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Abstract. This article contains a detailed and rigorous proof of the con-
struction of a geometric invariant for initial data sets for the Einstein
vacuum field equations. This geometric invariant vanishes if and only
if the initial data set corresponds to data for the Kerr spacetime, and
thus, it characterises this type of data. The construction presented is
valid for boosted and non-boosted initial data sets which are, in a sense,
asymptotically Schwarzschildean. As a preliminary step to the construc-
tion of the geometric invariant, an analysis of a characterisation of the
Kerr spacetime in terms of Killing spinors is carried out. A space spinor
split of the (spacetime) Killing spinor equation is performed to obtain a
set of three conditions ensuring the existence of a Killing spinor of the
development of the initial data set. In order to construct the geometric
invariant, we introduce the notion of approximate Killing spinors. These
spinors are symmetric valence 2 spinors intrinsic to the initial hypersur-
face and satisfy a certain second order elliptic equation—the approximate
Killing spinor equation. This equation arises as the Euler-Lagrange equa-
tion of a non-negative integral functional. This functional constitutes part
of our geometric invariant—however, the whole functional does not come
from a variational principle. The asymptotic behaviour of solutions to the
approximate Killing spinor equation is studied and an existence theorem
is presented.

1. Introduction

The Kerr spacetime is, undoubtedly, one of the most important exact solutions
to the vacuum Einstein field equations [32]. It describes a rotating stationary
asymptotically flat black hole parametrized by its massm and its specific angu-
lar momentum a. One of the outstanding challenges of contemporary General
Relativity is to obtain a full understanding of the properties and the struc-
ture of the Kerr spacetime and of its standing in the space of solutions to the
Einstein field equations.
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There are a number of difficult conjectures and partial results concerning
the Kerr spacetime. In particular, it is widely expected to be the only rotating
stationary asymptotically flat black hole. This conjecture has been proved if
the spacetime is assumed to be analytic (Cω)—see, e.g. [14] and references
within. Recently, there has been progress in the case where the spacetime is
assumed to be only smooth (C∞)—see [29]. Moreover, it has been shown that
a regular, non-extremal stationary black hole solution of the Einstein vacuum
equations which is suitably close to a Kerr solution must be that Kerr solu-
tion—i.e. perturbative stability among the class of stationary solutions [1].

Another of the conjectures concerning the Kerr spacetime is that it
describes, in some sense, the late time behaviour of a spacetime with dynamical
(that is, non-stationary) black holes—this is sometimes known as the estab-
lishment point of view of black holes, cfr. [40]. A step in this direction is to
obtain a proof of the non-linear stability of the Kerr spacetime—this conjec-
ture roughly states that the Cauchy problem for the vacuum Einstein field
equations with initial data for a black hole which is suitably close to initial
data for the Kerr spacetime gives rise to a spacetime with the same global
structure as Kerr and with suitable pointwise decay. Numerical simulations
support the conjectures described in this paragraph.

A common feature in the problems mentioned in the previous paragraphs
is the need of having a precise formulation of what it means that a certain
spacetime is close to the Kerr solution. Due to the coordinate freedom in Gen-
eral Relativity, it is, in general, difficult to measure how much two spacetimes
differ from each other. Statements made in a particular choice of coordinates
can be deceiving. In the spirit of the geometrical nature of General Relativity,
one would like to make statements which are coordinate and gauge indepen-
dent. Invariant characterisations of spacetimes provide a way of bridging this
difficulty.

Most analytical and numerical studies of the Einstein field equations make
use of a 3+1 decomposition of the equations and the unknowns. In this context,
the question of whether a given initial data set for the Einstein field equations
corresponds to data for the Kerr spacetime arises naturally—an initial data set
will be said to be data for the Kerr spacetime if its development is isometric
to a portion (or all) of the Kerr spacetime. A related issue arises when dis-
cussing the (either analytical or numerical) 3+1 evolution of a spacetime: do
the leaves of the foliation approach, as a result of the evolution, hypersurfaces
of the Kerr spacetime? In order to address these issues it is important to have
a geometric characterisation of the Kerr solution which is amenable to a 3+1
splitting.

A number of invariant characterisations are known in the literature, each
with their own advantages and disadvantages. For completeness we discuss
some which bear connection to the analysis presented in this article:

The Simon and Mars-Simon tensors. A convenient way of studying station-
ary solutions to the Einstein field equations is through the quotient manifold
of the orbits of the stationary Killing vector. The Schwarzschild spacetime is
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characterised among all stationary solutions by the vanishing of the Cotton
tensor of the metric of this quotient manifold—see, e.g. [20]. In [43] a suitable
generalisation of the Cotton tensor of the quotient manifold was introduced—
the Simon tensor. The vanishing of the Simon tensor together with asymp-
totic flatness and non-vanishing of the mass characterises the Kerr solution in
the class of stationary solutions. In [36,37] a spacetime version of the Simon
tensor was introduced—the so-called Mars-Simon tensor. The construction of
this tensor requires the a priori existence of a Killing vector in the spacetime.
Accordingly, it is tailored for the problem of the uniqueness of stationary black
holes. The vanishing of the Mars-Simon tensor together with some global con-
ditions (asymptotic flatness, non-zero mass, stationarity of the Killing vector)
characterises the Kerr spacetime.

Characterisations using concomitants of the Weyl tensor. A concomitant of
the Weyl tensor is an object constructed from tensorial operations on the
Weyl tensor and its covariant derivatives. An invariant characterisation of the
Kerr spacetime in terms of concomitants of the Weyl tensor has been obtained
in [19]. This result generalises a similar result for the Schwarzschild space-
time given in [17]. These characterisations consist of a set of conditions on
concomitants of the Weyl tensor, which if satisfied, characterise locally the
Kerr/Schwarzschild spacetime. An interesting feature of the characterisation
is that it provides expressions for the stationary and axial Killing vectors of
the spacetime in terms of concomitants of the Weyl tensor. Unfortunately, the
concomitants used in the characterisation are complicated, and thus, produce
very involved expressions when performing a 3+1 split.

Characterisations by means of generalised symmetries. Generalised symme-
tries (sometimes also known as hidden symmetries) are generalisations of the
Killing vector equation—like the Killing tensors and conformal Killing-Yano
tensors. These tensors arise naturally in the discussion of the so-called Carter
constant of motion and in the separability of various types of linear equations
on the Kerr spacetime—see, e.g. [11,31,42]. In particular, the existence of a
conformal Killing-Yano tensor is equivalent to the existence of a valence-2
symmetric spinor satisfying the Killing spinor equation. An important prop-
erty of the Schwarzschild and Kerr spacetimes is that they admit a Killing
spinor. This Killing spinor generates, in a certain sense, the Killing vectors
and Killing-Yano tensors of the exact solutions in question [27]. Moreover, as
it will be discussed in the main part of this article, for a spacetime which is
neither conformally flat nor of Petrov type N, the existence of a Killing spinor
associated with a Killing-Yano tensor together with the requirement of asymp-
totic flatness renders a characterisation of the Kerr spacetime. To the best of
our knowledge, this property has only been discussed in the literature—with-
out proof—in [18].

Although at first sight independent, the characterisations of the
Schwarzschild and Kerr spacetimes described in the previous paragraphs are
interconnected—sometimes in very subtle manners. This is not too surprising
as all these characterisations make use in a direct or indirect manner of the
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fact that the Kerr spacetime is a vacuum spacetime of Petrov type D—see,
e.g. [45] for a discussion of the Petrov classification. The art in producing a
useful characterisation of the Kerr spacetime lies in finding further conditions
on type D spacetimes which are natural and simple to use.

A Characterisation of Kerr Data

Characterisations of initial data sets for the Schwarzschild and Kerr space-
times have been discussed in [21,22,47]. These characterisations make use of a
number of local and global ingredients. For example, in [22] it is necessary to
assume the existence of a Killing vector on the development of the spacetime.

In this article we present a rigorous and detailed discussion of a geomet-
ric invariant characterising initial data for the Kerr spacetime. A restricted
version of this construction has been presented in [2].

The starting point of our construction is the observation that the exis-
tence of a Killing spinor in the Kerr spacetime is a key property. It allows to
relate the Killing vectors of the spacetime with its curvature in a neat way.
The reason for its importance can be explained in the following way: from a
specific Killing spinor it is possible to obtain a Killing vector which in general
will be complex. It turns out that for the Kerr spacetime this Killing vector is
in fact real and coincides with the stationary Killing vector. It can be shown
that the Kerr solution is the only asymptotically flat vacuum spacetime with
these properties, if one assumes that there are no points where the Petrov type
is either N or O.

Given the aforementioned spacetime characterisation of the Kerr solu-
tion, the question now is how to make use of it to produce a characterisation
in terms of initial data sets. For this, one has to encode the existence of a
Killing spinor at the level of the data. The way of doing this was first dis-
cussed in [23] and follows the spirit of the well-known discussion of how to
encode Killing vectors on initial data—see, e.g. [5].

The conditions on the initial data that ensure the existence of a Killing
spinor in its development are called the Killing spinor initial data equations
and are, like the Killing initial data equations (KID equations), overdeter-
mined. In [15], a procedure was given on how to construct equations which
generalise the KID equations for time symmetric data. These generalised equa-
tions have the property that for a particular behaviour at infinity they always
admit a solution. If the spacetime admits Killing vectors, then the solutions
to the generalised KID equations with the same asymptotic behaviour as the
Killing vectors are, in fact, Killing vectors. Therefore, one calls the solutions
to the generalised KID equations approximate symmetries. The total number
of approximate symmetries is equal to the maximal number of possible Kill-
ing vectors on the spacetime. A peculiarity of this procedure is that if the
spacetime is not stationary, the approximate Killing vector associated with
a time translation does not have the same asymptotic behaviour as a time
translation.1

1 Here, and in what follows, for a time translation it is understood a Killing vector which
in some asymptotically Cartesian coordinate system has a leading term of the form ∂t.
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The Killing spinor initial data equations consist of three conditions: one
of them differential (the spatial Killing spinor equation)2 and two algebraic
conditions. Following the spirit of [15] we construct a generalisation of the
spatial Killing spinor equation—the approximate Killing spinor equation. This
equation is elliptic and of second order. This equation is the Euler-Lagrange
equation of an integral functional—the L2-norm of the exact spatial Killing
spinor equation. For this equation it is possible to prove the following theorem:

Theorem. For initial data sets to the Einstein field equations with suitable
asymptotic behaviour, there exists a solution to the approximate Killing spinor
equation with the same asymptotic behaviour as the Killing spinor of the Kerr
spacetime.

A precise formulation will be given in the main text. In particular, it will
be seen that the conditions on the asymptotic behaviour of the initial data are
rather mild and amount to requiring the data to be, in a sense, asymptotically
Kerr data. Contrasted with the results in [15], this result is notable because,
arguably, the most important approximate symmetry of [15] does not share the
same asymptotic behaviour as the exact symmetry. The precise version of this
theorem generalises the one discussed in [2] in that it allows for boosted data.
This generalisation is only possible after a detailed analysis of the asymptotic
solutions of the exact Killing spinor equation.

The approximate Killing spinor discussed in the previous paragraphs can
be used to construct a geometric invariant for the initial data. This invariant
is global and involves the L2 norms of the Killing spinor initial data equations
evaluated at the approximate Killing vector. It should be observed that only
part of the invariant satisfies a variational principle—this is a further differ-
ence with respect to the construction of [15]. As the initial data set is assumed
to be asymptotically Euclidean, one expects its development to be asymptoti-
cally flat. This renders the desired characterisation of Kerr data and our main
result.

Theorem. Consider an initial data set for the vacuum Einstein field equa-
tions whose development in a small slab is neither of Petrov type N nor O
at any point, and such that the L2 norm of the Killing spinor initial data
equations evaluated at the solution (with the same asymptotic behaviour as the
Killing spinor of the Kerr spacetime) to the approximate Killing spinor equa-
tion vanishes. Then the initial data set is locally data for the Kerr spacetime.
Furthermore, if the 3-manifold has the same topology as that of hypersurfaces
of the Kerr spacetime, then the initial data set is data for the Kerr spacetime.

There are several advantages of this characterisation over previous ones
given in the literature. Most notably, it allows to condense the non-Kerrness
of an initial data set in a single number. That this invariant constitutes a

2 The idea of using the spatial part of spinorial equations to characterise slices of particular
spacetimes is not new. In [46] the spatial twistor equation has been used to characterise
slices of conformally flat spacetimes. See also [7].



1230 T. Bäckdahl and J. A. Valiente Kroon Ann. Henri Poincaré

good distance in the space of initial data sets will be discussed elsewhere. Fur-
thermore, the way the invariant is constructed is fully amenable to a numeri-
cal implementation—the elliptic solvers that one would need to compute the
solution to the approximate Killing spinor equation are, nowadays, standard
technology.

Detailed Outline of the Article

The outline of the article is as follows: in Sect. 2 we study Killing spinors, and
their influence on the algebraic type of the spacetime. We relate the Killing spi-
nors to Killing vectors and Killing-Yano tensors. Using these results together
with a characterisation of the Kerr spacetime by Mars [37], we conclude that
the Kerr spacetime can be characterised in terms of existence of a Killing
spinor related to a real Killing vector. This has previously been overlooked in
the literature, but it is a key element in our analysis.

Section 3 follows with an exposition of space spinors, which will be the
main computational tool for the remainder of the paper. Following that, in
Sect. 4 we study a 3+1 splitting of the Killing spinor equation. A similar
analysis was carried out in [23], but here we manage to condense the result
into three simple equations, the spatial Killing spinor equation and two alge-
braic equations. We also present general equations for the spatial derivatives
of a general valence 2 spinor, which is not necessarily a Killing spinor. These
equations are also used in later parts of the paper.

In Sect. 5 we introduce the new concept of approximate Killing
spinors. These are introduced as solutions to an elliptic equation formed by
composing the spatial Killing spinor operator with its formal adjoint. That
this composed operator is indeed elliptic and formally self adjoint is proved.
We also see that the approximate Killing spinor equation can be derived from
a variational principle.

To get unique solutions to the approximate Killing spinor equation, we
need to specify the asymptotic behaviour. For a rigorous treatment of this,
we use weighted Sobolev spaces; these are described in Sect. 6. Here, we also
study the asymptotics of a Killing spinor on a boosted slice of the Schwarzschild
spacetime. In general, we study slices of an arbitrary spacetime with asymptot-
ics similar to those of the Schwarzschild spacetime. Using these assumptions,
we can then in Sect. 7 prove existence of spinors with the same asymptotics as
the Killing spinor in the Schwarzschild spacetime. We later use these spinors
as seeds for solutions to the approximate Killing spinor equation. In this way
we get the desired asymptotic behaviour of our approximate Killing spinors.

In Sect. 8 we study the approximate Killing spinor equation in our asymp-
totically Euclidean manifolds to gain existence and uniqueness of solutions with
the desired asymptotics. This is done by means of the Fredholm alternative on
weighted Sobolev spaces, transforming the existence problem into a study of
the kernel of the Killing spinor operator. In this process we get the first part
of the geometric invariant—the L2 norm of the approximate Killing spinor.
This norm is proved to be finite. The geometric invariant is constructed in
Sect. 9, by adding the L2 norms of the algebraic conditions. There follows our
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main theorem: the invariant vanishes if and only if the spacetime is the Kerr
spacetime. The invariant is as a consequence of the construction proved to be
finite and well defined.

We also include two appendices. The first describes an alternative proof
of finiteness of a particular boundary integral in Sect. 8. The other contains
tensor versions of the invariant—this can be useful in applications.

General Notation and Conventions

All throughout, (M, gμν) will be an orientable and time orientable globally
hyperbolic vacuum spacetime. It follows that the spacetime admits a spin
structure—see [24,25]. Here, and in what follows, μ, ν, · · · denote abstract
4-dimensional tensor indices. The metric gμν will be taken to have signature
(+,−,−,−). Let ∇μ denote the Levi-Civita connection of gμν . The sign of the
Riemann tensor will be given by the equation

∇μ∇νξζ − ∇ν∇μξζ = Rνμζ
ηξη.

The triple (S, hab,Kab) will denote initial data on a hypersurface of the
spacetime (M, gμν). The symmetric tensors hab, Kab will denote, respectively,
the 3-metric and the extrinsic curvature of the 3-manifold S. The metric hab

will be taken to be negative definite—that is, of signature (−,−,−). The indi-
ces a, b, . . . will denote abstract 3-dimensional tensor indices, while i, j, . . . will
denote 3-dimensional tensor coordinate indices. Let Da denote the Levi-Civita
covariant derivative of hab.

Spinors will be used systematically. We follow the conventions of [41].
In particular, A,B, . . . will denote abstract spinorial indices, while A,B, . . .
will be indices with respect to a specific frame. Tensors and their spinorial
counterparts are related by means of the solder form σμ

AA′
satisfying gμν =

σAA′
μ σBB′

ν εABεA′B′ , where εAB is the antisymmetric spinor and εA′B′ its com-
plex conjugate copy. One has, for example, that ξμ = σμ

AA′
ξAA′ . Let ∇AA′

denote the spinorial counterpart of the spacetime connection ∇μ. Besides the
connection ∇AA′ , two other spinorial connections will be used: DAB , the spino-
rial counterpart of the Levi-Civita connectionDa and ∇AB , the Sen connection
of (M, gμν)—full details will be given in Sect. 3.

The Kerr spacetime. For the Kerr spacetime the maximal analytic extension
of the Kerr metric as described by Boyer and Lindquist [8] and Carter [10]
will be understood. When regarding the Kerr spacetime as the development
of Cauchy initial data, we will only consider its maximal globally hyperbolic
development.

2. Killing Spinors: General Theory

As mentioned in the introduction, our point of departure will be a charac-
terisation of the Kerr spacetime based on the existence in the spacetime of a
valence-2 symmetric spinor satisfying the Killing spinor equation. To the best
of our knowledge, this characterisation of the Kerr spacetime has not explicitly
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been discussed in the literature, save for a side remark in [18]. In this section we
provide a summary of this characterisation and fill in some technical details.

2.1. Killing Spinors and Petrov Type D Spacetimes

A valence-2 Killing spinor is a symmetric spinor κAB = κ(AB) satisfying the
equation

∇A′(AκBC) = 0. (1)

Killing spinors offer a way of relating properties of the curvature to properties
of the symmetries of the spacetime. Taking a further derivative of equation
(1), antisymmetrising and commuting the covariant derivatives one finds the
integrability condition

Ψ(ABC
FκD)F = 0, (2)

where ΨABCD denotes the self-dual Weyl spinor. The above integrability
imposes strong restrictions on the algebraic type of the Weyl spinor. More
precisely, it follows that if ΨABCD �= 0 and κAB �= 0, then

ΨABCD = ψκ(ABκCD), (3)

where ψ is a scalar. Thus, ΨABCD must be of Petrov type D or N—see, e.g.
[23,30]. The converse is also true [28,42,48]. Summarising:

Theorem 1 (Walker and Penrose [48]). A vacuum spacetime admits a valence-2
Killing spinor if and only if it is of Petrov type D, N or O.

From (3) it can also be seen that ΨABCD is of Petrov type N if and
only if κAB is algebraically special. That is, there exists a spinor αA such that
κAB = αAαB . Thus, an algebraically general Killing spinor κAB = α(AβB) is
always associated with a vacuum spacetime of Petrov type D.

2.2. The Killing Vector Associated with a Killing Spinor and the Generalised
Kerr-NUT Metrics

Given a Killing spinor κAB , the concomitant

ξAA′ = ∇B
A′κAB , (4)

is a complex Killing vector of the spacetime: its real and imaginary parts are
themselves Killing vectors of the spacetime [27]. In relation to this it should
be pointed out that all vacuum Petrov type D spacetimes are known [33]. It
follows from the analysis in the latter reference that all vacuum, Petrov type
D spacetimes have a commuting pair of Killing vectors. A key property of the
Kerr spacetime is the following (cfr. [27,42]):

Proposition 2. Let (M, gμν) be a vacuum Petrov type D spacetime. The Killing
vector ξAA′ given by (4) is real in the case of the Kerr spacetime.

Remark 1. In what follows, the class of Petrov type D spacetimes for which
ξAA′ is real will be called the generalised Kerr-NUT class—cfr. [18]. This
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class can be alternatively characterised—see, e.g. [31]—by the existence of a
Killing-Yano tensor

Yμν = Y[μν], ∇(μYν)λ = 0.

The correspondence between the Killing spinor κAB and the spinorial coun-
terpart YAA′BB′ of the Killing-Yano tensor, Yμν , is given by

YAA′BB′ ≡ i (κABεA′B′ − εABκ̄A′B′),

where the overbar denotes the complex conjugate.

Remark 2. In terms of the Kinnersley list of type D metrics, the class of gener-
alised Kerr-NUT metrics contains, in addition to the proper Kerr-NUT metrics
(II.C), also the metrics II.E—see, [16].

An important property of the generalised Kerr-NUT metrics involves the
Killing form, FAA′BB′ = −FBB′AA′ , of a real Killing vector ξAA′ defined by

FAA′BB′ ≡ 1
2

(∇AA′ξBB′ − ∇BB′ξAA′). (5)

Let

FAA′BB′ ≡ 1
2

(FAA′BB′ + iF ∗
AA′BB′) (6)

denote the corresponding self-dual Killing form, with F ∗
AA′BB′ the Hodge dual

of FAA′BB′ . Due to the symmetries of the Killing form one can write

FAA′BB′ = FABεA′B′ , (7)

with

FAB ≡ 1
2
FAQ′B

Q′
= FBA. (8)

One has the following result:

Lemma 3. For generalised Kerr-NUT spacetimes one has that

FAB = κκAB ,

where κ is a non-vanishing scalar function, so that the principal spinors of
FAB and ΨABCD are parallel. Equivalently, one has that

ΨABPQFPQ =ϕFAB ,

with ϕ a non-vanishing scalar.

Proof. One proceeds by a direct computation. One notes that the expressions
(5), (6) and (8) assume that the Killing vector ξAA′ is real. Using Eqs. (4) and
(8) and the vacuum commutators for ∇AA′ one finds that

FAB =
3
4
ΨABPQκ

PQ.

As the spacetime is assumed to be of Petrov type D one has that κAB = α(AβB)

with αAβ
A = ς, where ς is a non-vanishing scalar. From Eq. (3) one finds then

that ΨABCD = ψα(AαBβCβD), so that

ΨABPQκ
PQ = −1

3
ψς2κAB ,
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and finally that

FAB = −1
4
ψς2κAB ,

from where the desired result follows. �

The property that allows us to single out the Kerr spacetime out of the
generalised Kerr-NUT class is given by the following result proved by Mars
[36,37]:

Theorem 4 (Mars [36,37]). Let (M, gμν) be a smooth vacuum spacetime with
the following properties:

(i) (M, gμν) admits a Killing vector ξAA′ such that, FAB, the spinorial coun-
terpart of the Killing form of ξAA′ satisfies

ΨABPQFPQ = ϕFAB ,

with ϕ a scalar;
(ii) (M, gμν) contains a stationary asymptotically flat 4-end, and ξAA′ tends

to a time translation at infinity, and the Komar mass of the asymptotic
end is non-zero.

Then (M, gμν) is locally isometric to the Kerr spacetime.

Remark. A stationary asymptotically flat 4-end is an open submanifold M∞
⊂ M diffeomorphic to I × (R3 \ BR), where I ⊂ R is an open interval and BR

a closed ball of radius R such that in the local coordinates (t, xi) defined by
the diffeomorphism, the metric gμν satisfies

|gμν − ημν | + |r∂igμν | ≤ Cr−α,

∂tgμν = 0,

with C, α constants, ημν is the Minkowski metric and r =√
(x1)2 + (x2)2 + (x3)2. In particular α ≥ 1. The definition of the Komar

mass is given in [34]. In this context it coincides with the ADM mass of the
spacetime.

2.3. Non-Degeneracy of the Petrov Type of the Kerr Spacetime

Finally, we note the following result about the non-degeneracy of the Petrov
type of the Kerr spacetime [37].

Proposition 5 (Mars [37]). The Petrov type of the Kerr spacetime is always
D—there are no points where it degenerates to type N or O.

2.4. A Characterisation of the Kerr Spacetime Using Killing Spinors

As a consequence of Theorem 1 and Propositions 2, 5 one obtains the following
invariant characterisation of the Kerr spacetimes. From this characterisation
we will extract, in the sequel, a characterisation of asymptotically Euclidean
Kerr data.
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Theorem 6. Let (M, gμν) be a smooth vacuum spacetime such that

ΨABCD �= 0, ΨABCDΨABCD �= 0

on M. Then (M, gμν) is locally isometric to the Kerr spacetime if and only if
the following conditions are satisfied:

(i) there exists a Killing spinor, κAB, such that the associated Killing vector,
ξAA′ , is real;

(ii) the spacetime (M, gμν) has a stationary asymptotically flat 4-end with
non-vanishing mass in which ξAA′ tends to a time translation.

Proof. Clearly, the conditions (i) and (ii) are necessary to obtain the Kerr
spacetime. For the sufficiency, assume that (i) holds, that is, the spacetime
has a Killing spinor κAB such that the associated Killing vector ξAA′ is real.
Accordingly, the spacetime must be of type D, N or O. As ΨABCD �= 0 and
ΨABCDΨABCD �= 0 by hypothesis, the spacetime cannot be of types N or O.
By the reality of ξAA′ it must be a generalised Kerr-NUT spacetime and the
conclusion of Lemma 3 follows. Now, if (ii) holds then by Theorem 4, the
spacetime has to be locally the Kerr spacetime. �

Remark. It is of interest to see whether the conditions ΨABCD �= 0 and
ΨABCDΨABCD �= 0 can be removed. An analysis along what is done in the
proof of Theorem 4 may allow to do this. This will be discussed elsewhere.

3. Space Spinors: General Theory

As mentioned in the introduction, in this article we will make use of a space
spinor formalism to project the longitudinal and transversal parts of the Killing
spinor equation (1) with respect to the timelike vector field τμ. The space
spinor formalism was originally introduced in [44]. Here, we follow conven-
tions and notations similar to those in [23]. For completeness, we introduce all
the relevant notation here.

3.1. Basic Definitions

Let τμ be a timelike vector field on (M, gμν) with normalisation τμτ
μ = 2.

Define the projector

hμν ≡ gμν − 1
2
τμτν .

We also define the following tensors:

Kμν = −hμ
λhν

ρ∇λτρ,

Kμ = −1
2
τν∇ντ

μ.

Note that it is not being assumed that τμ is hypersurface orthogonal. Thus,
the tensor Kμν as defined above is not necessarily the second fundamental
form of a foliation of the spacetime (M, gμν).
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Let τAA′
denote the spinorial counterpart of τμ. One has that τAA′ ≡

σμ
AA′

τμ so that

τAA′τAA′
= 2, τA

A′τBA′
= εAB .

The spinor τAA′
allows to introduce the spatial solder forms

σμ
AB ≡ σμ

(A
A′τB)A′

, σμ
AB ≡ τ(B

A′
σμ

A)A′ ,

so that one has

σμ
ABσν

AB = hμ
ν , gμνσ

μ
ABσ

ν
CD = hμνσ

μ
ABσ

ν
CD =

1
2
(εACεBD + εADεBC),

τμσ
μ

AB = 0, εABεA′B′ =
1
2
τAA′τBB′ + hμνσ

μ
AEσ

ν
BF τ

E
A′τF

B′ .

If τμ is hypersurface orthogonal, then hab, Kab, Ka, σa
AB, σa

AB denote,
respectively, the pull-backs to the hypersurfaces orthogonal to τμ of hμν , Kμν ,
Kμ, σμ

AB, σμ
AB—note that these objects are spatial, in the sense that their

contraction with τμ vanishes, and thus, their pull-backs are well defined. The
relevant properties of these tensors apply to their pull-backs. Often we will
begin with a space-like hypersurface S, and define τμ as the normal to this
hypersurface; we then automatically get the desired properties.

3.2. Space Spinor Splittings

The spinor τAA′
can be used to construct a formalism consisting of unprimed

indices. For example, given a spacetime spinor ζAA′ one can write

ζAA′ =
1
2
τAA′ζ − τA′ P ζPA, (9)

with

ζ ≡ τPP ′
ζPP ′ , ζAB ≡ τ(A

P ′
ζB)P ′ .

This decomposition can be extended in a direct manner to higher valence spi-
nors. Any spatial tensor has a space-spinor counterpart. For example, if Tμ

ν

is a spatial tensor (i.e. τμTμ
ν = 0 and τνTμ

ν = 0), then its space spinor
counterpart is given by TAB

CD = σμ
ABσν

CDTμ
ν .

3.3. Spinorial Covariant Derivatives

Applying formally the space spinor split given by (9) to the spacetime spinorial
covariant derivative ∇AA′ one obtains

∇AA′ =
1
2
τAA′∇ − τA′B∇AB ,

where we have introduced the differential operators

∇ ≡ τAA′∇AA′ ,

∇AB ≡ τA′
(A∇B)A′ = σμ

AB∇μ.

The latter is referred to as the Sen connection. Let KABCD denote the space
spinor counterpart of the tensor Kμν . One has that

KABCD = τD
C′∇ABτCC′ , KABCD = K(AB)(CD).
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In the sequel, it will be convenient to write KABCD in terms of its irreducible
components. For this, define

ΩABCD ≡ K(ABCD), ΩAB ≡ K(A
C

B)C , K ≡ KAB
AB ,

so that one can write

KABCD = ΩABCD − 1
2
εA(CΩD)B − 1

2
εB(CΩD)A − 1

3
εA(CεD)BK, (10)

If τμ is hypersurface orthogonal, then ΩAB = 0, and thus Kμν can be regarded
as the extrinsic curvature of the leaves of a foliation of the spacetime (M, gμν).
Let KAB denote the spinorial counterpart of the acceleration Kμ. It has the
symmetry KAB = K(AB) and satisfies

KAB = τB
A′∇τAA′ .

If τμ is hypersurface orthogonal then the pull-back, Da, of Dμ ≡ hν
μ∇ν

corresponds to the Levi-Civita connection of the intrinsic metric of the leaves
of the foliation of hypersurfaces orthogonal to τμ. Its spinorial counterpart is
given by DAB = D(AB) = σa

ABDa. The Sen connection, ∇AB , and the Levi-
Civita connection, DAB , are related to each other through the spinor KABCD.
For example, for a valence 1 spinor πC one has that

∇ABπC = DABπC +
1
2
KABC

DπD,

with the obvious generalisations for higher valence spinors.

3.4. Hermitian Conjugation

Given a spinor πA, we define its Hermitian conjugate via

π̂A ≡ τA
E′
π̄E′ .

The Hermitian conjugate can be extended to higher valence symmetric spinors
in the obvious way. The spinors νAB and ξABCD are said to be real if

ν̂AB = −νAB , ξ̂ABCD = ξABCD.

It can be verified that νAB ν̂
AB , ξABCD ξ̂

ABCD ≥ 0. If the spinors are real,
then there exist real spatial tensors νa, ξab such that νAB and ξABCD are their
spinorial counterparts.

Notice that the differential operator DAB is real in the sense that

D̂ABπC = −DABπ̂C .

Crucially, however, one has that

∇̂ABπC = −∇ABπ̂C +
1
2
KABC

Dπ̂D.
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3.5. Commutators

The analysis in the sequel will require intensive use of the commutators of the
covariant derivative operators ∇ and ∇AB . These can be derived from a space
spinor splitting of the commutator of ∇AA′ .

Define

�AB ≡ ∇C′(A∇B)
C′
, �̂AB ≡ τA

A′
τB

B′�A′B′ = τA
A′
τB

B′∇C(A′∇B′)
C .

The action of these operators on a spinor πA is given by

�ABπC = ΨABCQπ
Q +

1
2
ΛεC(AπB), �̂ABπC = τA

A′
τB

B′
ΦFCA′B′πF ,

where ΦABA′B′ and Λ denote, respectively, the spinor counterparts of the
tracefree part of the Ricci tensor Rμν and the Ricci scalar R of the spacetime
metric gμν . Clearly, the above expressions simplify in the case of a vacuum
spacetime, where we have ΦABA′B′ = 0, Λ = 0.

In terms of �AB and �̂AB , the commutators of ∇ and ∇AB read

[∇,∇AB ] = �̂AB − �AB − 1
2
KAB∇ +KD

(A∇B)D −KABCD∇CD, (11a)

[∇AB ,∇CD] =
1
2
(
εA(C�D)B + εB(C�D)A

)
+

1
2

(
εA(C�̂D)B + εB(C�̂D)A

)

+
1
2
(KCDAB∇ −KABCD∇) +KCDQ(A∇B)

Q −KABQ(C∇D)
Q.

(11b)

3.6. Decomposition of the Weyl Spinor

The Hermitian conjugation can be used to decompose the Weyl spinor ΨABCD

in terms of its electric and magnetic parts via

EABCD ≡ 1
2

(
ΨABCD + Ψ̂ABCD

)
, BABCD ≡ i

2

(
Ψ̂ABCD − ΨABCD

)
,

so that

ΨABCD = EABCD + iBABCD.

The spinorial Bianchi identity ∇AA′
ΨABCD = 0 can be split using the space

spinor formalism to render

∇ΨABCD = 2∇E
AΨBCDE , (12a)

∇ABΨABCD = 0. (12b)

Crucial for our applications is that the spinors EABCD and BABCD can be
expressed in terms of quantities intrinsic to a hypersurface S. More precisely,
if ΩAB = 0, one has that

EABCD = −r(ABCD) +
1
2
Ω(AB

PQΩCD)PQ − 1
6
ΩABCDK, (13a)

BABCD = −i DQ
(AΩBCD)Q, (13b)

where rABCD is the space spinor counterpart of the Ricci tensor of the intrinsic
metric of the hypersurface S.
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3.7. Space Spinor Expressions in Cartesian Coordinates

In some occasions it will be necessary to give spinorial expressions in terms
of Cartesian or asymptotically Cartesian frames and coordinates. For this we
make use of the spatial Infeld-van der Waerden symbols σi

AB, σi
AB. Given

xi, ξi ∈ R
3 we shall follow the convention that

xAB ≡ σi
ABxi, ξAB ≡ σi

ABξi,

with

xAB =
1√
2

(−x1 + ix2 x3

x3 x1 + ix2

)
, ξAB =

1√
2

(−ξ1 − iξ2 ξ3
ξ3 ξ1 − iξ2

)
.

(14)

4. Killing Spinor Data

In this section we review some aspects of the space spinor decomposition of
the Killing spinor equation (1). A first analysis along these lines was first car-
ried out in [23]. The current presentation is geared towards the construction
of geometric invariants.

4.1. General Observations

Given a symmetric spinor κAB (not necessarily a Killing spinor), it will be
convenient to define the following spinors:

ξ ≡ ∇PQκPQ, (15a)

ξBF ≡ 3
2
∇(F

DκB)D, (15b)

ξABCD ≡ ∇(ABκCD), (15c)

ξAA′ ≡ ∇B
A′κAB , (15d)

HA′ABC ≡ 3∇A′(AκBC), (15e)
SAA′BB′ ≡ ∇AA′ξBB′ + ∇BB′ξAA′ . (15f)

We will use this notation throughout the rest of the paper. Clearly, for a Killing
spinor one has

HA′ABC = 0, SAA′BB′ = 0.

The spinors ξ, ξAB and ξABCD arise in the space spinor decomposition of the
spinors HA′ABC and ξAA′ . To see this, let τAA′

denote, as in Sect. 3, the spi-
norial counterpart of a timelike vector with normalisation τAA′τAA′

= 2. Some
manipulations show that

ξAA′ =
1
2
τAA′ξ − 2

3
τB

A′ξAB +
1
2
τB

A′∇κAB , (16a)

HA′ABC = τA′(AξBC) +
3
2
τA′(A∇κBC) − 3τA′ DξABCD. (16b)

Furthermore, the spinors ξ, ξAB and ξABCD correspond to the irreducible
components of ∇ABκCD so that one can write:
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∇ABκCD = ξABCD − 1
3
εA(CξD)B − 1

3
εB(CξD)A − 1

3
εA(CεD)Bξ. (17)

Using the commutator (11b) for vacuum, one can obtain equations for
the derivatives of ξ and ξAB—these will be used systematically in the sequel.
The irreducible components of the derivative ∇ABξCD are given by

∇ABξAB = −1
2
Kξ +

3
4
ΩABCDξABCD +

1
2
ΩABξAB − 3

4
ΩAB∇κAB , (18a)

∇C
(AξB)C = ∇ABξ +

3
2
ΨABCDκ

CD − 2
3
KξAB − 1

2
ΩABCDξ

CD

−3
2
ξ(A

CDF ΩB)CDF − 3
2
∇CDξABCD − 1

2
ΩABξ +

1
2
Ω(A

CξB)C

+
3
4
ΩCDξABCD − 3

2
Ω(A

C∇κB)C , (18b)

∇(ABξCD) = 3ΨF (ABCκD)
F +KξABCD − 1

2
ΩABCDξ + Ω(ABC

F ξD)F

−3
2
ΩPQ

(ABξCD)PQ + 3∇Q
(AξBCD)Q +

1
2
Ω(ABξCD)

−3
2
ΩF

(AξBCD)F +
3
2
Ω(AB∇κCD). (18c)

We note the appearance of the term ∇ABξ in (18b). Thus, there is no inde-
pendent equation for the derivative of ξ.

Finally, we consider the equations for the second-order derivatives of ξ.
For the sake of simplicity, we restrict our attention to the case when ΩAB = 0
so that KABCD = KCDAB . For notational purposes we define ΩABCDEF ≡
∇(ABΩCDEF ). One finds

∇AB∇ABξ

= −1
6
K2ξ − 1

2
ΩABCDΩABCDξ + 3ΨA

CDF ΩBCDFκ
AB + ξAB∇ABK

+
3
4
Ψ̂ABCDξABCD − 9

4
ΨABCDξABCD + 2KΩABCDξABCD

−15
4

ΩABFHΩCD
FHξABCD +

9
2
ΩABCD∇F

DξABCF

+
3
2
∇AB∇CDξABCD, (19a)

∇C
(A∇B)Cξ =

1
2
ΩABCD∇CDξ − 1

3
K∇ABξ, (19b)

∇(AB∇CD)ξ

= −4KΨ(ABC
EκD)E +

1
2
Ψ̂ABCDξ − 5

2
ΨABCDξ − 2

3
Ψ̂(ABC

EξD)E

−10
3

Ψ(ABC
EξD)E + ΩABCDELξ

EL +
4
3
K2ξABCD + 3ΩEFL(ABCξD)

ELF

+3Ψ(AB
ELξCD)EL − 3

2
ξ(A

ELF ΩBCD)
HΩELFH − 3ΨEL(A

FκELΩBCD)F

−ξELΩELF (AΩBCD)
F +

2
3
Kξ(A

EΩBCD)E +
1
2
ξELFHΩEL(ABΩCD)FH
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−3ΨE(B
LFκA

EΩCD)LF − 3ΨE(AB
FκELΩCD)LF − ΩELF (BξA

EΩCD)
LF

−4Kξ(AB
ELΩCD)EL − 1

2
ξΩ(AB

ELΩCD)EL +
3
2
ξELFHΩE(ABCΩD)LFH

−2ΩE(BC
HξA

ELF ΩD)LFH +
1
4
ξELFHΩABCDΩELFH − 1

3
KξΩABCD

+
1
2
ξ(AB

ELΩCD)
FHΩELFH +

2
5
ξ(CD∇AB)K +

12
5
ξE(BCD∇A)

EK

−3ΩE(BCD∇A)
Eξ − 3

2
Ω(A

ELF ∇CDξB)ELF − 3
2
ΩF (A

EL∇D
F ξBC)EL

−9
2
Ω(AB

EL∇D
F ξC)ELF − 9

2
∇L(D∇C

EξAB)E
L − 3

2
∇L(D∇ELξABC)E

−6K∇E(DξABC)
E + 3ΩL(AB

E∇LF ξCD)EF − 3Ω(ABC
E∇LF ξD)ELF

−3κEL∇L(DΨABC)E + 3κ(A
E∇D

LΨBC)EL. (19c)

The equations presented in this section have been deduced using the
tensor algebra suite xAct for Mathematica—see [38].

4.2. Propagation of the Killing Spinor Equation

A straightforward consequence of the Killing spinor equation (1) in a vacuum
spacetime is that

�κAB = −ΨABCDκ
CD, (20)

where � ≡ ∇AA′∇AA′ . The latter equation is obtained by applying the dif-
ferential operator ∇AA′

to Eq. (1) and then using the vacuum commutator
relation for the spacetime Levi-Civita connection.

The wave equation (20) plays a role in the discussion of the propagation
of the Killing spinor equation. More precisely, one has the following result—cfr.
[23] for further details:

Lemma 7. Let κAB be a solution to Eq. (20). Then the corresponding spinor
fields HA′ABC and SAA′BB′ will satisfy the system of wave equations

�HA′ABC = 4
(
Ψ(AB

PQHC)PQA′ + ∇(A
Q′
SBC)Q′A′

)
, (21a)

�SAA′BB′ = −∇AA′
(
ΨB

PQRHB′PQR

)− ∇BB′
(
ΨA

PQRHA′PQR

)

+2ΨAB
PQSPA′QB′ + 2Ψ̄A′B′P

′Q′
SAP ′BQ′ . (21b)

The crucial observation is that the right-hand sides of Eqs. (21a) and
(21b) are homogeneous expressions of the unknowns and their first-order deriv-
atives. The hyperbolicity of Eqs. (21a) and (21b) imply the following result—
again, cfr. [23] for further details:

Proposition 8. The development (M, gμν) of an initial data set for the vacuum
Einstein field equations, (S, hab,Kab), has a Killing spinor in the domain of
dependence of U ⊂ S if and only if the following equations are satisfied on U :
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HA′ABC = 0, (22a)
∇HA′ABC = 0, (22b)
SAA′BB′ = 0, (22c)

∇SAA′BB′ = 0. (22d)

4.3. The Killing Spinor Data Equations

The Killing spinor data conditions obtained in Proposition 8 can be
re-expressed in terms of conditions on the spinor κAB which are intrinsic to the
hypersurface S. For this one uses the split of ξAA′ and HA′ABC given by Eqs.
(16a)–(16b). Extensive computations using the xAct suite for Mathematica
render the following result:

Theorem 9. Let (S, hab,Kab) be an initial data set for the Einstein vacuum
field equations, where S is a Cauchy hypersurface. Let U ⊂ S be an open set.
The development of the initial data set will then have a Killing spinor in the
domain of dependence of U if and only if

ξABCD = 0, (23a)

Ψ(ABC
FκD)F = 0, (23b)

3κ(A
E∇B

F ΨCD)EF + Ψ(ABC
F ξD)F = 0, (23c)

are satisfied on U . The Killing spinor is obtained by evolving (20) with initial
data satisfying conditions (23a)–(23c) and

∇κAB = −2
3
ξAB (24)

on U .

Remark 1. Conditions (23a)–(23c) are intrinsic to U ⊂ S and will be referred
to as the Killing spinor initial data equations. In particular, Eq. (23a), which
can be written as

∇(ABκCD) = 0, (25)

will be called the spatial Killing spinor equation, whereas (23b) and (23c) will
be known as the algebraic conditions.

Remark 2. Theorem 9 is an improvement on Proposition 6 of [23] where the
interdependence of the equations implied by (22a)–(22d) was not analysed.

Proof. The proof of Theorem 9 consists of a space spinor decomposition of the
conditions (22a)–(22d) and of an analysis of the dependencies of the resulting
conditions. All calculations are made on U ⊂ S.

• Decomposition of equation (22a). Splitting τF
A′
HA′ABC into irreducible

parts gives that (22a) is equivalent to

ξABCD = 0, (26a)

∇κAB = −2
3
ξAB . (26b)
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• Decomposition of equation (22b). It follows that

τD
A′∇HA′ABC = ∇(τDA′

HA′ABC) +HA′ABCKDF τ
FA′

.

Hence, under the condition (22a), the irreducible parts of τDA′∇HA′ABC

are given by

∇ξABCD = 0, (27a)

∇2κAB = −2
3
∇ξAB . (27b)

From the commutator (11a) together with (26a) and (26b) we get

∇ξABCD = ∇∇(ABκCD)

= 2Ψ(ABC
FκD)F − 1

3
Ω(ABξCD) − 1

3
ΩABCDξ

+
2
3
Ω(ABC

F ξD)F − 2
3
∇(ABξCD).

Equation (18c) and again (26a) and (26b) then yield

∇ξABCD = 4Ψ(ABC
FκD)F . (28)

Using the commutator (11a) one obtains that

∇ξ = ∇AB∇κAB − 1

3
Kξ +

2

3
KABξAB +

2

3
ΩABξAB

−ΩABCDξABCD − 1

2
KAB∇κAB (29a)

∇ξAB =
3

2
ΨABCDκCD − 1

2
KABξ − 1

3
KξAB +

1

2
KC

(AξB)C

+
3

4
KCDξABCD − 1

2
ξΩAB

−1

2
ξC

(AΩB)C +
3

4
ΩCDξABCD +

3

2
ξ(A

CDF ΩB)CDF +
1

2
ξCDΩABCD

−3

4
KC

(A∇κB)C + ∇C(A∇κB)
C (29b)

In terms of the normal derivative and the Sen connection, Eq. (20)
reads

∇2κAB = −2ΨABCDκ
CD −K∇κAB

−2
3
∇ABξ − 4

3
∇C(Aξ

C
B) − 2∇CDξABCD

+
1
3
KABξ − 2

3
KC

(AξB)C +KCDξABCD +
2
3
ΩABξ

+
4
3
ξC

(AΩB)C + 2ξABCDΩCD. (30)

It is worth stressing that Eqs. (29a), (29b) and (30) are valid not only on
U , but on the spacetime. Hence, it makes sense taking normal derivatives
of these equations. Using (29b), (26b) and (26a), the wave equation (20)
is seen to imply
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∇2κAB +
2
3
∇ξAB = −ΨABCDκ

CD +
4
9
KξAB +

1
3
ΩABξ + ξC

(AΩB)C

+
1
3
ΩABCDξ

CD − 2
3
∇ABξ − 2

3
∇C(Aξ

C
B).

Using Eqs. (18b), (26b), (26a), the latter equation reduces to (27b). This
far we have that for all solutions to (20), the system (22a), (22b) is equiv-
alent to the system (23a), (23b), (24).

• Decomposition of equation (22c). Splitting τCA′
τD

B′
SAA′BB′ into irreduc-

ible parts yields

∇(AB∇κCD) − ΩABCDξ +
4
3
K(ABC

F ξD)F

−K(ABC
F ∇κD)F − 4

3
∇(ABξCD) = 0, (31a)

2∇ξ − 4
3
KABξAB +KAB∇κAB = 0, (31b)

4
3
∇ABξ

AB +Kξ − 4
3
ΩABξAB + ΩAB∇κAB − ∇AB∇κAB = 0, (31c)

1
2
KBDξ − 2

3
KA

(BξD)A +
1
2
KA

(B∇κD)A − 2
3
KBDACξ

AC

+
1
2
KBDAC∇κAC +

2
3
∇ξBD − 1

2
∇2κBD + ∇BDξ = 0. (31d)

Using Eqs. (18a), (18c), (26a), (26b) and (27b), one sees that Eqs. (31a)–
(31c) simplify to

ΨF
(ABCκD)F = 0, (32a)

∇ξ = KABξAB , (32b)

∇ξBD = −1
2
KBDξ +KA

(BξD)A +KBDACξ
AC − ∇BDξ, (32c)

while Eq. (31d) is seen to be satisfied identically. Furthermore, employing
equations (18a), (18b), (29a), (26a), (26b) and (29b) one obtains Eq. (32b)
and (32c). Hence, they are a consequence of the commutators, (26b) and
(26a). One concludes that for all solutions to (20), the Eqs. (23a), (23b)
together with (24) are equivalent to (22a), (22b), (22c).

• Decomposition of equation (22d). A straightforward computation shows
that

τC
A′
τD

B′∇SAA′BB′ = ∇(τCA′
τD

B′
SAA′BB′)

+KCFSAA′BB′τD
B′
τFA′

+KDFSAA′BB′τC
A′
τFB′

.
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Hence, if condition (22c) holds, the irreducible parts of τC
A′
τD

B′

∇SAA′BB′ are ∇-derivatives of (31a)–(31d). Using Eq. (27b), these com-
ponents become

ΩABCD∇ξ + Ω(AB∇ξCD) − 2ΩF
(ABC∇ξD)F +

2
3
ξ(AB∇ΩCD)

−1
2
∇κ(AB∇ΩCD) + ξ∇ΩABCD +

4
3
ξF

(A∇ΩBCD)F

−(∇κF
(A)∇ΩBCD)F +

4
3
∇∇(ABξCD) − ∇∇(AB∇κCD) = 0, (33a)

2∇2ξ − 2KAB∇ξAB + (∇KAB)∇κAB − 4
3
ξAB∇KAB = 0, (33b)

ξ∇K +K∇ξ − 2ΩAB∇ξAB − 4
3
ξAB∇ΩAB + (∇κAB)∇ΩAB

+
4
3
∇∇ABξ

AB − ∇∇AB∇κAB = 0, (33c)

∇3κBD +
2
3
∇2ξBD =

4
3
ξA

(B∇κD)A + ξ∇κBD − 4
3
ξAC∇KBDAC

+(∇KA
(B)∇κD)A + (∇KBDAC)∇κAC +KBD∇ξ − 2KA

(B∇ξD)A

−2KBDAC∇AC + 2∇2ξBD + 2∇∇BDξ. (33d)

Now, using the commutator (11a), and Eqs. (27b) and (26b) it is easy so
see that

∇∇AB∇κCD = −2
3
∇∇ABξCD. (34)

Taking the normal derivative of the spacetime equations (29a)–(29b) and
using the relations (34), (18a), (18b), (26a), (26b), (27a) and (27b) one
gets

∇2ξ = ξAB∇KAB +KAB∇ξAB ,

∇2ξAB = −1
2
ξ∇KAB − ξC

(A∇KB)C +
1
3
ξAB∇K − 1

2
KAB∇ξ

+
1
3
K∇ξAB +KC

(A∇ξB)C − ΩC
(A∇ξB)C + ΩABCD∇ξCD

+ ξC
(A∇ΩB)C + ξCD∇ΩABCD − ∇∇ABξ.

Using these last two equations together with Eqs. (18a), (18c), (26a), (26b),
(27a), (27b) and (32b) one finds that the system (33a)–(33d) reduces to

4ΨF
(ABCξD)F + 6κF

(A∇ΨBCD)F = 0, (35a)

∇3κBD +
2
3
∇2ξBD = 0. (35b)

Taking the normal derivative of equation (30) and using Eqs. (18b), (26a),
(26b), (27a), (27b) and (32b) one gets Eq. (35b). Finally, using the Bianchi
equation (12a), one has that Eq. (35a) reduces to

3κ(A
E∇B

F ΨCD)EF + Ψ(ABC
F ξD)F = 0 (36)

This completes the proof. �
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Remark. Note that the result is independent of KAB and ΩAB .

4.3.1. The Killing Spinor Initial Data Conditions in Terms of the Levi-Civita
Connection. It should be stressed that the Killing spinor equations (23a)–
(23c) are truly intrinsic to the hypersurface S. This can be more easily seen
by expressing the Sen connection, ∇AB , in terms of the intrinsic (Levi-Civi-
ta) connection of the hypersurface, DAB , and the second fundamental form
KABCD. One obtains the following completely equivalent set of equations:

D(ABκCD) + Ω(ABC
EκD)E = 0,

Ψ(ABC
FκD)F = 0,

3κ(A
EDB

F ΨCD)EF − 3
4
ΨL(ABCD

HLκD)H − 3
4
ΨL(ABCDD)

FκL
F

+
3
4
Ψ(ABC

LΩD)FHLκ
FH +

3
2
Ψ(AB

HLκC
F ΩD)FHL − 3

2
ΨFH(A

LΩBCD)Lκ
FH

+
3
8
ΨFH(ABκCD)ΩFH +

3
4
ΨFH(ABΩCD)κ

FH = 0,

where the last expression was simplified using the first algebraic condition, and
the value of the Weyl spinor is expressed in terms of initial data quantities via
formulae (13a)–(13b).

4.4. The Integrability Conditions of the Spatial Killing Spinor Equation

For the rest of the paper we assume that the tensor Kab is symmetric—accord-
ingly, ΩAB = 0. The condition ξABCD ≡ ∇(ABκCD) = 0 does not immediately
give information about the other irreducible components of ∇ABκCD, namely
ξ and ξAB . However, using ξABCD = 0 and ΩAB = 0 in the relations (18a)–
(18c) one finds that ∇ABξCD can be written in terms of ∇ABξ and lower order
derivatives of κAB . Furthermore, using ξABCD = 0 in the relations (19a)–(19c),
we see that the second-order derivatives of ξ can be expressed in terms of lower
order derivatives of κAB . This yields the following result which will play a role
in the sequel:

Lemma 10. Assume that ∇(ABκCD) = 0, then

∇AB∇CD∇EFκGH = HABCDEFGH ,

where HABCDEFGH is a linear combination of κAB, ∇ABκCD and ∇AB

∇CDκEF with coefficients depending on ΨABCD, Ψ̂ABCD and KABCD.

Remark. It is important to point out that the assertion of the lemma is false
if ∇(ABκCD) �= 0.

5. The Approximate Killing Spinor Equation

In what follows we will regard the spatial Killing spinor equation (23a) as the
key condition of the Killing spinor initial data equations. Equation (23a) is an
overdetermined condition for the 3 (complex) components of the spinor κAB :
not every initial data set (S, hab,Kab) admits a solution. One would like to
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deduce a new equation which always has a solution and such that any solution
to Eq. (23a) is also a solution to the new equation.

5.1. The Approximate Killing Spinor Operator

Let S2 and S4 denote, respectively, the spaces of totally symmetric valence
2 and valence 4 spinors. Given ζABCD, χABCD ∈ S4, we introduce an inner
product in S4 via

〈ζABCD, χEFGH〉 =
∫

S
ζABCDχ̂

ABCDdμ,

where dμ denotes the volume form of the 3-metric hab. We introduce the spatial
Killing spinor operator Φ via

Φ : S2 → S4, Φ(κ)ABCD = ∇(ABκCD).

Now, consider the pairing

〈∇(ABκCD), ζEFGH〉 =
∫

S
∇(ABκCD)ζ̂

ABCDdμ

=
∫

S
∇ABκCD ζ̂

ABCDdμ.

The formal adjoint, Φ∗, of the spatial Killing operator can be obtained from
the latter expression by integration by parts. To this end we note the identity
∫

U
∇ABκCD ζ̂ABCDdμ−

∫

U
κAB ̂∇CDζABCDdμ+

∫

U
2κABΩCDF

Aζ̂BCDF dμ

=
∫

∂U
nABκCD ζ̂ABCDdS, (37)

with U ⊂ S, and where dS denotes the area element of ∂U , nAB is the spinorial
counterpart of its outward pointing normal, and ζABCD is a symmetric spinor.
From (37) it follows that

Φ∗ : S4 → S2, Φ∗(ζ)CD = ∇ABζABCD − 2ΩABF
(CζD)ABF . (38)

Definition. The composition operator L ≡ Φ∗ ◦ Φ : S2 → S2 given by

L(κCD) ≡ ∇AB∇(ABκCD) − ΩABF
(A∇|DF |κB)C − ΩABF

(A∇B)FκCD = 0,
(39)

will be called the approximate Killing spinor operator, and Eq. (39) the approx-
imate Killing spinor equation.

Remark. Note that every solution to the spatial Killing spinor equation (25)
is also a solution to Eq. (39).
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5.2. Ellipticity of the Approximate Killing Spinor Operator

As a prior step to the analysis of the solutions to the approximate Killing
spinor equation (39), we look first at its ellipticity properties.

Lemma 11. The operator L defined by Eq. (39) is a formally self-adjoint elliptic
operator.

Proof. The operator is by construction formally self-adjoint as it is given by the
composition of an operator and its formal adjoint. In order to verify ellipticity,
it suffices to look at the operator

L′(κ)CD ≡ ∂AB∂(ABκCD),

corresponding to the principal part of L in some Cartesian spin frame. In the
corresponding Cartesian coordinates (x1, x2, x3) one has that

∂AB =
1√
2

(−∂1 − i∂2 ∂3

∂3 ∂1 − i∂2

)
, ∂AB =

1√
2

(−∂1 + i∂2 ∂3

∂3 ∂1 + i∂2

)
.

In particular, ∂AB∂AB = Δ ≡ ∂2
1 +∂2

2 +∂2
3 , the flat Laplacian. One notes that

∂PQ∂(PQκAB) =
1
6
∂PQ∂PQκAB +

2
3
∂PQ∂P(AκB)Q +

1
6
∂PQ∂ABκPQ.

Now, writing

κ0 ≡ κ00, κ1 ≡ κ01, κ2 ≡ κ11,

one has that L′ can be expressed in matricial form as Aij∂i∂ju, where

Aij∂i∂j ≡ 1
12

×

⎛

⎜⎜
⎜⎜⎜⎜
⎝

7Δ − ∂2
3 −2∂1∂3 ∂2

2 − ∂2
1 0 −2∂2∂3 −2∂1∂2

−∂1∂3 6Δ + 2∂2
3 ∂1∂3 ∂2∂3 0 ∂2∂3

∂2
2 − ∂2

1 2∂1∂3 7Δ − ∂2
3 2∂1∂2 −2∂2∂3 0

0 2∂2∂3 2∂1∂2 7Δ − ∂2
3 −2∂1∂3 ∂2

2 − ∂2
1

−∂2∂3 0 −∂2∂3 −∂1∂3 6Δ + 2∂2
3 ∂1∂3

−2∂1∂2 ∂2∂3 0 ∂2
2 − ∂2

1 2∂1∂3 7Δ − ∂2
3

⎞

⎟⎟
⎟⎟⎟⎟
⎠

,

(40)

and

u ≡

⎛

⎜⎜⎜
⎜⎜⎜
⎝

Re(κ0)
Re(κ1)
Re(κ2)
Im(κ0)
Im(κ1)
Im(κ2)

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (41)

The symbol, l(ξi), of the operator given by (40) is then given by replacing ∂i

with ξi ∈ R
3. One finds that

det l(ξi) =
1
36
(
(ξ1)2 + (ξ2)2 + (ξ3)2

)6
,
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so that det l(ξi) = 0 if and only if ξi = 0. Accordingly, the operator L = Φ∗ ◦Φ
is elliptic. �

5.3. A Variational Formulation

We note that the approximate Killing spinor equation arises naturally from a
variational principle.

Lemma 12. The approximate Killing spinor equation (39) is the Euler-Lagrange
equation of the functional

J =
∫

S
∇(ABκCD)

̂∇ABκCDdμ. (42)

Proof. This is a direct consequence of the identity (37). �

6. Asymptotically Euclidean Manifolds

After having studied some formal properties of the Killing spinor initial data
equations (23a)–(23c),(24), and the approximate Killing spinor equation (39),
we proceed to analyse their solvability on asymptotically Euclidean mani-
folds. In order to do this we introduce some relevant terminology and ancillary
results.

6.1. General Assumptions

In what follows, we will be concerned with vacuum spacetimes arising as the
development of asymptotically Euclidean data sets. Let (S, hab,Kab), denote
a smooth initial data set for the vacuum Einstein field equations. The pair
(hab,Kab) satisfies on the 3-dimensional manifold S the vacuum constraint
equations

− 2r −Ka
aK

b
b +KabK

ab = 0, (43a)
DaKab −DbK

a
a = 0, (43b)

where r and D denote, respectively, the Ricci scalar and the Levi-Civita con-
nection of the negative definite 3-metric hab, while Kab corresponds to the
extrinsic curvature of S. The unusual coefficients in the formulae above come
from our normalisation of τμ. For an asymptotic end it will be understood
an open set diffeomorphic to the complement of a closed ball in R

3. In what
follows, the 3-manifold S will be assumed to be the union of a compact set
and two asymptotically Euclidean ends, i1, i2.

6.2. Weighted Sobolev Norms

In order to discuss the decays of the various fields on the 3-manifold S we
make use of weighted Sobolev spaces. In what follows, we follow the ideas of
[9] written in terms of the conventions of [3]. Choose an arbitrary point O ∈ S,
and let

σ(x) ≡ (1 + d(O, x)2
)1/2

,
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where d denotes the Riemannian distance function on S. The function σ is
used to define the following weighted L2 norm:

‖u‖δ ≡
⎛

⎝
∫

S
|u|2σ−2δ−3dx

⎞

⎠

1/2

, (44)

for δ ∈ R. In particular, if δ = −3/2 one recovers the usual L2 norm. Different
choices of origin give rise to equivalent weighted norms—as mentioned earlier,
the convention of indices used in the definition of the norm (44) follows the
one of Bartnik [3]. The fall-off conditions of the various fields will be expressed
in terms of weighted Sobolev spaces Hs

δ consisting of functions for which the
norm

‖u‖s,δ ≡
∑

0≤|α|≤s

‖Dαu‖δ−|α| < ∞,

with s a non-negative integer, and where α = (α1, α2, α3) is a multiindex,
|α| = α1 +α2 +α3. We say that u ∈ H∞

δ if u ∈ Hs
δ for all s. We will say that a

spinor or a tensor belongs to a function space if its norm does. For instance, the
notation ζAB ∈ Hs

δ is a shorthand notation for (ζAB ζ̂
AB + ζA

Aζ̂B
B)1/2 ∈ Hs

δ .
We will make use of the following result:

Lemma 13. Let u ∈ H∞
δ . Then u is smooth (i.e. C∞) over S and has a fall

off at infinity such that Dlu = o(rδ−|l|).

The smoothness of u follows from the Sobolev embedding theorems. The
proof of the behaviour at infinity of u can be found in [3]—cfr. Theorem 1.2
(iv)—while the decay for the derivatives follows from the definition of the
weighted Sobolev norms.

Remark. Here, r is a radial coordinate on the asymptotic end—see the next
section for details.

We also note the following multiplication lemma—cfr. e.g. Theorem 5.6
in [9].

Lemma 14. Let u ∈ H∞
δ1

, v ∈ H∞
δ2

. Then

uv ∈ H∞
δ1+δ2+ε, ε > 0.

Notation. We will often write u = o∞(rδ) for u ∈ H∞
δ at an asymptotic end.

For the present applications we will require a somehow finer multiplica-
tion lemma concerning the behaviour at infinity. For this we exploit the fact
that we are working with smooth functions. More precisely

Lemma 15. Let u = o∞(rδ1), v = o∞(rδ2) and w = O(rγ). Then

uv = o(rδ1+δ2), uw = o(rδ1+γ).
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Proof. Let ∂Sr denote the surfaces of constant r. For sufficiently large r (so
that one is in an asymptotic end), the surface ∂Sr has the topology of the
2-sphere. Now, the functions u, v are continuous and the surfaces ∂Sr are
compact. Therefore, for sufficiently large r the functions

f(r) ≡ max
∂Sr

|ur−δ1 |, g(r) ≡ max
∂Sr

|vr−δ2 |,

are finite and well defined. Furthermore rδ1 |u| ≤ f(r), rδ2 |v| ≤ g(r). By con-
struction, one has that f(r) = o(1) and g(r) = o(1)—that is, f, g → 0 for
r → ∞. One also has that |wr−γ | is bounded by a constant C. Hence,

|uv| ≤ f(r)g(r)rδ1+δ2 = o(rδ1+δ2),

|uw| ≤ f(r)rδ1 |w| ≤ Cf(r)rδ1+γ = o(rδ1+γ),

from where the desired result follows. �

Remark. The lemmas extend to symmetric spatial spinors with even number
of indices by the Cauchy–Schwartz inequality.

6.3. Decay Assumptions

As mentioned earlier, our analysis will be restricted to initial data sets (S, hab,
Kab) with two asymptotic ends. Without loss of generality one of the ends will
be denoted by the subscript/superscript + on the relevant objects, while those
of the other end by −. Often, when no confusion arises the subscript/super-
script will be dropped.

Remark. We do not need to assume any topological restriction apart from
paracompactness, orientability and the requirement of two asymptotically flat
ends. Hence, we can have an arbitrary number of handles. For black holes, this
means that we can handle Misner-type data with several black holes [39].

The standard assumption for asymptotic flatness is that on each end it
is possible to introduce asymptotically Cartesian coordinates xi

± with r =
((x1

±)2 +(x2
±)2 +(x3

±)2)1/2, such that the intrinsic metric and extrinsic curva-
ture of S satisfy

hij = −δij + o∞(r−1/2), (45a)

Kij = o∞(r−3/2). (45b)

Note that the decay conditions (45a) and (45b) allow for data containing non-
vanishing linear and angular momentum. For the purposes of our analysis, it
will be necessary to have a bit more information about the behaviour of lead-
ing terms in hij and Kij . More precisely, we will require the initial data to
be asymptotically Schwarzschildean in some suitable sense. For example, in [2]
the assumptions

hij = − (1 + 2m±r−1
)
δij + o∞(r−3/2), (46a)

Kij = o∞(r−5/2), (46b)
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have been used. This class of data can be described as asymptotically non-
boosted Schwarzschildean. Here, we consider a more general class of data which
include boosted Schwarzschild data. Following [6,26] we assume

hij = −
(

1 +
2A±
r

)
δij − α±

r

(
2xixj

r2
− δij

)
+ o∞(r−3/2), (47a)

Kij =
β±
r2

(
2xixj

r2
− δij

)
+ o∞(r−5/2), (47b)

where α± and β± are smooth functions on the 2-sphere and A± denotes a
constant. The functions α and β are related to each other via the vacuum
constraint equations (43a) and (43b). We will later need to be more specific
about their particular form. The decay assumption for the metric, Eq. (45a)
and hence also (47a), is included in the analysis of [9].

Important for our analysis is that boosted Schwarzschild data are of this
form—see [6]. It is noticed that a second fundamental form of the type given
by (47b) is, in general, not trace-free:

Ki
i =

β±
r2

+ o∞(r−5/2).

Henceforth, we drop the superscripts/subscripts ± for ease of presenta-
tion. If ± appears in any formula, + is assumed for the (+)-end, − for the
(−)-end. For the ∓ sign we assume the opposite.

6.4. ADM Mass and Momentum

The ADM energy, E, and momentum, pi, at each end are given by the integrals

E =
1

16π

∫

∂S∞

δij (∂ihjk − ∂khij)
xk

r
dS,

pi =
1
8π

∫

∂S∞

(Kij −Khij)
xj

r
dS,

so that the ADM 4-momentum covector is given by pμ = (E, pi). In what
follows it will be assumed that pμ is timelike—that is, pμp

μ > 0. The need of
this assumption will become clear in the sequel. From the ADM 4-momentum,
we define the constants

m ≡ √
pνpν , p2 ≡ E2 −m2.

6.5. Asymptotically Schwarzschildean Data

Boosted Schwarzschild data sets are initial data for the Schwarzschild space-
time for which pi �= 0. They satisfy the decay assumptions (47a)–(47b). This
type of data satisfy
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A =
m√

1 − v2
,

α = 2m
(

1 + 2
(n · v)2
1 − v2

)(
1 +

(n · v)2
1 − v2

)−1/2

− 2m√
1 − v2

,

β = 2m
n · v

1 − v2

(
3
2

+
(n · v)2
1 − v2

)(
1 +

(n · v)2
1 − v2

)−3/2

,

where ni ≡ xi/r, n · v ≡ nivi, v2 ≡ δijvivj , vi is a constant 3-covector—cfr.
[6], and m± = m. Note that if vi = 0 then (47a)–(47b) reduce to (46a)–(46b).
It can be checked that

E =
m√

1 − v2
, pi =

mvi√
1 − v2

.

Rewriting this in terms of (E, pi), we get

A = E, α =
2m2 + 4(n · p)2
√
m2 + (n · p)2 − 2E, β =

(n · p)E(3m2 + 2(n · p)2)
(m2 + (n · p)2)3/2

, (48)

where n · p = nipi = r−1xipi.

Assumption. In the sequel, we will restrict our analysis to initial data sets
which are asymptotically Schwarzschildean to the order given by (47a)–(47b).
For any asymptotically flat data that admit ADM 4-momentum, one can com-
pute (E, pi), and then try to find coordinates that cast the metric and extrinsic
curvature into the form (47a)–(47b) with (A,α, β) given by (48) with m = m±.
If this is possible, we will say that the data are asymptotically Schwarzschil-
dean. We expect this to be the case for a large class of data. The initial data
sets excluded by this assumption will be deemed pathological. Examples of
such pathological cases can be found in [26]. We stress that all data of the
form (46a)–(46b) are included in our more general analysis.

The need to restrict our analysis to asymptotically Schwarzschildean data
as defined in the previous paragraph will become evident in the sequel, where
we need to find an asymptotic solution to the spatial Killing spinor equation.

7. Asymptotic Behaviour of the Spatial Killing Spinors

In this section we discuss in some detail the asymptotic behaviour of solutions
to the spatial Killing spinor equation on an asymptotically Euclidean mani-
fold. We begin by studying the asymptotic behaviour of the appropriate Killing
spinor in the Kerr spacetime. Then, we will impose the same asymptotics on
the approximate Killing spinor on a slice of a much more general spacetime.
In what follows, we concentrate our discussion on a particular asymptotic end.

7.1. Asymptotic Form of the Stationary Killing Vector

As seen in Sect. 2, the Killing spinor of the Kerr spacetime gives rise to its
stationary Killing vector ξμ. It will be assumed that the spacetime is such
that pμ = (E, pi) is timelike at each asymptotic end. If this is the case, then
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pμ/
√
pνpν gives the asymptotic direction of the stationary Killing vector at

each end—see, e.g. [4]. Let

m ≡ √
pνpν , p2 ≡ E2 −m2.

Recall now, that ξ and ξAB denote the lapse and shift of the spinorial counter-
part, ξAA′

, of the Killing vector ξμ. One finds that for non-boosted initial data
sets of the form (46a)–(46b), one has in terms of the asymptotic Cartesian
coordinates and spin frame, that

ξ = ±
√

2 + o∞(r−1/2), ξAB = o∞(r−1/2).

The factor of
√

2 arises due to the particular normalisations used in the space
spinor formalism. This particular form of the asymptotic behaviour of the
Killing vector has been discussed in [2].

Now consider the more general case given by (47a)–(47b). Again, adopt-
ing asymptotically Cartesian coordinates, we extend pi to a constant covec-
tor field on the asymptotic end. In terms of the associated asymptotically
Cartesian spin frame, we then define pAB ≡ σi

ABpi. One finds that

ξ = ±
√

2E
m

+ o∞(r−1/2), ξAB = ±
√

2pAB

m
+ o∞(r−1/2). (49)

We see that the conditions (49) are well defined even if we do not have
a Killing vector in the spacetime. Hence, for the general case when the met-
ric satisfies (47a)–(47b) and the ADM 4-momentum is well defined, we can
still impose the asymptotics (49) for our approximate Killing spinor. We will,
however, need to assume that the functions in the metric are given by (48).
Otherwise, we will not be able to assume ξABCD ∈ H∞

−3/2, as we will do in
the next section. We will later see that this condition is important for the
solvability of the elliptic equation (39).

7.2. Asymptotic Form of the Spatial Killing Spinor

In the sequel, given an initial data set (S, hab,Kab) satisfying the decay con-
ditions (47a)–(47b) with A, α and β given by (48) with m = m±, it will be
necessary to show that it is always possible to solve the equation

∇(ABκCD) = o∞(r−3/2), (50)

order by order without making any further assumptions on the data. A direct
calculation allows us to verify that

Lemma 16. Let (S, hab,Kab) denote an initial data set for the vacuum Einstein
field equations satisfying at each asymptotic end the decay conditions (47a)–
(47b) with A, α and β given by (48) and m the ADM mass of the respective
end. Then
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κAB = ∓
√

2E
3m

(
1 +

2E
r

)
xAB

±2
√

2
3m

(

1 +
4E
r

− m2 + 2(n · p)2
√
m2 + (n · p)2r

)

pQ(AxB)
Q + o∞(r−1/2),

(51)

with xAB as in (14), and n · p = r−1xABpAB satisfies equation (50).

Remark. Formula (51) implies the following expansions for ξ and ξAB:

ξ = ±
√

2E

m
∓

√
2E(m2 + 2(n · p)2)

m
√

m2 + (n · p)2
r−1 + o∞(r−3/2), (52a)

ξAB = ±
(

−2
√

2E

m
+

√
2(E2 + 4(n · p)2)

m
√

m2 + (n · p)2
+

mE2

√
2(m2 + (n · p)2)3/2

)

(n · p)r−2xAB

±
(√

2

m
+

2
√

2E

mr
− 2

√
2(m2 + 2(n · p)2)

m
√

m2 + (n · p)2r

)

pAB + o∞(r−3/2). (52b)

In the case of non-boosted data the expansions (51), (52a) and (52b) reduce
to

κAB = ∓
√

2
3

(
1 +

2m
r

)
xAB + o∞(r−1/2),

ξ = ±
√

2 ∓
√

2mr−1 + o∞(r−3/2),

ξAB = o∞(r−3/2),

as discussed in [2].

7.3. Existence and Uniqueness of Spinors with Killing Spinor Asymptotics

In this section we prove that given a spinor κAB satisfying equation (49) and
(50), then the asymptotic expansion (51) is unique up to a translation.

Theorem 17. Assume that on an asymptotic end of the slice S, one has an
asymptotically Cartesian coordinate system such that (47a)–(47b) hold. Then
there exists

κAB = o∞(r3/2), (53)

such that

ξABCD = o∞(r−3/2), ξAB = ±
√

2pAB

m
+ o∞(r−1/2),

ξ = ±
√

2E
m

+ o∞(r−1/2). (54)

The spinor κAB is unique up to order o∞(r−1/2), apart from a (complex) con-
stant term.

Remark 1. The complex constant term arising in Theorem 17 contains six
real parameters. In the sequel, given a particular choice of asymptotically
Cartesian coordinates and frame, we will set this constant term to zero. Note
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that a change of asymptotically Cartesian coordinates would introduce a sim-
ilar term containing only three real parameters—which by construction could
be removed by a suitable choice of gauge. In what follows, we will use coordi-
nate independent expressions, and therefore, this translational ambiguity will
not affect the result.

Remark 2. Note that ξABCD = o∞(r−3/2) implies ξABCD ∈ L2. The condi-
tions in Theorem 17 are coordinate independent.

Proof. A direct calculation shows that the expansion (51) yields (52a), (52b)
and ξABCD = o∞(r−3/2). Hence, (51) gives a solution of the desired form.
In order to prove uniqueness we make use of the linearity of the integrability
conditions (18a)–(18c) and (19a)–(19c). Note that the translational freedom
gives an ambiguity of a constant term in κAB. Let

κ̊AB ≡ ∓
√

2E
3m

(
1 +

2E
r

)
xAB

±2
√

2
3m

(

1 +
4E
r

− m2 + 2(n · p)2
√
m2 + (n · p)2r

)

pQ(AxB)
Q. (55)

Let κ̆AB, be an arbitrary solution to the system (49), (50). Furthermore, let
κAB ≡ κ̆AB − κ̊AB. We then have

ξABCD =o∞(r−3/2), ξAB = o∞(r−1/2), ξ = o∞(r−1/2), κAB =o∞(r3/2).

To obtain the desired conclusion we only need to prove that κAB = CAB +
o∞(r−1/2), where CAB is a constant. This is equivalent to DABκCD = o∞
(r−3/2). Note that we now have coordinate independent statements to prove.

We note that from (47a)–(47b) it follows that

KABCD = o∞(r−2+ε), ΨABCD = o∞(r−3+ε),

with ε > 0. From (17) and Lemma 14 we have

DABκCD

= ξABCD − 1
3
εA(CξD)B − 1

3
εB(CξD)A − 1

3
εA(CεD)Bξ −KAB(C

EκD)E

= o∞(r−1/2+ε).

Integrating the latter yields

κAB = o∞(r1/2+ε).

The constant of integration is incorporated in the remainder term. Repeating
this procedure allows to gain an ε in the decay so that

DABκCD = o∞(r−1/2), κAB = o∞(r1/2).
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Estimating all terms in (19a), (19b) and (19c) gives

∇AB∇ABξ = ξAB∇ABK + o∞(r−7/2)

= o∞(r−7/2+ε), (56a)

∇C
(A∇B)Cξ =

1
2
ΩABCD∇CDξ − 1

3
K∇ABξ

= o∞(r−7/2+ε), (56b)

∇(AB∇CD)ξ = +
1
2
Ψ̂ABCDξ − 5

2
ΨABCDξ − 2

3
Ψ̂(ABC

EξD)E − 10
3

Ψ(ABC
EξD)E

+ ΩABCDELξ
EL +

2
5
ξ(CD∇AB)K − 3ΩE(BCD∇A)

Eξ

− 3κEL∇L(DΨABC)E + 3κ(A
E∇D

LΨBC)EL + o∞(r−7/2)

= o∞(r−7/2+ε). (56c)

Hence, ∇AB∇CDξ = o∞(r−7/2+ε), and therefore DABDCDξ = o∞(r−7/2+ε).
Integrating this yields DABξ = o∞(r−5/2+ε). In this step the constants of
integration are forced to vanish by the condition DABξ = o∞(r−3/2), which is
a consequence of ξ = o∞(r−1/2). Integrating DABξ = o∞(r−5/2+ε) and using
ξ = o∞(r−1/2) to remove the constants of integration yields

ξ = o∞(r−3/2+ε).

Estimating all terms in (18a), (18b) and (18c) yields

∇ABξAB = o∞(r−7/2+ε), (57a)

∇C
(AξB)C =

3
2
ΨABCDκ

CD − 2
3
KξAB − 1

2
ΩABCDξ

CD + ∇ABξ + o∞(r−5/2)

= o∞(r−5/2+ε), (57b)

∇(ABξCD) = 3ΨE(ABCκD)
E − ΩE(ABCξD)

E + o∞(r−5/2)

= o∞(r−5/2+ε). (57c)

Hence, ∇ABξCD = o∞(r−5/2+ε), and therefore DABξCD = o∞(r−5/2+ε). Inte-
grating and using ξAB = o∞(r−1/2) to remove the constants of integration
yields

ξAB = o∞(r−3/2+ε).

Now,

DABκCD

= ξABCD − 1
3
εA(CξD)B − 1

3
εB(CξD)A − 1

3
εA(CεD)Bξ −KAB(C

EκD)E

= o∞(r−3/2+ε).

Integrating the latter we get

κAB = CAB + o∞(r−1/2+ε),
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where CAB is a constant in some frame. To get a frame independent statement
one can still use the estimate κAB = o∞(rε). Re-evaluating the estimates (56a),
(56b) and (56c) yields

∇AB∇ABξ = o∞(r−7/2),

∇C
(A∇B)Cξ = o∞(r−9/2+ε),

∇(AB∇CD)ξ = o∞(r−7/2).

Hence, one obtains

∇AB∇CDξ = o∞(r−7/2).

Integrating as before, we get

ξ = o∞(r−3/2).

Finally, we can reevaluate the estimates (57b) and (57c), to get

∇C
(AξB)C = o∞(r−5/2),

∇(ABξCD) = o∞(r−5/2).

Combining this with (57a), we obtain

∇ABξCD = o∞(r−5/2).

Integrating as before, we get

ξAB = o∞(r−3/2).

Hence,

DABκCD = ξABCD − 1
3
εA(CξD)B− 1

3
εB(CξD)A− 1

3
εA(CεD)Bξ −KAB(C

EκD)E

= o∞(r−3/2),

from where the result follows. �

From the asymptotic solutions we can obtain a globally defined spinor
κ̊AB on S that will act as a seed for our approximate Killing spinor.

Corollary 18. There are spinors κ̊AB, defined everywhere on S, such that the
asymptotics at each end is given by (51), where opposite signs are used at each
end. Different choices of κ̊AB can only differ by a spinor in H∞

−1/2.

Remark. The opposite signs at each end are motivated by looking at the
explicit example of standard Kerr data.

Proof. Theorem 17 gives the existence at each end. Smoothly cut off these
functions, and paste them together. This gives a smooth spinor κ̊AB defined
everywhere on S. Furthermore ∇(ABκ̊CD) ∈ H∞

−3/2. �



Vol. 11 (2010) Construction of a Geometric Invariant 1259

8. The Approximate Killing Spinor Equation in Asymptotically
Euclidean Manifolds

In this section we study the invertibility properties of the approximate Killing
spinor operator L : S2 → S2 given by Eq. (39) on a manifold S which is
asymptotically Euclidean in the sense discussed in Sect. 6. In order to do so,
we first present some adaptations to our context of results for elliptic equations
that can be found in [9,13,35].

8.1. Ancillary Results of the Theory of Elliptic Equations on Asymptotically
Euclidean Manifolds

8.1.1. Asymptotic Homogeneity of L. Let u be the vector given by Eq. (41).
The elliptic operator defined by (39) can be written matricially in the form

(Aij + aij
2 )DiDju+ ai

1Diu+ a0u = 0,

where Aij corresponds to the matrix associated with the elliptic operator with
constant coefficients L′ given by Eq. (40), and aij

2 , aj
1, a0 are matrix-valued

functions such that

aij
2 ∈ H∞

−1/2, aj
1 ∈ H∞

−3/2, a0 ∈ H∞
−5/2.

Using the terminology of [9,35] we say that L is an asymptotically homoge-
neous elliptic operator.3 This is the standard assumption on elliptic operators
on asymptotically Euclidean manifolds. It follows from [9], Theorem 6.3 that

Theorem 19. The elliptic operator

L : H2
δ → H0

δ−2,

with δ is not a negative integer is a linear bounded operator with finite dimen-
sional Kernel and closed range.

8.1.2. The Kernel of L. We investigate some relevant properties of the Kernel
of L. This, in turn, requires an analysis of the Kernel of the operator of the
Killing spinor equation (25).

The following is an adaptation to the smooth spinorial setting of an ancil-
lary result from [13].4

Theorem 20. Let νA1B1···ApBp
be a C∞ spinorial field over S such that

∇Em+1Fm+1 · · · ∇E1F1νA1B1···ApBp
= HEm+1Fm+1···E1F1A1B1···ApBp

with m, p non-negative integers, and where HEm+1Fm+1···E1F1A1B1···ApBp

is a linear combination of νA1B1···ApBp
, ∇E1F1νA1B1···ApBp

, . . . ,∇EmFm
· · ·

3 The sharp conditions for a second-order elliptic operator to be asymptotically homogeneous
are that

aij
2 ∈ H∞

δ , ai
1 ∈ H∞

δ−1, a0 ∈ H∞
δ−2,

for δ < 0. As one sees, our operator L satisfies these conditions with a margin.
4 The hypotheses in [13] are much weaker than the ones presented here. The adaptation to
the smooth setting has been chosen for simplicity.
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∇E1F1νA1B1···ApBp
with coefficients bk where k denotes the order of the deriv-

ative the coefficient is associated with. If bk ∈ H∞
δk

with

k −m− 1 > δk, 0 ≤ k ≤ m

and νA1B1···ApBp
∈ H∞

β , β < 0, then

νA1B1···ApBp
= 0 on S.

This last result, together with Lemma 10 allows to show that there are
no non-trivial Killing spinor candidates that go to zero at infinity—in [13] an
analogous result has been proved for Killing vectors. More precisely,

Proposition 21. Let νAB ∈ H∞
−1/2 such that ∇(ABνCD) = 0. Then νAB = 0

on S.

Proof. From Lemma 10 it follows that ∇AB∇CD∇EF νGH can be expressed as
a linear combination of lower order derivatives with smooth coefficients with
the proper decay. Thus, Theorem 20 applies with m = 2 and one obtains the
desired result. �

We are now in the position to discuss the Kernel of the approximate
Killing spinor operator in the case of spinor fields that go to zero at infinity.
The following is the main result of this section:

Proposition 22. Let νAB ∈ H∞
−1/2. If L(νAB) = 0, then νAB = 0.

Proof. Using the identity (37) with ζABCD = ∇(ABνCD) and assuming that
L(νCD) = 0, one obtains

∫

S
∇ABνCD ̂∇(ABνCD)dμ =

∫

∂S∞

nABνCD ̂∇(ABνCD)dS,

where ∂S∞ denotes the sphere at infinity. Assume now, that νAB ∈ H∞
−1/2. It

follows that ∇(ABνCD) ∈ H∞
−3/2 and furthermore, using Lemma 15 that

nABνCD ̂∇(ABνCD) = o(r−2).

The integration of the latter over a finite sphere of sufficiently large radius is
of type o(1). Thus one has that

∫

∂S∞

nABνCD ̂∇(ABνCD)dS = 0,

from where ∫

S
∇ABνCD ̂∇(ABνCD)dμ = 0.

Therefore, one concludes that

∇(ABνCD) = 0.

That is, νAB has to be a spatial Killing spinor. Using Proposition 21 it follows
that νAB = 0 on S. �
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8.1.3. The Fredholm Alternative and Elliptic Regularity. We will make use of
the following adaptation of the Fredholm alternative for second-order asymp-
totically homogeneous elliptic operators on asymptotically Euclidean mani-
folds—cfr. [9]:

Theorem 23. Let A be an asymptotically homogeneous elliptic operator of order
2 with smooth coefficients. Given δ not a negative integer, the equation

A(ζAB) = fAB , fAB ∈ H0
δ−2,

has a solution ζAB ∈ H2
δ if

∫

S
fAB ν̂

ABdμ = 0

for all νAB satisfying

νAB ∈ H0
−1−δ, A∗(νAB) = 0,

where A∗ denotes the formal adjoint of A.

In order to assert the regularity of solutions, we will need the following
elliptic estimate—see expression (62) in the proof of Theorem 6.3 of [9]:

Theorem 24. Let A be an asymptotically homogeneous elliptic operator of order
2 with smooth coefficients. Then for any δ ∈ R and any s ≥ 2 there exists a
constant C such that for every ζAB ∈ Hs

loc ∩H0
δ , the following inequality holds:

‖ζAB‖Hs
δ

≤ C
(
‖A(ζAB)‖Hs−2

δ−2
+ ‖ζAB‖Hs−2

δ

)
.

Notation. Hs
loc denotes the local Sobolev space. That is, u ∈ Hs

loc if for an
arbitrary smooth function v with compact support, uv ∈ Hs.

Remark. If A has smooth coefficients, and A(ζAB) = 0 then it follows that all
the Hs

δ norms of ζAB are bounded by the H0
δ norm. Thus, it follows that if a

solution to A(ζAB) = 0 exists, it must be smooth—elliptic regularity.

8.2. Existence of Approximate Killing Spinors

We are now in the position of providing an existence proof to solutions to Eq.
(39) with the asymptotic behaviour discussed in Sect. 7.2.

Theorem 25. Given an asymptotically Euclidean initial data set (S, hab,Kab)
satisfying the asymptotic conditions (47a)–(47b) and (48), there exists a
smooth unique solution to Eq. (39) with asymptotic behaviour at each end
given by (51).

Proof. We consider the Ansatz

κAB = κ̊AB + θAB , θAB ∈ H2
−1/2,

with κ̊ given by Corollary 18. Substitution into Eq. (39) renders the following
equation for the spinor θAB :

L(θCD) = −L(̊κCD). (58)
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By construction it follows that

∇(ABκ̊CD) ∈ H∞
−3/2,

so that

FCD ≡ −L(̊κCD) ∈ H∞
−5/2.

Using Theorem 23 with δ = −1/2, one concludes that Eq. (58) has a unique
solution if FAB is orthogonal to all νAB ∈ H0

−1/2 in the Kernel of L∗ = L.
Proposition 21 states that this Kernel is trivial. Thus, there are no restrictions
on FAB and Eq. (58) has a unique solution as desired. Due to elliptic regularity,
any H2

−1/2 solution to the previous equation is in fact a H∞
−1/2 solution—cfr.

Lemma 24. Thus, θAB is smooth. To see that κAB does not depend on the
particular choice of κ̊AB , let κ̊′

AB , be another choice. Let κ′
AB be the corre-

sponding solution to (58). Due to Corollary 18, we have κ̊AB − κ̊′
AB ∈ H∞

−1/2.
Hence, we have κAB − κ′

AB ∈ H∞
−1/2 and L(κAB − κ′

AB) = 0. According to
Proposition 22, κAB − κ′

AB = 0, and the proof is complete. �

The following is a direct consequence of Theorem 25, and will be crucial
for obtaining an invariant characterisation of Kerr data:

Corollary 26. A solution, κAB, to Eq. (39) with asymptotic behaviour given by
(51) satisfies J < ∞ where J is the functional given by Eq. (42).

Proof. The functional J given by Eq. (42) is the L2 norm of ∇(ABκCD). Now,
if κAB is the solution given by Theorem 25, one has that ∇(ABκCD) ∈ H0

−3/2.
In Bartnik’s conventions one has that

‖∇(ABκCD)‖L2 = ‖∇(ABκCD)‖H0
−3/2

< ∞.

The result follows. �

Remark. Again, let κAB be the solution to Eq. (39) given by Theorem 25.
Using the identity (37) with ζABCD = ∇(ABκCD) one obtains that

J =
∫

∂S∞

nABκCD ̂∇(ABκCD)dS < ∞.

Thus, the invariant J evaluated at the solution κAB given by Theorem 25
can be expressed as a boundary integral at infinity. A crude estimation of
the integrand of the boundary integral does not allow directly to establish
its boundedness. This follows, however, from Corollary 26. Hence, the leading
order terms of nABκCD and ∇(ABκCD) are orthogonal.

For an independent proof of this fact, see Appendix A.
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9. The Geometric Invariant

In this section we show how to use the functional (42) and the algebraic con-
ditions (23b) and (23c) to construct the desired geometric invariant measuring
the deviation of (S, hab,Kab) from Kerr initial data. To this end, let κAB

be a solution to Eq. (39) as given by Theorem 25. Furthermore, let ξAB ≡
3
2∇P

(AκB)P . Define

I1 ≡
∫

S
Ψ(ABC

FκD)F Ψ̂ABCGκ̂D
Gdμ, (59a)

I2 ≡
∫

S

(
3κ(A

E∇B
F ΨCD)EF + Ψ(ABC

F ξD)F

)

×
(
3κ̂AP ̂∇BQΨCD

PQ + Ψ̂ABCP ξ̂D
P

)
dμ. (59b)

The geometric invariant is then defined by

I ≡ J + I1 + I2. (60)

Remark. It should be stressed that by construction I is coordinate independent
and that I ≥ 0. We also have the following lemma.

Lemma 27. The geometric invariant given by (60) is finite for an initial data
set (S, hab,Kab) satisfying the decay conditions (47a)–(47b).

Proof. From Corollary 26 we already have J < ∞. From the form of the decay
assumptions (47a)–(47b) we have ΨABCD ∈ H∞

−3+ε, ε > 0. By Lemma 14 and
κAB ∈ H∞

1+ε we have

Ψ(ABC
FκD)F ∈ H∞

−3/2.

Thus, again one finds that I1 < ∞. A similar argument shows that

3κ(A
E∇B

F ΨCD)EF + Ψ(ABC
F ξD)F ∈ H∞

−3/2,

from where it follows that I2 < ∞. Hence, the invariant (60) is finite and well
defined. �

Finally, we are in the position of stating the main result of this article.
It combines all the results in the sections 2 to 7.

Theorem 28. Let (S, hab,Kab) be an asymptotically Euclidean initial data set
for the Einstein vacuum field equations satisfying on each of its two asymp-
totic ends the decay conditions (47a)–(47b) and (48) with a timelike ADM
4-momentum. Furthermore, assume that ΨABCD �= 0 and ΨABCDΨABCD �= 0
everywhere on S. Let I be the invariant defined by Eqs. (42), (59a), (59b)
and (60), where κAB is given as the only solution to Eq. (39) with asymptotic
behaviour on each end given by (51). The invariant I vanishes if and only if
(S, hab,Kab) is locally an initial data set for the Kerr spacetime.
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Proof. Due to our smoothness assumptions, if I = 0 it follows that Eqs. (23a)–
(23c) are satisfied on the whole of S. Thus, the development of (S, hab,Kab)
will have, at least in a slab, a Killing spinor. Accordingly, it must be of Petrov
type D, N or O on the slab—see Theorem 1. The types N and O are excluded
by the assumptions ΨABCD �= 0 and ΨABCDΨABCD �= 0 on S—by continuity,
these conditions will also hold in a suitably small slab. Thus, the development
of the data can only be of Petrov type D—at least on a suitably small slab.

Now, from the general theory on Killing spinors, we know that ξAA′ =
∇A′ QκAQ will be, in general, a complex Killing vector. In particular, both the
real and imaginary parts of ξAA′ will be real Killing vectors. The Killing initial
data for ξAA′ on S consist of the fields ξ and ξAB on S calculated from κAB

using the expressions (15a) and (15b). It can be verified that

ξ − ξ̂ = o∞(r−1/2), ξAB + ξ̂AB = o∞(r−1/2).

The latter corresponds to the Killing initial data for the imaginary part of ξAA′ .
It follows that the imaginary part of ξAA′ goes to zero at infinity. However,
there are no non-trivial Killing vectors of this type [4,13]. Thus, ξAA′ is a real
Killing vector. This means that the spacetime belongs, at least in a suitably
small slab of S, to the generalised Kerr-NUT class. By construction, it tends
to a time translation at infinity so that, in fact, it is a stationary Killing vector.
By virtue of the decay assumptions (47a)–(47b) the development of the initial
data will be asymptotically flat, and it can be verified that the Komar mass of
each end coincides with the corresponding ADM mass—these are non-zero by
assumption. Hence, Theorem 6 applies and the slab of S is locally isometric
to the Kerr spacetime. �

Corollary 29. If furthermore, the slice S is assumed, a priori, to have the same
topology as a slice of the Kerr spacetime one has that the invariant I vanishes
if and only if (S, hab,Kab) is an initial data set for the Kerr spacetime.

Proof. This follows from the uniqueness of the maximal globally hyperbolic
development of Cauchy data—see [12]. �

Remark 1. A improvement of Theorem 6 in which no a priori restrictions on
the Petrov type of the spacetime are made—see the remark after Theorem 6—
would allow to remove the conditions ΨABCD �= 0 and ΨABCDΨABCD �= 0,
and thus obtain a stronger characterisation of Kerr data.

Remark 2. It is of interest to analyse whether the same conclusion of the cor-
ollary can be obtained without making a priori assumptions on the topology
of the 3-manifold.

10. Future Prospects

We have seen that one can construct a geometric invariant for a slice with
two asymptotically flat ends. A natural extension of this work would be to
also allow asymptotically hyperboloidal and asymptotically cylindrical slices.
Furthermore, one would like to analyse parts of manifolds in the same way.
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In this case we need to find appropriate conditions that can be imposed on
κAB on the boundary of the region we would like to study. A typical scenario
would be to study the domain of outer communication for a black hole, or the
exterior of a star.

Another natural question to be asked is how the geometric invariant
behaves under time evolution. A great part of this problem is to obtain a time
evolution of κAB such that it satisfies (39) on every leaf of the foliation. If
the geometric invariant is small, one could instead use (20) as an approximate
evolution equation for the approximate Killing spinor. In this case the system
(21a), (21b) could be used to gain control over the evolution.

If some type of constancy or monotonicity property could be established
for the geometric invariant, this would be a useful tool for studying non-linear
stability of the Kerr spacetime and also in the numerical evolutions of black
hole spacetimes.
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Appendix A. An Alternative Estimation of the Boundary
Integral

In this section we present an alternative argument to show that the boundary
integral

∫

∂Sr

nABκCD ̂∇(ABκCD)dS,

is finite as r → ∞—cfr. the remark after Corollary 26. For simplicity, we only
consider the non-boosted case, so we have

κAB = ±
√

2
3
rnAB +O(1).

A similar, but much lengthier argument can be implemented in the boosted
case. It is only necessary to consider the finiteness of the integral

r

∫

∂Sr

nABnCD ̂∇(ABκCD)dS as r → ∞. (61)

We begin by investigating the multipole structure of ξABCD ≡
∇(ABκCD) in an asymptotically flat end U ⊂ S. The equation satisfied by
ξABCD is

∇ABξABCD − 2ΩABF
(CξD)ABF = 0, (62)
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—see Eq. (39). As U ≈ (r0,∞)×S
2, with r0 ∈ R, it will be convenient to work

in spherical coordinates. For simplicity, we adopt the point of view that all the
angular dependence of the various functions involved is expressed in terms of
(spin-weighted) spherical harmonics. Accordingly, we use the differential oper-
ators ð, ð̄ ∈ TS

2—see, e.g. [41]. Let ω+, ω− ∈ T∗
S

2 denote the 1-forms dual
to ð and ð̄:

〈ð, ω+〉 = 1, 〈ð̄, ω−〉 = 1.

In addition, we consider ∂r ∈ TU . The operators ð, ð̄ are extended into TU by
requiring that

[ð, ∂r] = [ð̄, ∂r] = 0.

Again, let dr ∈ T∗U denote the form dual to ∂r. One has that

δijdxi ⊗ dxj = dr ⊗ dr + r2 (ω+ ⊗ ω− + ω− ⊗ ω+).

Now, recalling that

hij = −
(

1 +
2m
r

)
δij + o∞(r−3/2),

we introduce the following frame and coframe:

e01 =
(
1 − m

r

)
∂r + o∞(r−3/2), σ01 =

(
1 +

m

r

)
dr + o∞(r−3/2)

e00 =
(
1 − m

r

) 1
r

ð + o∞(r−5/2), σ00 =
(
1 +

m

r

)
rω+ + o∞(r−1/2)

e11 =
(
1 − m

r

) 1
r

ð̄ + o∞(r−5/2), σ11 =
(
1 +

m

r

)
rω− + o∞(r−1/2).

The fields eAB and σAB satisfy

〈eAB , σ
CD〉 = hAB

CD, h = hABCDσ
AB ⊗ σCD.

where hABCD ≡ −εA(CεD)B . Let μAB denote a smooth spinorial field. Its
covariant derivative DEFμAB can be computed using

DEFμAB = eEF (μAB) − ΓEF
Q

AμQB − ΓEF
Q

BμAQ,

where ΓEF
Q

A denote the spin coefficients of the frame eAB .
The components of the spinor field ξABCD with respect to the frame eAB

can be written as

ξABCD = ξ0ε
0
ABCD + ξ1ε

1
ABCD + ξ2ε

2
ABCD + ξ3ε

3
ABCD + ξ4ε

4
ABCD,

where

εkABCD ≡ ε(A
(EεB

F εC
GεD)

H)k ,

where (EFGH)k means that after symmetrisation, k indices are set to 1. In
terms of this formalism, Eq. (62) is given by

εAP εBQePQ(ξABCD) − 4ΓABQ
(AξBCD)Q + 2KABQ

(AξBCD)Q

−2ΩABQ
(CξD)ABQ = 0. (63)
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Recalling that by assumption ξABCD = o∞(r−3/2), a lengthy but straightfor-
ward calculation shows that (63) implies the equations

∂rξ1 − 1
r

ð̄ξ0 +
1
6

1
r

ðξ2 +
3
r

(
1 +

m

r

)
ξ1 = o∞(r−5), (64a)

∂rξ2 +
3
2

1
r

ð̄ξ1 +
3
2

1
r

ðξ3 +
3
r

(
1 +

m

r

)
ξ2 = o∞(r−5), (64b)

∂rξ3 +
1
r

ðξ4 − 1
6

1
r

ð̄ξ2 +
3
r

(
1 +

m

r

)
ξ3 = o∞(r−5). (64c)

A computation shows that

n(ABnCD) = ε2ABCD,

so that the boundary integral (61) involves only the component ξ2. Further-
more, only the harmonic Y0,0 (monopole) contributes to the integral as ε2ABCD

is a constant spinor in our frame. From the Eqs. (64a)–(64c), it follows that the
coefficient ξ2;0 of ξ2 associated with the harmonic Y0,0 satisfies the ordinary
differential equation

(
1 − m

r

)
∂rξ2;0 +

3
r
ξ2;0 = f(r), f(r) = o∞(r−5).

Consequently, one has that

ξ2;0 =
α

(r −m)3
+

1
(r −m)3

∫
r(r −m)2f(r)dr, α ∈ C.

It follows that

ξ2;0 =
α

r3
+ o∞(r−4).

Using this last expression in the integral (61) and recalling that dS=O(r2),
it follows that

r

∫

∂Sr

nABnCD ̂∇(ABκCD)dS = 4πα < ∞.

It is worth noting that the constant α contains information of global nature,
and it is only known after one has solved the approximate Killing spinor equa-
tion.

Appendix B. Tensor Expressions

For many applications, it is useful to have tensor expressions for the invariants.
To this end, define the following tensors on S:

κa ≡ σa
ABκAB , ζ ≡ ξ,

ζa ≡ σa
ABξAB , ζab ≡ σa

ABσb
CDξABCD,

Cac ≡ Eac + iBac.

Here εabc, Eac and Bac are the pull-backs of 1√
2
τμεμαβγ , 1

2τ
γτ δCαβγδ and

1
4εμνγδτ

βτ δCαβ
μν , respectively. Observe that we are using a negative definite

metric. In this section we assume Kab = Kba.
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The tensorial versions of the Eqs. (15a), (15b), (15c) then read

ζ = Daκa,

ζa =
3

2
√

2
iεabcD

cκb − 3
4
Kabκ

b +
3
4
Kb

bκa,

ζab = D(aκb) − 1
3
habD

cκc − 1√
2
iεcd(aKb)

dκc.

Note that the spatial Killing spinor equation ζab = 0 reduces to the conformal
Killing vector equation in the time symmetric case (Kab = 0).

Expressed in terms of these tensors the elliptic equation (39) takes the
form

Dbζab − 1√
2
iεacdK

bcζb
d = 0. (66)

Let κa ∈ H∞
3/2 be the solution to (66) with the asymptotics

κi = ∓
√

2E
3m

(
1 +

2E
r

)
xi

± 2i
3m

(

1 +
4E
r

− m2 + 2(n · p)2
√
m2 + (n · p)2r

)

εi
jkpjxk + o∞(r−1/2),

at each end, where pμ = (E, pi) is the ADM-4 momentum, m ≡ √
pμpμ, and

n · p = r−1xipi. The metric and extrinsic curvature are assumed to have the
asymptotics (47a) and (47b), respectively.

The integrand in (42) is

J ≡ ξABCD ξ̂
ABCD = ζabζ̄

ab.

From the equation

σa
ABσb

CDΨ(ABC
FκD)F =

1√
2
iεcd(aCb)

dκc.

we get the integrand for the I1 part of the invariant

I1 ≡ Ψ(ABC
FκD)F Ψ̂ABCP κ̂D

P

= −1
2
CbcC̄bcκ

aκ̄a +
1
2
Cb

cC̄acκ
aκ̄b +

1
4
Ca

cC̄bcκ
aκ̄b.

In order to discuss the integrand of I2 we introduce the spinor ΣABCD ≡
∇(A

F ΨBCD)F and its tensor equivalent Σab = σa
ABσb

CDΣABCD. One finds
that

0 = σa
AB∇CDΨABCD = DbCab − i√

2
εacdC

bcKb
d,

Σab =
i√
2
εdf(aD

fCd
b) +

1
2
CcdKcdhab + CabK

f
f − 3

2
Cc

(aKb)c.
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The integrand for I2 is given by

I2 = (3κ(A
F ΣBCD)F + Ψ(ABC

F ξD)F )(3κ̂AP Σ̂BCD
P + Ψ̂ABCP ξ̂D

P )

= −9
2
ΣbcΣ̄bcκ

aκ̄a +
9
2
Σb

cΣ̄acκ
aκ̄b +

9
4
Σa

cΣ̄bcκ
aκ̄b +

3
2
Σ̄bcC

bcκ̄aζa

−3
4
Σ̄acCb

cκ̄aζb − 3
2
Σ̄bcCa

cκ̄aζb +
3
2
ΣbcC̄

bcκaζ̄a − 3
4
ΣacC̄b

cκaζ̄b

−3
2
ΣbcC̄a

cκaζ̄b +
1
2
CbcC̄bcζ

aζ̄a +
1
2
Cb

cC̄acζ
aζ̄b +

1
4
Ca

cC̄bcζ
aζ̄b.

The complete invariant is given by

I =
∫

S
(J + I1 + I2)dμ.
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