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Exponential Renormalization

Kurusch Ebrahimi-Fard and Frédéric Patras

Abstract. Moving beyond the classical additive and multiplicative
approaches, we present an “exponential” method for perturbative ren-
ormalization. Using Dyson’s identity for Green’s functions as well as the
link between the Faa di Bruno Hopf algebra and the Hopf algebras of
Feynman graphs, its relation to the composition of formal power series is
analyzed. Eventually, we argue that the new method has several attrac-
tive features and encompasses the BPHZ method. The latter can be seen
as a special case of the new procedure for renormalization scheme maps
with the Rota—Baxter property. To our best knowledge, although very
natural from group-theoretical and physical points of view, several ideas
introduced in the present paper seem to be new (besides the exponential
method, let us mention the notions of counter-factors and of order n bare
coupling constants).

1. Introduction

Renormalization theory [5,6,11,18] plays a major role in the perturbative
approach to quantum field theory (QFT). Since its inception in the late 1930s
[3] it has evolved from a highly technical and difficult set of tools, mainly used
in precision calculations in high energy particle physics, into a fundamental
physical principle encoded by the modern notion of the renormalization group.

Recently, Alain Connes, Dirk Kreimer, Matilde Marcolli and collabora-
tors developed a compelling mathematical setting capturing essential parts of
the algebraic and combinatorial structure underlying the so-called BPHZ ren-
ormalization procedure in perturbative QFT [7-10,21]. The essential notion
appearing in this approach is the one of combinatorial Hopf algebras. The
latter typically consists of a graded vector space where the homogeneous com-
ponents are spanned by finite sets of combinatorial objects, such as planar or
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non-planar rooted trees, or Feynman graphs, and the Hopf algebraic struc-
tures are given by particular constructions on those objects. For a particu-
lar QFT the set of Feynman rules corresponds to a multiplicative map from
such a combinatorial Hopf algebra, generated, say, by one-particle irreducible
(1PI) ultraviolet (UV) superficially divergent diagrams, into a commutative
unital target algebra. This target algebra essentially reflects the regularization
scheme.

The process of renormalization in perturbative QFT can be performed
in many different ways [6,18]. A convenient framework is provided by dimen-
sional regularization (DR). It implies a target algebra of regularized probability
amplitudes equipped with a natural Rota—Baxter (RB) algebra structure. The
latter encodes nothing but minimal subtraction (MS). Introducing a combina-
torial Hopf algebra of Feynman graphs in the context of ¢3-theory (in 6 dimen-
sions) allows for example to reformulate the BPHZ renormalization method
for Feynman graphs, in terms of a Birkhoff-Wiener-Hopf (BWH) decompo-
sition inside the group of dimensionally regularized characters [8,21]. As it
turns out, Bogoliubov’s recursive renormalization process is then best encoded
by Atkinson’s recursion for noncommutative Rota—Baxter algebras, the solu-
tion of which was obtained in the form of a closed formula in [15]. Following
Kreimer [20], Walter van Suijlekom extended the Hopf algebra approach to
perturbative renormalization of gauge theories [24,25].

The Connes—Kreimer approach focused originally on DR+MS but can
actually be extended to other regularization schemes, provided the subtrac-
tion method corresponds to a Rota—Baxter algebra structure. It applies for
example to zero momentum subtraction as shown in [13]. However, essential
parts of this algebraic machinery are not anymore available once the RB prop-
erty is lost. More precisely, the remarkable result that Bogoliubov’s classical
renormalization formulae give birth to Hopf algebra characters and are essen-
tially equivalent to the BWH decomposition of Hopf algebra characters is lost
if the renormalization scheme map is not RB [7,8].

Two remarks are in order. First, more insights from an algebraic point of
view are needed in this particular direction. As a contribution to the subject,
we propose and study in the last section of the present paper a non-MS scheme
within DR which is not of Rota—Baxter type. Second, the characterization of
the BPHZ method in terms of BWH decomposition might be too restrictive,
as it excludes possible subtraction schemes that do not fall into the class of
Rota—Baxter type ones. In this paper we present an exponential algorithm to
perform perturbative renormalization (the term “exponential” refers to the
way the algorithm is constructed and was also chosen for its similarity with
the classical “additive” and “multiplicative” terminologies). One advantage of
this method, besides its group-theoretical naturality, is that it does not rely
on the Rota—Baxter property. Indeed, the exponential method is less restric-
tive than the BPHZ method in the Hopf algebraic picture. It only requires
a projector P_ (used to isolate the divergences of regularized amplitudes)
such that the image of the associated orthogonal projector, Py := id — P_,
forms a subalgebra. This constraint on the image of P, reflects the natural
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assumption that products of finite regularized amplitudes are supposed to be
finite.

Let us mention that the very process of exponential renormalization
leads to the introduction of new objects and ideas in the algebro-combina-
torial approach to perturbative QFT. Particularly promising are the ones of
counter-factors and order n bare coupling constants, that fit particularly well
some widespread ideas that do not always come with a rigorous mathematical
foundation such as the one that “in the end everything boils down in perturba-
tive QFT to power series substitutions”. The notion of order n bare coupling
constants makes such a statement very precise from the algebraic point of
view.

Let us also mention that the exponential method is a further develop-
ment of ideas sketched in our earlier paper [16] that pointed at a natural
link between renormalization techniques and fine properties of Lie idempo-
tents, with a particular emphasis on the family of Zassenhaus Lie idempo-
tents. Here we do not further develop such aspects from the theory of free
Lie algebras [23], and refer to the aforementioned article for details on the
subject.

The paper is organized as follows. The next section briefly recalls some
general properties of graded Hopf algebras including the BWH decomposition
of regularized Feynman rules viewed as Hopf algebra characters. We also dwell
on the Faa di Bruno Hopf algebra and prove an elementary but useful Lemma
that allows the translation of the Dyson formula (relating bare and renormal-
ized Green’s functions) into the language of combinatorial Hopf algebras. In
Sect. 3 we introduce the notion of n-regular characters and present an expo-
nential recursion used to construct m-regular characters from m — l-regular
ones. We conclude the article by introducing and studying a toy-model non-
Rota-Baxter renormalization scheme on which the exponential recursion can
be performed. We prove in particular that locality properties are preserved by
this renormalization process.

2. From Dyson to Faa di Bruno

2.1. Preliminaries

In this section we introduce some mathematical structures to be used in the
sequel. We also recall the BWH decomposition of Hopf algebra characters.
Complementary details can be found, e.g. in [13,17,22].

Let us consider a graded, connected and commutative Hopf algebra H =
D,,~o Hn over the field k, or its pro-unipotent completion ], -, Hy. Recall
that since the pioneering work of Pierre Cartier on formal groups [4], it is
well-known that the two types of Hopf algebras behave identically, allowing to
deal similarly with finite sums ) _ hn, hy, € Hy, and formal series )y fn,
hn, € H,. The unit in H is denoted by 1. Natural candidates are the Hopf
algebras of rooted trees and Feynman graphs [7,8] related to non-commuta-
tive geometry and pQFT, respectively.
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We remark here that graduation phenomena are essential for all our forth-
coming computations, since in the examples of physical interest they incorpo-
rate information such as the number of loops (or vertices) in Feynman graphs,
relevant for perturbative renormalization. The action of the grading operator
Y : H — H is given by:

Y(h)=> nhy, for h=> hye ][] Hn

neN neN neN

We write € for the augmentation map from H to Hy = k C H and
Ht = @fle H,, for the augmentation ideal of H. The identity map of H
is denoted ¢d. The product in H is written myg and its action on elements sim-
ply by concatenation. The co-product is written A; we use Sweedler’s notation
and write AV @h® or 1 iV @2 for A(h) € @y Hj@H,_j, h € Hy.

The space of k-linear maps from H to k, Lin(H k) :=
[I,.cn Lin(Hy, k), is naturally endowed with an associative unital algebra struc-
ture by the convolution product:

frgi=mpo(f®g)oA: HY HoH 2 ok ™ k.

The unit for the convolution product is precisely the co-unit € : H — k. Recall
that a character is a linear map ~ of unital algebras from H to the base field k:

y(hh') = ~(h)y(R).

The group of characters is denoted by G. With m,,,n € N, denoting the pro-
jection from H to H, we write v,y = 7o m,. An infinitesimal character is a
linear map « from H to k such that:

a(hh') = a(R)e(l) + e(R)a(R).

As for characters, we write a(h) = > -y @(n)(hn). We remark that by the
definitions of characters and infinitesimal characters vo(1) = 1, that is 9 = €,
whereas ag(1) = 0, respectively. Recall that the graded vector space g of infin-
itesimal characters is a Lie subalgebra of Lin(H, k) for the Lie bracket induced
on the latter by the convolution product.

Let A be a commutative k-algebra, with unit 14 =n4(1),74 : k — A and
with product my4, which we sometimes denote by a dot, i.e. ma(u®v) =1 u-v
or simply by concatenation. The main examples we have in mind are A = C,
A = Cl[e,e7'] and A = H. We extend now the definition of characters and
call an (A-valued) character of H any algebra map from H to A. In particular
H-valued characters are simply algebra endomorphisms of H. We extend as
well the notion of infinitesimal characters to maps from H to the commutative
k-algebra A, that is:

a(hh’) = a(h) -e(h') + e(h) - a(h'),

where e := 14 o€ is now the unit in the convolution algebra Lin(H, A). Observe
that infinitesimal characters can be alternatively defined as k-linear maps from
H to A with o o my = 0 that vanish on the square of the augmentation ideal
of H. The group (Lie algebra) of A-valued characters (infinitesimal characters)
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is denoted G(A) (g(A)) or G (A) when we want to emphasize the underlying
Hopf algebra.

2.2. Birkhoff-Wiener—Hopf Decomposition of G(A)

In the introduction we already mentioned one of Connes—Kreimer’s seminal
insights into the algebro-combinatorial structure underlying the process of per-
turbative renormalization in QFT. In the context of DR+MS, they reformu-
lated the BPHZ-method as a Birkhoff-Wiener—Hopf decomposition of regu-
larized Feynman rules, where the latter are seen as an element in the group
G(A). Of pivotal role in this approach is a Rota—Baxter algebra structure on
the target algebra A = C[[g,e71].

In general, let us assume that the commutative algebra A = Ay & A_
splits directly into the subalgebras AL = Tyx(A) with 14 € A, defined in
terms of the projectors T7_ and T := ¢d — T—. The pair (A,7_) is a special
case of a (weight one) Rota—Baxter algebra [14] since T, and similarly T,
satisfies the (weight one RB) relation:

T (0) T () + T 9) =T (T_(x) y+2-T (), zyeA (1)
One easily shows that Lin(H, A) with an idempotent operator 7_ defined by
T_(f) =T_o f, for f € Lin(H, A), is a (in general non-commutative) unital
Rota—Baxter algebra (of weight one).

The Rota—Baxter property (1) implies that G(A) decomposes as a set as
the product of two subgroups:

GA)=G_(A)*xG4(A), where Gi(A)=-exp*(TL(g(A4))).
Corollary 1. [8,13] For any v € G(A) the unique characters v4 € G4 (A)
and y~' € G_(A) in the decomposition of G(A) = G_(A) x G4 (A) solve the
equations:

Yr =exTi(y-* (v —e)). (2)

That is, we have Connes—Kreimer’s Birkhoff-Wiener—Hopf decomposition:
7= % (3)
Note that this corollary is true if and only if the operator T on A is of
Rota—Baxter type. That is, uniqueness of the decomposition follows from the

idempotence of the map 7. In fact, in the sequel we will show that this result
is a special case of a more general decomposition of characters.

2.3. The Faa di Bruno Hopf Algebra and a Key Lemma

Another example of combinatorial Hopf algebra, i.e. a graded, connected, com-
mutative bialgebra with a basis indexed by combinatorial objects, which we
will see to be acutely important in the sequel, is the famous Faa di Bruno Hopf
algebra F, for details see e.g. [2,17,19].

Recall that for series, say of a real variable x:

f(x) = Zan(f) xn—i—l’ h(z) = Z an(h) xn-&-l’ with ao(f) = ao(h) = 1,
n=0 n=0
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the composition is given by:
F@) =D an(foh)z™™ =" a.(f) (b))
n=0 n=0

It defines the group structure on:

Gp = {f@) = aulf) @™ | au(f) € Coan(f) = 1} -
n=0

One may interpret the functions a,, as a derivation evaluated at x = 0:
1 dn+1f
an(f) = 1 n+1 .
n+ 1l dx

The coefficients a,, (f o h) are given by:

an(foh) = ar(f) D ay(h)---ay(h).
k=0

1,20,i=0,...,k

For instance, with an obvious notation, the coefficient of z* in the composed
series is given by

f3+3f2h1 + f1(h3 + 2h2) + hs.

The action of these coefficient functions on the elements of the group Gp
implies a pairing:

<an»f> = an(f)

The group structure on Gy allows to define the structure of a commutative
Hopf algebra on the polynomial ring spanned by the a,,, denoted by F', with
co-product:

AF(an):Z Z g, - - ap, X ag.

k=0 lo+-+lpg=n—k

1;>0,i=0,....k
Notice that, using the pairing, an element f of Gp can be viewed as the R[z]-
valued character f on F' characterized by: f(a,) := a,(f)z™. The composition
of formal power series translates then into the convolution product of charac-

—

ters: f(h) = hx f.
Let us condense this into what we call the Faa di Bruno formula, that is,
define a := ), ., a,. Then a satisfies:

Ap(a) =) a"™ @ay. (4)

n>0

Note that subindices indicate the graduation degree. We prove now a
technical lemma, important in view of applications to perturbative renormal-
ization. As we will see further below, it allows to translate the Dyson formulas
for renormalized and bare 1PI Green’s functions into the language of Hopf
algebras.
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Lemma 2. Let H = [[,~, Hy be a complete graded commutative Hopf alge-
bra, which is an algebra of formal power series containing the free variables
Jisooos fase .. We assume that f; has degree i and write f = 1+, fr
(so that, in particular, f is invertible). If A(f) = >, fa™ ® fn, where o =
Y om0 On and the ay,, n >0, are algebraically independent as well as algebra-
ically independent from the f;, then a satisfies the Faa di Bruno formula:

Ala) = Z " @ a,.
n>0

Proof. Indeed, let us make explicit the associativity of the co-product,
(A®id)o A = (id® A) o A. First:

Y A(faM) @ fa=Y fa"@A(fa)= > fa" @ (fa" "), @ fup.
n>0 n>0 n,p<n

Now we look at the component of this identity that lies in the subspace
H® H ® Hy and get:

A(fa) =) fa" @ (fa)u-1,
n>0
that is:
Z faany @ fuap) = Z fa @ fpan—p1.
n>0 n,p<n
Since f is invertible:
Z a”a(l) & fnoz(g) = Z a" @ fpon_p_1.
n>0 n,p<n

From the assumption of algebraic independence among the o; and f;, we get,
looking at the component associated to fy = 1 on the right hand side of the
above tensor product:

Ala) = an) @ gy = Z " ® ay,.
n>0

O

Corollary 3. With the hypothesis of the Lemma, the map x from F to H,
an, — oy, is a Hopf algebra map. In particular, if f and g are in Gg(R), fox
and g o x belong to Gp(R) and:

3" g% flan)e™ = 3 (gox)  (f o x)(an)a™ = fox(go ),
n>0 n>0

where in the last equality we used the identification of Gr(R) with x + zR[z]
to view f o x and go x as formal power series.

In other terms, properties of H can be translated into the language of
formal power series and their compositions.
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3. The Exponential Method

Let H = P,,~( Hy be an arbitrary graded connected commutative Hopf alge-
bra and A a commutative k-algebra with unit 1, = 1n4(1). Recall that m,
stands for the projection on H,, orthogonally to the other graded components
of H. As before, the group of characters with image in A is denoted by G(A),
with unit e := 14 o e. We assume in this section that the target algebra A
contains a subalgebra A, and that there is a linear projection map P, from
A onto Ay. We write P_ :=id — P.

The purpose of the present section is to construct a map from G(A) to
G(A4). In the particular case of a multiplicative renormalizable perturbative
QFT, where H is a Hopf algebra of Feynman diagrams and A the target alge-
bra of regularized Feynman rules, this map should send the corresponding
Feynman rule character v € G(A) to a renormalized, but still regularized,
Feynman rule character R.

The particular claim of Ay C A being a subalgebra implies G(A) being
a subgroup. This reflects the natural assumption, motivated by physics, that
the resulting-renormalized-character R € G(A,) maps products of graphs into
Ay, ie R(TT2) = R(T'1)R(T'2) € A4. Or, to say the same, products of finite
and regularized amplitudes are still finite. In the case where the target alge-
bra has the Rota—Baxter property, the map from G(A) to G(AL) should be
induced by the BWH decomposition of characters.

3.1. An Algorithm for Constructing Regular Characters

We first introduce the notion of n-regular characters. Later we identify them
with characters renormalized up to degree n.

Definition 1. A character p € G(A) is said to be regular up to order n, or
n-regular, if Py o) = ¢ for all | <n. A character is called regular if it is
n-regular for all n.

In the next proposition we outline an iterative method to construct a reg-
ular character in G(A,) starting with an arbitrary one in G(A). The iteration
proceeds in terms of the grading of H.

Proposition 4. Let ¢ € G(A) be regular up to order n. Define p_ | to be the
linear map which is zero on H; for i #n+1 and:

.uﬁ+1 =P_opomy1 =FP_o P(n+1)-
Then

L. pf .y is an infinitesimal character.
2. The convolution exponential T | := exp* (—p, ) is therefore a character.
3. The product cpi_H =T, 1 * ¢ is a reqular character up to order n + 1.

Note that we use the same notation for the projectors Py on A and the
ones defined on Lin(H, A).
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Remark. Let us emphasize two crucial points. First, we see the algebraic nat-
uralness of the particular assumption on A, being a subalgebra. Indeed, it
allows for a simple construction of infinitesimal characters from characters in
terms of the projector P_. Second, at each order in the presented process we
stay strictly inside the group G(A). This property does not hold for other recur-
sive renormalization algorithms. For example, in the BPHZ case, the recursion
takes place in the larger algebra Lin(H, A), see e.g. [15].

Proof. Let us start by showing that u¥ 41 is an infinitesimal character. That
is, its value is zero on any non trivial product of elements in H. In fact, for
y=2xz € Hyy1, x,2 ¢ Hy,

t1(y) = P_((y)) = P-(p(x)p(2)) = P_(Prp(z) Pro(y)),

since ¢ is n-regular by assumption. This implies that p’ ,(y) = P- o
P, (Pro(x)Pro(z)) =0 as the image of Py is a subalgebra in A.
The second assertion is true for any infinitesimal character, see e.g. [13].
The third one follows from the next observations:
e For degree reasons (since pf,; =0 on Hy, k< n), o) | =exp*(—pl, ) *
@ =@ on Hy, k <n,so that exp*(—p;, ;) * ¢ is regular up to order n.
e In degree n+1:let y € Hy, 1. With a Sweedler-type notation for the reduced
co-product A(y) —y@1—-10y= yzl) ® yzz), we get:

exp” (—pyr 1) * (y)
= exp”(—p11)(Y) + @) +exp™ (=5 1) (Y1) e (Y(2)

= —tn1(y) + 0(y) = Pro(y), (5)
which follows from exp*(—p7 ;) being zero on H;,1 < i < n and
exp*(—ph, 1) = —pi . on Hy 1. Hence, this implies immediately:

P ((exp™(—pyr 1) * ) (y)) = Py (Pre(y))
= Pyo(y) = (exp™ (= 1) * ©) ().
0

Note the following particular fact. When iterating the above construction
of regular characters, say, by going from a n — 1-regular character gpz_l to the
n-regular character ¢;", the n — 1-regular character is by construction almost
reqular at order n. By this we mean that ¢, (H,) is given by applying P, to
ot [ (H,), see (5). This amounts to a simple subtraction, i.e. for y € H,:

er(y) = Prlei_1(y) = ¢i_1(y) = P-(¢_1(y)).
Observe that by construction for y € H,,:

1 2
Pray) = o) = P (o a0 )en o (™), (6)
where the reader should recall the notation A(y) = Y., ygl) ® y,(i)z making

the grading explicit in the co-product. Further below we will interpret these
results in the context of perturbative renormalization of Feynman graphs: for
example, when I" is a UV divergent 1PI diagram of loop order n, the order one
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graph F§2) on the right-hand side of the formula consists of the unique one loop
primitive co-graph. That is, F?) follows from I" with all its 1PT UV divergent

subgraphs reduced to points. In the literature this is denoted as res(I") = Ff).

The following propositions capture the basic construction of a character
regular to all orders from an arbitrary character. We call it the exponential
method.

Proposition 5 (Exponential method). We consider the recursion: Ty := e,
<p6r =, and:
90:4-1 =T % 90:7
where Y, = exp*(—P_op; omyq1). Then, we have that o™ := ¢}, = lim ¢}
is reqular to all orders. Moreover, Y x o = o1, where: -
T, = lgn T(n)
and:
T(n):=7", *---xY].

Remark. In the light of the application of the exponential method to pertur-
bative renormalization in QFT, we introduce some useful terminology. We call
T, = exp*(—P- o ;" | om) the counter-factor of order | and the product
YT(n):=7, *---«Y] =7, «T(n—1) the counter-term of order n.

3.2. On the Construction of Bare Coupling Constants

The following two propositions will be of interest in the sequel when we dwell
on the physical interpretation of the exponential method. Let A be as in Propo-
sition 4. We introduce a formal parameter g which commutes with all elements
in A, which we extend to the filtered complete algebra A[[g]] (think of g as the
renormalized -i.e. finite- coupling constant of a QFT). The character ¢ € G(A)
is extended to ¢ € G(A[[g]]) so as to map f =1+, , fr € H to:

F()g) =1+ e(fi)g" € Allgll.

k>0

Notice that we emphasize the functional dependency of @(f) on g for reasons
that will become clear in our forthcoming developments.

Recall Lemma 2. We assume that A(f) = >, o, fa" ® f, where o =
350 On € H satisfies the Faa di Bruno formula:

Ala) = Z A" @ a,.
n>0
Let g1 =T, 1 +@F = T(n+1)xp € G(A[[g]]) be the n+ l-regular charac-
ter constructed via the exponential method from ¢ € G(A[[g]]). Now we define

for each counter-factor Tf, [ > 0 a formal power series in g, which we call the
order [ bare coupling constant:

g(9) =T (ga) =g+ allg",
n>0
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ay) = T, (v). Observe that T (gar) = ge(1) = g and by construction all =0
for n < 1.

Proposition 6 (Exponential counter-term and composition). With the afore-
mentioned assumptions, we find that applying the order n counter-term T(n) to
the series ga € H equals the n-fold composition of the bare coupling constants
91)(9)s -5 9 (9):

T(n)(ga)(g) = Ty, # -+ Y1 (9a)(9)
=9ga)° 2 gm(9)-
Proof. The proof follows by induction together with the Faa di Bruno formula.

T(2)(ga)(g9) = T3 * T1 (9a)(9)
= 3 (T (@)() g
n>0
=3l (T3 (9)(9)" " = g1) 0 92 (9)-
n>0
Similarly:
T(m)(ga)(9)

X, 6 Ty = T (ga)(9)
= Z(T; wx g (@) (9)" T HalDgm T

=Y a9y o0 gm) @)™ =gy o (92) © -+ © gam)) (9)-

O

Proposition 7 (Exponential method and composition). With the assumption
of the foregoing proposition we find that:

& ()(9) = T(n)()(9) - B(f) 0 g1y 0 -+ © gy (9)

Proof. The proof follows from the co-product A(f) =", fa™® f, by asimple
calculation.

2 (H(g) = (T(n) = 2)()(9)

from which we derive the above formula using Proposition 6. O

The reader may recognize in this formula a familiar structure. This iden-
tity is indeed an elaboration on the Dyson formula: we shall return to this
point later.
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3.3. The BWH-Decomposition as a Special Case

The decomposition T * ¢ = ¢T in Proposition 5 may be interpreted as a
generalized BWH decomposition. Indeed, under the Rota—Baxter assumption,
that is if P_ is a proper idempotent Rota-Baxter map (i.e. if the image of P_
is a subalgebra, denoted A_), G(A) = G(A_) * G(A4) and the decomposition
of a character ¢ into the convolution product of an element in G(A_) and in
G(Ay4) is necessarily unique (see [14,15] to which we refer for details on the
Bogoliubov recursion in the context of Rota—Baxter algebras). In particular,
T, identifies with the counter-term ¢_ of the BWH decomposition.

Let us detail briefly this link with the BPHZ method under the Rota—
Baxter assumption for the projection maps P_ and P;.

Proposition 5 in the foregoing subsection leads to the following impor-
tant remark (that holds independently of the RB assumption). Observe that
by construction it is clear that for y € Hg, k <n + 1:

T(n+1)(y) = T(E)(y)-
Using ¢, = T(k — 1) x ¢ we see with y € Hy that:

T(k)(y) =Tp =T (y)
—P_(p;_,(y ))+T(/f 1(y)
(e(y)) = P—(YT(k = 1)(y))
—P_(Y(k = 1)(y(1))(Y(2)) + Tk~ 1)(y)
_(o(y) + Yk — 1) (Y1) e(y(2)) + Pr(T(k = 1)(y))
- (T(k—1) % (¢ —e)(y)) + Pr(Y(k = 1)(y)). (7)

Now, note that for all n > 0, the RB property implies that Y (n)(y) is in
A_ for y € H'. Hence, going to (7) we see that P (Y(k—1)(y)) =0.

Proposition 8. For n > 0 the characters ¢} and Y(n) restricted to H™ =
B, H; solve Bogoliubov’s renormalization recursion.

Proof. Let x € H™. From our previous discussion:

e(z) = P o (T(n) * (¢ —e))(x) = T(n)(z).

Similarly:

(@) + Py o (T(n) * (¢ —€))(x) = e(x)

When going to the last line we used Py o P~ = P_o Py = 0 as well
as the Rota—Baxter property of P_ and P, . This implies that, on H", o} =
e+ Pyo(Y(n)x(p—e)) and T(n) =e— P_o(Y(n)*(¢p—e)) which are Bogo-
liubov’s renormalization equations for the counter-term and the renormalized
character, respectively, see e.g. [14,15]. O
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3.4. On Counter-Terms in the BWH Decomposition

Recall briefly how these results translate in the language of renormalization in
perturbative QFT. This section also introduces several notations that will be
useful later on. The reader is referred to the textbooks [6,18] and the articles
[8,9] for more details.

As often in the literature, the massless ¢* Lagrangian L = L(0,6, ¢, 9)
in four space-time dimensions shall serve as a paradigm:

1
L= 50,00"6 - %gﬁ‘*. (8)

This is certainly a too simple Lagrangian to account for all the combinatorial
subtleties of perturbative QFT, but its basic properties are quite enough for
our present purpose. The quadratic part is called the free Lagrangian, denoted
by Lg. The rest is called the interaction part, and is denoted by L;. The param-
eter g appearing in L = Ly + L; is the so-called renormalized, that is, finite
coupling constant.

Perturbation theory is most effectively expressed using Feynman graphs.
Recall that from the above Lagrangian we can derive Feynman rules. Then any
Feynman graph I' corresponds by these Feynman rules to a Feynman ampli-
tude. By |I'| we denote the number of loops in the diagram. Recall that in
any given theory exists a rigid relation between the numbers of loops and ver-
tices, for each given m-point function. In ¢* theory, for graphs associated to
the 2-point function the number of vertices equals the number of loops. For
graphs associated to the 4-point function the number of vertices is equal to
the number of loops plus one. A Feynman amplitude consists of the Feynman
integral, i.e. a multiple d(= 4)-dimensional momentum space integral:

7|

Q. /H dk; | Ir(p, k), (9)
=1

multiplied by a proper power of the coupling constant, i.e. g/'I*! for 4-point
graphs and ¢/T'! for 2-point graphs. Here, k& = (ky,.. . kyr)) are the |I'| inde-
pendent internal (loop) momenta, that is, each independent loop yields one
integration, and p = (p1,...,pn), with Zi\;lpk = 0, denotes the N exter-
nal momenta. Feynman integrals are most often divergent and require to be
properly regularized and renormalized to acquire physical meaning. A regular-
ization method is a prescription that parameterizes the divergencies appearing
in Feynman amplitudes upon introducing non-physical parameters, denoted ¢,
thereby rendering them formally finite. Let us write gip(I;e) = ¢TI+ (I;€)
for the regularized Feynman amplitude (for example in DR; the notation ¢ is
introduced for later use).

Of pivotal interest are Green’s functions, in particular 1PI n-point (reg-
ularized) Green’s functions, denoted G (g,¢) :== G (p1,...,pn; g, ). In the
following we will ignore the external momenta and omit the regularization
parameter. Recall that for the renormalization of the Lagrangian (8), the
4- and 2-legs 1PI Feynman graphs, respectively the corresponding amplitudes,
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beyond tree level are of particular interest. As guiding examples we use there-
fore from now on the regularized momentum space 1PI 4- and 2-point Green’s
function. These are power series in the coupling g with Feynman amplitudes
as coefficients:

G(4)(g) = qﬂ(gzq) and G(Q)(g) = 1;(205)7

where z, and z4 stand for the formal coupling constant z-factors in the corre-
sponding Hopf algebra of Feynman graphs H

=1+ I and z=1-Y T (10)
k>0 k>1

Here, 1 is the empty graph in H and:

@) Nf:) I ) Nz'i:) ¥
r,” = ’m4 and I,/ := ’n2
sym(rih,) = sym()

denote the sums of the IV ,£4) 1PI 4-point and N ,§2) 2-point graphs of loop order
k, divided by their symmetry factors, respectively. To deal with the polynomial
dependency of the Green’s functions on the coupling constant g, we write:

o
GW(g) =g+ ¢"GY and GP(g)=1- ngGz(f :
k=1

so that Gg) =y (T)) for r =2,4.

Hence, as perturbative 1PI Green’s functions are power series with indi-
vidual-UV divergent—1PI Feynman amplitudes as coefficients, one way to ren-
der them finite is to renormalize graph by graph. This is the purpose of the
Bogoliubov recursion, which, in the context of DR + MS, was nicely encoded
in the group-theoretical language by Connes and Kreimer [8]. Indeed, let H be
the graded connected commutative Hopf algebra of 1PI Feynman graphs asso-
ciated to the Lagrangian (8) and let us choose the RB algebra of Laurent series
A = Cle™!,€]] as a target algebra for the regularized amplitudes (the natural
choice in DR). Then, the correspondence T' — ’lZJ(F; €) extends uniquely to a
character on H. That is, the regularized Feynman rules, 1[), can be interpreted
as an element of G(A[[g]]).

Recall now that in the case of DR the underlying RB structure i.e. the MS
scheme, implies the unique BWH decomposition ¢ = =1 % z/)+ This allows
to recover Bogoliubov’s classical counter-term map C' and the renormalized
Feynman rules map R. Indeed, for an arbitrary 1PI graph I' € H, one gets:

C) =¢-(I) and R(I) =14 (D).

The linearity of R then leads to renormalized 1PI Green’s functions: G (4)( )=
R(gzg), Gg) (9) = R(zp). We refer to [8] for further details.
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3.5. The Lagrangian Picture

The counter-terms C(I") figure in the renormalization of the Lagrangian L.
Indeed, for a multiplicative renormalizable QFT, it can be shown that the
BPHZ method is equivalent to the method of additive, and hence multiplica-
tive renormalization. Therefore, let us remind ourselves briefly of the additive
method, characterized by adding order-by-order counter-terms to the Lagrang-
ian L. Eventually, this amounts to multiplying each term in the Lagrangian by
particular renormalization factors. Details can be found in standard textbooks
on perturbative QFT, such as [6,18].

In general the additive renormalization prescription is defined as follows.
The Lagrangian L is modified by adding the so-called counter-term Lagrang-
ian, Ly, resulting in the renormalized Lagrangian:

Lren =L+ Lcta
where Let := ), Lﬁ‘:) is defined by:
1 g
Lot := C1(9)50,00" ¢ — 02(9)5&, (11)

with Cr(9) :== .50 gsCff), n = 1,2 being power series in g. The Cff), n=12,
s > 0 are functions of the regularization parameter € to be defined iteratively
as follows.

To obtain the 1-loop counter-term Lg) one starts with L = Lo + L;,
computes the propagators and vertices, and generates all one-loop diagrams,
that is, graphs of order g?. Among those one isolates the UV divergent 1PI
Feynman diagrams and chooses the 1-loop counter-term part Lét), that is,

C,(Ll)7 n =1,2, so as to cancel these divergences.

Now, use the 1-loop renormalized Lagrangian L) = L+ L(l)
Doest Lgi) to generate all graphs up to 2-loops, that is, all graphs of order
g>. Note that this includes for instance graphs with one loop where one of the
vertices is multiplied by g2C{" and the other one by g, leading to an order g3
contribution. Again, as before, isolate the UV divergent 1PI ones and choose
the 2-loop counter-term part ij), which is now of order ¢, again so as to
cancel these divergencies. Proceed with the 2-loop renormalized Lagrangian
L& =1+ L(l) (2) +D eso Lit), and so on. The 2-point graphs contribute
to the wave functlon counter-term, whereas 4-point graphs contribute to the
coupling constant counter-term (see e.g. [6, Chap. 5]).

Note that after j steps in the iterative prescription one obtains the result-
ing jth-loop renormalized Lagrangian:

L@ =Lo+ L+ LY+ + LY + Y LY (12)

§>7

with counter-terms C,(LS)7 n = 1,2 fixed up to order j, such that it gives finite
expressions up to loop order j. The part Lgt), s > j, remains undetermined.
In fact, later we will see that, in our terminology, some associated Feynman

rules are j-regular.
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The multiplicative renormalizability of L implies that we may absorb the
counter-terms into the coupling constant and wave function Z-factors:

Zg :1+02(g)7 Z¢ :1+Cl(g)a
where Cy,(9) = >, gsCy(LS), n =1,2. We get:

ren

, 1 1
LY = 5 Z00u00" jgzg¢4. (13)
As it turns out, Bogoliubov’s counter-term map seen as C' € G(A[[g]]) gives:

Zy(9) = Clzg)(g) and  Zy(g) = C(24)(9),

where we made the g dependence explicit.
Now we define the bare, or unrenormalized, field ¢y 1= \/Zy¢ as well
as the bare coupling constant:

and as C € G(A[[g]]):

9% (9) = 9C(z5)(9)
where zp = 24/ zi € H is the formal bare coupling. Up to the rescaling of

the wave functions, the locality of the counter-terms allows for the following
renormalized Lagrangian:

1 1
Lyien = §3u¢(0)5“¢(0) - IQB (9)%(0)- (14)

3.6. Dyson’s Formula Revisited

Let us denote once again by H and F' the Hopf algebra of 1PI Feynman graphs
of the massless ¢* theory in four space-time dimensions and the Faa Di Bruno
Hopf algebra, respectively. The purpose of the present section is to show how
Dyson’s formula, relating renormalized and (regularized) bare Green’s func-
tions, allows for a refined interpretation of the exponential method for con-
structing regular characters in the context of renormalization.

We write R and C for the regularized renormalized Feynman rules and
counter-term character, respectively. Recall the universal bare coupling con-
stant:

ZB = zgz(f.
It can be expanded as a formal series in H:
zB:1+ZFk€H7 (15)
k>0
where 'y, € Hj is a homogeneous polynomial of loop order k in 1PI 2- and
4-point graphs with a linear part I‘,(f) +2F§€2). Notice that, as H is a polynomial
algebra over Feynman graphs and since the family of the F,(f) and of the F,(f)

are algebraically independent in H, also the families of 'y, and Fg), r=2,4,

are algebraically independent in H.
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Coming back to 1PI Green’s functions. Dyson back then in the 1940s [12]
showed-in the context of QED, but the result holds in general [18, Chap. 8]
that the bare and renormalized 1PI n-point Green’s functions satisfy the
following simple identity:

n n/2
G (g) = 2,76 (g"). (16)

Recall that the renormalized as well as the bare 2- and 4-point Green’s
functions and the Z-factors, Z, and Z,, are obtained by applying respec-
tively the renormalized Feynman rules map R, the Feynman rules ¢ and the
counter-term C to the formal z-factors introduced in (10), respectively. When

translated into the language of Hopf algebras, the Dyson equation reads, say,
in the case of the 4-point function:

G (9) = R(gzg) = C(:2) 3 Clap)y T (gr )
7=0

=3 Clzp) C(zy)i(gTs).
7=0
This can be rewritten:

R(zg) =ma(C® 0) Z Z%zg ® F§4)7 (17)
j=0

where we recognize the convolution expression R = C' % 1; of the BWH decom-
position, with:

4
Zg) = Z 282, ® F,(C ), (18)

k>0

Similarly, the study of the 2-point function yields:

Alzg) =2p ®1 — Z 22y ® F§€2).
k>0

The equivalence between the two formulas (17) and (18) follow from the
observation that the BWH decomposition of characters holds for arbitrary
counter-terms and renormalized characters, 1/} and 1/4, respectively. Choos-
ing, e.g. 1/1_ = C' and ¢+ = R in such a way that their values on Feynman dia-
grams form a family of algebraically independent elements (over the rationals)
in C shows that (17) implies (18) (the converse being obvious). Notice that the
co-product formulas can also be obtained directly from the combinatorics of
Feynman graphs. We refer to [1,9,24,25] for complementary approaches and
a self-contained study of co-product formulas for the various formal z-factors.

Now, Lemma 2 implies immediately the Faa di Bruno formula for zp:

Proposition 9.

— Y A eTy

k>0
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Corollary 10. There exists a natural Hopf algebra homomorphism ® from F
to H:

an +— ®(ay) :=T,. (19)
(

Equivalently, there exists a natural group homomorphism p from G(A),
the A-valued character group of H, to the A-valued character group G of F':

GA)2p—plp)i=¢pod: F — A.

3.7. Dyson’s Formula and the Exponential Method

Let us briefly make explicit the exponential method for perturbative renor-
malization in the particular context of the Hopf algebras of renormalization.
We denote by H := @,,~, H, the Connes-Kreimer Hopf algebra of 1PI-UV-
divergent-Feynman graphs and by G(A[[g]]) the group of regularized char-
acters from H to the commutative unital algebra A over C to be equipped
with a C-linear projector P_ such that the image of P, := id — P_ is a
subalgebra. The algebra A and projector P_ reflect the regularization method
respectively the renormalization scheme. The unit in G(A[[g]]) is denoted by e.
The corresponding graded Lie algebra of infinitesimal characters is denoted by
a(Allg]]) = D,,~0 on(A[[g]]). Let ¥ € G(A[[g]]) be the character corresponding
to the regularized Feynman rules, derived from a Lagrangian of a—multipli-
cative renormalizable—perturbative quantum field theory, say, for instance ¢*
in four space-time dimensions. Hence any [-loop graph I' € H; is mapped to:

T % §(r) = gTly(T) = gho (D). (20)

Note that the character i associates with a Feynman graph the corresponding
Feynman integral whereas the character ¢» maps any graph with IT'| loops to
its regularized Feynman integral multiplied by the |T'|th power of the coupling
constant.

Recall that the exponential method of renormalization proceeds order-
by-order in the number of loops. At one-loop order, one starts by considering
the infinitesimal character of order one from H to Al[g]]:

71 :=P_otpom € gi(A[g])),
The corresponding exponential counter-factor from H to A[[g]] is given by:
T = exp*(—71).

From the definition of the Feynman rules character (20) we get:

TT (Ty) = exp™(—P- o z/; om)(Tk)
= gFexp* (~P_ oo m)(T)
= ng;(Fk).

The character:

1/~Jfr I:YI*QZJ
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is 1-regular, i.e. it maps H; to Ai[[g]]. Indeed, as h € H; is primitive we find
G (h) = P(h) + 17 (h) = (h) = P_(¢(h)) = Py (d(h)). In general, by mul-
tiplying the order n — 1-regular character by the counter-factor Y, we obtain
the n-regular character:

1/;; = T; * 1/;:{71 = T(n) * QZ,

with the exponential order n counter-term Y(n) := YT, #---* T . Hence,
in the Hopf algebra context the exponential method of iterative renormaliza-
tion consists of a successive multiplicative construction of higher order regular
characters from lower order regular characters, obtained by multiplication with
counter-factors.

Next, we define the nth-order bare coupling constant:

gn(9) =T, (928)(9) = g+ >_ g"' Y, (Tk) € gA[[g]].
k>0

Recall that T, (I'y) = 0 for k < n. We denote the m-fold iteration:

9100 gm(g) = gm(9),

where by Proposition 9 and from the general properties of Faa di Bruno formu-

las, we have: g2, (g) = T(n)(g9zp). We also introduce the nth-order Z-factors:
Z{"(9) = T(0)(z0)(9) and Z7(g) := T(n)(z0)9),

so that the nth-order renormalized 2- and 4-point 1PI Green’s functions are:

G.(9) = gt (29)(9) = gT (1) %y (2)( ;T (zhzg)g o (TY)
= T(n)(zy)? ;mn)<gz3><g>>l+lw<r§‘”>
= (25"(9))” ;gmmmw?‘”),
or, Gi(9) = (Z7(9)°GD (g5 (9)). Similarly, ¥if(26)(9) = Z5"(9)

Sis0(T(n)(928)(9) 0T} and G (9) = 2" (9)GP (97,(9)). This corre-
sponds to a Lagrangian multiplicatively renormalized up to order n:

(n)
L = 3257900006 — 270 D g,
However, using Propositions 6 and 7, we may also rescale the wave function
and write:

9n(9)

ngg =3 p«(bn Oau(bn, 4|

= o
where ¢y, o 1= Zé") (g)¢. Physically, on the level of the Lagrangian, the expo-

nential renormalization method corresponds therefore to successive reparamet-
rizations of the bare coupling constant.
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4. On Locality and Non Rota—Baxter Type Subtraction
Schemes

In this last section we present a class of non-Rota—Baxter type subtraction
schemes combining the idea of fixing the values of Feynman rules at given
values of the parameters and the minimal subtraction scheme in dimensional
regularization. The latter is known to be local [5,6] and we will use this fact
to prove that the new class of non-Rota—Baxter type schemes is local as well.

We first introduce some terminology. Let 1) denote a dimensionally regu-
larized Feynman rules character corresponding to a perturbatively renorm-
alizable (massless, for greater tractability) quantum field theory. It maps
the graded connected Hopf algebra H = @, ., Hy of 1PI Feynman graphs
into the algebra A of Laurent series with finite pole part. In fact, to be more
precise, the coefficients of such a Laurent series are functions of the external
parameters. In this setting, (9) specializes to (see e.g. [6]):

oo

HoT - ¢(Tipg,s) = Y al(l;g,s)e"
n=—N

Here, p1 denotes 'tHooft’s mass, € the dimensional regularization parameter
and s the set of external parameters others than the coupling constant g. The
algebra A is equipped with a natural Rota—Baxter projector T_ mapping any
Laurent series to its pole part:

-1

T ($(T;p,9,9) = > ali(T,g,s)e".

n=—N

This is equivalent to a direct decomposition of A into the subalgebras A_ :=
T_ (A) and A+ = T+(A)

In this setting, recall that the BWH decomposition gives rise to a unique
factorization: 1) = ¢~ 1 % 14+ into a counter-term map 1_ and the renormalized
Feynman rules map . Both maps are characterized by Bogoliubov’s renor-
malization recursions: ¥4 = e+ Ty o (¢_ * (¢) —e€)). The Rota-Baxter property
of T_ ensures that both, ¢»_ and ¢, are characters.

Recall the notion of locality [5,6]. We call a character ¢ (and, more gen-
erally, a linear form on H) strongly local if the coefficients in the Laurent
series which it associates to graphs are polynomials in the external parameter.
Notice that the convolution product of two strongly local characters is strongly
local: strongly local characters form a subgroup of the group of characters. On
the other hand a character v is local if its counter-term 1 _ is strongly local.
Notice that strong locality implies locality. Indeed, since, by the Bogoliubov
formula ¢p_ =e —T_()_ o (¢ —e)), 1_ is strongly local if ¢ is strongly local
due to the recursive nature of the formula.

It is well-known that for a multiplicatively renormalizable perturbative
QFT with dimensionally regularized Feynman rules character v, the counter-
term 1_ following from Bogoliubov’s recursion is strongly local. Moreover, as
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the Birkhoff decomposition is unique, recall that comparing with the exponen-
tial method we get: v_ =Y := liin Y (n) with: Y(n) := 7T, *---% Y] . Hence,
in the particular case of a Rota—Baxter type subtraction scheme the exponen-
tial method provides a decomposition of Bogoliubov’s counter-term character
with respect to the grading of the Hopf algebra. The following Proposition
shows that the exponential counter-factors inherit the strong locality property
of the Bogoliubov’s counter-term character.

Proposition 11. In the context of minimal subtraction, the exponential counter-
factors Y and hence the exponential counter-terms Y (n) are strongly local iff
Y_ =T s strongly local.

Proof. One direction is evident as strong locality of the counter-factors implies
strong locality of Y. The proof of the opposite direction follows by induction.
For any I' € H; we find:

(D) = —T_ o g om (T),

which implies that —7_ o1 om; is strongly local. The strong locality of Y| :=
exp*(—T- o1 o) follows from the usual properties of the exponential map
in a graded algebra.

Let us assume that strong locality holds for Y7 ,..., Y, . For I' € H,,+1
we find (for degree reasons):

bk T n)(T) = - % Tpyo T,o(@)=",T)=-To Pt 0 Tppa (D).

Strong locality of —T_ o4, oy, 41 follows, as well as strong locality of Y =
exp*(~T- o i 0 Ti1). O

The next result with be useful later.

Lemma 12. For a strongly local character ¢ in the context of a proper projector
P_ on A, the ezponential method leads to a decomposition ¢ = Y x¢T into a
strongly local counter-term Y3, as well as a strongly local reqular character ¢ .

Proof. The proof follows once again from the definition of the recursion.
Indeed, the first order counter-factor in the exponential method is:

Ty = exp’(~T- 0 pom),

which is clearly strongly local, since ¢ is strongly local. Then ¢ = T * ¢ is
strongly local as a product of strongly local characters. The same reasoning
then applies at each order. O

4.1. A Non-Rota—Baxter Subtraction Scheme
We introduce now another projection, denoted T. It is a projector defined on
A in terms of the RB map T_:

T :=T_ 46"

&,q’

(21)

where the linear map 07, is the Taylor jet operator up to nth-order with
respect to the variable € at zero, which evaluates the coefficient functions at
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all orders between 1 and n at the fixed value ¢:

5gq< Z am(x)5m> = Zai(q)ai.

m=—N

Note the condensed notation, where ¢ stands for a fixed set of values of param-
eters. The choice of the projection amounts, from the point of view of the
renormalized quantities, to fix the coefficient functions at 0 for given values
of parameters (e.g. external momenta). One verifies that 77 defines a linear
projection. Moreover, the image of T{ := id — T? forms a subalgebra in A
(the algebra of formal power series in £ whose coefficient functions of order
less than n vanish at the chosen particular values ¢ of parameters), but the
image of T'? does not. This implies immediately that the projector T is not
of Rota—Baxter type. Hence, we have in general:

-1

T ((Tsp,9,5) = >, af(T,g,8)' + > al'(T,g,9)¢"

I=—N i=1

and
T, g,9) = Y af'(T,g,9)e" = al'(T,g,5)".
=0 =1

We find:

Proposition 13. Using the subtraction scheme defined in terms of projector T
on A, the exponential method applied to the Feynman rules character 1) gives
a regqular character:

Vi =5,

where we use a self-explaining notation for the counter-term Y . and the
renormalized character 1/4‘}'.

Now we would like to prove that the exponential method using the pro-
jector T? on A gives local counter-terms. That is, we want to prove that the
counter-factor T, for all n, and hence T . are strongly local. In the fol-
lowing:

00,q

Yo=Y =L x-x Ty L]

stands for the multiplicative decomposition of Bogoliubov’s strongly local
counter-term character following from the exponential method using the min-
imal subtraction scheme 7. Whereas:

Too,q:"‘*Tn,q*"'*r27q*T1,q

stands for the counter-term character following from the exponential method
according to the modified subtraction scheme T¢. The following Lemma is
instrumental in this section.
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Lemma 14. For a substraction scheme such that the image of Py is a subalge-
bra, let ¢ be a n-regular character and & be a regular character, then:

P_o(¢p*&)nt1 =P odni1.

In particular, the counter-factor Y, | associated to ¢ is equal to the counter-
factor associated to ¢ * &.

It follows that, if the exponential decomposition of a character v is given
by: ¢ = Y *4™, the ezponential decomposition of the convolution product of
W with a regular character € is given by: ¢ x £ =T * (YT % £).

Proof. Indeed, for a n+ 1-loop graph ', ¢« &(T") = ¢(I') +£(T") + ¢, where ¢ is a
linear combination of products of the image by ¢ and & of graphs of loop-order
strictly less than n + 1. The regularity hypothesis and the hypothesis that the
image of P, is a subalgebra imply P_(£(T")+c¢) = 0, hence the first assertion of
the Lemma. The others follow from the definition of the exponential methods
by recursion. O

Lemma 15. Let 1) be a reqular character for the minimal substraction scheme
(T_ o1 = 0). Using the subtraction scheme defined in terms of projector T? on
A, the exponential method applied to 1) gives w;}‘ =T 4 * ¥, where, for each
graph T', Y (') is a polynomial with constant coefficients in the perturbation
parameter €. In particular, T, , is strongly local.

The Lemma, follows from the definition of the substraction map 7: by its
very definition, since ¥ (I") is a formal power series in the parameter e (without
singular part), T o )(T") is a polynomial (of degree less or equal to n) with
constant coefficients in the perturbation parameter . As usual, this behavior
is preserved by convolution exponentials, and goes therefore recursively over
to the T, and to Y .

Proposition 16. With the above hypothesis, i.e. a dimensionally regularized
Feynman rules character i which is local with respect to the minimal subtrac-
tion scheme, the counter-factors and counter-term of the exponential method,
T, respectively, To 4, obtained using the subtraction scheme defined in terms
of the projector T? are strongly local.

Proof. Indeed, we have, using the MS scheme, the BWH decomposition ¢ =
Y~ %, where ¢! is strongly local. Applying the exponential method with
respect to the projector T to ¢ we get, according to Lemma 15, a decom-
position ¢+ = Y % ¢, 1, where we write T (resp. ¢4 ) for the counter-
term and renormalized character and where Y is strongly local. We get:
="l T x1pyy, where ¢y is regular with respect to Te.

From Lemma 14, we know that the counter-factors and counter-term
for 1) in the exponential method for T are equal to the counter-factors and
counter-term for =" % T7, which is a product of strongly local characters,
and therefore is strongly local. The Proposition follows then from Lemma 12
and its proof. O
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4.2. A Toy-Model Calculation

In the following example we apply the above introduced local non-Rota—Baxter
type subtraction scheme within dimensional regularization. We exemplify it
by means of a simple toy model calculation. We work with the bicommuta-
tive Hopf algebra H'*4 = @, ., H;*? of rooted ladder trees. Let us recall the
general co-product of the tree ¢, Wlth n vertices:

n—1

Altn) =tn @1+ 1@ty + Yty Dt

k=1
The regularized toy model is defined by a character ¢ € G(A) mapping the
tree t, to an n-fold iterated Riemann integral with values in A := C[[e,e™!]:

P(pse, p)(tn) == p /z/J (w36, 1)(tn—1) df ln exp (—nslog (5)) » (22)

nle

with ¥(p;e, p)(t1) = ¢ f x1+ev with p,e > 0, and where p denotes an exter-
nal momenta. Recall that p ("tHooft’s mass) has been introduced for dimen-
sional reasons, so as to make the ratio £ a dimensionless scalar. In the following
we will write a := log(£) and b := log({), where ¢ is fixed. For later use we
write out the first three values:

1 1 1 1
Y(p;e,pu)(ty) = g—a+ —ea? — —&%a® + —c3a* — O(eh)

2 3! 4!
Y(pie, p)(t2) = 1o +a* — 2. + Logi 2 s +0(eh)
o 22 ¢ 3 3 15
1 1 3 3 9 7 :
U(pe, p)(ts) = ——a+—a? - ~a® + —ea' — % + O(e%).

313 252 4e 4 16 80

Now, for a Laurent series a(p/p) := Yo" an(p/p)e™, where the coef-
ficients a,, = a,,(p/p) are functions of p/u, we define the following projector
P_:

P ( 3 an<p/u>e"> = Y aul/me +anlgme (23)

n=—N n=—N

where ¢ is fixed and chosen appropriately. We get:

Py < > an(p/u)e”> =ao+(a1(p/m)—ar(a/m))e + Y an(p/me" € C[[]l.

n=—N n=2
One verifies that:
P? =Py and PioPr=ProP.=0.

Let us emphasize that P_ is not a Rota-Baxter map. This implies that
we are not allowed to apply formulae (2) in Corollary 1 for the renormalization
of Y(p; e, ).

However, we will show explicitly that the exponential method applies in
this case, giving at each order a local counter-term(-factor) character as well as
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a finite renormalized character. At first order we apply the 1-regular character,
T, to the one vertex tree:

U (1) = T() % (1) = (exp (=P 0 om) =) (1)
= —P_otom(ty) +v(t)
= —P_(¢(t1)) +(t1)

_ 1 1.5 1 I 2 153 3
——<€+26b>+6—a+26a—3!5a +0(e”)

1
=—a+ 55(612 —b?) + O(e%).

Observe that the counter-factor, and hence counter-term at order one is:

T() (1) =17 () =exp*(~P- oo m)(ta) =~ — geb? = — <1 + ;b) ,

which is local, i.e. does not contain any log(p/u) terms. Let us define f =
f(e;q) == 1+ 2%, Now, calculate the 2-regular character, ¢, on the two
vertex tree:

03 (12) = X(2) % (1)
= (exp" (~P_ 0} om) s exp’ (—P_ 0o m) %) (t2)
= Y(ta) + Y1) (0)b(0) + T)(12)

= (t) — P_(()b(0) — P (65 (1) + S P_((00)) P_((11))
= 1) P00 )0) = P 016) - P ((t)(0)

P (1P (Wit ) P (b(tr))
= Py (0(t2) — P_((t)0(11)) +§P+<P (W) P-((12))

We first calculate the counter-term:
Y (2)(t2) = exp*(—P- o ¥ o ma) * exp*(—P_ o 1p o m1)(ta)
1
= —P_o¢f (t2) + S P-(0(t0)) P-(d(t1))

f2

(X7 < u(t)) + 3

Now observe that:

Y1 x(ta) = 9(ta) — P-(9(t1))¢(t1) + %Pf(w(tl))P—(l/J(tl))
11

2
=52 ga+a2 - §Ea3+0(52)

1 1 5 1 1 5 1 53 3
<€+26b)(€a+25a T +0(e”)
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1/1 1 , 11 5
+2(€+2€b ) (€+2€b>
= %aQ - %5 (a® — ab®) + O(?).
We get:
—P_(¢(tz) — P-(¥(t1))¥(t1) + L1 (t2)) = T3 (t2) = 0.

Hence, we find:

TR)) =05 5 Ti (1) = T (12) = 5%

which is local, and:

U (t2) = v (t2) = 2a® — 22 (a® — ab?) + O(?)

2 2
1 1 2
=3 (—a + Qe(az — ) + 0(62)) .

At third order, using Y5 (t2) = P_(¢)] (t2)) = 0 and Y, (t;) = 0, a direct
computation shows that similarly the order 3 counter-factor, Y3, evaluated
on the order 3 tree, t3, is zero:

T3 (t3) = exp™ (= P- o9 om3)(ts) = —P- (Y3 (t3)) = 0

whereas
+ n 1 L a2 o)
s (ts) =y (ts) = 5 | —a+ 5e(a™ = b) +0(e7) |
and the counter-term at order 3 is:
1 .
T(3)(ts) = — 55"

This pattern is general and encoded in the following proposition.

Proposition 17. The renormalization of the toy-model (22) via the exponential
method, in the context of DR together with the general non-RB scheme (21)
gives the nth-order counter-factor Y, (t,) =0 and counter-term:

1

T()(tn) = ——(~f)",
with:
1 1 (=1)m+t
— . = 1 - 2b2 _ 3b3 . m+1bm+1
f=1f(&q + 3¢ 31 + +7(m+1)!5
corresponding the Taylor jet operator (21), 0", say, of fized order m € N.
The nth-regqular, 1.e. renormalized character is given by:
1 1 1
+ _ 2 _ 12 2.3 _ 13
vI(t,) = ] (a+25(a -b )—is (a® —b°)

(_1)m m ¢, m+1 m+1 m+1 "
++m€ (CL + —b +)—O(€ +)>



Vol. 11 (2010) Exponential Renormalization 969

Proof. Let us write T := 1+ >.°7  t, for the formal sum of all rooted ladder

n=1

trees. This sum is a group-like element (A(T) =T ® T'). It follows that

mZa(:6)) (V)

can be rewritten as the convolution exponential of the infinitesimal character

7
)= 1@) =1
n(tn) = {0 else.

Then:
Y(T) = exp™(n)(T).
)

Let us write n~ := P_(n) and 57 := P, (n), so that, in particular n=(t;) =

=T (t1) = % and nt(t1) = —a + 1e(a® — b?) — ge%(a® — b%) + -+ +
((n_ii)l)!gm(am-i_l _ bm+1) _ O(€m+1).

We get finally (recall that the convolution product of linear endomor-
phisms of a bicommutative Hopf algebra is commutative):

¥ = exp”(n) = exp”(n-) * exp” (1),
where T(1)™! = exp*(n_) and where (by direct inspection) exp*(n, ) is reg-
ular. It follows that 1 is renormalized already at the first order of the expo-
nential algorithm, that is: T = exp*(—n_) = T(1) and ¥ = exp*(n4). The
Proposition follows from the group-like structure of 7" which implies that:
* 1 n
Too(tn) = exp™(=n-)(tn) = — (=1 (t1))",
and similarly for ¢ (¢,). O

Notice that in the classical MS scheme, one gets simply f = 1 in the
above formulas. One recovers then by the same arguments the well-known
result following from the BPHZ method in DR and MS.

Acknowledgements

The first named author is supported by a de la Cierva grant from the Spanish
government. We thank warmly J. Gracia-Bondia. Long joint discussions on
QFT in Nice and Zaragoza were seminal to the present work, which is part of
a common long-term project.

References

[1] Bellon, M., Schaposnik, F.: Renormalization group functions for the Wess-
Zumino model: up to 200 loops through Hopf algebras. Nuclear Phys.
B 800, 517 (2008)

[2] Brouder, Ch., Fauser, B., Frabetti, A., Krattenthaler, Ch.: Non-commutative
Hopf algebra of formal diffeomorphisms. Adv. Math. 200, 479 (2006)



970 K. Ebrahimi-Fard and F. Patras Ann. Henri Poincaré

[3] Brown, L. (ed.): Renormalization: From Lorentz to Landau (and Beyond).
Springer, New York (1993)
[4] Cartier, P.: Hyperalgebres et groupes de Lie formels. In: Séminaire “Sophus Lie”

de la Faculté des Sciences de Paris, 1955-56. Secrétariat mathématique, 11 rue
Pierre Curie, Paris, 61 pp (1957)

[5] Caswell, W.E., Kennedy, A.D.: A simple approach to renormalization theory.
Phys. Rev. D 25, 392 (1982)

[6] Collins, J.: Renormalization. Cambridge monographs in mathematical physics,
Cambridge (1984)

[7] Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative
geometry. Commun. Math. Phys. 199, 203 (1998)

[8] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the
Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main
theorem. Commun. Math. Phys. 210, 249 (2000)

[9] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the
Riemann-Hilbert problem II: the (g-function, diffeomorphisms and the renor-
malization group. Commun. Math. Phys. 216, 215 (2001)

[10] Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and
Motives Colloquium Publications, vol. 55. American Mathematical Society,
Providence (2008)

[11] Delamotte, B.: A hint of renormalization. Am. J. Phys. 72, 170 (2004)

[12] Dyson, F.: The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736 (1949)

[13] Ebrahimi-Fard, K., Gracia-Bond{a, J.M., Patras, F.: A Lie theoretic approach
to renormalization. Commun. Math. Phys. 276, 519 (2007)

[14] Ebrahimi-Fard, K., Gracia-Bond{a, J.M., Patras, F.: Rota-Baxter algebras and
new combinatorial identities. Lett. Math. Phys. 81(1), 61 (2007)

[15] Ebrahimi-Fard, K., Manchon, D., Patras, F.: A noncommutative Bohnenblust—

Spitzer identity for Rota—Baxter algebras solves Bogoliubov’s recursion. J. Non-
commutative Geom. 3(2), 181 (2009)

[16] Ebrahimi-Fard, K., Patras, F.: A Zassenhaus-type algorithm solves the
Bogoliubov recursion. In: Doebner, H.-D., Dobrev, V.K. (eds.) Proceedings of
VII International Workshop “Lie Theory and Its Applications in Physics”, Varna,
June 2007

[17] Figueroa, H., Gracia-Bond{a, J.M.: Combinatorial Hopf algebras in quantum
field theory I. Rev. Math. Phys. 17, 881 (2005)

[18] Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York
(1980)

[19] Joni, S.A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl.
Math. 61, 93 (1979)

[20] Kreimer, D.: Anatomy of a gauge theory. Ann. Phys. 321, 2757 (2006)

[21] Kreimer, D.: Chen’s iterated integral represents the operator product expansion.
Adv. Theor. Math. Phys. 3, 627-670 (1999)

[22] Manchon, D.: Hopf algebras in renormalisation. In: Hazewinkel, M. (ed.) Hand-
book of Algebra, vol. 5, pp. 365-427. Elsevier, Oxford (2008)

[23] Reutenauer, C.: Free Lie Algebras. Oxford University Press, Oxford (1993)



Vol. 11 (2010) Exponential Renormalization 971

[24] van Suijlekom, W.: Multiplicative renormalization and Hopf algebras. In:
Ceyhan, O., Manin, Yu.-I., Marcolli, M. (eds.) Arithmetic and Geometry Around
Quantization. Birkhduser, Basel (2008)

[25] van Suijlekom, W.: Renormalization of gauge fields: a Hopf algebra approach.
Commun. Math. Phys. 276, 773 (2007)

Kurusch Ebrahimi-Fard

Departamento de Fisica Tedrica

Universidad de Zaragoza

50009 Zaragoza

Spain

e-mail: kef@unizar.es;
kurusch.ebrahimi-fardQuha.fr

Frédéric Patras

Université de Nice
Laboratoire J.-A. Dieudonné
UMR 6621, CNRS

Parc Valrose

06108 Nice Cedex 02

France

e-mail: patras@unice.fr

Communicated by Vincent Rivasseau.
Received: March 17, 2010.
Accepted: May 12, 2010.



	Exponential Renormalization
	Abstract
	1. Introduction
	2. From Dyson to Faà di Bruno
	2.1. Preliminaries
	2.2. Birkhoff--Wiener--Hopf Decomposition of G(A)
	2.3. The Faà di Bruno Hopf Algebra and a Key Lemma

	3. The Exponential Method
	3.1. An Algorithm for Constructing Regular Characters
	3.2. On the Construction of Bare Coupling Constants
	3.3. The BWH-Decomposition as a Special Case
	3.4. On Counter-Terms in the BWH Decomposition
	3.5. The Lagrangian Picture
	3.6. Dyson's Formula Revisited
	3.7. Dyson's Formula and the Exponential Method

	4. On Locality and Non Rota--Baxter Type Subtraction Schemes
	4.1. A Non-Rota--Baxter Subtraction Scheme
	4.2. A Toy-Model Calculation

	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


