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All Vacuum Near Horizon Geometries
in D-dimensions with (D − 3) Commuting
Rotational Symmetries

Stefan Hollands and Akihiro Ishibashi

Abstract. We explicitly construct all stationary, non-static, extremal near
horizon geometries in D dimensions that satisfy the vacuum Einstein equa-
tions, and that have D−3 commuting rotational symmetries. Our work gener-
alizes [arXiv:0806.2051] by Kunduri and Lucietti, where such a classification
had been given in D = 4, 5. But our method is different from theirs and relies
on a matrix formulation of the Einstein equations. Unlike their method, this
matrix formulation works for any dimension. The metrics that we find come
in three families, with horizon topology S2 × T D−4, or S3 × T D−5, or quo-
tients thereof. Our metrics depend on two discrete parameters specifying the
topology type, as well as (D − 2)(D − 3)/2 continuous parameters. Not all of
our metrics in D ≥ 6 seem to arise as the near-horizon limits of known black
hole solutions.

1. Introduction

Many known families of black hole solutions possess a limit wherein the black
hole horizon becomes degenerate, i.e., where the surface gravity tends to zero;
such black holes are called extremal. While extremal black holes are not believed
to be physically realized as macroscopic objects in nature, they are nevertheless
highly interesting from the theoretical viewpoint. Due to the limiting procedure,
they are in some sense at the fringe of the space of all black holes, and therefore
possess special properties which make them easier to study in various respects.
For example, in string theory, the derivation of the Bekenstein–Hawking entropy
of black holes from counting microstates (see e.g., [13] for a review) is best under-
stood for extremal black holes. Furthermore, many black hole solutions that have
been constructed in the context of supergravity theories (see e.g., [17,18]) have
supersymmetries, and are thus automatically extremal.
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Many of the arguments related to the derivation of the black hole
entropy—especially in the context of the “Kerr-CFT correspondence” [1,3,10,19,
21,34]—actually only involve the spacetime geometry in the immediate (actually
infinitesimal) neighborhood of the black hole horizon. More precisely, by apply-
ing a suitable scaling process to the spacetime metric which in effect blows up
this neighborhood, one can obtain in the limit a new spacetime metric, called a
“near horizon geometry.” It is the near-horizon geometry which enters many of
the arguments pertaining to the derivation of the black hole entropy.

The near-horizon limit can be defined for any spacetime (M, g) with a degen-
erate Killing horizon, N—not necessarily a black hole horizon. The construction
runs as follows.1 First, recall that a spacetime with degenerate Killing horizon by
definition has a smooth, codimension one, null hypersurface N , and a Killing vec-
tor field K whose orbits are tangent N , and which on N are tangent to affinely2

parametrized null-geodesics. Furthermore, by assumption, there is a “cross sec-
tion”, H, of codimension one in N with the property that each generator of K on
N is isomorphic to R and intersects H precisely once. In the vicinity of N , one can
then introduce “Gaussian null coordinates” u, v, ya as follows, see, e.g., [36]. First,
we choose arbitrarily local3 coordinates ya on H, and we Lie-transport them along
the flow of K to other places on N , denoting by v the flow parameter. Then, at
each point of N we shoot off affinely parametrized null-geodesics and take u to be
the affine parameter along these null geodesics. The tangent vector ∂/∂u to these
null geodesics is required to have unit inner product with K = ∂/∂v on H, and
to be orthogonal to the Lie-transported cross-section H. It can be shown that the
metric then takes the Gaussian null form

g = 2dv(du+ u2αdv + uβadya) + γabdyadyb, (1.1)

where the function α, the one-form β = βadya, and the tensor field γ = γabdyadyb

do not depend on v. The Killing horizon N is located at u = 0, and the cross
section H at u = v = 0. The near horizon limit is now taken by applying to g the
diffeomorphism v �→ v/ε, u �→ εu (leaving the other coordinates ya unchanged),
and then taking ε → 0. The so-obtained metric looks exactly like Eq. (1.1), but
with new metric functions obtained from the old ones by evaluating them at u = 0.
Thus, the fields α, β, γ of the near horizon metric neither depend on v nor u and
can therefore be viewed as fields on H. If the original spacetime with degenerate
Killing horizon satisfies the vacuum Einstein equation or the Einstein equation
with a cosmological constant, then the near-horizon limit does, too.

1 The general definition of a near-horizon limit was first considered in the context of supergravity
black holes in [39], and in the context of extremal, but not supersymmetric black holes in [12]
for the static case and in [30] for the general case. The concept of near-horizon geometry itself
has appeared previously in the literature, e.g., [20] for 4-dimensional vacuum case (also see [33]
for the isolated horizon case).
2 For a non-degenerate horizon, the orbits on N of K would not be affinely parametrized.
3 Of course, it will take more than one patch to cover H, but the fields γ, β, α on H below in
Eq. (1.1) are globally defined and independent of the choice of coordinate systems.
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The near-horizon limit is simpler than the original metric in the sense that it
has more symmetries. For example, if the limit procedure is applied to the extremal
Kerr metric in D = 4 spacetime dimensions with symmetry group R×U(1), then—
as observed4 first by [4] (see also [5,7])—the near-horizon metric has an enhanced
symmetry group of O(2, 1) × U(1). The first factor of this group is related to an
AdS2-factor in the metric. A similar phenomenon occurs for stationary extremal
black holes in higher dimensions with a comparable amount of symmetry: as proved
in [30], if (M, g) is a D-dimensional stationary extremal black hole with isometry
group5

R × U(1)D−3 and compact horizon cross section H, then the near-horizon
limit has the enhanced symmetry group O(2, 1) ×U(1)D−3. In D ≥ 5 dimensions,
it is not known at present what is the most general stationary extremal black hole
solution with symmetry group R × U(1)D−3, so one can neither perform explic-
itly their near horizon limits. Nevertheless, because the near horizon metric has
an even higher degree of symmetry—the metric functions essentially only depend
non-trivially on one coordinate—one can try to classify them directly.

This was done for the vacuum Einstein equations in dimensions D = 4, 5
by [29], where a list of all near-horizon geometries, i.e., metrics of the form (1.1)
with metric functions α, β, γ independent of u, v, was obtained. It is a priori far
from obvious that all these metrics are the near horizon limits of actual glob-
ally defined black holes. Remarkably though, [29] could prove that the metrics
found are indeed the limits of the extremal black ring [14], boosted Kerr string,
Myers–Perry [37], and the Kaluza–Klein black holes [32,38], respectively.

In this paper, we give a classification of all possible vacuum near horizon
geometries with symmetry group O(2, 1) × U(1)D−3 in arbitrary dimensions D.
The method of analysis used in [29] seems restricted to D = 4, 5, so we here use a
different method based on a matrix formulation of the vacuum Einstein equations
that works in arbitrary dimensions. The metrics that we find come in three families
depending on the topology of H, which can be either S3 × TD−5, S2 × TD−4 or
L(p, q)×TD−5, where L(p, q) is a Lens space. The metrics in each of these families
depend on (D − 2)(D − 3)/2 real parameters; they are given explicitly in Theo-
rem 1 below. When specialized to D = 5, our first two families of metrics must
coincide with those previously found in [29], whereas the last family is shown to
arise from the first one by taking quotients (this last properties generalizes to arbi-
trary D). In all dimensions, examples for near-horizon geometries with topology
S2 × TD−4 are provided by the near-horizon limit of the “boosted Kerr-branes”
see, e.g., [15,30]. This family of metrics depends on (D− 2)(D− 3)/2 real param-
eters and it is conceivable that all near horizon geometries of this topology can be

4 By construction, the near horizon geometry has the Killing fields ∂/∂v and u∂/∂u − v∂/∂v,
which generate a two-parameter symmetry group. The non-trivial observation by [4] is that this
actually gets enhanced to the three-parameter group O(2, 1).
5 The “rigidity theorem” [23] guarantees that a stationary extremal black hole has a symme-
try group that contains R × U(1), i.e., guarantees only one axial Killing field in addition to the
assumed timelike Killing field. Therefore, in D ≥ 5, assuming a factor of U(1)D−3 is a non-trivial
restriction, while it is actually a consequence of the rigidity theorem in D = 4.
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obtained in this way. The analogous construction is also possible when the horizon
topology is S3 × TD−5. However, in this case, the resulting metrics depend on
fewer parameters.

We should also point out that there are vacuum near-horizon geometries that
possess fewer symmetries than R×U(1)D−3. For example, the near-horizon geome-
try of the extremal Myers–Perry black holes, constructed explicitly in [15], has the
smaller symmetry group, R×U(1)[(D−1)/2]. In this paper, we are not going to clas-
sify such less symmetric vacuum near-horizon geometries. Also, we are not going
to consider the case of a non-vanishing cosmological constant, since, as far as we
are aware, there has appeared no successful reduction of the Einstein gravity with
a cosmological constant to a suitable nonlinear sigma model, which is, however,
required in our approach. The same remark would apply to other theories with dif-
ferent matter fields. On the other hand, we expect our approach to be applicable to
theories that can be reduced to suitable sigma-models. For D = 5 minimal gauged
and ungauged supergravity, the near-horizon geometries were classified in [31,39]
using a method different from ours. Also for D = 4 Einstein–Maxwell theory with
a cosmological constant, see, e.g., [28].

2. Geometrical Coordinates

The aim of this paper is to classify the near-horizon geometries in D dimensions.
As explained in the previous section, by this we mean the problem of finding all
metrics g of the form (1.1) with vanishing Ricci tensor (i.e., vacuum metrics),
where γ = γabdyadyb is a smooth metric on the compact manifold H,β = βadya

is a 1-form on H and α is a scalar function on H. These fields do not depend on
u, v, and the near-horizon geometries therefore have the Killing vectors K = ∂/∂v
and X = u∂/∂u−v∂/∂v. We do not assume a priori that the near horizon metrics
arise from a black hole spacetime by the limiting procedure described above.

Unfortunately, this problem appears to be difficult to solve in this general-
ity, so we will make a significant further symmetry assumption. Namely, we will
assume that our metrics do not only have the Killing vectors K,X, but in addi-
tion admit the symmetry group U(1)D−3, generated by (D−3) commuting Killing
fields ψ1, . . . , ψD−3 that are tangent to H and also commute with K,X. Thus, the
full isometry group of our metric is (at least) G2 × U(1)D−3, where G2 denotes
the Lie-group that is generated by K,X. This means roughly speaking that the
metric functions can nontrivially depend only on a single variable, and our metrics
may hence be called “cohomogeneity-one.” As a consequence, Einstein’s equations
reduce to a coupled system of non-linear ordinary differential equations in this
variable. Our aim is to solve this system in the most general way and thereby to
classify all near horizon geometries with the assumed symmetry.

It seems that this system becomes tractable only if certain special coordi-
nates are introduced that are adapted in an optimal way to the geometric situa-
tion under consideration. These coordinates are the well-known Weyl–Papapetrou
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coordinates up to a simple coordinate transformation. However, to introduce these
coordinates in a rigorous and careful manner is more subtle in the present case
than for non-extremal horizons. These technical difficulties are closely related to
the fact that the usual Weyl–Papapetrou coordinates are actually singular on H,
the very place we are interested in most. To circumvent this problem, we follow the
elegant alternative procedure introduced in [29,30]. That procedure applies in the
form presented here to non-static geometries, and we will for the rest of this paper
make this assumption. The static case has been treated previously in [12,27].

We first observe that the horizon H is a compact (D− 2)-dimensional mani-
fold with an action of U(1)D−3. By general and rather straightforward arguments
(see, e.g., [24,26]) it follows that, topologically, H can only be of the following four
types:

H ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S3 × TD−5,

S2 × TD−4,

L(p, q) × TD−5,

TD−2.

(2.2)

Furthermore, in the first three cases, the quotient space H/U(1)D−3 is a closed
interval—which we take to be [−1, 1] for definiteness—whereas in the last case, it is
S1. We will not treat the last case in this paper,6 but we note that the topological
censorship theorem [11] implies that there cannot exist any extremal, asymptoti-
cally flat or Kaluza–Klein vacuum black holes with H ∼= TD−2. Thus, while there
could still be near horizon geometries with H ∼= TD−2, they cannot arise as the
limit of a globally defined black hole spacetime.

In this paper, we will focus on the first three topology types. In these cases,
the Gram matrix

fij = γ(ψi, ψj) (2.3)

is non-singular in the interior of the interval, and it has a one-dimensional null-
space at each of the two end points [24]. In fact, there are integers ai± ∈ Z such
that

fij(x)ai± → 0 at boundary points ±1. (2.4)

The integers ai± determine the topology of H (i.e., which of the first three cases
we are in), as we explain more in Theorem 1 below.

The first geometric coordinate, x, parametrizes the interval [−1,+1], and is
introduced as follows. Consider the 1-form on H defined by Σ = (det f) �γ (ψ1 ∧
· · · ∧ ψD−3), where the Hodge dual is taken with respect to the metric γ on H.
Using the fact that the ψi are commuting Killing fields of γ, one can show that Σ
is closed, and that it is Lie-derived by all ψi. Hence, Σ may be viewed as a closed
1-form on the orbit space H/U(1)D−3, which, as we have said, is a closed interval.

6 See, however, the note added in proof.
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It can be seen furthermore that Σ does not vanish anywhere within this closed
interval, so there exists a function x, such that

dx = CΣ. (2.5)

The constant C is chosen so that x runs from −1 to +1. We take x to be our first
coordinate, and we take the remaining coordinates on H to be angles ϕ1, . . . , ϕD−3

running between 0 and 2π, chosen in such a way that ψi = ∂/∂ϕi. In these coor-
dinates, the metric γ on H takes the form

γ =
1

C2 det f
dx2 + fij(x)dϕidϕj . (2.6)

To define our next coordinate, we consider the 1-form field β on H, see Eq. (1.1).
Standard results on the Laplace operator Δγ on a compact Riemannian manifold
(H, γ) guarantee that there exists a smooth function λ on H such that

�γ d �γ β = Δγλ, (2.7)

where �γ is the Hodge star of γ. The function λ is unique up to a constant.
Because β and γ are Lie-derived by all the rotational Killing fields ψi, it follows
that Lψi

λ = ci are harmonic functions on H, i.e., constants. Furthermore, these
constants must vanish, because the ψi have periodic orbits. Thus, λ is only a func-
tion of x. We also claim that the 1-form β−dλ has no dx-part. To see this, we let
h be the scalar function on H defined by h = �γ(ψ1 ∧ · · ·∧ψD−3 ∧ [β−dλ]). Using
Eq. (2.7) and the fact that the ψi are commuting Killing fields of γ, it is easy to
show that dh = 0, so h is constant. Furthermore, by Eq. (2.4) there exist points in
H where the linear combinations ai±ψi = 0, and it immediately follows from this
that h = 0 on H. This shows that β − dλ has no dx-part and hence we can write

β = dλ+ Ceλkidϕi, (2.8)

where we have introduced the quantities

ki := C−1e−λψi · β. (2.9)

The next coordinate is defined by

r := ueλ, (2.10)

and we keep v as the last remaining coordinate. The coordinates ϕi, r, x, v are the
desired geometrical coordinates. In these, the metric takes the form

g = e−λ[2dvdr + r2(2αe−λ − eλkiki)dv2]

+
dx2

C2 det f
+ fij(dϕi + Crkidv)(dϕj + Crkjdv). (2.11)

We have also determined that the quantities ki, fij , α, λ are functions of x only. The
indices i, j, . . . are raised with the inverse f ij of the Gram matrix, e.g., ki = f ijkj .

So far, we have only used the symmetries of the metric, but not the fact that it
is also required to be Ricci flat. This imposes significant further restrictions [29,30].
Namely, one finds that ki are simply constants, and that (2αe−λ − eλkiki) is
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a negative7 constant, which one may choose to be −C2 after a suitable rescal-
ing of the coordinates r, v and the constants ki, and by adding a constant to
λ. Then the Einstein equations further imply that ∂2

x(e
−λ det f) = −2; hence,

e−λ = −(x−x−)(x−x+)(det f)−1 for real numbers x±. Furthermore, λ is smooth
and det f vanishes only at x = ±1 by Eq. (2.4), so x± = ±1 and consequently,

e−λ = (1 − x2)(det f)−1. (2.12)

Thus, in summary, we have determined that the near-horizon metric is given by

g =
1 − x2

det f
(2dvdr − C2r2dv2) +

dx2

C2 det f
+ fij(dϕi + rCkidv)(dϕj + rCkjdv)

(2.13)

where ki, C are constants, and where fij depends only on x.
In the remainder of the paper, we will work with above form of the

metric (2.13). However, we will, for completeness, also give the relation to the
more familiar Weyl–Papapetrou form: For r > 0 (i.e., strictly outside the hori-
zon), we define new coordinates (t, ρ, z, φi) by the transformation [16]

z := rx (2.14)

ρ := r
√

1 − x2 (2.15)
t := Cv + (Cr)−1 (2.16)

φi := ϕi + C−1ki log r . (2.17)

In the new coordinates (t, ρ, z, φi), the metric then takes the Weyl–Papapetrou
form

g = −ρ2dt2

det f
+

e−λ

C2r2
(dρ2 + dz2) + fij(dφi + rkidt)(dφj + rkjdt), (2.18)

where it is understood that r2 = ρ2 + z2. Note that, by contrast with the coordi-
nate system (v, r, x, ϕi), the Weyl–Papapetrou coordinate system does not cover
the horizon itself, i.e., it is not defined for r = 0 but only for r > 0. This can be
seen in several ways, for example, by noting that the coordinate transformation is
singular at r = 0, i.e., on the horizon, or alternatively, by noting that the horizon
corresponds in the new coordinates to the single point ρ = z = 0. This behavior is
characteristic of extremal horizons and does not happen in the non-extremal case.

In obtaining our form (2.13) for the near-horizon metric, we have used up all
but the ij-components of the Einstein equations. The remaining Einstein equa-
tions determine the matrix of functions fij(x). As is well-known [35], a beautifully
simple form of these equations can be obtained by introducing the twist poten-
tials of the rotational Killing fields as auxiliary variables. These potentials χi are
defined up to a constant by

dχi = �(ψ1 ∧ · · · ∧ ψD−3 ∧ dψi). (2.19)

7 Here one must use that the metric is not static, i.e., that not all ki vanish.
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To see that this equation makes sense, one has to prove that the right side is
an exact form. Indeed, taking d of the right side and using the vanishing of the
Ricci tensor together with the fact that the Killing fields all commute, one gets
zero. To see that the right side is even exact, it is best to pass to the orbit space
M/(G2 × U(1)D−3) first, which can be identified with the interval [−1, 1]. Then
the χi can be defined on this orbit space and lifted back to functions on M . It also
follows from this construction that χi only depends on the coordinate x parame-
trizing [−1, 1]. Setting

Φ =
(

(det f)−1 −(det f)−1χi
−(det f)−1χi fij + (det f)−1χiχj

)

, (2.20)

it is well known that the vanishing of the Ricci-tensor implies that

∂x[(1 − x2)Φ−1∂xΦ] + ∂r[r2 Φ−1∂rΦ] = 0. (2.21)

These equations are normally written in the Weyl–Papapetrou coordinates ρ, z
(see, e.g., [24]), and the above form is obtained simply by the change of variables
Eq. (2.14).

Since Φ is a function of x only in our situation (but would not be, e.g., for
black holes without the near-horizon limit taken) an essential further simplifica-
tion occurs: The second term in the above set of matrix equations is simply zero!
Hence, the content of the remaining Einstein equations is expressed in the matrix
of ordinary differential equations

∂x[(1 − x2)Φ−1∂xΦ] = 0. (2.22)

In fact, this equation could be derived formally and much more directly by simply
assuming the Weyl–Papapetrou form of the metric, introducing r, x as above, and
then observing that, in the near-horizon limit, the dependence on r is scaled away,
so that the matrix partial differential Eq. (2.21) reduce to the ordinary differential
Eq. (2.22).

3. Classification

To determine all near-horizon metrics (2.13), we must solve the matrix Eq. (2.22),
i.e., find fij , χi. Then the constants ki are given by

ki =
1 − x2

det f
f ij∂xχj , (3.23)

and this determines the full metric up to the choice of the remaining constant C.
We must furthermore ensure that, among all such solutions, we pick only those
that give rise to a smooth metric g.

The Eq. (2.22) for Φ are easily integrated to

Φ(x) = Q exp [2arcth(x) · L] = Q

(
1 + x

1 − x

)L

. (3.24)
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Here,Q = Φ(0), L = 1
2 (1−x2)Φ(x)−1∂xΦ(x) are both constant real (D−2)×(D−2)

matrices, and we mean the matrix exponential etc. It follows from the definition
that Φ has the following general properties: it is symmetric, det Φ = 1, and it
is positive definite. It is an easy consequence of these properties that detQ =
1,TrL = 0 (taking the determinant of the equation), that Q = QT is positive
definite, and that LTQ = QL. These relations allow us to write Q = STS for some
real invertible matrix S = (sIJ ) of determinant ±1, and to conclude that SLS−1

is a real symmetric matrix. By changing S to V S, where V is a suitable orthogonal
transformation, we can achieve that

SLS−1 =

⎛

⎜
⎜
⎜
⎝

σ0 0 . . . 0
0 σ1 . . . 0
...

...
0 0 . . . σD−3

⎞

⎟
⎟
⎟
⎠

(3.25)

is a real diagonal matrix, while leaving Q unchanged. It then follows that Φ(x) =
ST exp

[
2arcth(x) · SLS−1

]
S, that is

ΦIJ (x) =
D−3∑

K=0

(
1 + x

1 − x

)σK

sKIsKJ . (3.26)

This is the most general solution to the field equation for Φ in the near-horizon
limit, and it depends on the real parameters sIJ , σI , which are subject to the
constraints

det(sIJ ) = ±1,
D−3∑

I=0

σI = 0. (3.27)

The near-horizon metric is completely fixed in terms of Φ. It can be obtained com-
bining Eq. (3.26) with Eq. (2.20) to determine fij , χi, which in turn then fix the
remaining constants ki, C in the near-horizon metric. In the rest of this section,
we explain how this can be done. It turns out that the smoothness of the near-
horizon metric also implies certain constraints on the parameters σI , sIJ , and we
will derive the form of these. Our analysis applies in principle to all dimensions
D ≥ 4. The case D = 4, while being simplest, is somewhat different from the
remaining cases D ≥ 5 and would require us to distinguish these cases in many
of the formulae below. Therefore, to keep the discussion simple, we will stick to
D ≥ 5 in the following.

First, we consider the ij-component of Φ in Eq. (3.26). By Eq. (2.20) this is
also equal to

D−3∑

I=0

(
1 + x

1 − x

)σI

sIisIj = Φij = fij + (det f)−1χiχj . (3.28)

Now, the coordinate x ∈ [−1, 1] parametrizes the orbit space H/U(1)D−3 of the
horizon, which is topologically a finite interval. The boundary points x = ±1 cor-
respond to points on the horizon where an integer linear combination

∑
ai±ψi of
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the rotational Killing fields vanishes. This is equivalently expressed by the con-
dition fij(x)a

j
± → 0 as x → ±1. By contrast, for all values of x ∈ (−1,+1),

no linear combination of the rotational fields vanishes. Therefore, det f �= 0 for
x ∈ (−1,+1), while det f → 0 as x → ±1. In fact, using Eq. (2.12) one sees that

(det f)−1 = 2c2+(1 − x)−1 + 2c2−(1 + x)−1 + · · · as x → ±1, (3.29)

where the dots represent contributions that go to a finite limit, and where c± are
non-zero constants related to λ by 4c2± = e−λ(±1) �= 0. The twist potentials χi also
go to a finite limit as x → ±1. By adding suitable constants to the twist potentials
if necessary, we may achieve that

χi → 1
c±
μi as x → ±1, (3.30)

where μi ∈ R are constants. The upshot of this discussion is that, as one approaches
the boundary points, the components Φij are dominated by the rank-1 part
(det f)−1χiχj , which diverges as 2(1 ∓ x)−1μiμj as x → ±1. This behavior can
be used to fix the possible values of the eigenvalues σI as follows. First, it is clear
that at least one of the eigenvalues must be non-zero, for otherwise the right side
of Eq. (3.28) would be smooth as x → ±1, which we have just argued is not the
case. Let us assume without loss of generality then that σD−3 ≥ · · · ≥ σD−3−n > 0
are the n positive eigenvalues. Multiplying Eq. (3.28) by 1−x and taking x → +1,
we see that σD−3 = 1, that μi = s(D−3)i, and that all other remaining positive
eigenvalues must be strictly between 0 and 1. If we now subtract (1 − x2)−1μiμj
from both sides of the equation, then the right side of Eq. (3.28) goes to a finite
limit as x → 1, and so the left side has to have that behavior, too. This is only
possible if there are no other remaining positive eigenvalues besides σD−3. A simi-
lar argument then likewise shows that there is only one negative eigenvalue, which
has to be equal to −1 (without loss of generality we may take σD−4 = −1) and
that μi = s(D−4)i.

In summary, we have shown that

σI =

⎧
⎪⎨

⎪⎩

0 if I ≤ D − 5,
−1 if I = D − 4,
1 if I = D − 3,

(3.31)

and we also see that

μi = s(D−3)i = s(D−4)i, c+ = s(D−3)0, c− = s(D−4)0. (3.32)

The condition that detS = ±1 then moreover gives

± 1 = (c+ − c−)εijk...ms0is1js2k · · ·μm. (3.33)
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We may now combine this information with the Eqs. (3.26) and (2.20) and solve
for fij , χi. The result can be expressed as

fijξ
iξj = 2

1 + x2

1 − x2
(μ · ξ)2 +

D−5∑

I=0

(sI · ξ)2

− eλ(x)

1 − x2

(

(1 − x2)
D−5∑

I=0

sI0(sI · ξ) + [c+(1 + x)2 + c−(1 − x)2](μ · ξ)
)2

(3.34)

χiξ
i = eλ(x)

(

(1 − x2)
D−5∑

I=0

sI0(sI · ξ) + [c+(1 + x)2 + c−(1 − x)2](μ · ξ)
)

.

(3.35)

Here, we are using shorthand notations such as μ · ξ = μiξ
i or sI · ξ = sIiξ

i, and

exp[−λ(x)] = c2+(1 + x)2 + c2−(1 − x)2 + (1 − x2)
D−5∑

I=0

s2I0, (3.36)

in order to have a reasonably compact notation. This function λ agrees with that
previously defined in Eq. (2.7) by Eq. (2.12). From Eq. (3.34), one now finds after
a short calculation that the conditions (2.4) are equivalent to

sI0μia
i
+ = c+sIia

i
+, sI0μia

i
− = c−sIiai−, for I = 0, . . . , D − 5. (3.37)

Either of these equations “±” can be used to solve for sI0, because8 μia
i
± �= 0 for

both “±”. We will do this in the following:
As we have explained, the constants ki in the near-horizon metric are given

by (3.23). A longer calculation using Eqs. (3.34), (3.37), (3.33) and (3.36) reveals
that

ki =
2c+c−
c+ − c−

(
ai+

μja
j
+

+
ai−
μja

j
−

)

. (3.38)

To avoid conical singularities in the near-horizon metric (2.13), we must further-
more have9

(1 − x2)2

det f · fijai±aj±
→ C2 as x → ±1, (3.39)

8 Indeed, let us assume that, say μia
i
+ = 0. Then, since c+ �= 0, we know that also sIia

i
+ = 0.

It then would follow that 0 = εijk,...,ms0is1js2k · · · μm, which however is in contradiction with

Eq. (3.33).
9 Here the constants ai± ∈ Z are normalized so that the greatest common divisor of ai

+, i =

1, . . . , D − 3 is equal to 1, and similarly for ai−.
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and this determines C. A longer calculation using Eqs. (3.34), (3.37) shows that

C =
4c2+

(c+ − c−)μiai+
=

4c2−
(c+ − c−)μiai−

. (3.40)

Thus, we have determined all quantities C, ki, fij in the near-horizon metric (2.13).
We substitute these, and make the final coordinate change

x = cos θ, 0 ≤ θ ≤ π. (3.41)

Then, after performing some algebraic manipulations, we get the following result,
which summarizes our entire analysis so far:

Theorem 1. All non-static near horizon metrics (except topology type H ∼= TD−2)
are parametrized by the real parameters c±, μi, sIi, and the integers ai± where I =
0, . . . , D − 5 and i = 1, . . . , D − 3, and g.c.d.(ai±) = 1. The explicit form of the
near horizon metric in terms of these parameters is

g = e−λ(2dvdr − C2r2dv2 + C−2dθ2) + e+λ

{

(c+ − c−)2(sin2 θ)Ω2

+(1 + cos θ)2c2+
∑

I

(

ωI − sI · a+

μ · a+
Ω
)2

+ (1 − cos θ)2c2−
∑

I

(

ωI − sI · a−
μ · a−

Ω
)2

+
c2± sin2 θ

(μ · a±)2
∑

I<J

((sI · a±)ωJ − (sJ · a±)ωI)
2

}

. (3.42)

Here, the sums run over I, J from 0, . . . , D − 5, the function λ(θ) is given by

exp[−λ(θ)] = c2+(1 + cos θ)2 + c2−(1 − cos θ)2 +
c2± sin2 θ

(μ · a±)2
∑

I

(sI · a±)2, (3.43)

C is given by C = 4c2±[(c+ − c−)(μ · a±)]−1, and we have defined the 1-forms

Ω(r) = μ · dϕ+ 4Cr
c+c−
c+ − c−

dv (3.44)

ωI(r) = sI · dϕ+
r

2
C2(sI · a+ + sI · a−)dv. (3.45)

We are also using the shorthand notations such as sIiai+ = sI · a+, or μ · dϕ =
μidϕi, etc. The parameters are subject to the constraints μ · a± �= 0 and

c2+
μ · a+

=
c2−

μ · a−
,

c+(sI · a+)
μ · a+

=
c−(sI · a−)
μ · a−

,

±1 = (c+ − c−)εijk...ms0is1js2k · · ·μm (3.46)
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but they are otherwise free. The coordinates ϕi are 2π-periodic, 0 ≤ θ ≤ π, and v, r
are arbitrary. When writing “±”, we mean that the formulae hold for both signs.

Remarks. (1) The function λ(θ) was invariantly defined in Eq. (2.7), and there-
fore evidently has to be a smooth function. This is manifestly true, because
both c± �= 0. Because also μ ·a± are both non-zero, we explicitly see that the
above metrics are smooth (in fact analytic).

(2) The part 2dvdr − C2r2dv2 of the metric is that of AdS2 with curvature C2.
This is the cause for the enhanced symmetry group of O(2, 1) × U(1)D−3.

Let us finally discuss the meaning of the parameters on which the near-
horizon metrics depend. The parameters ai± ∈ Z are related to the horizon topol-
ogy. Up to a globally defined coordinate transformation of the form

ϕi �→
∑

Aijϕ
jmod 2π, A ∈ SL(Z,D − 3),

we have

a+ = (1, 0, 0, . . . , 0), a− = (q, p, 0, . . . , 0), p, q ∈ Z, g.c.d.(p, q) = 1. (3.47)

A general analysis of compact manifolds with a cohomogeneity-1 torus action (see,
e.g., [24]) implies that the topology of H is

H ∼=

⎧
⎪⎨

⎪⎩

S3 × TD−5 if p = ±1, q = 0,
S2 × TD−4 if p = 0, q = 1,
L(p, q) × TD−5 otherwise.

(3.48)

The constants μi, c±, ai± are directly related to the horizon area by

AH =
(2π)D−3(c+ − c−)2(μ · a±)2

8c4±
, (3.49)

and we also have

Ji :=
1
2

∫

H

�(dψi) = (2π)D−3 c+ − c−
2c−c+

μi. (3.50)

In an asymptotically flat or Kaluza–Klein black hole spacetime with a single hori-
zon H, the above integral for Ji could be converted to a convergent integral over
a cross section at infinity using Stokes theorem and the vanishing of the Ricci
tensor. Then the Ji would be equal to the Komar expressions for the angular
momentum. The near-horizon limits that we consider do not of course satisfy
any such asymptotic conditions, and hence this cannot be done. Nevertheless, if
the near-horizon metric under consideration arises from an asymptotically flat or
asymptotically Kaluza–Klein spacetime, then the Ji are the angular momenta of
that spacetime. Hence, we see that the parameters c±, μi, ai± are directly related
to geometrical/topological properties of the metric. This seems to be less clear for
the remaining parameters sIi.
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The number of continuous parameters on which our metric depend can be
counted as follows: first, the matrix sIi has (D − 3)(D − 4) independent compo-
nents, μi has (D − 3) and c± has 2 components. These parameters are subject to
the (D− 2) constraints, Eq. (3.46). However, changing sIi to

∑D−5
J=0 R

J
IsJi, with

RJI an orthogonal matrix in O(D − 4), does not change the metric. Since such
a matrix depends on (D − 4)(D − 5)/2 parameters, our metrics depend only on
(D − 3)(D − 4) + (D − 3) + 2 − (D − 2) − (D − 4)(D − 5)/2 = (D − 2)(D − 3)/2
real continuous parameters.

It is instructive to compare this number to the number of parameters of a
boosted Kerr-brane. If we start from a direct product of a 4-dimensional
extremal Kerr metric with a flat torus TD−4 and apply a boost in an arbitrary
direction, then the resulting family of metrics has (D − 2)(D − 3)/2 parameters,
and the horizon topology is S2 × TD−4. It is plausible that all our metrics in our
Theorem 1 for this topology can be obtained by taking the near-horizon limit of
these boosted Kerr-branes. By contrast, if we start with a direct product of a
5-dimensional extremal Myers–Perry black hole with a flat torus TD−5, then we
similarly get a family of metrics which depends only on (D − 3)(D − 4)/2 + 1
parameters. Therefore in this case, we get metrics depending on fewer parameters
than those in Theorem 1.

4. Examples

Let us first illustrate our classification in D = 5 spacetime dimensions. Accord-
ing to our general result, the metrics have the discrete parameters a1

±, a
2
± as well

as the six continuous parameters μ1, μ2, s01, s02, c+, c− which are subject to three
constraints. Thus, the number of free parameters is three, and we take C [given by
Eq. (3.40)] as one of them for convenience. We have the following cases to consider,
depending on the possible values of the discrete parameters (see Eq. (3.47)):

Topology H ∼= S1 ×S2: This case corresponds to the choice a+ = a− = (1, 0). The
constraints (3.27) read explicitly

c2+μ1 = c2−μ1, c+s01μ1 = c−s01μ1, (c+ − c−)
∣
∣
∣
∣
μ1 s01
μ2 s02

∣
∣
∣
∣ = 1 (4.51)

in this case. We know that μ1 cannot vanish, so the first and third equation imply
together that c± = ±B for some non-zero constant B. As a consequence, the
second equation then gives s01 = 0, from which the third equation then gives
s02 = 1/(2c+μ1). Putting all this into our formula (3.42) for the near-horizon
metric gives

g = 2B2(1 + cos2 θ)(2dvdr − C2r2dv2 + C−2dθ2) +
C2

16B4
(dϕ2)2

+
8B2 sin2 θ

C2(1 + cos2 θ)
(
dϕ1 +Adϕ2 + C2r dv

)2
, (4.52)
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where we have put A = μ2/μ1. We can explicitly read off from the metric that the
norm of ∂/∂ϕ1 [i.e., the coefficient of (dϕ1)2] vanishes at θ = 0, π, whereas the
norm of ∂/∂ϕ2 [i.e., the coefficient of (dϕ2)2] never vanishes. This is the charac-
teristic feature of the action of U(1)2 on S2 × S1.

Topology H ∼= S3: In this case, a+ = (1, 0), a− = (0, 1). The constraints (3.27) are

c2+μ2 = c2−μ1, c+s01μ2 = c−s02μ1, (c+ − c−)
∣
∣
∣
∣
μ1 s01
μ2 s02

∣
∣
∣
∣ = 1. (4.53)

The constraints allow us, e.g., to express μ1, μ2, s01, s02 in terms of A := c+, B :=
c− and C given by Eq. (3.40). The result must then be plugged back into the
equation for the near-horizon metric (3.42). After some calculation, one ends up
with the result

g = e−λ(2dvdr − C2r2dv2 + C−2dθ2)

+ e+λ

{(
4
C

)2

sin2 θ
(
A2dϕ1 +B2dϕ2 + rABC2dv

)2

+
(
C

4

)2

(1 + cos θ)2
(
A−1dϕ2 + r(2B)−1C2dv

)2

+
(
C

4

)2

(1 − cos θ)2
(
B−1 dϕ1 + r(2A)−1C2dv

)2
}

, (4.54)

where

exp[−λ(θ)] = A2(1 + cos θ)2 +B2(1 − cos θ)2 +
(

C2

16AB

)2

sin2 θ. (4.55)

The quantity A − B must be non-zero on account of the third constraint. Note
that expλ(θ) �= 0 for 0 ≤ θ ≤ π, so we can explicitly read off from the metric
that the norm of ∂/∂ϕ2 [i.e., the coefficient of (dϕ2)2] vanishes at θ = π, whereas
the norm of ∂/∂ϕ1 [i.e., the coefficient of (dϕ1)2] vanishes at θ = 0. This is the
characteristic feature of the action of U(1)2 on the 3-sphere.

Topology H ∼= L(p, q): In this case, a+ = (1, 0), a− = (q, p), where p, q ∈ Z and
p �= 0. The constraints (3.27) are explicitly

c2+(qμ1 + pμ2) = c2−μ1, c+s01(qμ1 + pμ2) = c−(qs01 + ps02)μ1,

(c+ − c−)
∣
∣
∣
∣
μ1 s01
μ2 s02

∣
∣
∣
∣ = 1. (4.56)

We choose as the independent parameters A := c+/p,B := c−/p, and C given
by Eq. (3.40), and solve for the remaining ones using the constraints. The result
is plugged back into the equation for the near-horizon metric (3.42). After some
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calculation, one ends up with the result

g = e−λ(2dvdr − C2r2dv2 + C−2dθ2)

+ p2e+λ

{(
4p
C

)2

sin2 θ
(
A2(1/p)dϕ1 +B2(dϕ2 − (q/p)dϕ1) + rABC2dv

)2

+
(
C

4p

)2

(1 + cos θ)2
(
A−1(dϕ2 − (q/p)dϕ1) + r(2B)−1C2dv

)2

+
(
C

4p

)2

(1 − cos θ)2
(
(pB)−1dϕ1 + r(2A)−1C2dv

)2
}

, (4.57)

where

exp[−λ(θ)] = p2

[

A2(1 + cos θ)2 +B2(1 − cos θ)2 +
(

C2

16p2AB

)2

sin2 θ

]

. (4.58)

We note that at θ = π, the Killing field ∂/∂ϕ1 has vanishing norm, while at θ = 0,
the Killing field q∂/∂ϕ1 + p∂/∂ϕ2 has vanishing norm. This is the characteristic
feature of the action of U(1)2 on the Lens space L(p, q).

The metrics with H ∼= L(p, q) just described are closely related to those in
the case H ∼= S3 described in the previous example. Indeed, in the case H ∼= S3,
consider the map given by (ϕ1, ϕ2) �→ (ϕ1 + 2π/p, ϕ2 + 2πq/p), leaving invariant
the other coordinates, where ϕ1, ϕ2 are 2π-periodic. This map is an isometry of
the metric with H ∼= S3, and by repeated application generates the subgroup Zp

of the full isometry group. If we factor by this group, then we get a metric with
H ∼= L(p, q), and we claim that this metric is exactly the one just given. To see
this more explicitly, we note that factoring by the above group Zp of isometries in
effect imposes the further identifications

(ϕ1, ϕ2) ∼= (ϕ1 + 2π/p, ϕ2 + 2πq/p) (4.59)

on the angular coordinates in the metric (4.54), which were initially 2π-periodic.
If we let

f : (r, v, θ, ϕ1, ϕ2) �→ (r, p2v, θ, (1/p)ϕ1, ϕ2 − (q/p)ϕ1) (4.60)

then f provides an invertible mapping from the ordinary 2π-periodic coordinates
to the coordinates with the identifications (4.59). If we now take the metric (4.54)
in the case H ∼= S3, factor it by Zp, pull it back by f , and furthermore put
C → C/p, then we get precisely the H ∼= L(p, q) metrics (4.57). Thus, all metrics
in the case H ∼= L(p, q) arise from the case H ∼= S3 by taking quotients. The same
statement (with similar proof) is true in all dimensions D.

Let us finally briefly discuss an example of our classification in D = 6 dimen-
sions. In this case, the metrics are classified by the discrete parameters a± [see
Eq. (3.47)] and 7 real continuous parameters. An example is
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Topology S3 × S1: In this case, a+ = (1, 0, 0), a− = (0, 1, 0). The constraints are
explicitly

c+s01μ2 = c−s02μ1 c+s11μ2 = c−s12μ1 c2+μ2 = c2−μ1,

(c+ − c−)

∣
∣
∣
∣
∣
∣

μ1 s01 s11
μ2 s02 s12
μ3 s03 s13

∣
∣
∣
∣
∣
∣
= 1. (4.61)

To simplify the formulae somewhat, we consider the special case that c+ = −c− =:
A/2. Then the constraints may be solved easily for the remaining parameters. To
obtain a halfway simple expression, we also consider the special case s11 = s03 = 0,
and we denote the remaining free parameters as B := s01,D = μ3, and C as usual.
The resulting metric is still rather complicated and is given by

g = e−λ(θ)
(
2dvdr − C2r2dv2 + C−2dθ2

)

+ e+λ(θ)

{

A4C−2 sin2 θ
(
dϕ1 + dϕ2 +A−1CDdϕ3 − rC2dv

)2

+
A2B2

4
(1 + cos θ)2(2dϕ2 +A−1CDdϕ3 − rC2dv)2

+
A2B2

4
(1 − cos θ)2(2dϕ1 +A−1CDdϕ3 − rC2dv)2

}

+
C2

4A4B2
(dϕ3)2.

(4.62)

Here, we also have

e−λ(θ) =
A2

2
(1 + cos2 θ) +

B2C2

4
sin2 θ. (4.63)

This special family of metrics depends on only four parameters. It is easy to write
down the general seven-parameter family of metrics.

5. Conclusion

We have determined explicitly what are the possible (non-static) stationary
smooth, cohomogeneity-one near horizon geometries satisfying the vacuum Ein-
stein equations. We excluded by hand10 the case that the horizon topology is
TD−2. The solution, described in Theorem 1, is given in closed form in terms of
real and discrete parameters (corresponding to the possible topology types other
than TD−2), which are subject to certain constraints that take the form of alge-
braic equations. After taking into account these constraints, the metrics depend on
(D−2)(D−3)/2 independent real parameters, and two discrete ones. For example,
in D = 5, we initially have three real continuous parameters. We have worked out

10 See, however, the note added in proof.
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explicitly this case as did [29], but our metrics are presented in different coordi-
nates11 for the case H ∼= S3. In D ≥ 6, not all of our metrics can be obtained as
the near-horizon limit of a known black hole solution, so in this sense some of our
metrics are new for D ≥ 6.

By contrast to D ≤ 5, not all near-horizon metrics that we have found can
be obtained as the near-horizon limits of known black hole solutions in dimensions
D ≥ 6. It is conceivable that there are further extremal black hole solutions—to
be found—which give our metrics in the near-horizon limit, but it is also possible
that some of our metrics in D ≥ 6 simply do not arise in this way.

Our method as described only works for vacuum solutions. However, we
expect that it can be generalized to any theory whose equations can be recast into
equations of the sigma-model type that we encounter. Thus we expect our method
to be applicable, e.g., to 5-dimensional minimal supergravity, see, e.g., [6,8,9,40].
By contrast, our method does not seem applicable straightforwardly to the case
of a cosmological constant. In our proof, we also assumed that the metrics are not
static. All static near-horizon geometries were found in [27] in D = 5 and in [12]
in arbitrary dimensions.

It would be interesting to see whether our classification can be used to prove
a black hole uniqueness theorem in arbitrary dimensions for extremal black holes
along the lines of [2,16], thereby generalizing [24,25]. It would also be interesting
to investigate whether our analysis can be used to obtain new structural insights
into the origin of the Bekenstein–Hawking entropy, e.g., by considering a suitably
quantized version of Eq. (2.22).
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Note added in proof: In our analysis, we excluded by hand the horizon topology
TD−2. There cannot exist any asymptotically flat or Kaluza–Klein black hole solu-
tions with this topology by general arguments [11,24]. At any rate, these could not
arise as the near-horizon limits of a black hole. After we finished this work, it was
confirmed by J. Holland that there cannot be any non-static cohomogeneity-one

11 We also do not distinguish between the subcases “A” and “B” as in [29] but instead give a
unified expression for the metric.
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near horizon geometries with topology H ∼= TD−2 [22]. Hence our main theorem 1
covers all possibilities with D − 3 commuting rotational symmetries. The static
case is covered by the results of [12].
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