in this case the
wave gauge vector H is C1; then H0 tends to a finite limit at the vertex. The
Eq. (11.25) implies that this limit is zero and hence that the only solution is
zero.

Remark 11.3. If we add constraint damping terms as in (2.13) we obtain
instead, using again H

0
= H

A
= 0,

L0 = −∂1H0 +
1
2
(W 1 − τ + ερn1)H0. (11.26)

This new term does not change the leading orders in r of Eq. (11.25) and hence
H0 = 0 is still the only regular solution. We conclude that the addition of con-
straint damping terms is fully compatible with the wave-map-gauge constraint
hierarchy.

12. Wave-Map Gauge Constraints: A Summary

We have defined CO to be the cone represented in Rn+1 by the Minkowskian
cone

y0 = r, r2 :=
∑

i=1

(yi)2, (12.1)

equivalently

x0 = 0, x1 = r, Θi(xA) =
yi

r
. (12.2)

We have considered on CO a non degenerate quadratic form given in xα coor-
dinates by

g00(dx
0)2 + 2ν0dx0dx1 + 2νAdx0dxA + gABdxAdxB.

We have proved (recall that admissible means hypotheses on smoothness and
limits at the vertex spelled out in various sections)

Theorem 12.1. 1. Let g̃ be a given admissible degenerate quadratic form on
CT0

O ,

g̃ = gABdxAdxB .
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There exists on CT
O , for some T with 0 < T ≤ T0, coefficients ν0, νA, g00

satisfying the vacuum Einstein wave-map gauge constraints, unique when
admissible vertex limits are imposed.

2. An admissible degenerate quadratic form g̃ together with a non vanishing
ν0 can be determined on CT

O , for some T with 0 < T ≤ T0, from the first
vacuum Einstein wave-map gauge constraints, an admissible quadratic
form γ and a scalar function κ being arbitrarily given. Then, g̃ is confor-
mal to γ and depends only on its conformal class and ν0 is linked to κ by
the differential equation (7.11). They are unique under admissible vertex
limits.
When g̃ is known, νA and g00 are determined as in point 1. by the second
and third wave-map gauge constraint and admissible vertex limits.

13. Local Geometric Uniqueness for the Vacuum Einstein
Equations

In this section only the vacuum Einstein equations will be considered.
Recall that two spacetimes (Va, ga) and (Vb, gb) are considered as (both

geometrically and physically) the same if there exists a diffeomorphism φ :
Va → Vb such that on Va it holds that ga = φ∗gb. We have said before that
given a C1,1 metric ga on a manifold Va and Oa ∈ Va there are in some neigh-
bourhood of Oa normal coordinates yα

a centred at Oa, where the characteristic
cone COa

is represented, for 0 ≤ y0
a ≤ Ta by the equation of a Minkowskian

cone in Rn+1

y0
a = ra, r2a :=

n∑

i=1

(yi
a)2.

The null rays issued from Oa are represented by the generators of this cone.
We have defined adapted null coordinates by setting

x0
a := ra − y0

a, x1
a = ra, with r2a =

n∑

i=1

(yi
a)2 (13.1)

and xA
a local coordinates on the sphere Sn−1. In the coordinates xα

a the metric
ga reads on the cone COa

ga,00(dx
0
a)2 + 2νa,0dx0

adx1
a + 2νa,Adx0

a,dx
A
a + ga,ABdxA

a dxB
a . (13.2)

We have shown moreover (see Sect. 4.5) that it is possible to choose the coor-
dinates yα

a so that it holds

lim
r→0

r−3
a (ga,AB − r2asAB) = 0, lim

r→0
r−2
a ∂1(ga,AB − r2asAB) = 0, (13.3)

lim
r→0

r−1
a (νa,0 − 1) = 0, lim

r→0
r−2
a νa,A = lim

r→0
r−1
a ∂1νa,A = 0, (13.4)

and even

lim
r→0

r−2
a ∂0(ga,AB − r2asAB) = 0, (13.5)

lim
r→0

r−1
a ∂0ga,1A = lim

r→0
r−1
a ∂0ga,0A = 0, (13.6)
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while

lim
r→0

r−1
a (ga,00 + 1) = 0, lim

r→0
∂1ga,00 = 0 = lim

r→0
∂0ga,00. (13.7)

Having chosen such coordinates yμ
a , respectively, yμ

b , for the metrics ga

and gb, we obtain a diffeomorphism φN by yα
b (yα

a ) := yα
a , defined in the subset

y0
a ≤ T := min(Ta, Tb). Such a diffeomorphism will be called canonical. We

remark that canonical diffeomorphisms are not unique, and that above we have
not required r to be an affine parameter.

The metrics gb and φN,∗gb are geometrically equivalent, and one has
equality of components (φN,∗gb)λμ(ya) = gλμ

b (yb) for yα
b = yα

a . The coordi-
nates yα are normal for both metrics and they satisfy in the coordinates xα

the vertex limits (13.3–13.7) recalled above.
To study the geometric uniqueness of our characteristic Cauchy problem

we first consider two metrics ga and gb on the same manifold which satisfy
the characteristic Cauchy problem on the same cone CO. We will prove the
following theorem, using the notations given in previous sections for CO and
YO (note that we are not assuming an affine parameterisation of the cone
generators here):

Theorem 13.1. Consider two smooth solutions ga and gb in Y T
O of the Cauchy

problem for the vacuum Einstein equations Ricci(g) = 0 with data on the
cone CT

O , characteristic for both metrics. There exists T ′ ≤ T so that ga is
equivalent to gb in Y T ′

O if and only if they induce on CT
O the same degenerate

quadratic form satisfying in the coordinates xα the vertex limits (13.3–13.7).

Proof. We put the metric ga in Minkowski wave-map gauge by constructing a
wave map fa, that is a solution of the semilinear, tensorial, partial differential
equations which read in abstract index notation

� ga,ĝf
α
a ≡ gλμ

a (∂2
λμf

α
a − Γa,

σ
λμ ∂σf

α
a + ∂λf

σ
a ∂μf

ρ
a Γ̂α

σρ) = 0, (13.8)

which on CT
O is the trace of the identity mapping I of Rn+1. To simplify the

writing we suppress the index a in the following computations, valid for any
metric g with normal coordinates yα and adapted null coordinates xα, we will
reestablish a and b in the conclusions.

The components fα and fα of the image point are linked by the same
relations as the coordinates y and x. They take in coordinates xα the initial
data

f
0

= 0, f
1

= x1, f
A

= xA, for x0 = 0; (13.9)

and in the coordinates yα the initial data

f
i
= yi, f

0
= r; (13.10)

we see that in the y coordinates the initial data are the trace on CO of the set
of C∞ functions on Rn+1

Ii = yi, I0 = y0.
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The existence of a C2 wave map f in some Y Ta

O taking these initial data can
therefore be proved using the Cagnac–Dossa theorem. In fact, since the equa-
tions are linear in a coordinate system where the Γ̂’s vanish, the usual linear
theory [22] suffices to obtain the result. The resulting wave map extends to a
C2 mapping (though not in general to a C2 wave map).

To prove that it is a diffeomorphism at least in a neighbourhood of the
vertex we first remark that our definitions imply

∂if
j = δj

i . (13.11)

To study the derivatives ∂0 we return to the x coordinates and consider the
set of functions

f0 − x0, f1 − x1, fA − xA. (13.12)

They vanish on CO and so do therefore their tangential derivatives on CO;
hence by application of the Lemma 4.2

lim
r→0

∂0f1 = 0, lim
r→0

∂Af0 = 0, lim
r→0

∂0f0 = 1. (13.13)

By definition of the coordinates x and y we have

f0 ≡ (Σ(f i)2)
1
2 − f0;

hence,

∂0f
0 :=

∂

∂y0
f0 ≡ − ∂

∂y0
f0 =

∂

∂x0
f0 := ∂0f

0 (13.14)

while f i depends only on f1 and fA. Therefore,

lim
r→0

∂0f i = 0, lim
r→0

∂0f0 = 1. (13.15)

Since the Jacobian of the C1 mapping f tends to 1 at O, it is a diffeomorphism,
between at least small neighbourhoods of O.

The initial data, trace g(H) of the metric g(H) in wave gauge are linked
with the original g by the classical relation

gαβ ≡ ∂αfλ∂βfμg
(H)
λμ . (13.16)

The values of ∂if in the coordinates xα show the equality of quadratic forms
g̃(H) ≡ g̃, indeed in these coordinates:

g
(H)
11 = g11 = 0, g

(H)
1A = g1A = 0, g

(H)
AB = gAB . (13.17)

Since g(H) is in wave gauge, and satisfies the vacuum Einstein equations,
its trace g(H) satisfies the wave-map gauge constraint C1 = 0, and ν(H)

0 satisfies
the same equation as ν0,

∂1ν
(H)
0 = ν

(H)
0

{
∂1τ

τ
+

1
2
(ν(H)

0 W
0

+ τ) +
|σ|2
τ

+
τ

n− 1

}

, (13.18)

since the coefficients depend only on g̃, to show that ν(H)
0 tends to 1 at the

vertex like ν0 we use the identity

ν0 ≡ ∂0fλ∂1fμg
(H)
λμ . (13.19)
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and the limits (13.13)–(13.15) give

1 = lim
r→0

ν0 = lim
r→0

ν
(H)
0 .

Uniqueness of solutions of (13.18) (with non zero τ) with this limit at O shows
that the function ν(H)

0 depends only on g̃, i.e. ν(H)
a,0 = ν

(H)
b,0 since g̃a = g̃b, that

is ga,AB = gb,AB .
As a consequence, the wave-map-gauge constraints Ca,A = 0 written with

gAB ≡ g
(H)
AB and ν

(H)
a,0 are the same equation for ν(H)

a,A , a = 1 or 2. The vertex

limit of ν(H)
A will be deduced from the definition

νA := g0A ≡ ∂0fλ∂Afμg
(H)
λμ ≡ ∂0fλg

(H)
Aλ (13.20)

which implies using (13.9) (compare (4.43))

0 = lim
r→0

r−2νA = lim
r→0

r−2ν
(H)
A , lim

r→0
νA = lim

r→0
gABνB = lim

r→0
r−2sABνB = 0.

(13.21)

Differentiating (13.20) gives

∂1νA ≡ ∂1∂0fλg
(H)
Aλ + ∂0fλ∂1g

(H)
Aλ .

We have

lim
r→0

r−1∂1νA ≡ lim
r→0

(r−1∂1∂0fλg
(H)
Aλ ) + lim

r→0
(r−1∂0fλ∂1g

(H)
Aλ )

with, by (13.9) and (13.13),

lim
r→0

(∂0fλr−1∂1g
(H)
Aλ ) = lim

r→0
r−1∂1g

(H)
A0 ,

and

lim
r→0

(r−1∂1∂0fλg
(H)
Aλ ) = lim

r→0
(r∂1∂0fB)sAB .

Taking the trace on the cone of the wave map equation, with Minkowski target,
gives

2g01(∂1∂0fA − Γ
0

10∂0fA − Γ
A

10 + Γ̂A
1B∂0fB)

− 2g1B(Γ
A

1B − Γ̂A
1B) − gBC(Γ

0

BC∂0fA + Γ
A

BC − Γ̂A
BC) = 0. (13.22)

We have

lim
r→0

Γ
0

10 = 0 and lim
r→0

∂0fA = 0,

lim
r→0

rΓ
A

10 = lim
r→0

1
2
{−rνAν0∂0g11 + rgAB(∂0g1B + ∂1νB − ∂Bν0)} = 0.

Finally, for a wave map f

lim
r→0

(r∂1∂0fA) = 0;

hence, since limr→0 r
−1∂1νA = 0, we obtain

lim
r→0

r−1∂1ν
(H)
A = 0.
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Since νa,A and νb,A satisfy the same equation and the same boundary condi-
tions, they are equal.

It remains to analyse the boundary conditions for the functions ga,00,
which again satisfy the same equation for a = 1 or 2. We have

g00 = ∂0f
λ∂0f

μg
(H)
λμ .

It implies

lim
r→0

g00 ≡ lim
r→0

(
g
(H)
00 ∂0f0∂0f0 + 2∂0f0∂0f1ν

(H)
0 + g

(H)
AB ∂0fA∂0fB

)
.

The previous limits imply then

lim
r→0

g00 = lim
r→0

g
(H)
00 = −1.

Also,

∂1g00 = ∂0f
λ∂0f

μ∂1g
(H)
λμ + 2∂1∂0f

λ∂0f
μg

(H)
λμ ;

hence using previous limits

lim
r→0

r∂1g00 = lim
r→0

{
r∂1g

(H)
00 + 2r (∂1∂0f0g

(H)
00 + ∂1∂0f1ν

(H)
0 )

}
.

We have, by definition of a wave map with Minkowskian target,

2ν0(∂1∂0f0 − Γ
0

10∂0f0) + ν0τ∂0f0 + gABΓ̂0
AB = 0.

Hence,

lim
r→0

r

{

2(∂1∂0f0 − lim Γ
0

10) +
n− 1
r

− ψ − n− 1
r

}

= 0,

which gives

lim
r→0

r∂1∂0f0 = 0.

One finds also

lim
r→0

r∂1∂0f1 = 0,

hence,

lim
r→0

r∂1g00 = lim
r→0

r∂1g
(H)
00 = 0.

We have proved that g̃a = g̃b on CT
O implies g(H)

a = g
(H)
b on CT

Oand
hence, by uniqueness for the hyperbolic system of the Einstein equations in
wave gauge g(H)

a = g
(H)
b in Y T

O . The metrics ga and gb are geometrically equiv-
alent.

The reverse implication is trivial. �

Our next result, one of the main results of this paper, is a straightforward
corollary of Theorem 13.1:
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Theorem 13.2. Given points Oa ∈ Va and Ob ∈ Vb denote by COa
and COb

the characteristic (null) cones of smooth Lorentzian metrics ga on Va and gb

on Vb. Denote by J+
a the future of the point Oa in the metric ga. There are

neighbourhoods Ua of Oa and Ub of Ob such that the spacetimes (Ua ∩ J+
a , ga)

and (Ub ∩J+
b , gb) are locally geometrically the same if and only if the pull back

φ∗
N g̃b, where φN is a canonical diffeomorphism of Ua onto Ub, equals g̃a.

Proof. The spacetimes (Ub ∩J+
b , gb) and (φ−1

N (Ub ∩J+
b ) ⊂ Ua ∩J+

a ), φ∗
Ngb) are

geometrically equivalent. Theorem 13.1 shows that the second one is locally
geometrically equivalent to (Ua ∩J+

a ), gA); the conclusion follows from the fact
that φ∗

N g̃b = ˜φ∗
Ngb and satisfies the required vertex limits. �

From the Uniqueness Theorem 12.1 for the constraints one deduces
straightforwardly a formulation of geometric local uniqueness starting from
data γ and κ.

14. Conclusions, and Open Problems

We have shown that the trace g on a characteristic cone of a solution of
Einstein equations which is also a solution of the reduced Einstein equations
in wave-map gauge satisfies necessarily a set of n+ 1 equations which we have
called wave-map gauge constraints, written out explicitly and solved. We have
shown that, conversely a solution of the reduced Einstein equations in wave-
map gauge with trace satisfying these wave-map gauge constraints satisfies
the original Einstein equations. Finally, we have shown that every solution of
the vacuum Einstein equations is locally (i.e. in a neighbourhood of the ver-
tex) isometric to a solution in wave map gauge, uniquely determined by the
degenerate quadratic form induced on the characteristic cone by the spacetime
metric.

There remain many interesting open problems:
• Determine the minimum regularity, in particular at the vertex, under

which the initial data lead to a local solution (see also [13]).
• Extend our analysis to a characteristic cone with vertex at i− (cf. [24]).
• Study the asymptotic behaviour of the solutions of the wave-map gauge

constraint equations at future null infinity.
• Prove global existence for small initial data of solutions of the Einstein

equations in higher dimensions by a conformal method, as was done for
the spacelike Cauchy problem with data identically Schwarzschild outside
of a bounded region [11].

• Prove global existence using the approach of Lindblad–Rodnianski [38–40]
(compare [2,26]).
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Appendix A: Collected Formulae

The metric on CO = {x0 = 0} is written as

g = g00(dx
0)2 + 2g0Adx0dxA + 2g01dx

0dx1 + gABdxAdxB , (A.1)

and recall that we do not assume that this form of the metric is preserved under
differentiation in the x0-direction. Here and elsewhere we put overbars on the
relevant quantities whenever the formulae hold only on CO. The inverse is

g� = g11∂2
1 + 2g1A∂1∂A + 2g01∂0∂1 + gAB∂A∂B , (A.2)

with

g01 =
1
g01

, g1A = −g01gABg0B , g11 = (g01)2(−g00 + gABg0Ag0B).

(A.3)

We introduce the special notations

ν0 := g01, νA := g0A, g̃ := gABdxAdxB , (A.4)

ν0 := g01 =
1
ν0
, νA := −g01g

1A = gABνB. (A.5)

Then,

g1A = −ν0νA, g11 = (ν0)2(−g00 + νAνA). (A.6)

The determinant reads
√

|det g| = ν0
√

det g̃Σ. (A.7)

The Levi–Civita connection of the metric gAB will be denoted as ∇̃A, with
corresponding Christoffel symbols Γ̃C

AB with respect to the derivative ∂A.
We have the following Christoffel symbols on the null hypersurface:

Γ
0

00 =
1
2
ν0(−∂1g00 + 2∂0g01), (A.8)

Γ
0

01 =
1
2
ν0∂0g11, (A.9)

Γ
0

11 = 0, (A.10)
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Γ
1

00 =
1
2
ν0νA(∂Ag00 − 2∂0g0A)

+
1
2
g11(−∂1g00 + 2∂0g01) +

1
2
ν0∂0g00, (A.11)

Γ
1

01 =
1
2
(
ν0∂1g00 + ν0νA(∂Aν0 − ∂1νA − ∂0g1A) + g11∂0g11

)
, (A.12)

Γ
1

11 = ν0∂1ν0 − 1
2
ν0∂0g11, (A.13)

Γ
0

A0 =
1
2
ν0(∂Aν0 + ∂0g1A − ∂1νA), (A.14)

Γ
0

A1 = 0, (A.15)

Γ
1

A0 =
1
2
ν0(∂Ag00 − νB(∇̃AνB − ∇̃BνA + ∂0gAB))

+
1
2
g11(∂Aν0 + ∂0g1A − ∂1νA), (A.16)

Γ
1

A1 =
1
2
ν0(∂Aν0 − ∂0g1A + ∂1νA − νB∂1gAB), (A.17)

Γ
0

AB = −1
2
ν0∂1gAB , (A.18)

Γ
1

AB =
1
2
ν0(∇̃AνB + ∇̃BνA − ∂0gAB) − 1

2
g11∂1gAB , (A.19)

Γ
C

00 = −1
2
gCA∂Ag00 +

1
2
ν0νC∂1g00 + gCA∂0g0A − ν0νC∂0g01, (A.20)

Γ
C

01 =
1
2
gCA(∂0g1A + ∂1νA − ∂Aν0) − 1

2
ν0νC∂0g11, (A.21)

Γ
C

11 = 0, (A.22)

Γ
C

A0 = −1
2
ν0νC(∂0g1A + ∂Aν0 − ∂1νA)

+
1
2
gBC(∇̃AνB − ∇̃BνA + ∂0gAB), (A.23)

Γ
C

A1 =
1
2
gBC∂1gAB , (A.24)

Γ
C

AB = Γ̃C
AB +

1
2
ν0νC∂1gAB . (A.25)

The remaining ones are obtainable by symmetry. Note that in spite of hav-
ing gAB = g̃AB , the Christoffel symbols Γ

C

AB (a part of Γ
λ

μν) and Γ̃C
AB (the

Christoffel symbols of g̃AB) do not coincide in general.
We note the following traces of the Christoffel symbols:

Γ
μ

0μ = ν0∂0g01 +
1
2
g11∂0g11 − ν0νA∂0g1A +

1
2
gAB∂0gAB , (A.26)

Γ
μ

1μ = ν0∂1ν0 +
1
2
gAB∂1gAB , (A.27)

Γ
μ

Aμ = ν0∂Aν0 +
1
2
gBC∂AgBC . (A.28)
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The harmonicity vector on the null surface reads

Γ
0

= (ν0)2∂0g11 − 1
2
ν0gAB∂1gAB , (A.29)

Γ
1

= ν0gAB∇̃BνA + g11ν0∂1ν0 − 1
2
g11gAB∂1gAB + (ν0)2νAνB∂1gAB

+(ν0)2∂1g00 − 2(ν0)2νA∂1νA − 1
2
ν0gAB∂0gAB +

1
2
ν0g11∂0g11 (A.30)

= ν0gAB∇̃BνA − ∂1(ν0g11
√

det g̃Σ)
ν0

√
det g̃Σ

− 1
2
ν0gAB∂0gAB +

1
2
ν0g11∂0g11,

(A.31)

Γ
A

= −gABν0∂Bν0 + gCDΓ̃A
CD +

1
2
gBCν0νA∂1gBC − gACν0νB∂1gBC

+ν0(gAB∂1νB + gAB∂0g1B − ν0νA∂0g11), (A.32)

g0μΓ
μ

= −νAν0∂Aν0 + gAB∂BνA + ν0∂1g00 + g11∂1ν0 − ν0νA∂1νA

−1
2
gAB∂0gAB + ν0νA∂0g1A − 1

2
g11∂0g11, (A.33)

g1μΓ
μ

= −1
2
gAB∂1gAB + ν0∂0g11, (A.34)

gAμΓ
μ

= −ν0(∂Aν0 − ∂1νA − ∂0g1A + νB∂1gAB) + gBCgADΓ̃D
BC . (A.35)

(In the main body of the paper we also use ΓA := gABΓ
B

, see (4.35).)
The following formulae are often used in our calculations:

∂0g00 ≡ −(ν0)2∂0g11, ∂0g0B ≡ −ν0(−ν0νB∂0g11 + gBC∂0g1C), (A.36)

∂0g10 ≡ −{(ν0)2∂0g01 + ν0g11∂0g11 − (ν0)2νC∂0g1C)}. (A.37)

The scalar wave operator acting on a function f reads

�gf =
1

√|det g|∂μ(
√

|det g|gμν∂νf)

= −Γ
ν
∂νf + g11∂2

1f − 2ν0νA∂1∂Af + 2ν0∂1∂0f

+gAB∂A∂Bf. (A.38)

The tensor computations in this article have been checked with the com-
puter algebra framework xAct [41].
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[32] Hörmander, L.: A remark on the characteristic Cauchy problem. J. Funct. Anal.
93(2), 270–277 (1990). MR MR1073287 (91m:58154)

[33] Jezierski, J., Kijowski, J., Czuchry, E.: Geometry of null-like surfaces in gen-
eral relativity and its application to dynamics of gravitating matter. Rep. Math.
Phys. 46, 399–418 (2000). Dedicated to Professor Roman S. Ingarden on the
occasion of his 80th birthday. MR MR1811080 (2002c:83033)

[34] Jezierski, J., Kijowski, J., Czuchry, E.: Dynamics of a self-gravitating lightlike
matter shell: a gauge-invariant Lagrangian and Hamiltonian description. Phys.
Rev. D (3) 65, 064036 (2002). MR MR1918464 (2003f:83063)

[35] Klainerman, S., Rodnianski, I.: On emerging scarred surfaces for the Einstein
vacuum equations. arXiv:1002.2656 [gr-qc] (2010)

[36] Lee, J.M.: Riemannian manifolds. In: Graduate Texts in Mathematics, vol. 176.
Springer-Verlag, New York (1997). MR MR1468735 (98d:53001)

[37] Leray, J.: Hyperbolic differential equations. Mimeographed notes. Princeton
(1953)

[38] Lindblad, H., Rodnianski, I.: The global stability of the Minkowski space-time in
harmonic gauge. Ann. Math. (2) 171, 1401–1477 (2004). arXiv:math.ap/0411109.
MR 2680391



Vol. 12 (2011) Cauchy Problem on the Light-Cone 481

[39] Lindblad, H., Rodnianski, I.: Global existence for the Einstein vacuum equa-
tions in wave coordinates. Commun. Math. Phys. 256, 43–110 (2005). arXiv:
math.ap/0312479. MR MR2134337 (2006b:83020)

[40] Loizelet, J.: Solutions globales d’équations Einstein Maxwell. Ann. Fac. Sci. Tou-
louse 18, 565–610 (2009). MR 2582443
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