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Topological Graph Polynomials in Colored
Group Field Theory

Razvan Gurau

Abstract. In this paper, we analyze the open Feynman graphs of the
Colored Group Field Theory introduced in Gurau (Colored group field
theory, arXiv:0907.2582 [hep-th]). We define the boundary graph G∂ of
an open graph G and prove it is a cellular complex. Using this structure
we generalize the topological (Bollobás–Riordan) Tutte polynomials asso-
ciated to (ribbon) graphs to topological polynomials adapted to Colored
Group Field Theory graphs in arbitrary dimension.

1. Introduction

Discrete structures over finite sets, in particular graphs, are paramount to our
present understanding of physics. Since Feynman realized that the perturba-
tion series of quantum field theory is indexed by subclasses of graphs, the best
experimentally tested physical predictions we have to this date rely solely on
them.

Different quantum field theories generate different classes of graphs. The
scalar Φ4 field theory generates graphs formed of four valent vertices and lines.
More involved quantum field theories, like Yang-Mills gauge theories [2,3],
require further structure to be added (new particles, space-time indices, etc.).
Random matrix models [4–7] and non commutative quantum field theories
[8,9] generate ribbon graphs. A striking feature of the random matrix models
and non commutative quantum field theories [10–14] is that the graphs are
organized hierarchically. That is, the dominant contribution to the partition
function is given by planar graphs, first order corrections are given by genus
one graphs, second order corrections by genus two graphs, etc.

Random matrix models are relevant to very diverse physical and
mathematical questions ranging from two dimensional quantum gravity to
knot theory and quark confinement [15]. In the context of non commutative
quantum field theory the topological power counting of the ribbon graphs has
been shown in a series of papers to lead to a non trivial fixed point of the
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renormalization group flow [16–20]. One can therefore expect that an appro-
priate generalization of such models to higher dimensions should also pose non
trivial renormalization fixed points. The study of such generalizations holds
essential clues for problems ranging from the quantization of gravity in higher
dimensions to condensed matter.

Random matrix models generalize in higher dimensions to random ten-
sor models, or group field theories (GFT) [21–23]. The perturbative devel-
opment of such theories generates “stranded graphs [24].”. The connection
between GFTs and quantum gravity has been largely investigated [25]. Differ-
ent models have been considered [26–29], and their semiclassical limit analyzed
[30,31]. The study of the renormalization properties of such models has been
started [32–34]. However, classical GFT models generate many singular graphs
(that is graphs whose dual topological spaces have extended singularities). In a
previous paper [1] we proposed a solution to this problem in the form of the
“colored group field theory” (CGFT). The singular graphs are absent in this
context in any dimension and the surviving graphs possess a cellular complex
structure.

In this paper, we extend the study started in [1] of the Feynman graphs
of the CGFT to open graphs (that is graphs with external half lines). For
every such graph G we define its boundary graph G∂ . We prove that G∂ has a
cellular structure inherited from the graph G. Extending the definition of the
boundary operator of [1], we introduce the homology of G∂ and explore some
of its properties. Our model has been further studied in [35].

A simple and yet powerful way to encode information about a graph is
through topological polynomials. Introduced first by Kirchhoff [36] they were
studied (much) later by Tutte [37] as the solution of an inductive contraction
deletion equation. The topological polynomials appear naturally in the dimen-
sional regularization of quantum field theories [38] or in the study of statisti-
cal physics models [39–41]. The Tutte polynomials have been generalized by
Bollobás and Riordan [42–45] to ribbon graphs. Further generalizations of
these polynomials, respecting more involved induction equations, have been
put in relation with the Feynman amplitudes of random matrix models and
non commutative quantum field theories [46–49].

Relying on the cellular complex structure of G and G∂ we propose a
generalization of the classical topological polynomials adapted to CGFT
graphs. These polynomials respect a contraction deletion equation and encode
information about the cellular homology of the CGFT graph.

This paper is organized as follows. In Sect. 2 we briefly review the clas-
sical Tutte and Bollobás–Riordan polynomials. In Sect. 3 we detail the GFT
graphs and define the boundary cellular complex and cellular homology for
open graphs. In Sect. 4 we define the topological polynomials of CGFT graphs
and show that they obey a contraction deletion relation. Section 6 draws the
conclusions of our work.

The mathematics and physics nomenclature for graphs is very different
and sometimes quite confusing. The reader is strongly encouraged to consult
[49] for a dictionary. Also, some familiarity with ribbon graphs is assumed.
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Again [49] (specifically Sections 4.1 and 4.3) provides a very good and concise
introduction to this topic.

2. Tutte and Bollobás–Riordan Polynomials

This section is a short introduction to topological graph polynomials, see [49]
and references therein for more detailed presentations.

A graph G is defined by the sets of its vertices V(G) and lines L(G). A
line, connecting the vertices v1, v2 ∈ V(G) is denoted lv1v2 ∈ L(G). For any line
lv1v2 of G one can define two additional graphs1

• The graph with the line lv1v2 deleted, denoted G − lv1v2 , with set of lines
L(G − lv1v2) = L(G)\{lv1v2} and set of vertices V(G − lv1v2) = V(G).

• The graph with the line lv1v2 contracted, denoted G/lv1v2 , is the graph
obtained from G by deleting lv1v2 and identifying the two end vertices
v1 and v2. That is L(G/lv1v2) = [L(G)\{lv1v2}]/(v1 ∼ v2), V(G/lv1v2) =
V(G)/(v1 ∼ v2).
Note that if v1 = v2 the G/lv1v2 = G − lv1v2 .

Given a graph G one can consider the family of its subgraphs. H is a
subgraph of G (denoted H ⊂ G) if V(H) = V(G) and L(H) ⊂ L(G). Thus
G − lv1v2 is a subgraph of G, whereas G/lv1v2 is not.

The multivariate Tutte polynomial ZG(q, {β}) of the graph G depends
on one variable βlv1v2

associated to each line lv1v2 and an unique variable q
counting the connected components of G
Definition 1 (Sum over subgraphs).

ZG(q, {β}) =
∑

H⊂G
q|k(H)| ∏

lv1v2∈L(H)

βlv1v2
, (1)

where k(H) is the number of connected components of the subgraph H.

This polynomial obeys a contraction deletion equation

Lemma 1. For any line lv1v2 ∈ L(G),

ZG(q, {β})=βlv1v2
ZG/lv1v2

(q, {β}\{βlv1v2
})+ZG−lv1v2

(q, {β}\{βlv1v2
}).

(2)

For a graphs with no lines but with v vertices ZG(q, ∅) = qv.

In quantum field theory one deals with graphs whose vertices are further-
more decorated with “half lines”, or external legs.2 We use halflines to encode
information about the graph G in a subgraph H. We will always replace a line
belonging to G but not to H by two halflines on its end vertices.

1 The two end vertices might coincide, v1 = v2.
2 Or flags in the mathematical literature.
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Figure 1. Ribbon vertices, ribbon lines and strands

The Tutte polynomial can be generalized to ribbon graphs. A typical
ribbon graph with half lines is presented in Fig. 1. It is made of ribbon verti-
ces (v1 and v2 in Fig. 1) and ribbon lines (lv1v2 in Fig. 1). The lines and half
lines in a ribbon graph have two sides, also called strands, represented by solid
lines in Fig. 1.

The strands of a graph encode an extra structure. Tracing a strand one
encounters one of the two cases
• Either one does not encounter a half line (F1 in Fig. 1). In this case the

closed strand defines an internal face.
• Or one does encounter a half line (F2 in Fig. 1). In this case one continues

on the second strand of this external half line (one “pinches” the external
half line). The strands thus traced define an external face.
This “pinching” is represented by the dotted curves in Fig. 1.
A ribbon subgraph H ⊂ G of the ribbon graph G has the same set of

vertices V(H) = V(G), but only a subset of the lines L(H) ⊂ L(G). Again,
for a subgraph H all lines lv1v2 ∈ L(G)\L(H) are replaced by pinched external
half lines. Thus, all internal faces of H are internal faces of G, but there might
exist external faces of H consisting of the union of pieces belonging to several
internal faces of G.

We are now in position to generalize the Definition 1 to ribbon graphs.
We introduce an extra variable z counting all the faces (internal or external)
of the graph, and define

Definition 2. The multivariate Bollobás–Riordan polynomial of a ribbon graph,
analog to the multivariate polynomial of Eq. (1), is:

VG(q, {βl}, z) =
∑

H⊂G
qk(H)

⎛

⎝
∏

lv1v2∈L(H)

βlv1v2

⎞

⎠ zF (H), (3)

where k(H) is again the number of connected components of H, and F (H) the
total number of faces.

The deletion of a ribbon line lv1v2 consists in replacing it by two pinched
halflines on its end vertices v1 and v2. It is well defined for all the lines of a
graph. On the contrary, the contraction must respect the strand structure and
is well defined only for lines lv1v2 connecting two different vertices v1 �= v2.
The polynomial define by Eq. (3) respects the contraction deletion equation (2)
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Figure 2. GFT vertex and a GFT line in four dimensions

only for such lines. The end graphs (those which cannot be contracted further)
consist of connected components with only one vertex, but possibly many lines
and faces. The polynomial of such end graphs can be read from Eq. (3).

The crucial property of the topological polynomials is that the definitions
in term of subgraphs and the contraction deletion properties can be exchanged.
That is, the polynomials of Definitions 1 and 2 are the unique solutions of the
deletion contraction equation (2) respecting the appropriate forms for the end
graphs. Although, given just Eq. (2), one might think that its solution depends
on the order in which the lines are contracted (deleted), Eqs. (1) and (3) show
that it does not.

3. Colored Group Field Theory Graphs

Ribbon graphs generalize in higher dimensions to group field theory graphs
[22–24]. The GFT graphs are generated by a path integral and are built by
the following rules.

The GFT vertex in n dimension has coordination n + 1. Each halfline
(and consequently line) has exactly n strands. Inside a vertex, the strands
connect two half lines. In n dimensions, if we label the strands of a halfline 1
to n turning anticlockwise, the strand p connects to the p’th successor halfline
when turning clockwise around the vertex. Every GFT line connects two half
lines with an arbitrary permutation of the strands.

Figure 2 presents the GFT vertex and a typical GFT line in four dimen-
sions.

The reader can check that a GFT graph in two dimensions is a ribbon
graph with vertices of coordination three. As such, it is dual to a triangula-
tion of a two dimensional surface. Considering the ribbon vertices of the graph
as 0-cells, its lines as 1-cells and its faces as 2-cells, a ribbon graph becomes
a two dimensional cellular complex. One would expect that the GFT graphs
in higher dimension also have a cellular complex structure. This is not true
in general because the permutations of strands on the lines prevent one from
defining cells of dimension higher that two!

A solution is to consider only the colored group field theory graphs intro-
duced in [1]. In fact, to our knowledge, this is the only category of graphs
generated by a path integral which has an associated complex structure in
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0

1

2

n

0

1
2

n

3

Figure 3. Two vertices and a line in a colored graph

arbitrary dimension3! The graphs obtained by the perturbative development
of the color group field theory action of [1] obey

Definition 3. A CGFT graph in n dimensions is a GFT graph such that
• The CGFT vertices are stranded vertices. The set of vertices V(G) =

{v1, . . . vn} is the disjoint union of two sets V(G) = V+(G)∪V−(G). V+(G)
is the set of positive vertices and V−(G) is the set of negative vertices.

• The lines liv1v2
∈ L(G) connect a positive and a negative vertex (v1 ∈ V+(G)

and v2 ∈ V−(G)) and posses a color index i ∈ {0, . . . n}. The n strands of
all CGFT lines are parallel. Halflines also possess a color index.

• Each color appears exactly once among the lines or halflines touching a
vertex. The colors are encountered in the order 0, . . . , n when turning clock-
wise around a positive vertex and anticlockwise around a negative one.

A CGFT graph admits two equivalent representations, either as a
stranded graph, or simply as an edge colored graph, obtained by collapsing
all the strands belonging to all lines. As the connectivity of strands inside the
CGFT vertex and lines are fixed the two representations are in one to one
correspondence.

A colored graph is made of colored lines connecting positive and negative
vertices. In Fig. 3, the line of color 3 connects the positive vertex on the left
with the negative one on the right. Figure 4 gives the two representations for
the same graph.

3.1. Bubbles and Cellular Structure

In the definition of the Bollobás–Riordan polynomial the faces (internal and
external) played a crucial role. In higher dimensions the faces generalize to
higher dimensional cells, called bubbles.

First consider G a CGFT graph with no external half lines. In [1] we
defined the p-cells of G as

Definition 4. A “p-bubble” with colors i1 < · · · < ip of a graph with n + 1
colors G with no external halflines is a maximal connected components made
of lines of colors i1, . . . , ip. We denote it BC

V , where C = {i1, . . . , ip} is the
ordered set of colors of the lines in the bubbles and V is the set of vertices.

3 In three dimensions one also has the alternative to use the orientable model of [32], but
this cannot be generalized to higher dimensions.



Vol. 11 (2010) Topological Graph Polynomials 571

v
1

v
2

0

1

2

3

0

1

2
3

Figure 4. A closed colored graph in three dimensions

Note that, unlike the subgraphs of Sect. 2, the connected components do
not have half lines. For example, for the graph in Fig. 4 we have the 3-bubbles
B012

v1v2
, B013

v1v2
, B023

v1v2
and B123

v1v2
, the 2-bubbles (that is faces) B01

v1v2
, B02

v1v2
, B03

v1v2
,

B12
v1v2

, B13
v1v2

, B23
v1v2

, the one bubbles (that is lines) B0
v1v2

, B1
v1v2

, B2
v1v2

, B3
v1v2

,
and finally the 0-bubbles (that is vertices) Bv1 , Bv2 .

Like the graph G, the p-bubbles themselves admit graphical representa-
tions either as stranded graphs or as edge colored graphs. For instance in Fig. 4,
the stranded graph of the 3-bubble B012

v1v2
is obtained by deleting all strands

belonging to the line l3v1v2
. Similarly the stranded graph of the 2-bubble B01

v1v2

is obtained by deleting all strands belonging to the lines l2v1v2
and l3v1v2

.
Considering the representation of bubbles as stranded graphs it is easy

to see that in any dimension, the strands themselves always correspond to
2-bubbles. This remark is crucial for the next section.

As proved in [1], the p-bubbles define a cellular complex and a cellular
homology induced by the boundary operator

Definition 5. The p’th boundary operator dp acting on a p-bubble BC
V with

colors C = {i1, . . . ip} is
• for p ≥ 2,

dp(BC
V) =

∑

q

(−)q+1
∑

B′C′
V′ ∈Bp−1

V′⊂V C′=C\iq

B′C′

V′ , (4)

which associates to a p-bubble the alternating sum of all (p − 1)-bubbles
formed by subsets of its vertices.

• for p = 1, as the lines Bi
v1v2

connect a positive vertex (v1 ∈ V+(G)) to a
negative one, v2 ∈ V−(G)

d1Bi
v1v2

= Bv1 − Bv2 . (5)

• for p = 0, d0Bv = 0.

3.2. External Half Lines and the Boundary Complex

A graph G with external half lines is dual to a topological space with boundary.
We will first associate to G a “boundary graph” G∂ , dual to a triangulation
of the boundary of the topological space and then identify a cellular complex
structure for G∂ .
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Figure 5. Tetrahedron dual to a CGFT vertex

To understand the construction of G∂ one needs to consider the topolog-
ical space dual to G (see [1] and [32] for details). The dual of a colored graph
is essentially a simplicial complex.4 Each CGFT vertex is dual to a n-simplex
Δn. The half lines of a vertex are dual to the “sides” of Δn, that is the (n−1)-
simplices Δn−1 bounding it. A boundary simplex Δn−1 inherits the color of
the halfline to which it corresponds. The lines (which are identifications of
halflines) correspond to the gluing of the two Δn simplices along a common
Δn−1 boundary simplex. Higher dimensional p-bubbles are dual to (n − p)-
simplices, in particular the 2-bubbles are dual to Δn−2 simplices. In particu-
lar, in the stranded representation of a CGFT graph, the Δn−2 simplices are
dual to the strands.

In three dimensions this is represented in Fig. 5. The vertex 0123 is dual
to the tetrahedron 0123, the halfline 0 is dual to the triangle 0, the 2-bubble
01 is dual to the edge common to the triangles 0 and 1, and the 3-bubble
012 is dual to the the vertex of the tetrahedron common to the triangles 0, 1,
and 2.

If a vertex in a CGFT graph has no half lines then its dual simplex Δn

sits in the interior of the simplicial complex (in the bulk). On the contrary,
if a vertex has half lines, then its dual simplex sits on the boundary of the
simplicial complex, and contributes to the triangulation of this boundary with
the Δn−1 simplex dual to the half line. The triangulation of the boundary of
the simplicial complex is therefore made of all the Δn−1 simplices dual to the
halflines of the graph. These Δn−1 simplices are glued along there boundary
Δn−2. The boundary Δn−2 simplices are dual, in the stranded representation
of a CGFT graph to the open strands.

To obtain the graph G∂ dual to the boundary of the simplicial complex
one must draw a vertex for each external halfline of G and a line for each open
strand of G. This can be achieved starting with the stranded representation
of the graph G (see Fig. 6), delete all closed strands, and “pinch” the external
strands into a vertex for each external half line. The graph thus obtained is
the edge colored representation of G∂ . We call G∂ the “boundary graph” of G.

The vertices of G∂ inherit the color of the halfline and the lines of G∂

inherit the couple of colors of the strand to which they correspond. In the
example of Fig. 6, the graph G∂ (represented on the right) has one connected

4 It is in fact a slightly more general gluing of simplices along there faces.
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Figure 6. A CGFT graph G and it boundary graph G∂

component with two vertices, w1 and w2, both of color 3 and three lines of
colors 03, 13 and 23.

Note that G∂ is a graph of vertices with one color and lines colored by
couples of colors: a priori it is very different from a CGFT graph. Nevertheless
G∂ has a cellular complex structure, strongly reminiscent of the one of G. We
denote the set of vertices of G∂ (obtained after pinching) by V∂ . They are the
0-bubbles of the cellular complex of G∂ . For p ≥ 1, we have

Definition 6. Let a graph G and its boundary graph G∂ obtained after pinch-
ing. For p ≥ 1 the “boundary p-bubbles” (B∂)C′

V′
∂

are the maximally connected
components of G∂ formed by boundary vertices V ′

∂ ⊂ V∂ and boundary lines
of colors iaib, with {ia, ib} ⊂ C′ ⊂ {0, . . . n} and |C′| = p + 1.

For example G∂ in Fig. 6 has
• 0 bubbles (B∂)3w1

, (B∂)3w2
, which are the vertices of G∂ .

• 1 bubbles (B∂)03w1w2
, (B∂)13w1w2

, (B∂)23w1w2
, which are the lines of G∂ .

• 2 bubbles (B∂)013w1w2
, (B∂)023w1w2

, (B∂)123w1w2
, which are the connected compo-

nents with lines (03, 13), (03, 23) and (13, 23) respectively.
We denote Bp

∂ the set of all boundary p-bubbles, and following [1] we define
the operator

Definition 7. The p’th boundary operator d∂
p of the boundary complex, acting

on a boundary p-bubble (B∂)C
V∂

with colors C = {i1, . . . ip+1} is
• for p ≥ 1,

d∂
p [(B∂)C

V∂
] =

∑

q

(−)q+1
∑

(B′
∂
)C′
V′

∂
∈B

p−1
∂

V′
∂⊂V∂ C′=C\iq

(B′
∂)C′

V′
∂

, (6)

• for p = 0, d∂
0 [(B∂)i1

w ] = 0.

For G∂ of Fig. 6 for instance,

d∂
2 [(B∂)013w1w2

] = (B∂)13w1w2
− (B∂)03w1w2 (7)

d∂
1 [d∂

2 [(B∂)013w1w2
]] = (B∂)3w1

+ (B∂)3w2
− (B∂)3w1

− (B∂)3w2
= 0.

The operator d∂
p is a boundary operator in the sense



574 R. Gurau Ann. Henri Poincaré

Lemma 2.

d∂
p−1 ◦ d∂

p = 0. (8)

Proof. The proof goes much like its counterpart presented in [1]. Consider the
application of two consecutive boundary operators on a boundary p-bubble

d∂
p−1d

∂
p [(B∂)C

V∂
] =

∑

q

(−)q+1
∑

(B′
∂
)C′
V′

∂
∈B

p−1
∂

V′
∂⊂V∂ C′=C\iq

d∂
p−1[(B′

∂)C′
V′

∂
] (9)

=
∑

q

(−)q+1
∑

(B′
∂
)C′
V′

∂
∈B

p−1
∂

V′
∂⊂V∂ C′=C\iq

[ ∑

r<q

(−)r+1
∑

(B′′
∂

)C′′
V′′

∂
∈B

p−2
∂

V′′
∂ ⊂V∂ C′′=C\iq\ir

(B′′
∂)C′′

V′′
∂

+
∑

r>q

(−)r
∑

(B′′
∂

)C′′
V′′

∂
∈B

p−2
∂

V′′
∂ ⊂V∂ C′′=C\iq\ir

(B′′
∂)C′′

V′′
∂
, (10)

as ir is the r−1’th color of C′\iq if q < r. The two terms cancel by exchanging
q and r in the second term. �

The boundary bubbles define a cellular complex with attaching maps
induced by the boundary operator of Definition 7. With the appropriate sub-
stitutions, one reproduces the main results of [1] for the cellular homology of
G∂ defined by d∂

p .

Lemma 3. Let G∂ a connected boundary CGFT graph with n + 1 colors. The
operator d∂

p has the following properties

• The d∂
0 operator respects

ker(d∂
0 ) =

⊕

|B0
∂ |

Z. (11)

• The d∂
1 operator respects

ker(d∂
1 ) =

⊕

|B1
∂ |−|B0

∂ |+1

Z , Im(d∂
1 )

⊕

|B0
∂ |−1

Z. (12)

• The d∂
n−1 operator respects

ker(d∂
n−1) = Z , Im(d∂

n−1)
⊕

|Bn−1
∂ |−1

Z. (13)

In consequence, for all graphs, denoting the homology groups of G∂ as
H∂

q , we have

H∂
0 = Z, H∂

n = Z. (14)
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And if G is moreover a three dimensional graph (that is it has four colors),
then for each connected component of G∂ we have

H∂
0 = Z, H∂

1 =
⊕

2g

Z, H∂
2 = Z, (15)

that is G∂ is a union of tori.

4. Topological Polynomials of GFT Graphs

Having at our disposal a good definition of bubbles in arbitrary colored graphs
we proceed to generalize the topological polynomials to higher dimensional
graphs. However one encounters a problem.

There is an incompatibility between the contraction of lines of Sect. 2
and the colored graphs of Definition 3. If G is a colored graph and l one of
its lines, G − l is still a colored graph, but G/l is not. The vertex obtained by
identifying the endvertices of l does not respect the conditions of Definition 3.
But the p-bubbles are defined only for colored graphs. It is therefore needed
to modify the contraction move to ensure that G/l remains a colored graph.
This is achieved by slightly enlarging the class of graphs we consider to graphs
with active and passive lines.

Definition 8. A colored graph with active and passive lines is a colored graph G
and a partition of the lines L(G) into two disjoint sets, L(G) = L1(G)∪L2(G),
such that L2(G) is a forest.5 The lines in the first set, L1(G) are called active
lines whereas the lines in the second set L2(G) are called passive.

Note that a colored graph with no passive lines is just a colored graph
in the sense of Definition 3. For a colored graph with active and passive lines,
we define the deletion and contraction only for the active lines l ∈ L1(G) as
follows

Definition 9. For all active lines l ∈ L1(G) we define
• The graph with the line l deleted, G − l with V(G − l) = V(G), L1(G − l) =

L1(G)\{l} and L2(G − l) = L2(G).
• The graph with the line l contracted G/l with V(G/l) = V(G), L1(G/l) =

L1(G)\{l} and L2(G/l) = L2(G) ∪ {l}.

That is the contraction is reinterpreted as transforming an active lines
into a passive one, instead of the identification of the end vertices. The con-
traction is defined therefore only if {l} ∪ L2(G) is still a forest (that is it has
no loops). Note that one can use the new definitions of G − l and G/l also for
the graphs of Sect. 2. Then Eq. (2) holds for all active lines and Definition 1
holds if L2(G) = ∅.

Let G be a CGFT graph with n+1 colors, and G∂ its boundary graph. As
before, let Bp, 0 ≤ p ≤ n be the set of all bulk p-cells (defined by Definition 4),
and Bp

∂ , 0 ≤ p ≤ n − 1 the set of boundary p-cells (defined by Definition 6).

5 That is the lines in L2(G) do not form loops.
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Denote Bn+1 the set of the connected components of G and Bn
∂ the set of

connected components of G∂ . To define the topological polynomial associated
to G, we introduce a variable xp counting all the bulk p-cells and a variable yp

counting all the boundary p-cells. Furthermore, we associate a variable βl to
all active lines in G.

Definition 10. The topological polynomial PG({βl}, {xp}, {yp}) is

PG({βl}, {xp}, {yp}) =
∑

H⊂G;L2(H)=L2(G)

( ∏

l∈L1(H)

βl

) n+1∏

p=0

x|Bp|
p

n∏

p=0

y
|Bp

∂ |
p .

(16)

Note that the variables x0 and x1 are redundant: the number of vertices of
any subgraph is equal to the number of vertices of the initial graph, thus x

|B0|
0

is just an overall multiplicative factor and x1 contributes just with a global
x

L2(G)
1 multiplicative factor after a uniform rescaling of the line parameters βl.

An explicit example is detailed at length in the Appendix.
The polynomial of Eq. (16) has the following behavior under various

rescalings

PG({βl}, {ρ(−)p

xp}, {ρ(−)p+1
yp}) = ρχ(G)PG({βl}, {xp}, {yp})

(17)
PG({βl}, {xp}, {ρ(−)p

yp}) = ρχ(G∂)PG({βl}, {xp}, {yp}),

with χ(G) and χ(G∂) the Euler characteristics of G and G∂ respectively. More-
over it respects the contraction deletion relation

Lemma 4. For all active lines l ∈ L1(G) such that {l} ∪ L2(G) is a forest

P ({β}, {xp}, {yp}) = βlPG/l({β}\{βl}, {xp}, {yp})
+PG−l({β}\{βl}, {xp}, {yp}), (18)

Proof. Note that any active line l divides the subgraphs indexing the sum in
(16), H ⊂ G with L2(H) = L2(G), into two families, namely

Fl∈(G) = {H|l ∈ L1(H)} Fl/∈(G) = {H|l /∈ L1(H)} . (19)

We split (16) into two terms corresponding to these two families. All the sub-
graphs in the first family contain l, thus we can factor βl in front of the first
term, and reinterpret the line l as a passive line in the graph H/l. The set
of graphs Fl∈(G) is in one to one correspondence to the set of all the sub-
graphs H/l ⊂ G/l with L2(H/l) = L2(G/l) = L2(G) ∪ {l}, therefore the first
term on the rhs of Eq. (18) is recovered. The graphs in the second family
Fl/∈(G) coincide with the subgraphs of G − l, and one recovers the second term
in (18). �

The classical Tutte and Bollobás–Riordan polynomials are recovered as
limit cases of the higher dimensional polynomial defined here. For the CGFT
graphs with three colors (which are trivalent ribbon graphs) Eqs. (16) and (3)
imply

P ({β}, {1, 1, z, q}, {1, 1, z}) = VG(q, {β}, z) , (20)
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and for an arbitrary CGFT with L2(G) = ∅
P ({β}, {1, q}, {1}) = ZG(q, {β}). (21)

5. A Discussion of Universality

Perhaps the most appealing trait of the Bollobás Riordan and Tutte polyno-
mials is their universality, namely the fact that any graph invariant respecting
the deletion-contraction equations can be computed starting from them. In the
classical case the proof of such a result is lengthy and technical (see [42,43])
and becomes considerably more difficult for multivariate polynomials [50].

The classical proofs of universality [42,43] rely on a classification of the
end graphs of the deletion contraction, chord diagrams in [42,43] (referred to
as “rosettes” following [46–49] in the sequel ). The first core result established
in [42,43] is that all chord diagrams can be reduced by topological “rotation
about chords” to canonical rosettes. The proof of universality proceeds then
by a multi layer analysis over increasingly complex graphs starting with triv-
ial chord diagrams, and proceeding step by step to canonical chord diagrams,
arbitrary chord diagrams and finally arbitrary graphs.

In this section we will introduce the first notions needed for such an anal-
ysis for the polynomials presented in this paper. The question is much more
subtle and difficult than in the ribbon graphs case, and for the moment out
of reach. Identifying canonical colored rosettes with, say, four colors is equiva-
lent to a full classification of three dimensional piecewise linear manifolds and
pseudomanifolds, an extremely difficult open question in algebraic topology.
Even supposing that one would obtain such canonical rosettes (and we empha-
size again that we do not expect such a result any time soon), it would still
be a highly non trivial problem to generalize the proof of universality of [42].

5.1. Colored Rosettes

In the classical case the rosettes are the end graphs with one vertex (obtained
after the contraction of a tree in the graph) decorated by some loop lines
(which cannot be contracted further as they start and end on the same ver-
tex). Similarly, for colored graphs the end graphs are made of forests of passive
lines L2(G) decorated by active lines l, such that ∀{l}, {l} ∪ L2(G) is not a
forest.

A connected end graph G (that is L2(G) contains exactly one tree) admits
a representation as a colored rosette obtained by splitting all lines in L2(G)
longitudinally into two pieces (leaving the external half lines of the tree on the
appropriate sides) inheriting the color of the line, and deforming the closed cir-
cuit of the pieces to a circle. A self explanatory graphical representation of this
procedure is given in Fig. 7, where the passive lines are dotted and the active
ones are solid. Note that the colored rosettes have a natural counterclockwise
orientation.

The inverse procedure is also well defined. To obtain the passive tree
starting from the rosette one turns around the circle and identifies adjacent



578 R. Gurau Ann. Henri Poincaré
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Figure 7. Obtaining a colored rosette

pieces having the same color into a tree line. Note that in order to obtain the
full passive tree one might need to go around the circle more than once. For
the example of Fig. 7 the first pass reconstitutes the lines of colors 0, 1 and
3 in the passive tree, but one needs a second pass to reconstruct the line of
color 2. At first sight the colored rosettes are very similar to the ribbon graphs
rosettes, but as the boundary data along the colored rosettes is richer they are
noticeably harder to deal with.

The classical proofs of [42,43] proceed by classifying topologically related
rosettes. This is achieved by two topological operations, the “rotation about
lines” and the “sum of rosettes”. We note that there is a slight inconsistency
in the definition of the “rotation” in the literature, namely the definition used
in [43], is different from the one in [42]. It is not clear to us if these two are
equivalent, as the definition of [43] imposes some restrictions on “rotations”
and, at least at first sight, a “rotation” in the sense of [42] cannot be obtained
by a sequence of “rotations” in the sense of [43]. The second topological oper-
ation in [42,43], the “sum of rosettes” allows to freely move parts of a rosette
with respect to each other, and disentangle complicated rosettes.

In the rest of this section, we will give an appropriate generalization of
the “rotation about lines” to colored rosettes. In some cases this operation
will allow us to disentangle rosettes, but we will show through counterexam-
ples that this is not generic. Moreover, up to now we have not been able to
find an appropriate generalization of the “sum of rosettes” to colored rosettes.

5.2. The R Relation

Following [43] we consider now graphs with two effective vertices separated by
at least two lines (that is L2(G) has exactly two trees connected by at least two
active lines). Contraction of either one or the other of the active lines leads to
two distinct rosettes as in Fig. 8 and called R related.

From the point of view of the underlying tree of passive lines, the R rela-
tion can be seen as applying the inverse of a contraction move along a line
followed by a contraction along another tree line. In the rosette amounts to
choose the two pieces on the rosette coming from a passive line (1 in Fig. 8)
and identifying them to reconstruct it followed by the split of a newly formed
tree line (2 in Fig. 8).
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Figure 9. Three lines disentangled by an R move

Any line on a rosette separates two different vertices in the colored graph.
Call the unique (nonempty) path in the passive tree connecting these two ver-
tices P. On the rosettes, the line lets on the same side (both on the interior or
both on the exterior) the two pieces on the rosette coming from the lines in the
passive tree not belonging to P, and separates on its two sides (one on the inte-
rior and one on the exterior of the line) the two pieces on the rosette coming
form the lines belonging to P. Thus one can perform the R move and exchange
the line on the rosette with any one of the lines in P. As the two vertices it
connects are of opposing orientation, any line on the rosette encompasses an
odd number of pieces, at least one of which comes form P.

In the classical case the rotations allow one to always simplify rosettes
with three lines such that at most two intersect. In some cases this holds also for
colored rosettes, as is apparent from Fig. 9 (remember that the pieces α, β, γ, δ
are all oriented counterclockwise and note that the R relation preserves these
orientations).

However this is not generic. For the graph of Fig. 10 no R move can
disentangle the three lines in the corresponding rosette.

It is thus very difficult to give a full characterization of colored rosettes
and define some canonical rosettes to implement the usual proofs of universal-
ity. However the language developed here and the notion of colored rosettes
should provide clues to a partial characterization of three dimensional mani-
folds and pseudomanifolds.

6. Conclusion

In this paper, we introduced topological polynomials adapted to CGFT graphs,
obeying a deletion contraction equation. To each CGFT graph we associated
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Figure 10. Three lines which cannot be disentangled

a boundary graph, and defined and studied its homology. Moreover, in an
attempt to address the question of universality of our polynomials we were led
to introduce colored rosettes and adapted R moves.

The generalized polynomials reproduce the classical ones for certain val-
ues of the parameters. Although the polynomials we define are not the unique
generalization one can consider, they already encode nontrivial topological
information as seen by the behavior under rescaling of their arguments. One
can for instance consider generalizations, in which instead of associating a
unique variable xp which counts all the p-cells, one associates a different var-
iable to each p-cell. Such a polynomial would presumably obey a generalized
deletion-contraction for p-cells instead of lines.
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Appendix

In this appendix, we detail the topological polynomial and check the contrac-
tion deletion relation for the graph in Fig. 4. The subgraphs of this graph are:
the total graph formed by the lines 0123, subgraphs with three lines 123, 023,
013, 012, sub graphs with two lines 01, 02, 03, 12, 13, 23, those with one line
0, 1, 2, 3 and the subgraph with zero lines. The polynomial of the complete
graph is then
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PG = β0β1β2β3 x2
0x

4
1x

6
2x

4
3x4

+ (β1β2β3 + β0β2β3 + β0β1β3 + β0β1β2) x2
0x

3
1x

3
2x3x4y

2
0y3

1y3
2y3

+ (β0β1 + β0β2 + β0β3 + β1β2 + β1β3 + β2β3) x2
0x

2
1x2x4y

4
0y6

1y4
2y3

+ (β0 + β1 + β2 + β3) x2
0x1x4y

6
0y9

1y5
2y3

+ x2
0x

2
4y

8
0y12

1 y8
2y2

3 . (22)

Consider for instance the contributions of the subgraph 012, represented
in Fig. 6. It has two vertices, three lines 0, 1 and 2, three internal faces 01, 02
and 12, one internal bubble 012 and one connected component. This yields a
factor x2

0x
3
1x

3
2x3x4. Its boundary graph is represented on the right hand side of

Fig. 6. It has two vertices (both colored 3), three lines colored 03, 13 and 23,
three faces, one formed by the lines 01 and 02, another one formed by the lines
01, 03 and the third one formed by the lines 02 and 03, and one connected
component, yielding a factor y2

0y3
1y3

2y3. Multiplying the two factors reproduces
the coefficient of β0β1β2 in Eq. (22)

Chose a line, say 0. The graphs G − l and G/l are represented in Fig. 11
where the passive line l0 of G/l is represented as a dotted line.

The graph G − l has subgraphs made of lines 123, 12, 23, 13, 1, 2, 3 and
the subgraph with zero lines. Thus

PG−l = β1β2β3 x2
0x

3
1x

3
2x3x4y

2
0y3

1y3
2y3

+ (β1β2 + β1β3 + β2β3) x2
0x

2
1x2x4y

4
0y6

1y4
2y3

+ (β1 + β2 + β3) x2
0x1x4y

6
0y9

1y5
2y3

+ x2
0x

2
4y

8
0y12

1 y8
2y2

3 . (23)

All the subgraphs of G/l will have l0 ∈ L2 as a passive line. They are
formed by the active lines 123, 12, 23, 13, 1, 2, 3 and the graph with no active
line. Therefore

PG/l = β1β2β3 x2
0x

4
1x

6
2x

4
3x4

+ (β2β3 + β1β3 + β1β2) x2
0x

3
1x

3
2x3x4y

2
0y3

1y3
2y3

+ (β1 + β2 + β3) x2
0x

2
1x2x4y

4
0y6

1y4
2y3

+ x2
0x1x4y

6
0y9

1y5
2y3, (24)

and direct inspection shows that

PG = β0PG/l + PG−l. (25)
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