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Abstract. For rather general thermodynamic equilibrium distribution func-
tions the density of a statistical ensemble of quantum mechanical particles
depends analytically on the potential in the Schrödinger operator describ-
ing the quantum system. A key to the proof is that the resolvent to a
power less than one of an elliptic operator with non-smooth coefficients, and
mixed Dirichlet/Neumann boundary conditions on a bounded up to three-
dimensional Lipschitz domain boundedly maps the space of square integrable
functions to the space of essentially bounded functions.

1. Introduction

In the investigation of many-particle systems, in particular electronic ones, the
Kohn–Sham equations of Density Functional Theory are a common tool, cf. e. g.
[1,11,13,29,30,40]. The particle density N in a statistical ensemble of (identical)
quantum mechanical systems is given by

N (V )(x) =
∞∑

k=1

f(λk)|ψk(x)|2 , (1.1)

where H0 is the kinetic part of a Schrödinger operator, and V a variable real
potential; ψk and λk are the eigenfunctions and eigenvalues of the Schrödinger
operator H0 + V . The argument x in (1.1) is a point in real space, and f is a
thermodynamic equilibrium distribution function, for instance the Fermi function
f(s) = 1/(1 + es). If H0, V , and f are such that the operator f(H0 + V ) is
nuclear, then the particle density N (V ) can be represented in terms of f(H0 +
V ) by

∫
Ω
N (V )W dx = tr

(
Wf(H0 + V )

)
for all W ∈ L∞, cf. e. g. [23]. The
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analysis of the Kohn–Sham system is based on properties such as monotonicity,
and differentiability of the operator function f(H0 + V ) in its dependence on the
Schrödinger potential V , cf. e. g. [25–27, 36, 38]. In [23] we have demonstrated
that with certain conditions on f the functional

φ(V ) def= tr
(
F (H0 + V )

)
, where F (t) def=

∫ ∞

t

f(s) ds ,

is convex and Fréchet differentiable. The functional φ represents the free energy
of a statistical ensemble of quantum mechanical systems, and the gradient of this
functional is the statistical operator ∂φ(V ) = f(H0 +V ), cf. [23]. For special cases
the convexity and differentiability of the functional φ has been proved already
in 1990 independently by Caussinac et al. [7] and Nier [36]. These results have
been generalized, i. e. in [24–27,37,38]. Furthermore, Nier has shown, cf. [37,38],
that the particle density operator N is infinitely often Fréchet differentiable as a
mapping from W 1,2 into W−1,2.

Here we are interested in the analyticity of N for a wider class of Schrö-
dinger operators and for function spaces allowing for more general Schrödinger
potentials. Moreover, we pass to realisations of the underlying Hilbert space in
the quantum mechanics by function spaces adapted to real world problems. More
precisely, we regard function spaces with respect to spatial domains which are
just bounded Lipschitz domains. This requires inter alia to prove in such a non-
smooth situation that the resolvent of an elliptic operator to a power less than 1
maps L2 continuously into L∞, cf. Theorem 4.3 – a new result which is of interest
independently of our usage here.

The boundary conditions for the eigenfunctions of the Schrödinger operator
depend on the physical situation one wants to describe. The proper choice of
boundary conditions in the case of a closed quantum system on a bounded domain
of real space is still in debate, cf. e. g. [46] and [47]. Since homogeneous Dirichlet
and Neumann boundary conditions may be of interest, we allow for both of them.
Moreover, we also want to include the quasi two-dimensional case of a cylindrical
symmetric domain. That’s why we regard mixed Dirichlet/Neumann boundary
conditions.

The analyticity of the particle density operator N , which is equivalent to the
analyticity of the operator function V �→ f(H0 +V ), comes to bear in establishing
steadily converging iteration schemes for the Kohn–Sham system. Indeed, ana-
lyticity enables to prove a generalized �Lojasiewicz–Simon inequality, cf. [9,15,17].
This has been used by Gajewski and Griepentrog in the set-up of a descent method
for the free energy of multicomponent systems [17]. Moreover, analyticity plays
a role in bifurcation theory, cf. [48]. Indeed there are indications that the Kohn–
Sham system may have multiple solutions, both from analysis cf. [43], and numerics
cf. [34]. However, under special conditions the Kohn–Sham system has a unique
solution, cf. [26, 27,42].
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2. Preliminaries

Throughout this paper we regard a statistical ensemble of (identical) one-particle
quantum systems. We consider the one-particle quantum system in the real space
representation on a bounded up to three-dimensional spatial domain Ω, i. e. we
deal with a Schrödinger operator on the Hilbert space L2(Ω). In order to simplify
notations, we omit the indication for Ω in the symbol for a function space referring
to Ω. Moreover, we write L2

R
for the real part of L2 = L2(Ω). Finally, c denotes a

generic, positive constant, not always of the same value.
We always make the following two general assumptions for the spatial do-

main Ω and the coefficient function μ of the Schrödinger operator H0 = −∇ · (μ∇).
In the context of semiconductor physics H0 is an effective mass Hamiltonian in
Ben–Daniel–Duke form [2], and μ is the inverse effective mass, cf. [44, Ch. 1].

Assumption 2.1. Ω is an interval or a bounded Lipschitz domain in R
d, cf. e. g. [35,

Ch. 1.1.9] or [19, Defn. 1.2.1.2]. We regard one-, two-, and three-dimensional
spatial domains: i. e. d ∈ {1, 2, 3}, cf. Remark 4.4. – Π is an arbitrary closed
subset of the boundary ∂Ω.

Assumption 2.2. The coefficient function μ on Ω is Lebesgue measurable, bounded,
elliptic and takes its values in the set of real, symmetric d × d matrices.

Definition 2.3. W 1,2
Π denotes the W 1,2(Ω)-closure of the set

{
ψ|Ω : ψ ∈ C∞(Rd), suppψ ∩ Π = ∅

}
.

H0 is the selfadjoint operator on L2(Ω) which corresponds to the quadratic form

W 1,2
Π � ψ �→

∫

Ω

μ∇ψ · ∇ψ̄ dx .

We denote the domain of H0 by D.

Remark 2.4. The boundary conditions associated with H0 are a homogeneous
Dirichlet condition on Π and a Neumann condition – in the sense of distributions –
on ∂Ω \ Π. As, in particular, Π may be the empty set, Assumption 2.1 allows for
a Neumann condition on all the boundary of the spatial domain Ω.

For two Banach spaces we denote the space of linear, continuous operators
from X into Y by B(X;Y ). If X = Y , we abbreviate B(X;X) = B(X), and if
X = L2, we once more abbreviate B(L2) = B. The ideal of compact operators
within B is denoted by B∞, and Br, r ∈ [1,∞[, stands for the Schatten class with
index r in B∞.

In the sequel we always identify a function from L2 with the multiplication
operator induced by this function. In this sense L∞ is embedded into B.

Definition 2.5. Following Văınberg [48, Ch. 22], cf. also [8], [21, Ch. III.3], we call
a mapping Fj : X → Y, j ∈ N, between two Banach spaces a j-power mapping, if
there is a continuous, mapping Gj : X ⊕ · · · ⊕ X → Y which is linear in each of
its j arguments, such that Fj(x) = Gj(x, . . . , x). A mapping F : X → Y is called
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analytic in a point x0 ∈ X if there is a ball B ⊂ X around zero and a sequence
{Fj}j∈N of j-power mappings such that

F (x0 + x) = F (x0) +
∞∑

j=1

Fj(x) for all x ∈ B ,

and the series converges in Y uniformly for x ∈ B.

Analytic mappings possess many properties, analogous to those of classical
holomorphic functions, cf. [48, Ch. 22] for details.

3. Main result

Our concern is the analyticity of the particle density (1.1) in its dependence on
the potential in the Schrödinger operator provided the constituent thermodynamic
equilibrium distribution function f decreases sufficiently. First we rigorously define
the particle density (1.1) for a statistical ensemble of quantum mechanical systems
in thermodynamic equilibrium, cf. e. g. [1, 11,23,29] and references cited there.

Definition 3.1. Let H0 be the operator from Definition 2.3, and let V be a real
potential such that the operator H0 + V is semibounded from below, selfadjoint
and has pure point spectrum. If f : R → R+ is a sufficiently decaying distribution
function so that f(H0+V ) ∈ B1, then we define the corresponding particle density
N (V ) by

∫

Ω

N (V )W dx = tr
(
Wf(H0 + V )

)
for all W ∈ L∞ . (3.1)

Remark 3.2. According to [23, Thm. 36] N (V ) is a function in the non-negative
cone of L1

R
. If {λk} is the sequence of eigenvalues for H0+V (counting multiplicity)

and {ψk} is the corresponding sequence of (normalized) eigenvectors, then N (V )
equivalently can be expressed by (1.1).

Definition 3.3. For every α > 0 we denote by Υα the contour

{λ : λ = s ± iαs, s ≥ 0}
with positive orientation. Pα stands for the set of points in C which are enclosed
by Υα, i. e.

Pα
def= {λ1 + iλ2 : λ1 > 0, |λ2| < αλ1 } .

The thermodynamic equilibrium distribution function f represents the un-
derlying statistics of the ensemble of (identical) quantum systems, cf. e. g. [44,
Ch. 1.12] or [22, Ch. 6.3]. For a statistical ensemble of electrons in three-dimen-
sional real space – i.e. a zero-dimensional electron gas as in a quantum dot – f is
the Fermi function

f(s) = 1/(1 + es) .
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For a two- or one-dimensional electron gas (i.e. d = 1 or d = 2) the distribution
function is f(s) = cF−1/2(−s) or f(s) = cF0(−s), respectively, where Fr is the
Fermi–integral

Fr(s) =
1

Γ(r + 1)

∫ ∞

0

tr

1 + exp(t − s)
dt ,

cf. e. g. [31]. These distribution functions have singularities in the closed left half
plane. Thus, one cannot ask f to be holomorphic on the whole complex plane.
But, we make the following assumption about the thermodynamic equilibrium
distribution function f , which is fulfilled for the above examples.

Assumption 3.4. For every t ∈ R there is an α > 0 so that the distribution func-
tion f is defined and holomorphic on Pα − t. Moreover, there is an α > 0 such
that

sup
λ∈Pα

|λ9f(λ)| < ∞ .

The restriction of f to R is real-valued and non-negative.

Remark 3.5. From Assumption 3.4 follows in particular that for every t ∈ R there
is an α > 0 such that

sup
λ∈Pα−t

|λ9f(λ)| < ∞ , and
∫

Υ

|λ|7|f(λ)| d|λ| < ∞ ,

where Υ is the contour corresponding to Pα− t in the sense of Definition 3.3. This
comes to bear in the proof of Lemma 4.1, cf. Remark 5.7.

Remark 3.6. A distribution function f conforming to Assumption 3.4 satisfies
f(λ̄) = f(λ) for all λ from that connected component of the holomorphy domain
which contains R.

We now state our main result.

Theorem 3.7. Let us make the Assumptions 2.1, 2.2 and 3.4. Then the mapping
L2

R
� V �→ N (V ) ∈ L2

R
, cf. Definition 3.1, is analytic in every point V ∈ L2

R
, cf.

Definition 2.5.

We have already pointed out at the end of the introduction that the ana-
lyticity of the particle density (3.1) comes to bear inter alia in the investigation
of Kohn–Sham systems. These can be written as a fixed point equation for the
density operator N , see [27]. The involved Schrödinger potentials enter in their ca-
pacity as square integrable functions (in the spatially two- and three-dimensional
case). In particular the exchange–correlation part of the potential in general has
to be regarded as of L2

R
, see [27]. That is why we look here at the density as a

mapping from L2
R

to L2
R
.
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4. Auxiliary results

Lemma 4.1. If A is a selfadjoint operator on a Hilbert space H the spectrum of
which is contained in [1,∞[, then

sup
λ∈Υ

‖A(A − λ)−1‖B(H) ≤
1

dist(1,Υ)
(4.1)

for all Υ = Υα with α > 0, cf. Definition 3.3.

Proof. By a classical result, cf. e. g. [28, Ch. V.3.5], one has

‖A(A − λ)−1‖B(H) = sup
s∈spec(A)

|s|
|s − λ| ≤ sup

s∈[1,∞[

s

|s − λ|

at least for all λ ∈ Υ. This gives

sup
λ∈Υ

‖A(A − λ)−1‖B(H) ≤ sup
λ∈Υ

sup
s∈[1,∞[

s

|s − λ| = sup
(λ,s)∈Υ×[1,∞[

1
|1 − λ

s |

= sup
λ∈Υ

1
|1 − λ| =

1
infλ∈Υ |1 − λ| =

1
dist(1,Υ)

. �

Proposition 4.2 (Cf. [39, Thm. 6.10], and [20]). For the operator H0 from Defini-
tion 2.3 the semigroup operators e−tH0 , t > 0 are integral operators whose kernels
Kt : Ω × Ω → R allow the Gaussian estimates

0 ≤ Kt(x, y) ≤ γ t−
d
2 eεte−b

|x−y|2
t for almost all (x, y) ∈ Ω × Ω , (4.2)

where γ, b, and ε are non-negative constants related to H0.

Theorem 4.3. Let again H0 be the operator from Definition 2.3. For every θ ∈]d
4 , 1],

the operator (H0 + 1)−θ maps L2 continuously into L∞.

Proof. As e−tH0 admits the Gaussian estimate (4.2), the kernels Lt : Ω × Ω → R

belonging to the semigroup operators e−t(H0+δ) satisfy the estimate

0 ≤ Lt(x, y) ≤ γ t−
d
2 e−t(δ−ε)e−b

|x−y|2
t (4.3)

for almost all (x, y) ∈ Ω × Ω, and for all t ≥ 0 and δ ≥ 0. By means of the
representation formula

(H0 + δ)−θ =
1

Γ(θ)

∫ ∞

0

tθ−1e−t(H0+δ) dt ,

cf. [41, Ch. 2.6], one estimates for any ψ ∈ L2

‖(H0 + δ)−θψ‖L∞ ≤ 1
Γ(θ)

∥∥∥∥
∫ ∞

0

tθ−1e−t(H0+δ)ψ dt

∥∥∥∥
L∞

≤ 1
Γ(θ)

∫ ∞

0

tθ−1
∥∥e−t(H0+δ)ψ

∥∥
L∞ dt . (4.4)
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Using now the Gaussian estimate (4.3), one finds

‖e−t(H0+δ)ψ‖L∞ = vrai sup
y∈Ω

∣∣∣∣
∫

Ω

Lt(y, x)ψ(x) dx

∣∣∣∣

≤ vrai sup
y∈Ω

√∫

Ω

|Lt(y, x)|2 dx ‖ψ‖L2

≤ γ t−
d
2 e−t(δ−ε) ‖ψ‖L2 vrai sup

y∈Ω

√∫

Ω

e−2b
|x−y|2

t dx

≤ γ t−
d
2 e−t(δ−ε) ‖ψ‖L2 vrai sup

y∈Ω

√∫

Rd

e−2b
|x−y|2

t dx

= γ
( π

2b

)d/4

e−t(δ−ε)t−d/4‖ψ‖L2 .

Nota bene
∫

Rd e−2b |x−y|2/t dx =
(

tπ
2b

)d/2
, cf. the multivariate Gaussian distribu-

tion. Thus, (4.4) can be continued

‖(H0 + δ)−θψ‖L∞ ≤ γ

Γ(θ)

( π

2b

)d/4
∫ ∞

0

tθ−1−d/4e−t(δ−ε) dt ‖ψ‖L2 . (4.5)

The right hand side of (4.5) is finite if δ > ε and θ > d/4. Thus, in this case
(H0 + δ)−θ ∈ B(L2;L∞). Finally, one obtains

‖(H0 + 1)−θ‖B(L2;L∞) ≤ ‖(H0 + δ)−θ‖B(L2;L∞)‖(H0 + δ)θ(H0 + 1)−θ‖B ,

where the second factor is finite due to the positivity of H0 and functional calcu-
lus. �

Remark 4.4. Theorem 4.3 restricts the dimension of the spatial domain Ω to 1, 2,
and 3, cf. also [38]. Indeed, for d ≥ 4 the operators (H0 + 1)−1 generically do not
allow a factorization over L∞. By a classical result, cf. [32, Ch. I.2] (H0 + 1)−1 ∈
B(Lp;L∞) in general requires p > d

2 . Yet, the factorization of (H0 +1)−θ over L∞

even for some θ < 1 is crucial in the following considerations.

Theorem 4.5. For the operator H0 from Definition 2.3 the resolvent is in a Schatten
class, more precisely: (H0 + 1)−1 ∈ Br for every r > d/2.

Proof. For every θ ∈]d
4 , 1], the operator (H0 + 1)−θ : L2 → L2 admits a fac-

torization over L∞, cf. Theorem 4.3. Hence, it must be Hilbert-Schmidt by a
classical factorization theorem, cf. [33, Prop. 6.3] or [12, Cor. 4.11], which implies
the assertion. �

Remark 4.6. The argument in the proof of Theorem 4.5 additionally shows that
the left end θ = d/4 of the θ-interval in Theorem 4.3 cannot be improved. Other-
wise, one could conclude (H0 + 1)−d/4 ∈ B2, or, equivalently, (H0 + 1)−d/2 ∈ B1.
However, this is wrong in general, according to Weyl’s asymptotic law for the
eigenvalues of the Laplacian.
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Remark 4.7. For a Schrödinger operator H0 with a homogeneous Dirichlet bound-
ary condition the assertion of Theorem 4.5 has been proved by Birman and
Solomyak even for an arbitrary domain Ω, cf. [4, Ch. 11.3] and [3]. The case
of a Neumann boundary condition has been treated in [3–5], provided that the un-
derlying domain Ω is a W 1,2 extension domain, i. e. if there is a linear, continuous
extension operator from W 1,2(Ω) to W 1,2(Rd). Indeed, this result holds true also
for Lipschitz domains, cf. [18, Thm. 3.10], and [35, Ch. 1.1.16]. Having the Dirich-
let and Neumann case at hand, one easily carries this over to the case of mixed
boundary conditions by the classical comparison principle, cf. [10, Ch. 6.2]. It is
interesting to note that the proof of the Gaussian estimates in Proposition 4.2 also
fundamentally rests on the same extension property for the underlying domain Ω.

Corollary 4.8. For the operator H0 from Definition 2.3, and for every V ∈ L2 the
operator V (H0 + 1)−1 : L2 → L2 is not only bounded, but compact and belongs to
the Schatten class B7. More precisely, one can estimate

‖V (H0 + 1)−1‖B ≤ ‖V (H0 + 1)−1‖B7

≤ ‖V ‖L2‖(H0 + 1)−10/13‖B(L2;L∞)‖(H0 + 1)−3/13‖B7

< ∞ . (4.6)

Proof. ‖(H0+1)−10/13‖B(L2;L∞) is finite since 10/13 > 3/4 ≥ d/4, cf. Theorem 4.3.
Further, according to Theorem 4.5, (H0 + 1)−1 belongs to the Schatten class Br

for every r > 3/2 ≥ d/2, in particular (H0 + 1)−1 ∈ B21/13. Hence, (H0 + 1)−3/13

is in the Schatten class B7. �
Lemma 4.9. For the operator H0 from Definition 2.3, and for every V ∈ L2 the
multiplication operator induced by V is infinitesimally small with respect to H0+1.

Proof. Due to Theorem 4.3 one can estimate

‖V ψ‖L2 ≤ ‖V ‖L2‖ψ‖L∞ ≤ c‖V ‖L2‖(H0 + 1)4/5ψ‖L2

for all ψ ∈ D = dom H0. Since H0 + 1 is selfadjoint and positive, the right hand
side may be further estimated by

c ‖V ‖L2 ‖ψ‖1/5
L2 ‖(H0 + 1)ψ‖4/5

L2 ,

cf. [41, Ch. 2.6 Th. 6.10]. According to Young’s inequality, this is not larger than

ε‖(H0 + 1)ψ‖L2 +
(

1
ε

)4

(c‖V ‖L2)5‖ψ‖L2

for any ε > 0. �

Corollary 4.10. For every potential V ∈ L2
R

the operator H0 + V

• is selfadjoint like H0,
• has D = dom H0 as its domain,
• has, like H0, a pure point spectrum,
• is semibounded from below, and the corresponding lower form bounds may be

taken uniformly with respect to bounded sets in L2
R
.
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Proof. The first three items follow from Lemma 4.9 by classical perturbation the-
orems. The last assertion has been proved in [26, Prop. 3.3] for d = 1, and
in [27, Prop. 3.4] for d = 2 and d = 3. �

Corollary 4.11. If V ∈ L2
R

and τ ∈ R \ spec(H0 + V ), then

‖(H0 + 1)(H0 + V − τ)−1‖B < ∞ . (4.7)

If additionally W ∈ L2
R
, then

‖W (H0 + V − τ)−1‖B
≤ ‖W‖L2‖(H0 + 1)−1‖B(L2;L∞)‖(H0 + 1)(H0 + V − τ)−1‖B < ∞ (4.8)

and

‖W (H0 + V − τ)−1‖B7 ≤ ‖W‖L2‖(H0 + 1)−
10
13 ‖B(L2;L∞)‖(H0 + 1)−

3
13 ‖B7

× ‖(H0 + 1)(H0 + V − τ)−1‖B < ∞ . (4.9)

Proof. (H0 + V − τ)(H0 + 1)−1 : L2 → L2 is continuous and bijective. Hence, by
the Open Mapping Theorem, its inverse must be continuous, which proves (4.7).
Now, (4.8) and (4.9) follow from Theorem 4.3, Theorem 4.5, and Corollary 4.8,
respectively, by means of (4.7). �

Lemma 4.12. We regard the operator H0 from Definition 2.3. Suppose V1, V2 ∈ L2
R
.

Moreover, let us assume that f : R → R is bounded on bounded sets and satisfies
supt∈[0,∞[ t

3|f(t)| < ∞. Then (H0 + V1)f(H0 + V2) ∈ B1.

Proof. For τ ∈ R \ spec(H0 + V2) one estimates:

‖(H0 + V1)f(H0 + V2)‖B1

≤ ‖(H0 + V2 − τ)f(H0 + V2)‖B1 + ‖(V1 − V2 + τ)f(H0 + V2)‖B1

≤
(
1 + ‖(V1 − V2 + τ)(H0 + V2 − τ)−1‖B

)

× ‖(H0 + V2 − τ)−1‖2
B2
‖(H0 + V2 − τ)3f(H0 + V2)‖B .

According to Corollary 4.11 the term ‖(V1−V2 + τ)(H0 +V2− τ)−1‖B is bounded.
Further one can estimate

‖(H0 + V2 − τ)−1‖B2 ≤ ‖(H0 + 1)−1‖B2‖(H0 + 1)(H0 + V2 − τ)−1‖B < ∞ .

Finally,

‖(H0 + V2 − τ)3f(H0 + V2)‖B ≤ sup
t∈spec(H0+V2)

(t − τ)3|f(t)|

is finite due to the precondition on f and the semiboundedness of H0 + V2 from
below. �
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Corollary 4.13. If f is a distribution function which meets the preconditions from
Lemma 4.12, and V ∈ L2

R
, then N (V ) ∈ L2

R
, where N (V ) is according to Defini-

tion 3.1. Thus, (3.1) extends to all functions W ∈ L2:
∫

Ω

N (V )W dx = tr
(
Wf(H0 + V )

)
for all W ∈ L2 . (4.10)

Proof. According to (3.1) there is

‖N (V )‖L2 = sup
W∈L∞,‖W‖L2≤1

∣∣∣∣
∫

Ω

WN (V ) dx

∣∣∣∣

= sup
W∈L∞,‖W‖L2≤1

∣∣ tr
(
Wf(H0 + V )

)∣∣

≤ ‖(H0 + 1)−1‖B(L2;L∞)‖(H0 + 1)f(H0 + V )‖B1 .

This is finite, due to Theorem 4.3 and Lemma 4.12. �

Remark 4.14. Assumption 3.4 entails the precondition of Lemma 4.12 and Corol-
lary 4.13 for the thermodynamic equilibrium distribution function f .

5. Proof of Theorem 3.7

Let us first recall that B1 is topologically the dual space to B∞, and the du-
ality B∞ × B1 � (A,C) �→ 〈A,C〉(B∞,B1) is given by the trace of the product:
〈A,C〉(B∞,B1) = tr(AC), cf. e. g. [12, Ch. 6] for details.

Assumption 5.1. Let V0 ∈ L2
R

from now on be a fixed potential, and let once and
for all ρ ∈ R be a number such that 1 is a lower form bound of the operator
H0 + V0 + V + ρ for H0 from Definition 2.3, and all V ∈ L2

R
with ‖V ‖L2 ≤ 1.

Corollary 4.10 ensures the existence of such a ρ.

Definition 5.2. With respect to H0 from Definition 2.3, and V0 and ρ from As-
sumption 5.1 we introduce H

def= H0 + V0 + ρ. Moreover, M : L2 → B∞ is the
linear, continuous mapping W �→ WH−1, cf. (4.9).

Henceforth we make Assumption 3.4. Then Lemma 4.12 applies, cf. Re-
mark 4.14; thus, the operator Hf(H0 + V0 + V ) belongs to B1 for every V ∈ L2

R
.

Due to Corollary 4.13 one has for all W ∈ L2

∫

Ω

WN (V0 + V ) dx = tr
(
Wf(H0 + V0 + V )

)

= tr
(
WH−1Hf(H0 + V0 + V )

)

=
〈
M(W ),Hf(H0 + V0 + V )

〉
(B∞,B1)

.

Hence, one can represent the particle density operator in terms of the linear,
continuous mapping M∗ : B1 → L2,

N (V0 + V ) = M∗(Hf(H0 + V0 + V )
)

for all V ∈ L2
R

. (5.1)
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Lemma 5.3. Let M and H = H0 + V0 + ρ be according to Definition 5.2 and A be
a selfadjoint operator on L2 such that HA ∈ B1. Then M∗(HA) ∈ L2

R
.

Proof. Given (5.1) it only remains to show that M∗(HA) is real valued, or equiva-
lently, that for any W ∈ L∞

R
the scalar product

∫
Ω

WM∗(HA) dx has a real value.
Indeed, one has

∫

Ω

WM∗(HA) dx =
〈
M(W ),HA

〉
(B∞,B1)

= tr
(
WH−1HA

)

= tr
(
WA

)
even for all W ∈ L2

R
. (5.2)

Thus, splitting W ∈ L∞
R

into its positive and negative part, W = W+ − W−, we
may write

tr
(
WA

)
= tr

(
W

1/2
+ AW

1/2
+

)
− tr

(
W

1/2
− AW

1/2
−

)
.

Both addends on the r.h.s. are real, because the operators W
1/2
+ AW

1/2
+ and

W
1/2
− AW

1/2
− are selfadjoint. �

Remark 5.4. The idea of the proof of Theorem 3.7 is to demonstrate the analyticity
of the mapping L2

R
� V �→ Hf(H0 + V0 + V ) ∈ B1 under the Assumption 3.4 by

representing
Hf(H0 + V0 + V ) − Hf(H0 + V0) (5.3)

locally as a series
∑∞

j=1 HTj(V ) of j-power mappings, cf. Definition 2.5, such that

• for every j ∈ N and V ∈ L2
R

the operator Tj(V ) is nuclear and selfadjoint,
• and H

∑k
j=1 Tj(V ) converges for k → ∞ in B1 to (5.3).

Then the linear, continuous mapping M∗ : B1 → L2 carries over this representa-
tion in j-power mappings to the mapping

L2
R
� V �→ N (V0 + V ) −N (V0) ∈ L2

R
,

ensuring the analyticity of N , cf. Definition 2.5.

Remark 5.5. The analyticity of the mapping

L2
R
� V �→ Hf(H0 + V0 + V ) ∈ B1

is equivalent to the analyticity of the mapping

L2
R
� V �→ f(H0 + V0 + V ) ∈ X ,

where X is the “weighted” Schatten class {A ∈ B : HA ∈ B1} equipped with the
norm ‖A‖X

def= ‖HA‖B1 .

In the sequel we show the analyticity of the mapping

L2
R
� V �→ Hf(H0 + V0 + V ) ∈ B1

under the Assumption 3.4. First, we introduce the shifted distribution function
g : C → C by

g(λ) def= f(λ − ρ) , λ ∈ C (5.4)
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with respect to ρ from Assumption 5.1. Obviously,

f(H0 + V0 + V ) = f(H + V − ρ) = g(H + V ) .

Moreover, with f also g complies with Assumption 3.4, and the function g inherits
all properties asserted in Remark 3.5 from the function f . So, let α > 0 be a
number such that the function g is holomorphic on the set Pα−1, cf. Definition 3.3,
and supλ∈Pα−1 |λ9g(λ)| < ∞. Then

∫
Υ
|λ|7|g(λ)| d|λ| < ∞, where Υ is the contour

corresponding to Pα in the sense of Definition 3.3. Note that Υ encloses the
spectrum of H +V for all V ∈ L2

R
with ‖V ‖L2 ≤ 1, cf. Assumption 5.1. According

to the Dunford calculus, cf. e. g. [14, Ch. VII.9], for these V holds

g(H + V ) = − 1
2πi

∫

Υ

g(λ)(H + V − λ)−1 dλ . (5.5)

Applying iteratively the resolvent equation

(H + V − λ)−1 = (H − λ)−1 − (H − λ)−1V (H + V − λ)−1 ,

we get

(H + V − λ)−1 = (H − λ)−1 + (H − λ)−1
7∑

j=1

(−1)j
(
V (H − λ)−1

)j

+ (H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1 . (5.6)

The first term of (5.6) corresponds to the term N (V0) in the j-power expan-
sion of N (V0 + V ). The operator

− 1
2πi

∫

Υ

g(λ)(H − λ)−1 dλ = g(H) = f(H0 + V0)

is bounded and self-adjoint. Moreover, the operator Hf(H0 + V0) is nuclear, cf.
Lemma 4.12.

Lemma 5.6. For j ∈ N and V ∈ L2
R

we define the j-linear mapping

Tj(V ) def=
(−1)j+1

2πi

∫

Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)j
dλ . (5.7)

1. For every V ∈ L2
R
, the operator HTj(V ) is bounded, and

HTj(V ) =
(−1)j+1

2πi

∫

Υ

g(λ)H(H − λ)−1
(
V (H − λ)−1

)j
dλ . (5.8)

Moreover, every operator Tj(V ) is bounded.
2. For every V ∈ L2

R
, the operator Tj(V ) is selfadjoint.

3. If j ∈ {1, . . . , 7}, then the mapping L2
R
� V �→ HTj(V ) maps L2

R
boundedly

into B1.
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Proof. 1) Observing that D can be equivalently normed by ‖H · ‖L2 , cf. Defini-
tion 2.3, Corollary 4.10, and Corollary 4.11, one estimates

∫

Υ

|g(λ)|
∥∥(H − λ)−1

(
V (H − λ)−1

)j∥∥
B(L2;D)

d|λ|

≤ c

∫

Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)j∥∥
B d|λ|

≤ c

∫

Υ

|g(λ)| d|λ|
(
‖V ‖L2‖H−1‖B(L2;L∞)

)j sup
λ∈Υ

‖H(H − λ)−1‖j+1
B

where the right hand side is finite, thanks to Theorem 4.3, Corollary 4.11 and
Lemma 4.1. Thus, integration and the application of H may be interchanged,
cf. [45, Ch. IV.4 Thm. 45].

2) One easily verifies for λ ∈ Υ the identity
(
(H − λ)−1

(
V (H − λ)−1

)j
)∗

= (H − λ̄)−1
(
V (H − λ̄)−1

)j
. (5.9)

Hence, observing Remark 3.6, one gets from (5.7)

(
Tj(V )

)∗ =
(

(−1)j+1

2πi

∫

Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)j dλ

d|λ| d|λ|
)∗

= − (−1)j+1

2πi

∫

Υ

g(λ̄)(H − λ̄)−1
(
V (H − λ̄)−1

)j dλ

d|λ| d|λ| .

Now the variable transformation λ �→ λ̄ shows that the right hand side is equal to
Tj(V ).

3) We demonstrate the assertion exemplarily for HT2(V ): Making use of the
resolvent equation

(H − λ)−1 = H−1 + λH−1(H − λ)−1 (5.10)

we obtain

HT2(V ) =
−H

2πi

∫

Υ

g(λ)(H − λ)−1V (H − λ)−1V (H − λ)−1 dλ

=
−H

2πi

∫

Υ

g(λ)(H − λ)−1
[
V H−1V H−1

+ λV H−1(H − λ)−1V H−1 + λV H−1V H−1(H − λ)−1

+ λ2V H−1(H − λ)−1V H−1(H − λ)−1
]
dλ .

Now we make use again of the resolvent equation (5.10) in those summands where
(H − λ)−1 appears exactly once as a factor. Thus,

HT2(V ) =
−H

2πi

∫

Υ

g(λ)(H − λ)−1
[
(V H−1)2 + λV (H−2V H−1 + H−1V H−2)

+ λ2V H−2(H − λ)−1V H−1 + λ2V H−1V H−2(H − λ)−1

+ λ2V H−1(H − λ)−1V H−1(H − λ)−1
]
dλ .
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We discuss the summands separately. For the first term we get

− 1
2πi

H

∫

Υ

g(λ)(H − λ)−1(V H−1)2 dλ = Hg(H)(V H−1)2

which belongs to B1 and admits the estimate

‖Hg(H)(V H−1)2‖B1 ≤ ‖Hg(H)‖B1‖V ‖2
L2‖H−1‖2

B(L2;L∞) ≤ c‖V ‖2
L2

according to Theorem 4.3, Lemma 4.12 and Corollary 4.11. If g̃ denotes the
function λ �→ λg(λ), then

− 1
2πi

H

∫

Υ

λg(λ)(H − λ)−1V H−2V H−1 dλ = Hg̃(H)V H−2V H−1 ,

− 1
2πi

H

∫

Υ

λg(λ)(H − λ)−1V H−1V H−2 dλ = Hg̃(H)V H−1V H−2 ,

and one can estimate

‖Hg̃(H)V H−2V H−1‖B1 + ‖Hg̃(H)V H−1V H−2‖B1

≤ 2‖Hg̃(H)‖B2‖V ‖2
L2‖H−1‖2

B(L2;L∞)‖H−1‖B2

≤ 2‖V ‖2
L2‖H−1‖2

B(L2;L∞)‖H−1‖2
B2

sup
s∈spec(H)

|s3g(s)| < ∞ .

In order to estimate the first of the terms with λ2 we note that the integral
∫

Υ

|λ2g(λ)|‖(H − λ)−1V H−2(H − λ)−1V H−1‖B(L2;D) d|λ|

≤ c

∫

Υ

|λ2g(λ)|‖H(H − λ)−1V H−2(H − λ)−1V H−1‖B d|λ|

≤ c sup
λ∈Υ

‖H(H − λ)−1‖2
B‖V ‖2

L2‖H−2‖B‖H−1‖2
B(L2;L∞)

∫

Υ

|λ2g(λ)| d|λ|

is finite. Hence, one has

− 1
2πi

H

∫

Υ

λ2g(λ)(H − λ)−1V H−2(H − λ)−1V H−1 dλ

= − 1
2πi

∫

Υ

λ2g(λ)H(H − λ)−1V H−2(H − λ)−1V H−1 dλ ∈ B .

Actually, this integral is a nuclear operator, and can be estimated as follows:

1
2π

∥∥∥∥
∫

Υ

λ2g(λ)H(H − λ)−1V H−2(H − λ)−1V H−1 dλ

∥∥∥∥
B1

≤ c

∫

Υ

|λ2g(λ)|‖H(H − λ)−1V H−1H−2H(H − λ)−1V H−1‖B1 d|λ|

≤ c sup
λ∈Υ

‖H(H − λ)−1‖2
B‖V ‖2

L2‖H−1‖2
B(L2;L∞)‖H−1‖2

B2

∫

Υ

|λ2g(λ)| d|λ| .
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This is finite, due to Lemma 4.1, Corollary 4.11, Theorem 4.5, and Assumption 3.4.
The terms

− 1
2πi

H

∫

Υ

λ2g(λ)(H − λ)−1V H−1V H−2(H − λ)−1 dλ ,

− 1
2πi

H

∫

Υ

λ2g(λ)(H − λ)−1V H−1(H − λ)−1V H−1(H − λ)−1 dλ

can be treated analogously. �

Remark 5.7. We have demonstrated the third assertion of Lemma 5.6 exemplarily
for HT2(V ), thereby using that

∫
Υ
|λ2g(λ)| d|λ| is finite. Analogously, one uses that

the integral
∫
Υ
|λ7g(λ)| d|λ| is finite to prove the assertion for HT7(V ). That is why

we asked for |λ| to the power of 9 in the supremum condition of Assumption 3.4,
cf. Remark 3.5.

Lemma 5.6 shows that the first 7 terms of the expansion of the mapping
V �→ Hf(H0 +V0 +V )−Hf(H0 +V0) are j-power mappings. To finalise the proof
of Theorem 3.7 it remains to show – according to Definition 2.5 – that the term,
cf. (5.5) and (5.6),

− H

2πi

∫

Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1 dλ (5.11)

may be represented as a series of j-power mappings, uniformly converging in some
ball of L2

R
. Let us begin with the estimate

sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7∥∥
B

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7∥∥
B1

≤ sup
λ∈Υ

‖H(H − λ)−1‖8
B‖V H−1‖7

B7

≤ 1
dist(1,Υ)8

(
‖V ‖L2‖(H0+1)−

10
13 ‖B(L2;L∞)‖(H0+1)−

3
13 ‖B7‖(H0+1)H−1‖B

)7

< ∞ , (5.12)

cf. Lemma 4.1, Corollary 4.8, and Corollary 4.11. This leads to the estimate

sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1

∥∥
B

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1

∥∥
B1

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7∥∥
B1

sup
λ∈Υ

‖V (H + V − λ)−1‖B

≤ c ‖V ‖7
L2‖V (H + V )−1‖B < ∞ ,
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cf. Lemma 4.1 and Corollary 4.11. From this we draw two conclusions: First, the
integral

∫

Υ

|g(λ)|
∥∥(H − λ)−1

(
V (H − λ)−1

)7
V (H + V − λ)−1

∥∥
B(L2;D)

d|λ|

converges. Thus, (5.11) is identical with

− 1
2πi

∫

Υ

g(λ)H(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1 dλ . (5.13)

Second, the integral
∫

Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)7
V (H + V − λ)−1

∥∥
B1

d|λ|

also converges. Hence, the mapping, which assigns to V ∈ L2
R

the expression
(5.11), in fact takes its values in B1.

Now we regard the – for the time being formal – series expansion

(H + V − λ)−1 =
((

1 + V (H − λ)−1
)
(H − λ)

)−1

= (H − λ)−1
(
1 + V (H − λ)−1

)−1

= (H − λ)−1
∞∑

j=0

(−1)j
(
V (H − λ)−1

)j
,

and make use of it in (5.13), respectively. This gives for (5.11) the expression

− 1
2πi

∫

Υ

g(λ)H(H −λ)−1
(
V (H −λ)−1

)7
V (H −λ)−1

∞∑

j=0

(−1)j
(
V (H −λ)−1

)j
dλ .

(5.14)
According to Lemma 4.1, Theorem 4.3, and Corollary 4.11 there is the inequality

‖V (H − λ)−1‖B ≤ ‖V ‖L2‖H−1‖B(L2;L∞) sup
λ∈Υ

‖H(H − λ)−1‖B

≤ 1
dist(1,Υ)

‖V ‖L2‖H−1‖B(L2;L∞) . (5.15)

Hence, the series
∑∞

j=0(−1)j
(
V (H − λ)−1

)j absolutely converges in B if

‖V ‖L2 <
dist(1,Υ)

‖H−1‖B(L2;L∞)
. (5.16)

Consequently, (5.14) holds strictly for those V ∈ L2
R

agreeing with (5.16).
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We investigate now for all j > 7 the mappings HTj , where Tj is given by (5.7).
Due to the first assertion of Lemma 5.6, (5.12), and (5.15), HTj admits the fol-
lowing estimate:

‖HTj(V )‖B1

≤
∫

Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)7(
V (H − λ)−1

)j−7∥∥
B1

d|λ|

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7∥∥
B1

× sup
λ∈Υ

∥∥(
V (H − λ)−1

)j−7∥∥
B

∫

Υ

|g(λ)| d|λ|

≤ c ‖V ‖7
L2

(
‖V ‖L2

‖H−1‖B(L2;L∞)

dist(1,Υ)

)j−7

.

Thus, HTj is a j-power mapping from L2
R

into B1 for every j > 7. Moreover, for
V ∈ L2

R
satisfying (5.16), the series
∞∑

j=8

∫

Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)7(
V (H − λ)−1

)j−7∥∥
B1

d|λ|

converges. Thus, for V ∈ L2
R

satisfying (5.16) one may interchange summation
and integration in (5.14) (cf. e. g. [45, Ch. IV.4 Thm. 37]). Therefore, (5.11) is an
absolutely converging series

− H

2πi

∫

Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1 dλ =

∞∑

j=8

HTj(V )

in B1 for all V ∈ L2
R

satisfying (5.16). As a result
∑∞

j=1 HTj(V ) converges
absolutely and uniformly in B1 for all V ∈ L2

R
with ‖V ‖L2 < c < dist(1,Υ)

/‖H−1‖B(L2;L∞). If, additionally, ‖V ‖L2 ≤ 1, then

Hf(H0 + V0 + V ) = Hf(H0 + V0) +
∞∑

j=1

HTj(V )

according to the Dunford calculus, cf. (5.5). Now the conclusion of Remark 5.4
finishes the proof of Theorem 3.7.

6. Concluding remarks

Theorem 4.3 restricts the dimension of the spatial domain Ω to 1, 2, and 3, cf.
Remark 4.4. That is why we are involved with a statistical ensemble of one-particle
quantum systems in this paper.

The proofs in this paper have been done in such a way that they work si-
multaneously for the space dimensions d = 1, 2, 3, and the decay properties of the
thermodynamic equilibrium distribution function f we impose in Assumption 3.4
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are accordingly. However, the spatially one- and two-dimensional case could be
treated more easily separately assuming less. This is due to the fact that for
d = 1, 2 one has better summability of the resolvent of an elliptic operator, and
more regularity for the solution of an elliptic PDE.

Remark 6.1. Following Văınberg, in Definition 2.5 we have defined analyticity
by means of j-power mappings. Actually, this is equivalent to weaker forms of
analyticity: A continuous mapping F from an open subset U ⊂ X to Y , where X
and Y are (real or complex) Banach spaces, is analytic, iff it is weakly analytic,
iff it is analytic on affine lines. This result is well known for the complex case; for
a comprehensive investigation also of the real case see [6]. Indeed, it suffices that
for all x0 and x1 from U and for every y∗ ∈ Y ∗ the function z �→ 〈F (x0 + zx1), y∗〉,
where z is from R and C, respectively, is analytic in z = 0. Thus, to prove our
main Theorem 3.7, one only has to verify that for all V0, V , and W from L2

R
the

function

z �→
∫

Ω

N (V0 + zV )W dx = tr
(
Wf(H0 + V0 + zV )

)

is real analytic. The proof of this, however, essentially runs along the same line as
the one in Section 5.

Remark 6.2. The first term of the j-power expansion of the mapping

V �→ Hf(H0 + V0 + V ) − Hf(H0 + V0)

corresponds to the Fréchet derivative of the operator function

V �→ f(H0 + V0 + V ) .

Hence, the Fréchet derivative ∂N of the particle density operator N , cf. Defini-
tion 3.1, is given by

∂N (V0)[V ] = M∗(HT1(V )
)

for all V0, V ∈ L2
R

, (6.1)

where H is according to Definition 5.2, cf. Remark 5.4 and Definition 2.5. Thus,
we can conclude from Lemma 5.6 and (5.2)

∫

Ω

W∂N (V0)[V ] dx =
∫

Ω

WM∗(HT1(V )
)
dx = tr

(
WT1(V )

)

=
1

2πi

∫

Υ

g(λ) tr
(
W (H − λ)−1V (H − λ)−1

)
dλ (6.2)

for all V0, V ∈ L2
R

and all W ∈ L2
R
, where H = H0 + V0 + ρ, and ρ is a number

such that 1 is a lower form bound of H0 +V0 +V + ρ. The function g is according
to (5.4). Moreover, Υ is a contour in the sense of Definition 3.3 which includes all
eigenvalues of H0 + V0 + V + ρ. If {λk} is the sequence of eigenvalues for H0 + V0

(counting multiplicity) and {ψk} is the corresponding sequence of (normalized)
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eigenvectors, then

tr
(
W (H − λ)−1V (H − λ)−1

)

=
∞∑

k,�=1

1
(λk + ρ − λ)(λ� + ρ − λ)

〈Wψk, ψ�〉L2〈V ψ�, ψk〉L2 ,

cf. e. g. [38], [25, §6.5]. Thus, one obtains from (6.2)
∫

Ω

W∂N (V0)[V ] dx =
∞∑

k,�=1
λk=λ�

f ′(λk)〈Wψk, ψ�〉L2〈V ψ�, ψk〉L2

+
∞∑

k,�=1
λk �=λ�

f(λk) − f(λ�)
λk − λ�

〈Wψk, ψ�〉L2〈V ψ�, ψk〉L2 . (6.3)

Remark 6.3. If the distribution function f , in addition to Assumption 3.4, is
strictly monotone, then (6.3) implies

∫

Ω

V ∂N (V0)[V ] dx

=
∞∑

k,�=1
λk=λ�

f ′(λk)
∣∣〈V ψ�, ψk〉L2

∣∣2 +
∞∑

k,�=1
λk �=λ�

f(λk) − f(λ�)
λk − λ�

∣∣〈V ψ�, ψk〉L2

∣∣2 < 0

for all V ∈ L2
R

which do not vanish identically. Thus, the particle density opera-
tor N , cf. Definition 3.1, is injective due to

∫

Ω

(
N (V1) −N (V2)

)
(V1 − V2) dx

=
∫ 1

0

∫

Ω

(
∂N

(
V2 + t(V1 − V2)

)
[V1 − V2]

)
(V1 − V2) dx dt < 0 ,

cf. the proof of Lemma 1.1 in [16, Ch. 3].

Remark 6.4. If N is a given amount of particles in the system, then one calls a
number ε = ε(V ) which satisfies

∫

Ω

∞∑

k=1

f(λk − ε)|ψk|2 dx =
∞∑

k=1

f(λk − ε) = N ,

a Fermi level of the system. If the distribution function f is strictly decreasing,
then the Fermi level is uniquely determined. It has been proved in [25, 38] that
the Fermi level is continuously Fréchet differentiable on compact subsets of L2

R
.

We conject the analyticity of the Fermi level with respect to the potential in the
Schrödinger operator. The adequate instrument for proving this would be the
implicit function theorem, which also works in the context of analytic mappings
between Banach spaces, see [48, Ch. 22].
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